
AD-A126 887 THE INTEL 432/670 AND ADA PERFORMANCE BENCHMARKS(U) 1
NAVAL POSTGRADUATE SCHOOL MONTEREY CA
D J APPLEGATE ET AL. DEC 82UNCLASSIFIED F/G 9/2 NLII I I I I I

EIIIIIEEIIIIIE
IEIIIEIIIIIII
IIIIIIIIIIIEEE
EIIIIEIIIIEIIE
IIIIIIIIIIIIIIfllfllfl
IIIIIIIIIIIIIu

1111.0 L-1jw8JL
j.6

11.25 111111.4 ___

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

00

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
THE INTEL 432/670 and ADA

PERFORMANCE BENCHMARKS

by

David James Applegate

and

Robert Abbott Coates

>-" December 1982C-

Thesis Advisor: U.R. Kodres
LAJ
j Approved for public release; distribution unlimited

83 04 V tj

..... ii ~- -NNW-

!PORT DOCMENATIOM PAGE -ZA WOCOSLTR oIMNu
T.- PMT OUWN.- I GOTACIN O mCPE. AlALOG NFloE

1,4. TITLE (Am 210101#1) S. TYPg of REPORT Ak PEIOD COVERED
Master's Thesis

THE INTEL 432/670 and ADA December 1982

PERFORMANCE BENCHMARKS 6ePWM1 00OR. 410001T' NUMBER

7 I41WGA a. CONTRACT am GANT oetologwo

David James Applegate

Robert Abbott Coates
-9. 0c9OSS111e @O6IZAT13N N&ME AND AD0056610 PROGNIA[a~EEEyP~g~

Naval Postgraduate School 119&WCK..toga

Monterey, California 93940

1 . CONTROLLING OpFICg NAME AND ASORESS11 12. REPORT DATE
Naval Postgraduate School December 1982
Monterey, California 93940 Is'. "NMUERO0FPAGES

151
14. he"aT@RING AGENCV NAIGE 6 40011111SIVI 401""m* SIuM C610"alu ON#*@)j Is. S9CURITY cL.ASS. (of shee e00

UNCLAS SIFIlED

16. mISTRIOUTION 6TATEMEtNT (of 000 Uopootj

Approved for ~public release; distribution unlimited

17. OetgRUTION STATEMEM? (of Wbe obe'VOP Mfwd 1a NO@&l 110 it 40U116eat 0N swu m i)

Is. SUPPLAMENTARy NOTES

it. KY 9V1110111011 (Coing on wre e 00 l ofneesomp nwi I.Mu& IV e mumlew

iAPX-432, INTEL, ADA, ADA-432
432/670 Cross Development System,
CPA, Computer Family Architecture
MCF, Military Computer Family

20. AMIFRACT V C&MN O M siue 0l ineeose nyd 0~0 4W 60eel iNWO 43
,The INTEL 432/670 microcomputer system contains the iAPX-3

[microprocessor which executes compiled ADA programs. The compiler
resides on a host VAX 11/780, and compiled programs are downloaded
to an INTEL MDS 800 system where they are transferred tothe 432/670
for execution. This thesis describes a preliminary performance

[evaluation of the INTEL 432/670 through the use of selected bench-
mark algorithms from the Computer Family Architecture (CFA) study.-j0 Doo. 14573 -o EDoN wev so is8 eUtTe

~/N 10204 663 SCURITY CLASSIPPICATION OF THIS PAGE ("'Oni Da #4wd)

-- - - - - -

J A description of the hardware components of both the MDS 800

and 432/670 is provided, including the modifications made to

the operating system to allow compatibility with existing

hardware. Additionally, the benchmark program source code

and a user's manual are appended.
/

--NTr3 OnA&I

DTT' T:

Distributte.n/
Availability cod.'.

!Av i1 and/or
D1S I Special

Fori 14.

IO1 FI IAG b awe If"uI

Approved for public releasep distribution unlimited.

The INTEL 432/670 and ADA Performance Benchmarks

by

David Applegate
Lieutenant* United States Navy

BOA,, St. Cloud State Universityp 1975

Pobert Coates
Captain, United States Marine Corps

B.S., University of Idaho, 1976

Submitted in partial fulfillment of the
reauirements for the degree of

MASTER or SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADJATE SCHOOL

December 1q92

Author:

Author

App roved bysiniinimminnmimnmmmimnm

Thesis Advisor

Second Reader

Chairman, Department of Comouter Science

Dean of Information and Policy Sciences

3

I
I

ABSTRACT

The INTEL 432/670 microcomputer system contains the

iAPX-432 microprocessor which executes complied ADA

proarams. The compler resides on a host VAX 11/780, and

compiled proarams are downloaded to an INTEL MDS 800 system

where they are transferred to the 432/670 for execution.

This thesis describes a preliminary performance evaluation

of the T4TEL 432/670 through the use of selected benchmark

algorithms from the Computer Family Architecture CcTA)

study, A description of the hardware components of both the

MDS 800 and 432/670 is provided, including the modifications

made to the operating system to allow compatibility with

existina hardware, Additionally, the benchmark Proqram

source code and a user's manual are appended,

4

TABLE OF CONTENTS

Is INTRODUCTION .oo .o... .. oo*6S......g

A, THESIS DESCRIPTION **ooooooe.oooooooooo.ooo*. 8

B. EVALUATION OF COMPUTER ARCHITECTURES ,.o,,,o, 9

C, THESIS ORGANIZATION ,o,,o**o.., ** .,*,, 10

IIe THE MILITARY COMPUTER FAMILY ARCHITECTUPE ,..o,.. 12

A, CFA/NCF PROJECT MOTIVATION 12

B. CFA/MCF PROJECT DESCRIPTION o*..,,......o*.., 12

C. CFA SELECTION CRITEPIA ,,,,,,*** 14

1. Qualitative Criteria ,1.....,....,...,, 14

2. Quantitative Criterta I,,s,,,,,, ,,,,, 15

Do MEASUREMENT PARAMETERS o 16

E. BENCHMARK EVALUATION DESCRIPTION ,,........,. 17

III, THE INTEL iAPX-432 MICROPROCESSOR es.,....o.... 20

A. ARCHITECTURE DESCRIPTION,,o....,....o 20

t. Object-Orientation ,,,,,,,,,,,,.,,.°.,,,,,o 21

2. Transparent multiprocessing ,...,,,,, 25

3. Capability Based Protection ****.. 28

4, Operating System Support *.,**,,,,,,,, 32

B, ADA LANGUAGE SUPPORT * o.....****.***.*.***.*** 36

1, Object Typing *,,,,,,°,,,,,,,,,**,,. 36

2o Domain Objects - Package Objects *.,,**. 38

3. Procedure Objects - Procedures .,,... ** 39

4, Activation Records **o,.,...,**,,,,,,.. 40

So Taskirq ,*,,,,,,,,,,,,,,,, 40

5

t. - ~

IVe BENCHMARK PROGRAM TIMING RESULTS v,.,,,,.,,,,,,,, 42

A, BENCHMARK PROGRAMS **.,,.,,,,,,.,,,,,,,**,,, 42

1 Methods Used e*ceeegc*ceegggg***ge*g**ge*eg 42

2. Applieable Alqorithms .,,,,,,,e,,,,,,,, 44

a, Character Search * g**ee,,,,g.,,,,,, 45

b, Quicksort ,,,oeoo.~e~ooo. 47

c' Hashtable ,,@,,,,e,,,,,e.,,.e..ggee. 48

do Digital Communications Processinq ,..,, 49

e. Memory usaqe ,..,..,,.,..,....,,..,.,. 50

3, CFA Coded but not Executed Proqrams 51

4, Non-CFA Related Proqrams ,,,e...,,,,.,,, 51

B, TIMING PROCEDURE AND RESULTS 52

1. CFA Benchmark Proqram Results. ,.,,,,... 53

a. Character Search .,.......,,,,o, 53

b, Cuicksort ,...,,..,,,.,..,............ 54

C. Hashtable ,o,,.o.. , 55

d, Daltal Communication Processinq .. , , 55

2. Non CFA Proqrm Results *,,,,,.,,.,....,, 56

C. SUMMARY OF RESULTS .,,..,.............., 59

V. CDS 432/670 USER EVALUATION 64

A, COMPILER ,,o,...,,.............. 64

Be LINKER , ,, . , , ,. , , , , , ** . , , ., 67

C. DOWNLOADING eGo,,,,eg... ,e..... 68

o DEBUGGING AND EXECUTION **,,.,.. ,,,,,.,,,,,,,, 69

E. ADA IMPRESSIONS ee......,...,,. 70

VIe CONCLUSIONS *.e***e....... .o** ge*gc,**cc 73

6

APPENDIX A CHARDWARE DESCRIPTION)*o,,,.o.. 75

APPENDIX 8 (OPERATING SYSTEM MODIFICATIONS) .,**.**... 77

APPENDIX C (ADA SOURCE CODE) .,o. .. o.....*., 78

APPENDIX D (CFA BENCHMARK ALGORITHMS) 1....,.,o,..o. 114

APPfNDIX 9 (CDS 432/670 USERS MANUAL) ,.,..,,. 134

LIST OF RtFERENCES o,-...........,....... 149

INITIAL DISTRIBUTION L1ST I..,..o..,......,.,.*..... ISO

7

As THESI DESCRIPTION

The development of new enqineerinq tools is accompanied

by the perceived need to find applications for those tools.

microprocessors are no exception. When a new computer is

Introduced it Is Important to know what, It any, sianiticant

benefits can be realized through its use. Thinos to consider

In evaluatinq a microprocessor include several quantitative

items, such as, Instruction execution speed, memory

capacity, and overall performance, Less tanqible, but

equally important qualities of multiprocessor support, user

protection, and ease of proQramminq also need to be

measured. The introductior of the INTEL IAPX-432 in 1981

represented a radical chance from traditional computer

architectures, Previous advances in Inteqrated circuits

have primarily focused on larqer memory, and faster

execution. The iAPX-432 has addressed these issues, but has

also tackled many of the problems found in software

enqineerinq.

This thesis Involved the setup and evaluation of a

modified INTEL 432/670 cross development system to measure

the overall performance of the proqramminq lanquage ADA

executinq on a companion vehicle, the INTEL iAPX-432

II

microprocessor, The motivation for this investigation wa

straightforward. Since the Department of Defense has Rpent

considerable time and effort In developing the ADA language

it would be Interesting to observe how the language performs

on a processor that was designed with Identical goals. It Is

not often that a language and processor are developed in

parallel. More importantly, the INTEL IAPX-432's unique

architecture directly supports many of the important ADA

lanquace features* Such as:

1. Access protection for packages,

2. Automatic maintenance of activation record stacks.

3, Multiprocessor support for multitasking.

This support may provide for less exoensive, easier to

maintain software, a common objective of both hardware and

software desianers.

B. EVALUATION OF COMPUTER ARCHITECTURES

Evaluation of computer architectures and computer

languages has traditionally been an Investigative process

directed toward a specific apolication. This study Involved

the neneral puroose apolicability of the lanouage and the

processor. The choice of measurement methods used followed

an earlier effort performed by the Computer remily

Architecture committee In 1976 concerning general purpose

computer appllcatlon evaluations. In particular, some of the

9

benchmark programs used by the committee were coded in ADA

and then executed and timed on the IAPx-432. Although no

provisions have been made to eliminate the effects of

compiler efficiency# or inefficiency, the results should

give an indication of the execution speed available to the

end user. This method of testing was chosen since the

processor Is designed to be programmed in a high level

language (ADA). No assembler Is under development or planned

for by the manufacturer. Therefore, it the language and

processor are to be used as designed, then the performance

needs to be evaluated in a working environment, That is,

programmers Programming in ADA and compiled code executing

on the processor.

C. THESIS ORGANIZATION

This thesis is composed of six chapters and five

appendices. Chapter II is a brief discussion of the work

done by the Computer Family Architecture committee (CFA) and

it's aoplicability to this investigation. Chapter III is an

introduction to some of the uninue architectural aspects of

the iAPX-432 and how these new features support the languaqe

ADA. The benchmark Program descriptions and timing results

are in Chapter IV. Included in that chapter is a description

of the oarameters passed and the calling conventions used.

4n attempt has been made to give an impartial evaluation of

the CD3 432/670 system In Chapter V, Finally, in Chapter VI

10

IT __ __q_-#Aso

the reader will find what basic conclusions have been drawn

about the IAPX-432 and the CDS 432/670 system as a result of

this study. The appendices are filled with the materiel

necessary to receat any of the results obtained in Chapter

IV. They Include a description of the hardware and operatinq

system modifications Performed and a listing of all the ADA

source code. As a convenient reference the aloorithms used

by the CIPA are provided In Appendix D. A users manual is

included In Appendix E to allow a new user to quickly become

familiar with the system.

11

1I. THE MTLTARY rnMPIIR rANTLY ARCHTrrTUR

The Military Corputer Family Architecture (MCF) refers

to the architecture standard defined In a study done by the

Computer Family Architecture committee (CFA) between October

of 1975 and August of 1976. The initial study concluded that

the PDP-1i best met the criteria for a military computer

family standard. Since that time another CFA related study

by Dietzcl] suqoested several Improvements in the algorithms

used to evaluate architectures. An overview of the CFA

prolect follows.

A. CFA/MCF PROJECT MOTIVATION

The CFA/MCF oroject was a joint ARMY/NAVY effort to

develop a method of comparing computer architectures for use

on a general class of applications. The enormous sums of

money that the Department of Defense was spending on data

processing promopted the investiqatilon Into the possibility

of definina a standard computer architecture.Decreasing the

life cycle costs of computer systems played a major role in

the committees selection criteria.

B. CFA/MCF PROJECT DESCRIPTION

One of the first items the CFA examined was the reason

for skyrocketing data trocessing costs. The answers they

12

.]

obtained wert not too surprising, That is, computer

selections often are based on local schedules, fundinq, and

profit considerations with little regard for the Impact

these decisions have on long term hardware/software

logistics costs. Consequently, Incompatible military systems

are contributing to the problems of development and

maintenance of software. Although a formal movement In

standardizing a lanauaqe was underway (ADA), there was no

method for standardizing an architecture. It was with this

mandate that the CFA committee pursued the evaluation of

several available computer architectures, with the goal of

selecting a standard.

A standard architecture does not mean specific numbers

of registers, accumulators etc., but rather the structure of

the machine that a Proorammer needs to know to write his

programs. For example, if the architecture standard reouires

stack relative addressing, then any machine having that

Instruction (and the other required instructionsL) can be

proarammed by a given programmer without his having any

knowledge of how the instruction Is implemented. The

prorammer knows there's a stack and a stack relative

address instructioni the hardware implementation is

transparent to him. Zn this fashion, any two computers

havino the standard architecture can run the same software.

The advantage realized Is that new hardware with faster,

13

more efficient physical characteristics, can run the same

software with little or no modification.

C. CFA SELECTION CRITERIA

The crA committee Initiated the selection process by

speclfyinq nine absolute qualitative criteria and several

quantitative criteria that they felt an architecture must

satisfy to meet the needs of a military computer system.

The nine oualitative criteria were:

1. Virtual Memory : The architecture must support a
virtual address to physical address translation
mechanism.

2. Protection : The capability must exist to add new
experimental programs without endangering the
liable operation of existing programs. Architec-
tures with orivileged modes of operation
aenerally meet this criteria.

3. Floating Point Operations : The explicit supoort
of floating point data types with more than 10
decimal digits ot significance.

4. Interrupts and Trans : The caoability to write a
trap handler to respond to any trap condition
with the program resuming operation of the pro-
gram. Additionally, the architecture needs to be
caoable of resuming execution following any in-
terrupt.

So Subsettability : Some of the components of the
architecture must be able to be factored out of
the full architecture.

6o. Multiprocessing ! Suoport of communication and
synchronization of multiple Processors.

7. 1/0 Controllability I A orocessor must have the
ability to exercise absolute control ever any IO
Processor,

14

8. Extensibilty-: Some method needs to exist to add
new Instructions to the architecture consistent
with existing formats.

9. Read Only Code : It must be possible to execute
programs from read only memory,

These nine criteria were definitely subjective in nature but

did provide a aood initial screeninq for any standard

architecture candidate. Although the study was done before

the introduction of the INTEL iAPX-432, most of the criteria

are met or exceeded by the IAPX-432 with the exception of

the Interrupt capability. Tho LAPX-432 has no hardware

interrupt, however, it is designed to operate with an

attached processor which does have an interrupt capability.

2. ouarntiarve (4I*,.a

The quantitative criteria Judged by the CFA

committee included the following items :

1. Virtual address space.

2. Physical address space.

3. Fraction of address space unassigned,

4. Size of the central processor state (amount of
CPU information stored on interrupts).

5. UsaQe base (number of units in operation).

S. 1/0 initiation (efficiency of peripheral device
accessibility).

7. virtualizability (support of virtual machines).

8. Direct instruction addressabillty.

is

9. Maximum Interrupt latency (time from receipt of
interrupt to processing),

Do MEASUREMENT PARANETER3

The quantitative criteria were evaluated, in part, by

the use of twelve benchmark programs, These programs were

hand assembled by several different programmers, and then

statistically analyzed for program use of computer space and

time, The measurement parameters used were:

S: Measure of soace, the number of bytes used to
represent a test program.

Ns Measure of execution time, the number of bytes
transferred between primary memory and the processor
durina execution of the test program,

R The number of bytes transferred among internal
registers of the processor during execution of the
test program.

Although the SpM, and R measures are useful in

evaluating conventional architectures, they are not readily

applied to the INTEL LAPX-432. In fact, the microprocessor's

manufacturer has stated that there Is no intention of

supplyinq an assembler, nor is one under develooment. This

Would Make the measurement of S and M difficult and the

measurement of R virtually impossible. For this reason, the

evaluation of the INTEL iAPX-432 was primarily based on the

execution timing of selected benchmark programs,

16

Ce BENCHMARK EVALUATION DESCRIPTION

The original CFA committee developed twelve benchmark

programs to evaluate the selected criteria. A brief

description of the programs follows with a complete

algorithmic description In Appendix Do

t. 1/0 kernel, four priority level Interrupts.

2. I/O kernel, FIFO orocessina.

3. I/0 device handler.

4. Large tast Fourier transform of a large vector.

5, Character search.

6. 8it testi set, or reset.

7. Runqe-Kutta Integration.

8. Linked list insertion.

9. Quicksort.

10. ASCII to floating point conversion.

it. Soolean matrix transpose.

12. Virtual memory space exchange.

These programs tested many of the items Considered to be of

value by the CFA committee, however, a later study by Dietz

(1] determined that the number and types of test proqrams

should be expanded. The proposed set of benchmark oroqrams

consisted of sixteen programs oroanized into four groups as

follOwSl

17

. n n L jBH mb it..

A. Interrupts and traps*

1. Terminal Input driver.

2. Messaqe butterinQ and transmissiOn.

3, Multiple priority interrupt handler.

4. Virtual memory exchane.

8. MlscellaneOUSo

5, Scale vector display.

