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/ ABSTRACT

This paper reviews the state of the art in enumerative solution methods
for tn. traveling salesman problem (TSP). The introduction (Sectiom 1)
discusses the main ingredients of branch and bound methods for the TSP.
Sections 2, 3 and 4 discuss classes of methods based on three different re-
laxations of the TSP: the assigrment problem with the TSP cost function, the
l-tree problem with a Lagrangean objective function, and the assignment
problem with a Lagrangean objective function. Section 5 briefly reviews some
other relaxations of the TSP, while Section 6 discusses the performance of
some state of the art computer codes, Besides material from the literature,
the paper also includes the results and statistical analysis of some computa-

tional experiments designed for the purposes of this review.
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1, Introduction

Since the first attempt to solve traveling salesman problems by an enume:s-
ative approach, apparently due to Eastman [1958], many such procedures have been

proposed. In a sense the TSP has served as a testing ground for the deveézpment

/
of solution methods for discrete optimization, in that many procedures ans\devices \Jﬁ\~>
N
%
were first developed for the TSP and then, after successful testing, extended to =

more general integer programs. The term "branch and bound" itself was coined by

Little, Murty, Sweeney and Karel [1963] in conjunction with their TSP algorithm,

Enumerative (branch and bound, implicit enumeration) methods solve a dis-
crete optimization problem by breaking up its feasible set into successively
smaller subsets, calculating bounds on the objective function value over each
subset, and using them to discard certain subsets from further consideration.
The bounds are obtained by replacing the problem over a given subset with an easier
(relaxed) problem, such that the solution value of the latter bounds that of the
former. The procedure ends when each subset has either produced a feasible
solution, or was shown to contain no better solution than the one already in
hand. The best solution found during the procedure is a global optimum.

For any problem P, we denote by v(P) the value of (an optimal solution

to) P. The essential ingredients of any branch and bound procedure for a dis-

crete optimization problem P of the form min{f(x)|x € S} are
(1) a relaxation of P, i.e, a problem R of the form min{g(x)|x = T},
such that S&T and for every x,y€S, f(x) < f(y) implies g(x) < g(y).
‘(ii) a branching or separation rule, i.e., a rule for breaking up the

feasible set Si of the current subproblem Pi into subsets

q
S veey S such that . §,, = S ;
i1’ ' Yiq’ !
q jul i3 i
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(111) a lower bounding praocedure, i.e. a procedure for finding (or

approximating from below) V<Ri) for the relaxation Ry of each

subproblem Pi; and

ol 7 Al

(iv) a subproblem selection rule, i.e, a rule for choosing the next ' 3
subproblem to be processed, -§

Additional ingredients, not always present but always useful when present,

are

i (v) an upper bounding procedure, i.e. a heuristic for finding feasible

solutions to P; and
(vi) a testing procedure, i.e., a procedure for using the logical implications

1 of the constraints and bounds to fix the values of some variables

(reduction, variable fixing) or to discard an entire subproblem !
: (dominance tests), ?
For more information on enumerative methods in integer programming see,
for instance, Chapter 4 of Garfinkel and Nemhauser [1972], and/or the surveys
by Balas [1975], Balas and Guignard [1979], Beale [1979], Speilberg [1979].
Since by far the most important ingredient is (i), we will classify the

branch and bound procedures for the TSP according to the relaxation that they

use,

The integer programming formulation of the TSP that we will refer to when
discussing the various solution methods is defined on a complete directed graph

G = (V,d) on n nodes, with node set V = {1,...,n}, arc set A = {(1,))!1,] = 1,...;;},

and nonnegative costs ¢ associated with the arcs, The fact that G is

13
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complete involves no restriction, since arcs that one wishes to ignore can be

agsigned the cost c,, = =, In all cases <¢

i}
formulated, following Dantzig, Fulkerson and Johnson [1954], as the problem

g ¥ 1€V. The TSP can be

L min S Ze¢, ,x
teviey 134

s,t,

e M
(2) o
S x 1, j€
jev
(3) = Z:cijsisl-l, ¥Sgv, sk
1€53€S
{&4) Xy " 0orl, {,jev,
where xij = 1 {f arc (1,j) is in the solution, xij = 0 otherwise.
The subtour elimination inequalities (3) can also be written as
(5 z T

5 x,,>1, ¥ScV, SH
1esjens 7

A very important special case is the symmetric TSP, in which cij = Cji’
¥i,j . The symmetric TSP can be defined on a complete undirected graph G =(V,E)

on n nodes, with node set V, edge set E, and arbitrary costs cij’ It can

be stated as

(6) min I Ce,.,x
tevypy HOH
Sth
7 SX,,+ Zx,, =2, iéy
j<i it §>1 i

"




g (8) S Sax,<|sl1 ¥SgV, Sk
sesjes H ' B |
o1 i
{
(%) X " 0orl, i,jev , 3>14 :

where the subtour elimination inequalities (8) can also be written as

(10) T 2 x,.,+ I cTx,>2, ¥sgV,sH
iesjens M ien\sjes M 7
> >

Next we outline two versions of a branch and bound procedure for the TSP.
Prior to using any of these versions, a relaxation R of the TSP must be
chosen., Both versions carry at all times a list of active subproblems, They

differ in that version 1 solves a (relaxed) subproblem Rk only when node k is

selected and taken off the list, while version 2 solves each (relaxed) sub-

problem as soon as it is created, i.e. before it is placed on the list,

Although the branch and bound procedures used in practice differ among them-

i T e

selves in many details, nevertheless all of them can be viewed as variants of
one of these two versions,

Branch and bound method for the TSP

Version 1
1. (Initialization), Put TSP on the list (of active subproblems), Initia-
lize the upper bound at U = w, and go to 2,

2. (Subproblem selection), If the list is empty, stop: the tour associated

with U is optimal (or, if U =, TSP has no solution), Otherwise choose

a subproblem TSPi according to the subproblem selection rule, remove TSP1

B e s i g

from the list, and go to 3. 1.




(Lower bounding). Solve the relaxation R1 of TSPi or bound V(Ri) from
below, and let Li be the value obtained,

1f L; 2 U, return to 2,

1f Li < U and the solution defines a tour fgr TSP, store it in place
of the previous best tour, set U =~ Li’ and go to 5.

If Li < U and the solution does not define a tour, go to 4,

(Upper bounding: optional). Use a heuristic to find a tour in TSP, If
a better tour is found than the current best, store it in place of the
latter and update U, Go to 5.

5. (Reduction: optional), Remove from the graph of TSPi all the arcs whose
inclusion in a tour would raise its value above U, and go to 6,

6. (3ranching). Apply the brancaing rule to TSPI, i.e, generate new

subproblems TSPil,..., TSEic, place them on the list, and go to 2,

Version 2

1. (Initialization), Like in version 1, but solve R before putting TSP
on the list,

2. (Subproblem selection), Same as in version 1,

3. (Upper bounding: optional). Same as Stap &4 of version 1, with "go to 5"
replaced by "go to 4."

