ELECTROGENERATED CHEMILUMINESCENCE. 42.
The Electrochemistry and Electrogenerated Chemiluminescence of the Tris(2,2'-bipyrazine)ruthenium(II) System.

by

Jaime Gonzales-Velasco,* Israel Rubinstein,* R. J. Crutchley,#
A. B. P. Lever,# and Allen J. Bard*

#Department of Chemistry
York University
Downsview, Ontario
Canada M3J 1P3

*The University of Texas at Austin
Department of Chemistry
Austin, Texas 78712

March 31, 1983

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>REPORT NUMBER</th>
<th>2. GOVT ACCESSION NO.</th>
<th>3. RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Ab-A126394</td>
<td></td>
</tr>
</tbody>
</table>

4. TITLE (and Subtitle)
Electrogenerated Chemiluminescence. 42. The Electrochemistry and Electrogenerated Chemiluminescence of the Tris(2,2'-bipyrazine)ruthenium(II) System.

7. AUTHOR(s)
Jaime Gonzales-Velasco, Israel Rubinstein, R. J. Crutchley, A. B. P. Lever, and A. J. Bard

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Department of Chemistry
University of Texas at Austin
Austin, TX 78712

11. CONTROLLING OFFICE NAME AND ADDRESS
Office of Naval Research
800 N. Quincy
Arlington, VA 22217

13. NUMBER OF PAGES
21

15. KEYWORDS (Continue on reverse side if necessary and identify by block number)

16. DISTRIBUTION STATEMENT (of this Report)
This document has been approved for public release and sale; its distribution is unlimited.

18. SUPPLEMENTARY NOTES
Prepared for publication in the Journal of INORGANIC CHEMISTRY.

19. ABSTRACT
The electrochemical behavior and electrogenerated chemiluminescence (ecl) of Ru(bpz)$_3$$_{2+}$ (as the PF$_6^-$ salt) in acetonitrile solutions was investigated. Oxidation to the +3 form and reduction to the +1, 0, -1 and -2 forms occur at potentials about 0.5V more positive than the corresponding bipyridine complex. Emission characteristic of Ru(bpz)$_3$$_{2+}$ is produced upon the electron transfer reaction between the +3 and +1 species. Weak emission also results from reaction of the +3 species with solvent or impurities.

20. ABSTRACT
The electrochemical behavior and electrogenerated chemiluminescence (ecl) of Ru(bpz)$_3$$_{2+}$ (as the PF$_6^-$ salt) in acetonitrile solutions was investigated. Oxidation to the +3 form and reduction to the +1, 0, -1 and -2 forms occur at potentials about 0.5V more positive than the corresponding bipyridine complex. Emission characteristic of Ru(bpz)$_3$$_{2+}$ is produced upon the electron transfer reaction between the +3 and +1 species. Weak emission also results from reaction of the +3 species with solvent or impurities.
The Electrochemistry and Electrogenerated Chemiluminescence (ecl) of Ru(bpz)$_3^{2+}$ (as the PF$_6^-$ salt) in acetonitrile solutions was investigated. Oxidation to the $+3$ form and reduction to the $+1$, 0, -1 and -2 forms occur at potentials about 0.5V more positive than the corresponding bipyridine complex. Emission characteristic of Ru(bpz)$_3^{2+*}$ is produced upon the electron transfer reaction between the $+3$ and $+1$ species. Weak emission also results from reaction of the $+3$ species with solvent or impurities.

(end of abstract)
Introduction.

Of the numerous compounds that produce chemiluminescence upon the electron transfer reactions of electrogenerated species (ecl), that observed with the Ru(bpy)$_3^{2+}$ (bpy = 2,2'-bipyridine) system is among the most intense and best characterized. A recent report of a new, related compound, Ru(bpz)$_3^{2+}$ (bpz = 2,2'-bipyrazine) and its spectroscopic and photocatalytic properties suggested a study of the electrochemical and ecl behavior of this compound.