S. Arrav mrianviilation-LU decomposition.

7, Tarqet trackinq.

4, Digital communications processinq.

C. Address manipulations

9, Hash table search.

10. Linked list insertion.

11. Presort,

12. kutoeorrelate.

D. Character and bit manipulation.

t3. Character search.

14, Soolean matrix transpose.

15. Record unpackifn,

16. Vector to scan line conversion.

A comelete algorithmic description of these benchmark

proarams can also be found in Appendix D.

These sixteen alqorithms were thouqht to more rigorously

test specific features of the computer family architecture

standard, None of the above benchmark programs are

19

I

necessarily firm algorithms that must be adhered to.

However9 they do provide some guidance in the type of tasks

that must be performed by a computer in order for it to

fulfill the minimum reauirements of an architectural

standard, In the original evaluation the PDP-l1 was

selected as the best candidate architecture for the military

computer family, Since that time several major advances in

both hardware and software have occurred, The unique

architecture of the ZNTEL iAPX-432 provides a different test

platform for the execution of the benchmark Proqrams, Those

oroqrams which were supoorted by the current INTEL ADA-432

compiler were coded, executedf and timed, The results are

summarized in Charter IV of this thesis.

19

111, THE TNTrL IAPX-4l2 MTCROPRnCISSflR

Ae ARCHITECTURE DESCRIPTION

Computer architectures In the majority of commercial

systems available today can be viewed as refined descendants

of the often termed Von Neumann computer architecture* A

Von Neumann computer architecture usually includes the

followinq properties C23:

i. 4 single, sequentially addressed memory which
contains both proqram and data.

2. No explicit distinctions between instructions and
data. Rather, instructions and data are dis-
tinquished by the ooerations directed towards
them,

In 1981, Intel announced a 32-bit VLSI microprocessor

incorporating several architectural innovations t31. This

announcement stated:

"The Intel IAPX 432 represents a dramatic advance in
comouter architecture: it Is the first computer
whose architecture supports true software tran-
sparent, multiprocessor operation; it is the first
commercial system to support an object-oriented
programming methodologyy it is designed to be
programmed entirely In hiqh-level lanquaqes; it
supports a virtual address space in excess of
a trillion bytes; and It supports on the chio Itself
the proposed IEEE-standard for floating point arith-
metic0 '

20

The next few pages will be devoted to providing a brief

overview of the following architectural aspects of the

IAPX-4323

1. Object-Orientation.

2. Transparent Multiprocessino.

3. Capability-Based Protection.

4, Operatinq System Suoport.

j, nhjleewn . ri~nrin

What does It mean to be an object-based computer?

Unlike the classical Von Neumann architecture described in

the Introduction, memory is not accessed as a single,

contiguous block, Ratherp the memory Is considered as a

collection or set of smaller units called objects, each of

which occupies some contiguous amount of memory. Very

important and fundamental to this concept is the object's

recoqnition. This can occur in software, or as in the

majority of cases for the 432, in hardware. This recognition

enables the object to be typed or classified as to the

operators which are allowed to act unon the particular

object. Since the 432 architecture can determine the

classification of an object it can prevent incidents such as

instructions (e.g. instruction objects) being Interpreted as

data, and conversely, data (e.g. data objects) being

executed as instructions.

21

At the machine level, objects can be thought of as

being segments, a segment being a set of contiguous memory

locations which In the 432 case can range from I to 65,536

bytes In length, However, there can be some differences in

the 432 case. Specifically, an object can be any one of the

following!

1. A sinqle segment.

2. A collection of seqments.

3, A part of a segment.

This latitude in object abstraction gives compiler desiqners

a powerful base on which to build object oriented compilers

(ADA).

Intel has moved the recoqnLtlon of specific object

types Into the 432 hardware, as alluded to above,

Additionally, certain operators on these objects are

incorporated directly into hardware, while other ope'ations

must be done via software. The net effect of this decision

is Itwofold:

1. Increased reliability of all operations.

2. Increased execution speed of certain functions.

Figure I illustrates some typical iAPX-432 hardware

recognized objects:

22

Physical I memory
I-u .MM -- I --- M°- M--
IIAPX-432 I ----) I Processorl
Iprocessorl I I Object I
I-- m------I ---- Im '---m

V

I Process I
I Object I
MmmM I "Mo

V

I Context Im-> Inperand I
I object I I Stack I
I.... m- - - I Object I

IV Im-

I Dnmain I
I Ohject I

IV

I ITnstrnetlionl
I Oblect I

Ficure 1, Hardware Recoqnized Oblects

The Incorporation of an object-based proaramming

methodoloqy, in the manufacture's own words, "..,raises the

level of the hardware/software Interface", The Justification

for this statement can be found in the followinq example,

Early computers had very simple hardware operations.

These early machines were not capable of supoortinq

floetinai-oint manipulations directly, if you wanted

iloatlna-polnt operations you ?ad to Implement them in

23

software, With the passage of time and increased

technological progress, computer hardware gained

functionality. What were once software functions found

themselves migrated into hardware, a classic example being

floating point operations. This evolution of software into

hardware Is generally regarded as raising the level of the

hardware/software interface in a computer architecture. The

432 carries this progression one step further by olacing

system management operations, such as Process scheduling,

memory managementp and interprocess communication into the

hardware also. Referring back to Figure 1, the importance of

such objects as processor object, process object, etc.

should now take on greater slonificance. Naturally, more

than these basic system objects will be needed to implement

the operations listed above, The processor must be able to

manipulate these objects in an aopropriate way so that what

is traditionally done in a series of proaram steos is now

accomolished with a single instruction. The net effect of

such hardware Instructions is to increase processing soeeds.

Recalling the example of floating point ooerations,

we find that their incorooration into hardware increased

their speed of operation. Furthermore, speed and reliability

are significantly enhanced when an operation is implemented

In hardware, However, the capability based architecture adds

a sinificant amount of execution time to each instruction

and consequently the performance of a processor is reduced.

24

The choice of an object-based computer architecture,

besides raisinq the hardware/software interface, integrates

ideas that have developed over the last decade In software

enqineering. These Include data abstraction, domain based

crotection, information hiding, and high-level system

functionality. The IAPX 432 is an attempt to bring these

notions coherently together in a single architecture.

Summarizing, an object can be regarded as possessing

the following proverties:

1. A data structure that contains Information in an
organized manner.

2. A set of basic operations may manipulate an ob-
ject. The 432 hardware ensures that these are tne
only onerations that can manipulate the data
structure.

3. An object can be addressed as a single entity.

4. An object has a label which specifies the
object's type (e.g, processor vs. process).

Lastly, as regards the relationship between segments

and oblects, a seament refers to the physical structure of

data In memory, I.e. where the structure is located. An

object refers to the logical structure of data in memory,

i.e. how the memory Is used.

2. Trnsgnat Nu Inr~eagati=

One of the most highly promoted features of the

iAPX-432 Is its software transparent multiprocessing

capabilities, also called "incremental comouting oower".

25

What this means Is that the number of physical processors

(GDP boards) In the 432/670 system can be chanqed without

any corresponding changes in application software. That is,

a user's application program never has to be concerned with

the number of Physical processors present. The only visible

effect of havina more than one physical orocessor is the

Increase In system throughput. This kind of flexible

performance Is not usually associated itn microcomputers.

As applications become more complex and more dynamic, it

becomes increasingly difficult to predict how much

Processing power a system will need to meet its performance

goals. This uncertainty can be a serious source of risk. An

application may have to commit itself to a processor some

time before any code has actually been written. This oroblem

Is solved by the iAPX-432 through the use of process.

objects, Processor objects are abstractic-s of Vhysical

processors and nence their behavior can be tan.oulated like

any other object.

Transparent multiprocessing Is accomplished through

the use of the processor object. The existence of a

particular physical Processor is immaterial. System

throughput can be Increased by adding physical processors

CGDP boards) and therefore creating more processor objects.

More processor objects means that more user Processes can

execute. Similarly, the removal of a physical orocessor

results in the removal of a processor object and a

26

subsequent reduction In the total performance. Fault

tolerance can thus be said to be Improved by the fact that

in a multiple processor environment, if a processor fails,

it is simply removed from the system. The only effect should

be some reduction in throughput. In order to describe how

this "software transoarent" multiprocessing is achieved,

other 432 objects besides Processor objects and process

ohlocts, will be introduced. Process objects can be equated

with user programs in the discussion which follows.

The term dispatching refers to the assignment of a

432 processor to some process which is waitina to execute.

In the 432 case, this is the oairinq-up of a processor

object with a process object, The manner in which this is

done is throuQh the aid of another carticular type of object

called a dispatching Port object. Since this is an object,

it also has certain unioue ooerators which aoplv to it. The

dispatching oort object can be thought of as a queue-like

data structure which can contain Process objects or

processor objects, but never both. Processors, and hence

their processor objects, are self dispatching on the 432.

Therefore, when a orocessor completes its current task or

process It examines the dispatchino Port object to determine

it there Is a waiting process, represented by a process

object, enqueued at the dispatching port. If there is a

process object present, the Process object is "bound" to the

orocessor objectl that Is, a link is formed between the

27

processor Object and process Object, The Processor then

dequeues the process object from the dispatching port, and

then oroceeds to execute the process. Conversely, if there

are no Processes (process objects) encueued at the

dispatching Port, the processor enqueues its processor

object at the dispatching port, In effect weltinq for the

next ready Process. Processes are not dependent on

soecifically which processor Is executlna it, or how many

processors are present In the system. Processes ready for

execution are simply enqueued at the dispatching port. The

presence of more physical processors simply means that the

average time a process is queued up at a dispatching port

should be decreased,

3, caoab411ty RAsad Prntorinn

Sharinq date among a computer system's users in a

carefully controlled way has been a subject for much

investicatlon in computer systems. Implementation technioues

aimed at providinq for this controlled Information flow have

run from introducinq privileged and user instructions (e.q.

IBM 360/370) to hierarchical protection systems as

classically Illustrated In the ?UDTICS rino structure.

Intel's approach to this oroblem In the 432 architecture has

been to implement what are termed capabilities.

Caoabilities can be thought of as tickets, the

possession of which conveys privileqes, normally the

orIvileae to access a segment. In the 432 case, to thinK of

20

them as a pointer plus access rights pair would be an even

closer analogy. Possession of a capability means that access

to a seqment is allowed under the access rights associated

with that capability. Access rights areg read, write, both,

or neither. In order to ensure protection, certain processes

should not be permitted to possess capabilities which orant

non-discriminate access to certain oortions of memory. For

example, user processes should not have access to the memory

where the operatino system is contained. Therefore, because

of their function and Inherent potential to be used

maliciously, capabilities must be unforgeable. In the iAPX-

432, capabilities are recoqnized and *oerated on by hardware

to assure this needed protection. The set of capabilities

accessible to a process at any one time is called the domain

of protection. As a process runs, the domain of crotectLon

will chanoe, The Ideal to be realized is that the domain of

Protection should always be exactly matched to the

requirements of the processy that is, it should contain

capabilities for all the segments that the process needs to

access and nothing more. This satisfies the princiole of

'minimum privileoe' in secure systems Jargon.

The original reasons that led to the desire to

design a computer with a capability based architecture may

be summarized under ruqgedness and security, Ruggedness in

this sense means the ability of the system to survive the

conseauenees of hardware failures or software bugs C41.

29

Security, on the other hard, can be thought Of as ensuring

that access to memory is determined exclusively by the

access riahts of the particular process in question.

There are basically two distinct ways of

Implementing capabilities in hardware. These can be termed

the tagged and Partitioned approach 5]. Ifn the former, all

words in the system carry a 'tag' bit which Plays no part

other than to indicate whether the particular word is a

capability or not. In the Partitioned approach, words carry

no tag, so it Is not possible bY examining a word in memory

to determine whether it is a capability or data word,

Instead, the type of segment is importantp i.e. there mist

be capability segments which contain capabilities and

nothing more, and *data' segments which contain anything but

capabilities. The ±APX 43? uses the Partitioned approach.

Intel's decision to imolement the partitioned

approach causes us to slightly refine the conceot of an

object as discussed earlier, As was previously stated,

objects in their physical form are equated with segment(s).

A combination of an object-based architecture with

capabilities implemented in the partitioned aooroach means

that each object is comoosed of two distinct parts, a data

part and a capability part. Indeed, in the 432 architecture

there are two fundamental segment base types. These base

types are called data segments and access segments. A data

seament can contain anything except capabilities, whereas an

30

access seqment can contain Only Capabilities, Therefore, an

object should now be correctly envisioned as being comprised

of these two segment types. An example of how this Is

actually implemented for some of thie system objects is

shown In Fiqure 2.

processor object

mmimmininmaininm

I' '* '' ' . .. " I I i ''m " I
I " i " I' I I

!-9 --------i I 9mIn----° m---

processor access processor data
seqment segment

(capabilities)

process object

I----------------mI I -------- I
l----------------inI II
I- ----- I I I

process access process data
segment segment

figure 2. Objoct Representation

Summarizing# Intel has implemented capability based

support for memory protection in the 432. These capabilities

can be thouQht of as an address of# or Pointer to, an object

with an attached type describino the classification of the

31

referenced object (e~g. process object, context obJectietc.)

and an attached protection mode (e.g, read only or

reed/write). In the 432, Intel has decided to call

capabilities access descriptors because of their similarity

in concept to pointer implementation In ADA which is termed

an Paccess'. Furthermore, objects in the 432 system are seen

to be comprised of both data seqment(s) and capability

(access descriptor) seqment(s). The data segment of an

object could be thought of as containing information

Intrinsic to the particular type of object. The caoability

segment on the other hand, contains capabilities for all the

other objects It may need to reference. Additionally,

capabilities are seen to enforce the principle of minimum

privilege. PerhaPs providing an important insight into 432

performance, M.V. Wilkes has said E63:

"Comoared with a conventional computer system, there
will inevitably be a cost to be met in providing a
system in which the domains of protection are small
and freauently changed. This cost will manifest it-
self in terms of additional hardware, decreased
run-time speed, and increased memory occupancy. It
is at oresent an ooen questior whether, by the adop-
tion of the capability approach, the cost can be
reduced to reasonable proportions."

4. napratiney vstom SuonaA=

Like the 432 hardware, Intel has created an object-

oriented operating system for the IAPX 432 called iMAX. It

has been desiqned as a multiprocessor operating system, and

conseouently it accommodates any number of running

32

processors. As a result, all synchronization within the

system must be explicit. Furthermore, as the manufacturer

has pointed out E7], the 432 and IMAX are products primarily

intended to be used by original equipment manufacturers in

the construction of their products. Related to this Is the

fact that iMAX does not provide a command language or a

human interface, rather It Is designed to Provide executive

services to user-provided software which makes calls to

iJAX.

Many traditional operating system primitives are

implemented as hardware functions in the 432. In an effort

to elaborate on the relationship between the IMAX operating

system and the iAPX-432 functions, a digression Is in order.

AS pointed out earlier# the iAPX 432 architecture provides a

higher level of functionality in hardware than conventional

computers. Important system management functions are

realized through hardware-recognized representations, I.e.

objects. High level operations on these system objects (see

Fig. [1)), such as sending a message between processes, are

provided as single machine instructions. These features of

the 432 are referred to as the Silicon Ooeratina system.

These features are not In themselves an operating system.

but contribute oreatly to the building of one.

The relationship between IMAX and the hardware might

best be described as cooperation. IMAX doesn't simply run on

the hardware, rather the hardware acts autonomously to

33

provide Important services, such as processor self-

dispatching as pointed out earlier. A good example of the

division of labor which occurs between iMAX and the 432

hardware can be found in storage management. Hardware

defines system objects used for storage management, provides

single instructions that allocate new objects, and sets flaa

bits needed for storage reclamation and virtual storage

management, IMAX will then provide services which will

create and reclaim local storage pools and will orovide

processes which compact storage and reclaim unreferenced

objects.

Probably the most notable Point about iMAX is that

the user may view iMAX as a set of ADA oacKage

specifications, each of which corresoonds to a particular

service provided by the system. Additionally, there is no

distinction between IMAX oackages and user-written packages.

IMAX operations and user operations are invoked in the same

way. There Is no special calling conventionf no 'Supervisor

Call' instruction, as is the case in many current commercial

systems. The effect of this particular implementation Is

twefoll:

1. Users can create subsets of LAX by omitting
unused packaoes.

2. Users can create supersets of iMAX by addina
thpir own packaqes.

34

LMAX also benefits from the 432's capability

protection mechanism described earlier. References for

system oblects can be passed to user processes without fear

of damage or system compromise because the rights associated

with these user process capabilities have been modified by

iMAX appropriately (e.g. read only). User Processes cannot

corrupt these references passed from JMAX,

Like the 432 hardware, iMAX is in a continual state

of change by Intel. Version 1.0, which this thesis worked

with, Is a preliminary version Intended to get potential

users quickly acauainted with It In order to acquire the

ability to execute 4DA programs on the 432. As a result, the

number of AOA packaaes which the user can tailor to his or

her application are relatively few. As advertised, the

followinq services are nrovided by iMAX, V1.0:

1. Configure and initialize a multiple-GDP system.

2. Read from and write to the debugger console ONLY.

3. Create and start multiple user processes defined
at compile time.

4. Communicate between user processes by exchanging
messages.

5. Insoect type, riqhts, and storage information
contained In access descriptors and object
descriptors,

6. Inspect context and process dependent information
In a running proqram's environment.

35

Later versions are supposed to support Attached

Processors which are essentially the means by which the 432

can communicate with the outside world. When this support is

finally Implemented, the current, severely limited 1/O (i.e.

debugger console only) will be replaced bY a variety of

conventional 1/O devices.

8. AFnA LA'4MAGE SUPP1CRT

As was previously mentioned, there was a considerable

amount of Parallel development between the ADA languaqe and

the INTEL iAPX-432, 8oth the ADA language and the 432

architecture address many of the Problems associated with

large scale software development orojects. This resulted in

several architectural constructs which directly support many

AnA lanquage features,

1.rhjeirP TY0liw

The object orientation of the architecture plays a

major role in lar'uaqe support. Every object Is typed by

the compiler or by the hardware to indicate its intended

use. This allows a natural separation of orocedure Objects

from data objects. In addition to *intended use' typinq, the

objects are also classified as to their internal structure.

