AD-A126 887 THE INTEL 432/670 AND ADA PERFORMANCE "BENCHMARKS (U)
NAVAL POSTGRADUATE SCHOOL MONTEREY C
D J APPLEGATE ET AL. DEC 82

UNCLASSIFIED F/G 9/2

flig b
[N
g

I M e

—

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

D S b

NAVAL POSTGRADUATE SCHOOL

‘Monterey, California

WA126887

o A . 1117 55111l 1 4 o _

THESIS

THE INTEL 432/670 and ADA
PERFORMANCE BENCHMARKS
by
David James Applegate
and
Robert Abbott Coates

December 1982

Thesis Advisor: U.R. Kodres

Approved for public release; distribution unlimited

OTC FILE COPY

83 02 .,

Vo

TR

SECUMTY CLASBIFICATION OF THIES PAGR (Then Dase Entered)

REPORT DOCUMENTATION PAGE ..,'g;"gg:;:g;;!g":m
Y RPCAY U uEN Tovv_mcﬁm WOJ). NECIPIENT S CATALOG NUMBER
DA 12364y
4. TITLE (and Subtitie) s. 'ﬁ;ls%'e';‘l"g"ﬁ;ee;fg covEneo
THE INTEL 432/670 and ADA December 1982
PERFORMANCE BENCHMARKS §. PERFOAMNG ORG. AEPORT KuMBER
AT 7T) U CONTRACY OR GRARY nomBER S 1

David James Applegate
Robert Abbott Coates

‘ e e o]
5. PERFOMNING ONGANIZATION NAME ANO ACDRESS A W hAgansN ELIRENT SR e Taee |
Naval Postgraduate School NUuSEAS

Monterey, California 93940

1. COMTROLLING OFFICK HANME AND ACDRESS 12. MEPORY DATE
Naval Postgraduate School December 1982
Monterey, California 93940 3. NUMBER OF PAGES
- |~ 151
YT 205 ToRing ATURCY nANE & AOCRESHI{ difforant fram Cantrolling Offies) | '8. SECURITY CLASS. (of thie ripore)
UNCLASSIFIED
WW_W

T —SE—
1e. Esfumu?non ;?Afﬁiu? (ol this Rapert)

Approved for .public release; distribution unlimited

17. QISTRIBUTION STATENENTY i-l he sberrest sntered In Blesk 20, i1 diffesent fram Repert)

18. SUPPLENMENTARY NQTES

19. XEY WOROS (Continue en reverse oide !f noscccary and (Ganiify by bieek number)

1APX~432, INTEL, ADA, ADA-432
432/670 Cross Development System,
CFA, Computer Family Architecture
MCF, Military Computer Family

T30, ABSTRACY (Continue en roverce oide I nesscsmry and idencify by biock mamber) . I
The INTEL 432/670 microcomputer system contains the iAPX-432

microprocessor which executes compiled ADA programs. The compiler
resides on a host VAX 11/780, and compiled programs are downloaded
to an INTEL MDS 800 system where they are transferred tothe 432/670
for execution. This thesis describes a preliminary performance

evaluation of the INTEL 432/670 through the use of selected bench-
mark algorithms from the Computer Family Architecture (CFA) study.-

-

e R R N
DD ," 2%, 1473 cornow or 1 uov ¢6 1s omsoLETE ‘
$/N 0102-014- 6801 -——#ﬂ . 1
1 SECURITY CLASHIFICATION OF Tuis PAQE (When Dare Bntered) i
i

R T T S -

S m
’L__w' 3 OIE4 7100 6P Ywi) 8468 en Rose Snierns-
\‘

and a user's manual are appended.
’

¢

NTIS

Accession Fer

DTIC T2% e
Unannownzed M
Jurtirication . ..

GRAZI

—-———ne e e

By

Lo

Dist

_E}_B'Trlbut.’.on/ . -
Avallanvility Codeg

Avall and/or
| gpscial

f

e e

DD Form, 1473
s/N $1D4%014-0801 2

i)’A description of the hardware components of both the MDS 800
and 432/670 is provided, including the modifications made to
the operating system to allow compatibility with existing
hardware. Additionally, the benchmark program source code

e —————————— e ——r— e e
SECUMTPV CLANSICATION OF Twig PagRAThen Dare Batoren)

Approved for public release, distribution unlimited,

The INTEL 432/670 and ADA Performance Benchmarks

by

David Applegate
Lieutenant, United States Navy
BsA,s St. Cloud State University, 197S

Pobert Coates
Captain, United States Marine Corps
B.S., University of Idano, 1978

Submitted {in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUWATE SCHOOL
—~ December 1982

. 7 //
Author: ..l-=z2—==?;fi;,42
Author: -.f§§§¥ésc.§3s_-.

Ule P (Codrim

Mo

Lol £ I 40

‘ Chairman, Department of Computer Science

Dean of Information and Policy Sciences

Aoproved byt

Thesis Advisor

Second Reader

ABSTRACT

The INTEL 432/670 microcomputer system contains the
1APX=432 microprocessor whieh executes compiled ADA
proarams, The compiler resides on & nhost VAX 11/780, and
conpiled Dprograms are downloaded to an INTEL MDS 800 systenm
where they are transferred to the 432/670 for execution,
This thesis describes a preliminary performance evaluyation
of the INTEL 432/670 through the use of selected benchmark
algorithms from the Computer Family Architecture (CFA)
study. A description of the hardware components of both the
MDS 800 and 432/670 is provided, including the modifications
made to the operating system to allow compatibility with
existing hardvare, Additionally, the benchmark program

source code and a user’s manual are appended,

)

II.

I1I1.

TABLE OF CONTENTS

INTRODUCTION 9000 C0 P00 PPOBNPOIOPEPIOROIOIOIOPNOOEEOEOTNEQEROOTS

A,
B,
C.

THESIS DESC“IPTIDN feodenseplgeecsosnsoseesontoe
EVALUATION OF COMPUTER ARCHITECTURES cscesesse

THESIS ORGANIZATION o000 sONpOQOERTORIORNOSIORERNTOTO

THE MILITARY COMPUTER FAMILY ARCHITECTURE ,eccaves

A,
B,

cC.

D.

CFA/MCF PROJECT MOTIVATION ,.coccessesssescnse
CFA/MCF PROJECT DESCRIPTION ,cceseveccsccccsnse
CFA SELECTION CRITEPIA ,cceccccccqacacccccanes
1. Qualitative Criterid ssceevecvesancncscennes
2, Quantitative Criterta ceoevocncessocncocscns
MEASUREMENT PARAMETERS ccceeevesvccascccncance

BRENCHMARK EVALUATION DESCRIPTION .cevcecscscea

THE INTEL {APX=432 MICROPROCESSOR .c¢ossvesscsccscae

Ao

ARCHITECTURE DESCRIPTION cccevscscocncsscnssese
1. Object=0rientation sseessevecvecsssosnsanes
2. Transparent MultiprocessSing .ceesceccsscces
3, Capablility Based Protection scececrncocacse
4. Operating System SUDPOrt ,cscvscscvesecscass
ADA LANGUAGE SUPPORT ,sssc000000ccscanssnsccne
1, ObJect TYDING coevscncccscnscrcncnccsnscnes
2, Domain Objects = Package ObJeCtS .ccevvecee
3, Procedure Objects = Procedures ..,csccccess

4, Activation Records C0a0ergvsssesNesgeneens

S, TABKIPG soe0cectessscnnscesscvtsssencsensscns

10
12
12
12
14
14
1§
16
17
20
20
21
28
28
32
36
36
is
39
40

40

Iv. BENCHMARK PROGRAM TIMING RESULTS ,cecevescceccase

A. !ENCHH‘RK PROGRANS 000000 OCg0coRossOOeRRCOROY

1. Methods Used $00000009000g0000e00ennsssR0Rs

2. Applicable AlGOTLitNME secscecoessscsnscosces

4,
b,
Ce
d,

Character Search ccecescsesscssesssssses
QUICKSOrt ccceeosscncrscocssssssssscscns
HaShLtable ,csecssevccvesessessccscssnnses
Pigical Communications Processing ..eeee

Memory Usaqe S0 dentangesRtsRBRROEOORBRRY

3, CFA Coded but not Executed Proqrams ,ceeeee

4, Non=CPFA Related Programs)

B, TIMING PROCEDURE AND RESULTS usesecsscvscccsces

1. CFA Benchmark Program ReSUlLS, csosesvesns

a,
b,
Ce

d.

Charactery SeArCN ,csevevsssssosscevcecnes
CUICKSOTT (ecesevcvoetesastscsccccncnannae

Haghtable ,cccecvceevcovsncenssccscnnsos

Pigital Communication Processing ,.cceeee

2, Non CFA Program Results Seesstencsrsreevene

c' SUMMARY OF RESULTS e 0 QB ONSQOQgRoscaenesEsORBRESORY

Ve CDS 432/670 USER EVALUATION cqeccocctcscsccnssscns

A. CDMPILER (AR E RN ENNNNEENENENNENENENNNENENENNNNNNENNEN]

B. LINK!R [AR RN BN NN NENNENNNENENNNERENNENJNERJENNNNENENENRNEEN]

co DOWNLOADING 999 0800000000800t ossacsessnene

D. D!BUGGING AND EXECUTION [ENEERNEERNENNENNNNNNENENHNI]

!. ‘DA IMPRESSIONS 0000098000000 0000dc0ccosoesssedoe

VI. CONCLUSIONS [RN N NN NN E RN NN NNNNERERENNENNNNNNNNNNNNNN]

42
42
42
44
4S
47
48
49
50
51
51
52
53
53
54
58
55
56
59
54
64
67
68
69
70
73

4

APPENDIX CHARDWARE DESCRIPTION) ccosvcccsssvescsassne

A
APPENDIX B (OPERATING SYSTEM MODIFICATIONS) cqseescscse
AP?!NDIX C CADA SOURCE CODE) iccccccvencasaccscssscenns
APPENDIX D (CFA BENCHMARK ALGORITHMS) .cc00s00000s0000e
APPENDIX E (CDS 432/670 USERS MANUAL) ccececvecoccnsncne
LIST OF REFERENCES .cccccccrevocescrcqssnnesvsssscnscas

INITIAL DIS*RIBUTIO" LIST 0 09 0000008000 oePtsagoRtOENRY

78
77
78
114
134
149
150

s AR A l.w-"*'jf-—‘j—fj—‘-"‘
- .W&' ‘“ - i - 'S -
:j‘.“ﬁ i 5 e .

I. INTRODUCTION

A. THESIS DESCRIPTION

The develoopment of new engineering tools is accompanied
by the perceived need to f£ind apolications for those tools,
Microprocessors are no exception, When a new computer s
introduced it is important to know what, {¢ any, signiticant
benefits can be realized through its uyse, Thinas to consider
in evaluating a microprocessor include several quantitative
{tems, such as, instruction execuytion speed, memory
capacity, and overall opertormance, Less tangible, but
equally imoortant qualities of multiprocessor supmort, user
protection, and ease of programming also need to be
measured, The introductionr of the INTEL {APX~432 {n 1981
represented a radical change from traditional computer
architectures, Previous advances in integrated circuits
have primarily focused on larger memory, and faster
execution, The {APX=432 has addressed these {ssues, but has
also tackled manv of the problems found {n software
engineering,

This thesis {nvolved the setup and evaluation of a
modified INTEL 432/670 cross development system to measure
the overall performance of the programaing lanquage ADA

execyting on a companion vehicle, the INTEL {APX=432

microprocessor, The motivation for this {nvestigation was
straightforvard, Since the Department of Defense has spent
considerable time and effort in developing the ADA language
it would be interesting to observe how the language pertorns
on a processor that vas designed with identical goals, It is
not often that a language and processor are develoned in
parallel, More {importantly, the INTEL {APX=432’s unique
architectyre directly supports many of the important ADA

language features, Such as:

1. Access pratection for packages,
2, Automatic maintenance of activation record stacks.

3, Multiprocessor support for multitasking,

This support may provide for less expensive, easier ¢to
maintain software, a common objective of both hardware and

software desianers,

Bs EVALUATION OF COMPUTER ARCHITECTURES

Evaluation of computer architectures and computer
languages has traditionally been an investigative process
directed tovward a soecific spolication. This study involved
the aeneral purpose apolicability of the language and the
processor, The choice of measursment methods ugsed ¢ollowed
an earlier effort performed by the Compyter Family
Architecture committee in 1976 concerning general purpose

computer application evaluations, In particular, some of the

—w

+ ve s el P

benchmark programs used by the committee were coded {(n ADA
and then executed and timed on the {APx=432, Althouagh no
provisions have been made to eliminate the effects of
compiler efficiency, or {inefficiency, the results should
give an indication of the executiocn speed avallable to the
end user, This method of testing was chosen since the
processor s designed to be programmed {n a high level
langquage (ADA). No assembpler {s under development or planned
for by the manufacturer, Therefore, {f the language and
processor are to be used as designed, then the performance
needs to be evalyated in a working environment, That {s,
programmers programming in ADA and compiled code executing

on the processor,

C. THESIS ORGANIZATION

This thesis 1is composed of S{x chapters and ¢five
appendices, Chapter TII is a brief discussion of the work
done by the Computer Family Architecture committee (CFA) and
{t’s apoplicability to this investigation, Chapter III is an
introduction to some of the uniaue architectural aspects of
the {APX=432 and how these new features support the lanquage
ADA, The benchmark program descriptions and timing results
are {n Chapter IV, Included {n that chapter is a description
of the varameters oassed'and the calling conventions used,
An attempt has been made to aive an impartial evaluation of

the CPS 4327670 system in Chapter V, Finally, in Chapter VI

10

the reader will find what basic conclusions have been drawn
about the {APX=432 and the CDS 432/670 system as a result of
this study, The appendices are filled with the material
necessary to repeat any of the results obtained {n Chapter
IV, They include a description of the hardware and ocperating
svstem modifications performed and a listing of all the ADA
source code, As a convenlent retference the algorithms used
by the CFA are provided in Appendix D, A users manual s
included {n Appendix £ to allow a new user to quickly become

familiar with the systenm,

11

- — 5'—%'- ’W‘*”’“’ . e . . T

II. THE MILITARY COMPUTER FAMYLY ARCHITECTURE

The Military Computer Family Architecture (MCF) refers
to the architecture standard defined {n a study done by the
Computer Family Architecture committee (CFA) between October
of 1975 and Auqust of 1976, The initial study concluded that
the PDP=11 best met the criterf{a for a military computer
tamily standard, Since that time another CFA related study
by Dietz{1i]) sugaested several {mprovements {n the algorithms
used to evaluate architectures, An overview of the CFA

prodect follows,

A. CFA/MCF PROJECT MOTIVATION

The CFA/MCF project was a joint ARMY/NAVY effort to
develop a method of comparing computer architectures f£ar use
oh & general class of applications., The enormoys sums of
money that the Department of Defense was spending on data
processing prompted the investigation into the possibility
of defining a standard computer architecture,Decreasing the
life cyecle costs of computer systems plaved a major role in

the commjittees selection criteria,

B. CFA/MCF PRQJECT DESCRIPTION
One of the first {tems the CFA examined was the reason

for skyrocketing data oprocessing costs, The answers they

12

ST g e —

obtained were not too surprising, That is, compuyter
selections often are based on local schedules, funding, and
profit considerations with 1little regard for the impact
these decisions have on long term hardware/software
logistics costs, Consequently, incompatible military systems
are contributineg to the problems of development and
maintenance ot software, Although a tformal movement |in
standardizing a language was underway (ADA), there was no
method for standardizing an architecture, It was with this
mandate that the CFA committee pursued the evaluation of
several avalilable computer architectures, with the goal of
selecting a standard,

A standard architecture does not mean specific numbers
of registers, accumulators etc,, but rather the structuyre of
the machine that a programmer needs to Know to write his
programs, For example, if the architecture standard requires
stack relative addressing, then any machine having that

instruction (and the other reaquired instructions!) can be

proqrammed by a given programmer without nis having anv
knowvledge of how the ({instruction (s implemented, The
programmer knows there’s a stack and a stack relative
address instruction) the hardware implementation s
transparent to him, In this fashion, any two computers
havina the standard architectuyre can run the same software,

The advantage realized {s that new hardware with faster,

13

W N M _wi“‘*..' T . T \'5

more efficient ophysical characteristics, can run the same

software with little or no modification,

Ce CFA SELECTION CRITERIA

The CFA committee {nitiated the selection process by
specifying nine absolute qualitative criteria and several
quantitative criteria that they felt an architecture must
satisfy to meet the needs of a military computer systenm,

1. Qualitarive Criteria

The nine gualitative criteria were:

1, Virtual Memory : The architectyre myst support a
virtual address to physical address translation
mechanisnm,

2, Protection : The capability must exist to add new
experimental programs without endangering the
liable operation o¢ existing programs, Architece
tyres with orivileged modes of operation
generally meet this criteria.

3, Floating Point Operations ¢ The explicit supoort
of ¢floating point data types with more than {0
decimal digits of significance,

4, Interrupts and Traps ¢ The cavability to write a
trao handler to respond to any trap condition
with the proqgram resuming operation of the proe
gram, Additionally, the architecture needs to bdbe
caoable of resuming execution following any in=
terrupt,

Se Subsettabllity : Some of the components of the
architecture must be able to be factored out of
the fuyll architecture,

6, Multiprocessing ! Suoport of communication and
synchronization of multiple processors,

7. 1/0 Controllap{lity ¢t A processor must have the
abllity to exercise absolute control over any I/0
processor,

14

8, Extensibility -t Some method needs to exist to add
nevw instructions to the architecture consistent
with existing formats,

9. Read Only Code : It must be possible to execute
programg from read only memory,
These nine criteria were definitely subjective in nature but
did provide a good {nitial screeninqg for any standard
architecture candidate, Although the study was done before
the introduyction of the INTEL {APX=432, most of the criteria
are met or exceeded by the 1APX=432 with ¢the exception of
the {interrupt capability., The {APX=432 has no hardware
interrupt, however, it (s designed to operate with an
attached processor which does have an interrupt capability.
2, Quantitarive Crireria
The quantitative criteria judged by the CFA

committee included the following {tems :

1, Virtual address space.
2. Physical address snace,
3. Fraction of address soace unassigned,

4, Size of the central processor state (amount of
CPU information stored on interrupts).

S, Usage hase (number of units in operation),

5, I/0 initiation (efficiency of peripheral device
accessibility),

7. Virtualizability (support of virtual machines),

8. Direct instruction addressability,

15

9, Maximum interrupt latency (time from receipt of
interrupt to processing),)
De MEASUREMENT PARAMETERS

The guantitative criteria were evaluated, in part, by
the use of twelve benchmark programs, These programs were
hand assembled by several different oprogrammers, and then
statistically analyzed for program use of computer svace and
time, The measurement parameters used were:

8$: Measure of svace, the number of bytes used to

represent a test program,

M: Measure of execution time, the number of bytes

transferred between primary memory and the processor

durina execution of the test program,

Rt The number of bytes transferred among Iinternal

registers of the processor during execution of the

test progranm,

Although ¢the S,M, and R measyres are useful in
evaluating conventional architectures, they are not readily
applied to the INTEL 1APX=432, In fact, the microprocessor’s
_ manyugfacturer has stated that there 13 no {ntention ot
supplying an assembler, nor is one under develooment., This
would make the measurement of S and M difficult and the
meassurement of R virtually impossible, For this reason, the
evaluation of the INTEL {APX«432 was primarily based on the

execution timing of selected benchmark programs,

16

E, BENCHMARK EVALUATION DESCRIPTION

The original CFA committee developed twelve benchmark
progranms to evaluate the sgelected criteria, A brief
degcription of the programs follows with a complete

algoerithmic description in Appendix D,

1. I/0 kernel, four priority level interrupts,
2, I/0 kernel, FIFJ orocessing.

3, 1/0 device handler,

4, Large fast Fourier transform of a large vector,
S. Character search,

6, Bit testr set, or reset,

7. Runge=Kytta integration,

8, Linked 1i{st insertion,

9. fuicksoret,

10, ASCII to floating point conversion,

11, Boolean matrix transpose,

12, Virtual memory space exchange,

These programs tested many of the items considered to be of
value by the CFA committee, however, a later study hy Diet2
(1) determined that the number and types of test orograms
should be expanded, The proposed set of benchmark orograms
consisted of sixteen programs orqanized into four groups as

follows?