Previous studies of Ru(bpy)$_3^{2+}$ showed that ecl is produced by the redox reaction between the $+1$ and $+3$ species as well as by reaction of the $+3$ species with a number of reductants (e.g., especially oxalate). We were particularly interested in Ru(bpz)$_3^{2+}$ because the redox processes are shifted by ~ 0.5V towards more positive potentials, compared with Ru(bpy)$_3^{2+}$. This could prove valuable in ecl in aqueous media where proton reduction interferes at negative potentials. A comparison of the ecl efficiency between the bpz and bpy complexes is also of interest.

In this paper we describe the electrochemical behavior of the Ru(bpz)$_3^{2+}$ system in acetonitrile (MeCN) solutions and demonstrate the production of ecl and its characteristics.
Experimental.

Chemicals. The Ru(bpz)$_{3}^{2+}$ was obtained in the form of PF$_6^-$ salt. It was recrystallized from MeCN and dried for 25 hr under vacuum at room temperature. The tetra-n-butylammonium hexafluorophosphate (TBAFP) used as supporting electrolyte was prepared by reaction of NH$_4$PF$_6$ (Ozark-Mahoning) and tetra-n-butylammonium perchlorate (Aldrich). The precipitate of TBAFP obtained was filtered and repeatedly washed with distilled water. The precipitate was dissolved in boiling EtOH; upon cooling, TBAFP was obtained in the form of small crystals. This procedure was repeated three times. Finally the crystals were recrystallized from a mixture of acetone and ether and dried under a vacuum.

Spectroquality grade acetonitrile (MCB) was degassed by freeze-pump-thaw cycles (<10$^{-5}$ torr). A MeCN/0.1 M TBAFP solution did not show appreciable faradaic currents at a Pt electrode between -2.6 and +2.5 V vs the Ag wire quasireference electrode (AgRE).

Apparatus. A Princeton Applied Research (PAR) Model 173 Potentiostat and a PAR Model 175 Universal Programmer were used for voltammetric experiments. The output of the PAR Model 176 current follower was recorded directly using a Houston Instruments Model 2000 x-y recorder. The coulometric experiments employed a PAR 179 digital coulometer.

Procedure. The test solutions were prepared under He in a Vacuum Atmospheres Glove Box equipped with a Model MO 40-1 Dri-Train. Electrochemical and ecl experiments were carried out in a three compartment working cell with a volume of 3 cm3. The working electrode compartment was provided with an optically flat Pyrex glass window of approximately 2 cm2 and the working electrode, a polished platinum disk, area = 0.06 cm2, was
aligned parallel to the window. The distance between the working electrode and the window was around 3 mm. The counterelectrode was a platinum foil, area = 3 cm². A silver wire immersed in the MeCN/TBAFP solution and separated from the working electrode chamber by a medium porosity frit was used as a quasireference electrode (AgRE). The potential of this Ag wire electrode was measured against an aqueous saturated calomel electrode (SCE) and checked vs the ferrocene/ferrocenium couple in MeCN and was found to have a potential of +0.055 V vs SCE.

The ecl measurements were carried out after transferring the sealed working cell to a light-tight box whose interior was painted with black nonreflective paint. The emitted light was measured with a Hamamatsu TV Corp. R928 photomultiplier tube. The ecl spectrum was taken by using an Oriel Co. monochromatator. Emission and absorption spectra were obtained with an Aminco-Bowman spectrophotofluorometer (SPF) without slits for ecl studies and a Cary Model 14 UV and visible spectrophotometer, respectively.

Results and Discussion.