This structure can be one of two types, access objects or

4ata objects. The access object 1i an array of access

descriptors (to other objects) while data objects are

structured blocks of data information. Access objects

36

--- ~- - - -

contain only access descriptors and data objects contain

only data, This is represented in Figure 3.

access object data object

I I * *
I-r-'' iS

I--I I-----I *I,
V V V

I *5*55

Figure 3. ADA-432 Object Types

As shown in Figure 3, any set of LAPX-432 objects can be

represented by a directed graph containing access object

nodes and data object nodes, This notational convention

serves as a useful model for representinq execution time

objects and their relationships to corresponding ADA

proqrams. Zt is Imoortant to realize that an object can

exist as the subpart of another. oect and yet be loqically

different. Such an object that Is ohysiCally contained

Inside a parent object is tormed a refinement of the parent

, .37

object. The refined objects are physically sub-parts of the

parent object, yet they can inherit the full privileges of

objects, as if they were physically distinct from the

patent. In the case of multiple refinements, they can behave

as If physically distinct from other refinements ot the

parent, This is Illustrated in F7iure 4,

parent

I -> I I child
j----I I

V

I I child
a'--WW

Fiqure 4. Refinements

2. Domain Ohb4@ets - Packaa Obleet!

Common data structures and procedures can be grouped

toqether usinq the ADA vackaqe corstruct, The INTEL iAPX-432

uses a domain object to revresent an ADA package. The domain

object, like a packaq*e is a collection of data objects and

procedure objects (hence it is of type access), This can

best be illustrated by the following example of an ADA

packaqe definition and the corresponding iAPX-432 object

representation shown In Figure 5,

38

. ".7- -

package SIMPLE is
I,,k I Inteqer
procedure ADDCIjk)1 I Domain Object I
procedure SUBTRACT(i,j.k);l SIMPLE I

end SIMPLE
I I I

package body SIMPLE Is # ! s
Procedure ADD(iJ,k) is V V V

beqin I-----I I -I Ii
K :2 i+J; Iij,kI I Droc.I I Proc.I

end ADD; IData I I ADD I SUB I
I codet I code I I code II-- -In I . . I I ... -I

procedure SUBTRACT(i,J,k) is
begin
k :z I.1;

end SUBTRACT;

end SIMPLE;

Figure 5. ADA Packaae and LAPX-432
Object Correspondence

Since objects can be refined, it is possible to refine a

domain object to create domains of a Package with different

access riahts. This mechanism very nicely supports the

public and private access rights defined in ADA. A user is

qiven access to public information by creating a refined

object with access descriptors to a refined domain which

contains only public data.

3, Prne&dur. nbjeets - Praeedures

An IAPX-432 procedure object consists of executable

code correspondina to an ADA procedure. The procedure object

39

--I - - nm l m ...

also contains information required to form the activation

record or context object which is created on procedure

Invocation. Procedures may be invoked In either interdomain

or intradomain contexts. The interdomain context means that

a procedure in one packaqe (domain) Is callinq a Procedure

In another package (domain). Intradomaln procedure calls are

simply calls within the same package.

4, Artivatton Reeards

A block structured lanquace such as ADA can make

efficient use of activation records. The iAPX-432 supports

the use of activation records via context access objects and

context data objects. The context access object represents

local reference variables and the context data object

represents local data variables of the activatior record.

The iAPX-432 instructions 'procedure call' and 'orocedure

return' create and destroy context objects.

One of the important multiprocessing features of the

ADA lanquaqe is the concept ot a task. Tasks are directly

supported in the iAPX-432 throuqh the use of disoatchinq and

communication port objects, The communication port object is

a ,aessaqe queue that acts as a buffer between processes that

may be executina concurrently. It's function is to allow

inter-process communication. A dispatching port is a special

form of a message oueue in which a process object may spend

time waiting for the arrival of an available processor, or

40

where a processor object awaits the arrival of a process,

These operations are performed In hardware which allows for

very efficient Coding of the ADA tasking model.

It may be surmised from the previous discussion that the

language ADA and the INTEL iAPX-432 have several common

foundations. This was undoubtedly Intentional. The

microprocessor is desiqned to be orogrammed usinq high level

lanquaqes such as ADA as the development language. No

assembler Is planned or under development by the

manufacturer.

41

I

IV, RENCM1RK PRfGRAM TTMTNC RrSULTS

As BENCHMARK PROGRAMS

The benchmark programs were obtained, for the most part,

from the CTA algorithms referenced in Chapter II, Section E

"Renchmark Evaluation Description". Some Procrams !rom a

non-CFA related study were also used so that an objective

timing comparison could be made with other processors.

Nothnde TIEad

The proorams were coded In ADA, compiled using the

INTEL ADA-432 compiler on a VAX - 11/780 host computer,

linked on the VAX - 11/790 using the INTEL 432 linber, and

downloaded to a floopy disk via the INTEL asynchronous

communications link, Execution of the downloaded object code

was performed using the INTEL Debuaqer and Execution

software Packaqe operating on a INTEL NOS System 8nO. The

INTEL MD3 system is required to load the executable code

into the INTEL 432/670 system for execution on the iAPX-432

microprocessor. The system setup is shown Fiqure 6.

VAX 11/780 VAX 11/780 MDS-000 432/670

7"'mm ", wa, "at ' 'n7 a,

I I I I I I I I

compile link download execute

Fiqure 6. COS-System Overview

42

-t'4*~-

.74

In order to actively simulate large scale software

development (and to exercise some unique ADA features) all

the coded CFA programs were developed in such a way that the

program specifications were separate from the program body.

The effect of this decision was twofold:

1. Programs could be written and debugged indepen-
dently by hoth authors.

2. The concept and value of using a seoarate Program
specification construct could be demonstrated.

A careful inspection of each benchmark program will reveal

that It consists of three primary parts. These parts are:

1. Package specification.

2. Package body,

3. Main or driver procedure.

The driver routine is needed to initiate a user process in

the 432/670 system. The oroarams were designed so that the

user could control the number of times the benchmark was

Invoked. This allowed for an effective averaging method.

For example, the benchmark could be executed 100,00n times,

accurately timed with a stoowatch, and then the total

elapsed time could be divided by 100,000 to obtain the

average execution time for the procedure. Each program

writes a start and a stop message, including an audible

"bell* to Indicate when to commence and end timing. In

order to effectively isolate the Procedure invocation timing

43

" .

overhead from the benchmark timing, there were usually two

different driver routines with each benchmark program. Each

program, when executed, would request the number of times to

perform the alqorithm in question. This request could come

from the driver routine or from the benchmark procedure. If

It came from the former then the time measured Included the

time required to invoke the Procedure. A timing request from

the benchmark procedure included only the timing required to

perform the algorithm. The difference in the two times was

then a measure of the procedure Invocation overhead. Note

that this method would not work with a recursive procedure.

rurther discussion of these methods and the mechanics

involved can be found in Chanter V. "CDS 432/670 User

Evaluation.".

The ADA-432 compiler (Version 1,0) does not support

the full ADA lanouaqe. The manufacturer has added some

extensions to the compiler but it presently lacks many

Important ADA features. Some of the significant compiler

limitations are as follows:

1. Tixed point and floatinq point types are not im-
plemented.

2. Tasking, as defined in the Reference Manual for
the ADA Programming Language, is not implemented.

3. Array operations, such as concatenation, assign-
ment, and boolean ooerations are not implemented.

44

'. --

4. Dynamic arrays and dynamic strings are not imple-

mented.

5, Run time checks are not operational.

6. Exceptions are not implemented.

7. Record representations for records containing
fields of type access are not implemented.

Although the above compiler limitations are rather severe it

was still oossible to code several of tNe CFA algorithms in

ADA-432 and most of those coded could oe executed on the

iAPX-432. The lack of a hardware interrupt orevented many of

the CFA benchmarks from being coded. Future releases of the

432/670 system are supoosed to provide the facility of an

interruot throuah the use of an attached orocessor. This

feature was not available in this release of the 432. A

short descriction of each of the executable procrams

follows. The complete source code can be found in Apoendix

C.

a. Character Search

This orogram searched a given string for the

occurrence of an argument string and returned the location

of the argument strinap if It was located. The program was

coded from the algorithm in the original CFA study. The

algorithm is listed in Appendix 0. The strings were read

into a variable of type STRINGSO, which is an ADA-432

predefined type required for text I/O. The strings were

then decomposed into individual characters and assigned to a

45

I by 256 character array. This method was necessary because

of the primitive state of the current ADA-432 text I/0

package. The program was made Interactive to allow for many

searches to be performed in any given debuogina/execution

session, The data structures, calling conventions, and a

sample expected result are shown in Figure 7.

Search Strina:

I m t t I t t t t In t t ! t m Ine! t t t tmm t I

tMlolnldtalyt,t Jtulniel 17tt htt Itl917161
I !I II 11 P III II lIlI I I

1 2 3 4 5 6 7 8 9, 22

Argument string&

I-i-I-I

Idlalyl

123

Search length := 22

Argument length in 3

SEARCH(Search.lenqthArg.ilengthSearch.strArg.lenploc)

expected result loe a 3

rFqure 7. Character Search

46

j ___

Two versions of the program were used. One

version Included the time required to Invoke a procedure

While the other version did not Include procedure invocation

overhead, As will be shown in the timing results section of

this chapter, procedure invocation is expensive.

be -Quicksort

This Program performed a quiCksort on a given

array of records, The program was coded using the CFA

quieksort algorithm In APendix D, The records sorted

consisted of an Integer key field (to be sorted on) and a

eharacter field associated with each key, A Pictorial

representation of the data structure and the sorting process

and calling convention Is shown in Figure 9.

Arrayl Array2

1 4 1 D II I I A I

I m I I m

1 5 1 F I SORT 1 3 1C I
I- -I- - Im --- > IMM.I M

1 2 181 1 4 1 D

1 3 1CI 1 51 EI

Calling convention: SORT(Arrayl,Array2)

expected result : arrayl Is sorted on
the Integer field
to make array2,

rigure 8. QuicKsort

47

The program was written to act interactively with the user

to allow -for several different runs per debuqqing session.

Two versions of Quicknort were used. one was an Iterative

sort, the other a recursive sort. The timina results show

that the procedure invocation overhead of the recursive sort

was significant.

C. Hashtable

This procram located the position a key would

occupy In a hash table. An example of the data structure

used and the calling conventions are shown in Figure 9. The

alaorithm for this program was obtained from the second CFA

study by Dietz[1] and can be found in Appendix 0.

TABLE
HASHSCey)-- ---...

v

calling convention:

position :I HASHES(key

Figure 9* Hashtable Data Sructure

and Calling Convention

Since this program used a function, there was only one

version written. The procedure invocation overhead is

Included In the timing results,

46

*4

do Digital Communications Processing

This program sent a message to a given output

buffer, The algorithm was taken from the second CFA study by

Dietz 1] and is located In Appendix D. The data structures

used for the Program and a tyolcal calling convention are

shown in Figure 10,

msQ.otri I I A pointer to a message record,

messaqet
l------------I----------I---------n. I

I 4 I 3 I This isa message II------------I---.nw . i- .. -I

I I I
destination connection message data

destination.tbl buf.tbl butfer.array

1 I i I

21 1 2 1 2This is al
I I I message I

I I MM I IMM*in WMIn 1
3 1 31 2 1 31 1

a a a

I I I
destination indexes connection contents ot
destination.tbl Indexes the Indexed
which then points the huf.tbl. buftbl used
to a specific to locate the
buf.tbl array, approoriate

butter.array
position to
out message
data.

calling convention:
FORWAPD(destinationconnection,msg.ptr)

Fqure 10, Digital Communications

49

-..- - .. . li-- 7 -...

The program Interactively queried for the message

destination, message connection and the message text. This

allowed for several sample runs to be performed during a

debuqqing session.

e. memory Usage

A close Inspection of the ADA source code in

Appendix C shows that many of the data structures are quite

small. This is intentional, and necessary. Early in the

course of this investigation It was discovered that programs

would compile correctly but execute in an unpredictable

manner. The problem was found to be in the amount of heap

memory allotted to a user process in Version 1.0 of the

i"AX-432 operating system. The memory allocated was not

extremely large, and could often be used up without any

indication to the user what was wrong. The Program Eat-

Memory was written to demonstrate how fast memory was used

up. The program was fairly simple In that all it did was to

create an array of 50 characters and a pointer to the array.

This program was also written in two versions, one that

created the arrays recursively, the other iteratively. The

expense of context creation In a recursive procedure was

shown to be very great. Only nine recursive calls could be

made before the program used all of the available memory and

the system crashed. The Iterative version did much better

and 199 separate data structures were created before all

available memory was exhausted. Of particular Interest to

50

the user is that there is no Indication as to what is wrong

when the memory Is used up* The display is "blank" and all

efforts to use the debug facility resulted In a system

response of 'no current orocess'. Zn summary, the user must

laboriously inspect the program object code (the MAP file)

and arbitrarily set breakpoints in the code to determine

what the cause of the fatal error is. This problem is

elaborated in Chapter V of this thesis.

3e CEA ded hut aot Fxernad Prngrams

Two programs from the first CFA study were coded in

ADA and executed on an ADA-ED compiler to check for correct

program execution. These orograms were:

1. Linked List Insertion.

2. Runqe-Kutta Inteqration.

Unfortunately the present ADA-432 compiler does not support

the floating point data type necessary for the integration

proqramy nor does the ADA-432 compiler support records witn

access types, which is necessary for the linked list

insertion program. The ADA source code for these programs is

located in Appendix C for easy reference to allow for

possible conversion when a more complete compilir is

released.

4, MNan-CF Rolaed Pragoams

3Snce the CFA study never actually timed the

benchmark orograms in terms of execution speed, it was

0 t

. • - --- ._

decided that a physceal comparison of the LAPX-432 with

other processors would be useful. A previous evaluation of

the IAPX-432 by Hansen (3] In June 1962 provided three

convenient ADA programs to use. These programs were obtained

from the Computer Science Department at U.C. Berkeley,

modified slightly to conform with the current ADA-432

compiler requirements, and then executed and timed on the

432/670 system. The three programs used were:

1. Search: Search a 120 character string for a 15

character sub-strinQ.

2. Sieve: Compute prime numbers.

3. Acker: Calculate Ackerman's function with argu-
ments 3 and 6. This is a recursive computation
recuirina more than 170,000 procedure calls.

The complete ADA source code for the programs can be found

in Appendix C. The timing results are summarized in Chapter

IV.

B. TIMING PROCEDURE AND RESULTS

All the CFA programs were written so that the user could

write the arguments from the keyboard and select the number

of times the program was to execute. Dividing the total

elapsed time by the number of times the prooram executed

gave an average value of execution time for the particular

benchmark. Procedure invocation overhead was subtracted from

the non-recursive procedures and both timing valu]es are

shown in the following discussion. In addition, the

52

; I

parameters used and the number of executions are also

listed.

Is CFA Renehmark Program ReaIltL.

The following sections describe the parameters used

for each benchmark executed, the number of executions

performed, the total elapsed time (in seconds), and the

calculated execution time for a single run. Note that the

program name corresPonds to the ADA-432 source code for the

respective Program in APaendix C.

a, Character Search

The parameters used in this benchmark timing

weret

SEARCH STRING : Monday, June 7th, 1976

ARGUNENT STRING i day

SEARCH LENGTH 1 22

ARGUMFNT LENGTH : 3

Program Number of Elapsed time Time
name executions seconds msec

CHARSI 100,000 31596 3.2

CHARS2 100,000 142.3 1.4

Fiqure 11 Character Search Results

53

....-- --- , I , . .. " " iik m llE mO-ook -:

The program CHAR31 included the time required for 100,000

procedure invocations whereas CHARS2 did not. For this

benchmark, Figure 11 shows that the procedure overhead was

more than twice the time to perform the alqorithm!

b. QuIcksort

Two forms of the.quicksort algorithm were used,

one recursive , the other iterative. A twenty element array

was sorted. The worst case array was chosen, that is, all

the elements were Inversely ordered. Figure 12 represents

the parameters pessed; unsorted arrayl was passed to the

procedure and the sorted arraY2 resulted.

arrayl :

20 19 18 17 16 15 14 13 12 11 10 9 9 7 6 5 4 3 2 1

array2 :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 19 20

Program Number of Elapsed time Time
name executions seconds msec

mmmccmccmmc... mccc mmmmccc mcc. mcoc mmmccc mmccc.. ccc

QUTCK1 1000 55.8 ,56
(recursive)

QUICK2 1000 40,5 941
(non recursive)

Figure 12. Quicksort Results

54

---------- -

As *Xpected, the recursive procedure took Considerably

longer to execute. This Is not too surprising since the

overhead of procedure invocation is included.

c. Hashtable

The hashtable alqorithm was implemented as a

function. The timing results therefore include the function

call overhead. This functlon used the sample hash table from

the CFA study and a key value of 41 was used as the aroument

of the function. The hashtable's Initial values, calling

Convention, and timing results are shown in Figure 13,

- - - - - - - - -- - -- -- - -m- - - --m.- --cm c mm mm .

key I 0 193 11 1035 1035 183 86 0 193 183 I

index 1 0 1 2 3 4 5 6 7 8 9 I

position is HASHES(41)

Program Number of Elapsed time Time
name executions seconds msec

HRSH1 100,000 252 2.5

Figure 13. Hashtable Results

d. Digital Communication Processing

This procedure sent a thirty character message

to the output buffer. Fiqure 14 represents the data values

passed to the procedure for processing.

55

moq.ptr I I

message

10 I 1' I This is a thirty character msl
l----e-----l-----m---l-ma- mama-m---amm -ma ---- I

destination connection messaqe data

Program Number of Elapsed time Time
name executions seconds msec

DCOM1 100O00 286.9 2,9

DCOM2 100,000 201.6 2.0

Figure 14. Digital Communication Results

In this case the procedure overhead was nearly one third

that of cerformina the aloorithm.

2. Mnn crA Proaram Results

An earlier study of the 432 was performed by

HansenC3] at U.C. Berkeley, Several benchmark orograms were

coded and executed on various machines and in several

different languaqes. A summary of those results Is shown In

Fiqure 15,

56

I

machine I language I program
I Iname

I Search I Sieve I Acker

432 1 ADA 1 14,2 1 3200 1 260,000
4 NHZ I I

8086 1 PASCAL 1 7.3 764 1 11100
5 MHZ I I I

A8000 I PASCAL I 1.3 1 196 1 2750
16 HZ I I I I

VAX I PASCAL 1 1.4 1 259 1 9800
11/790 1 (VMS) I I

I I All times are in msec

These results are from a study by HANSEN(3]
which were performed on a 432 version 2. The
processors manufacturers were : 9096 - INTEL,
68000 - MOTOROLA, VAX 11/780 - DEC.

Figure 15. Previous Mon CFA Timing Results

An attempt was made to duplicate the results ftom

the earlier study by executing the benchmark programs on the

CnS 432/670 system. The orograms that were received from

U.C. Berkeley would not compile under Version 1.0 of the

compiler supolied with the 432/670 system. No parameters

were passed in using these tests, they were included in the

code. An examination of the ADA source code in Apoendix C

will also reveal that no effort was made to separate program

body from program specification. The results from our

timing are shown In Figure 16,

57

t_

--- - --- -- -- - -- - -- - - -

machine I language I program
name

I SEARCH I SIEVE I ACKER

432 I ADA I 21.7 1 56.4 1 2000
8 MHZ I V 1.0 1 1

II I

Figure 16. Pon CFA Timing Results
ADA Version 1.0

Extreme caution must be exercised when comparing these

values to the previous study. Specifically in the case ot

the SIEVE and ACKER orograms. The limited stack heap

available prevented Implementina the code exactly as done by

UeC. Berkeley. The results Ot the SEARCH benchmark are very

interesting. The three proarams received from U.C. Berkeley

required some modification before they would compile

successfully on the Intel ADA-432 comoiler. 'ore

importantly, our results generally include the time required

for procedure invocation. In some instances, notably our

algorithm impLementing the character search, we also have

results which do not include procedure invocation overhead.