17

v ———— e

TOTT AT WA T Trman ot et . CL -

A, Interrupts and traps.

1. Terminal input driver,
2. Message buffering and transmission,
3, nultiplg priority interrupt handler,
4, Virtual memory exchange.
B, Miscellaneous,
5, Scale vector display.
5, Arravy rmanioulation-LU decomposition,
7. Target tracking.
. 9, Digital communications processing,
C. Address manipulation,
9, Hash table search,
10, Linked list ingertion.
11, Presort.
12, Autocorrelate,
D. Character and bit manipulation,
13, Character search.
14, Boolean matrix transpose.
15, Record unpacking,

16, Vector to scan line conversion,

A complete algorithmic description of these benchmark
programs can also be found in Appendix D,

These sixteen algorithms were thought to more rigorously
test specific features of the computer family architecture

standard, None of the above benchmark progranms are

18

necessarily firm algorithms that must be adhered to,
However, they do provide some guidance ln the type of tasks
that must be performed by a computer in order for {t to
£ulf£ill the minimum requirements of an architeetural
standard, In the original evaluation the PDP=i1 was
selected as the best candidate architecture for the military
computer family, Since that time several major advances {n
hoth hardware and software have occurred, The unique
architecture of the INTEL 1APX«432 provides a different test
platform for the execution of the benchmark programs, Those
programs which were supnorted by the current INTEL ADA=432
compiler were coded, executed, and timed, The resuylts are

sumrmarized in Chaoter 1V of this thesis,

19

III, THE INTEL 1APX-432 MICROPROCESSOR

A, ARCHITECTURE DESCRIPTION

Computer architectures in the majority of commercial
systems avallable today can be viewed as refined descendants
of the often termed Von Neumann computer architecture, A
Von Neumann comdbuter architecture usually i{ncludes the

following properties (21:

1. A single, sequentially addressed memory which
contains both proqram and data,

2. No explicit distinctions between instructions and
data, Rather, |instructions and data are dise
tingquished by the operations directed towards
Cf'lem [

-

In 1981, Intel announced a 32=bit VLSI microprocessor
incorporating several architectural {nnovations [3], This

announcement stated:

"The Intel 1APX 432 represents a dramatic advance {n
computer architecture: {t (s the £irst computer
whose architecture supports true Ssoftware trane
sparent, nmultiprocessor operation; {t is the first
commercial system to sSupoort an oObjecte=oriented
programming methodologyy {t s designed ¢to be
programmed entirely in highe=level languages; (¢t
supports a virtual address svace {n excess of
a trillion bytes; and {t supports on the chio {tself
the proposed IEFEe-standard for floatinag point arith-
metic,"

20

il N T
o - o _

The next few pages will be devoted to providing a brieg
overview of the following architectural aspects of the

{1APX=432:

1. Object=0rientation,
2. Transparent Multiprocessing,
3. Capability=-Based Protection,

4, Operating System Suoport,

1. Qbjectefrientation

Wwhat does it mean to be an objecte=based computer?
Unlike the classical Von Neumann architecture described in
the {ntroduction, memory is not accessed as a single,
contiguous block, Rather, the memory is considered as a
collection or set of smaller units called objects, each of
which occupies some contiguous amount of memory., Very
important and fundamental to this concent is the object’s
recognition, This can ocecur iIin software, or as in the
majority of cases for the 432, in hardware, This recognition
enables the object to be typed or classified as to the
operators which are allowed to act upon the particular
object, Since the 432 architecture can determine the
classification of an object it can prevent incidents such as
instructions (e.g. instruction objects) bHeing interpreted as
data, and conversely, data (e,g. data obijects) being

executed asg instructions,

21

PO~ —

ks,

At the machine level, objects can be thought of as
being segments, a segment being a set of contiguous memory
locations which in the 432 case can range from { to 65,536
bytes {({n 1length, However, there can be some differences iIn
the 432 case, Specifically, an object can be any one of the

following:

it. A single segment,
2, A collection of segments,

3. A part of a seqnment,

This latitude in object abstraction gives compiler designers
a Dpowergyl base on which to build object oriented compilers
(ADA) .

Intel has moved the recognition of specific object
types into the 432 nhardvare, as alluded to above,
Additionally, certain operators on these objects are
incorporated directly into hardware, while other ope-ations
must be done via software, The net effect of this decision

i{s rwofold:

1, Increased reliability of all operations,

2., Increased execution speed of certain functions,

Fiqgqure § {llustrates some typical {APX=432 hardwvare

recognized objects:

22

Physical | Memory

|vecensanes| | |voncveocas |

| tAPX®=432 |====)>|{Processor/

iprocessori | | Obj.Ct |

IELTTTTY LT Y] | |vcve |scaa|
! v
[} |{sevcanacs|
I | Process |
| | Object |
| ELTT AR LYY
{ v
| |enwosvenew| |esacvacas|
t |} Context |=es)> |Nperand |
] t Object | | Stack |
| |=wee|eca=| | Object |
| v |oeveocenw|
] |ononcecwns|
! | Domain |
1 | Object |
{ |-..-.----'
[v
i EXTTEL LYY LT]
t ITnstruection!
I | Obiect (

{

|

Fiqure i, Hardware Recognized Obijects

The {ncorporation ot an object=based proqramming
methodology, i{n the manufacture’s own words, ",,.,raises the
level of the hardware/software interface", The justification
for this statement can be found in the following example,

Carly compuyters had very simple hardware operations.
These early machines were not capable of supoorting
floating=coint menipulations directly, It you wanted

floatingepoint operations vyou Rad to implement them in

rk)

software, With the passage of time and increased
technological progress, computer hardware gained
functionality, What were once software functions found
themselves migrated into hardware, a classic example being
tloating point operations, This evolution of software into
hardware {s generallv reqgarded as raising the level of the
nardware/softwvare {nterface {n a computer architecture, The
432 carries this progression one step further by olacing
system management operations, such as orocess scheduling,
memory management, and interprocess communication into the
hardware also, Referring back to Figure i, the importance of
such objects as processor object, process object, etc,
should now take on greater sianificance, Naturally, more
than these basic system objects will be needed to implement
the operations listed above, The processor must be able to
manipulate these objects {in an appropriate way so that what
is traditionally done in a series of proaram steos {s now
accomplished with a single instruction, The net effect of
such hardware {nstructions is to increase processing soeeds,

Recalling the example of floatina point ovperations,
wve find that ¢their ({ncorooration {nto hardware increased
their soeed of operation, Furthermore, sceed and reliabiliity
are Significantly enhanced when an operation is {mplemented
in hardware, However, the capability pased architecture adds
a sianigicant amount of execution time to each instruction

and consequently the performance of a processor is reduced,

24

,—_—i—“ T T e g—— - e e gmm—— -

el .

The choice of an object=based computer architecture,
besides raising the hardware/software interface, integrates
ideas that have developed over the last decade in software
enqgineering, These {include data abstraction, domain based
protection, information hiding, and high=level system
functionality, The {APX 432 (s an attempt to bring these
notions coherently together {n a single architecture,

Summarizing, an object can be regarded as possessing
the following proverties:

1. A data structure that contains information in an
organized manner,

2, A set of pbasic operations may manipulate an ob-
ject, The 432 hardware ensures that these are the
only onerations that can manipulate the data
structure,

3. An object can be addressed as a single entity,

4, An object has a label which specifies tne
object’s type (e,3, processor vs, process),

Lastly, as regards the relationship between segments
and objects, a seament refers to the physical structure of
data i{n memory, {.e, where the structure {s Jlocated, An
object refers to the logical structure of data in memory,
f{.e, how the memory {s used,

2. Transparent Multiprocesgsing

One of the most highly promoted features of the
1APX=432 is its software transparent multiprocessing

cavabilities, also called "{ncremental computing cower",

25

What this means s that the number of physical processors

(GDP boards) in the 432/670 system can be changed without
any corresponding changes tn application software, That {s,
a user’s application program never has to be concerned with
the number of physical processors present, The only visible
effect of havina more than one physical orocessor s the
increase {n system throughput, This kind of flexible
performance (s not usually associated witn microcomputers,
As applications become more complex and more dynamic, it
becomes {ncreasingly difficult to predict how mueh
processing power a system will need to meet its performance
goals, This uncertainty can be a serious source of risk, An
application may have ¢to commit itself to a processor some
time before any code has actually been written, This problem
is solved by the 1APX=432 through the use of process:
cbjects, Processor objects are abstracticrg of nhysical
processors and hence their behavior can be hanipulated like
any other object,

Transparent multiprocessing {s accomplished through
the use of the processor object, The ex{stence of a
particular physical processor is immaterial, System
throughpuyt can be increased by adding physical processors
(GDP boards) and therefore Creating more processor obijects,
More processor objects means that more user processes can
execute, &imilarly, the removal of a physical processor

results {n the removal of a processor object and a

26

subsequent reduction {in the total performance, Fault
tolerance can thus be said to be improved by the fact that
in a multiple processor environment, if a processor fails,
it is simply removed from the system, The only effeect should
be some reduction in throughput, In order to describe how
this "software transoarent”™ multiprocessing is achieved,
other 432 objects besides processor objects and bprocess
objects, will be introduced, Process objects can be equated
with user programs in the discussion which follows,

The term dispatching refers to the assignment of a
432 processor to some process which {s waitina to execute,
In the 432 case, this s the pairing=up of a processor
object with a process object, The manner {n which this {s
done {s through the aid of another particular type of obiect
called a dispatching nort object, Since this {s an object,
it also has certain unique overators which aoplv to it. The
dispateching port object can be thought of as a queye=like
dats structure which can contain Dprocess objects or
processor objects, but never bhoth, Processors, and hence
their processor objects, are self dispatching on the 4132,
Therefore, when a orocessor completes its current task or
process it examines the dispatching port object to determine
if there s a waiting process, represented by a process
object, enqueued at the digvatching port, If there (s a
process object present, the process object is "bound" to the

orocessor object, that is, a 1link 1is ¢formed bvetween the

27

!

processor object and process object., The processor then
dequeues the process object from the d4dispatching oort, and
then oroceeds to execute the process. Conversely, i{f there
are no procegses (process Oobjects) engueued at the
dispatching port, the processor enqueues {ts processor
object at the dispatching port, in effect waiting ¢for the
next ready orocess; Processes are not dependent on
soecitically which processor {s executing {t, or how many
processors are present in the system, Processes ready for
execution are simply engqueued at the dispatching port, The
presence of more physical processors simply means that the
average time a process is queued up at a dispatching port
should be decreased,
3, Capabiiiry Baged Praotection

Sharing data among a computer system’s uysers 1in a
carefully controlled way has been a subject for much
investigation {n computer systems, Implementation techniaues
aimed at providing for this controlled information flow have
run from introducing privileged and user i{nstructions (e,.3,
IBM 36073709 to hierarchical protection systems as
classically illustrated 1in the MULTICS rino structure,
Intel’s approach to this oroblem in the 432 architecture has
been to implement what are termed capabilities,

Capabilities can be thought of as tickets, the
possesgion of which conveys privileges, normally the

privileace to access a segment, In the 432 case, to think of

29

. —
%'%r‘f T TR e : - -

ey s e ——— e

(v

them as a pointer plus access rights pair would be an even
closer analoqgy, Possession of a capability means that access
to a segnent i3 allowed under the access rights associated
with that capability., Access rights aret read, write, both,
or neither, In order to ensure orotection, certain processes
should not be permitted to possess capabilities which arant
nonediscriminate access to certain oortions of memory, for
example, user processes should not have access to the memory
where the operating system {s contained, Therefore, because
of thelr function and inherent potential to Dbe used
maliciously, capabllities must be untorgeable, In the {APX=
432, capablilities are recoqnized and ooerated on dy hardware
to assure this needed protection, The set of capabilities
accessible to a process at sany one time (s called the domain
of protection, As a process runs, the domain of oprotection
will change, The i{deal to be realized is that the domain of
protection should always be exactly matched to the
requirements of the process;y that (s, {t should contain
capabilities for all the segments that the process needs to
access and nothing more, This satisfies the principle of
‘minimum privilece’ in secure systems jargon,

The oriqginal reasons that led to the desire to
design a computer with a capability based architecture may
be summarized under ruqgedness and security, Ruggedness {n
this sense means the abllity of the system to survive the

consequences of hardware failures or software bugs (4],

29

TR R T TR s sg— e v —————

PP

i

Security, on the other hand, can be thought of as ensuring
that access to nmemory is determined exclusively by the
access riahts of the particular process {n question,

There are basically twe distincet ways ot
implementing capabilities in hardware, These can be termed
the tagged and partitioned approach (5], 1In the former, all
words in the system carry a ‘tag’ bit which blays no part
other than to indicate whether <the particular word s a
capability or not, In the partitioned approach, words carry
no tag, so it is not possible by examining a word in memory
to determine whether it {s a capapility or data word,
Instead, the type of segment {s {mportant, i,e, there must
be capability segments which contain cavabilities and
nothing more, and “data’ segments which contain anything but
capabilities, The {APX 432 uses the partitioned approach,

Intel’s decision to {molement the vartitioned
approach causes us to slightly refine the concept of an
object as discussed earlier, As was previously stated,
objects in their physical form are equated with segment(s),
A combination of an object-based architecture with
capabilities implemented in the partitioned avoroach means
that each ohject s composed of two distinct parts, a data
part and a capability part, Indeed, {n the 432 architecture
there are two fundamental segment base types, These base
types are called data seqments and access segments, A data

segment can contain anything except capabiliti{es, whereas an

30

.. f~-‘-r ,..'.:..‘ wr e o . ' _ .

"

- —

access segment can contain only capabilities, Therefore, an
object should now be correctly envisi{oned as being comprised
of these two segment types, An example of how this (s
actually implemented for some of the system objects 1is

shown {n Figure 2,

processor object

|eocssevaunesccane | ___ | !

|eescccacenavcscns) |venccncncan
processor access processor data

segnent segment
(capabllities)

process object

| wvovnancassecsccan) | eovoowesssnnw |
process access process data
segment segment

Figure 2, Object Representation

Summarizing, Intel has implemented capability based
support for memery protection {n the 432, These capabllities
can be thought of as an address of, or pointer to, an object

with an attached type describing the classification of the

31

SRR

referenced object (e.g. process object, context object,etc,)
and an attached protection mode (e.9., read only or
read/vwrite), In the 432, 1Intel has decided to call
capabilities access descriptors because of thelr similarity
in concept to pointer implementation in ADA which is termed
an ‘access’, Furthermore, objects in the 432 system are seen
to be comprised of both data segment(s) and capability
(access descriptor) segment(s), The data segment of an
object could be thought of as containing information
intrinsic to the particular type of object, The cavability
seqgment on the other hand, contains capabilities for all the
other objects {(t may need to reserence, Additionally,
capabilities are seen to enforce the principle of minimunm
privilege, Perhaps providing an important insight into 432
performance, M, V, wilkes has said [6):

"Compared with a conventional computer system, there

will (i{nevitably be a cost to be met in providing a

system in which the domains of protection are small

and frequently changed, This cost will manifest ite-

self in terms of additional hardware, decreased

run=time speed, and increased memory occupancy, It

{s at oresent an ooen questior whether, by the adop=

tion of the capabllity approach, the cost can be

reduced to reasonable proportions."

4., Qperating System Suppart

Like the 432 hardware, Intel has created an object=-

oriented operating system for the {APX 432 called {MAX, It

nas been designed as & multiprocessor cperating system, and

congseauently it accommodates any number of running

32

T e T .
il

et irum.r) rren e

processors, As a result, all synchronization within the
system must be explicit, Furthermore, as the manufacturer
has pointed out (7], the 432 and {MAX are products primarily
intended to be used by original equipment manufacturers in
the construction of their products. Related to this is the
fact that {MAX does not provide a command language or a
human interface, rather it s designed to provide executive
services to user=provided software which makes calls to
iMAX,

Many traditional operating system orimitives are
implemented as hardware functions in the 432, 1In an effort
to elaborate on the relationship between the iMAX operating
system and the {APX=432 functions, a digression is in order,
AS pointed out earlier, the {APX 432 architecture provides a
higher 1level of functionality in hardware than conventional
computers, Important system management functions are
realized through hardware-recognized representations, {.e.
objects, High level operations on these system objects (see
Fig. [1]1), such as sending a message between processes, are
provided as single machine instructions, These features of
the 432 are referred to as the Silicon Ooerating system,
These teatures are not {n themselves an operating systen,
but contripbute greatly to the building of one,

The relationship between {MAX and the hardware might
best be described as cooperation, iMAX doesn’t simply run on

the hardware, rather the hardware acts autonomously to

3

provide important services, such as processor self-
dispatching as pointed out earlier, A good example of the
division of labor which occurs between iMAX and the 432
hardwvare can be found in storage management, Hardware
defines system objects used for storage management, provides
single instructions that allocate new objects, and sets flaq
bits needed for storage reclamation and virtual storage
management, iMAX will then provide services which will
create and reclaim local storage pools and will provide
processes which compact storage and reclaim unreferenced
objects,
, - Probably the mogt notable point about iMAX {s that
the user may view {MAX as a set of ADA ©backage
specifications, each of which corresponds to & particular
service provided by the system, Additionally, there is no
distinction between {MAX packages and user=-written packages,
{MAX operations and user operations are invoked {n the same
way, There is no special calling convention, no ‘Supervisor
Call’ instruction, as is the case in many current commercial
systems, The effect of this particular i{mplementation {is
twotolAd:
1. Users can create subsets of (MAX by omitting
unused packaaqes,

2. Users can create supersets of {MAX by adding
thei{r own vackaqges,

34

. eme

i{MAX also benefits from the 432°s capability

protection mechanism described earlier, References for
system objects can be passed to user processes without fear
of damage or system compromise because the rights assoclated
with these user process capabilities have heen modified by
iMAX appropriately (e,g, read only), User processes cannot
corrupt these references passed from i{MAX,

Like the 432 hardware, {MAX is in a continual state
of change by Intel, Version 1,0, which this thesis worked
with, {s a preliminary version {ntended to get potential
users quickly acauainted with it in order to acquire the
ability to execute ADA programs on the 432, As a result, the
number of ADA packaaes which the user can tailor to his or
her application are rejlatively tgfew, As advertised, the

following services are nrovided by (MAX, Vi{,0:

1. Configqure and {nitialize a multiple=-GDP system,
2. Read from and write to the debugger consale ONLY.

3, Create and start multiple yser processes defined
at compile time,

4, Communicate between user processes by exchanqging
messages,

S. Inspect type, rights, and storage {(nformation
contained in access descriptors and object
Aescriptors.

6., Inspect context and process dependent information
in a running proqaram’s environment,

8

——p———— T - e . ot ..y e e e s

-

" —

Later versions are supposed to SsSupport Attached
Proéossors which are essentially the means by which the 432
can communicate with the outside world, When this support is
finally {mplemented, the current, severely limited 1/0 (i.e,
debugger console only) will be replaced by a variety of

conventional I/0 devices,.

