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ABSTRACT

A horizontal difference scheme that conserves both potential en-

strophy and energy for general flow and, in addition, yields fourth-

r order accuracy for the advection of potential vorticity in case of non-

divergent flow, is derived for the shallow water equations on the stag-

gered grid as a simple extension of the second-order potential enstrophy

and energy conserving scheme presented by Arakawa and Lamb (1981). This

fourth-order scheme is derived both for a Cartesian grid and for a

spherical grid.

Comparison by means of numerical experiments between the newly

derived scheme and the second-order scheme showed the distinct advantage

of the new scheme in giving better development and faster moving speed of

the law.

4 AdO*sSion For

1T TIC T.'. E0

AvaliabtlitY Codeg

A ead/or
Dis~t Spooial

4 j\

4



4

I. Introduction

Recently Arakawa and Lamb (1981) (hereafter AL) derived a second-

order potential enstrophy and energy conserving scheme for the shallow

water equations in order to improve the simulation of nonlinear aspects

of the flow over steep topography. Their numerical experiments showed

the advantages of the scheme over the (potential) enstrophy conserving

scheme for horizontal nondivergent flow, not only in suppressing a

spurious energy cascade but also in determining the overall flow regime.

A new horizontal difference scheme presented in this paper was

derived as a simple extension of their scheme focused on the increase

of the finite difference accuracy. The scheme, of course, was designed

to conserve both potential enstrophy and energy for general flow and, in

addition, to give fourth-order accuracy for the advection of potential

vorticity in case of non divergent flow; the advection term leads to a

fourth-order Jacobian proposed by Arakawa (1966).

In Section 2, the shalow water equations are presented and deri-

vation method of the fourth-order scheme is outlined. The method is

much the same as used in AL. The derivation of the scheme is performed

in Section 3. The advantage of this fourth-order schemp is demonstrated

in Section 4 through a comparison, by means of numerical time integra-

tion, with the second-order scheme by AL. The appendix presents the

scheme for a spherical grid that can be derived by analogy to the pro-

cedure in Section 3.

2. Outline of the derivation procedure.

The governing differential equations for quasi-static motion in a

homogeneous incompressible fluid with a free surface can be written as

W +Ikx *+ V (K+J) 0o (2.1)

a
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-+ v* ~o (2.2)

Here t is the time, V the horizontal del operator, IK the vertical

unit vector, V the horizontal velocity, h the vertical extent of a

fluid column above the bottom surface and the (absolute) potential

vorticity q, the mass flux V the kinetic energy per unit mass K
"* and are defined by

S1 + + (2.3)

,' h.V (2.4)

1/z V (2.5)

'--( I,, hs) (2.6)

Here C) is the vorticity, A<. xV , f the Coriolis para-
meter, g the gravitational ?. .,;eration and IL the bottom surface

height.

After some multiplications the equations for the time change of

total kinetic energy and potential energy in this fluid may be ex-

pressed as:

S0 (2.7)

d and

+ V (2.8)
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The summation of (2.7) and (2.8) then yields a statement of the con-

servation of total energy.

k L k (K+ Sh h )J = 0 (2.9)

where the overbar denotes the mean over an infinite domain or a closed

domain. Here it should be noted that the term in (2.1) involving q

does not contribute to the change of total kinetic energy and the last

term in (2.7) and (2.8) cancel in giving (2.9). These two points must

be taken into account in the construction of the finite-difference

scheme.

The vorticity equation for this fluid motion may be written in

the form

( 0 (2.10)

and then we obtain the potential vorticity advection equation.

0v. --o (2.11)

Thus in the absence of spatial gradients of q there should be no time

change of q. This condition will be also used to construct the finite-

difference scheme.

Now hq times (2.11) plus 1/2 q2 times (2.2) gives the equation for

time change of potential enstrophy

- +0 (2.12)
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which leads to a statement of the conservation of potential enstrophy,

(h -z ) 0 (2.13)bt

Our present purpose is to derive such a finite-difference scheme

for the momentum equation (2.1) that i) it is consistent with a

reasonable advection scheme for potential vorticity advection equation

(2.11); ii) it guarantees conservation of total energy (2.9)

and potential enstrophy (2.13) for the general case of divergent mass

flux; and iii) it has fourth-order accuracy for the advection of

potential vorticity when flow is horizontal and nondivergent.

The derivation of the scheme is performed along the following line.