Lastly, whereas we used the concept of packages in arriving

at the coding o our benchmarks# the UeC.Serkeley programs

58

did not. These differences are easily seen by referring to

Appendix C,

It is not clear whether the results by HansenC3)

Include procedure Invocation overhead. However, since the

432 used in this thesis had a 5 MHZ clock rate (wLth an 9

MHZ system clock) as opposed to a 4 MHZ clock rite in the

Hansen study, one would suspect that running the same

orooram with the same data would qive at the least,

comparable results. To our surprise, this was not the case.

Initially, we timed the SEARCH algorithm sent from Berkeley

was is". This was timed at 23 milliseconds, quite a

difference from 14.2 in the Previously cited study, We then

modified the Berkeley algorithm so as not to include strinq

initialization each t.me. Since our first timing was so

different from the Berkeley study we thought that string

initialization should not be included in the results. The

second test was made by just timing the Aerkeley search

function alone. This included procedure invocation overhead.

The result Is listed In Figure 16.

C, SUMMARY OF RESULTS

The data in the previous figures pertinent to the CFA

studies, Is summarized in Figure 17. It is believed by the

authors that the following times represent realistic

execution speeds available to a user performing in the

workinq environment of the present 432/670 system.

59

Program execution speed
description msec

Character Search 1.4

Ouicksort (recursive) 0.56

GuLcksort (non-recursive) 0,41

Hauhtable lookuo 2.5

eemecmqeemmccmccmmmccmmemmce~moememc.ne

Digital Communication 2.0

Figure 17. Execution Speed Result Summary

The data reported above does not Include the procedure

invocation overhead, with the exception of the recursive

QuiCKsort and the function Hashtable Lookuo. It needs to be

emphasized that the numbers are only 'rules of thumb' that

should be used In describing the execution speed of the

LAPX-432. Compiler differences, and just as importantly the

argument used In the algorithm, can significantly affect the

60

execution speed. ror example, It the character string

searched for in the Character Search Is near the beginning

of the search string vs. near the end of-the search string,

the results can very by as much as a factor of ten. (The

lenqth of the string searched also plays a signiflcant role

In determining execution time). The exact arquments Passed

and the calling conventions used have been described In

detail (Chapter Iv.A) for future reference and comoarison.

The values in Figure 17 represent an aPoroximation to

the time required to perform a given algorithm. In order to

cross check and verify the timing results, an effort was

made to time a single JAPX-432 instruction. This was

accomplished by writing two test orograms, TIO0 and T101,

which differed by a sinale line of source code. That Is,

TiQO executed *A :28 CO one hundred times and T101

executed "A ta B - C" one hundred and one times. An

examination of the MAP file (the compiler output) revealed

that the code differed by one statement. That statement was

Sub..i", an iAPX-432 mnemonic for subtract integer. The time

difference between the two programs could then give a figure

for the execution speed of the single sub.L instruction. The

measured speed could be directly compared with a previous

study E83 which timed individual instruction speeds on a

4MHZ LAPX-432/100 Verslonl. The results are summarized in

Fiqure 14.

61

Program qumber of timeCsec) difference
name sub.i executions

TIO0 1 40vO00v00 I 777.8 5

6.,90

T101 1 40l400,000 1 794,7 I

execution time
sub.i = 6.90 / 400,000 = 1,73 X 10-5 sec

SUb.i SUb.i
Version I 5MHZ Version 2 5MHZ

estimated cycles measured cycles

77 86

Estimated cycles are from an earlier study [8)
on a 432/100 system and represent a Projection
based on measured results, Version 2 measured
cycles are the result of the product of execution
time and the clock rate.

Tiaure 19. Tndividual Instruction Tliming

As can be seen in Figure 18, the measured speed of the

sub.i instruction in this study is in good agreement with

the previous results. The differences can possibly be

accounted for in the fact that two different versions of the

microprocessor are being compared.

An attempt was also made to eliminate the effects of

"dead time", or "time out" in the execution of a Proqram.

This time out is the oeriod during which a process is

suspended while the dispatching port Is checked for another

process to be assigned to a Proecessor. Normally a process is

62

!_ _ _

given a default value of 0.2 seconds of dedicated processor

time between time outs. Since only one program was executing

at a time, it was not believed that the program timing

results would be significantly affected by the dispatching

port check overhead. To verity this, a modification was made

to the INTEL supplied ADA package PSERP.MBS, The

modification increased the time slice from 0.2 seconds to 2

seconds. Similar oroqrams that differed only in the time

slice period (0.2 seconds vs 2 seconds) executed within 0.5

seconds of each other over a total execution time of 200

seconds. This confirmed that the time slice period between

dispatching port checks was not significantly Interfering

with the benchmark results.

63

_ _ __ __ _
*.. .. 1.=.

V, nXl 412/670 USER EVALUATION

In the process of working on this thesis both authors

felt that a section devoted to constructive criticism of the

INTEL Cross Development System would be appropriate. By

Cross Development System we mean the INTEL ADA compiler,

linker, downloading and execution software and corr~soindinq

documentation. Additionally we conclude with some of our

thoughts on ADA. We understand that many of the problems

addresied here are not permanent, and very likely many of

the items we have found to be mysterious or irksome may have

already ben corrected in a later release.

The INTEL 432/670 system can be conveniently divided

into four major components:

1. Compiler.

2. Linker.

3. Downloading and Asynchronous Communication.

4. Debugging and Execution.

The following discussion will treat each component in turn,

stating what positive and negative attributes we found.

A. COMPILER

The ADA-432 compiler does not support full ADA. The

language limitatinnu are listed in Chapter IV. Of these, the

64

-7- 7:

lack of floating point number support was felt to be

extremely burdensome to this thesis. A great many of the CFA

measures are focused on floating point manipulation, as are

many real world applications. At the machine level, the

IPX-432 has outstanding floating point supoort, such as

multiply, divide, and square root machine instructions. The

lack of compiler support for floating point operations

prevented us from testing programs in an area where the

IAPX-432 should provide outstanding performance.

The present text 1/0 package provided in the ADA-432

compiler can best be described as primitive. The user is

given a choice as to how messages can be input and outout to

and from the screen, that is, the message can be 1, 10, 20,

30 or 80 characters long, and of no other length. Countinq

the number of characters in one's input and output text

significantly detracts from the art of programming.

Compilation of a user's ADA source code Is performed on

the host VAX 11/790 and it proceeds at a respectable rate,

the turn around time was always less than a minute. The

number of compilation errors is displayed at the end of

compilation, however the reason for the errors is not. To

evaluate the compilation errors, INTEL has supplied a very

useful report facility which is an image of the original ADA

source code with errors identified by a diagnostic message

and code number. Unfortunately, many of the error code

65

numbers in the INTEL reference manual just repeat the same

diagnostic error message, with no further elaboration.

There was one very frustratina aspect of the compiler

output to the screen. That Is, after compilation is

complete, there is no message as to what unit was lust

compiled, Since the compiler output oftem scrolls the

screen, this leaves it up to the user to remember what unit

has just been comoilpd, ADA Programs consist of many units,

and in more than one instance we found ourselves recompilinq

a unit that had just been compiled. A very simple solution

to this would be to output the compiled unit's name as the

last line of output along with the error messages.

As with most new comoilers, there are some errors. The

more siqnificant of these are the type that allowed

compilation of code representino features that are not vet

implemented. For example, array assignments are not yet

operational, yet a source code program containing them

compiles with no error messaqes. Execution, as expected,

does not occur. Post of the ADA restrictions are well

documented in the error report file# however, it only takes

one or two which are not identified to cause sioniticant

problems in debuoging a program. At least one type of error

crashes the comoiler. That is, a program which needs a

large data structure may never compile and furthermore the

user will never be informed as to the reason for the

failure. This problem occurred with the following program

unit:

66

type Item is
record

key z integer;
data : characteri

end record;
type array.one is array(1..2000) of item;
me

begin

When array.one had 2000 elements the program unit crashed

the compiler. Lowering the number of elements to 200

allowed satisfactory compilation,

3, LINKER

The linking process of a users Program is tedious. A

separate link program needs to be written for each program

that is to be linked, The time to link a oroqram is

considerable, usually in the ranae of two to three minutes.

Many default parameters occur in the linking process which

can be changed by directives in the users link program. No

problems were exaerienced with the default values, but

depending on a default value for proper Program execution

can easily lead to difficult debugging errors in future

proaram maintenance. In our opinion all the directives

should be required to be explicitly stated.

The linker has at least one ambiguous characteristic.

After a successful linkage, a message is written to the

67

screen which states "LINKAGE SUCCESSFUL". This message may

also be accompanied by one or more warning messages. In

every case that we experienced, it a warning message

occurred during linking then the program would not execute.

The messaae *LINKAGE SUCCESSFUL" can be very misleading.

C, DOWNLOADING

The orocess of downloading Programs from the host VAX

11/780 system Is Probably the bigqest drawback to the

432/670 system. Since the iMAX operating system is part of

the downloaded object tiles CEOD), the tiles reauirinq

transfer are quite large. A typical small ADA program (less

than 100 lines of source code) takes nearly twenty minutes

to download at 2400 baud. This makes program changes very

time consuming. Even if a 9600 baud line were used, the

entire process ot correcting source code, re-comoilinq

affected modules, and then downloading them, requires a

significant amount of time. There is a program called

UPDATE for merging a recompiled module of a program with

the existing EOD file. The smaller re-compiled module is

much faster to download, about seven minutes, but the UPDATE

program takes about 3 to 4 minutes to execute. The time

saved was not considered significant to warrant use of the

UPDATE feature, Especially since a new link program would

have to be written each time It was desired to recompile a

portion of a orogram.

S i _ ____ ____ ____ ___

Do DEBUGGING AND EXECUTION

Our impression of the debug facility was favorable. It

allowed for access to the program structure at an assembly

languaqe level. This did not allow any type of assembly-like

proaramming but did provide a means to locate errors in our

source code by mapping the error location to a source code

statement number. A very useful utility Is the LOG proqram.

This allows everything that was input or otitput at the

terminal to be logged for future reference, The debug

facility could be made much more user friendly by

Implementing the ADA exception features. At present, the

lack of exceptions means that run time errors may not be

reported, end Indeed may cause the system to crash with no

indication to the user as to the cause. An example of this

occurred when one of our oroqrams attempted to index an

array outside the declared array bounds. No error messages

were reported, and the system crashed.

The execution of a program was difficult to initiate.

The following sequence of commands represents the minimum

time required to execute a Program after the power is turned

on and the iSrS-ti operating system is booted, The times are

approximate and they depend on the size of the program that

is going to oe executed.

69

a n n

command time required

RUN WORK trO: .5 min.
RUN DEB432 I min.
INCLUDE DEB432.TEM I min.
INIT I min.
DEBUG auserprogram" I min.
START

Once the system debugger is loaded (once per session) things

proceed a little taster. Only the last three commands of

rNIT, DEBUG# and START are recuired Per program.

E, ADA IMPRESSIONS

One of the many interesting facets of working on this

thesis was the exposure to the new DOD language ADA,

Inasmuch as our use of ADA was limited to the benchmarks in

this thesis, plus the fact that we dealt with a compiler

which did not fully implement the language, our Impressions

are limited. Fowever, the features of ADA we did exercise

left us with some favorable Imaressions.

The feature we used and liked most was the ability to

separate the specifications of a program from the

corresponding body of the program. The packaqe feature of

ADA was used to do this. A specification package is simply

the formalizing in ADA of what the interface of the program

is to be, i.e., the 'what* of the program. The body packaqe

on the other hand is the formalizinq in ADA of the manner in

7n

which one plans to Implement the program, L.e.e, the 'how' of

the program. The contribution of this separation Is

twofolds

1, Given a specification package, a programmer is
free to Implement the program In the manner he or
she Sees tit, so long as it satisfies the specif-
ication, or interface,

2. Users of a particular proqram or programs need
only be given the specification package in order
to discern what the particular code can do for
them. The "how' of the code, or the body Packaqe,
need not concern them.

Using this technique in very large software projects

should have a siqnIficant effect on software development and

maintenance, In our small scale projects the separation of

soecifIcation and body allowed for easy parallel development

of the benchmark programs. The acceptance of ADA by DoD

computer personnel could be seen to lead to:

1. The arowth of software libraries with specifica-
tion packages as the user interface to the li-
brary.

2. Greater productivity amonq programmers, For in-
stance, supoose a decision is reached on what a
Particular piece of software is to do. This
*what" is formalized In ADA, and qIven to the
proqrammerCs). The programmer is now free to
trinn all of his or her abilities to bear on suc-
cessfully implementing the body, or the "how" of
the Piece of software.

Both of these abilities are generally regarded to be very

worthwhile, something which up to now has been pursued with

no great degree of success. Supporting and thereby

71

facilitating this feature ot packages Is the separate

compilation ability of ADA# while still enforcinq strong

type-checking of Interfaces, That Is, making sure that

parameters In the body package are of the exact same kind as

those delineated in the specification, which may have been

compiled some time before actual coding was ever begun on

the body,

72

In its present state the INTEL Cross Development System

(CDS) Is very much a development tool, Areas which we feel

could be changed to Improve the user friendliness of the

system have oeen presented In the previous chapter.

As an execution vehicle for the ADA language, the

processor seems especially well suited, However, the

Incompleteness of the compiler did not permit us to

rigorously exercise the 432 as much as we wanted to. Though

the 432 and ADA seem especially well matched, it Is not

reflected in program execution speed. An object-oriented

architecture, which also Incorporates system management

facilities in hardware, undoubtedly must have some

drawbacks. In this version of the 432, this was

unfortunately reflected in execution speed. As an aside,

when the compiler comes to support floating point

operations, benchmarks which exercise floating point

manipulations should Provide some interesting results. AS

elaborated previously, hardware support for floating point

operations In the 432 are outstanding.

The lack of a hardware interrupt is a handicap that

should be capable of being overcome through the use of the

attached Processor. This feature was not operational on the

432/670 system and therefore could not be tested.

73

_____ _...

.

_.
.. .. i -..

The timing performance of the system, at first glances

does not present a very favorable impression. The benchmark

programs that were compared with the previous study by

Hansen[3] confirmed that the 432 is slow In it's execution

speed. Execution speed is but one of many measures of any

computer architecture. It Is, howeverp a measure which

readily lends Itself to numerical analysis as opposed to

qualitative features which do not. This subjective

qualitative category can include such items as the amount of

fault tolerance and protectior available.

The multiprocessor capabilities of the 432 provide a

case study In some of the issues which must be addressed by

any system using multiprocessino. Moreover, the system in

general oermits one to analyze the more kasic concepts of an

ooeratinq system. Processes, inter-process communication,

readyp running, and blocked states are all generic terms to

the architecture. Any study Of the processor's architecture

cannot help but to Provide an excellent insight into these

concepts.

Finally, the architecture has been designed to be

programmed In a high level language only. As the compiler

inefficiencies are removed and the cost of procedure

invocation Is lowered the 432 should show a marked

improvement in it's overall performance.

74

APPENDIX A

HARDWARE DESCRIPTION

This theiI used a modified INTEL MDS SYSTEM 800

Interfaced with the IAPX-432 execution vehicle, This setup

reouired a special circuit board to allow communication

between the MD3 00 system and the 432/670. The chassis

name, slot number, and board number of the system components

used in this evaluation follow,

Card cage number to circuit board Identification

MD3-800 board description:

1,

2.
3.
4.
So RPB-96
6,
7,
B.
9o

10.
11.

12.
13.
14.
is.
16.
17. 432 IP INTEL 432/670 172080-OO6-rev H

S/N-xp-OOg98
18.

432/670 board descriptiont

1.

2.
3.
4.

75

So MEMORY INTEL 112340s,004 REV C 112354-001 REV c
3/N 000279

6. MEPORY INTEL 112340-004 REV C 112354-001 REV C
3/W 000262

7. MEMORY CONTROLLER INTEL 172075.005 REV E
3/W -xv-000033

8, GDP INTEL 432/601 005 REV r s/N-xp-000107
9. GDP INTEL 432/601 P-006 REV H S/N-XP-000104
l0sGDP INTEL 11/16/02 432/601 MF-005 REV r'

S/N-XV-000095 MD-17-0003
ill
129IP..LXINK INTEL 432/603 172028-004 REV E

S/N-XP-000-227

76

APPENDIX B

OPERATING SYSTEM MODIFICATIONS

The iMAX-432 operating system supplied with the 432/670

was not compatible with the hardware configuration.

Specifically, interface processors are not yet supported,

even though tne iMAX-432 operating system Is configured for

them. This necessitated a change to the ADA oackage body

that describes the system processor configuration. The name

of this packaqe is PSORS.MBS. The code referring to the

number of processors and interface processors In the oackaqe

body PSORS.MBS must be changed to reflect the current

physical state of the 432/670 system, For a three GDP board

configuration with no IPL boards, the PSORS.,BS would

include the following description:

-- Define GDP boards Present
package Psort is new GDP.,Def(psor.,num => 1);
package psor2 is new GDP..Def(psor.num *> 2);
package psor3 is new GDP..Def(psor.num 2> 3);
processorl: processor retypes psornlosor;
processor2: processor retypes psor2.psor;
processor3: processor retypes psor3opsor;
-- Define empty slots
processor3: constant processor := null:
processor4: constant processor :a null;
processorS: constant Processor := null;

A complete discussion as to now these changes can be

Incorporated in the PSORSMBS package can be found in

Reference 7,

77

APPENDIX C

ADA SOURCE CODE

All of the benchmark Proqrams that were coded in ADA

follow. Most proarams are composed of three parts. That is,

a package specification, packaqe body, and a driver or main

routine. The respective oarts are labeled accordinqlv. The

programs obtained from U.C. Berkeley are composed of just a

single main routine. For easy cross reference the program

name and the corresponding benchmark program are listed

below,

program namel program description
inineinm lleininm lj *. inininineilQ W in ininininine l

CHARSI : Character search with procedure
overhead,

CHARS2 : Character search without procedure
overhead.

QUICKI : QuicKsort iterative

OUICK2 : Quicksort recursive

HASHI : Hash function

DCOMI : Digital Communication with procedure
overhead.

DCOM2 : Digital Communications without orocedure
overhead.

MEMI : Recursive memory test

MEM2 : Iterative memory test

SEARCH : U.C. Berkeley character search

STEVE : U.C. Berkeley prime numaer generator

ACKER : U.C. Berkeley Ackerman's function

7@

In addition to the programs above , two other programs were

coded In ADA but were not executed due to compiler

limitations, The Punge-Kutta Intearation was coded and the

source code appears under the program name RUNGE, Soe of

the Proqrams were extensively tested under on ADA-ID

interpreter. The linked list insertion proqram was written

and tested In ADA-ED and the source code for 1t is under the

proaram name LINK, The reader Is warned that these two

programs, RUNGE and LINK have NOT been tested under ADA-432

and Some modifications may be necessary to qet them to

execute.