B. ANA LANGUAGE SUPPORT
AsS was previously mentioned, there was a considerable
amount of varallel development between the ADA language and
the INTEL (APX=432, Both the ADA language and the 432
architecture address many of the problems associated with
large scale softvware development nrojects., This resulted in
several architectura} constructs which directly support many
ADA language features,
1. Qhject Typing
The object orientation of the architecture plavys a
major role in langquage support, Every object is typed by
the compiler or by the hardware ¢to indicate {ts intended
use, This allows a natural separation of procedure objects
from data objects, In addition to °intended use’ typing, the
objects are also classified as to their internal structure,
This structure can be one of two types, access objects or
4ata objects, The access object 1is an array of access
descriptors (to other objects) while data objects are

structured blocks of data I(nformation, Access objects

36

‘i';ri*—r'7;r~vm-m¢q---——~ o - e -

s PO e . A

contain only access descriptors and data objects contain

only data, This is represented {n Figure 3,

access object data object
|onoon| XkkEE
i i _ . *
IELL TN 122 3 3]
FrYrY i I P A LR LY N XL R 0 0 K X X K &8 X X X J
IELL LY ¥
evevsaw | | oveoveqew
| |evowam] 1
v v v
| swmewn| | owvane| 133 3% 3
| | ! | we> X x
IECLLLE |vwas=| EEREX
J
| XXSX¥
cosee)d = x
. ERERK

Figure 3, ADA=432 Object Types

As shown in Fiqgure 3, any set of (APX+432 objects can be
represented by a directed graph containing access object
nodes and data object nodes, This notational convention
serves as a useful model for representing execution time
objects and their relationships to cerresponding ADA
progranms, It (s important to realize that an object can
exist as the subpart of another oject and yvyet be loqically
digserent, Such an object that (s ohysically contained

inside a parent object (s termed a refinement of the parent

37

..‘i.=====~u_»—_»9:ja

object, The refined objects are physi{cally subeparts of the
parent object, vet they can inherit the full privileges of
objects, as {f they vwere physically distinct ¢£rom the
parent, In the case of multiple refinements, they can behave
as {f physically distinct from other retinements of the

parent, This i{s illustrated in Fiaqure 4,

parent
EL L]) | mvae|
{ | => | | child
|ecsa] |omwe|
i
v
| vmo=|
| | ehild
|eowe |

Figure 4, Refinements

2, Qomain Objects = Package Objects

Common data structures and procedures can be grouped
together using the ADA vackage corstruct, The INTEL 1APX=4232
uses a domain object to represent an ADA package, The domain
object, 1like a package, is a collection of data oLjects and
procedure objects (hence it s of ¢type access), This can
best be {llustrated by the following example of an ADA
package detinition and the corresponding I1APX=432 object

representation shown in Fiqure S,

38

package SIMPLE 1is

1,’,(t inteqer |vecswcecacsveconcaces|
procedure ADD(4,3,k)? | Domain Object |
procedure SUBTRACT(L,3.k):! SIMPLE |
end SIMPLE ‘-'..------'....-.'.'
{ | [
package body SIMPLE {s t ! |
procedure ADD({,3,k) is v v v
begin ..--.-' |reoven| |avesas|
k 3 1+9; 11,3,k1 | pProc,| | Proc.l!
end ADD; IData | { ADD ¢t { SUB |
| codej | code | | code |

procedure SUBTRACT(i,3,k) s
begin
k 3= 1=9;

end SUBTRACT?

end SIMPLE;

Figqure 5, ADA Package and {APX=4132
Object Correspondence

Since objects can be refined, {t {s possible to refine a
domain object to create domains of a package with different
access riahts, This mechanism very naicely supports the
public and private access rights degsined in ADA, A user {s
given access to public intormation by creating a refined
object with access descriptors to a refined domain which
contains only public data,
3. PRrocedure Ohjects = Procedures
An 1APX=432 procedure object consists of executable

code corresponding to an ADA procedure, The procedure object

39

—

also contains information required to form the activation
record or context object which s created on procedure
invocation, Procedures may be invoked {n either {nterdomain
or intradomain contexts. The interdomain context means that

a procedure in one package (domain) i{s calling a procedure

in another package (domein), Intradomain procedure calls are
simply calls within the same package,)

4., Activarion Recards

A block structured languace such as ADA can make
efficient use of activation records, The {APX=432 supports
the use of activation records via context access objects and
context data obfects, The context access object represents
local reference variables and the context data object
represents local data variables of the activatior record,
The {APX~432 {nstructions ‘procedure call’ and ‘vorocedure
return’ create and destroy context objects,

S. Tlasking

One of the important multiprocessing features of the
ADA languvage 1is the concept 0of a task, Tasks are directly
supported {n the 1APX=432 through the use of dispatching and
communication'port obﬁects. The communication port object is
a aessage queue that acts as a buffer between processes that
may be executing concurrently. It’s function {s to allow
inter-process communication, A dispatching port is a special
torm of a message aqueye in which &8 process object may spend

time waiting for the arrival of an available processor, or

40

Rl IR PRI P <~ . S e e

where a processor object awaits the arrival of a process,
These overations are performed in hardware which allows tfor
very effici{ent coding of the ADA tasking model,

It may be surmised from the previous discussion that the
language ADA and the INTEL {APX-432 have several common
foundations, This was undoubtedly intentional, The
microprocessor is designed to be orogrammed using high level
lanquages such as ADA as the development language, No
assembler is planned or under development by the

manufacturer,

41

e ———1 . . -~ [——

e L.f‘I N ’W‘*‘*‘ . . X . .

o

IV, BENCHMARK PRQGRAM TIMING RESULTS

A, BENCHMARK PROGRANMS

The benchmark programs were obtained, for the most part,
f¢rom the CFA algorithms feterenced in Chapter II, Section E
"Benrchmark Evaluation Descriptionn, Some prearams from a
non=CFA related study were also used so that an objective
timing conmparison could be made with other processors,

1. Methods liged

The proarams were coded in ADA, compiled using the

INTEL ADA=432 compiler on a VAX « 11/780 host computer,
linked on the VAX « 11/780 using the INTEL 432 linver, and
downloaded to a gloopy disk via the INTEL asynchronous
communications link, Execution of the downloaded object code
was performed using the INTEL Debuager and Execution
software package operating on a INTEL MDS System 800, The
INTEL MDS system is required to load the executable code
into the INTEL 432/670 system for execution on the {APX=432

microprocessor, The system setup 1is shown Figure 6,

VAX 11/780 VAX 11/780 MDS=0800 4327670
L L L1 L1 XX 1] (I X L X I X1 X} C L 1 1 1 X 1] L L X L 1 1 B X J
| | wed> | | ==> | | => | i
| | | { { | | 1
compile 1ink download execute

Fiqure 6, CDS System Qverview

42

T e e 2 - -
i, . e

In order to actively sgsimulate large scale software

development (and to exercise some unique ADA features) all
the coded CFA programs were developed in such a way that the
program specifications were sepnarate from the program body,
The effect 0f this decision was twofold:
1. Programs could be written and debugged indepen~
dently by both authors,
2. The concept and value of using a separate program
specigication construct could be demonstrated,
A careful inspection of each benchmark program wi{ll reveal

that 1t consists of three primary parts, These parts are:

{. Package speciticetion,
2. Package hody,

3. Main or driver procedure,

The driver routine i{s needed to {nitiate a user process iIn
the 432/670 system, The programs were designed so that the
user could control the number of times the benchmark was
invoked, This allowed for an effective averaging method,
For example, the benchmark could be executed 100,000 times,
accurately timed with a stoowatch, and then the total
elapsed time could be divided by 100,000 to obtain the
average execution time for the procedure, Each program
writes a start and a8 stop message, including an audibdble
‘bell’ to 4indicate when to commence and end timing., In

order to effectively isolate the porocedure invocation timing

43

overhead from the benchmark timing, there were usually two

different driver routines w%th each benchmark program, Each
proaram, when executed, would request the number of times to
perform the alqgorithm in question, This reauest could cone
from the driver routine or from the benchmark procedure, If
it came from the former then the time measured included the
time required to i{nvoke the procedure, A timing request from
the benchmark procedure included only the timing required to
perform the algorithm, The di{fference {n the two times was
then a measure of the procedure invocation overhead, Note
that this method would not work with a recursive procedure,
Further discussion of these methods and the mechanics
involved can be found in Chanter V, "CDS 432/670 iser
Evaluation,.”,
2. Applicable Algarithms

The ADA«432 compiler (Version 1,0) does not support
the £ull ADA lanauage, The manutacturer has added some
extensions to the compiler but it opresently lacks many
important ADA features, Some of the sionificant compiler
limitations are as follows!

1., Fixed point and floating point types are not ime=
Plemented,

2, Tasking, as defined in the Reference Manuyal for
the ADA Programming Lanquage, {s not imnlemented,

3, Array operations, suych as concatenation, assigne
ment, and bhoolean operations are not implemented,

44

.- f?"f’ﬂ**ﬂwbtaﬁsl o - m e
I - . N

4, Dynamic arrays and dynamic strings are not imple=
mented,

S, Run time checks are not operational,

6. Exceptions are not i{mplemented,

7. Record representations for records containing

tields of type access are not implemented,
Although the above compiler limitations are rather severe it
¥85 still pvossible to code several of the CFA algorithms in
ADA=432 and most of those coded could pe executed on the
1APX=432, The lack of a hardware interrupt orevented many of
the CFA benchmarks from being coded, Future releases of the
432/670 system are supoosed to provide the facility of an
interrupt throuah the use of an attached oprocessor. This
featyre was not available {n this release of the 432, A
short descriotion of each of the executable proarams
follows, The complete source code can be found in Apoendix
C.
a, Character Search
This oroqgram searched a given string for the

occurrence of an argument string and returned the location
of the argument string, if it was located. The program was
coded from the algorithm (n the original CFA study, The
algorithm {s listed in Appendix D. The strings were read
into a variable of type STRINGS80, which is an ADA-432
predefined type required for text 1I1/0. The strings were

then decomposed into indivi{dual characters and assigned to a

43

1 by 256 character array. This sethod was necessary because
of the primitive state of the current ADA~432 text 1/0
package. The program was made {nteractive to allow for many
searches to be performed in any given debuagina/execution
session, The data structures, calling conventions, and a

sample expected result are shown in Fi{qure 7,

Search Strina?

'---.--..’-..--...-..'..---.-..-.-..--..----,
N I RS A I R I T I T R D R O R AR
IMlolinidialyt,! 1Jluinlel 171tini, 1t 111917161 ;
NN N D R D R D R R R K Y A R R O B B i

1 23 456789 ¢ oo ¢ a0 00 04 o 22

Argument strinag:!

lejaj=]
Idialyl
lelwle! {
123

Seareh length := 22

Arqument length t= 3

SEARCH(Search_ length,Arg.length,Searchastr,Arg..len,loc)

expected resulet loe =)

46

Two versions of the program were used, One
version included the time required to invoke a procedure
while the other version did not include procedure invocation
overhead, As will be shown {n the timing results section ot
this chapter, procedure invocation is expensive,

b, - Quicksort

This program performed a quicksort on a gqgiven
array of records, The program was coded using the CFA
quicksort algorithm in Appendix D, The records sorted
consisted of an {nteger key field (to be sorted on) and a
character field associated with each xey, A pictorial
representation of the data structure and the sorting process

and calling convention is shown {n Figure 9,

Arrayl Array?2

|one |oos | '---'---l
| 4 { DI I S I Y
|moe|cew | jome{oann|
I 11 A t 21 B |
|jowe |cow | ELTER L TN
I S 1 E | SORT 31 C I
|moo |aca | eame) joaw|ewaa|
I 21 8B 1 't 41D I
|oow |cew| |eon|onea|
I3 1 C {1 S| E |
|jooe |ene | {oce|eas|

Calling convention: SORT(Arrayi,Array?)

expected result : arrayl (s sorted on
the integer fileld
to make arraye,

Figure 8, Ouicksort

47

The program was written to act interactively with the user
to allow .for several ditiorent runs per debugging session,
; Two versions of Quicksort were used, One was an {terative {
sort, the other a recursive sort., The timing results show |
that the procedure invocation overhead of the recursive sort
was signiticant,
¢. Hashtable

This program located the position a key would

occupy {n a hash table, An example of the data structure

used and the calling conventions are shown in Fi{gure 9, The

7 algorithm for this program was obtained from the second CFA

study by Dietz[1) and can be found in Appendix D,

TABLE
HASHES (kKey) == |esecnes|
{ { |

v | | ?

IEXTYYT TN

calling convention:

position := HASHES(key)

Figure 9, Hashtable Data Structure
and Calling Convention

o t——

Si{ince this program used & function, there was only one

version written, The ©procedure invocation overhead s

{ncluded in the timing results,

. 48

- rwi’-:r-m.!ba”- R R - e e -

butfer, The algorithm was taken from the second CFA study by

Dietz (1) and i{s located in Appendix D.

used

for

d, Digital Communications Processing

This program sent & message to a given output

shown in Figqure 10,

the progranm

&

The data ltructuros

and a tyoical calling convention are

msq.otrs | [

messaqge?

4 |

which then points
to a specific
but.tbl array,

calling conventiont
FORWARD(destination,connection,msgaptr)

A pointer to a message record,

| This 1is a message |

the huyf.tbl,

|oscscnccsncwe |{envsrenaves {vsoascncuscensavasa|

destination connection message data
destination.tbl buf.tbl buffer.,array
| sconenenna| |jeccann| |evcvacses|
11 | 11 | 11 i
(XTI T YT I) |esamas| IETTYTT T TN
2 1 | 21 | 21This is al
| | ! | | message |
|eowencscsvea| |ovosse| |evnveancew)
3| ! 3t 2 | 31 |
« |coeweceassess| |owenas| |encvacsns|
| (|
destination indexes connection contents of
destinationa.tbl indexes the indexed

but.tbl used
to locate the
approoriate
buffer_array
position to
out message
data,

Figure 19,

49

Digital Communications

The progranm interactively queried for the message

destination, message connection and the message text, This
allowed for several sample runs to be performed during a
debugging session.
e, Memory Usage

A close inspection of the ADA source code {n
Appendix C shows that many of the data structures are guite
small. This is {ntentional, and necessary, Early 1in the
course of this investigation it was discovered that programs
would compile correctly but execute {n an unpredictable
manner, The problem was found to be in the amount of heap
memory allotted to & user process in Version 1,0 of the
{MAX=432 operating system, The memory allocated was not
extremely large, and could often be used up without any
ind{cation to the user what was wrong, The program Eat-
Memory was written to demonstrate how fast memory was used
up. The program was fairly simple in that all it did was to
create an array of S0 characters and a pointer to the array,
This program was also written 4in two versions, one that
created the arrays recursively, the other iteratively, The
expense of context creation {(n a recursive procedure was
shown to be very great, Only nine recyrsive calls could be
made before the program used all of the avallable memory and
the system crashed, The iterative version did much better
and 199 separate data structures were created before all

available memory was exhausted, 0f particular {nterest to

50

- "?TT"‘F’ﬁgn‘Eﬂnq'-c . . .

the user {s that there is no indication as to what i{s wrong
when the memory {s used up, The display 1s "blank" and all
efforts to use ;he debug facility resulted {n a system
response of "no current process”, In summary, the user must
labor{ously 1{inspect the program object code (the MAP file)
and arbitrari{ly set breakpoints in the code ¢to determine
what the cause of the fatal error 1is, This problem is
elaborated in Chaoter V of this theslis,
3, CFA Coded but not Fxecuted Pragranms
Two programs from the first CFA stuydy were coded {n

ADA and executed on an ADA=ED compiler to check for correct

program execution, These programs were:

1. Linked List Insertion.

2. Runge=Kutta Inteqgration,

Untortunately the present ADA=432 compiler does not support
the floating point data type necessary for the {ntegration
programy nor does the ADA~«432 compiler support records with
access ctypes, which {s necessary for the linked 1list
insertion program, The ADA source code for these programs {s
located {n Appendix C for easy reference to allow tor
possible conversion when a more comolete compilat is
released,
4. Non-CFA Related Programs
Since the CFA study never actuyally timed the

penchmark orograms {in termg of execution speed, it was

51

i

- W i ;:""“‘"""“”“‘“ o - B
s TI e
At

-~

R VA | e <,

decided that a physical comparison of the 1APX=432 with
other processors would be useful., A previous evaluation ot
the 1APX=432 by Hansen (3] in June 1982 provided three
convenient ADA programs to use, These programs were obtained
from the Computer Science Department at U.C, Berkeley,
modifieda slightly to conform with the current ADA=432
compller requirements, and then executed and timed on the
432/670 system, The three proorams used were:

1. Search: Search a 120 character string for a {5
character subestrina,

2. Sieve: Compute prime numbers,

3, Acker: Calculate Ackerman’s function with argye
ments 3 and 6, This {s a recursive computation
reauiring more than 170,000 procedure calls,

The complete ADA source code for the procrams can be found
in Appendix C, The timing results are summarized inr Chapter

Iv,

B, TIMING PROCEDURE AND RESULTS

All the CFA programs were written so that the user could
write the arguments from the keyboard and select the number
of times the program was to execute, Dividing the total
elapsed time by the number of times the prooram executed
gqave an average value of execution time for the particular
benchmark. Procedure invocation overhead was subtracted fronm
the nonerecursive procedures and both timing values are

shown in the gfollowing discussion, In addition, the

52

parameters used and the number of executions are also

listeqd,
1. CEA Benchmark Pragram Regults,

The following sections describe the psrameters used
for each benchmark executed, the number of executions
performed, the total elapsed time (in seconds), and the
calculated execution time for a single run, Note that the
program name corresponds to the ADA=432 source code for the
respective program in Apnendix C,

a, Character Search

The parameters used {n this benchmark timing

wvere

SEARCH STRING : Monday, June 7th, 1976
ARGUMENT STRING ! day

SEARCH LENGTH t 22

ARGUMENT LENGTH ¢ 3
Program Number of Elapsed tine Time
name executions seconds msec

CHARS! 100,000 315,6 3,2

CHARS2 100,000 142,3 {1.4
e v - - - T vy ryve vy sy r v eEyYeEVeyYSsSYVEY Yy s eEYeVveYeEeyYey Ve vy Vo
Fiqure {1, Character Search Results

$3

'v—r ';.“f""«"”'*‘“‘ B . . ~

T —————— - — i o ~ <= = .

The program CHARS1 included the time required ¢for 100,000
procedure invocations whereas CHARS2 did not, For this
benchmark, Figure 11 shows that the proceduyre overhead was
more than twice the time to perform the algorithm!
b, Quicksort

Two forms of the quicksort algorithm were used,
one recursive , the other iterative, A twenty element array
was sorted, The worst case array was chosen, that (s, all
the elements were inversely ordered, Figure 12 represents
the parameters passed; unsorted arrayi was passed to the

procedure and the sorted array2 resulted,

arrayi

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

array2 :

L P X L X T T EY Y L L X P2 1 L4 X L L A 4 0 2 X X1 B2 I Xr 2 QT ryXYy]l.}1.]

1234567891011 1213 14 15 16 17 18 19 20

Program Number of Elapsed time Time
name executions seconds msec
QUTICK} 1000 55,8 56
(recursive)

' I P I I I rryrrrrrrr I X I rr A P r A X A I rrYyrr 2 X rYrrrryYryrXyYyyYrrrrIyr
QUICK2 1000 40,5 41

(non recursive)

Flauyre 12, Ouicksort Results

54

As expected, the recursive procedure took considerably
longer to execute, This s not too surprising since the
overhead of procedure invocation is included,
¢, Hashtable

The hashtable algorithm was {mplemented as a
function, The timing results therefore include the function
call overhead, This function used the sample hash table from
the CFA study and a key value of 41 was used as the araument
of the function., The hashtable‘’s initial values, calling

convention, and timing results are shown in Figure 13{

Key i 0 183 11 1035 1035 183 86 9 183 183 |

index t 0 1 2 3 4 5 6 7 8 9 !

position (= HASHES(41)

Program Number of Elapsed time Time
name executions seconds nsec
HASH1 100,000 252 2.5

& - = 2 L L s T 2 T e e e v s Ve e e Y VY VR .