4, (Reduction: optional), Same as step 5 of version 1, with "go to 6" replaced
by '"to go 5."

5. (Branching). Use the branching rule to define the set of subproblems
TSP“_,...,TSPiq to be generated from the current subproblem TSPI,

and go to 6,




ki)

6. (Lower bounding), 1If all the subproblems to be generated from 'I.‘SPi
according to the branching rule have already been generated, go to 2.
Otherwise generate the next subproblem ‘rSPij defined by the branching
rule, solve the relaxation Rij of TSPiJ or bound V(Rij) from below,
and let L be the value obtained,

i}
If Lij > U, return to 6,

if Lij < U and the solution defines a tour for TSP, stora it in place

of the previous best tour, set U~ 1,6 , and go to 6.

1]

1f Lij < U and the solution does not define a tour, place TSP,, on the list

ij
and return to 6.
In both versions, the procedure can be represented by a rooted tree (search
or branch and bound tree) whoSe nodes correspond to the subproblems generated,

with the root node corresponding to the original problem, and the successor nodes

of a given node i associated with TSPi corresponding to the subproblems
TSPil,...,TSPiq defined by the branching rule.

It is easy to see that under very mild assumptions on the branching rule
and the relaxation used, both versions of the above procedure are finite (see

Exercise 1).

Next we discuss various specializations of the procedure outlined above,
classified according to the relaxation that they use, When assessing and
comparing the various relaxations, one should keep in mind that a "good" re-
laxation is one that (i) gives a strong lower bound, i.e, yields a small
diffarence v(ISP) - v(R) ; and (ii) is easy to solve, Naturally, these are

ofcen conflicting goals, and in such cases one has to weigh the tradeoffs,
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2. Relaxation I: The Assignment Problem with the TSP Cost Fuactien

The most straightforward relaxation of the TSP, and historically the first
one to have been used, is the problem obtained from the integer programming

formulation (1), (2), (3), (4) by removing the constraints (3), i.,e. the

assignment problem (AP) with the same cost function as TSP. It was used,

among others, by Eastman [1958], Little, Murty, Sweeney and Karel [1963],
Shapiro {1966], Bellmore and Malone [1971], Smith, Srinivasan and Thompson
[1977], Carpaneto and Toth [1980].

An agsignment (i.e,, a solution to AP) is a union of directed cycles,
hence either a tour, or a collection of subtours, There are nl distinct
assiznments, of which (m-1)! are tours, Thus on the average one in every n
assignments is a tour, Furthermore, in the current context only those assign-
ments are of interest that contain no diagonal elements (i,e., satisfy x, =

ii
0, i=l,ees,n), and their number is nl!/e rounded to the nearest integer,

i.,e. |nl/e + 1/2] (see, for example, Hall [1967], p. 10). Thus on the average one

in every n/e '"diagonal-free" assignments is a tour., This relatively high fre-
quency of tours among assignments suggests that v(AP) is likely to be a pretty
strong bound on v(TSP), and computational experience with AP-based solution
methods supports such a view., To test how good this bound actually is for
randomly generated problems, we performed the following experiment. We gen-
erated 400 problems with 50 < n < 250 with the costs independently drawm from a
uniform distribution of the integers over the intervals [1,100] and [1,1000],
and solved both AP and TSP, We found that on the average v(AP) was 99,27 of
v(ISP), Furthermore, we found the bound to improve with problem size, in that
for the problems with 50 < n < 150 and 150 < n < 250 the outcomes were 98.8%

and 99,67, respectively.




d by the Hungarian met:od (Kuhn [1955]; for a more
' recent

AP caa be solve
1 or Lawler f19761) in at most O(ns) steps

treatment, see Christofides {1975
to be solved atevery node of the search tree diff
er

The assignment problems A?i

grom the initial assignment problem
cs are {ncluded (force into the s

- olution, These

* modifi-

AP in tat
some arcs are excluded (forbidden)

from, while other ar

cations do nmot present any difficulty.
n a lower bound on v(AP), t process of s
olving a sub
problem can

¢
sce the Hungarian method provides at

every {teratio
r bound meetthe upper boun
d U. More
« 0 importantly
1]

pe stopped whenever the lowe

typical case (see the branch
ode } of the search trelffers from th
e
problem APi solved

in the ing rs below), the assignment problem AP
]

to be solved at n
that a cvin arc belonging to the optimal soluti
on

at the parent node 4 only in
ed from the solution of , and possibly some other a
recs are

of APi {s exclud
same position T out) with respect to the soluti
ution

required to maintain the
t they have with respect tO of

P AP . Whenever this is the case

’

of APj, tha
e solved by the Huan method s
optimal

the problem A?j can b

of the problem at the par
r Bellmore and ® [1971]). For an efficient implem
enta-

solution ent mor at
a brother node), in at most o(nz)

steps (see Exercise 2 ©
Hungariatod, which uses on the average consid
sider-

this version of the

tation of
steps, see Carpand Toth [198
0]. The
primal simplex

ably less than O(nz)
nt problem has 2en used in a parametric versi
on

method for the assignme
to solve efficiently this sequence of :lated assignment probl
oblems by

¢mith, Srinivasan and Thompson {19773,

The lower bound v(AP) can be slimproved b

penalty.
1ated as the ainimal e in the objective functi
on

This can be calecu
mplex pivolliminates some arc from th
e

her by a first si

caused eil
solution, or by 8 giret iteration of frian meth
hod :hat aceo B
mplishes the s
- ame

Furthermore, the arc €O be in¢ the solution bv th
: e pivot can be

ehing.,

e R R T A e Y R



restricted to 2 cutset defined by some subtour of the AP solution. Computa-
tional experience indicates, however, that the impact of such a penalty tends

to derrease with problem size and is negligible for anything but small problems,
In the computational experiment involving the 400 randomly generated problems
that we ran, the addition of a penalty to v(AP) raised the value of the lower

bound on the average by 0,03%, from 99.27% to 99.23% of v(TSP).