79

a .

-CHARS1 package svecification

-This is the ADA soecification oackage for the
-CFA character search bemchmark.

-- CHARS1

oackage SCHAR is

S ubtvoe subint is integer ranae 1..256;
tvoe txtarray is array(1..25b) of character;

a rrayloarray2 : txtarray;
orocedure ROFIL;
orocedure SEARCH(Srchlenparle, : IN subint;

arravl,arrav2 : IN txtarray;
lec : OUT subint);

end SCHAR;

-CHARSt oackage body

oraogma environment("ACS:TEXTIO.MLE","INTIO.MSE",

0SCHAR.,MSEO);with text+-io,intio; use text'@ioointio,ascii;
oactage body SCHAR is
orocedure RDFIL is
line+-ofinout : stpinq8O;
char :character;
i,i integer;
begin
skiv+-imin;
new-l ineo;
out+.line*30("Enter Sreh-strnQ, $ ends0.");
i :I

while i < 256 loop
line-of4inout := Get#.ine+-8O()
exit when line+iof4.inout(1) = S';

for j in 1..80 10o0
exit when lime+.of4.inout(j) = and
lime*.ofinout~j+1) = I'

arrayl(i) := line*-of..inout(j);

end looo;

fill______array_______2

7 -0

new*l ineo;
outi-lime.3O(*Emter Srch-arq, S ns...00$
i := 1;
while i < 25b loop
line4of4inout := Get'line.80()
exit when line#-ofo'inut(1) =I,

for j in 1..80 loop
exit when lineeof4inout(j) = and

1 i e- f-i o t j l =.-0

end looo;

-check the array's contents

new'- lineo
for i in 1..80O looo
out (arrayl1(i))

end looo;
new'l ineo;
for i in l..80 looo
out (array2 Ci);

end loop;
out4.iinel-1O("end RDFIL)

end RDFIL;
procedure SEARCH(srchleniparalen :IN imteaer;

arrayl,arraY2 : III txtarray;
Toc : OUT intecer) is

i,j : inteqer;
beoi n

while 1 <= srchlen loop
if arrayl~i) =array2(j) then
if j+1 <= argien then

ii1

else
lbc *= i-i;

end if;
else

end if;
end 1000;

end SEARCH;
end SCMAR;

CHARSI driver routine

Pragma envi ronment (UACS:TEXTTO.MLE",WINTIO.MSEW"SCHAR.MSEU,
*NAIN.MSE");

with text*'iouintiopsChar; use text4-io,intio,sc'har,ascii;

-- ROFIL and SEARCH contained in the same oackage
-- rTiming also includes time fo~r crocediure
-- invocation.
-- 14~ Oct. 1982

oa-ckaqe body USER4PROCESS#-1 is
orocedure MAIN is
i,locpsrch.Ienath,srche-araptimer4-looD inteaer;
forever :boolean :=true;
answer :character;

begin

while forever looo

-initialize the arrays

for i in 1..256 looo
arrayl~i)

end looo;

-get the search arguments

newel ineo;
out'-30("Character search G=Qui ts.
get (answer);

exit when answer =$GO;
RDF!L;
newel ineo;
out*30("Lenoth of string to search?...");
qet (Srch4'i enqt h);
flew-l ineoi
out.s30('Lenoth of string to search for");
get (srch-earq);
newi lineo;
out.-30("Number of looos to time*.....9.");

get Ct iffer41 oo);
new*1 Ifneo;
out*2O(" Start of Search....8)
out (BEL);
for i in 1.. timer-l1ooo looc

end looo;
out (BEL);
new#-1lineo)
oute.-20(uemd the search.e...);
mew-I ineo)
oute-1O("Location N)

out (1oc);
skiW'"line;

end looo;
end MAIN;

end USER*.PROCESS*fl

-CHARS2 Package specification

oackage SCHAR is
tyoe txtarry is arrav(l..25 6) of character;
arraylearray : txtarrav;
Procedure ROFIL;
Procedure SEARCH(srchlenparglen : IN integer;

arrayloarrav2 : IN txtarray;
loc : OUT inteqer);

end SCHAR;

-CHARS2 oackaqe body

-- Timinq oromots in the body of the search orocedure

oraqn'a environment("ACS:TEXTIO.MILE","INTIO.mSE",
SCHAR.mSE");

with text*iointio; use text4-ioointiorascii;
package body SCHAR is
orocedure RDFIL is

line4-of4,ifout : strinq8O;
char :character;
i,j :inteqer;
beqin

skio4-1 ine;
mew4-l ineor;
outElineq.30(*Enter Srch-strna, S ns....

while i < 256 loop
Iine4-of4iflout := Get+-line*8O();
exit when lineu-oit4inout(1) I'

for j in 1..80 loop
exit when limeoo'linput(j) ''and

line~ofq-inout(!4I) = ' '
arrayl(i) :=linef-oft-inout(i);

en looip;
end loop;

-- fill aeray 2

newel ineO,;
out#-line-3O(*Enter Srch-aro, ens.*.*)
f :z 1;
while i < 256 10o0

8L1

-9..-- -- -

lime*-of#-input :2Get4-linet.8O()

exit when line*-0f-inout(l) = 'S';

for 1 in I.-SO 000o
exit when line4-ofo-inout(i) = and
line4.of#inout(j#I) = 1 1

array2(i) :2 ineoof+-inPut(i);
i := i+1;

end I ooo;
end looo;

-- Check the &Pray' s contents

end RDFIL;

orocedure SEARCH(srchlentarqcuen : IN integer;
araylvarrav2 : IN txtari'ay.

loc : OUT integer) is
i,i,k,timer4-booo : integer;
begin
new'-1ineo)
out*3O("Number of loops to time)
jet(timer~looo);
new'-) jne();
out#.O("Start of search.....");
out (SEL) ;
for k in I ..ti'ner4-loon loo

while j <= srchlen loop
if arrayl(i) 2 array2(j) then
if 1+1 <= at'glen then

j := j+1;
else
Joc := i-I;
exit;

end if;
else

end if;
end loop;
end loop;
out (BEL);
out*2O("emd the search.***.,");
newel Ine():

end SEARCH;
end SCHAR;

-CHAR32 driver routine

Pragma .nviromnt("ACS:TEXTo.MLE,*rNTrO.MSE",SCHAR.MSE",
"MAIN.MSEO);

with text4.io,intioischar; use text+.iotintioschar,ascii;

ROFIL and SEARCH contained in the same Packaee
- - Timiina is for the SEARCH only. Promots are from
-- the SEARCH orocedure

package body USER+-PROCESS*l is
procedure MAIN is
i,loc~srch4-lemqth,srch4arq : inteoer;
forever :boolean :=true;
answer :character;

begin

outf.30("chars2 with L4 odo confiourat..");
new..l ineo)

while forever looo

-initialize the arrays

for i in I..256 loop
arrayl~i) :

end loop;

get the search arquments

newi Inieo;
out-3O(*Character search Q:Quits ")
get (answer);

exit when answer z'§';
RDFIL;
new4l-neo;
outs130(*Lengeh of string to search? ...')
get (srch1.lncth);
rmew*'inoO;j __ ____ ____86

-b

put.30(*Lenqth of strimq to search' 40w);
get (sr~ch4.aPq)
new*1IinecO;

SEARCM(srche-length,srch~ar,ar'ayt,It8YZploc);
F out*1O("Locationz)

Put(loc);
skic-l- ine;

end looo;
end MAIN;
end USER*-PROCESS*4L

LI

::QUICKI Packaege specification

-QUICKSORT Package specification (Iterative)

Package QUICKSORT is
type item is
record
key : integer;
data : character;

end record;
type inarray is ar'eyC1..2O) of item;

;rocedure SORT(argq : IN OUT inarray);

en-d GUICKSORT;

-QUICKI package body

-QUICKSORT packaqe body (Iterative)

oraqfna envirionment (ACS:TEXTIO.MLE","INTTO.MSE",

with text-iorintio,quicksort;
use textl-io,int io,ouicksort;
Package body QUICKSORT is
Pocoedure SORT(arg : IN OUT imarray) is

m : constant := 20;

mld4otttemo : item;
type stack4.frame is
record

end record;
stack : array(l..m) of staCk-Orame;
s : imteoer;

Beoin
I : 1;%
r :2 20;
s :z 1;
stack(1). 1:z 1;

1:: stack(s).1 4

r :2 s1ak$)r

loop
i :2 i;
j := r;

while aro(i).key c mid*-t~key l000
i := i +I

end looo;
while mid~ot.key c 'ir(j).key loon
i :-- j-t;

end loop;
if i <= j then
temo := arg(i);

arq(j) := temp;

end if;
exit when i > '

end loop;
if i < r~ then
s := 3+i;

stack(s).r :2r;

end if;

exit when 1 12 P
end loop;
exit when 9 = 0;

end loop;
end SORT;
end gUICKSORT;

-- UICKI driver routine

-QUICKSORT oackage body ior Driver (Iterative)

0 ragma envi,oment("ACS:TEXTIO.MLE","QUICK.MSE",

with quicIksortptext4-iorintio;
use quicksor'totexto-ioplntioascii;
package body USER.PROCESS*'d is
procedure MAIN is
araftemooearrav f ia9.9avi

89

i,leopt~valrj :integer;
date : booleen :2 true;

Beqin
for ir i ..20 loco
arg(i)ekey := 0;
arg(i).date:2a

end loco;

newlimeo;
out*Iline*20(QGUICKSORT BENCHMARK ;

o ut-il ime*20("Iterat ive Version ...';
out+-20("Enter key, followed "');
cuq2(imeitl by data,");
oute-i ,ne420(" 0 termfimatesese..*9);
mewePl lneo
S:2 1;1

while data loco
qet (arg(i).key);
exit when arg(i).kev 0;
skcip4-l in.e;
qet (arq(i).data);

.-: i;
skios-]Ifne;

end loop;
new*lineo;
out#-line*10(*Your Inout");
for i in l..20 loco
out (org(i).key);
out (arq(i).data);
ewe-l ine(L

end loco;

Loop
out*30("Number of loops to time)
qet(booo4-val);
exit whon (looo*eval) --0
new-l ine();
for i in 1..20 looo
temooearray(f).key :zarq(i).key;
temoearray(i).data ::aro(i).data;

end loco;
out*-2O("Stapt of QuLicksort..*);
out (bel);
for i in 1..(loooe-Val) 10oo
for j in 1..20 loco
*fq(i).Ikey :2- tewoarrav(j).key;
arq(g).data :2 temoo'array(j).data;

90

end I oop;
SORT~arg) I

end I oov;
out (bel)

out41,me2(End the Ouicksort.."

out4'-lim4dOC(The Output");

out (arq(i) key);
ou(arq(i) .dat a);

edlooo;
end MAIN;

9'

-QUICK2 Package saecification

-- UICKSORT Package specification (Recursive)

package QUICKSORT is

-;Yoe item is
record
key : integer;
data : character;

end record;
tyoe inarray is array(1..20) of item~;
subtype subint is integer range 1..20;

P:rocedure SORT(leit,riqht : in subint;
ara : in out inarray):

end QUICKSORT;

-- UICK2 Package body

-QUICI(SORT Package body (Recursive)

pragma envi ronment("ACS:TEXTIO.MLE","INTTO.MSEw,

a QUICK.MSE");
with text4-io,imtio~guicksort; use texto-io,intio,quicksort;
package body OUICKSORT is
procedure SORT(1eft~ri(3ht : in subimt;

arg : in out inarray) is

ij:subint;
mid*-otetemo : item;

Begin
:: left;

j right;
mide-ot :2 arq((eft+riqht)/2);
loop
while arg(i).Icey < tidot.key ioop
1 : i+~1

end loop;
while mld#pt.key < arg(j).key 1-oo

I :-- jal;

end loop;
if i Cz then
temo :2 arq(i);

92

aJ'Q(j) :2 tempj;

end i0;
exit when i -* J;

end loop;
0f left < I then
SORT(leftolj arg);

end if;
i0 i < right then
SORT(i ,riqhttarq);

end if;
end SORT;
end QUICKSORT;

-0QU1CK2 driver routine

-QUICKSnRT oacka,-- body ior Driver (Recursive)

oraqma enviromment(IACS:TEXTIO.*41E",'QUICK.MASE",

with quicksortotext-io, intio;
use (3uicksortetext*-io, intio,asci i;
package body USER4PROCESS4-1 is
orocedure MAIN is
argrtemod-array : inarray;
left*indexpright4-index :subint;
i,looop'valti : integer;
data : boolean :2 true;

Begin
for i in 1..20 looo
arg(i).key :z 0;
arg(i).data *2 'a';

end loop;

new4-lineofl
out4l ine4-20("GUICKSORT BENCHMARK)

out*-20("Enter keyr followed ");
out'1-0("immediately by dote,");
outlimee-20C* 0 terminatess....");
mew4-linet);

:= 1;
while data loop

93

Aim- -~ ~ .~

get~aq~i .key

exit when arq(i).key 0;
sk i o41 in.e;
get (arg(i) .dat a);
i :z ill;
skjo-l ,e;

end I oo;
newtIi neC);
outu-line4-10("Your Imout");
for i in l..20 loop

out (arq(i).data);
new-I ine();
end loop;

L oop
out4-3(*# of looos to time?..0 exits")
get(booo'va 1);
exit when (looot-val) =0
new4l-neo;
for i in l..20 booo
temo4array(i).kev : aroci).key;
temp'larae~yC).data :aro(i).data;

end looo;
out*20("Start of Quicksort..");
out (be));
1or i in 1..(booo*-val) looo
for j in 1..20 loop
arg(j).key :temoo-array(i).cev;
arg(j) .data : temooearray(j) .data;

end loop;
ieftd-index :~1;
rightlindex 2 0;
SORT (1eft-i ndex, ri htei ndex ,arq);
end loop;
out (be));
now-$- i me(
out4-imiet. 0(*End the Quicksort..."):
oute-lin.'I10("The Ou'cout");
for i in 1..20 loon
out (arq(i).key);
put (arq(i).dat a);
newi lineUJ

end loop;
new#bb ineo;

end Loop;
end MAIN;

end USER#-PROCESS#-U

-HASHI oackage soecification

oaclcage HASH is

Size :integer := 10;
table :array(0..9) of integer;

f;unction HASHES(key : IN integer) return integer;
end HASH;

-HASHI oackaqe body

Oragma environment("ACS:TEXTIO.MLE, M INTIO.MSE,HASH.M~SE");
with textio0,i nt io;
use textiotintiopascii;
oackage body HASH is
function HASHES(key : IN inteoer) return intecier is
check,i : lntecier;

Begin
-comoute the first olace to look
check := key mod size;
for i in 1..size/2 looo
if table~check) = key or table~check) 0
then
return check;

else
check := (checkti) mod size;

end if;
end looo;

return 0;
end HASHES;

end HASH;

-- HASHI driver routine

hash table search benchmark

-- heshl.eod on disk
timing includes orocedure invocation overhead

oragma envi ronmeont &'ACS:TEXTIQ.MLE","INTIO.MSE","HAS.M4SE",

with tgxt~iopitoHASH;

use text$-iopintiorHASHpascii

915

AD-A126 887 THE INTEL 432/670 AND ADA PERFDRMANCE BENCNMARKS(U) 2/
r A - !2 8 87 NAVAL POSTGRADUATE SCHODL MONTEREY CA

D.dJAPPEGAEET AL DEC 82

UNCLASSIFED FIG 9/Z N

ED

Uii i__ ,8L2
VA 4- 02
LI

40

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

j

packae body user~orocess~i is

procedur* main is
tjm*PO-lOoooSitonIceY#1 : inlteger;
answer : character;
forever : boolean := true;

beqin
new~limieo)
out4-20 ("HASHI benchmark

-- fill the hash table with CFA sample entries

table(0) :2 0;
table~i) ::183;
table(2) ::It;

table(4 :2 1035;

table(S) ::183;
table(6) ::86;
table(7 : 0;
table(8) :2183;

table(9) ::183;

w.hile forever looo

newelimet);
outo20("Continue? 0: quits.");
get (answer);
exit when answer 000

new-limet);
cout-20C"enter an inteqer key");
oet ('cv);

news 1 met);
out#30(nmumber of looos to time')
qet(timer-llooo);

new*l mn*0;
out..20('start hash lookuo...");*
put (bel);

for J in t..timer-foooo booo
cosition :2 HASHES(key);

end 1000;

96

out (bel)

out-1-2("ond of hash lookuo..*);-
new-l ine();
oute-0Ohash position .. 6)

out (posit son);

sk of - o

end loop;

new4d i ne()
out4-3O(6emd of HASH table lookvo 8

end maim;
end user*4orocess*1t

97

-DCOt4I oackage specification

-Digital Communication Processing Program

-19 Oct 82

;;8a308 environment("4CS:TEXTTO.MLE");
with textG1io ;use tCet10o
Package DIG4-COM is

cl : constant t10
c2 : constant ::10;*
subtyoe dest'-tvoe is inteqpr ranae I..cl;
subtyoe con4ido-tvae is inteoer ranoe l..c2;
type message;
type messaqeq-otr is access message;
tyoe message is

record
destination : desti-tyoe;
connection : con4id4tyce;
size : imteaer;
data : strinq3O;

end record;

S ubtype buf4-index is integer range I..c2;
type buf4.tbl is array(1..c2) of buf4index;
type buf 4tbl 4ot r i s access buf..tbl ;
destination4tbl : array(t..c1) of buftT4-otr;
buffere-arrav : arerav(1..c2) of strinq3O;

procedure forward(mso: IN messaqe4-otr);

end DIG..-COM;

-D COMI oackaqe body

pragma environment(OACS:TEXTIO.MLE","DCO4.NSEu,OINTIO.mSE");
with text4iorintio ;use text'iovimtio,ascii;

package body DIG.eCOM is

procedure forward(',sg : IN niessageq.otr) is
1,1 : integer;
buffer#'imdeE : buis'index;
line : bufsltblootrl
bufoarray : bufotbl;

98

begin

fin. :2 destimation~tbl~msq.destination);i
buioarray := lime.alU;
:21;

while bu#*array(i) /z msq.connection looo

end loaD;
buiierimdex := buf4-arrav(i);
butter airay(bufferindex) :z msq.dara;

end for'ward;
end DIG,.COM;

-- COMI driver routine

-- digital communication benchmark

-- DC01412.EOD on disk
-- timing includes Procedure invocation overhead

-- 26 Oct 1982

pragma emviroment(uACS:TEXTIO.mLE"NINTIO.MSEwPiDCOM.mSE",
N*AIN.mSE*);

with text~io,intio, DIG4.COM;
use text#-io,intioDIG*.COm,ascii;

oaekage body us@Ueroocess~1 is
Procedure main is

ipj : integer;
timersiloop : integer;
k :buf'-index;
buf4tableootr : buf~tbl'ovtp;
msq4 out : messaq@C.otr;
iorever : boolean :z true;
answer : character;

begin
out4.30(wchae5*. 4I qdP confiQurationo..w);

newel lneoi
out*.30("timing includes oroc ovhd.....u);
initialize the destination table