First, we can derive the same constraint as in AL for the total

energy conservation, by the application of requirements discussed in

this section to a general difference scheme for (2.1). Then, since the

scheme still retains a high degree of freedom, we further impose the

following requirements to fix the scheme.

1) When q in the finite-difference analog of (2.11) is constant in

space, there is no time change of q.

2) To guarantee conservation of potential enstrophy the finite-

difference analog of (2.13) must hold.

3) In case of the nondivergent mass flux advection scheme for (2.1)

leads to the Arakawa fourth-order Jacobian (Arakawa, 1966).

4) The symmetry between the Cartesian components of the momentum

equations for the case of a square grid must be retained.
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3. Derivation of the fourth-order scheme

The arrangement of the variables and the indices on the square grid

to be used in this derivation, called the C grid, is shown in Fig. 1.

Here u and v are the Cartesian components of V in x and y directions,

respectively.

The second-order differencing for the continuity equation (2.2)

can be written

~Itt,;+y +(VV~ ~~f2;*.' ~O(3.1)

where

(3.2)

OA4) (3.3)

(3.4)

and we choose

E C (3.5)

C (3.6)

here overbars - i and - J denote the arithmetic average of two

neighboring points in x and y directions respectively.

The general fourth-order scheme for the Cartesian components of

the momentum equation (2.1) may be written.

6
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4

1 - k + ]Ez VL] =0 (3.7)

Of (378)

where K defined at the h points is specified by

r.+ Iz (3.9)

Equations (3.5), (3.6), and (3.9) are designed to maintain conserwtion

of total kinetic energy for the divergent mass flux (AL). The symbolsS c , f, y, 6, c, 4, X and pi are linear combinations of the q. X and 1i

give additional generality to the fourth-order scheme. Note that the

terms involving q cancel by virtue of their form when we derive the

equation for the time change of total kinetic energy.

Application of (3.7) and (3.8) at the points surrounding a
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point gives the finite-difference vorticity equation consistent with

this scheme

* +(~)~ v £ ,; (~I~ ',).,. ,u,.&) + u,,. ( .j.,,- .. ,)

-j 4) - ( I '

S ,.'-,i (kz,;-,) + Vg-,, (Xz;..) ), (3.10)

where the vorticity change has been expressed

with

(3.11)

-!

* e ~ - ~4' t~~1 - t~+ (3.12)

and h(q ) is a linear combination of h, as yet unspecified.

Now we impose the first requirement, to wit, that ?I/bt

vanish when q is formally set equal to a constant on the right-hand side

of (3.10), regardless of the constant. If we write a, B, y, 5, , ¢, X,

and u in general form as linear combination of the surrounding q:



(3) 42.

it wrten0

(3 (3.13)(

t,;t

, (3- ) ( 8?p,. -z ,))+ ( - )(R j+.- *,,;;,

then when q is formally set equal to a constant, (3.10) can be

written as

S(c- P)( -, -,-) (A f E-)

- , , - , , ( + ) ( i t , , -, _ )
+ M ;JA,3 4 .,,.- ' ',0 - ,,. )

-J z(' L -r ) (3.14)

where A zB( , etc.
KK

4#
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In the case of a square grid, for simplicity and geometrical

symmetry, h~qr is defined as

= ~ ~ t h411.4~ * 1~i,~i) (3.15)

Then from (3.1) and (3.15) we can write

|Comparison of (3.14) and (3.16) yields the constraints,

A = B = C = D = 1/4, E = F = L = M = 0 (3.17)

For the requirements! 2), that potential enstrophy be conserved

•-in finite difference form, we formally rewrite the vorticity equation as:

where (i and b);.) are linear combination of U and V.

Then according to AL the necessary and sufficient conditions for the

conservation of potential enstrophy in divergent flow can be formulated

as

L,]"0 1,~jj "- ,+,; jij (3.19)

'4,

.' , - . (3.16)

-X0

Coprsno431)ad(.6 ilstecntans
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To ilnpQse these constrAints we u~e (3.13) to rewrite (3.10)

explicitly in the fomn givyen by (3.18) And Qbte'n the following:

+ X't*. ~

( ) 01 t

- L _ ( JM +

+L)3L (3.21)(~r

+ (E

(1 41, (322

13 (4o) -3) (Y

(olIS 4,/ )).X ) s-(f3-,+
13"~~) -Lr %t" ~ ~ ~ "