Electrochemical results. A typical cyclic voltammogram (CV) for 1 mM Ru(bpz)₃²⁺ in MeCN, 0.1 M TBAFP is shown in Figure 1. The peak potentials for the oxidation (Eₚₐ) and reduction (Eₚₖ) waves and ΔEₚ values for each wave are given in Table 1. The general electrochemical behavior of the Ru(bpz)₃²⁺ system is very similar to that of Ru(bpy)₃²⁺ in MeCN, but there are significant differences. The reductions to the +1, 0, and -1 species and the oxidation to the +3 species occur with all peaks shifted 0.5 V towards more positive potentials as compared to the bpy complex. Thus the Ru(bpz)₃³⁺ species is a significantly stronger oxidant than is Ru(bpy)₃³⁺, and its production from the +2 form occurs much nearer to the anodic limit of the MeCN-TBAFP solution. Because of this, the Ru(bpz)₃³⁺ is less stable
than the bpy complex in this medium, which leads to differences in the characteristics of the +3/+2 wave and the ecl. On the other hand the fourth reduction wave (marked V in Figure 1) shows a well-defined reversal peak at a scan rate, v, of 100 mV/s at room temperature, indicating some stability of the -2 species. No such stability is observed with the corresponding bpy form that is produced at a potential about 0.5 V more negative. Only at v > 20 V/s or at temperatures of -30°C was any reversal anodic peak seen for the corresponding bpy wave. However, repeated scanning over wave V to produce the reduced -2 form led to the formation of a deep brown solution caused by decomposition of this species. Moreover the rest potential of this solution after this cycling was -0.2 V vs AgRE as compared to the initial value of about +0.54 V, indicating irreversible production of a reduced species. The resulting brown solution could not be electrochemically oxidized back to the original orange Ru(bpz)$_3^{2+}$ solution. Similar, but slower decomposition occurred upon scanning or holding the potential at values corresponding to peaks III and IV (Figure 1).

The one electron nature of the waves was confirmed by controlled potential coulometry (CPC) measurements. Reduction at -0.8 V vs AgRE near the peak of the first reduction wave (wave II, Figure 1) gave n_{app} (corresponding to number of Faradays per mole) of 0.98. Oxidation of the reduced solution back to the +2 form showed $Q_b/Q_f = 0.9$ (where Q_f and Q_b are the number of coulombs consumed during the forward reduction and reverse oxidation, respectively)6a for an experimental duration of ~1 hr. This demonstrates the relatively high stability of the +1 species.

Cyclic voltammetric data for the reduction waves (II, III and IV) shown in Figure 1 are contained in Table 2. Because of the close spacing of the reduction waves it was difficult to determine precise values for peak
currents (i_{pc} and i_{pa}) and potentials. However, the current functions ($i_{pc}/v^{1/2}$) for all three waves are about the same, demonstrating that all three are one-electron transfers. Moreover, the values of $i_{pa}/i_{pc} = 1$ for these waves demonstrate that the +1, 0 and -1 forms are stable on the CV time scale.

For wave II the value of i_{pa}/i_{pc} is significantly larger than 1; this suggests that some deposition or adsorption of the +1 species occurs on the electrode. Although the CV data shows stability of the 0 and -1 forms on the short time scale, repeated cycling through these waves causes some color change in the solution as well as the formation of a deposit on the electrode surface.

As for wave I, corresponding to the +3/+2 oxidation-reduction process, the potential for this wave is close to the anodic stability limit of Pt in MeCN and the Ru(bpz)$_3^{3+}$ species reacts with a component in the MeCN, TBAFP medium to regenerate the +2 species, giving rise to a catalytic wave. The CV parameters for wave I confirm the catalytic nature of this wave. For example, as shown in Figure 2, the ratio of peak heights i_{pa}/i_{pc}, or peak areas Q_a/Q_c increases sharply with decreasing v. At low scan rates, the ratio Q_a/Q_c is very high since the +2 species is continuously regenerated during the scan. At higher scan rates the ratio approaches unity because no appreciable reaction of the +3 form occurs at short times.

A voltammogram taken after repeated application of pulses between -0.8 and +1.9 V vs AgRE (the range for ec1, as described below), as shown in Figure 3, suggests decomposition of the Ru(bpz)$_3^{2+}$ complex since new peaks at +1.5 V vs AgRE near wave I and at -0.4 V vs. AgRE before Wave II appear. The new anodic peak at +1.5 V appears after a cathodic scan to -1.2 V and the new cathodic one at -0.4 V appears after a scan to +2.2 V. The species
giving rise to these waves is not known.

After these repeated pulsing experiments, the electrode surface was covered with a yellowish-brown precipitate. Although the nature of this precipitate was not elucidated, it probably can be attributed to the formation of reduced Ru-species. The decomposition process is enhanced when the cathodic scan limit is more negative.