99

LI_____________________

out*30(winl t destination table.,... ..);
for. i in 1..cl 1boo
degtInatfon4tbl(I) :2 new bu##-tbl;
end looo;

initialize all bufitbl's

iof i in l..eIl ooo
buftetableoeotr := destfnatiostbi);
for ji l..c2 looo

bufetableeotr(j) :2 1;
end looo;

end]coo;

initialize buffer

neWel ine();
out*20("imit the buffer.*....w8
for kc in 1..c2 looo
buffere-arravic) : .*....,...*..

end looop

n -;w-ie)

while forever 1000
out*10("continue?")
get (answer);
exit when answer =Wt~;
Msg*-out :2 new Messaoe;
fflgeout.size := 0;
new.] ineo(
oute0-0(*Start digit comm...,");
newel ineo;
cut#30("enter destination# connpdata..*);
get (ns9geout .desti nation);
skioo-lime;
get (maeout .connect ion);
skio*-)Iine;
esgq-out.data :e.bie30

out#e30"UMboe of looos to time.......');
get (timer.) oo0p);
out*e10("sending...)
out (bel);
ior f in t..timergelooc, looo
#orward(osgo-out)
end looo;

100

out (bel;
outs-2O (".. .dome sendi nq)

ne*41ineo;
out#.2O(*bufier flush is)
ior k in 1..c2 loop

Put Wk);
Put-iline4-30(buffer~arrav(k))8
new..1 inc (

end loop;
skio4-I ine;
end loop;
newl ineo;
out4.20("end of decoml........)
end main;
end user4-orocess'1;

lot

-DCOM2 package specification

-Digital Communication Processing Program

-- 19 Oct 82

Pragma environment(OACS:TEXTIO.MLE");
with text'io ;use texte'o;
Package DIG#.COM is

ci : constant ::10;
c2 : constant :~10;
subtyoe desttyoe is integer range 1..c1;
subtyoe con4-id4-tyoe is imteoer ranqe l..c2;
tyoe message;
tyoe messaoe4-otr is access message;
tyoe message is

recor'd
destination : dests-tyoe;
connection :con4idotyoe;
site : integep;
data : string30;

end record;

s ubtype buf4mindex is integer ranae i..c2;
tyoe buf+-tbl is ariray(l,.c2) Of buf-index;
t yoe buf*-tol*-otr i s access buf'-tbl ;
destination4-tbl : array(1...cl) of buf4-tbl4-otr;
buffer*-array : arrav(l..c2) of string3o;

orocedure forward(mso: IN messaqe~cotr);

en-d DIGo-COM;

-DCOM2 oackage body

oragme envi roment(OACS:TEXTTO.mLE","DCOM.!ASE","INTIO.mSE");
with textfio,intio ; use text$iopimtiopascii;

0ackage body DIG*,COM is

orocedure forward(mso : IN iessaqe4-otr) is
ivj : integer;
timer*-looo : integer;
buffer#-index : buf~imcdex;
line : buf4-tbl4.otr;
buf*array :buf~tol;

102

_ __W

begin

new#-limo;
Put4*30("number oi loops to time*.**...");
get(tfmeb~oop);
outeo("sending. . e);

cut (bel);
fors j in I..timerf-i000 1000

line :2 destinationtbl(msg.destiatiol);
buf4~array := line.al1;

while bufq-arrav(i) /z 'sq.connection loop

end 1loop;
buffer4-index := buf4array(i);
buffer4array(buf ler-i ndex) := msg.data;

end loop;
out (bet);
out'-20(* ... done send ing.,..");
new-1 ineo;

end forward;
end DIG4-COM;

-- DCOM2 driver routine

-- digital communication benchmark

-- DCOM21.EOD on disk

-- timing does not include rocedure invocation overhead

-- 26 Oct 1q82

oragma envi ronment (WACS:TEXTIO.MLE","INTIO.MSE","DCOm.MSE",
"MAIN.MSEO);

with text~ioointio, DIGCOm;aci

oa-ckage body user4oroce5ss* is
procedure main is

i,j : integer;
k : buf~imdex;
bufeteble*otr : buf#etblo-otr;
T99g-out : 'essageotr;
forever : boolean :2 true;
answer :character;

103

cut.-30("chiars*. 4i gdo configuration...");

mewt-line();
out.s30("timing does not include oftoC..");
initialite the destination table
new&o-I ineO)

out*30("init destination table...... s*"n);
ior i im t..ctl ooo
destination.tbl(i) := new bufo-tbfl

end loco;

-initialize all bu4tb1's

new4l1 in me;

ior i in 1..cI looo
bu f4tabl etot r : = dest inati1on-t b I (
for j in l..c 1000

end looon
end looo;

-initialize buffer

out-20Cwinit the buffe.*.*");
for k in 1..c2 loo

end 100o;

while forever looo
outlO0("comtinue? ;

qet (amswer);
exit when answer ##
iSg#-out :Z new 'vessaae;
vsg4out.SiZe :.2 0;
mew-l ine();

mewlimet);
outsi-30("enter destimation, connpdata..");
get(ms9*out.destination);
skiol mne;
get (msgokout .commect ion);
si loIi ime;
y,g*out.tjata :=cete'lmne.30(J;

to0a

iorward(msqgiout) I
out*?O(buffer flush i...)
ior kc in 1..c 2 looo

put (I) I
pute1 ine.13O(buff.,4-array(k));
new1 tin*e)

end 100o;
skioo-lin.;
end looo;
newel ineo;
oute-20("end of Jecoml 8
end main;
end user~orocess4U;

los

'4EMI Package soeciiication

-- 4EMI recursive memory test oackage soecification

Pragma envlronment(OACS:TEXTIO.M4LE");
with texteio; use text~io;
Package EAT.44EPORY is

size : constant := 50;
i: integer :=O;

tyoe smalltabIe is array(1..size) of character;
type small~table~otr is access small+-table;

orocedure FOREVER;
end EAT#-'EMORY;

-..MEMI oackage body

-- MEMI recursive memory test body

orapma envi ronment (UACS:TEXTIOMLE,"EAT.MSE","INTIO.MSE");
with imtio,text-io;
use i ntiopt ext ,i o;

0ackaqe body EAT+-MEMORY in
Procedure FOREVER is

t abIet-ot r : sima I I-t ab Ie4-ot r;
begin

i := i+1;
out (i);
newel inefl;
tablee-ptr :=new smalle-table;
FOREVER;

end FOREVER;
end EAT'-*EMORY;

M-~EMt driver routine

-- MI~ recursive memory test driver routine

oragma envi ronment (ACS:TEXTTO.MLE","EAT.mSE',
OmAIN.%4SE");

with textlio,EAT*MEORY;
use text*i o, EAT*4EMOPY;
Package body user*orocessei is

10Ob

procedure main is

beqin

put#.30(* start of eat Pmemory.e*.....
FORE VER;

end main;
end user~orocess~1.

107

%tEM2 oaCkage specification,

M 'EM2 interative memory test oackcage specification

oraoma enviromment("ACS:TEXTID.MLE");
with text*-io; use textq-io;
package EAT..MEMORY is

size : constant :2 50;
i: integer :=O;

type Smafll4table is artay(t..size) of character;
type s'nal).table+.otr is access safl-table;

orocedure FOPEVEP;
end EAT*,mEmOPY;

M-~EN42 oackaqe body

- 4EM2 intetative memory test body

0 raqma environment ("ACS:TEXTIO.MLE",NEAT.MSEh,"INTIO.mSEN);
with intiortexto-io;
use nt io. text4-io;

0aclcage body EAT4-mEMORY is
orocedure FOREVER is

table*totp smaI11-tahle4otr;
infinite :boolean ::true;
begin
while infinite looo;

i := i.1;
Put (i);
new' ine o;
table4'otr := new Sma114-table;

end loo;
end FOREVER;

end EAT..'EMORY;

-- M2q driver routine

v-'EM2 interative memory test driver routine

W~agma environnent("ACS:TEXTIO.mLE","EkT.I4SE",
OMAIN.mSE");

with text~l o.EAT'-MEMORY;

lop~

use text~ioEAT*MEMORY;
Package body user*vroceiiq-l is

oirocedure main is

begin

Put..30(" start of eat eo......N
FOREVER;

end main;
end useroocessi41

109

-- SEARCH

-- Courtesy Prof. PattersonComouter Science Division,
-- Department of Electrical Engineering & Computer Sciences,
-- Univ. of California, BerkeleyCA.

pragme environment("ACS:TEXTIO.MLE","INTIO.MSE","MAIN.MSE");
with textiointio;
use text4iointioascii;

package body USER.PROCESS 1 is
procedure MAIN is
type strin is array(inteqer range 1..120) of character;
numiterations : inteqer;
positionensnk : integer;
sek : strin;

function STRSCH(sk : IN strin;
ns,nk : IN integer) return inteoer is

jj : inteqer;
base,ksave,cont : integer;
kend,ssave : inteqer;
r : integer;

begin
base := 1;
ksave : 1;
cont :: ns-nk+base;
kend :: ksave + nk-i;
i :: 1;
i :: 1;

while s(i) /z k(j) loop
if i >= cont then

r :: -I;
qoto finish;

end if;
i :z i+1;

end loop;
ssave := 1;
1 :: 1+1;

while j <= kend loop
1 : i+l;
f s(i) /2 k(j) then
i :X ssave + 1;
j :2 ksave;
goto too;

end f5

11o

end I oop;
r := ssave - base 1 ;

4fjnjm sh'
return Cr*);

end STRSCH;

Begin
g(1 *.bO) := "O000000000000000000000000000000000000

s(61..120) := "HEREOOOOOOOOOOCOOOOOOOOOOOOOOHERE
IS A MATCHOOOOOOQOOOOOOOOO";
k(1..bO) := "HERE IS A MATCH

k(61..120) :

loop
out4-1ine*30("Betrkeley Character Search
Put*30("# of looos to ti,,e?..0 Exits")
get (numi terat ions);
exit when numiteeations = 0;

mew# line o;

nk ::15;
out (beb);
for' i in 1..nu-niterations loop
position := STRSCH(spkpns,nc);
end loop;
out (be 1);
Put4.bine#-10("ENO SEARCH");
out (oosi tion);
end loop;

end MAIN;
end USER*PROCESS*I;

III

-- SIEVE

-- Courtesy Prof. Patterson, Computer Science Oivision
-* Department of Electrical Enqineering & Comouter Sciences

University of California, Berkeley CA.

pragma environment(OACS:TEXTIO.MLE,"rINTIO.MSEt
"MAIN.MSEO);

with text*iointio;
use text*iointioescii;
Package body USER*PROCESS.l is
orocedure MAIN Is
size : constant integer := 200;
flags : array(O..size) of boolean;
orimepkecounteloooaval : integer;

Begin
1oo
out*3O("# of loops to time?..O exits ")
qet(looouval);
exit when looovval = 0;

new4-line();
Put(bel);
for iter in inteoer ranqe 1..(loooeval) loop
count := 0;
for I in O..size loop
flags(i) := true;

end loop;
for i in O..size loop
if flags(i) then
Prime :z I + I + 3;
k := i + orime;
while k <= size loop
ilags(k) := false;
k :2 k + Prime;

end looo;
count := count + 1;
end if;
end looo;

end loop;
out(bel);
out.linealO(End Sieve");
out(count);
out*10(" Primes ");
newline();

end loop;
end MAIN;

end USER*PROCESSI;

112
a

_ __

-- ACKER

Courtesy Prof. PattersonComouter Science Division,

-Department of Electrical Engineering & Computer Sciences

-~Univ. of California, Berkeley,CA.

Pragma environment(*ACS:TErO.MLEw'inNTO.MSE""MANMSEO)
with text4-io, ltio;
use texte-io, intiorasci i;

package body USER..PROCESS*.1 is
orocedure M4AIN is
a,i,aral,arq2 : inener;
function ACKER(x,y' : IN inteler) return integer is

beg in
i f x =0 then

return (Y+I1 8

elsif v 0 then
return ACKER(x-1#1);

else
return ACKER(x-1pACKER(x,Y1l));

end if;
end;

Begin
out4.ljnm.20("Ackermwann Benchmark
Putiline*2 0 (*To Exit, Enter 0

out4-ine430(*Begin time when bell sounds)
l oop
out.lime*30(*Enter ACKER Aouments)

get (argi) ;
exit when argi 2 0

skio4-lime;
get (arg2);
out (be 1);
a :=ACKER(arqlparg2).
out (bel);
out*10(0Outout of)

out (argl) ;
out ("',) ;
out (arg2);
mew.l ineo;
out (a);
mew*1 ineo;

end loop;
end MAIN;
end USER.iPROCESS4-1;

113

APPENDIX D

CFA BENCHMARK ALGORITHMS

The twelve benchmark program algorithm descriptions

used In the first CTA study follow. A more detailed

discussion of these can be found in Reference 8.

t. I/O INTERRUPT KERNEL, tOUR PRIORITY LEVELS

The interrupt kernel will be activated by an I/0

interrupt with Priority level 0,1,2 cr 3 from one of tour

devices, Actual interrupt processing will be simulated by

countina the occurrences of each type of interrupt, Higher

level interrupts will be able to Preempt processing of lower

priority interrupts. The interrupt handler must provide for

resumption of processing of the preempted lower level

interrupt from the point of preemption. As much processinq

as possible will be done witn higher priority 1/O Interrupts

enabled.

2. I/O INTERRUPT KERNEL, FIFO PROCESSING

The interrupt kernel will be activated by an I/O

interrupt from one of four devices which will be placed in a

service queue for first-in-firsteout (FIFO) processing.

Actual interrupt processing will be simulated by counting

the occurrences of each type of Interrupt. Space should be

114

provided to handle at least ten queued interrupts at one

time.

3. INPUT/OUTPUT DEVICE HANDLER

After an 1/O request is Issued by an application

program, and after the executive queues an input control

block, this test program is initiated and it performs the

following actions:

I. Check status of the tape drive. If device is busy
exit. If the device is not operable branch to an
error routine. If the device is available, set uo
And initiate the requested transfer.

2. After completion of the transfer, and a conse-
auent interruot, the device handler is reentered
and the following processing is performed:

a, Store status inormation (device type ind
identification).

b. If transfer was unsuccessful, abort further
processing,.

c. If a successful transfer occurred and all re-
quested transfers accomplished then exit.

The application programs perform high level logical I/O

calls that cause the queuinq.

4. FAST FOURIER TRANSFOPM

The following variables are used in the algorithm:

Nt The number of data points 0<x N <= 25*16.
X: A vector holding the N samples as complex

numbers.

W: A vector holding the first N/2 powers of EXP(-
2*Pi*i*/N).

work: Auxiliary working storage.

115

procedure FFTCN,X#W)
GROUPS :a N
do for PASS :a 0 by steps of I until

loQ2(n)-1
do for all ELEMENT such that

0 <a element <= N/2
"aenerate complex addend"

WEXP 1= 0
if PASS > 0
then WEXP :=((ELEMENTSN)/2) /

2**PASS) MOD CN/2)
end-if

it WEXP <> 0
then TFMP1 :z X(ELEMENT+N/2)*

W(EXP)
else TEMP1 := X(ELEMENT+N/2)

end if
"generate 2 element entries

In data vector"
XI(ELEMENT) := X(ELFMENT) +

TEMPI
XI(ELEMENT + N/2) := X(ELEME4T) -

TEMP1
end-do
it PASS < (log2(N) - 1)

then
"execute perfect card shuffle

on data vector"
P :: 2**PASS
GROUPs :z GROUPS/2
do for all I such that

0 <2 I < GROUPS
do for all J such that

o <X iJ< P
INDEXI := 2*P*I + J
INDEX2 :2 P*I +J
X(INDEXI) :a XI(INDEX2)
X(INOEXI+P) := XI(INDEX2+N/2)

end-do
end-do

else
do for all I such that 0 <a I < N

X :2 XICI)
end-do

end-if
end-do

116

5. CHARACTER SEARCH

The variables used in this algorithm are:

SRCHSTR : pointer to a string of characters
to be searched.

SRCHLNGTH : lenoth of that string.
SRCHARG : pointer to a string of characters.
ARGLNGTH : length of that string.
LOC t an integer return code.
WOrK : pointer to any needed storage,

procedure CHARSRCH(SPCHSTRSRCHLNGTH,
SRCHARGARGLNGTHLOCWORK)

integer I

LOC := 1
do for all I such that 0<= I <= SRCHLNGTH-SRCHARG

or until LOC <> -1
if the substring of SRCHSTR from I to

IeARGLNGTH-1 = SRCHARG
then LOC :2 1

end-it
end-do

6. BIT TEST, SET, OR RESET

The variables used are:

F : Function code, latest, 2: set, 3= reset.
N : Relative bit to be tested.
h1: Pointer to tightly Dacked bit string.
RC: Return code indicating original bit status.
WORK: Pointer to any needed work storage,

procedure BITTEST(F,NA1,RC,WORK)
Integer ABIT,D

AsrT :* Al + N/(word length)
D sa N mod (word length)

if D'th bit at address ABT 2 1
then RC :2 1
else RC :2 0

end-if

117

90_

if r = 2
then D'th bit at address ABIT := I
else if F a 3

then D*th bit at address ABIT s: 0
end-if

end-if

7. RUNGE-KUTTA INTEGRATION

This algorithm solves the differential equation F(t,y) =

t+y z dy/dt using a third order Runge- Klutta integration.