W '- t'.;*,\ )~ tX )tZ .. -

V)P , oi 0e~' r, C

(c -3 K~lf,,f-(0( +1)~,
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(I) cop(3

13/

(," l) j-4 t J$'

ZA +/4 2tC +~

19 +2 InO
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Applying first the constraint (3.20) for arbitrary U* and V*, and

simplifying,using (3.17), requires

4 + E,(3.23)

To apply the constraint (3.19), each aij- -c;.3 "  is

required to equal -- i z" i+$" when all pairs of

indices appearing in the former are incremented by (W,j) This

gives the following conditions:

, (3) 1) t6 )_ ( I )

For the requirement (3), to wit, the reduction of the non-divergent

mass-flux advection to the fourth-order Jacobian, we rewrite (3.22) for

the case of no mass flux divergent introducing a stream function. By

equating the resultant with the fourth-order approximation of the

Jacobian (Arakawa, 1966), we can determine the following coefficients

(See Appendix A)

( ., 1., / / i(3.25)

- ' , /A _- -



16

and thus, from (3.24)

1- /2 (3.26)

Now (3.23) and (3.24) can be combined to express unspecified

coefficients in terms of E"", an" ' :

13) '/24-*."', W1. j( = -0I/ 24 -,- >

,,81. .(3.27)

'" x" c1i#83'-°  ' i l1 .z*' 3j <6 S1 1 -''i'2 --Vf-'K "-- 8( () (>Zo, 4"
(2) 1/z4-- ) - I- 13 4)

Finally the requirement of symmetry between the Cartesian

components of the momentum equations for the case of a square grid yields

6"' ( " "' 6"'= IS) ) $ ' (3.28)

From (3.27) and (3.28), we obtain

' =-E , / -.. I//Z, II2-E. v3.29)

* If we now choose, simply for reasons of symmetry between F and

I- / -(3.30)

/z--
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the terms in (3,13) are completely specified As;

i
!! ,R,.j~a= L(t 2',:., +3 :v-..2 .-, ':,,-i ,.- ..+,]

, -4 3 +2 .,J+,-, , +2 i.j- 1,, -jf+ 3

')'.z z4 + '~.,41 +2'j+ 1+43g, + 2t Ij -gi.,5 -(.1Z. hL 
(3.31)

.±%j- z 'iI 1
j 2 4 +- - ,j+

I)

When we disregard additional coefficients, X. and Vi in the momentum

equations, it is easily shown from (3.23) - (3.30) that the final forms

of a, , y, 6, E and coincide with those of the second-order scheme

presented by Arakawa and Lamb (1981).

In summary, use of (3.5), (3.6), (3.9), (3.11), (3.12), (3.15)

and (3.31) in (3.1) - (3.4), (3.7) and (3.8) give a fourth-order

potential enstrophy and energy conserving scheme for the shallow water

equations.
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4. Numerical test of the fourth-order scheme

In this section the potential superiority of the newly derived scheme

is examined by means of the numerical experiments comparing its results

with those of the second-order scheme of Arakawa and Lamb. For this

purpose, a two-layer, homogeneous, incompressible fluid system model was

used. Quasi-static motion in the each layer of this fluid system may be

described 1y (2.1) - (2.6), but replacing h in (2.6) by rh2.+ K,

here (and hereafter) subscripts 1 and 2 denote the lower and upper layers,

respectively; and r, equal to 1 in the upper layer and to the ratio of

density of two layers (%/l in the lower layer, expresses the effect

of stratification. In this fluid system, the summation of total energy

for two layers is conserved, and mass and potential enstrophy are conserved

in the each layer.

In the numerical experiments, X and Y are directed toward the east and

the north, respectively. The computational domain is confined in a channel

bounded by two parallel rigid wall at y = 0 and y = W = 7500 km; and by

X = 0 and X = L = 13500 km, where cyclic boundary conditions are applied.