Emission spectrum of Ru(bpz)$_3^{2+}$. The emission spectrum of a 10$^{-5}$ M solution of Ru(bpz)$_3^{2+}$ in MeCN at room temperature is shown in Figure 4. An excitation wavelength for maximum absorption (435 nm) leads to the emission maximum at 585 nm for the luminescence of the sample. This wavelength is 25 nm shorter than the emission maximum of Ru(bpy)$_3^{2+}$.

Ecl spectrum of Ru(bpz)$_3^{2+}$ in acetonitrile. By pulsing the potential applied to the platinum electrode between 1.95 V and -0.85 V vs AgRE an orange ecl emission was observed. The light intensity obtained was lower than that for Ru(bpy)$_3^{2+}$ under equivalent conditions, and decayed more rapidly. The ecl spectrum of the Ru(bpz)$_3^{2+}$ (Figure 5) shows an emission maximum at 585 nm, identical to the emission spectrum obtained on photoexcitation. These results are similar to those obtained with Ru(bpy)$_3^{2+}$. The mechanism for emission is probably the same in both cases, namely, reaction of the +3 and +1 forms to yield the +2 excited state:

\[
\begin{align*}
Ru(bpz)_3^{2+} + e^- & \rightarrow Ru(bpz)_3^+ \\
Ru(bpz)_3^{2+} - e^- & \rightarrow Ru(bpz)_3^{3+} \\
Ru(bpz)_3^{3+} + Ru(bpz)_3^+ & \rightarrow Ru(bpz)_3^{2**} + Ru(bpz)_3^{2+}
\end{align*}
\]

This homogeneous redox reaction has a free energy of -2.7 eV (as calculated from the E_p values of the +3/+2 and +2/+1 waves and assuming an entropic contribution of 0.1 eV). This is greater than the energy of the emitting charge transfer state, 2.12 eV. The singlet excited state for the
Ru(bpz)$_3^{2+}$ occurs at 2.85 eV so that direct population of this state does not appear possible, and direct formation of the emitting triplet is proposed. This is analogous to the results in the Ru(bpy)$_3^{2+}$ system.2-4

Characteristics of the ecl. Recent studies2e,3 of the ecl intensity $(t_r/t_f)^{-1/2}$ behavior (where t_f is forward pulse time and t_r the reverse pulse time) for the Ru(bpy)$_3^{2+}$ system at short times $[(t_r/t_f)^{-1/2}$ of 1 to 10] showed that these Feldberg-Faulkner plots9,10 corresponded closely to that expected of an "S-route" system, where direct population of the emitting state on electron transfer occurs. Similar plots for the Ru(bpz)$_3^{2+}$ system are shown in Figure 6. When either the $+1$ (Figure 6a) or $+3$ (Figure 6b) form is generated first, the behavior is very different from that of the theoretical model, which predicts a slope of -1.42. The cause for this deviation is probably the instability of the $+3$ form and perhaps quenching by decomposition products. This non-ideal behavior is also apparent from the ecl intensity-time transient itself (Figure 7). The anodic transient (following production of the $+1$ species) shows a peak which decays to an almost steady value. This attainment of a steady value is also apparent from the change in slope in the plot of Figure 6a. The following cathodic transient is very sharp and decays rapidly to background. The steady level of emission during the anodic pulse represents a reaction of the $+3$ species with solvent, electrolyte, or impurities to produce emission. That this is clearly the case can be seen from the anodic transient in Figure 8, where the potential was maintained at $+1.90$ V and a constant weak emission was observed. Recent studies have shown that the reaction of Ru(bpy)$_3^{3+}$ with oxalate, organic acids or other reductants results in emission,2d,11,12 so a similar reaction by the stronger oxidant Ru(bpz)$_3^{3+}$ appears reasonable. Thus the anodic step involves the $+1/+3$ electron
transfer reaction as well as the +3/background emission. During the subsequent cathodic step the +3 species has been depleted by this background reaction and less is available to react with the generated +1 species, producing the rapid decay of intensity.

Conclusions.