The variables used are:

TO : Initial value ot T, single precision.
YO : Initial value of Y, single precision.
H : Interval of Integration, single orecision.
TMAX: Final value of T, single precision.
YMAX: Final value of Y returned, single orecision.

procedure RUNGEKUTTA(TO.,O,TMAX,YMAX,WORK)

reel KI,K2,K3

YMAX := YO

do for all T from TO incrmented in steps of K
until T > TMAX

KI :z H*(T+YMAX)
K2 := H*(T + H/2 + Y + K1/2)
K3 :x H * (T + 3*H/4 + Y + 3PK2/4)
YMAX ix YMAX + 2*1(/9 + K2/3 + 4*K3/9

end-do

9. LINKED LIST INSERTION

This algorithm inserts an element into a doubly linked

list. Variables used are:

LISTCB : Pointer to a list control block
containing:
HEAD: Pointer to first node.
TAIL: oointer to last node.
NUMENTRIES ; number of entries,

NEWENTRYs oointer to new entry to be inserted,

tie

procedure LISTINSERTCLISTCBpNEWENTRY)

"the notation POINTEPFIELD Is used to access a
particular field of the structure ponted to by
POINTER"

pointer PRESENT
if LISTCP.NUMENTRIES 2 0

then "list is empty, so initialize"

LISTCBHEAD :% LISTCB.TAIL := NEWENTRY
LISTCBoNUMENTRIES :a I
NEWENTRYSNEXT := NEWENTRYPREV I= 0

else
"list not empty"

PRESENT : LISTCBHEAD
LISTCB.NUMENTRIES := LISTCB.NUMENTRIES + I
"determine position of new entry"

while NEWKEY >= PRESENTNEXT <> 0 do
PRESENT := PRESENT.EXT

if PRESENTPREY x n and NEw.KEY < PRESENT.KEY
then

"new list head"

LISTCBHEAD := NEW
NEWPREV := 0
PRESENT.PREV :x NEW
NEWNEXT :z PRESENT

else
if NEW,KEY => PRESENTKEY
then

"new list tall"

PRESENT,NEXT :* LISTCBTAIL :2 NEW
NEWNEXT :3 0
NEW,.PREV :u PRESENT

else
"insert in middle"

NEW,NEXT :u PRESENT

NEW.PREV to PRESENTPREV
PRESENTPREV in NEW
"back up and link with predecessor"

PRESENT i: NEWPREV
PRESENTNEXT :x NEW

end-if
end-it

end-it

119

9. QUICKSORT

ThiS algorithm performs a quicksort on an array of

records. The variable used are:

N t The number of records to be sorted.
N : Integer Parameter specifying the changeover

Point between quicksort and a simole insertion.
REC : Pointer or the first element of the

array to be sorted.
WORK: oointer to any needed working storage.

procedure QUICKSORT(N,REC,MWORK)
Integer LR,I,J,K
integer array STACK[0:2*f(N)-11
character strinq V

RECCN+1i := infinite
L ix 1; R := N
do forever
I := L; J:= R+I ; V := REC[L]
do forever
do I :n I*i until RECtI] => V end-do
do J:MJ-1 until REC(J] <= V end-do
If J> I

then swap REC(II with REC[JJ
else Coto end-first

end-if
end-do

end-first:
swap REC[L] with RECCJ]
if both subfile sizes (J-L and R-J) <0 M
then

If stack empty
then goto end-outer
else poo L and R from stack

end if
else

if smaller subfile size <= M
then set L and R to lower and upoer

limits of laroer suofile
else push lower and upper limits of

larger subfile onto stack
set L and R to limits of smaller
subfIle

end-if
end-if

end-do
end-outer:

120

do for I from N-i to 1 in sops of 1
if PEC[I] > RE[I+1l then
V :a RECCII; J t=I+1
do forever
RECEJ-1] := REC(J3 i J =:J l
if REC[J3 => V then goto end-last end-if

end-do
end-last: AEJ-1] := V

end-if
end-do

10. ASCII TO FLOATING POINT CONVERSION

The following variables are used in this algorithm:

N : Number of characters in the string.
Al : Address of the character string.
A2 t Address of floating ooint number where the

result will be placed.

procedure AFP(NDA1,A2)
integer NUMBER, POSITION
real RESULT, DIVISOR
boolean ISNEGATIVE

ISNEGATIVE := false
POSITION := 0
if first character of Al is a sign character

then
if sign character is "-"

then ISNEGATIVE := true
end-if
POSITION := 1

end-if
NUMBER :: integer equivalent of characters

POSITION to J-1 of Al where
character J of Al is "."

RESULT := floating point equivalent of
NUMBER

" the followinq two steos can be done in
parallel if desired"

NUMBER :x inteqer eouivalent of characters J+1
to N of Al

DIVISOR :a floating eouivalent of 10*(N-J)

h2 :a RESIULT + (floatinq point equivalent of
NUMBER) / DIVISOR

121

11. BOOLEAN MATRIX TRANSPOSE

The following variables were used in this algorithm:

Al 3 Pointer to a word of storage.
A2 : bit number within word Al where

the matrix begins,
N i Size of the boolean matrix.

procedure BMT(NAIpA2)
Integer I,j
hoolean 8[l:N,13N3 beginning at bit A2 of word Al
do for all I and J such that (I<= J <= N)

and (J+1 <a I < N)
swap 8(1,J3 and BtJ,I3

end-do

12. VIRTUAL MEMORY SPACE EXCHANGE

This algorithm performed a virtual memory space exchange

through the use of a suoervisor call. There are two

functions Which must be orovided by the algorithm.

1. CALL: saves enough information to restore the en-
tire state of the caller.

2. RETURN: restores the environment active before
the Previous call.

The sixteen benchmark programs written by the second CPA

study group follow. A comolete discussion of them can be

found In reference 1.

1. TERMINAL INPUT DRIVER

This algorithm inputs one line of ASCII characters from

a terminal device. ASCII rubouts should delete the

character. A carriage return terminates the line. The

prooram need not be reentrant,

122

.

Algorithm: A subroutine TTYIN(BUFFER) initiates the
transfer. It has a single reference parameter, the
buffer to be filled. The buffer consists of:

ADDRESS TERMADDR

CHARACTER CBUFIh?]
The buffer is assumed to be large enough for the

line. The transfer is started and the routine re-
turns. The interruot service routine collects the
line in some machine dependent manner. The terminal
interface is assumed to oe a minimal one. (it does
the serial-oarallel conversion). when a carriage re-
turn is entered, the terminal input is disconnected
and a transfer to the buffer TERMADDR is made.

2. MESSAGE BUFFERING AND TRANSMISSION

This algorithm queues a messaqe buffer and then

transmits the message over a DMA link in FIFO order.

RECORD BUFR(ADDRESS NEXT, ADDRESS TERMADDR,
INTEGER SIZE,INTEGER DATAtI:SIZEI);

POINTER BUFR ENDSTART
ADDRESS TEMP;
!QUEUE SUBROUTINE
PROCEDURE OUEUECREFERENCE BUFFER)z
BEGIN
IF START NEO 0 THEN END.NEXT <- ADDRESS(BUFFER) Fli
END <- ADDRESS(BUFFER);

iOUrT IF CHANNEL ALREADY RUNNING
IF START NED 0 THEN RETURN
ELSE

START <- ADDRESS(BUFFER);
TEMP <- 0;
GOTO RESTART

FI;
END

ItTERRUPT:
BEGIN

123

! Programmers should insert here device and
machine dependent code to terminate the

I device transfer
TEMP <- START.TERMADDRI
START <- START.NEXT:

RESTART:
If START a 0
THEN

GO TO TEMP
ELSE

! Programmers should insert here device and
! machine dependent code to initiate the
! device transfer.

FI:
IF TEMP a 0
THEN RETURN
ELSE GO TO TEMP
FI
END

3. MULTIPLE PRIORITY INTERRUPT HANDLER

This test procram is desioned to process interrupts from

tour devices in priority order. Upon receivinq an interrupt,

the processor will branch to the approoriate device service

routine. All interrupts from lower priority devices will be

disabled. Device Priority Is equal to device number, device

number 1 has lowest priority, device 4 has hiqhest. After

the device deoendent service the device ID is added to the

executive queue for user scheduling purposes. This program

need not be reentrant, Each device service routine will be

simulated by the algorithm below.

!DEVICE SERVICE ROUTINE INTEGER OWN A; FOR I (= I TO
ACOt2] 00 A <- (A*899) MOD t23757 OD;

124

II * I -II I i i - i -

4. VIRTUAL MEMORY SPACE EXCHANGE

This algorithm will involve a supervisory Call handler

which will Provide the functions "call" and "return". The

supervisor is to implement protected procedure calls with

parameters. "call" will select index into a table of address

space descriptors maintained by the supervisor. The "call"

performs the following:

1. Save the caller's state.

2. Determine the callee's address space,

3. Set up the memory mapping and protection to ac-
cess the callee's address space.

The "return" function takes no parameters. It re-
stores the environment active before the Previous
call.

5. SCALE VECTOR DISPLAY

This alqorithnm scales a list of graphic vectors about a

given center. The vectors are represented as:

function 4 bits
x coordinate 12 bits
intensity 4 bits
y coordinate 12 bits

PROCEDURE SCALEADJUSTCREF DLIST,VALUE LEN,
VALUE XCENTR, VALUE YCENTR,
VALUE SCALE)=

BEGIN
10 LEO XCENTR, YCENTR LEG 2047
ISCALE IS THE ACTUAL SCALE FACTOR TIMES 120
INTEGER LEN,XCENTRYCENTR,SCALEIXTMPYTMPI
RECORD VECTOR(INT4 FUNCT,INT 12 X, INT4 INTEN,

rNT 12 Y);
VECTOR DLISTIILEN];
FOR I <- I TO LEN Dn

125

71

XTMP <- DLI3T,X1I]*SCALEy
YTMP <- DLIST.YtI]$SCALE;
IF DLIST.FUNCTC!] NEQ 0
THEN
XTMP <- XTMP+XCENTR*(12$-SCALE);
YTEMP <- YTEMP.YCENTR*(128-SCALE)i

FI;
DLISTXCXI (- XTMP/128;
DLIST.YCI] <- YTMP/128g

ODr
RETURN

END

6, ARRAY AANIPULATION - LU DECOMPOSITION

This algorithm factors a square matrix into an upper and

lower triangular matrix*

LUDECOMP(REFEPENCE A, VALUE N)=
BEGIN
RTAL ARRAY A(l:N,1N]J
REAL MULT;
INTEGER DIAG, ROW, COL;
FOR D14G <*I, N-1 DO

FOR ROW <z DIAr4 I,' DO
ArROW,DIAGI<- MULT<- A[ROW,DIAG]/ACDIAG,DIAG]
FOR COL <= DIAG+1,N DO
AEPOW,COL]<uA ROW,COLJ -ULT.A DIAG,COL

OD
OD

OD
END

7. TARGET TRACKING

This algorithm takes the coordinates of an unknown

object and finds in a table sorted by x coordinate the

closest entry,

PROCEDURE TARGET(PEFERENCE TABLE, VALUE LEN, VALUE X
VALUE Y, REFVRENCE FOUND)=

BEGIN
INTEGER LEN,STARTEND,MID,UP,DOWN;

126

REAL MINDISTI
ADDRESS FOUND
RECORD TENTRY(REAL X, REAL Y, REAL DATIREAL DAT2);

TENTRY TARLEEI:LEN]
START <- 1; END <- LENI
WHILE START <- END DO

MID <- (STkPT+END)/2
IF TABLE,XEMID] < X
THEN
START 9- MID+I

ELSE
END <- MID
FI

01);
!Compute distance of nearest x entry

MINDIST <- DIST(TABLE(MID],X,Y);
FOUND <- ADDRESS(TABLEEMID]lI
!seareh neighborhood for a nearer entry

UP <- MIDI; DOWN <- MID-I;

WHILE UP>O OR DOWN >0 DO

IF UP>O THEN CHECK(UP); UP<- UP +1 FI:

IF DO'WN >0 THEN CHECK(DOWN); DOWN<-DOWN-I FI;
OD;
RETURN;
!Check an individual entry against closest found
PROCEDUPE-MACPO CHECK(J)
BEGIN
IF J<1 OR J>LEN OR ABS(TABLE.X[JI-X) >= mINDIST

THEN J <-0 I RETURN rI;
IF DIST(TABLEtJ],X,Y) < MINDIST
THEN

MINDIST <- DIST(TABLEEJ],X,Y);
FOUND <- ADDRESS(TABLECJ])

FI;
RETURN
END
I DIST() is the metric defined in the problem

END

8. DIGITAL COMMUNICATIONS PROCESSING

This algorithm Is given a message with a header which

contains the destination and connection ID, and places the

messaqe in the appropriate transmission line's output

buffer.

127

PROCEDURE FORWARD(REFERENCE MSG) :
BEGIN
RECORD MESSAGECINT16 CIDINT16 DEST, INT16 SIZE

CHARACTER HSGCI:?]);
BUFTARLECINTEGER CID,ADDRESS BUFFER);
MESSAGE MSGI
POINTER BUFTARLE LINEI
EXTERNAL ADDRESS DESTABLEC:?3;
!rind BUFFER table for destination line
LINE <- DESTABLE[MSG,DEST]i
IFind ring buffer for this connection
I <- 1;
WHILE LINECIDCI] NEG MSGCID
DO I <- I + I OD;
BUFFER <- LINE.BUFFERCI;
lCopy the messaqe to the buffer
MOVE(ADDRESS(MSG),BUFFER,4$G,SIZE);
RETURN
END

9, HASH TABLE SEARCH

This program locates the position a key would occupy in

a hash table,

PROCEDURE HASHLOOK(REFEPENCE TABLE, VALUE SIZE,
VALUE KEY, REFERENCE POSITION,
REFERENCE FULL)

BEGIN
ADDRESS POSITION
INTEGER SIZE,KEY,CHECK;
BOOLEAN FULL;
RECORD TENTRYCINTEGER KEY, INTEGER DATA);
TENTRY TABLE[O:SIZE-2i;
!Compute first place to look
CHECK <- KEY MOD SIZE;
FULL <- FALSE1
FOR I <- I TO SIZE/2 DO