The mean heights of each layer top, H1 and H2, are chosen to be 5 km and

10 km, respectively and grid size d = 500 km. The bottom topography is a

* circular mountain, placed at the center of the domain, of circular and

parabolic cross section, and expressed by

h = h (1-D 2 /R2 ) for 0 < D ( R
0

and hs = 0 for R < D

here 0 is the distance measured from the center of the mountain, R = 3 d so

that the bottom diameter of the mountain is 3000 km and the maximum height,

hm, of 3 km is chosen (see Figure 2). The ratio of density r = 2/3, and

-m
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the acceleration of gravity g = 9.8 m s, are selected. Experiments

were performed with. two different Coriolis parameters: one is a

constant f = f0 = TO (f-plane) and the other is variable

f = fo+ a (y-/2) with $ = 1.62 x lol s'l(6-plane). At the north

and south boundaries, the rigid wall conditions, v = 0, and a computa-

tional boundary condition, 0 0, are applied. The variable outside

the boundaries involved in the fourth-order scheme are expressed by

those of interior points using the conditions that u, h, f are sym-

metric, and v is anti-symmetric, with respect to the boundaries. The

preliminary numerical integration with these conditions showed that

-they worked well within the acceptable accuracies for conservative

quantities: 0.04% decrease in mass, 0.08% decrease in total energy,

0.04% and 0.03% increases in potential enstrophy for the lower and

upper layers, respectively, after T0 days. However, a certain propor-

tion of the accuracy may be attributable to round-off error from the

use of single precision in the code. As initial wind fields, uniform

westerly flows of 20 ms-1 and 30 ms-1 are prescribed for the lower and

upper layers, respectively. The height fields are then obtained from

the steady state solutions of the equations for the two layer fluid

system in the absence of a mountain. The Matsuno scheme is used first

for the initial time step, and then once in every five leapfrog time

steps. A time interval of eight minutes is applied for all experi-
74

ments, though the second-order scheme may allow use of a longer time

interval than that acceptable for the fourth-order scheme (Gerrity

et al., 1972). This time integration scheme is the same as that used
4 in the UCLA-GCM, for reasons of convenience. The model time of
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integration was 20 days.

Fig. 3 shows the relative time changes in potential enstrophy, total

energy and mass to their initial values.

*For all cases, total energy and total mass monotonously decrease

almost at the same rate up to 20 days (0.15% and 0.08%, respectively).

These rates of decrease are much smaller than those resulting from the

fourth-order scheme presented by Navan and Riphagen (1979) (1.44% "r 0.99%

for total energy and 0.54% or 0.42% for mass, after 4 days). For potential

enstrophy, the fourth-order scheme gives better conservation than the second-

°- order scheme does.

Figs. 4-23 show the 24-hour changes of the wind vector based on ui and

vi at h points and the differential height of the lower layer (height of

interface) h1  -Hl, for a period up to 20 days, for the fourth- and second-

order scheme on the f-plane. Comparison of these results shows that the

fourth-order scheme yields a faster translating speed of the low (inter-

facial depression) produced by the mountain (the effect of truncation error

in general being to reduce propagation speeds). The five-day average speed

of the lows in the fourtn- and second-order schemes are 19.1 ms-l and

16.8 ms-1 , respectively, so that the difference of distance of low centers

reaches about 1000 km after 6 days. The passing event over the mountain at

Day 8 and the subsequent reformation of the traveling low on the lee side,

consistent with potential vorticity conservation are dramatically reproduced
0

in the fourth-order scheme, but not so distinctly done in the second-order

scheme. In the second passing event after Day 15, which exhibited somewhat

different behavior from the earlier one, the difference of the results of two

schemes is also clearly seen. The deep traveling lows in the fourth-order

scheme pass just north of the mountain, preserving their forms and 4n-
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tensities, and also producing the jet stream near the boundary associated

with the stationary high over the mountain(Day 16), while in the second-

order scheme the weak low is absorbed by the relatively strong high as it

approaches.

The results of the a-plane computations are shown in Figs. 24-43.

In this case the initial height fields are not of course identical to those

in the f-plane, but the differences are so small as to be negligible. Thus

we can determine the effect of 8, comparing the results in this case with

those in the f-plane case. The evolution of whole pattern in the 8-plane is

much more complex and the intensities of the high and the low are greater

than those in the f-plane case. One of the remarkable features is the

occurrence of the splitting of the lee side low into a stationary low and a

low traveling toward the northeast of the mountain, never seen in the f-plane

case. Note that the occurrence time of the splitting in the fourth-order

scheme is one day earlier than that in the second-order scheme (see Day 4

and Day 5). Here we can see the same advantages of the fourth-order scheme

as noted in the previous f-plane computations. After 6 days, the difference

of distance of the traveling low centers has increased to 2000 km, twice as

much as that in the f-plane case. Later, the difference gradually decreases

because the low in the second-order scheme is catching up, while the low in

the fourth-order scheme is blocked by the strong blocking high over the

mountain. The traveling lows can not easily pass over the mountain, but

go around it until they combine with another low in the south, associated

with the planetary wave. This splitting and the associated blocking

phenomenon are not produced in the similar experiment by Kasahara (1966).