Brarching rules

Several branching rules have been used in conjunction with the AP relaxa-
ation of the TSP. In assessing the advantages and disadvantages of these rules
one should keep in mind chat thes ultimate goal is to solve the TSP by solving

as few subproblems as possible. Thus a '"good" branching rule is one that

(&) generates few successors of a node of the search tree, and (b) generates
strongly constrained subproblems, i.e. excludas many solutions from each
subproblem, Again, these criteria are usuzally conflicting and the merits of
the various rules depend on the tradeoffs,

We will discuss the various branching rules in terms of sets of arcs
excluded (Ek) from, and included (Ik) into the solution of subproblem
ke In terms of the variables xij’ the interpretation of these sets is that

subproblem k 1is defined by the conditions

{
0, (1,)) €
(11) X,, = *
o, e er

in addition to (1), (2), (3), (4). Thus the relaxation of subproblem k is
given by (11) in addition to (1), (2), (4). We abbreviate Branching Rule

by 3R.
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BR 1, (Little, Murty, Sweeney and Karel (1963]), Given the current re-

laxed subproblem Apk and its reduced costs cij - cij su - Vj’ where u,
and vj are optimal dual variables, for every arc (1,3) such that Elj =0

define the penalty
pyy = min scih : BN\ 1}} + min : héV\{i}}
and choose (r,s) € A such that
Ppy = max {pij : E;j = O} °
Then generate two successors of node k, nodes k +1 and k + 2, by
defining

B "R UEmO}, g e

and
Btz = By Tz = 4 U(zo)} o
This rule does not use the special structure of the TSP (indeed, it applies
to any integer pProgram), and has the disadvantage that it leaves the

optimal solution to AP fensible for APk +2°

The following rules are based on disjunctions derived from the subtour

elimination inequalities (3) or (5).

BR 2, (Eastman [1958], Shapiro [1966]), Let x be the optimal solution to
the current relaxed subproblem AP , and let A = [(11,1 ),...,(i:,i )} be the
arc set of a minimum cardinality subtour of xk involving the node set
S = {11,...,1t}. Constraint (3) for § implies the inequality

(39 < x . <|s| -1,
(1,1 J

which in turn implies the disjunction

(12) X =0 V...Vx -O.
1112 1t11
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Generate t successors of node k, defined by

= L) b
Ek+@ Ek “{(ir’ir+1)‘
(13) r-l,t\tQ.t
Lewr = I
with it+1 = il .

Now xk is clearly infeasible for all APR*T, T =1,,,4,t, and the choice
of a shortest subtour for branching keeps the number of successor nodes small,
However, the disjunction (12) does not define a partition of the feasible set
of APk, and thus different successors of APk may have solutions in common, This

shorteoming is remedied by the next rule, which differs from BR 2 only in that

it strengthens the disjunction (12) to one that defines a wartizion,

BR 3, (Murty [1968], Bellmore-Malone {1971], Smith, Srinivasan and

Thompson [1977]). The disjunction (12) can be strengthened to

(14) (x, ., =0) v(x =1, x, . =0) V.. V(x L T =1,x, . =0),
hip 44, 1ri; hip Leatfe 77 LA

and accordingly (13) can be replaced by

Ek+r = Ek U{(ir:ir+1)}
(15) > r'l,ooogt

Ik+r - Ik u{(ilaig):ooos(ir-ltir)}

/

with _it+ = i

1 1°

1

A slightly different version of BR 3 (as well as of BR 2) is to replace

the edge set A, of a minimum-cardinalicy subtour with that of a subtour with a
= ]

A
PR T b i s
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ninimum number of free edges (i.e, edges of E\EQJIk). This rule is used ip

S B A RN i B8

Carpaneto and Toth [1980],

BR 4, (Bellmore and Malone [1971]), Let xk and S be as before.

Constraint (5) implies the disjunction

(16) (xilj =0, J€S) V(xiz.1 =0, J€8) V...V(xitj = 0, j€s). c
Generate t successors of node k, defined by
Bper = B VL0 & 3€8)] 3
(17) r=1,,4.,t

Ik+r = Ik

Like in the case of BR 2, Br 4 makes xk infeasible for all successor
problems of APR, but again (16) does not partition the feasible set of APk.
This is remedied by the next rule, which differs fzom BR 4 ounly in that it

defines a parcitiom,

BR 3, (Garfinkel [1973]). The disjunction (16) can be strengthened to

(18) (xi ;" 0, j€9) V(%

=0, JEV\S; x
1 13 L

=0, j&€5) V...
9d

V(:-:irj =0, JON\S,r = 1,..4,t-1; x, , = 0, J€S)

i.J
and accordingly (17) can be replaced by

B =B VAL jES}U{(iq,J): q=1l,...,r-1, JENS}
(19)

=
T+r K
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The two rules BR 2 and BR 4 (or their strengthened variants, BR 3 and
BR 5), based on the subtour-elimination constraints (3') and (5), respectively,
generate the same number of successors of a given node k. However, the rule
based on inequality (5) generates more tightly constrained subproblems, i.e.,
excludes a greater number of assignments from the feasible set of each successor
problem, than the rule based on inequality (3'). Indeed, with ‘S‘ = k, we have

Theorem 1. (Bellmore and Malone [1971]). Each inequality (3') eliminates
[(n-k)!/e + 1/2] diagonal-free assignments, whereas each inequality (5) eliminates
L(n=k)!/e + 1/2] + |k!/e + 1/2| diagonal-free assignments.

Proof. Each inequality (3') eliminates those diagonal-free assignments
that contain the subtour with arc set AS. There are as many such assignments
as there are diagonal-free assignments in the complete graph defined on node
set V\S, and the number of these is (n-k)!/e rounded to the nearest 1nte§er, i.e.,
|(n~k)!/e + 1/2| (see section 2).

On the other hand, each inequality (5) eliminates those diagonal-free
assignments consisting of the union of two such assignments, one in the complete
graph defined on S, the other in the complete graph defined on V\S. Since the
number of the latter is [(n-k)!/e + 1/2] and that of the former is |kle + 1/2},
the number of diagonal=free assignments eliminated by each inequality (5) is as
stated in the theorem.”

Nevertheless, both Smith, Srinivasan and Thompson [1977] and Carpaneto and
Toth [1980] found their respective implementations of BR 3 more efficient than

BR 4 or BR 5, both in terms of total computing time and number of nodes generated.

We have no good explanation for this,

Yl

G i
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Qther features 2

The subproblem selection rule used by many branch and bound algorithms is the

one known as 'depth first'" or LIFO (last in first out), It amounts to choosing
one of the nodes generated at the last branching step (in order, for instance,

of nondecreasing penalties, like in Smith, Srinivasan and Thompson

A AR ottt S

[1977]); and when no more such nodes exist, backtracking to the parent node .

and applying the same rule to its brother nodes, This rule has the advantage

of modest storage requiresments and easy bookkeeping, Its disadvantage is that

possible erroneous decisions (with respect to arc exclusion or inclusion) made ;

early in the procedure cannot be corrected until late in the procedure,

The alternative extreme is known as the '"breadth first" rule, which
amounts to always choosing the node with the best lower bound. This rule has
the desirable feature of keeping the size of the search tree as small as possible,
(see Exercise 3), but on the other hand requires considerable storage space. In
order to keep simple the passage from one subproblem to the next one, this rule
must be embedded in a procedure patterned after version 2 of the outline in the

iatroduction, which solves each assignment problem as soon as the corresponding noce

is generated, and places on the list only those subproblems TSPi with L, <U.