The electrochemical behavior of the Ru(bpz)$_3^{2+}$ system generally parallels that of the corresponding bpy system, but shifted by about 0.5 V towards more positive potentials. Since the +2/+3 wave is best represented by electron transfers involving metal centers, the shift must be ascribed to greater stabilization of the +2 vs the +3 form by the bpz. The reduction waves, e.g., the +2/+1, are better represented as reduction of the ligands and the shift here represents easier reduction of bpz to the Ru$^{2+}$ stabilized bpz$^-$ species compared to bpy. The positive potential shift results in the +$^-$.pz species being less stable in MeCN than the corresponding bpy species. Ecl reactions involving the +3/+1 electron transfer annihilation reaction and a reaction of +3 with solvent or impurity to produce the Ru(bpz)$_3^{2+}$ excited states occur. There is precedence for both of these in the bpy system.

Acknowledgement.

The support of this research by the Office of Naval Research (N00014-78-C-0592) and the Army Research Office (DAAG 29-82-K-0006) is gratefully acknowledged. One of us (JGV) is grateful to the Comité Hispano-Norteamericano de Cooperacion Científica y Tecnica for a grant.
Notes and References.

1. (a) University of Texas; (b) York University; (c) permanent address: Faculty de Ciencias, Universite Autonoma de Madrid, Cuidad Universite de Canto Blanco, Madrid 34, Spain.

10. (a) Faulkner, L. R. J. Electrochem. Soc. 1977, 124, 1724; (b) Ibid., 1975, 122, 1190.

Figure Captions.

Figure 1: Cyclic voltammogram of 1 mM Ru(bpz)$_3^{2+}$(PF$_6^-$)$_2$/MeCN/0.1 M TBAFP at a Pt electrode. Scan rate, 100 mV/s$^{-1}$. T = 25$^\circ$C. Reference electrode, Ag wire.

Figure 2: Ratio between the anodic and cathodic charges in wave I as a function of the scan rate. T = 25$^\circ$C. Solution same as Figure 1.

Figure 3: Cyclic voltammogram of 1 mM Ru(bpz)$_3$(PF$_6^-$)$_2$/MeCN/0.1 M TBAFP after repeated pulsing between -0.8 and +1.9 V vs AgRE.

Figure 4: Luminescence spectrum of a 10$^{-5}$ M solution of Ru(bpz)$_3^{2+}$ in MeCN at room temperature.

Figure 5: ECL spectrum of a 1 mM Ru(bpz)$_3$(PF$_6^-$)$_2$/MeCN/0.1 M TBAFP solution. Pulsing limits: -0.8 V and +1.85 V vs AgRE. at 0.5 Hz.

Figure 6: Feldberg-Faulkner plots for the solution in Figure 1. (a) precursor, Ru(bpz)$_3^+; (b)$ precursor, Ru(bpz)$_3^{3+}$.

Figure 7: Typical ecl intensity-time transient (I_{ecl} in arbitrary units). T = 25$^\circ$C. Same solution as Figure 1.

Figure 8: Ecl intensity-time transient obtained by pulsing between -0.85 V and +1.9 V vs AgRE for 3 sec and holding the potential at +1.9 V. Same solution as in Figure 1.
TABLE 1

Cyclic Voltammetric Peak Potentials (E_p) for Ru(bpz)$_3$$^{2+}$ in 0.1 M TBAPF-acetonitrile Solutions at a Platinum Electrode, $T = 25^\circ$ C. a

<table>
<thead>
<tr>
<th>Peaks in Fig. 1</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{pc} (reduction) (V vs Agre)</td>
<td>+1.85</td>
<td>-0.800</td>
<td>-0.980</td>
<td>-1.250</td>
<td>-2.075</td>
</tr>
<tr>
<td>E_{pa} (oxidation)</td>
<td>+1.94</td>
<td>-0.730</td>
<td>-0.910</td>
<td>-1.180</td>
<td>-1.975</td>
</tr>
<tr>
<td>Number of electrons</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ΔE_p (25°C, 100 mV/s)</td>
<td>90</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Redox states</td>
<td>3+/2+</td>
<td>2+/1+</td>
<td>1+/0</td>
<td>0/-1</td>
<td>-1/-2</td>
</tr>
</tbody>
</table>

a Potential values were measured against an Ag wire quasireference electrode in the same solution. The Ag wire showed a potential of +55 mV measured against a SCE in the same solution.
Table 2
Cyclic Voltammetric Results for the Three Reductions of Ru(bpz)$_3^{2+}$ a