Figure 13, Hashtable Results

4, Digital Communication Processing
This procedure sent a thirty character message
to the output buffer, Figure 14 represents the data values

passed to the proceduyre for processing,

[

mgg.ptr | |

message
|ovanancones |cevcocnns |cssvvncanssccsanncascanonascane |
| 10 i 10 | This is a thirty character msqgl

destination connection message data
Program Number of Elapsed time Time
name executions seconds msec

DCOM] 100,000 286.9 2,9

DCOM2 100,000 201,.6 2.0

Figure 14, Digital Communication Results

In this case the procedure overhead was nearly one third
that of performing the alaorithm,
2, Non CFA Program Results
An earlier study of the 432 was performed by
Hansen(3] at U.C., Berkeley, Several benchmark programs were
coded and execuyted on various machines and {n several
di{fferent languages, A summary of those results is shown in

Figqure 1S,

56

r

7 b =

machine | language | program
| | name

| Search | Sieve | Acker

432 | ADA | 14,2) 3200 | 260,000
4 MHZ))) |
ossmccsen | seonaveens jcencovens |[svesous |ssacwsssas
8086 I PASCAL | 7.3 | 764 | 11100
5 MHZ | I | |
cesncensn |sececvsens |saccnscn |snsnves |saensscsasss
£8000 I PASCAL 1.3 1 196 | 2750
16 MHZ | | | |
cecsescevs | seencscews |sescvnen | vesnnee |ssvessasne
vax ! PASCAL | 1.4 | 259 | 9800
117780 I (vMs) | | !

| | All times are in msec

These results are from a study by HANSEN([3]

which were performed on a 432 version 2, The

processors manufacturers were : 8086 = INTEL,
68000 « MOTOROLA, VAX 11/780 « DEC,

Figure 15, Previous Non CFA Timing Resulilts

An attempt was made to duplicate the results fiom
the earlier study by executing the benchmark programs on the
CDS 432/670 system, The programs that were received from
U.C, Berkeley would not compile under vVersion 1.0 of the
compiler supolied with the 432/670 system, No parameters
were passed in using these tests, they were {ncluded {n the
code, An examination of the ADA source code in Apovendix C
will also reveal that no effort was made to separate program

body frem program specification, The results £from our

timing are shown in Figure 6,

T Y - it ratannie i SRR
| I
| i

machine | language | program
| } name

| (
| !
ssewesvews |scccssvevas | sncecsscnsancsrasrascssccsasases
{ | i
! SEARCH | SIEVE | ACKER
| | !
esecsccnse |sescecacne | sncncnces | saccnre | cnocsncsesne
| i | t
432 | ADA ! 21,7 + S8.,4 1 2000
8 MHZ I Vv 1,0 { | I
| | |

Figure 16, Non CFA Timing Results
ADA Version 1.0

Extreme caution muit be exercised when comparing these
values to the previous study, Specifically in the case ot
the SIEVE and ACKER orograms, The 1limited stack heap
availanle prevented implementinag the code exactly as done by
U,C. Berkeley, The results o¢ the SEARCH benchmark are very
interesting, The three proqrams received from U,C, Berkeley
required some modification before they would compile
successfully on the Intel ADA=432 compiler, ore
importantly, our results generally include the time required
for procedure invocation. In some instances, notably our
algorithm implementing the character search, we also have
resyults which do not include procedure invocation overhead,
Lastly, whereas we used the concept of packages {n arriving

at the coding of our benchmarks, the U,C.Berkeley programs

e g——— S - . ——— . ‘
e+ A b e s -tz l

did not, These differences are easily seen by referring to
Appendix C,

It is not clear whether the results by Hansen(3)
include procedure {nvocation overhead, However, since the
432 used in this thesis had a8 S MHZ clock rate (with an 8
MHZ system clock) as opposed to a 4 NHZ clock rate in tnhe
Hansen study, one would suspect that running the same
proaram vwith the same data would give at the least,
comparable results, To our surprise, this was not the case,
Initially, we timed the SEARCH algorithm sent from Berkeley
"as is", This was timed at 23 milliseconds, quite a
difference from 14,2 in the previously cited study, We then
modified the Berkeley algorithm so as not to include string
initialization each time, Since our £irst timing was so
different from the Berkeley study we thought that string
initialization should not be 1hc1uded in the results, The
second test was made by Jjust ¢timing the Rerkeley search
function alone, This i{ncluded procedure invocation overhead,

The result is listed {n Figure 16,

Cy SUMMARY OF RESULTS

The data in the previous figures pertinent to the CFA
studies, i3 summarized {n Figure {7, It {s believed by the
authors that the following times represent realistic

execution speeds available to a user performing in the

working environment of the present 432/670 system,

r—

Program execution speed
description msec

Character Search 1.4

Quicksort (recursive) 0.56

utckors tronerecursivey o1
nenie tomee as
stott commmtcation 20

e - > v - vy - - 5 - v F vy v s yeyvVyeysyvey Yy s VeV r vy sy ryEovoE
Figure 17, Execution Speed Resylt Summary

The data reported above does not include the procedure
invocation overhead, with the exception of the recursive
Quiexsort and the function Hashtable Lookup, It needs to be
emphasized that the numbers are only “rules of thumb’ that
should be used in describing the execution speed of the
{1APX=432, Compiler differences, and just as {mportantly the

arqument used {n the algorithm, can significantly atfect the

r

execution speed, For example, {f the character string
searched for {n the Character Search {s near the beginning
of the search string vs. near the end of the search string,
the results can vary by as much as a factor of ten, (The
length of the string sesrched also plays a significant role
in determining execution time), The exact arqguments passed
and the calling conventions used have been described in
detail (Chapter IV,A) tor future reference and comparison,
The values in Figure 17 represent an aporoximation to
the time required to perform a given algorithm, In order to
cross check and verify the timi{ng results, an etffort was
made to time a single 1APX~«432 {nstruction, This was
accomplished by writing two test crograms, T100 and T101},
which ditkered by a sindgle line of source code, That {s,
T100 executed "A t= B =« (" one hundred ¢tines and Ti01
executed "A tz B « (C" one hundred and one times, AN
aexamination of the MAP file (the compiler output) revealed
that the code differed by one statement, That statement was
"sSub.i", an {APX=432 mnemonic for subtract integer, The time
difference between the two programs could then give a figure
for the execution speed of the single sub.{ instruction., The
measured speed could be directly compared with a previous
study (8] which timed individual instruction speeds on a

4MHZ 1APX=432/100 Versioni. The results are summarized in

Figqure 18,

Progran Number ot time(sec) difference
name sub.l executions

T100 | 40,000,000 I 777.8 |

6,90

T1014 { 40,400,000 I 784,7 |

execuytion time

sub.{ 2 6,90 / 400,000 = 1,73 X 10«5 sec
Subal SUbwi
Version { SMHZ version 2 S5MHZ
estimated cycles measured cycles
77] 86

L L 32 4 T 3L Fr I LXK X J B L 2 L B XXXl rfrll PPy I rYI XTI Y RYIIYITER NI)
Estimated cycles are from an earlier study [8]

en a 4327100 system and represent a projection
based on measured results, Version 2 measured
cycles are the result of the product of execution
time and the clock rate,

Fiaure 19, 7Individual Instruction Timing

As can be seen in Figure 1§, the measured speed of the
sub.i instruction in this study is in good agreement with
the previous results, The differences can possibly be
accounted for in the fact that two difterent versions of the
microorocessor are being compared,

An attempt was also made to eliminate the effects of
“dead time"”, or "time out" in the execution of a orogranm,
This time out is the overiod during which a process 1is
suspended while the dispatching port {s checked for another

procesgs to be assigned to a processor, Normally a process is

62

given a default value of 0,2 seconds of dedicated processor

time between time outs, Since only one program was executing
at a time, it was not believed that the program timing
results would be significantly affected by the dispatching
port check overhead, To verify this, a modification was made
to the INTEL sypplied ADA package PSERP,MBS, The
moditication increased the time slice from 0.2 seconds to 2
seconds, Similar proarams that differed only in the time
slice period (0,2 seconds vs 2 seconds) executed within 0.5
seconds of each other over a total execution ¢time of 200
seconds, This confirmed that the time slice period between
dispatching port checks was not significantly interfering

with the benchmark results,

63

Ve QDS 432/670 USER EVALUATIQN

In the process of working on this thesis both authors
felt that a section devoted to constructive criticism of the
INTEL Cross Development System would be appropriate, By
Cross Development System we mean the INTEL ADA compiler,
linker, downloading and executlion software and correspandine
documentation, Additionally we conclude with some of our
thoughts on ADA, We understand that many of ¢the problems
addres-ed here are not permanent, and very llkeiy many of
the {tems we have found to be mysterious or irksome may have
already been corrected in a later release,

The INTEL 432/670 system can be conveniently divided

into four major components:

i1, Comviler,
2. Linker,
3. Downloading and Asynchronous Communication,

4, Debugging and Execution.

The following discussion will treat each component {n turn,

stating what positive and negative attributes we found,

A, COMPILER
The ADA=432 compiler does not support full ADA, The

language limitatinng are listed in Chapter IV, Of these, the

64

lack of floating point number Ssupport was felt to be
extremely burdensome to this thesis, A great many of the CFA
measures are focused on floating point manipulation, as are
many real world applications, At the machine level, the
1APX=432 has outstanding floating point support, such as
multiply, divide, and square root machine instructions, The
lack of compiler sdhport for ¢floating point operations
prevented us from testing oproarams in an area where the
1APX=432 should provide outstanding performance,

The present text I/0 package provided in the ADA=432
compiler can best be described as primitive, The user {s
given a choice as to how messages can be input and outout to
and from the screen, that s, the message can be 1, 10, 29,
30 or 80 characters long, and of no other length, Counting
the number of characters {(n one’s input and output text
significantly detracts from the art of programming,

Compilation of a user’s ADA source code {s performed on
the host VAX 11/780 and it proceeds at a respectable rate,
the turn around time was always less than a minute, The
number of .compllation errors is displayed at the end of
compilation, however the reason for the errors (s not., To
evaluate the compilation errors, INTEL has supplied a very
useful report facility which (s an image of the oriainal ADA
source code with errors identified by a diagnostic message

and code number, Unfortunately, many of the error code

65

——e > - - e
I i z o ‘”"\, — ?
M <
DT . . _ i

numbers in the INTEL reference manual just repeat the same
diagnostic error message, with no further elaboration,

There was one very frustratina aspect of the compiler
qutput to the screen, That {s, after compilation {is
complete, there is no message as to what unit was Jjust
compiled., Since the compiler output often scrolls the
screen, this leaves it up to the user to remember what unit
has Just been compiled, ADA programs consist of many units,
and {n more than one instance we found ourselves recompiling
a4 unit cthat had just been compiled, A very simple solution
to this would be to output the compiled unit’s name as the
last line of output along with the error messages,

As with most new compjilers, there are some errors, The
more siqnificant of these are the type that allowed
compilation of code representing featuyres that are not vet
{mplemented, For example, array assignments are not yet
operational, yet a source code program containing them
compiles with no error messages, Execution, as expected,
does not occur, Most of the ADA restrictions are well
documented {n the error report £file, however, {t only takes
one or two which are not 1identified to cause sionificant
problems in debuoging a program, At least one type of error
crashes the comviler, That is, a program which needs a
large data strycture may never compile and turthermore the
user will never be informed ag to the reason for the
tailure, This problem occurred with the feollowing program
unit:

66

type item is
record
key : integer;
data : character;
end record;
type array.one is array(1,.2000) of item;

begin

When arrav.one had 2000 elements the program unit crashed
the compiler, Lowering the number of elements to 200

allowed satisfactory compilation,

B. LINKER

The linking prccess of & users vprogram s tedious. A
separate 1link program needs to be written for each progranm
that {s tec be linked, The ¢time to 1link a oprogram |{is
considerable, usually in the range of two to three minutes,
Many default parameters occur in the linking process which
can be changed by directives (n the users link program, No
problems were experienced with the default values, but
depending on & defauylt value for proper program execution
can easily lead to difficult debugging errors in guture
proaram maintenance, In our opinion all the directives
should be required to be explicitly stated,

The linker has at least one ambiquous characteristic,

After a successful 1linkage, a megsage (s written to the

67

screen which states "LINKAGE SUCCESSFUL", This message may
also be accompanied by one or more warning messages, In
every case that we experienced, {f a warning message
occurred during linking then the proqram would not execute,

The messade "LINKAGE SUCCESSFUL"™ can be very misleading,

C., DOWNLOADING

The obrocess of downloading programs from the host VAX
11/780 system (s oprobably the biggest drawback to the
432/670 system, Since the {MAX operating system i{s part of
the downloaded object files (EOD), the files recuiring
transfer are gquite large, A typical small ADA program (less
than 100 1lines of source code) takes nearly twenty minutes
to download at 2400 baud, This makes oprogram changes very
time consuming, Even 1f a 6600 baud line were uysed, the
entire process of correcting source code, re-compiling
affected modules, and then downloading them, requires a
significant amount of time, There {s a progranm called
UPDATE for merging a recompiled module of a program with
the existing EOD file, The smaller re=compiled module s
much faster to download, about seven minutes, but the UPDATE
program takes about 3 to 4 wminutes to execute, The time
saved was not considered significant to warrant use of the
UPDATE feature, Especially since a new 1link program would
have to be written each time {(t was desired to recompile a

portion of & oroegranm,

68

D. DEBUGGING AND EXECUTION

Our impression of the debug facility was favorable, It
allowved for access to the program structure at an assembly
language level, This did not allow any type of assembly=like
proaramming but d4id provide a means to locate errors {in our
source code by maoping the error location to a source code
statement number, A very usefy]l utility {s the LOG proqaram,
This allows everything that was {input or output at the
terminal to be logged for future reference, The debug
tacility could be made much more user friendly by
implermenting the ADA exception features, At present, the
lack of exceptions means that run time errors may not be
reported, and indeed may cause the system to crash with no
indication to the user as to the cause, An example of this
occurred when one of our orograms attempted to index an
array outside the declared array bounds, No error messages
were reported, and the system crashed,

The execution of a program was difficult to initiate,
The following sequence of commands represents the minimum
time required to execute a program after the power {s turned
on and the ISIS-II operating system is booted, The times are

approximate and they depend on the size of the program that

is going to be executed,

command time reguired

RUN WORK :FO: «5 min,
RUN DEB432 1 min,
INCLUDE DEB432,TEM 1 min,
INIT 1 min,
DEBUG *"userprogram® 1 min,
STAR?Y

Once the system debuagger 1is loaded (once per session) things
proceed a little taster, Only the last three commands of

INIT, OEBUG, and START are required per progran,

E. ADA IMPRESSIONS

One of the many interesting facets of vworking on this
thesis was the exposure to the new DoD language ADA,
Inasmuch as our use of ADA was limited to the benchmarks in
this thesis, plus the fact that we dealt with a compiler
which did not fully {mplement the langquage, our impressions
are limited, However, the features of ADA we did exercise
left us with some favorable imoressions,

The feature we used and liked most was the ability to
separate the specifications ot a4 program from the
corresponding body of the program, The package feature of
ADA was used to do this, A specification package is simply
the formalizing in ADA of what the interface of the program
{is to be, i.e,, the ’what’ of the program, The body package

on the other hand is the formalizing in ADA of the manner i{n

70

e ————— ———— -

i ey

which one plans to implement the program, {.e,, the ‘how’ of
the progranm, The contribution of this separation is
twvotold:

1., Given a specification package, a programmer s
free to implenent the program in the manner he or
she sees £it, so long as it satisfies the specite
{cation, or interface,

2. Users of a particular program or programs need
only be given the specification package in order
to discern what the particular code can do for
them, The “how’ of the code, or the body packaqge,
need not concern them,

Using this technique in very large software projects
should have a significant effeet on software development and
maintenance, In our small scale projects the separation of
svecification and body allowed for easy parallel development
of the benchmark programs, The acceptance of ADA by DoD
computer personnel could hbe sSeen to lead to!

1. The arowth of software libraries with specifica~
tion packages as the user interface to the lie-
brary.

2, Greater productivity among programmers, For in-
stance, supvose a decision is reached on what a
particular piece of software {s to do, This
"what" {s formalized in ADA, and qiven to the
programmer(s). The programmer {s now free ¢to
hring all of his or her abllities to bear on suce
cessfully implementing the body, or the "how" of
the plece of software,

Both of these abllities are generally regarded to be very
vorthwhile, something which up to now has been pursued with

no gqgreat degree of success, Supporting and thereby

71

tacilitating this feature of packages 1is the separate
compilation ability of ADA, while still enforcing strong
type=checking of {interfaces, That 1s, making sure that
parameters in the body package are of the exact same kind as
those delineated ({n the specification, which may have been
compiled some time before actual coding was ever begun on

the body,

72

3

VI, CONCLUSIONS

In {ts present state the INTEL Cross Development System
(CDS) 1is very much a development tool, Areas which we feel
could be changed to improve the user friendliness of the
system have peen presented in the previous chapter.

As an execution vehicle for tne ADA language, the
processor seens especially well suited, However, the
incompleteness of the compiler did not permit us to
rigorously exercise the 432 as much as we wanted to. Though
the 432 and ADA seem especially well matched, 1t {s not
reflected in program execution speed, An objecte=oriented
architecture, which also incorporates system management
¢acilities in hardware, undoubtedly must have some
drawbacks, In this version of the 432, this was
unfortunately reflected {n execution speed, As an aside,
when the compiler comes to support tloating point
operations, benchmarks which exercise floating point
manipulations should provide some interesting results, As
elaborated previously, hardware support for floating point
operations in the 432 are outstanding,

The lack of a hardware interrupt is a handicap that
should be capable of being overcome through the use of the
attached processor, This feature was not operational on the

4327670 system and therefore could not be tested,

73

f’ A M o . - - ————

The timing performance of the system, at f£irst glance,
does not present a very favorable impression, The benchmark
programs that were compared with the previous study by
Hansen({3) contirmed that the 432 is slov in {t’s execution
speed, Execution speed i{s but one of many neasures of any
computer architecture, It {s, however, a measure which
readily lends itself to numerical analysis as opposed to
qualitative features which do not. This subjective
qualitative category can include such items as the amount of
fault tolerance and protectior available.

The multiprocessor capabllities of the 432 provide a
case study in some of the i{ssues which must be addressed by
any system using multiprocessina, Moreover, the system {n
. genera)l oermits one to analyze the more hasic concepts of an
ooerating system, Processes, {inter=-process commynication,
ready, running, and blocked states are all generic terms to
the architecture, Any study of the processor’s architecture
cannot help but to provide an excellent (nsight into these
concepts,

Finally, the architecture has been designed to be
proqrammed in a high level language only. As the compiler
inetficiencies are removed and the cost of procedure
invocation is lowered the 432 should show & marked

improvement in {t’s overall performance,

74

——— e L - e —

-
.

APPENDIX A
HARDWARE DESCRIPTION

This thesis wused & modified INTEL MDS SYSTEM 800
interfaced with the {APX=432 execution vehicle, This setup
required a speclal circuit board to allow communication
between the MDS 800 system and the 432/670, The chassis
nape, slot number, and board number of the system components

used ;n this evaluation follow,

Card cage number to circuit board identification

MDS=800 bocard description:

5. RPB=86

17. 432 IP INTEL 432/670 172080~006=rey H
8/N=xp=000198
18,

432/670 board descriptiont
i.
2.
3,
4,

7%

} Se MEMORY INTEL 112340-004 REV C 112354001 REV ¢
: S/N 000279
6, MEMORY INTEL 112340004 REV C 112354=001 REV C
S/N 000262
H 7. MEMORY CONTROLLER INTEL 172075005 REV E

S/N =xp=000033
8, GOP INTEL 432/601 008 REV F S/Nexp=000187
9. GOP INTEL 432/601 MF=006 REV H S/N=xp=000104
10,GDP INTEL 11/16/82 432/601 MF=005 REV F
S/Nexp=000095 MD=17=0003
11,
12,IP.LINK INTEL 432/603 172028-004 REV E
8/Nexp=000+227

APPENDIX B

OPERATING SYSTEM MODIFICATIONS

The iMAX=432 operating system supplied with the 432/670
was not compatible with the hardware confiaquration,
Specifically, interface processors are not yet supported,
even though the {MAX=432 operating system s configured tor
them, This necegsitated a change to the ADA package body
that describes the system processor configuration, The name
of this packaqge {s PSORS.MBS, The code referring to the
number of processors and {nterface processors in the package
body PSORS.MBS must be changed to reflect the current
physical state of the 432/670 system, For a three GDP board
contiguration with no IPL Dboards, the PSORS.MBS would
include the following description:

o= Define GDP boards present

packaqe psori is new GDP. Def(psor.num => 1)}

package psor?2 is new GDP Def(psor.num => 2):

package psorl is new GDP.Def(psor.num 2> 3);

processori: processor retypes psori.osor;

processor?2: processor retypes psor2.psor;

processori: processor retyoes psori,psor;

s Define empty slots

processori: constant processor = null:

processor4: constant processor := null:

processorS: constant processor (= null:

A complete discussion as to how these changes can be
incerporated in the PSORS,MBS8 package can be found in

Reference 7,

77

APPENDIX C

ADA SOURCE CODE

All of the benchmark programs that were coded {in ADA
¢ollow, Most proarams are composed of three parts, That {is,
a package specification, package body, and a driver or main
routine, The respective parts are lapeled accordingly. The
programs obtained from U,C, Berkeley are composed of just a
single main routine, FOr easy cross reference the program
name and the corresponding benchmark program are listed

below,

program name| program description

CHARS! ¢ Character search with procedure
: overhead,
CHARS2 ¢t Character search without procedure
overhead,
QUICK1 $ Quicksort iterative
QUICK2 t Quicksort recursive
HASH1 t Hash function
DCOMY : Digital Communication with procedure
overhead,
DCOM2 ¢t Digital Communications without procedure
overhead,
MEM1 t Recursive memory test
MEM2 ¢ Iterative memory test
SEARCH t U,C, Berkeley character search
SIEVE $ U.C. Berkeley prime number generator
ACKER $ U.C. Berkeley Ackerman’s tunction
78
- fﬁifn§°”ﬁgnam!vvql-—~—~——~—~—-—» _ ——— -

In addition to the programs above , two other programs were
coded in ADA but were not executed due ¢to conmpiler
limitations, The Runge-Kutta {inteqgration was coded and the
source <code appears under the program name RUNGE, Some of
the Pprograms vwere extensively tested under an ADA=ED
interpreter, The 1linked list {nsertion program was written
and tested i{n ADA~ED and the source code for {t i{s under the
proaram name LINK, The reader {s warned that these two
programs, RUNGE and LINK have NOT been tested under ADA=432
and some modifications may be necessary to get them to

exécute.