] k|
The procedure of Carpaneto and Toth [1980] uses this rule, and it chooses the
subproblems to be processed (successors of a given node) in the order defined
by the arc adjacencies in the subtour that serves as a basis for the branching,

As mentioned earlier, the high fraquency of tours among assignments makes

AP a relatively strong relaxation of TSP, which in the case of random (asymmetric)
costs provides an excellent lower bound on v(ISP), However, in the case of
the symmetric TSP, the bound given by the optimal AP solution is substantially j

weaker, An experiment that we ran on 140 problems with 40 < n < 100 and with

symnecric costs independently drawm from a uniform distribution of the incegers

b= oty o an . 'y
it R e B 10 5t AR
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in the interval {1, 1000], showed V(AP) to be on the average 827 of v(TSP),
while the addition of a penalty raised the bound to 85%. The explanation of the

relative weakness of this bound is pretty straightforward: in the symmecric case,

there is a tendency towards a certain symmetry also in the solution, to the effect
that if xij = 1, then (since cij - cji)’ one tends to have xji = 1 too;

and thus the optimal AP solution usually contains a lot of subtours of length 2,
irrespective of the size of n , Thus as a rule, a much larger number of

subtours has to be eliminated before finding an optimal tour in the symmetric
case than in the asymmetric one., This makes the AP a poor relaxation for

the symmetric TSP.

3, Relaxation II: The l-Tree Problem with rangean Objective Function

This relaxation was successfully used for the symmetric TSP first by Held
and Karp {1970, 197i] and Christofides [1970], and subsequently by Helbig Hansen
and Krarup [1974], Smith and Thompson [1977], Volgenant and Jonker [1982].

Consider the symmetric TSP and the undirected (complete) graph G = (V,E)

associated with it, The problem of finding a connected spanning subgraph H

of G with n edges, that minimizes tha cost function (6), is obviously a

relaxation of the symmetric TSP, Such a subgraph H consists of a spanning

tree of G, plus an extra edge. We may further restrict H to the class J
of subgraphs of the above :ype in which some arbitrary node of G, say node 1,
has degree 2 and is contained in the unique cycle of H, For lack of a

better tarm, the subgraphs of this class J are called l-trees, To see thac
finding a l-tree that minimizes (6) is a relaxation of che TSP, it suffices to

realize that the constraint set defining the fauily 7 4is (9) and
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(20) T S x,,+F Sx,.>1, ¥ScvV, sk
tesyens M gepsjes 1 7
>t >1
(21) T Zx,=n
1evi>y 1
(22) Sx , =2
jev 1]

Here (20) is a weakening of (10), (21) is the sum of all equations (7)
divided by two, and (22) is the first equation (7). '

The minimum-cost l-tree problem is easily seen to be cdecomposable into
two independent problems:

(g) to find a minimum-cost spanning tree in G - {1}; and

(8) to find two smallest-cost edges among those incident in G with node 1,

The n~2 edges of the spanning tree found under (¢), together with the
2 edges found under (8), form a minimm-cost l-tree in G,

Solving problem (8) requires O(n) comparisons, whereas problem (&)
can be efficiently solved by the algorithms of Dijkstra [1959] or Prim [1957],
of complexity O(nz), or by the algorithm of Kruskal [1956], of complexity
0(lE| log |E}). Since the log |E] in the last expression comes from sorting
the edges, a sequence of subproblems that requires only minor resorting of the

edges between two members of the sequence can be more efficiently solved by

Kruskal's procedure than by the other two,.

The number of l-trees in the complete undirected graph G on n nodes can be
calculated as follows: the number of distinct spanning trees in G - {1} is

a-3 n-l.
(n=1) (Cailey's formula), and from each spanning tree one can get ( 2 ; distinct

l-trees by inserting two edges joining node 1 to the tree. Thus the number of

"
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l-trees in G is %(n-Z)(n-l)n-Z, which is much higher than the number of solu-

tions to AP. Since G has (n-1)! tours, on the average the number of tours among

the l-trees of a complete undirected graph is one in every %(n-Z)(n-l)n-3/(n-2)!,
and hence the minimum-cost l-tree problem with the same objective function as

the TSP is a rather weak relaxation of the TSP, In the above mentioned computa-
tional experiment on 140 randomly generated symmetric problems, we also solved

the corresponding l-tree problems and found the value of an optimal l-tree to be

on the average only 637 of v(TISP). However, this relaxation can be considerably
strengthened by taking the equations (7) into the objective function in a Lagrangean
fashion, and then maximizing the Lagrangean as a function of the multipliers.

The problem

23) L(A) = min £ Zc X < k Ex °x,,-2)
X (N ievi>L 13 13" g 't > H
= min £ 2 (c,, + K + A )x -2 TA,,
X (@ievi>t i T

where A is any n-vector and X(J) is the set of incidence vectors of l-trees in
G, i.e., the set defined by (9), (20), (21), (22), is a Lagrangean relaxation

of the TSP, From the last expression in (23) and the fact that X(v) contains
all tours, it is easy to see that for any \, L(A) < v(TSP). (For surveys of
Lagrangean relaxation in a more general context see Geoffrion [1974], Fisher
[1981], Shapira (1979].) The strongest Lagrangean relaxation is obviously given
by A = % such that

24) L) = % L) .

¢

rrcblem (24) is sometimes called a Lagrangean dual of the TSP,

P R T

%
3




Now (24) is a much stronger relaxation than the l-tree problem
with the TSP cost function, Indeed, computational experience with randomly
generated problems has produced on the average values of L(\) of about 99%
of Vv(ISP) according to Christofides [1979] (p. 134), and of about 99.7%
of v(TSP) according to Volgenant and Jonker [1982].

However, solving (24) is a lot more difficult than solving a l-tree
problem, The objective function of (24), i.e. the function L) of (23), is
piecewise linear and concave in A, Thus L(A) is not everywhere differentiable,
Held and Karp [1971], who first used (24) as a relaxation of the TSP, have tried
several methods, and found that an iterative procedure akin to the relaxation method

of Agmon [1954] and Motzkin and Schoenberg [1954] was the best suited approach

for this type of problem, The method, which turned out to have been theoret-
ically studied in the Soviet literature (see Polyak [1967] and others)

became the object of extensive investigations in the Western literature under

the name of subgradisnt optimization, as a result of its successful use

by Held and Karp in conjunction with the TSP (for surveys of subgradient opti-
mization in a more general context see Held, Wolfe and Crowder [1974],
Sandi [19791).

The subgradient optimization method for solving (24) starts with some
arbitrary A = A° (say the zero vector) and at iteration k updates kk as
follows, Find L(\K), i.e. solve problem (23) for A =AF, Let H(X) be
the optimal l-tree found, 1If H(kk) is a tour, or if V(H(kk)) 22U,

stop. Otherwise, for i€y, let d, be the degree of node i in H(kk).

i
Then the n-vector with components dt - 2, 1€V, is a subgradient of L(\) at kk

(see Exercise 4), Set

il s, Fo- . Ry e e
Mo sl e g b R .
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Al gk, tk(dlz - 2), Lev

o (25) \y i

where tk is the "step length" defined by

(26) t* = q@ - LOSy)/ T @&
i

&v

- 2)2

with 0 < ¢ < 2. Then set k = k+l and repeat the procedure.