The motion in the well-developed strong high over the mountain occasionally

resembles a Taylor column, with a stagnation area just south of the mountain,

although this effect is confined to the lower layer.
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5. Summary and further comments

A horizontal difference scheme has been derived for the shallow

water equations, conserving both potential enstrophy and total energy

for general flow, and, in addition, yielding the fourth-order

accuracy in the potential vorticity advection (in case of horizontal

nondivergent flow), in the presence of bottom topography. This de-

velopment may be considered as a straightforward (if complicated)

extension of the second-order potential-enstrophy and energy con-

serving scheme of Arakawa and Lamb (1981). Comparisons by means

of numerical experiments using the two-layer model with the second

order scheme by Arakawa and Lamb showed the advantages of t',. vi-wly

derived scheme in better development, faster traveling speeds of the

lows produced by the mountain, and better conservation of potential

enstrophy. The increase of computation time by the fourth-order

scheme is less than 10%. On the present model, the calculation code

of the advection terms occupy the major part of the whole code, so

that the increase in computation time may become negligibly small

in more complex GCM or NWP models. The new scheme has been already

incorpolated into the current UCLA-GCM with the SICK-proof kinetic

energy for the scheme defined by

,+ + YAY[ +/l4~ U/2 Y, z Z+ AL(~~)~

+ . V3 lytk + 1/24 (Jz*)/z+c-~) j.z(~1

This has practically eliminated the linear computational instability
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qf meridionally pr~pogating inertia-gr~yity waves (Arokawa and Lamb

(1981)), and has given good simulation results, GISS also has used

the scheme for their climate model.
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APPENDIX A

The fourthorder scheme for the case of no mass flux divergence
The finite-difference Arakawa fourth-order Jacobian JA (4) (1966),

which originally represents the advection term in the vorticity equation

and guarantees the enstrophy and kinetic energy conservation for hori-

zontal nondivergent flow, can be directly applied to the present case

of potential vortici'ty and potential enstrophy because of its universal

form. Thus the schemes for the momentum equations (3.7) and (3.8) con-

serve potential enstrophy and have fourth-order accuracy, if the finite-

difference potential vorticity equation (3.10) derived from it reduces

to this Jacobian form.

The Arakawa fourth-order Jacobian for the present case can be

written as:

JA

+ t 4<,, ,.e,' - 'PI,!4 :-(,.,:y..,(?+,.,;,)

*, r _' p" g

-t U"i'-<.: -,,)s- C'... fQ.;,.g;1 .] j.
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where '/' denotes a stream function for the mass flux.

With the definitton of as

.,* - -)A

the right-hand side of (3.10) can be rewritten as

+~~~~ 541+x + ~--~ ~.-Lra

+ L/J+.I ( -I +$c,+-SJyA+ +q /$--i+ .+ - ,-, +X.r, ,.

+ +

+ +;++ ( ,jj-,f , +i-+.,j-)+#-,}e ->)

+ g ,i- (- + ,i4f,-y+, - ti 4 ,- fA L4'-i- j, -' )

4 %', (-Ah-,,-e) + 'h,,(X +,,) (.

Equation (A.4) with the right-hand side of (A.1) gives the forms of ,

and p and four independent constraints on a, r3, y,* 6 , and ¢ as

• 

_Y

4+

+ I,+

- - ~~~ ~- .------ .-- " . - - - - - - -
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functions of q:

.j=L = ( E4 .,,s , .,. ) L~IYLP. UI

+ I

::: . -,, - . C 4.. + - Q4, O fl,, 4p

- I
__~~~~7( ~ 7- &(.,,, - ,,j,, '_,

'"- ¥ 's ! j ,+. ,',',.s 3,4,A,.5

4+

42

-(A .5,

I:
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After some algebraic manipulations similar to those in AL,

" we obtain the final forms as:

+ fzj/I 1-f gl.Z~ ~ - + Yl&J-f 1 +1;+2, +/

+?2 +*~-~- g-,+

+, _-+ 3(e +29-li#

ij+, C+9+±+ ) -3 4
+ .i+ ~-, J+2(- ,j L j'+;4f

+~ z

where the new variable C is defined by

IS6L

+ , - &a.;', (A.7)
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- APPENDIX B

The fourth-order scheme for the shallow water equations on a

spherical grid.