~= CHARS!

-= This is the ADA specification package for the

package specification

-~ CFA character search benchmark,

-= CHARSI

package SCHAR is
subtype subint is
tvoe txtarray
arraylsarraye ¢
orocedure ROFIL;
orocedure SEARCH(srchlen,aralen
arravi,array?
lec

txtarray:

integer ranae 1..256;
is arrav(l1..256) of character:;

IN subint’
IN txtarray;
OUY subint);

end SCHAR;

-~ CHARS!

package body

oragma environment ("ACSSTEXTIQ.MLE","INTIO.MSE",
"SCHAR MSE");
with texteijo,intio’ use texteio,intioc,asciis; .
package body SCHAR is
orocedure RDFIL is
lineecofeinput : stringl0;
char : character:;
i,j ¢ integer;
begin
skipeline;
neweline();
putelinee30("Enter Srch=strng,
it=1;

jt=1;

S endSececces")

while i < 256 loom
linerofeinout = Getelinee«RO0();
exit when linecofeinpout(l) = '$';
for j in 1..80 looo
exit when lineeofeinput(j) = * ' and
lineeoteinout(j+l) = * '3
arrayt (i) = lineeofeinput(j);

i 2= i+t
end looo;
end looo’

e $il1 array 2

80

e
o}

neweline();
puteline+s30("Enter Srch~arg, $ ends..ceecee")’
i = 13
while i < 256 loop
linetofeinout = GetelineeB80();
exit when lineeofeinput(l) = *'§';
for j in 1,.80 1oo0p
exit when linetofeinput(j)
lineeofeinput(j+t) = * '3
array2(i) = Vineetofeinout(j);
it= i+l .
end looo?
end looo?

and

check the array's contents

neweline()7
for i in 1..80 looo
out{arrayl (1))
end loop’
neweline():
for i in 1..80 looo
out(array2(i));
end looo;
outelineel0("end RDFIL ");
nd RDFIL; ’
rocedure SEARCH(srchlen,aralen IN inteqger;
arravlsarravye IM txtarray;

loc OUT inteqger) is
isj ¢ integer:
beqgin
P o= 1
i 2= 13
loc = =1}

while i <= srchlen loo0p
if arrayl (i) = array2(j) then
if j+1 <= arglen then
i o= i+l
i 1= jely
else
loe 23 i=j7}
exit;
end i¢;
else

81

end SEARCH;
end SCHAR;

CHARS! deriver routine

pragma environment ("ACS:TEXTIO.MLE",“INTIO.MSE","SCHAR ,MSE",

"MAIN.MSE");

with texteig,intiosschar; use texteio,intio,schar,ascii;

== RDFIL and SEARCH contained in the same package

- Timing also includes time for orocedure
.- invocation.
-- 1¢ Oct. 1982

oackage body USERePROCESSe+1 is
orocedure MAIN s
is1oc,srchelength,srchearartimereloop ¢ inteaer;
forever : boolean :=true;
answer : character;

begin

while forever 1000

= initialize the arrays
for i in 1..256 loo00
arrayli (i) = * 3
array2(i) = ' '3
end lono;
== get the search arquments
neweline()?;
pute30("Character search A=QUitSeesceas")’
get(answer):
exit when answer ='Q';
ROFIL;
newtline(); .
oute30("Lenath of string to search?...");
get(srchelength);
neweline();
pute30("Lenath of string to search for");
get(srchearq);
neweline(); 4
oute30("Number of 10008 tOo tim@ecseaasea")s

get(timereloon);

newetline(): .

pute20(" Start of Search.cs.")i
out (BEL);

for i in 1.. timerelooo looo
SEARCH(sr:helenath,srchearg,arrayl,arrave,loc);
end loopo?

out (BEL);

neweline();

oute20(end the searcheceecse”)?
neweline();

putel0("Location= ");

put(loc):

skioeline;

end looo;
end MAIN;
end USERePROCESSe1;

83

. e gy — -~ -

== CHARS2 opackage specification

package SCHAR is ,
tvyoe txtarray is arrav(1..256) of character?
arraylrarrayl ¢ txtarray;
procedure RDFIL:
procedure SEARCH(srchien,arglen

arrayl,array?

IN integer;
IN txtarray;

loc OUT integer);
end SCHAR; j
= CHARS3Z2 oackage body
-- Timing promots in the body of the search orocedure

pragma environment ("ACS:TEXTIQO . MLE","INTIO.MSE",
"SCHAR.MSE");
with texteiog,intio; use text®ijo,intiosascii;
package body SCHAR is ‘
orocedure RDFIL is 1
lineeofetinout ¢ string80;
char ¢ character;
isi ¢ inteaer;
begin
gkip*line;
neweline():
putel inee30("Enter Srchestrna, % endSececececes")?
js=1;
je=1;
while i < 256 loop
linecofeinout := GetelineeB80();
exit when lineeofeinput(l) = '$°;
for j in 1,..80 loo00
exit when lineeofeinput(j) = ' ' and
lineeoferinput(j+tl) = * *;
arrayl(i) = lineeofeinout(j);
i =2 i+l:
end looo’
end loop;

o= $i11 srray 2
neweline()s
putelinee30("Enter Srch=ara, $ endSiceecceses")?
i := 13

while i < 256 looo

84

lineeofeinput := GetelineeBO();
exit when lineeofeinput(1}) = *3$';
for j in 1..80 loop
exit when lineeofeinput(j) = ' ' and
lineeofeinput(j+l) = ' *';
array2(i) = lineeofeinput(j);
iot= i+t
end looo?
end loop;

-= check the arravy's contents

end RDFIL:

procedure SEARCH(srchlen,arglen ¢ IN integer;

arrayl,arrav?

isirkstimerelooo : integer;
begtin
neweline()?]
out+30("Number of 100DS tO tim@secooce")
get(timereloop)?
neweline();
oute20("Start of searcheceee")?
out (BEL)?
for k in 1l..timereloop loo0D
1

we we

1
i 1
loc 1= =17
while i <= srchlen loop
if arrayl(i) = array2(j) then
if j+1 <= arglen then

end looo’

end looo;

out (BEL);

oute20("end the sSearChececece")’
neweline():’

85

t IN txtarray;
loc ¢ OUT integer) is

.
’

end SEARCH;
end SCHAR;
== CHARS?Z driver routine
pragma environment ("ACS:TEXTIO.MLE”,"INT[O.MSE", "SCHAR.MSE",
"MAIN,MSE");
with texteio,intio,schar; use texteio,intio,schar,ascii;

- ROFIL and SEARCH contaimed in the same packane
- Timing is for the SEARCH only, Promots are from
o= the SEARCH orocedure

- 14 Oct. 1982

package body USERePROCESSe«! is

procedure MAIN is ,
isloc,srchelength,srchearg ¢ inteqger;
forever : boolean :=trprue’
answer ! character?
begin

pute30("chars2 with 4 adp configurat,."):

neweline():

while forever looo

= initialize the arrays
fof' '. in 100256
arrayl1 (i) :
array2(i) :
end loop;’

= get the search arguments

- ®

(o]
*
*

e % P

neweline();
put«30("Character search 0=QUitSececece")’
get (answer);
exit when answer ='0}';
ROFIL;
neweline()? .
putel0("Lenagth of string to search?...");
qet(srchelength):;
newetline();

pute30("Length of string to search for");
get(srchearqg); ' ‘
neweline(); ' '
SEARCH(srchelength,srchearasarraytisarray2,loc);
putel0("Location= ");
put(loc)?
skioetline;
end loop:
end MAIN;
end USERePROCESSe1;

-=QUICK] package specification

- QUICKSbRT package specification (Iterative)

package QUICKSORT is
type item is
record
key ¢ integer;
data ! character;
end record;)
tyoe inarray is array(l..20) of item;?

crocedure SORT(arg : IN OUT inarray):

end QUICKSORT;

-= QUICK1 package body ;

= QUICKSORT package body (Iterative)
pragma environment ("ACS:TEXTIO,MLE","INTIOQ,.MSE",
PQUICK MSE”};
with text+io,intiorquicksort;
use texteio,intiosquicksort;
package body QUICKSORT is
orocedure SORT(arg : IN OUT inarray) is
m ¢ constant := 20;
isedelsr 2 integer;
mideot,temp ! item;}
tyoe stackeframe is !
record
ler ¢ integer;
end record; 3 ;
stack ¢ array(l..m) of stackeframe;
s : inteqer:;

-

Beain

P ¢= 13 .

r 23 20

s = 1;

stack(l).1 := 1;

stack(1),r 3= 20;

lo0p0 :
1 := stack(s).!} 4

88

]
i
j

stack(s).r?
s=1;

Q e¢ oo

e e U M

midept := arg((i+r)/2);
loop A
while argli).key < midept . key loop
i =i+
end looo:
while mideot .key < aralj).key loop
i 2= j=1;
end looo?
if i €= j then
temp = arg(i);
arg(i) 22 arg(j);
arg(j) = temp?
i = i+l;
i = j=1;
end if;
exit when §i > j;
end loop;
if i €< r then
s = s+1;
stack(s).l :=
stack(s).r :=
end if;
r 2= 7
exit when) >= p;}
end looo?
exit when s = 0}
end looo?
end SORT;
end QUICKSORT?

QUICK1 driver routine

QUICKSORT opackage body for Oriver (Iterative)

oragma environment ("ACSSTEXTIO.MLE","QUICK.MSE",
“INTIO, MSE","MAIN,MSE");
with quicksort,texteiosintio’s
use quicksort,texteio,intio,ascii’
package body USERePROCESSe! is
procedure MAIN is
arg.,temocarray : inarray;

islooptval,j : integer;
data : boolean = true;

Begin
for § in 1..20 1000
arg(i) .key = 0;
arg(i).data 3 '3’}

end loop;

newe!ine();

putel inee20 ("QUICKSORT BENCHMARK *);
outelinee20("Irerative Version...");
oute«20("Enter key, followed ");
oute20("immediately by data,"):;
putel inee20(™ 0 terminateSeeaacsa™)?
neweline()s

i :=2 1;
while data !ooo

get(arg(i).key):;

exit when arg(i).key = 07
skipelines

qget (arqg(i).data)’

i = i+l;

skipeline’
end loop?
newel ine();
outelineel0("Your Inout®):

for i in 1..20 Yoor

out(arg(i).key);

out{arg(i).data);

newtline();
end looo}

Loop

oute30("Number of 10008 tO tim@eeveoos”

get (loooeval):

exit when (loopeval)

neweline();

for i in 1,,20 looO
tempearray(i).key 22 arg(i).key;
tempearray(i).data := ara(i).data;

end looo:

aute20("Start of Quicksort,.™);

out (bel);

for i in 1..(looo¢val) looo

for j in 1..20 loop
argl{jl.key = tempearray(j).key;
arglj).data =2 tempearray(j).data;

n

07

Y3

end loop} i
SORT(arg)?’ '
end loon;
L - out (bel);
neweline(); . '
pute)inee20("End the Quicksort..."); !
outeline+10("The Output®);
for i in 1,.,20 loop
put(arg(i).key)?
put(arg(i).data);
newtline():
end loop:
end Loopoi
end MAIN;
end USERe¢PROCESSel’

QUICK2 package specification

BUICKSORT package specification (Recursive)

package QUICKSORT is

tvyoe jtem is

record

key ¢ integer’

data ¢ character;
end record; .
tvyoe inarray is array(l1,.20) of item;
syptype subint is integer range 1,.20;
procedure SORT()eft,right ¢ in subint;

arq ¢ in out inarray);

end QUICKSORT:

== QUICKZ2 package body

== QUICKSORYT package body (Recursive)
pragma environment ("ACS:TEXTIO.MLE","INTIO.MSE",
"QUICK .MSE");
with texteio,intiosquicksort; use texteio,intio,quicksort;
package body QUICKSORT is
procedure SORT(left,right : in subint;
arg t in out inarray) s
iej * subint’;
mideptstemp ¢ item;
Beq _
i left;
i right;
mideot 32 arq((lefttright)/2);
lo0p
while arg(i).key ¢ mideot.kevy loop
f 22 i*1;
end looo;
while midept.key < arg(j).key 1-00
j ¢33 j=13
end looo}
it § €2 j then
temp = arqg(i);

20 80 b
u u3

arg(i) := arq(jl;
arqg(j) := temp:
i 3 i+17
i =2 _j=1;
end if;}
exit when i > j3
end loop}

it left < j then
SORT(left,j,arg);
end if}
if i € right then
SORT(i,right,arq):
end if;
end SORT;
end QUICKSORT;

-=QUICK?2 driver routine

-= QUICKSNRT opacka-= body for Driver (Recursive)

oragma environment ("ACS:TEXTIO MLE","QUICK.MSE",
"INTIO.MSE","MAIN_MSE");
with quicksort,texteio,intio?
use quicksort,texteio,intio,ascii;
package body USERePROCESSe! is
procedure MAIN s
argetemotarray : inarray;)
lefteindex,rightetindex : subint;
i, loopeval,j ¢ integer’
data : boolean := true’
Beain
for i in 1..,20 looo
argl(i).key = 0;
arg(i).data = ‘a’';
end loop;
neweline();
putel inee20("QUICKSORT BENCHMARK ");
oute20("Enter key, followed ");
pute20("immediately by data,");
OUt*liﬂe*ZO(f o terinateS....-.-");
neweline();
i =13
while data loop

93

' T T AT N T sy gy . - -
_ , v SIH”’ B R 7 B

get(arg(i).key)?
exit when arq(i).key = 0;
skip¢)ine;
get(arg(i).data)’
i 23 i+l;
skipeline;
end loop;}
neweline():?
outelineel0("Your Inout™);
for i in 1..20 loo00
out (arg(i).key);
out(sarqg(i).data)’
newetlinel()?
end looo;
Looo .
oute30("% of 1ooos to time?..0 exits ")
get(loooneval);
exit when (loooeval) = 0;
newetline();
for i in 1.,20 loop
tempearray(i).key = arqg(i).key;
tempearray(i).data =2 ara(i).data;
end looo;)
out®20("Start of Quicksort..");
out(bel);
for i in 1..(1000¢val) looo
for j in 1.,.20 looo
arg(j).key = tempearray(j),.kev;
arg(j).data := tempe¢array(j).data;
end loop?
lefteindex =
righteindex =
SORT(lefteindex
end loo0on;
out(bel);
neweline();
outelinee20("End the GQuicksort...")’
outeline¢10("The Outout™):
for i in 1..20 looon
out(arqg(i).key)’
put(arq(i).data);
neweline();
end looo;
neweline();
end Loop?
end MAIN;
end USER«PROCESSe!;

13
20;
srighteindex,arqg);

-= HASH1 package specification

package HASH is
size : integer := 10}
table : array(0..9) of integer;
function HASHES(key ¢ IN integer) return integer;
end HASH;
== HASH1 oackage body
pragma environment ("ACS:TEXTIQ MLE","INTIO.MSE","HASH,MSE");
with texteio,intio’
use texteio,intiorascii;
package body HASH is
function HASHES{(key : IN inteacer) return integer is
check,i ¢ inteqer;
Begin)
== compute the first place to look
check := key mod size;
for i in 1l.,.size/2 looo
if table(check) = key or table(check) = 0

then
return check’
else .
check := (check+i) mod size;
end if;

end loop’
return 0;
end HASHES;
end HASH;

== HASHI1 driver routine

- hash table search benchmark

- hashl.eod on disk

- timing includes orocedure invocation overhead

oragma environment (“ACS:TEXTIO MLE","INTIO.MSE","HASH.MSE",
"MAIN.MSE");

with texteio,intio,HASH;

use texteiog,intio,HASH,ascii?’

95

L |

"“*ﬂr7'1¢ '~3n..ib:;g;; . . . e e

AD-A126 887 THE INTEL 432/670 AND ADA PERFORMANCE "BENCHMARKS (U}
NAVAL POSTGRABUATE SCHOOL HONTEREV CA
D J APPLEGATE £T AL. DEC 8.

UNCLASSIFIED F/G 8/2

i

b J2s8 2.5
I £ g

bl 0
el
== 1.8
=

a2 s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

package body usereprocessel is
procedure main is ,
timereloop,nosition,keysj ¢ integer;
answer ¢ character’
forever ! boolean = true;
beqgin
newtline();
Dut"ZO('HASHl beﬂchmal‘k.....");

e $i11 the hash table with CFA sample entries

table(0) := 0;
table(i) := 183;
table(2) = 11;
table(3) := 103S;
table(d4) := 1035;
table(S) := 183; .
table(s) := 86;
table(7) := 0;
table(B8) :=2 1A43;
table(9) := 183%;

while forever looo

newetline()?
oute20("Continue? Q: quits."):
get(answer);
exit when answer = 'Q';
newetline()?
pute20("enter an integer key");
get(key);
newetline();
oute30("number 0f 10008 tOo tiMRecesaeaa”)?
get(timereloon);
neweline()?
pute20(®start hash lookup...")?
put(bel);
for j in l..timereloop looo
position := HASHES(key):
end looo?

96

e AT

out (bel):;
neweline(): A
pute20("end of hash lookup,.");
neweline();
‘oute20("hash oosition = ,...")’
out (position);
skipeline;?
end loop?
neweline()?
oute30("end of HASH table JookuDeeoooss"):
end main;
end usereprocessel;

DA o iyt

97

e

-= DCOM1 oackage specification

Digital Communication Processing Program

= 19 Qct 82
pragma environment ("ACS:TEXTIOQO . MLE™);
with texteio ; use texteio;
Package DIGe¢COM is
¢l : constant := 10;
c2 : constant := 10;
subtyoe destetyne is integsr ranqe 1..cl:
subtyoe coneidetyne is inteqger range 1..c2;
type message;
type message+ptr is access message’
tyoe messaqge {8
record

destination : destetype;?
connection ¢ coneidetype;
size ! inteqer;
data ? string30;

end record;
subtype bufeindex is inteqger range 1..cé;
tyoe buferb) is array(l..c2) of bufeindex;
tyce bufetbleotr is access bufetbl; '
destinationetbl : array(l..cl1) of bufetbleotr;
bufferearray ¢ array(l..c2) of string30:

procedure forward(msa: IN messaqgeeotr)?
end DIGeCOM;

DCOM1 package body
pragma environment ("ACS:TEXTIO MLE","DCOM MSE","INTIO.MSE")?
with textejo,intio ; use textejo,intjiorasciis

package body DIGeCOM is
procedure forward(msg : IN messageeptr) is
fe) ¢ integer;)
buffereindex ¢ bufeindex?
line ¢ bufetblieoter?
bufegrray ¢ bufetbl;

98

begin

line := destinationetbl! (msg.destination)?

bufearray := line.all;
i:=1;

while bufearray(i) /= msg.connection loopo

iss iel}
end looo:
butfereindex := bufearray(i);

bufferearray(byffereindex) :2 msg,data;

end forward;
end DIGeCOM;

== DCOMt driver routine

- digital communication benchmark

.= DCOM12.EDD on disk
-- timing includes procedure invocation overhead
- 26 Oct 1982

pragma environment ("ACS:TEXTIO MLE","INTIO.MSE","DCOM MSE"

PMAIN MSE");
with texteio,intio, DIGeCOM;
use texteio,intio,DIGeCOM, as8cii’
package body usereprocesse! is
procedure main is
ie] ¢ integer’
timereloop ¢ integer;
k t bufeindex:
bufetableeptr ¢ bufetblepte;
msqQéout : messageeotr;
forever : boolean = true;
answer : character;
begin
oute30("charsx, 4 gdp configuration.,.");
neweline()?
oute30("timing includes oroc ovhdeeeea ")’
o= jnitialize the destination table
neweline()?