It can be shown (see any of the surveys mentioned above) that the method
[ 4
converges if I tk = o and lim tk = 0, These conditions are satisfied if
k=l k-o
one starts with y = 2 and periodically reduces ¢ by some factor.

Example 1.
Consider the 8«city symmetric TSP whose graph is shown in Fig. 1 (only arcs

with finite cost are present). Initially U = 25, o = 2, ;\g =0 fori=1,...,8.

Fig. 1. 1Initial graph G = (V,E)

Foprm v Tinut




20

The optimal 1l-tree, shown in heavy lines in Fig. 1, has a weight of L(ko) = 21,

At iteration 0 we have:
d: - (2, 2, 4,1, 1, 3, 2, 1);
)
t = 2(25-21)/8 = 1;
)\} - (0’ o, 2, '1’ '1’ 1’ 0: -1).

The updated arc costs (cij + ki + k}) and the corresponding optimal l-tree,

having & weight of L(\') = 24, are shown in Fig. 2. i

: R |
U S b e 4 e b T A ey . 3
B R AT e S el st bl e b R s e o il i e P i St v o s e i L b AT

Fig. 2. Updated graph G = (V,E)

We have di =2 fori=1,...,8; thus a tour has been found and the procedure stopc.ﬁ 4
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Held and Karp [1971) pointed out that if A\° is taken to be, instead of

0, the vector defined by

[o]
hi = -(u1 + vi)/2 . iev ,
where (u, v) is an optimal solution to the dual of the assignment problem with

costs cij = cji’ ¥ 1,j, then one always has v(H(ho)) > v(AP). Indeed, for this

choice of \° one has from (23)

L(\%) = min £ T, + N +9x -2 £2°
x€x(N 1ev > 1 ) tey 1

1
x€X (@) 1€V >i 2" i b it ] i qey 1 1

> v(AP),

since v(AP) = iEv(u1 + vi) and c1j -y, - Vj‘Z 0, 1,5,

This kind of initielization requires of course that one solve AP prior to

addressing problem (24).

Helbig Hansen and Krarup [1974] and Smith and Thompson [1977] distinguish
tween the application of the subgradient procgdure at the root node of the
search tree and at subsequent nodes, by using different starting vectors A\°
and different stopping rules,

Volgenant and Jonker [1982] use an updating formula for hk, and an ex-
pression for tk, different from (25) and (26), respectively., Namely, they

take tk to be a positive scalar decreasing according to a series with a

constant second order difference, i,e,

@n N constant,

e

A i Gl i e
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and define kk+1 by setting for 1€V,
/ k k
ki if di = 2
(28) kk+1 =
Ny + 0.66°(a5-2) + 0.4 2)  otherwise

It should be mentioned that none of the versions of this subgradient optimization
method can be guaranteed to solve (24) in polynomial time with a prespecified
degree of accuracy., However, the stopping rules are such that after a certain
number of iterations the procedure terminates with an epproximation to an

optimal A, which gives a (usually good) lower bound on L(X).

Branching rules

BR 6, (Held and Karp {1971]). At node k, 1let the free edges of the current

l-tree (i.e, those in E Ulk) be ordered according to nonincreasing penalties,

and let the first q elements of this ordered set be J = {(il,jl),...,(iq,jq)},
where q will be specified below, Define q new subproblems by

Lor "L Ul sh =100} r=1l,....9
(29) Ek+r = Ek U{(ir’jr)} ’ T =1l,400,9-1

Bryq = B YI(LEL o 4 =por ) =p]
Here p € V 1is such that Ik contains at most one edge incident with
p, while Ikﬁq contains two such edges; and q is the smallest subscript
of an edge in J for which a node with the properties of p exists,
This rule partitions the feasible set, and makes the current l-tree

infeasible for each of the new subproblems generated, but the aumber q of

‘the new subproblems is often larger than necessary,

et A R b i s




s ———

BR 7, (Smith and Thompson [1977)j), Choose a node vhose degree in the
current l-tree is not 2, and a maximum-cost edge (i,j) among those incident

with the chosen node. Then generate two new subproblems defined by

Bl TR MWL Ly g
(30)

Besz ™ B Lerg = G VLT

This rule generates only two successors of each node k of the search
tree, but the minimum l-tree in subproblem k remains feasible for subproblem
k + 2,

BR 8, (Volgenant and Jonker [1982]), Choose a node p whose degree in
the current l-tree exceeds 2. Such a node is incident with at least two free
edges, say (il,jl) and (12,j2) (otherwise Ik contains two edges incident
with p, hence the remaining edges incident with p belong to or should belong

to E). Generate three new subproblems defined by

Bt = B o Ten = G VG 5 Upadd s

Gl B, = U(,1)], Lo = L Ug,i]

B = B VALY has = &

IZ p 1is incident with an edge in Ik’ then node k+l1 is not generated,
This rule also partitions the feasible set and makes the l-tree at node k
infeasible for each of the successor nodes, while the number of successors of

each ncde is at most 3,




R AN

24

Qther features
Held and Karp [1971] and Smith and Thompson [1977] use a depth first sub-

problem selection rule, while Volgenant and Jonker [1982] have implemented both
& depth first and a breadth first rule, with computational results that indi-

cate a slight advantage for the depth first rule (in their implementation).

Extension to the asymmetric TSP
The basic ideas of the l-tree relaxation of the symmetric TSP carry

over to the asymmetric case (Held and Karp [1970]), in that the l-tree in
an undirected graph can be replaced by a l-arborescence in the directed graph
G = (V,A), defined as an arborescence (directed tree) rooted at node 1,
plus an arc (i,1) Jjoining some node 1i€V\{1] to node 1. The constraints

defining a l-arborescence, namely (4) and

(32) s xijzl, vs;v:{l}es
1€sJeV\s

33) S £x,,=n
1eviev 1J

(34) igvxﬂ =1

are easily seen to be a relaxation of the constraint set (2), (4), (5) of
the TSP.