<table>
<thead>
<tr>
<th>Peak II</th>
<th>Peak III</th>
<th>Peak IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>v (mV/s)</td>
<td>ΔE_p (mV)</td>
<td>i_{pa} i_{pc} $\nu^{1/2}$</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>1.00</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>1.40</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>1.00</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>1.11</td>
</tr>
<tr>
<td>200</td>
<td>70</td>
<td>1.45</td>
</tr>
<tr>
<td>500</td>
<td>90</td>
<td>1.28</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>1.45</td>
</tr>
</tbody>
</table>

a The solution was 1.0 mM Ru(bpz)$_3^{2+}$ (PF$_6$)$_2$ and 0.1 M TBAFP in CH$_3$CN at 25°C. $\Delta E_p = E_{pc} - E_{pa}$; $C =$ concentration of complex. Peak currents for waves III and IV were measured from extrapolated decreasing current of preceding wave. The units for the current function evaluation were $i = A\cdot cm^{-2}$; $\nu^{1/2} = (V\cdot sec^{-1})^{1/2}$; $C = M$.
Fig. 1

E (Volt Ag wire)

200 μA.
Figure 2
Figure 4

\(\lambda_{\text{exc}} = 435 \text{ nm} \)

585 nm
Figure 5
Figure 6

(a) $b = -0.52$
(b) $a = 0.94$
$b = 0.52$

$\log_{10} I_{ECL, an}$ vs. $(tr/t_f)^{-1/2}$

$\log_{10} I_{ECL, cath}$ vs. $(tr/t_f)^{-1/2}$

precursor (+3)
Figure 7

I_{ECL}

cathodic

2 sec

t

$\nu = 0.25 \text{ Hz}$
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>Naval Ocean Systems Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td>Attn: Mr. Joe McCartney</td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td>San Diego, California 92152</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ONR Pasadena Detachment</th>
<th>Naval Weapons Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. R. J. Marcus</td>
<td>Attn: Dr. A. B. Amster,</td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Pasadena, California 91106</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commander, Naval Air Systems Command</th>
<th>Naval Civil Engineering Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td>Attn: Dr. R. W. Drisko</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td>Port Hueneme, California 93401</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defense Technical Information Center</th>
<th>Dean William Tolles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building 5, Cameron Station</td>
<td>Naval Postgraduate School</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>Monterey, California 93940</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Fred Saalfeld</th>
<th>Scientific Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>(Code RD-1)</td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td>Washington, D.C. 20380</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U.S. Army Research Office</th>
<th>Naval Ship Research and Development Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: CRD-AA-IP</td>
<td>Attn: Dr. G. Bosmajian, Applied</td>
</tr>
<tr>
<td>P. O. Box 12211</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Research Triangle Park, N.C. 27709</td>
<td>Annapolis, Maryland 21401</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mr. Vincent Schaper</th>
<th>Mr. John Boyle</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTNSRDC Code 2803</td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Annapolis, Maryland 21402</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Naval Ocean Systems Center</th>
<th>Mr. A. M. Anzalone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td>Administrative Librarian</td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td>PLASTEC/ARRADCOM</td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td>Bldg 3401</td>
</tr>
<tr>
<td></td>
<td>Dover, New Jersey 07801</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
TECHNICAL REPORT DISTRIBUTION LIST, 359