99

r————

——

ne
ou
to

e
- e
ne
wh

9“'*30(”‘"" destjnat€°ﬂ tab‘eoooo-ooo.);

for. i in 1..cl looo

destinationetb) (i) := new bufetbl;

end looos
initiglize al) bufetb)'s

newelinel);

gutﬁlO('init buiﬁtb"s.¢-.-...........')7

for i in t..cl looo

bufetableecotr = destinationetbli(i);

for j in 1..,¢c2 looo
bufetableeptr{j) = j;
end looo;
end looo;

initialize butfer
weline()s

te20("init the buffer.....”)?
r k in 1,..c2 loop

bufferﬁarrav(k) - ".o.o.coogoo.ocoo'oc.-oootccoo.'

nd looo;

weline()s

ile forever looon
outel0(“continye? ");
get(answer);

exit when ansSwer ='N*;

msSgerout T new message;
nsgeout.size = 03

neweline();

oute20(“"start diqit comm...,")?
neweline();

pute30("enter destination, conn,data..");

get(msgeout.destination);
skiptline’

get (msgeout .connection)?
skioe)ine;

msgeout .data :=qgetéelineel3l();
newe)ine()’

oute30("number of 10008 tO tiMeesceoce™)?

get(timereloop):?
putelO("sending...");
out(bel);

for i in l..timereloocp JooD
forward(msgeout)

end looo?

100

SNV,

] out(bel);
pute20(",...done sendingece..")?
neweline()i A
oute20("buffer filush iS,cee ")
for k in l..c2 looo
put (k);
pute¢linee30(bufferecarray(k));
newetline();
end loop;
skioeline;
end loop;
neweline();
pute20("end of decomleceoeas")?
end main;
end usereporocessel’

== DCOM2

-= Digital

«= 19 Oct 82

package

specification

Communication Processing Program

pragma environment ("ACS:TEXTIO MLE");

with texteio ;

¢l 2
c2 ¢

tyoe messaqge;
type messaqeeptr
tyoe message is
record
destination
connection
size
data
end record;

use
Package DIGeCOM is
constant :=
constant :=
subtype destetyoe is
subtype contidetype is

texteio;

107

10;

integer range 1,.c1;
inteqer range 1..c2;

isS access message;

destetyope;
coneidetype;
integer;
string30;

subtyoe buftindex is integer ranace l..c2;

type bufetbl is
tyoe
destinationetb)

bufferearray ¢

orocedure forward(msa:

end DIGeCOM;

== DCOM2

bufetoleptr

array(l..c2) of bufeindex?
is access bufetd!:
array(l..cl) of bufetbleotr;

array(l..c2) of string30;

IN messageeptr);

package body

pragma environment ("ACS:TEXTIQO,MLE","DCOM MSE","INTIO.MSE");

with textejo,intijo

; use texteio,intiosasciis

package body DIGeCOM is

procedure forward(msa @

iej ¢ integer’
timereloop ¢
buffereindex ¢
tine ¢
bufearray ¢

IN messageentr) is

integer;

bufeindex;

bufetblientr;
bufetpol:

102

L TR Sl

en

beqin

neweline();?

put€30(“number of 10008 tO timesceecee™)’

get(timereloop)?

QUt*lO("ehding...');

put (bel);
for |

in le.timereloop looo

line := destinationetbl(msg.destination);

bufearray

it=1;

line.all;

while bufearray(i) /= msg.connection looo

t= iel;
end looo;
bufferesindex

end loops
out(bel);

DUt*?O("...done seﬂdinq-.-..

newtline()?
end forward;
d DIGeCOM;

DCOM2

bufearray(id;}
bufferetarray(buffereindex)

4

driver routine

digital communication benchmark

DCOM21.EQOD on disk

timing does not

26 Oct 1982

include procedure

1= msg.data’

invocation overhead

pragma environment ("ACS:TEXTIO.MLE","INTIO.MSE","DCOM.MSE",
"MAIN,MSE")?;

wit
use

package body usereprocessel]

pro

h texteijorsintio,

DIGeCOM;

texteio,intio,DIGeCOM,asciij;

cedure main is
irji ¢ integer;
Kk ¢ bufeindex;
byfetableesptr ¢
nsgeout
forever @
answer ¢

boolean
character;

is

bufetbleotr;
messagetotr;

2

true;

103

- ~'ir1ﬂqffi*,—qth’bb_, . -

begin .

pute30("charse, 4 gdp configuration...")’

neweline();

pute30("timing does nat include proc..");
== initialize the destination table

neweline();

oute3G("init destination table.sccvesse”)i

for i in l..ctl looo

destinationetbl (i) = new bufetdbl;

end looo:

~= jnitialize all bufetbl's

newtline()? }
oute30("init bufetbl’s.iieveoerencncesa™)s
for i in le,c! looo .
bufetableeotr 1= destinationetdl (i)
for j in t..c2 looo
bufetableeptr(j) = j3
end Yooo?
end looo;

== initialize buffer
reweline(): »
pute20(init the buffer.eese”)?
for k in 1,.c2 looo
buffef"arravﬂt) = '----ooooc..o.--.no.o.-.-tooo--
end loop;
neweline()?
while forever looo
outeld("continue? ")’
get(answer);
exit when answer ='n';
nsgeout 12 new messaaqe;
nsgeout.size 32 07
neweline()?
pute20("start digit comm.ee.")?
newe)line()?
pute30("enter destination, conn,data..");
get (msgeout ,destination);
skiorline’
get(msgeout.connection);
skipeline;?
nsQeout.data =get+lineel0();

104

)

torward(msgeout);
out«20("buffer flush is...c.”)s
for k in l..c2 loo00
put(k);} i
putelineed0(bufferecarray(k));
neweline():
end loop;
skipeline;
end loop}
newelinel();
pute20(“end of Jecomleceeees)?
end main:
end usereorocessel;

108

A R . e

e= MEM1 package soecification

== MEM! recursive memory test package soecification
pragma environment ("ACS:TEXTIO MLE");
with texteio; use texteio;
package EATEMEMORY is
size : constant := S50;
i ¢ integer :20;
tyoe smallstable is array(l..size) of character;
type smalletableeptr is access smalletarcle:
orocedure FOREVER;
end EAT«MEMORY;

==MEM] package body

== MEM! recursive memory test body
pragma environment ("ACS:TEXTIO MLE","EAT MSE","INTIO MSE™);
with intio,texteio;
use intio,stextéio;
package body EATEMEMQORY i-=
proceduyre FOREVER is
tableeptr : smalletableeptr;
begin
i = i+l
put(i);
newtline():
tableeptr ¢
FOREVER;
end FOREVER;
end EATeVEMQRY;

= new smalletable;

= UEM{ driver routine

= MEM]| recursive memory tést driver routine

oragma environment ("ACS:TEXTIO MLE","EAT ,MSE",
SMAIN,MSE™);

with texteio,EATEMEMORY;

use texteio,EATEMEMQORY;

oacksge body usereprocesse] is

106

- st ’WW ey ee T " e e e e
afie: 4 ' . U B nd)

procedure main is

begin
pute30(® start
FOREVER;
end main;
end usereprocessel;

R R St i A Gt it e st irvertsancsssscommsiisrasreasonpmaapuint S -

Of @3t MEMOPY.ceeoasnoaoa™)i

107

.= MEM2 oackage specification
e= MEM2 interative memory test package soecification

orsama environment ("ACSITEXTIO.MLE");

with texteio; use texteio’

oackage EATeMEMORY is
size ¢ constant = 503
i ¢ inteqer :=0;
type smalletable is array(l..size) of character;
tvoe smalletableeotr is access smalletable;
orocedure FOREIVER;

end EATeMEMQRY;

o= MEMQ package body

= MEM?2 interative memory test body
pragma environment ("ACSSITEXTIO.MLE","EAT MSE"™,"INTIO.MSE")?
with intiostexteio;}
usSe intio,texteio;
package body EATeMEMORY is
orocedure FOREVER is
tableetotr 2 smalletableecotr;
infinite ! boolean :=true;
begin
while infinite looo;
i 1= i+};
put(i);
newtline();
tableeoter @
end loop?’
end FOREVER;
end EATeMEMORY;

2 new sSmalletable’

-e MEM?2 drjver routine

o= VEM2 interative memory test driver routine

pragma environment ("ACS:TEXTIO MLE", "EAT MSE",
*MAIN,MSE");

with texteiog,EATeMEMORY; %

108

v

use text+*io,EATeEMEMORY;
package body usereprocesse]
orocedure main is

begin

pute30(® start of €at MEMOrYecseosoecesae")?

FOREVER?;
end main’
end usereprocessel;

is

109

PRERNEYS R

SEARCH

== Courtesy Prof, Patterson,Computer Science Division,
== Department of Electrical Engineering & Computer Sciences,
== UYniv, of California, Berkeley,CA,
pragma environment ("ACS:TEXTIO MLE","INTIO.MSE","MAIN.MSE");
with textejo,intio’
use texteiosintiosascii;
package body USERePROCESSe! is
orocedure MAIN is
tyoe strin is array(integer range 1,.120) of character?
numiterations ¢ integer;
position,ns,nk : integer;
S,k 3 sterin;
function STRSCH(s,k ¢ IN strin;
ns,nk ¢ IN integer) return intecer is
ir] ¢ integer;
base,ksave,cont : integer;
kend,ssave : inteqer;
r 2 integer;

begin
base
ksave
cont
kend

i o=

we we |} W oo

—

L1}
[B

nk+base;
ave + nk=l;

x 2
BB e we

- 00 oo

€<topn>>
while s(i) /=2 k(j) loop
if i > cont then
r 2z =12
qgoto finish;?
end if;
i 2= i+1;
end loop?
ssave := i}
j s je1
while j €= kend loopo
i 3 il
it s(i) /= x(j) then
i 13 ssave ¢+ 1;
j 1= ksave;
goto too;
end if;

110

oea e, .

i 2= j+ls
end loop’
r $= ssave = base + 1}
€<finish>>
return (r)?
end STRSCH;

Begin
s(1,,60) = "Q00000000000000000000000000000000000
000000000000000000000000"
s(61,.,.120) := "HEREOOOOOOGCOOO0000000000000000HERE
IS A MATCHOOO000000000000";
k(1..60) 2= "HERE IS A MATCH

" e
’

k{6t,.120) = "

l1o0p
outelinee30("Berkeley Character Search ")
pute30("4 of looos to time?,.0 Exits ")
get(numiterations);
exit when numiterations = 0;
newetline();
ns = 1207
nk := 1S;
put(bel);
for i in 1l.,.,nuniterations looo
position := STRSCH(s,k,ns,nk);
end loon;
put(bel);
puteline«10("END SEARCH"):
put (position);’
end lo0p;

end MAIN;
end USERePROCESSe1;

o Salmbpb < P -

\

== SIEVE
= Courtesy Prof., Patterson, Computer Science Division
== Department of Electrical Engineering 8§ Computer Sciences
== University of California, Berkeley CA,
pragma environment ("ACS:TEXTIOMLE",“INTIO.MSE",
"MAIN . MSE");
with texteio,intio’
use texteio,intiosascii’
package body USERePROCESSel is
orocedure MAIN s
size : constant integer := 200;
flags : array(0..siz2ze) of boolean:
orime,k,count,loooeval : integer;
Begin
o000 _ _ _
oute30(”"4 of loops to time?..0 exits ")3
get (loooeval);
exit when loopeval = 0;
newtline();
put(bel);
for iter in inteager range 1..(1oo00eval) looo
count 3= 0;
for i in 0..8i2e loop
flags(i) = true?’
end loop;
for i in 0..8i2e loop
it flags(i) then
orime 2= i ¢ i + 3;
k 22 i ¢+ prime;
while k <= size looo
flags{k) := false;
k 22 k ¢+ prime;
end looo?
count = count + 1}
end if;
end loop?
end loop;
out(bel);
putelineel0(" End Sieve™):
out (count);
outel0(™ Primes *):
newtline()?
end loop?
end MAIN;
end USERePROCESSe1;

112

== ACKER

e= Courtesy Prof, Patterson,Computer Science Division,
= Department of Electrical Engineering & Computer Sciences
e« Ynive of California, Berkeley,CA.

pragma environment('4C3=TEXTIO.MLE”;'INTIO.MSE“,'MAIN.MSE'):
with texteio,intios
use texteio,intiosascii’
package body USERePROCESSe! is
pracedure MAIN is
a,i,aral,arg2 ¢ inteaer;
function ACKER(x,y ¢ IN integer) return integer is
begin
it x = 0 then
return (vy+1);
elsif v = 0 then
return ACKER(x=1,1)7

else
return ACKER(x=1,ACKER(x,vy=1))3
end it}
end;
Begin
put+linee20("Ackermann Benchmark ");
puttlinee¢20("To Exit, Enter 0 I
putelinee30("Begin time when bell sounds ")
1oop
sutelinee30("Enter ACKER Aguments ")

get(argl);
exit when argl 2 0?
skip*line;
get{argl)?
out(bel)};
s := ACKER(argl,arg2);
out(bel);
putel0("0Output of ");
out(argl);
Out("');
put(argl2):
neweline():
put(a);
neweline();
end looo?
end MAIN;
end USERePROCESS+t;

113

APPENDIX D

CFA BENCHMARK ALGORITHMS

The twelve benchmark program ajlgorithm descriptions
used Iin the first CFA study follow, A more detailed

discussion of these can pe found in Reference 8,

1. I1/0 INTERRUPT KERNEL, FOUR PRIQRITY LEVELS

The {nterrupt kernel will be activated by an 1/0
interrupt with vpriority level 0,1,2 cr 3 from one of four
devices, Actual interrupt processing will be simuylated by
countina the occurrences of each type of interrupt, Higher
level interrupts will be able to preempt processing of lower
priority interrupts, The {nterruoct handler must provide for
resumption o0¢ processing of the preempted lower level
interrupt from the point of preemption, AS much processing
as possible will be done witn higher priority I/O {nterrupts

enabled,

2, I1/0 INTERRUPT KERNEL, FIFQ PROCESSING

The ({nterrupt kernel w«ill be activated by an 1I/0
interrupt from one of four devices which will be placed in a
service gqueue for firstein=firsteout (FIFO) processing,
Actual ({nterrupt processing will be simulated by counting

the occurrences of each type of interrupt, Space should be

114

provided to hendle at least ten aueued interrupts at one

time,

3. INPUT/0OUTPUT DEVICE HANDLER

After an 1/0 request s 1issued by an application
program, and after the executive queues an input control
bloek, this test program i{s initiated and {t performs the
g¢nollovwing actions:

1, Check status of the tape drive, If device {s busy
exit, If the device is not operable branch to an
error routine, If the device is available, set up
and initiate the requested transter,

2., After completion of the transfer, and a conses=
auent {nterrupt, the device handler s reentered
and the following processing is performed:

a, Store status {nformation {device type and
identitication),

b, If transfer was unsuccessful, abort ¢further
processing,

Ce If & successful transfer occurred and all ree
quested transfers accomplished then exit,

The application programs perform high level 1loglcal 1I/0

calls that cause the qgueuinqg,

4, FAST FOURIER TRANSFORM
The following variables are used in the algorithm:

Nt The number of data points 0<= N <= 2¥%i6,

X¢ A vector holding the N samples as complex
nymbers,

W A vector holding the £irst N/2 powers of EXP(=
2%pixis/N),

works: Auxiliary working storage,

118

procedure FFT(N,X,W)
GROUPS := N
do for PASS := 0 by steps of 1 until
log2(n)~=1
do for all ELEMENT such that
0 <= element <= N/2
"generate complex addend"

WEXP = O
{¢ PASS > 0
then WEXP :=((ELEMENT=®*N)/2) /
2%%xPASS) MOD (N/2)
end=1f

it WEXP <> 0
then TEMP1 := X(ELEMENT+N/2)*
WCEXP)
else TEMPL 1= X(ELEMENTeN/2)
end ¢
"generate 2 element entries
in data vector"
X1 (ELEMENT) $= X(ELEMENT) +
TEMP1
XL (ELEMENT + N/2) t= X(ELEMENT) =
TEMP1
end=do
{f PASS < (10g2(N) =« 1}
then
"execute perfect card shuffle
on data vector"
P ¢ 2%*PASS
GROUPS := GROUPS/2
do for all I such that
0 <= I < GROUPS
do for all J sueh that

0 <z J ¢ P
INDEX! (= 2%p=2] + J
INDEX2 33 P2l +J

XCINDEX1) t= X1(INDEX2)
XCINDEXLi+P) 1= X1 (INDEX24N/2)
end=d4d9
ends=do
else
40 for all I such that 0 <= 1 < N
X = X1(I)
end=do
endei¢
end=do

116

S« CHARACTER SEARCH

The variables used in this algorithm are: |

SRCHSTR t pointer to a string of characters j
to be searched,

SRCHLNGTH § lenath of that string,

SRCHARG t pointer to a string of characters,

ARGLNGTH ¢ length of that string,

LocC t an integer return code,

WORK ¢ pointer to any needed storage,

procedure CHARSRCH(SRCHSTR,SRCHLNGTH,
SRCHARG,ARGLNGTH,LOC,WORK)

integer I

LOC := 1}
do for all I such that 0<= I <3z SRCHLNGTH=SRCHARG
or until LOC <> =\
1f the substring of SRCHSTR from I to
I+ARGLNGTH=1 = SRCHARG

then LOC :=2 I
endei¢
end=do

6, BIT TEST, SET, OR RESET

The variables used are:

F ¢ Function code, l1=test, 22 set, 3z reset,
N ¢ Relative bit to be tested,
Al: Pointer to tightly packed bit string,

RC: Return code indicating original pit status,
WORK: Pointer to any needed waork storage,

procedure BITTEST(F,N,A}l,RC,WORK)
integer ABIT,D

ARIT := Al & N/(word length)
D := N mod (word lenrgth)

{2 D’th bit at address ABIT = 1§

then RC s 1§
’ else RC :=2 O .
end=1{¢

A —— e e e . P t————— g - e L
s

dhaddinn. il

i¢ F =2
then D’th bit at address ABIT := 1}
else it F = 3
then D’th bit at address ABIT := 0
ende-{¢
end={f

7« RUNGE«KUTTA INTEGRATION
This algorithm solves the differential equation F(t,y) =
t+y = dy/dt using a third order Runge= Kutta integration,

The variables used are:

t Inftial value ot T, single precision.
YO ¢ Initial value of Y, single precision,
¢ Interval of integration, single orecision,
TMAX: Final value of T, single precision,
YMAX: Final value of Y retuyrned, single porecision.

procedure RUNGEKUTTA(TO,YO,TMAX,YMAX,WORK)
resl Kit,K2,K3

YMAX 3= YO

do for all T from TO incrmented in steps of H
until T > T™MAX
Kt :3 Hx(T+¥YMAX)
K2 = H®(T + H/2 ¢+ Y + K1/2)
K3 t= H & (T ¢ 3%H/4 + Y + 3*¥K2/4)
YMAX 1= YMAX ¢ 2%K1/9 + K2/3 « 4%K3/9
end=do

8, LINKED LIST INSERTION
This algorithm inserts an element into a doubly 1linked
list. Varifables uysed are:

LISTCB § Pointer to a list control bloeck
containing?
HEAD?: oointer to first node,
TAIL: pointer to last node,
NUMENTRIES : number of entries,
NEWENTRY! pointer to new entry to be inserted,

118

procedure LISTINSERT(LISTCB,NEWENTRY)

"the notation POINTER,FIELD {s used to access a
4 particular field of the structure ponted to by
POINTER"

pointer PRESENT
{¢ LISTCR,NUMENTRIES =3 0
then "list {s empty, so initialize"

LISTCB.HEAD := LISTCB,TAIL := NEWENTRY
LISTCB,NUMENTRIES t= 1
NEWENTRY,NEXT ¢= NEWENTRY,PREV 3= 0

else
"list not empty"

PRESENT := LISTCB,HEAD
LISTCB ,NUMENTRIES = LISTCB,NUMENTRIES + 1
"determine position of new entry"
while NEw,KEY >= PRESENT NEXT <> 0 do
PRESENT := PRESENT,.MNEXT
{f PRESENT.PREV = 0 and NEw,KEY < PRESENT,.KEY
then
"mew li{st head"

LISTCB.HEAD := NEW
NEW,PREV := 0
PRESENT.PREV = NEW
NEW,NEXT t= PRESENT
else
i# NEW,KEY => PRESENT,KEY
then
"new list tail"

PRESENT NEXT $= LISTCB,TAIL = NEW
NEW,NEXT = 0
NEW,PREV := PRESENT
else
*{insert in middlen

NEW,NEXT := PRESENT

NEW,PREV ¢3 PRESENT,.PREV
PRESENT,PREV §= NEW

"back up and link with predecessor"

PRESENT t= NEW,PREV
PRESENT,NEXT = NEW
end={¢
ende{t¢
ende={¢

|
]
|
|
'
|
|
!