The problem of finding a minimum-cost l-arborescence can again be de-
composed into two independent problems, namely (&) finding a minimum-cost
arborescence in G rooted at node 1, and (8) finding a winimum-cost arc
(i,1) in G. Problem (a) can be solved by the polynomial time algorithms
of Edmonds [1967] or Fulkerson [1974], or by the O(n’)-time algorithm of
Tarjan {1977],

i
5
H
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To obtain the Lagrangean version of the l-arborescence relaxation, one

forms the function

(35) L(K) = min S Z ¢, ,x & \ ( - X 1)
xex@) tevger U Tt ey 1
= min SR (C + A ) x =z )\

xxX (@) ieviev 7 eyt

where X(G) is the set of incidence vectors of @, the family of l-arbo-
rescences in G. Again, the strongest lower bound on v(TSP) is of course
given by \ = N such that

(36) L(T) = max LQ) ,
A

and subgradient optimization can be used to solve problem (36). However,
computational experience with this relaxation (see Smith [1975]) shows it to
be inferior (for asymmetric problems) to the AP relaxation, even when the

latter uses the original objective function of the TSP,

4, Relaxation IJI: the Assignment Problem with Lagrangean Objective Function

This relaxation was used for the asymmetric TSP by Balas and Christofides
[1981]., 1It is a considerable strengthening of the relaxation consisting
of the AP with the original cost functiom, involving a significant computa-
tional effort, which however seems amply justified by the computational
results that show this approach to be the fastest currently available method

for this class of problems,

Consider the asymmetric TSP defined on the complete directed graph G = (V,A),
in the integer programming formulation (1), (2), (4), plus the subtour-elimination

constraints. The latter can be 'rritten either as (3) or as (5), but for reasons

) e b e e e B e i

i,

ol R s a St s
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to be explained later, we include both (3) &nd (5), as well as some positive

linear combinations of such inequalities, and write the resulting set of subtour-

4 e AT AT I A TR e e e et e gl

elimination inequalities in the generic form

(37) T Tatx " tET.

jeviev 4 1y 2

Thus our integer programming formulation of the TSP consists of (1), (2), (4)

and (37). To construct a Lagrangean relaxation of TSP, we denote by X the feasible

set of AP, and associate 8 multiplier Weo t<T, with every inequality in the system

(37). We then have

?

|

i (38) Lw) =minT T Tw (S Zatx at3

g catizvyzr H T e ey 1 T % |
i £
} o t :
t amia o & (e Sw a )% = w.a_, !
! xexievier H eer £ 4 S ter ©

vhere w = (wt). Clearly, the strongest such relaxation is given by w = w such

that

(39) L(W) = max L(W)
w>0

The Lagrangean dual (39) of the TSP could be solved by subgradient optimi-

PSR

zation, like in the case of the l-tree relaxation of the symmetric TSP. However,

in this case the vector w of multipliers has an exponential number of compo- ;

nents, and until an efficient way is found to identify the components that need

to be changed at every iteration, such a procedure seems computationally

expensive, Balas and Christofides [1981] therefore replace (39) by the

"restricted” Lagrangean dual

(40) max L(w) ,
wav

where




w > 0 and there exists u,vERn such that

Wadw = c if x
u, +v, + Swar { 1]

L) et g eyy if Fyy =0

RO . e o b SO

and x 1is the optimal solution found for the AP.

In other words, (40) restricts the multipliers w_ to values that,

t
together with appropriate values U vj , form a feasible solution to the

B TP S USRS 1 SRS R SR ORI B

dual of the linear program given by (1), (2), (37) and x . >0 , 1,j€V.

i}
This may cause the value of (40) to be less than that of (39), but it

AT 30T LR PV e, G TS

leaves the optimal solution X to AP, also optimal for the objective function

(38), Thus (40) can be solved without changing X. While 20 good

.

method is known for the exact solution of (40), Balas and Christofides [1981)

R T o s S

G e

give a polynomially bounded sequential noniterative approximation procedure,

which vields multipliers Gt such that L(&) typically comes close to v(ISP):

for randomly generated asymmetric TSP's, L(W) was found to be on the average

St AR A T B

99.5% of v(TSP) (Christofides [1979], p. 139-140),

The procedure starts by solving AP for the costs ¢ ., ¥ 4,§, and taking u,, Vv

i3
to be the components of the optimal solution to the dual of AP, It then assigns

b

values to the multipliers v, sequentially, without changing the values assigned
earlier, We say that an inequality (37) admits a positive multipliier, if there
exists a v, > 0 which, together with the multipliers already chosen, satisfies

the constraints of W, At any stage, v(TSP) is bounded from below by |

(41) fu + Lv, + Zwal .
gy 1 qevd eertt

since (u,v,w) is a feasible solution to the dual of the linear program cdefined

by 1y, (2), (37) and %44 >0, ®1,3.
-
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The bounding procedure successively identifies valid inequalities that

(1) are violated by the AP solution X , and

(11) admit a positive multiplier.

Such inequalities are included into L(w) in the order in which they

are found, with the largest possible multiplier w The inclusion of each

t.
new inequality strengthens the lower bound L(w). We denote by Eij the re-

v, and the multipliers

duced costs defined by the optimal dual variables u, , f

a = - - - t ¢ 2
wt, i.e,, 13 cij u, vj tgrwtlij. L
At any given stage, the admissible graph G° = (V,Ao) is the spanning '

subgraph of G containing those arcs with zero reduced cost, i.e.

f t ]
Pl [ « »
Ao =i 1,)) € A‘ui + vj + cgrwtaij = cij £

where T 1is the index set of the inequalities included so far in L(w). The
inclusion of each new inequality into the Lagrangean function adds at least one
new arc to the sat Ao. Furthermore, as long as G° is not stromgly connected, the
procedure is guaranteed to find a valid inequality satisfying (1) and (ii). Thus
the number of arcs in A° steadily grows; and when no more inequalities can be
found that satisfy (i) and (i1), G° is strongly connected. Finally, if at some
point G° becomes Hamiltonian and a tour H is found in G° whose incidence
vector satisfies (37) with equality for all t€T such that w, > 0, then H is an
optimal solution to TSP (see Exercise 5).

Three types of inequalities, indexed by Tl ’ Tz and T3 » Trespectively,
are used in three noniterative bounding procedures applied in sequence, We

will denote the three components of w corresponding to these three inequality

classes, by ) = (hi)isrl , L= (;‘;,:'.)1‘31,2 and v = (yi)ier3 , respectively,




Bounding procedure 1

This procedure uses the inequalities (5) satisfying conditions (i) and (ii).
For any SZV, the set of arcs (S,V'S) = {(i,j)EAliGS, JEV'S} is called a directed
cutset., The inequalities (5) corresponding to the node sets St, t<T, can be

represented in terms of the directed cutsets Kt = (St, V\St)’ as

(62) = >1, t €T

b x £ L
(4, pex !