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
</table>
| Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003 | Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton SO0 5NH
United Kingdom |
| 1 | 1 |
| Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106 | Dr. Sam Perone
Chemistry & Materials Science Department
Laurence Livermore National Lab.
Livermore, California 94550 |
| 1 | 1 |
| Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602 | Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514 |
| 1 | 1 |
| Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125 | Naval Ocean Systems Center
Attn: Technical Library
San Diego, California 92152 |
| 1 | 1 |
| Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974 | Dr. C. E. Mueller
The Electrochemistry Branch
Materials Division, Research and Technology Department
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910 |
| 1 | 1 |
| Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974 | Dr. G. Goodman
Johnson Controls
5757 North Green Bay Avenue
Milwaukee, Wisconsin 53201 |
| 1 | 1 |
| Dr. T. Katan
Lockheed Missiles and Space Co., Inc.
P. O. Box 504
Sunnyvale, California 94088 | Dr. J. Boechler
Electrochimica Corporation
Attn: Technical Library
2485 Charleston Road
Mountain View, California 94040 |
| 1 | 1 |
| Dr. Joseph Singer
Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135 | Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063 |
| 1 | 1 |
| Dr. B. Brummer
EIC Incorporated
55 Chapel Street
Newton, Massachusetts 02158 | Library
P. R. Mallory and Company, Inc.
Northwest Industrial Park
Burlington, Massachusetts 01803 |
<p>| 1 | 1 |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. H. Richtol</td>
<td>Chemistry Department</td>
<td>1</td>
<td>Dr. R. P. Van Duyne</td>
</tr>
<tr>
<td>Troy, New York 12181</td>
<td>Rensselaer Polytechnic Institute</td>
<td></td>
<td>Northwestern University</td>
</tr>
<tr>
<td>Dr. A. B. Ellis</td>
<td>Chemistry Department</td>
<td>1</td>
<td>Dr. B. Stanley Pons</td>
</tr>
<tr>
<td>University of Wisconsin</td>
<td></td>
<td></td>
<td>University of Alberta</td>
</tr>
<tr>
<td>Madison, Wisconsin 53706</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. M. Wrighton</td>
<td>Chemistry Department</td>
<td>1</td>
<td>Dr. Michael J. Weaver</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
<td>Michigan State University</td>
</tr>
<tr>
<td>Cambridge, Massachusetts 02139</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larry E. Plew</td>
<td>Naval Weapons Support Center</td>
<td>1</td>
<td>Dr. R. David Rauh</td>
</tr>
<tr>
<td>Code 30736, Building 2906</td>
<td></td>
<td></td>
<td>55 Chapel Street</td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Ruby</td>
<td>DOE (STOR)</td>
<td>1</td>
<td>Dr. J. David Margerum</td>
</tr>
<tr>
<td>600 E Street</td>
<td></td>
<td></td>
<td>Hughes Aircraft Company</td>
</tr>
<tr>
<td>Providence, Rhode Island 02192</td>
<td></td>
<td></td>
<td>Malibu, California 90265</td>
</tr>
<tr>
<td>Dr. Aaron Wold</td>
<td>Brown University</td>
<td>1</td>
<td>Dr. Martin Fleischmann</td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
<td></td>
<td>University of Southampton</td>
</tr>
<tr>
<td>Providence, Rhode Island 02192</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. R. C. Chudacek</td>
<td>McGraw-Edison Company</td>
<td>1</td>
<td>Dr. Janet Osteryoung</td>
</tr>
<tr>
<td>Edison Battery Division</td>
<td>Post Office Box 28</td>
<td></td>
<td>State University of New York at Buffalo</td>
</tr>
<tr>
<td>Bloomfield, New Jersey 07003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. A. J. B. Bean</td>
<td>University of Texas</td>
<td>1</td>
<td>Dr. R. A. Osteryoung</td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
<td></td>
<td>State University of New York at Buffalo</td>
</tr>
<tr>
<td>Austin, Texas 78712</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. M. M. Nicholson</td>
<td>Electronics Research Center</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rockwell International</td>
<td>3370 Miraloma Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaheim, California</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL REPORT DISTRIBUTION LIST, 359