IF TARLEKEY[CHECK] z KEY OR TABLEKEYCCHECK] 0
THEN

POSITION <- ADDRESS(TABLEKEYtCHECKI)i
RETURN

Fl;
CHECK 4- (CHECK + I) MOD SIZE
OD
FULL <- TRUE
RETURN
END

128

~~~~~ .. . -, - .. _ .. - . . . .. . . ... . .



10. LINKED LIST INSERTION

This algorithm inserts a mod& In an ordered doubly

linked list,

PROCEDURE LISTINSERT(VALUE LISTCB, VALUE NEWENT-Y):
BEGIN
RECORD LCB(ADDRESS HEAD, ADDRESS TAIL,

INTEGER NUMENTRIES):
RECORD LISTE'4TRY(1NT32 KEY,ADDRESS NEXT,ADDRESS PREV)
POINTER LCR LISTCB;
POINTER LISTENTRY, NFwENTRY,PRESENTI
IF LISTCB.NUMENTRIES 2 0

THEN
LISTCBHEAD <- LISTCB9TAIL <- NEWENTRY;
LISTCBI.NUMENTRIES <- 1;
NEWENTRY.NEXT <- NEWMENTRYPREV <- 0
ELSE
PRESENT <- LISTCBHEAD;
LISTCB.NUmENTPIES <- LISTCB.NUMENTRIES+1;

WHILE NEWENTRY.KEY GEO PRESENTKEY AND
PRESENTONEXT !JEQ 0

DO PRESENT <- PRESENTNEXT OD;
IF PRCSENTPPEV :0 AND NEWENTRYKEY <PRESENT.KEY
THEN
LISTCB.HEAD <a NEWENTRY?
NE'4ENTRY.PREV <- 0;
PRESENT.PREV <- NEWENTRY
NEWENTRY.NEXT <w PRESENT;

ELSE
IF NEWENTRY.KEY GEO PRESEI4T.KEY

THEN
PRESENT.NEXT <- LISTCBoTAIL <- NEWENTRY:
NEWENTRY,NFXT <- 0:
NEWENTRY.PREV <- PRESENT

ELSE
NEWENTRY.NEXT <- PRESENT:
NEWENTRY.PREV <- PRESENT.PREV:
PRESENT.PREY <- NEWENTRY;
PRESENT <- NEWENTRY,PREV;
PRESENT.NEXT <- NEWENTRY
FI

RETURN
END

129



11, PRESORT ON A LARGE ADDRESS SPACE

This algorithm takes an array of records in random

order and rearranges them to form a heap. The heap is a

binary tree in which each node is greater than or equal to

Its descendents,

HFAPIFY(REFERENCE REC,VALUE N)=
BEGIN
INTEGER ARRAY RECC1:N];
INTEGER CHECK, NEW;
FOR NE4 <- 2, N DO

CHECK <- NEW;
WHILE CHECK NEO 1 AND REC[CHECK] > REC[CHECK/23
DO

REC[CHECK] <=> RECCCHECK/2];
CHECK <- CHECK/2

OD
O0
END

12, AUTOCORRELATE ON A LARGE ADDRESS SPACE

This algorithm computes the autocorrelation of the

vector A from I to T,

PROCEnURE AUTOCREFERENCE A, VALUE NVALUE T,
REFERENCE RES)z

BEGIN
INTEGER NTTAU;
REAL A(I:N), RESCIT];
FOR I <- I TO T DO RESCIJ <- 0 OD;
FOR I <- I TO N DO

FOR TAU <- I TO T DO
IF I + TAU-1 > N THEN EXITLOOP Fi;
RESrTAU3 <- RESrTAU) + AtI)$ACI TAU-I1i

OD
00

RETURN
END

130

______________________________________________



13. CHARACTER SEARCH

This algorithm searches a given string to see if it

contains a substring that exactly matches the given argument

string,

PROCEDURE CHARSRCH(RET SRCHSTR, VALUE SRCHLNGTH,
REF SRCHARG, VALUE ARGLNGTH,REF LOC):

BEGIN
INTEGER I,SRCHLNGTH, ARGLNGTHY
BYTEVECTOR SRCHSTRCO:SRCHLNGTH-13,SRCHARGCO:ARGLNGTH-11
LOC <- -1;
IF ARGLNGTH LEG 0 THEN LOC <- 0; RETURN FI;
FOR I IN 0,SRCHLNGTH-ARGLNGTH DO

IF SRCHSTR[I;I+ARGLNGTH] LEG SRCHARG
THEN LOC <- I; RETURN FI;

OD;
RETURN
END

14, BOOLEAN MATRIX TRANSPOSE

This algorithm computes the transpose of a Qiven N by N

matrix in place.

PPOCEDURE BMT(VAL NVAL Al, VAL A2) =
BEGIN
INTEGER 1,Ji
BOOLEAN Bt1:N,1IN]
FOR I IN 1,N-1 ; J IN I IN DO

SEI,J] <N> BUD,!]
OD
RETURN
END

131

: !



15. RECORD UNPACKING

This algorithm unpacks the fields of a record into *n

Integer array.

PROCEDURE UNPACK(REr RECORO, REF FORMAT, VALUE LEN
REF RESULT)=

BEGIN
BITSTRING RECORDCOI?2I
INTEGER LENSTARTRESULTCILEN3,TEMP,I;
kRBTYPE F0RNAT[I:LENII
START <- 0
FOR I <- I TO LEN DO

TEMP <- PECORDCSTART:START+FORMATEIJ-I];
START ,- START + VORMATC[3]
IF FORMAT[I) IS A DISTINGUISHED VALUE
THEN
TEP 4- SIGNNEXTEND(TEMP)

FIG.
RESULTVII <- TEMP;

RETURN
END

161 VECTOR TO SCAN LINE CONVERSION

This algorithm takes a list of vectors and produces a

raster scan line conversion.

PROCEDURE VECSCAN(REF DLIST,VALUE LEN, REF TEMP):
BEGIN
RECORD DISPLAY(INT16 XS, INT16 YS, INT16 XE, INT16 YE),

WORKLIST(INT16 XSINT16 XEeNT32 Y,INT32 SLOPE);
DISPLAY OLISTrIILEN)
WORKLIST TEMP[1:LEN+.13
INTEGER 1, START, LINE, DENOM;
STTSTRING BITtl:1024];

lGererate working vector
FOR I <- I TO LEN DO
TEMPXSCI] 9- OLIST,XSCX]i
TEMP,XE <- PLIST.XEMZ2;
TEMP,YEII <- DLIST.YStI)*1024;
DENOM <o (DLIST.XECI1 - OLIST.XSEII + I3;
TEMP,SLOPECII <- (DLISTYECI3-DLIST.YSI)*)1O24/DNOM

132



ODI
TEMP,XS[LEN41 <- 1025
! Generate the scan image
START <- I;
FOR LINr <- 1 TO 1024 DO

BIT <- 0
I <- START;
WHILE TEMPXSEI3 LEG LINE DO
FOR K <- TEMP,YII/1024 TO (TEMP,YEI] +

TEMP,SLOPEEII )/1024
DO BITCKI <- I OD;
TEMPYCI] <- TEMP.YCI] + TEMP.SLOPECI];
IF TEMP.XEC] = LINE
THEN TEMPESTART] <=> TEMPEI];

START <- START + 1;
FIa
I <- I + 17

OD DOD

RETURN
END

133

* - i ,



APPENDIX E

CDS 432/670 USERS MANUAL

The following is an effort to enable someone with no

prior knowledge of the 432/600 system to be able to compile,

link, and execute proarams on the 432 in a minimum amount of

time and 'fuss', A knowledge of ADA is assumed, as is

familiarity with VMS (e.g. the VMS editor),

Referring back to Figure(63 it can be seen that a

variety of hardware and software is involved in simply

getting a orogram to 'run' on the 432. This variety of

needed hardware/software is collectively referred to as the

432 "Cross Development System", or "CDS" for short. Not

surprisinaly, those functions needed first in order to

achieve the desired result of a program executing on the 432

are accomplished on the VAX 11/780 host. Briefly, the steps

reouired,olus their CDS 'companion elements' are:

I. Program Creation/Editing -- VAX/VMS

2. Compilation -- VAX/VMS

3. Linkina - VAX/VMS

4. Downloading -- MDS 800

S. Program Load/Execution -. MDS 800/432

134

. . ... I I l II rIli .. .. . . . .. . . . . . -t i -i 1 I . . I I l l .. . .



1. PROGRAM CREATION/EOITING

Creation of a login file with at least the following

commands will substantially add to the ease of your terminal

sessions while workino with those CDS parts which reside on

the VAXIVMS host:

SADA432

smoDo :a= del *,mso;*+*,mbo;*

Smooc :am del *,msc;*.*,mbc;*

smope :=a del *,mse;*+*.mbe;*

The reason for these commands will become evident as we

continue.

AD source files to be compiled by the Intel ADA cross

compiler must have a file extension type of either:

1. (ftlename>.,SS => An ADA source specification

file.

2. <filename>.,MS => An ADA source body file.

3. <filename>,MCS z> Both specification and body.

In our opinion, dividing source code into separate

specification (.*SS) and body (,MBS) files was In Keeoing

with some of the original philosophies behind ADA, i.e.,

encapsulation and information hiding. Unfortunately, the

compilation efforts, of necessity, must double (2 files to

compile vs, I in the mCS case), What follows next are

figures of a sample Program. Figure 19 illustrates the

135



division into specification and body, Figure 20 illustrates

the Combined (MCS) format, Besides the distinction of

working with two separate tiles as opoosed to one, take

special note of the line, common to the 'body', which begins

with "praoma environment....

I pmckage EXAMPLEI Is I
I procedure SIMPLE; I
I end EXAMPLEI; I

I The specification filed as EXAMPLE1.MSS

I The body filed as EXAMPLE1.MBS I
V V

pragma environment("ACS:TEXTIOMLEl",EXAMPLE1.MSE",
"INTIC.MSE");

with text.io,intioi
qse text..o,intio,ascii;
oackage body EXAMPLEI Is
orocedure S114PLE is

xy,z : Integer;

Begin
x :2 10s
y :2= 151
Put-line-lOC" SIMPLE )

out(bfl);
-- this rings the bell,'use ascii~enables this
z :2 x+y:
put(z); -- 'intlo" allows you to do this
put(bel)l
put.line.iO("END SIMPLE");

end SIMPLEt
end EXAMPLEI;

Ftqure 19. Specification and Body Format (seoarate)

136



pragma environment({ACS:TEXTIOMbE","INTIO.MSE");
with text.lo,intio;
use text.io,intior

mackaqe EXAMPLE2 is
procedure SIMPLE;

end EXAMPLE2;

oackage body EXAMPLE2 is
orocedure SIMPLE Is

x,yOz : integeri

Begin
x :0 10;
Y := 15"
puQt.lne.lOC" SIMPLE ");
Put(bel);
z := xeyf
Put cZ)I
Put.line.IO("END SIMPLE");

end SIMPLE;
end EXAMPLE2;

Combined specification and body filed as
EXAMPLE2,MCS.

Floure 20. A Combined Format Examole

Information is conveyed to the ADA compiler systeM by

means of praqmas. The environment praqma soecifies the names

of external environment files (or liorary units) that

constitute the compilation environment for the current

compilation unit(s). It the current compilation depends on

other compilation units from other compilations, then the

environment files from these compilations must be listed in

the ENVIqONMENT pragma in the current compilation. These

137

- , __ , Jk ,.., ... ..------.. ... . . .---



environment pragmas enable separate compilation while still

maintaining strong type checking of interfaces, two features

which ADA is supposed to fulfill. In these examples the

Compilation of the body depends on:

-- ACS:TEXTIO.MLE => so the package can perform
character I/O.

-- INTIO.MSE => so the package can perform integer
1t0.

-- EXAMPLEJ.MSE 2> the corresponding specification
file.

To alleviate confusion on file extensions, the following

is a list of VMS file extensions used in the 432 ADA

Compiler System (ACS).

1. First character:

M -- The file contains a library unit. M stands
for module.

S -- The file contains a SEPARATE stub.

2. Second Character:

S -- The file contains a program unit specifica-
tion.

B -- The file contains a program unit body.

C == The file contains the combination of a pro-
oram unit specification and a prooram unit
body.

L -- The file Is a program library file supplied

by Intel.

3. Third (last) Character:

S -- The file is an ADA source text tile.

138

* 4--- i~* -- --- ---



E - The file is an environment file.

R -- The file is a REPORT file.

0 -- The file is an object code (EOD) tile.

L -- The file is a REPORT listing file.

C -- The file is an Object code listing file.

m-- The file Is a specification file for the
COMBINE utility and contains a list of en-
vironment files that are to be merced.

I -- The file is an integrated environment file
created by the COMBINE utility.

T -- The file is a listing file produced by COM-
BINE and contains the file table listing of
the integrated environment.

For added clarification:

e.go <filename>.MSS -- An ADA source text file
which corresponds to a specification.

e.g. <filename>.MBS -- An ADA source file contain-
Ing program unit bodies,

e.g. TEXTIO.MLE -- A library environment file sup-
plied by Intel.

2. COMPILATION

The Intel compiler is invoked by the command

"IDA", followed by the filename. If the filename is

omitted, the compiler will prompt for it. Our input to the

compiler consisted either of <filename.MSS>, for

specification files, or <filename.MBS>, for the

implememtation, i.e., body, files. Output from a successful

compilation consists of files of type:

139

,____



1, .MBE or .MSE -- The environment file represen-
tation.

2. MBC or ,MSC -- The object Code listing file.
It is utilized when debugqing on the 432.

3e ,MBO or .MSO -- The object code. This is input
to the linking process.

Unsuccessful compilation results in tiles of the type:

to .MBL or .MSL -- A report listina file. we gen.-
erally never used this,

2. .NBR or .MSR -- A file which when prefixed by
the command "REPORT", e.g., REPORT proqmbr, al-
lows one to scan thro,'qh one's program on the
terminal. More importantly, all errors detected
by the compiler are flaqqed with their
corresponding diaqnostic message.

A typical session on VAX/VMS consists of the following:

1. Code and compile the soecification file for the
problem, i.e., the proqram, at hand. Since a
specification file is essentially just a means of
formalizina in ADA what one considers the inter-
face to be, it usually needs no environment prag-
ma statement.

2. Code and compile the body, which is the means by
which one implements the program. Since the body
depends on what the interface is, the environment
file representation of the corresponding specifi-
cation file must be Included. Additionally, if
1/O is to be performed in the body, which is oen-
erally the case, the general I/O, Intel-supplied
package (TEXTIO), must also be included in the
praqma environment statement.

An example of all this can be found in Appendix C, which

shows the ADA source code for the programs done in this

tolesise

140



In case It wasn't made clear In the above discussions,

compilation order is important. Any modules included in the

pragma environment statement or referenced in the standard

ADA constructs, "WITH.." and "USE,.." must be successfully

compiled beforehand, otherwise unsuccessful compilation is

all the reward one will get for one's efforts in the current

compilation attempt.

Successful compilation means the creation of three new

files in addition to the original source file. Directory

space in VMS is quickly exhausted if one is performing many

compilations. Without adequate directory space, the INTEL

compiler and linker will abort. Therefore, when asking for

an account, the system manaQers must be informed that more

directory space than is normally given a VMS user is needed.

Furthermore, in an attempt to provide a quick means of

deleting unneeded environment, object-code listing, and

object-code files, the commands, mooe, mopce, and mopo will

automatically delete all files of the corresponding filetyce

in the current directory.

Once one has successfully defined one's interface, coded

It, compiled it, and has done the same with the

corresponding body or bodies, one has reached the point

where in most traditional systems one is ready to link the

object code in preparation for actual program execution. In

the 432 case, additional compilation must still be performed

before the linxing process may begin.

141

- -aim: ram

Jam=,



First, a module termed PSERP.HBB must be compiled. An

example of this is Included in Appendix C, Its function is

to initialize the user process(es). It essentially marks

which module is to begin execution first. For Instance, a

Driver routine which invokes all other subroutines Is

usually executed first, In our case, PSERP always

Initialized the Driver routine, which we always termed MAIN,

in an attempt to Cut down on our eoding/comoilation efforts.

Secondly, as pointed out in the architecture overview on

operating system support, users can tailor some of the iMAX

O.S. packages, In this thesis, modification of the system

conflquration package, PSORS.MBS,was implemented. Hence, the

successful compilation of this modified packace was also

needed. This package is also Included in Apoendix C.

3. LINKING

The *MSO or .MBO files produced by a successful

compilation are input to the 432 linker by being listed in a

user created directives file. The output from a successful

link is of filetype *EOD, EOD Stands for "External Object

Description". Actually, the resoective MSO and MBO output

files from the compiler are In this COD format. The choice

of usinq EOD as the filetype of the output from the linker

Is an arbitrary one.

The 432 linker combines a set of compiled EOD's (e.g.

the .MSO and .MBO flies) into a single linked COD. Compiled

142

.,



EOD's, generated by the ACS, contain program modules. These

modules, in turn, contain a collection of compiler-generated

objects, such as segments, refinements, etc. The output from

the linking process, a sinqle file, is then downloaded to

the MDS 800 system.

The 432 linker performs the following traditional

functions:

t. Resolves inter-module references.

2. Assions physical memory addresses to all segments
contained in the input modules.

3. Verifies the compatibility of modules that are
linked together.

4. Produces a linked LOD that may be loaded into the
System 432/670 main memory and executed.

5. Generates error messages for abnormal conditions
encountered Aurinq processing.

6. Generates a linker listing that summarizes the
results of the linker operation and address as-
sionment.

In addition, the linker performs the following 432-specific

actions:

1. Version checks the input [ODs for compatibility,

2. Assigns object table directory Indices and object
table indices (Known as object coordinates) for
objects contained within the input modules.

3. Builds the physical 432 access segments described
symbolically within each input module.

4. Builds object tables and the object table direc-
tory associated with the objects in the input
modules.

143



5, Generates initialization object tables, access
descriptors, and storage allocation information,

The net result of all this Is an EOD which, when loaded

into 432 memory, will execute as one has proqrammed It.

The input or directives tile to the 432 linker should be

a file created on VMS with a file extension of LKD. This

file, an example of which is provided in Figure 21, may have

other file extensions or types. However, if that is the

case, then the full tile name must be given to the linker,

i.e., LKD Is the default file type. For example, given a

link file which we call "TEST.LKD", to link this file, the

following command would be entered:

LINK432 TEST

The linking process can be appreciably longer than

compilation. However, if linkaoe is successful, a single,

simple message oft

LINKAGE SUCCESSFUL

should be the only message which appears on the console.

Warning messaces, not error messages, accompanied by

*LINKAGE SUCCESSFUL", do not really mean a successful

linkagel At least this has been true in our experience, A

detailed explanation of the different directives which can

appear in the linker file, plus their meanings, can be found

in the manual, "VAX/VMS Host 1iser's Guide". With the

144

j



culmination of a successful linKinq, one is ready to

download the output file generated by the linker to the MDS

800 system. For a detailed explanation of the linking

process and the available directives,i.e.e, commands included

in the link file, refer to "VAX/VMS Host User's Guide".

i An examole of a link file which serves as inout
; to the 432 linker. The semicolons whien precede
;These statements siqnify comments. Link,free,
; outout,ortnt, and objectmap are examples of
i linker directives. The blank lines which occur
between directives MUST be present!

link ACS:IMAXvl.eod
ACS:textio.mlo
examplet.mso
examplel.mbo
mainnso
main. bo
oserpbo
asors .mbo

free(I in directory)

output example.eod

print example.map
oblectmep

This could be filed in VMS as TEST.LKD

rloure 21. A Linker Input File

4. DOWNLOADING

DownloadLno Is performed on the MDS 800 system. In

order for downloadinq to be accompliShed, the VAX must be

145



operating under VF6. A cable, marked with a tag which reads

"VAX", is the transmission facility for downloading. The

followinq steps comprise the procedure to follow when

downloading a file:

1. Attach the VAX cable to the ADM36 terminal. Logon
to VMS as you normally would. Enter the following
command : "SET TERM/SPEED=2400". This is done be-
cause the MDS 800 system is currently modified to
sunoort only 2400 baud communication rates unless
hardware/sottware chanoes are implemented.

2. Remove the VAX cable from the ADM terminal, con-
nect one end to a null modem, Connect the other
end of the null modem to the MDS 800 TTY port lo-
cated on the control unit.

3. Insert into drive 0 of the MDS 800 system the
ASYNCH LINK diskette.

4. Insert into drive I the diskette one wishes to
download to. Soot the system.

5. On the AIS 800 terminal, enter the following com-

mand : "DNLOAD <VMS EOC file> TO :Fl:<new or same

file name>, For instance, assume one mas an EOD.
file named TEST.EnD in the VMS directory. Furth-
ermore, one wishes to call this file TEST1.CD on
the MOS 900 system. One would enter the following
command: "ONLOAD TEST.EOD / TO
:F1TiESTl.EOD"p quotes not included.

we have exoerienced averaqe download times of

approximately 20 minutes. Any errors in transmission mean

that downloading must be redone until a complete error-free

download Is accomplished, We have not experienced any errors

In downloading to date. The conclusion of a successful

download marks the beginning of the next step, execution on

the 432.

146



5e PROGRAM LOAD/EXECUTION

Now that a linked EOD file is on a diskette, all that

remains Is to load it into 432 memory and execute it. The

following Procedure assumes that the MDS'800 system and the

432/670 execution vehicle are powered up and have no

hardware faults. In the following/,discussion, commands which

are to be entered at the MDS 800 terminal (termed the

"debuqger console" by INTEL) will be printed in capital

letters and enclosed in quotes. This is for illustration

purposes only. Capital letters are not necessary, and quotes

will result in an error message.

1. Insert into drive 0 of the MDS 800 system, the
diskette labeled UPDATE-432/DEBUG-432.

2. Insert intm drive I the diskette which contains

the executable proaram. Boot the system.

3. Enter the following command: "RUN WORK :FO:".

4. When the ISIS prompt C-) returns, enter: "RUN
DES432". This should result in the display of
"SERIES II 432 Systems Level Debugger, V1.O0".

5, Once *in the debuggerO the ISIS prompt will be
replaced by a "?" as the prompt symbol. Enter the
command: "INIT",

6. When the prompt returns, enter: "INCLUDE
DES432,TEM",

7. when the prompt returns, enter: "DEBUG :Fit<
filename.filetype >". ror example, suppose one
has downloaded the file TESTEOD which one wives
to execute. Here, one would enter: "DEBUG

:YiTESTEOD".

Be Enter: "START". This command Initiates program
execution.

147

sr



This command will result in program execution on the

432. For an in-depth explanation of debugging facilities

available on the 432, in case the program does not execute

as planned, refer to "Workstation User's Guide",

148

.. . . ....



LIST OF REFERENCES

1, Dietz, William B, and Szewerenko, Leland, "Archi-
tectural Efficiency Measures : An Overview of
Three Studies", IEEE Computer, April, 1979.

2. Meyers, Glenford J., AdvanCes In Cnmouter Archl-
tecture. second edition, John Wiley & Sons, 1992.

3. Hansen, Paul M,, et, al., "A Performance Evalua-
tion of the Intel iAPX 432", Cnmnuter Are-!tht.-
turg Mows, June, 1982.

4. Wilkes, M.V., "Hardware Support for Memory Pro-
tection : Capability Implementations", .A-, 1982.

5, Fabry, R.S., "Capability-Based Addressinq", o
Mf the Arm July, 1974,

6. Wilkes, M.V., page 116,

7, Intel Corporation, 1MhX 432 Reference Manual,
1Q99.

8, Shoop, Darreld Russel and Holdcroft, Richard T.,
A Comparative Analvsls nf Intel's 412 General
Data Processor and Control Data's AN/AYK-14(V)
Computer Syster, master's Thesis, Naval Postgrad-
uate School, Monterey, California, 1982,

149

j_ _ _ _



INITIAL DISTRIBUTION LIST

No, Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
laval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 52 2
Deoartment of Computer Science
Naval Postgraduate School
Monterey, California 93940

4. Associate Professor Uno R. Kodres, Code 52Kr 2
Dopartment of Computer Science
Naval Postgraduate School
Yonterey, Callfornia 91940

5. Capt. Bradford 0. Mercer, Code 52ZI 2
Department of Comouter Science
NAval Postoraduate School
Monterey, California 93940

6, RCA AEGIS Data Reoository
RCA Corporation
Government Systems Division
mail Stop 127-327
Moorestown, New Jersey 0R057

7, Library (Code E33-05) 1
Naval Surface Warfare Center
Dahlgren, Virginia 22449

8. Daniel Green (Code N2OE) I
Naval Surface warfare Center
Oahlgren, Virginia 22449

9o CDR J. Donegan, USN I
PMS 40085
Naval Sea Systems Command
WashInqgton, DC 20362

150'I_____________



10, G, Luke1
Fleet Systems Department
Applied Physics Laboratory
Laurel, Maryland 20810

11, Lt, Dave Applegate 2
413 Exeter Place
Marina, California 93933

12. Cant, Robert Coates 2
5840 AvenIda Jinette
Bonsall, California 92003

151



-DATE,

FILMED

.-Now,