At any stage of the procedure, the inequality corresponding to cutset

Kt is easily seen to satisfy conditions (1) and (1i) if and only if

(43) K, " Ao =0,

To find a cutset Kt satisfying (43), one chooses a node 1 € V and
forms its reachable set R(1) = {J<V|there is a directed path from { to j} in
Go. If R(1) = V, there is no cutset Kt with { € St satisfying (43), so one chooses
another node. If R(1) # V for some i € ¥, then K, = (R(1), V\R(1)) satisfies (43),
and the largest value that one can assign to the corresponding multipliier kt with-

out violating the constraints of W is %, = min ¢,.. Thus the inequality
i, ek H

(42) corresponding to K_1s included in L(v) by setting the reduced costs to

ciJ - Eij - lt, (i,j)EKt, E;j - Eij otherwise, This adds to A° all arcs for
which the minimum in the definition of It is attained., The search is then started
again for a new cutset; and the procedure ends when the reachable set of every
node is V. At that stage G° is strongly connected, and Kf\Ao # 0 for all

directed cutsets K in G. Also, from (41) and the fact that a; =1, % tETl, it
follows thac procedure 1 improves the lower bound on v(TSP) by.ztkt, i.e., at

the end of procedure 1 the lower bound is

B = v(AP) + E L
t~T1

s

B o Ll

3
3
3
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One can show that bounding procedure 1 generates at most (h~1)(h+2)/2

é cutsets, where h is the number of subtours in x (see Exercise 6). The computa-

tional effort required to find a cutset satisfying (43) or showing that none

exists is 0(n|A|).

o o

Example 2.
Consider the B8-city TSP whose cost matrix is shown in Table 1, %
Table 1 . . é
1 2 3 4 5 6 7 8 .g
1 X 2 11 10 8 7 6 5 ;
2 ! 6 x 1 8 8 4 6 7 ;

4 11 9 10 X 1 9 8 10
5 11 11 9 4 X 2 10 9
6 12 8 5 2 11 X 11 9

7 (10 11 12 10 9 12 x 3 1

Table 2 shows the optimal solution x to AP (;i, = 1 for (i,]j) boxed in,

;ij = 0 otherwise), the optimal solution (E,;) to the dual of AP (the numbers

on the rim), and the reduced costs ¢,,. The solution value is 17. The correspon-

1}
ding admissible graph Go is shown in Fig. 3.

Bounding procedure 1. Cutset K, = ({1, 2, 3, 7, 8}, {4, 5, 6}) admits
A o= 25,6 = 2, and cutset K, = ({4, 5, 6}, {1, 2, 3, 7, 8}) admits Ay = —g’3 = 3.
The lower bound becomes 17 + 2 + 3 = 22, The new reduced cost matrix is shown

in Table 3 and the corresponding admissible graph G° in Fig. 4. Note that G°

of Fig., 4 is strongly connected.
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Table 2
1 2 3 4
x @ 9 8
3 x [0 7
(0] 9 x 8

Fig. 3. Graph G° defined by the AP solution

o BT e 3 il
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Table 3
1 2 3 4 5 6 7 8
x [0 9 6 4 3 4 3
3 x [0 5 5 1 5 6
(0] 9 X 6 3 7 0 8
5 5 6 x | 8 4 6
4 6 4 2 x [0 5 4
5 3 o [0 9 X 6 4
5 8 9 5 4 7 x [0]
4 9 9 7 3 o [0 «x

Fig. 4.

&

Graph Go after bounding procedure 1

G B
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Bounding procedure 2

This procedure uses the inequalities (3) that satisfy conditions (i) and

RN o s ok B

(i1), i.e. are violated by X and admit a positive multiplier, To write these
inequalities in the general form (37), we restate them as

(44) -f £ x,21-]s]|, t€T,. %
165 368, 1] ¢ 2

The subtour elimination inequalities (3) (or (44)) are known to be
equivalent to (5) (or (42)). Nevertheless, an inequality (44) may admit a
positive multiplier when the corresponding inequality (42) does not, and vice
versa,

If Sl""’sh are the node sets of the h subtours of X, every in-
equality (44) defined by S t=l,...,h, 1is violated by X; but a positive

‘multiplier k. can be appiied without violating the condition that X, ,6 =1

oo gl VT e e R

ij
implies Eij = 0, only by changing the values of some u, and vj , and this

in turn can only be done if a certain condition is satisfied. Roughly speaking,

we have to find a set of rows I and columns J such that, by adding to each u,, ifI

i’

and Vj' j€J the same amount My > 0 that is being added to E;j’ (i,j)G(St, St),

we obtain a new set of reduced costs Zij such that E;j >0 for all (1,3), and ;

Eij = 0 for all those (i,j) such that ;ij = 1, The condition for this is best

expressed in terms of the assignment tableau of the Hungarian algorithm whase

rows and columns are called lines, and whose row/column intersections are called
cells, Cells correspond to arcs of G and are denoted the same way.

Let S_ be the node set of a subtour of X, and

a, = {4, D& 1,565}, AL = {(1, D%, = 1]

3
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Theorem 2 (Balas and Christofides [1981]), 1Inequality (44) admits a
positive multiplier if and only if there exists a set C of lines such that

(a) every (1,3)6A2 1s covered by exactly ome line in C ,

(8) every (i,j)GAt\A; is covered by at most one line in C ,

(y) no (i,j)GAo\At i8 covered by any line in C ,

If such a set C exists, and it consists of row set I and column set J,
then the maximum applicable multiplier is
" Ghectd

where

q = (I,J):QI,V\SC) u(V\St,J) .

Proof. Sufficiency. Suppose line set C, consisting of row set I and
column set J, satisfies (&), (B), (V). Then'adding e >0 to Eij for all

(1,1)€(S,, St), as well as to all ug, 1€I and Vys J€J, produces a set of reduced

costs Eij such that Eij = 0 for (i,j)EAé, since C = I J satisfies (g). Further,

since C satisfies (3) and (Y), Ei'j _>_Eij = 0 for all (1,1)€A \A[, and Ei’j = Eij

for all (1,j)€A;\At. The only reduced costs that are diminished as a result

= 0

of the above changes, are those corresponding to arcs in one of the three sets
(1,3), (I,V\St), (V\St, J) whose union is the set M of the theorem. Hence
setting by equal to the minimum reduced cost over M provides a positive multiplier

that can be applied to the arcs in (St’ St)'

Necessity, Suppose a multiplier u > O can be applied to the arc set (S, St).

In order to prevent the <

i
vj by . for all (1,j)€Aé. If this can be done, it can be done by adding .«

for (1,j)€Aé from becoming positive, one must increase

u

3
3
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to u, or v, (but not to both) for (i,j)EAé; and the corresponding index sets I

i ]
and J form a set C = I{UJ that satisfies (). Let C be the collection of all

sets C obtained in this way, Now take any CE€C, If C violates (B), then

Ei’j - :11 +p-2u< Eij = 0 for some (1,j)eAt\At'. and if it violates (Y), then

:Ij < Eij = 0 for some (i’j)EAo\At' Since by assumption p > 0 can be applied

to (S, S,), there exists at least one set CEC that satisfies both (B) and (Y).|

To check whether for a given subtour-node-set St there exists a set of
lines C satisfying conditions (¢), (B), (Y¥), we proceed as follows,

First we construct & set R- of rows that cannot belong to C, and a set Kt
of columns that must belong to C, if conditions (&), (B), (Y) are to be satisfied.
To do this, we start with Kkt = 9 and in view of (y), put into R" all rows i for
which there exists a cell (i,j)EA° with jEV\St. Then we apply recursively the
following two steps, until no more additions can be made to either set:

If a row 1 was put into R”, then to satisfy (g) we put into kt every column

j such that (i,j)GAé. ;é

R——

If a column j was put into K+, then to satisfy (B) we put into R™ every
row h such that (h,j)GAt.