| No. | Copies | Dr. Donald W. Ernst
| Naval Surface Weapons Center
| Code R-33
| White Oak Laboratory
| Silver Spring, Maryland 20910 | 1 |
| Mr. James R. Moden
| Naval Underwater Systems Center
| Code 3632
| Newport, Rhode Island 02840 | 1 |
| Dr. R. Nowak
| Naval Research Laboratory
| Code 6130
| Washington, D.C. 20375 | 1 |
| Dr. Bernard Spielvogel
| U. S. Army Research Office
| P. O. Box 12211
| Research Triangle Park, NC 27709 | 1 |
| Dr. John F. Houlihan
| Shenango Valley Campus
| Pennsylvania State University
| Sharon, Pennsylvania 16146 | 1 |
| Dr. Denton Elliott
| Air Force Office of Scientific Research
| Bolling AFB
| Washington, D.C. 20332 | 1 |
| Dr. D. F. Shriver
| Department of Chemistry
| Northwestern University
| Evanston, Illinois 60201 | 1 |
| Dr. David Aikens
| Chemistry Department
| Rensselaer Polytechnic Institute
| Troy, New York 12181 | 1 |
| Dr. D. H. Whitmore
| Department of Materials Science
| Northwestern University
| Evanston, Illinois 60201 | 1 |
| Dr. A. P. B. Lever
| Chemistry Department
| York University
| Downsview, Ontario M3J1P3 | 1 |
| Dr. Alan Bewick
| Department of Chemistry
| The University
| Southampton, S09 5NH England | 1 |
| Dr. Stanislaw Szpak
| Naval Ocean Systems Center
| Code 6343
| San Diego, California 95152 | 1 |
| Dr. A. Himy
| NAVSEA-5433
| NC 4
| 2541 Jefferson Davis Highway
| Arlington, Virginia 20362 | 1 |
| Dr. Gregory Farrington
| Department of Materials Science and Engineering
| University of Pennsylvania
| Philadelphia, Pennsylvania 19104 | 1 |
| Dr. John Kincaid
| Department of the Navy
| Strategic Systems Project Office
| Room 901
| Washington, D.C. 20376 | 1 |
| Dr. Bruce Dunn
| Department of Engineering & Applied Science
| University of California
| Los Angeles, California 90024 | 1 |

472:GAN:716-4
94/359
TECHNICAL REPORT DISTRIBUTION LIST, 359

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
</table>
| M. L. Robertson
Manager, Electrochemical
and Power Sonics Division
Naval Weapons Support Center
Crane, Indiana 47522 | Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201 |
| Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720 | Dr. D. Cipris
Allied Corporation
P. O. Box 3000R
Morristown, New Jersey 07960 |
| Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210 | Dr. M. Philpot
IBM Corporation
5600 Cottle Road
San Jose, California 95193 |
| Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931 | Dr. Donald Sandstrom
Washington State University
Department of Physics
Pullman, Washington 99164 |
| Dr. Joseph Gordon, II
IBM Corporation
K33/281
5600 Cottle Road
San Jose, California 95193 | Dr. Carl Kannewurf
Northwestern University
Department of Electrical Engineering
and Computer Science
Evanston, Illinois 60201 |
| Dr. Robert Somoano
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103 | Dr. Edward Fletcher
University of Minnesota
Department of Mechanical Engineering
Minneapolis, Minnesota 55455 |
| Dr. Johann A. Joebstl
USA Mobility Equipment R&D Command
DRDME-EC
Fort Belvoir, Virginia 22060 | Dr. John Fontanella
U.S. Naval Academy
Department of Physics
Annapolis, Maryland 21402 |
| Dr. Judith H. Ambrus
NASA Headquarters
M.S. RTS-6
Washington, D.C. 20546 | Dr. Martha Greenblatt
Rutgers University
Department of Chemistry
New Brunswick, New Jersey 08903 |
| Dr. Albert R. Landgrebe
U.S. Department of Energy
M.S. 6B025 Forrestal Building
Washington, D.C. 20595 | Dr. John Wassib
Kings Mountain Specialties
P. O. Box 1173
Kings Mountain, North Carolina 28086 |
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
</table>
| Dr. J. J. Brophy
University of Utah
Department of Physics
Salt Lake City, Utah 84112 | 1 | | |
| Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222 | 1 | | |
| Dr. Thomas Davis
National Bureau of Standards
Polymer Science and Standards Division
Washington, D.C. 20234 | 1 | | |
| Dr. Charles Martin
Department of Chemistry
Texas A&M University | 1 | | |
| Dr. Anthony Sammells
Institute of Gas Technology
3424 South State Street
Chicago, Illinois 60616 | 1 | | |
| Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217 | 1 | | |
| Dr. W. M. Risen
Department of Chemistry
Brown University
Providence, Rhode Island | 1 | | |