9., QUICKSORT
This algorithm performs a gquicksort on an array ot

records, The variable ysed are:

N t The number of records to be sorted,
M ¢t Integer parameter specifying the changeover
point between quicksort and a simole insertion,
REC ¢ Pointer or the first element of the
array to be sorted,
WORK: pointer to any needed working storage,

procedure QUICKSORT(N,REC,M,WORK)
integer L,R,I,J,K
{nteger array STACK[O$2%£(N)=}]
character string Vv

RECIN+1) = infinite
L ¢= 17 R 2= N
do forever
I =2 L3 Jt= Rey 3 V = RECIL]
do forever
do I := I+1 until REC{I] => V endedo
do J:zsJ=1 until REC(J] <= V end=~do
{¢ J>1
then swap REC[I) with REC![J)
else aoto end=first
end-1it¢
ende=do
ende=girst:
swap REC(L] with REC(J]
{f both subfile sizes (J~L and ReJ) <=2 M
then
{¢ stack empty
then goto end=outer
else poo L and R from stack
end ¢
else
{£f smaller subfile size <3 M
then set L and R to lower and upper
limits of larager supfile
else push lower and upper limits ot
larger subfile onto stack
set L and R to limits of smaller
supfile
end~{¢
ende={i¢
end=do
endeouter:

120

do for I from N=i{ to | in seps of 1
{2 REC{I) > RE{I+i]) then
V t= REC(Il; J t=2]+}
do forever
RECLJ=1) =3 REC(J) 1 J :1=J+!
{£f REC[J] =2> V then goto end=last end=if
end=do
end~last: AfJ=1) = V
end={¢
end=do

10, ASCII TO FLOATING POINT CONVERSION

The following variables are used in this algorithm:

Number of characters {n the string,
Address of the character string.

Address of floating voint number where the
resylt will be placed,

> p» &

N =
»e oo oo

procedure AFP(N,A1,A2)
{nteger NUMBER, POSITION
real RESULT, DIVISOR
boolean ISNEGATIVE

ISNEGATIVE := false
POSITION = 0
{f £irst character of Al {s a sign character
then
1£f sign character (s "e"
then ISNEGATIVE := truye
end={¢
POSITION := 1
ende{f
NUMBER :2 integer equivalent of characters
POSITION to JU=) of Al where
character J of Al (s ","
RESULT := floating point equivalent of
NUMBER
" the following two Steps can be done in
parallel {f desirear
NUMBER := integer equivalent of characters J+i
to N of Al
DIVISOR = floating eaquivalent of 10*%(N=J)

A2 s RESHULT ¢ (floating point equivalent of
NUMBER) / DIVISOR

121

11. BOOLEAN MATRIX TRANSPOSE
The following variables were used in this algorithm:

Al § Pointer to a word of storage,

A2 ¢ bit number within word Al where
the matrix begins,

N § Size of the boolean matrix,

procedyre BMT(N,AL,A2)
integer 1,J
hoolean B[1:N,1:N} beginning at bit A2 of word Al
do for all I and J such that (i<= J <= N)
ard (J+l <= I <= N)

swap B({I,J] and B(J,T]
end=49

12, VIRTUAL MEMORY SPACE EXCHANGE
This algorithm performed a virtual memory space exchange
through the use of a supervisor call, There are two
gunctions which must be orovided hy the algorithm,
1. CALL: saves enough information t¢c restore the en=
tire state of the calier,
2, RETURN: restores the environment active before
the previous csall,
The sixteen benchmark proqrams written by the seczond CFA
study gqgroup follow, A complete discussion of them can be

found in reference 1,

1, TERMINAL INPUT DRIVER

This aloorithm inputs one line of ASCII characters ¢from
a terminal device, ASCII rubouts should delete the
character, A carriage return terminates the 1line, The

program need not be reentrant,

122

— . - \ e ———— e - a————— - e e e ——— e L
PR ’:q. v ’Wﬁy* . - - .)

Algorithm: A subroutine TTYIN(BUFFER) {nitiates the
transfer, It has a single reference parameter, the
buffer to be filled, The buffer consists of:

ADDRESS TERMADDR

CHARACTER CBUF([1:?)

The buffer is assumed to be large enough for the
line, The ¢transfer s started and the routine re-
turns, The interrunt service routine collects the
l1ine in some machine dependent manner, The terminal
interface {s assumed to oe a minimal one, (it does
the seriale=varallel conversion), when a carriage re~
turn {s entered, the terminal {input 1s disconnected
and a transfer to the buffer TERMADDR {s made,

2., MESSAGE BUFFERING AND TRANSMISSION
This algorithm queues a message buyffer and then

transmits the message over a DMA 1link {n FIFO order,

RECORD BUFRC(ADDRESS NEXT, ADDRESS TERMADDR,
INTEGER SIZE,INTEGER DATA[1:SIZE));
POINTER BUFR END,START
ADDRESS TEMP;
{QUEUE SUBROUTINE
PROCEDURE QUEUE(REFERENCE BUFFER)=
BEGIN
IF START NEQ 0 THEN END,NEXT <= ADDRESS(BUFFER) FIs
END <= ADDRESS(BUFFER);

{OUIT IF CHANNEL ALREADY RUNNING
IF START NEQ O THEN RETURN
ELSE
START <« ADDRESS(BUFFER)}
TEMP <= 0}
GOTO RESTART
FI;
END}

INTERRUPT:
BEGIN
]

123

! Programmers should insert here device and
! machine dependent code to terminate the

| device transter

TEMP <= START,.TERMADDR?}

START <= START.NEXT:

RESTART:
IF START = 0
THEN
GO TO TEMP
ELSE

! Programmers should insert here device and
! machine dependent code to initiate the
! device transfer,

FI:

IF TEMP = 0

THEN RETURN

ELSE GO TO TEMP

FI

END

3, MULTIPLE PRIORITY INTERRUPT HANDLER

This test proaram is desicned to process interrupts from
four devices {n priority order, Upon receiving an interrupt,
the processor willl branch to the approoriate device service
routine, All interrupts from lower priority devices will be
disabled, Device priority is equal to device numbher, device
number 1 has lowest priority, device 4 has highest, After
the device dependent service the device ID is added to the
executive queuye for user scheduling ourposes, This program
need not be reentrant, Each device service routine will be
simulated by the algorithm below,

{DEVICE SERVICE ROUTINE INTEGER OwN A; FOR I <= 1 IO
A(0:2] DO A <= (A¥899) MOD 123757 GD:

124

¥ R —— - -

4, VIRTUAL MEMORY SPACE EXCHANGE

This algorithm will {nvolve a supervisory call handler
which will provide the functions "call”" and "return", The
supervisor is to implement protected procedure calls with
parameters, "call" will select index into a table of address
space descriptors maintained by the sypervisor, The "call"

performs the following:

1. Save the caller’s state,
2, Determine the callee’s address space,

3. Set up the memory mapping and protection to ace
cess the callee’s address space,

The "return” function takes noc parameters, It re=

stores the environment active pefore the porevious
call,

5 SCALE VECTOR DISPLAY
This algorithm scales a 1ist of graphic vectors about a

given center, The vectors are represented as:

function 4 bits
X coordinate 12 bits
intensity 4 bits
y coordinate 12 bits

PROCEDURE SCALEADJUST(REF DLIST,VALUE LEN,
VALUE XCENTR, VALUE YCENTR,
VALUE SCALE)=
BEGIN
{10 LEQG XCENTR, YCENTR LEQ 2047
{SCALE IS THE ACTUAL SCALE FACTOR TIMES 128
INTEGER LEN,XCENTR,YCENTR,SCALE,I,XTMP,YTMP}
RECORD VECTOR(INT4 FUNCT,INT 12 X, INT4 INTEN,
INT 12 YY)
VECTOR DLIST(1:LEN]:
FOR I <= § TO LEN DN

125

XTMP <= DLIST,X(I)*SCALE)
YTMP <e DLIST.Y(I]*SCALE;
IF DLIST,FUNCT(I] NEQ 0
THEN
XTMP <= XTMP+XCENTR*(128=-SCALE);
YTEMP <= YTEMP+YCENTR%(128=SCALE)}
FI;
DLIST . X[I] <= XTMP/128;
DLIST,Y[I]} <= YTMP/128;
oD;
RETURN
END

6 ARRAY AANIPULATION = LU DECOMPQSITION
This algorithm factors a sgquare matrix into an upper and

lower triangular matrix,

LUDECOMP(REFERENCE A, VALUE N)=
BEGIN
REAL ARRAY A[1:N,1:N]1?
REAL MULT:
INTEGER DIAG, ROW, COL;
FOR DIAG <=1, Nei{ DO
FOR ROW <= DIAG+i,N DO
A[ROW,DIAG) <= MULT<~ A(RQW,DIAG)/A(DIAG,DIAG]
FCR COL <= DIAG+1,N DO
A{RPOW,CCL]<=A[ROW,COL]=vULT*A(DIAG,COL]
GD
op
oD
END 1

7. TARGET TRACKING
This algorithm takes the coordinates of an unknown

object and finds {n a table sorted by x coordinate the

closest entry,

PROCEDURE TARGET(REFERENCE TABRLE, VALUE LEN, VALUE X
VALUE Y, REFFRENCE FOUND)=

BEGIN

INTEGER LEN,START,ENO,MID,UP,DOWN; !

126

T R TR - : e T
- VA : e ;ij

REAL MINDIST:
ADDRESS FOUND
RECORD TENTRY(REAL X, REAL Y, REAL DAT1,REAL DAT2);
TENTRY TABLE[1:LEN)
START <= 1j END <= LEN}
WHILE START <= END DO
MID <= (START¢END)/2
IF TABLE.X[MID} < X

THEN
START <= MID+{
ELSE
END <= MID
FI
oD

iCompute distance of nearest X entry
MINDIST <= DIST(TABLE(MID], X,Y)?
FOUND <= ADDRESS(TABLEIMIDI]);
!search neighborhood for a nearer entry
UP <= MID+1; DOWN <= MID=};
WHILE UP>0 OR DOWN >0 DO
IF UP>0 THEN CHECK(UP)s; UP<= UP +1 FI:
IF DOAN >0 THEN CHECK(DOWN); DOwWN<=DOWN=} FI;
0D:
RETURN}
1Check an indi{vidual entry against closest found
PROCEDURE«MACRO CHECK(J) =
BEGIN
IF J<1 OR JDULEN OR ABS(TABLE.X[J)=X) >= MINDIST
THEN J <0 } RETURN FI}
IF DIST(TABLECJ),X,Y) < MINDIST
THEN
MINDIST <= DIST(TABLE(J],X,Y):
FOUND <= ADDRESS(TABLE(J])
FI:
RETURN
END
| DIST() is the metric defined in the problen
END

DIGITAL COMMUNICATIONS PRQCESSING

This algorithm is given a message with a header which

contains the destination and connection ID, and places the

message in the appropriate ctransmission line’s output

bufter,

127
RIS R R e — . —-= - i

9,

PROCEDURE FORWARD(REFERENCE MSG) =

BEGIN

RECORD MESSAGE(INT16 CID,INT16 DEST, INT16 SIZE
CHARACTER MSGI[1:21):;

BUFTARLE(INTEGER CID,ADDRESS BUFFER);

MESSAGE MS8G»

POINTER BUFTARLE LINE;} ‘

EXTERNAL ADDRESS DESTABLEt1:7?1:

!Find BUFFER table for destination line

LINE ¢~ DESTABLE(MSG,DEST]:

IFind ring buffer for this connection

I <= 13

WHILE LINE,CID(I) NEQ MSG,CID

DO I ¢= I + { OD;

BUFFER <= LINE,BUFFER(I];

{Copy the message to the buffer

MOVE(ADDRESS(MSG) ,BUFFER,M3G,SIZE);

RETURN

END

HASH TABLE SEARCH

This program locates the position a key would occupy in

a hash table,

PRQCEDURE HASHLOOK{(REFEPENCE TABLE, VALUE SIZE,
VALUE KEY, REFERENCE P0SITION,
REFERENCE FULL) =
BEGIN
ADDRESS POSITION
INTEGER SIZE,KEY,CHECK:
BOOLEAN FULL)
RECORD TENTRY{INTEGER KEY, INTEGER DATA):;
TENTRY TABLE(0:SIZE-1):;
!Compute first place to look
CHECK <= KEY MOD SIZE:
FULL <= FALSE?
FOR I <= { TO SIZE/2 DO
IF TARLE,KEY[CHECK] = KEY OR TABLE.KEY[(CHECK] = 0
THEN
POSITION <= ADDRESS(TASLE,KEY([CHECK]);

RETURN
Fl;
CHECK <= (CHECK ¢+ I) MOD SIZE
oD
FULL <= TRUE
RETURN
END
128
h ”W L ;" " e N ga - g o ctetat. & . e e
— i,

10, LINKED LIST INSERTION
This algorithm inserts a node {n an ordered doubly

linked list,

PROCEDURE LISTINSERT(VALUE LISTCB, VALUE NEWENT Y)=
BEGIN
RECORD LCBC(ADDRESS HEAD, ADDRESS TAlIL,
INTEGER NUMENTRIES);
RECORD LISTENTRY(INT32 KEY,ADDRESS NEXT,ADDRESS PREV)
POINTER LCB LISTCB:?
POINTER LISTENTRY, NEWENTRY,PRESENT;
IF LISTCB,NUMENTRIES = 0
THEN
LISTCB,HEAD <= LISTCB,TAIL <= NEWENTRY;
LISTCB,NUMENTRIES <= 1}
NEWENTRY NEXT <= NEWENTRY,PREV <= 0
ELSE
PRESENT <= LISTCB.HEAD;
LISTCB,NUMENTRIES <= LISTCB.,NUMENTRIES+1;
WHILE NEWENTRY,KEY GEQ PRESENT.KEY AND
PRESENT,NEXT NEQ O
DO PRESENT <= PRESENT,NEXT 0OD;
IF PRESENT.PREV =0 AND NEWENTRY.KEY < PRESENT,.KEY
THEN
LISTCB,HEAD <=~ NEWENTRY}
NEWENTRY,PREV <= 07
PRESENT,PREV <= NEWENTRY
NEWENTRY NEXT <= PRESENT:
ELSE
IF NEWENTRY,KEY GEQ PRESENT,KEY
THEN
PRESENT,NEXT <=~ LISTCB,TAIL <= NEWENTRY?
NEWENTRY NEXT <= 03
NEWENTRY,PREV <= PRESENT
ELSE
NEWENTRY NEXT <= PRESENT:?
NEWENTRY,PREV <= PRESENT,PREV;
PRESENT,PREV <= NEWENTRY:
PRESENT <= NEWENTRY,PREV:
PRESENT,NEXT <= NEWENTRY

129

11,

PRESORT ON A LARGE ADDRESS SPACE

This algorithm takes an array of records i{n randonm

order and rearranges them to form a heap, The heap is a

binary tree in which each node {s greater than or

its descendents,

12.

HEAPIFY(REFERENCE REC,VALUE N)=
BEGIN
INTEGER ARRAY REC[1:N1}
INTEGER CHECK, NEW;
FOR NEW <= 2, N DO
CHECK <= NEW;
WHILE CHECK NEQ 1 AND REC[CHECK] > RECI[CHECK/2)
Do
REC (CHECK) <=> REC[CHECK/2):
CHECK <= CHECK/2
oD
00
END

AUTOCORRELATE ON A LARGE ADDRESS SPACE

This algorithm computes the autocorrelation of

vector A from { to T,

PROCENURE AUTO(REFERENCE A, VALUE N,VALUE T,
REFERENCE RES)=
BEGIN
INTEGER N,T,TAU;
REAL A(1:N), RES(1:T);
FOR I <~ { TO T DO RES(I] <= 0 QD;
FOR I <~ { TO N DO
FOR TAU <= § TO T DO
IF I ¢« TAU={ > N THEN EXITLOOP FI;
RESI{TAU) <= RES[TAU) + A[I)SA(I+TAU=~1)}
o]
oo
RETURN
END

130

equal

to

the

13.

CHARACTER SEARCH

This algorithm searches a given string to see {f it

contains & substring that exactly matches the given argument

string,

14.

PROCEDURE CHARSRCH(REF SRCHSTR, VALUE SRCHLNGTH,
REF SRCHARG, VALUE ARGLNGTH,REF LOC)=
BEGIN
INTEGER I,SRCHLNGTH, ARGLNGTH}
BYTEVECTOR SRCHSTR{O:SRCHLNGTH=1] ,SRCHARG(O:ARGLNGTH=1]
LOC <= =13
IF ARGLNGTH LEQ O THEN LOC <= 0; RETURN FI»
FOR I IN 0,SRCHLNGTH=ARGLNGTH DO
IF SRCHSTR{I;I+ARGLNGTH] LEQ SRCHARG
THEN LOC <= I; RETURN FI:
CD;
RETURN
END

BOOLEAN MATRIX TRANSPOSE

This algorithm computes the transpose of a given N by N

matrix in place,

PROCEDURE BMT(VAL N,VAL Al, VAL A2) =
BEGIN
INTEGER I,J:
BOOLEAN B(1:N,1:N]
FOR I IN i1,N=1 3 J IN I+1,N DO
B(I,J] <=> B[J,I]
0D
RETURN
END

131

ramur-yv—..-vw- - sdd e

15. RECORD UNPACKING
This algorithm unpacks the fields of a record 1into &n

integer array,

PROCEDURE UNPACK(REF RECORD, REF FORMAT, VALUE LEN
REF RESULT)=s
BEGIN
BITSTRING RECORD[O0:1?);
INTEGER LEN,START,RESULT(LILEN],TEMP,I;
ARBTYPE FORMAT([1:LEN]?
START <= 0
FOR I <= {1 TO LEN DO
TEMP <« PECORD(START:START+FORMATIII=1);
START ,. START 4 FORMATI(I];
IF FORMATIX] IS A DISTINGUISHED VALUE

THEN
TEMP <= SIGNNEXTEND(TEMP)
Fls
RESULTI1) <= TEMP;
oDy
RETURN
END

16, VECTOR TO SCAN LINE CONVERSION
This algorithm takes a list of vectors and produces a

raster gcan line conversion.