To state the procedure formally, we set K: =0,

R, = {1€St|3(1,j)€A° with jEV\St},

and define recursively for r = 1,...,?,

o = o 4 -
K= K, U{s€s [2(1,5)€A] with 1€R_ .}

R, = Ry _, U{1€s |2(1,3)€A, with ek} .

Here T is the smallest r for which K: = K:_
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Next we use a perfectly analogous procedure to construct a set R+ of rows
that must belong to C and a set K of columns that cannot belong to C, if (qa),

(B), (Y) are to hold. In other words, we set R: =0,
K = (365 |9(1,1)€A  with 1€V\S ],

and define recursively for s = 1,...,;,

+ + t -
R, = R, U {1€St\3(1,j)€At vith J€&° ]

K, =K,_,U {jest\i(i,j)GAt with iERs}

Here s = min{?l, ;2], where ;1 1s the smallest s such that R: = R:_l or

-

Ks = Ks-l’ and sy

1f s = ;2, then some row or some column that cannot belong to C, must belong

is the smallest s such that R:f\R% # 0 or K;IWK; $ 0.

to C for (a), (B), (¥) to hold; hence there exists no set C of lines satisfying
(), (B), (Y), and no positive multiplier can be applied to the inequality (44)
corresponding to St.

If s = 5, then the set of lines C = IUJ, where I = S \RZ and J = K,
satisfies conditions éa), (B), (y). Thus we include the inequality (44) corre-
sponding to St into L(w) with the multiplier My > 0 defined in Theorem 2, and
set the reduced costs to E;j - zij " by (1,3)¢eM, E;j - 315 otherwise. (Here
M is the set defined in Theorem 2.)

In both cases, we then chuose another subtour, until all subtours have been
examined. If h is again the number of subtours, bounding procedure 2 requires
0(ho|A\) steps, It can be shown (see Exercise 7) that this procedure improves
the lower bound on v(TSP) by zt“t’ i.e., at the end of procedure 2 the lower

bound is

82=V(AP)+ T A+ T By o

t
tETl t€T2
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Example 2 (continued).
Bounding procedure 2, The subtours of X are (1, 2, 3), (4, 5, 6) and
(7, 8)(see Table 3 and Fig. 4),

For §, = {1, 2, 3}, R_ = {3}, x’l“ = {1}; X" = {3}, RI- {2}). Thus ¢ = TUJ,

-
[+

where I = {1, 2}, J = (1], and p = ¢ 1. Fors, = {4, 5, 6}, R_= {6},

2,6
x; - {4} € = (6}, R‘{ = {5}, and C = TUJ, with I = {4, 5}, J = {4}, and
bp = G5 4 = 2. Finally, for Sy = (7, 8), K = (8}, X] = (7}; K] = {7}, and
since KIF]KI = {7} # 9, the inequality corresponding to subtour (7, 8) does not
admit a positive multiplier.

The lower bound becomes B, = B1 tpg o, = 22+ 1+ 2 =25, The new reduced

costs are shown in Table 4, and the corresponding admissible graph Go in Fig. S.H

Table &

x @ 3 2
9 x 6 4
4 7 X []
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E Fig. 5. Graph Go after bounding procedure 2

Bounding procedure 3

The class of inequalities used in this procedure is defined as follows.
Suppose G_ has an articulation point, i.e. a node k such that G_ - {k} has
more than one component. Let one of the components have node set St’ and denote
W, o= V\StU{k}. Then every tour contains an arc of at least ome of the cutsets

KL = (St’wt) and Ké' = (Wt’st)’ hence the incidence vector x of any tour

satisfies the inequality

(45) ) x,>1.
(1, e’y

Furthermore, (45) satisfies condition (i), i,e, is violated by the AP solution,




BB g S

Bounding procedure 3 uses those inequalities (45) that also satisfy
condition (ii). Although every inequality (45) is the combination of some
inequalities (3) and equations (2) (see Exercise 8), aevertheless it is possible
to find inequalities (45) that satisfy condition (ii), i.e., admit a positive
multiplier, when no inequality (3) (i.e., (44)) satisfies it. Indeed, it is not
hard to see, that if k is an articulation point of Go and St is the node set of
one of the components of G _ - {k}, then Kél1A° = Ké’ﬁ A, = P and a positive

multiplier given by

ncij

(46) v, = min
(1, 1) EKLUK,

t
can be applied to the arc set KéLJK: . On the other hand, if Go has no articula-
tion point, then for any choice of ‘the node k, the minimum in (46) is O and thus
no inequality (45) admits a positive multiplier.

Thus bounding procedure 3 checks for swervy LIV whether it is an articulation
point, and if so, it takes the corresponding inequality (45) into L(w) with the

multiplier Ve given by (46). This is done by setting 14 - E;j = Ves (i,j)éKélJK
Eij - Zij otherwise, Since Go bas n nodes, and testing for connectivity requires
0(|A|) steps, bounding procedure 3 requires 0(nlA|) steps.

In view of (41) and the fact that (45) has a righthand side of 1, at the end

of bounding procedure 3 one has the followiug lower bound on v(TSP):

32 = y(AP) + L ht + Z “t + £ vt 5
céTl cé'rz té'r3

Example 2 (continued).
Vertex 6 is an articulation point of Go (see Fig, 5). The corresponding

cutsets are K| = ({4, 5}, {1, 2, 3, 7, 8]) and K= ({1, 2, 3, 7, 8}, (4, 5D),

n
t’
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and the arc set K{lJK{' admits the multiplier v, = 35 1% 1. There is no other
»

articulation point, and the procedure stops with the lower bound B, = B_ + v

3° 27T
25 + 1 = 26, The new reduced costs are shown in Table 5, and the corresponding

G, in Fig. 6.]|

Table 5

Fig. 6. Graph G° after bounding procedure 3

i S e
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Additional bounding procedures

At the end of bounding procedure 3, G° 1s strongly connected and witkout
articulation points, At that stage an attempt is made to find a tour in Go.
For that purpose a specialized implicit enumeration technique is applied,
with a cut-off rule, If a tour ﬁ is found whose incidence vector X satis-
fies with equality all those inequalities (37) such that w, >0, then H is
optimal for the current subproblem (this follows from elementary Langrangean
theory),

Example 2 (continued). The following tour can be identified by inspection
in G° of Fig. 6: H = {(1, 2), (2, 3), (3,7N,(, 8, (8, 6), (6, 4), (4, 5), 5, 1}
The value of H is 26, equal to L(w) = B3, the lower bound at the end of procedure 3,
The tour H contains exactly one arc of each cutset associated with a positive kt’
namely arc (8, 6) of K, = ({1, 2,