PROCEDURE VECSCAN(REF DLIST,VALUE LEN, REF TEMP)=

BEGIN

RECORD DISPLAY(INT16 XS, INT16 YS, INT16 XE, INT16 YE),
WORKLISTCINT16 XS,INT16 XE,INT32 Y,INT32 SLOPE):

DISPLAY DLISTIISLEN)

WORKLIST TEMP(1:LEN+1):

INTEGER I, START, LINE, DENOM;

BITSTRING BIT(1:1024);

jGenerate working vector
FOR T <= § TO LEN DO
TEMP,XS[I) <=~ DLIST,XS([1)?
TEMP,XE <= DLIST.XELI):
TEMP,Y(I] <= DLIST,.YS(I)*1024;
DENOM <» (DLIST.XE(I1] « DLIST,.XSII] + 1)
TEMP ,SLOPE(I] <+« (DLIST,YE(I)=DLIST.¥S{I1)%1024/DENOM

132

oD;
TEMP XSCLEN+1) <= 1025
! Generate the scan image
START <= {3
FOR LINE ¢= § TO 1024 DO
BIT <= 0
I <= START;
WHILE TEMP,.XS[I)] LEG LINE DO
FOR K ¢~ TEMP,.Y[I)/1024 TO (TEMP,Y[I] +
TEMP,SLOPE[I))/1024
DO BITIK) <= 1 0OD;
TEMP.Y(I) <= TEMP,Y([(I] + TEMP,SLOPE(I]:
IF TEMP XE{I) = LINE
THEN TEMPISTART) <=> TEMPI(I);
START <= START + 1{:

FI;:

I <=1 + 12

0Dy
0D
RETURN
END

133
h ""';‘-‘w - e .ﬁ-’;ﬁ_ : N - Tt T T T
i ameliisicn m‘ S S

"Ill-—"-'!!"""-'-'--.l..-'-""""E!FE'!--'-'-'-‘--"'---lﬂiﬂll—!-‘~

APPENDIX E

CDS 432/670 USERS MANUAL

The following is an effort to enable someone with no

prior knowledge of the 432/600 system to be able to compile,
link, and execute proarams on the 432 in a minimum ameunt of
time anad ‘“fuss’, A knowledge of ADA {s assumed, &s is
tamiliarity with VMS (e,g, the VMS editor),

Referring back to Figure(6] it can be seen that a
variety of hardware and software s {nvolved in simply
getting a program to ‘run’ orn the 432, This variety of
needed hardware/software s collectively referred to as the
432 "Cross Davelopment System®™, or H“CDS" ¢ar shoert. Not
surprisinaly, those functions nreeded first {n order %o
achieve the desired result of a proqram executing on the 432
are accomplished on the VAX 11/780 host, Rriefly, the steps

required,dlus their CDS ‘companion elements’ are:

1. Program Creation/Editing == VAX/VMS
2. Compilation w= VAX/VMS
3, Linkina ee VAX/VMS
4, Downloading ~= MDS 800

. Pregram Load/Execution s MDS 800/432

134

% |

1. PROGRAM CREATION/EDITING

Creation of a login file with at least the following
commands will substantially add to the ease 0of your terminal
sessfions while workina with those CDS parts which reside on

the VAX/VMS host:

SADA432
$mopo :33 del ¥,mSo;¥+*,mbo;*
S$MoDe == del ¥ MSCr*+X mbo¥

smope =z del X ,mse;¥+x mbejx

The reason for these commands will become evident as we
continue,
ADA source files to be compiled by the Intel ADA <cross
compiler must have a file extension type of elther:
1, <filename>,MSS => An ADA source specification
file,
2, <filename> MBS => An ADA source body file,

3, <f£ilename>,MCS => Both specification and body.

In our opinion, dividing source code {nto separate
specification (.MSS) and body (.,MBS) f1iles was in keeping
with some of the original philosopnies benind ADA, {.,e,,
encapsulation and {nformation hiding, Unfortunately, the
compilation efforts, of necessity, must double (2 files to
compile vs, { {n the MCS case), what follows next are

tigures of a sample oprogram, Figqure 19 {llustrates the

division into specification and body, Figure 20 {llustrates
the combined (MCS) ¢format, Besides the distinction of
working with two separate files as oponosed to cne, take
special note of the line, common to the ’body’, which begins

with "pragma environment,..".

N W S - - S~ A~ G S~ G Sy

| package EXAMPLEL 1s |
{ procedure SIMPLE; |
| end EXAMPLEL: |

|{mwevscsvescacvscssnssss |

| The specification f£{led as EXAMPLEl,MSS

| The pody filed as EXAMPLE{ MBS |
v v

pragma environment("ACS:TEXTIO ,MLE","EXAMPLE] MSE",
"INTIC.MSE");
with text_lo,intio;
use text.io,intio,ascii;
package pody EXAMPLEL s
procedure SIVPLE {s

X,Y,2 ¢ integer;
Begin
X 2= 10;
v t= 157
put.line10(" SIMPLE "):
put(bel):
== this rings the bell,’use ascii’enables this
Z 1= X+y}
put(z); == ‘intio”’ allows you to do this
put(bel)!
PUtLline i0("END SIMPLE");
end SIMPLE}
end EXAMPLEYL:

PP P gy o P

Figqure 19, Specification and Body Format (Separate)

1136

b A 4 A 4 A A 4 4 A 4 A 4 A A A 4 A 4 4 A A 4 a4 4 A 4 A 4 A A & A 4 A A 4 4 4 A & 4 & & 4 a 4 2 2 o o o
praama environment("ACS:TEXTIO MLE" ,"INTIO MSE")
with text.io,intio;
use text.io,intio;
package EXAMPLE2 {s

procedure SIMPLE;
end EXAMPLE2:;

package body EXAMPLE2 (s
orocedure SIMPLE (s

X,¥,2 ¢ integer;

Begin

x 3 10;

y = 15;

put.line10(" SIMPLE ")

oyt(bel);

Z iz X+y?

put(z)y

put.line10("END SIMPLE"):
end SIMPLE;
ernd EXAMPLE2:;

Combined specification and body filed as
EXAVPLE2,MCS,

Figure 20, A Combined Format Examole

Information is conveyed to the ADA compiler system by
means of pragmas, The environment pragma specifies the names
of external environment filles (or 1librarvy units) that
constitute the compilation environment for the current
compilation unit(s), If the current comoilation depends on
other compilation units from other compilations, then the
environment files from these compilations must he listed |in

the ENVIRONMENT pragma in the current complilation, These

137

S

LR = ’-w._ﬁ.n.»..’ o -

environment pragmas enable separate compilation while still
maintaining strong type checking of interfaces, two features
which ADA {s supposed to fulfill, In these examples the
compilation of the hody depends ont
== ACSITEXTIO,MLE => so the package can perform
eharacter 1/0,

== INTIO.MSE => s0o the package can perform integer
1/0,

e« EXAMPLEI MSE => the corresponding specification

flle,

To alleviate confusion on file extensions, the following
i1s a 1list of VMS f£{le extensions used in the 432 ADA

Compiler System (ACS),

1. First character:

M «= The file contains a library unit, M stands
for module,

S == The file contains a SEPARATE stub,
2, Second Character:

S == The file contains a program unit specifica-
tion,

B == The file contains a program unit body,

C == The file contains the combination of a pro=
gram unit specification and a prooram unit
body,

L == The file is a program liprary file supplied
by Intel,

3. Third (last) Character:

S == The f£ile is an ADA source text file,

138

™
[}
[}

The file is an environment ¢file,

The £ile is a REPORT file,

o
[
[}

The file is an object code (EOD) file,

L == The file is a REPORT listing f{le,

C o= The file is an Object code listing file,

M =« The file is a specification file ¢for the
COMBINE wutility and contains a list of en=
vironment f£iles that are to be merqged,

I == The file is an integrated environment file
created by the COMBINE utility.

T «= The f£ile is a listing file produced by COM=

BINE and contains the file table listing of
the integrated environment,

For added clarification:
6,3, <filename> MSS == An ADA source text ¢£ile

which corresponds to a specification,

e, 9, <filename> MBS == An ADA source file contain-
ing program unit bodies,

e,9, TEXTIOMLE == A library environment file sup=
vlied by Intel.

2. COMPILATION -

The 1Intel compiler is invoked by the command
"IDA", followed by the f£ilenanme, If the filename {s
omitted, the compiler will prompt for it, Our input to the
compiler consisted either ot <filename MSS>, for
specitication files, or <filename ,MBS>, for the
{rplementation, {,e.,, body, files, Output from a successtful

compilation consists of files of type:

139

1. .MBE or ,MSE == The environment £ile represens
tatioh.

2. JMBC or MSC == The object code 1isting ¢file,
It is utilized when debugqing on the 432,

3¢ «MBO or .MSO =« The object code, This is {input
to the linking process,

Unsuccessful compllation results {in files of the type:

1. +MBL or ,MSL == A report listing ¢{le, We gen-
erally never used this,

2, +MBR or MSR == A file which when prefixed by
the c¢ommand "REPORT", e.g,, REPORT prog,mbr, ale
lows one to scan through one’s program on the
terminal, More ({mportantly, all errors detected
by the compiler are flagged with thelir
corresponding diagnostic message,

A typical session on VAX/VMS consists of the following:

1. Code and compile the specification file ¢for the
problem, {.,e,, the program, at hand, Since a
specification file {s essentially Jjust a means of
formalizing in ADA what one considers the inter=
tace to be, it usually needs no environment prage
ma statement,

2., Code and compile the body, which is the means by
which one implements the program, Since the body
depends on what the interface i{s, the environment
tile representation of the corresponding specifi~
cation file must be included, Additionally, 1f
170 {s to ke performed i{n the body, which is gen-
erally the case, the general I/0, Intelesupplied
package (TEXTIOQ), must also be included in the
pragma environment statement,

An example of all this can be found in Appendix C, which
shows the ADA source code ¢for the programs done in this

thesis,

140

’§~» — o ———y

In case {t wasn’t made clear in the above discussions,
compilation order i{s important, Any modules included {n the
pragma environment statement or referenced in the standard
ADA constructs, "WITH,.." and "USE..." must be successfully

compiled beforehand, otherwise unsuccessful compilation s

all the reward one will get for one’s efforts in the current
compilation attempt,

Successful compilaticn means the creation of three new
£iles in addition to the original source f£ile, Directory
space in VMS is quickly exhausted if one {s performing many
compilations, Without adequate directory space, the INTEL
compiler and linker will abort, Therefore, when asking for
an account, the system managers must be informed that more
directory space than is norrmally given a VMS user is needed,
Furthermore, in an attempt ¢to provide a quick means of
deleting unneeded environment, object~Code listing, and
object-code ¢iles, the commands, mooe, mopc, and mopo will
automatically delete all files of the corresoonding filetyoe

in the current directory.

Once one has successfully defined one’s interface, coded
it, compiled it, and has done the same with the
corresponding body or bodies, one has reached the point
where {n most traditional systems one {s ready to link the
object code in preparation for actual program execution, In
the 432 case, additional compilation must still pe performed

before the linking process may begin, R

141

First, a module termed PSERP.MBS must be compiled. An
example of this {3 included in Appendix C, Its function is
to initialize the user process(es), It essentially marks
which module {s to begin execution first, For instance, a
Driver routine which invokes all other subroutines Iis
usually executed firset, In cur case, PSERP always
initialized the Driver routine, which we always termed MAIN,
in an attempt to cut down on our ccding/compilation efforts.

Secondly, as‘pointed out in the architecture overview on
operating system support, users can tailor some of the iMAX
0.S. packages, In this thesis, modification of the systenm
configquration package, PSORS.,MBS,was implemented, Hence, the
successful compilation of this modified package was also

needed. This package is also included {n Aprendix C,

3. LINKING

The MSO or .MBQO files produced by a successful
compilation are input to the 432 linker by being listed in a
user created directives file, The output from a successtul
link 1s of filetype ,EOD, EOD stands for "External Object
Description®, Actually, the resoective MSO and MBO output
¢iles from the compiler are in this EOD format, The choice
of using EOD as the filetype of the output from the linker
{s an ardbitrary one,

The 432 linker combines a set of compiled EOD’s (e,g,

the .MSO and ,vMB0 files) into & single linked ECD, Compiled

EOD’s, generated by the ACS, contain program modules, These

modules, i{n turn, contain a collection of compiler-generated
objects, such as segments, refinements, etc, The output from
the 1linking process, a single file, is then downloaded to
the MDS 800 systenm,

The 432 linker performs the following traditional

gunctions:

{. Resolves inter=module references,

2, Assians physical memory addresses to all segments
contained in the input modules,

3, Verifies the compatibility of modules that are
linked together,

4, Produces a linked EOD that may be loaded into the
System 432/670 main memory and executed,

S, Generates error messages for apbnormal conditions
encountered Ayring processing,

6, Generates a linker listing that summarizes the
results of the linker operation and address as=
sianment,

In addition, the linker performs the following 432e-specific

actions:

1. Version checks the input EODs for compatipility.

2., Assigns object table directory indices and object
table {ndices (known as object coordinates) for
objects contained within the input modules.

3, Builds the physical 432 access seqments described
symbolically within each i{mput module,

4. Builds object tables and the object table direc-
tory assoclated with the obdbjects {n the {nput
modules.

5. Generates inittalization object tables, access
descriptors, and storage allocation information,
The net resuylt of all this is an EOD which, when loaded
into 432 memory, will execute as one has programmed {t,
The {nput or directives file to the 432 linker should be
a flle created on VMS with a file extension of LKD, This
tile, an example of which {s provided in Figure 21, may have
other fille extersions or types, However, {f that s the
case, then the £ull file name must be given to the linker,
i.e¢,, LKD {is ¢the default file type, For example, given a
link file which we call "TEST,LKD", to link this ¢file, the

following command would be entered:

LINK432 TEST

The linking process can be appreclably 1longer than
compilation, However, 1{f linkage {s successful, a single,

simple message of:

LINKAGE SUCCESSFUL

should be the only message which appears on the console,
Warning messaaqes, not error messages, accompanied by
"LINKAGE SUCCESSFUL", do not really mean a successtul
linkage! At least this nhas bheen true in our experience, A
detailed explanation of the different directives which can
appear {n the linker file, plus their meanings, can be found

in the manual, P"VAX/VMS Host liser’s Guide", With the

144

~ 4

culmination of a successful linking, one {is ready to

download the output file generated by the linker to the MDS
800 system, For a detailed explanation of the linking
process and the available directives,i{,e,, commands included

{in the 1link file, refer to "VAX/UMS Host User’s Guide",

? An examole of a link f{le wnhich serves as inout
7 tO the 432 linker, The semicolons whien precede
sThese statements signifty comments, Link,free,

: outout,orint, and objectmap are examples of

! linker directives, The blank lines which occur
: between directives MUST be present!

link ACS:iMAXVvi.eo0d
ACSitextio,mle
examplei . mso
examplel . mbo
main,nso

main,.~po

pserp,mrbo

nsors,.mbo

tree(l in directory)
output example,eod

print example,map
objectmap

This could be £iled {n VMS as TEST,LKD

P prgap . P P

Fioure 21, A Linker Input File

4, DOWNLOADING
Downloading is pertormed on ¢the MDS 800 system, In

order for downloading to be accomplished, the VAX muyst be

148

operating under VMS, A cable, marked with a tag which reads

"VAX*, {s the transmission facility for downloading, The
following steps comprise the procedure ¢to follow when

downloading a file;

1. Attach the VAX cable to the ADM36 terminal, Logon
to VMS as you normally would, Enter the following
command ¢ "SET TERM/SPEED=2400", This {s done be~
cause the MpDS 800 system {s currently modified to
support only 2400 baud communication rates unrless
hardware/sottware changes are implemented,

2. Remove the VAX cable from the ADM terminal, cone-
nect one end to a null modem, Connect the other
end of the null modem to the MDS 800 TTY peort lo=
cated on the control unit,

3, Insert into drive 0 of the MDS 800 system ¢the
ASYNCH LINK diskette,

4, Insert into drive | the diskette one Wishes to
download to, Root the systenm,

5. On the MDS 800 terminal, enter the following com=
mand §¢ "DNLOAD <VMS EOC tile> TO :Fi:<new or same
file name>, For instance, assume one nas an EQD.
¢i{le named TEST,.END {n the VMS directory. Furthe
ermore, one wishes to call this file TEST1.ECD on
the MDS 800 system, One would enter the following
commanaA "ONLOAD TEST,EOD TO
tF1ITEST1,.EOD", gquotes not included,

We have experienced average download times of
approximately 20 minutes, Any errors {n transmission mean
that downloading must be redone until a complete errore=free
download is accomplished, #e have not experienced any errors
in downloading to date, The conclusion of a successtul
download marks the beginning of the next step, execution on

the 432,

146

5. PROGRAM LOAD/EXECUTION

Now that a linked EQD file {s on a diskette, all that
remains s to load it into 432 memory and execute it, The
£0llovwing procedure assumes that the MDS/ 800 system and the
432/670 execution vehicle are powered up and have no
hardware faults. In the following discussion, cemmands which
are to be entered at the MDS 800 terminal (termed the
"debugger console" by INTEL) will be printed {(n capital
letters and enclosed in quotes, This is for {llustration
purposes only, Capital letters are not necessary, and gquotes
will result in an error message,

1., Insert into drive 0 of the MDS 800 system, the

diskette labeled UPDATE=432/DEBUG=432,

2. Insert {nto drive | the diskette which contains
the executable proaram, Boot the systenm,

3, Enter the foilowing command: "RUN WORK :FQO:",

4. When the ISIS prompt (=) returns, enter: "RUN
DEB432", This should result {n the display of
"SERIES III 432 Systems Leve) Debugger, Vvi,00",

5. Once °in the debugger’ the ISIS prompt will be
replaced by a "?" as the prompt symbol, Enter the
command: “INIT",

6, When the prompt returns, enter: "INCLUDE
DEB432,TEM",

7+ When the prompt returns, enter: "DEBUG tF1t«
f{lename,filetype >", For example, sSuppose one
nas downloaded the file TEST,EOD which one wisnes
to execute, Here, one would enter: "DEBUG
tF1:TEST,EOD",

8. Enter: "START", This commend initiates progranm
execution,

147

This command will result in program execution on the
432, For an 1inedepth explanation of debugging facilities
avajilable on the 432, in case the program does not execute

as planned, refer to "workstation User’s Guiden,

1.

2,

3.

4.

5.

6,

7

8,

LIST OF REFERENCES

Dietz, william B, and Szewerenko, Leland, "Archie
tectyral Efficiency Measures : An Qverview of
Three Studies®", lEEE Computer, April, 1979,

Meyers, Glenford J., Advances {n Computer Archie
tecture, second edition, John Wiley & Sons, 1982,

Hansen, Paul %,, et, al,, "A Performance Evalua=-

tion of ¢he Intel 1APX 432", Computer Architece
fure News, June, 1982,

4ilkes, M,V,, "Hardware Support for Memory Proe-
tection ¢ Capanility Implementations®", ACM, 1982,

Fabry, R.S,, "Capablility-Based Addressing”, Conm,
of the ACM, July, 1974,

“{lkes, M,V,, page 116,

Inte]l Carporation, IiMAX 432 Reference Manual,
1981,

Shoop, Darreld Russel and Holdcroft, Richard T.,
e ﬂamnazat‘“e En!]:[s’s Q: ID:Q]': 432 GEDEIE]
Data Procegsor and Copntrol Data‘’s AN/AYKe1d4(V)
Compyter System, “aster’s Thesis, Naval Postgrads
uyate School, Monterey, Califtornta, 1982,

INITIAL DISTRIBUTION LIST

No, Copies
1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314
2, ULthrary, Code 0142 2
Naval Postgradyate 3Schonl
Monterey, California 93940
3., Department Chalrman, Code 52 2

Devartment of Computer Science
Naval Postgraduate School
Monterey, California 83940

4, Associate Professor Uno R, Kodres, Code S2Kr 2
Department of Computer SciencCe
Naval Poestgraduate School
Yonterey, Califormia 93940

S. Capt, B8radford D, Mercer, Code S2ZI 2
Department of Computer Science
Naval Postaraduyate School
Monterey, California 93940

6, RCA AEGIS Data Repository 1
QCA Corvoration
Governmen Systems Division
Mail Stop 127327
Moorestown, New Jersey (QR057

7. Library (Code E33-05) 1
Naval Surface wWarfare Center
Dahlgren, virginla 22449

8. Danlel Green (Code N2OE) 1 A
Naval Surface wWarfare Center }
Dahlgren, vVirginia 22449

9. CDR J, Donegan, USN i
PMS 40085
Naval Sea Systems Command
washington, DC 20362

150

10,

11,

12,

G, Luke

Fleet Systems Department
Applied Physics Laboratory
Laurel, Maryland 20810

Lt, Dave Applegate
413 Exeter Place
Marina, California 923933

Capt, Robert Coates
S840 Avenida Jinette
Bonsall, California 92003

LRI

Miaidise

!
j
b
L L S eE T - e
¢ e) ».qu,:;-pj.v . PR .
3

- DATE
FILMED

DTIC