1. The governing equations in spherical coordinates.

The shallow water equations (2.1) and (2.2) on a spherical grid

may be described as:

rrn (B.1)

(K+ 1)(B.2)

+ + (B.3)

where m and n are metric factors in the spherical coordinates =

(longitude) and j = f (latitude) expressed by 1/m = a coscf

and 1/n = a (the radius of the earth). U and V are the component of V/

in % and , respectively and q, K and P are defined in Section 2.

The vorticity =IK'Vx can be expressed as

M (B.4)

Then the equation for the time change of kinetic energy can

be obtained as

I

I



30

2. The finite-difference scheme for interior points of the spherical

grid.

A portion of the spherical grid with the variables staggered as

in the C grid and the indices (L.J) centered at a q point is shown in

Fig. BI. Here A and Al are constant grid intervals in

and lj , respectively, and m and n are assumed to vary only in j.

For the continuity equation (B.3) multiplied by AAj , the

following finite difference form is chosen:

,,j L Y - ,'4 1  .,5+, - *5,d  (B.6)

H i+"k (B.7)

j4/ 4yZ  (B.8)

Here Ifty, is area of the stippled region

• in Fig. B1 and h(u), h(v) are as-yet-unspecified functions of h.

Ignoring pressure gradient forces, the remaining terms in (B.1)

and (B.2) can be represented as in the square grid case,

r

LT



(B 9):

'4 31.- -~3t ,:.), L+,i, 4"- j4 '+,j;, -;',+ ,-U.j+' / ,:'*

8 Z'4i l ---

2tzijP Lk 2,))WLe,+2,4 wj

_ + K;. (B. 1

but U and V are now defined by (B.8). The coefficients a, , y, 6, C,

, and v are again functions of q to be determined, where Szj.

and h is an as-yet-unspecified function of h. The finite-difference

form for C chosen is

InI

As in the square grid case, h 
(u) and h(v ) are chosen as

U Ai c
(B.12)

Then it is easily shown from the finite-difference analog of (B.5) that

we must specify

to maintain conservation of total kinetic energy for divergent mass flux.
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Since the procedure to determine 4, 0, yo 6, c, , A and 1 as

functions of q is identical to that presented for the square grid, we

can directly use the results of (3.31) with consistently determined h(q)

in q for the spherical grid (AL);

)j Z4Y ()"tV I - Y.' . +"');-v

Y4 L . . ,, + H( 4 -,. (B. 14)

S.4

4A

(fn4On j(.5
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3. Modification of the scheme at the pole

The arrangement of the variables and the indices near the North Pole

(NP) is shown in Fig. B2.

The continuity equation at J=NP-1/2 in the grid system can be

expressed as

H i-*v,mP-V; in)pV

The momentum equations for u at i=NP-1/2 and V at j =NP-l

can be written

+ ,,NP-V2. aj4i.,vP- V2 -Ai,,NP-Yz lAi-/vY 'A-sp U.p3, (B.17)

+ (f K+~Np kLSNp...,L) =~,P 0

AZHI rYN -I- + Ki+v,NP..YJ. K9svz.,NP-j14i 0 (.8

where the primed variables are to be determined and the others are

defined as in (3.31).
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At the North Pole, we define q through the circulation theorem

(B.19)

A;. IMAX

The factor .4 4 /(m)(v in (8.21) represents the area

of the hatched region in Fig. B2, and IMAX is the total number of grid

points in the direction.

For the conservation of total kinetic energy in the divergent

mass flux, K at j = NP-1/2 must be given by

L

(WE_ eijp9i AL 1A ~ L4' (8.22)

z ~ (Wort)Wy +X Z7

After the application of requirement on potential vorticity

advection and potential enstrophy conservation to (IB.16)-(B.21), we

obtain the constraint on the area-weighting factors, the form of h p(q)

and y', 6' and c' as functions of q.

I

a
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(iL~ )v- -2~(WLLNp. 
(B. 23)

c4) - ZMAX

"P7 aX - (B. 24)

AJ 41- (B.25)
&~~Cft) 2N,

*b*,N-~ ~L 3& -2 j-,Nr-I + 3 Z- - 'iN-7eN?-3

~~(B 26)

cL7Lc

p"'- .Z C 2 +.4.'AP-I + 2 2 Z,NVF2 ~~ N- PP~%l



o..3 6

The proceudre used for the North Pole can be directly applied to

the South Pole (SP) taking tnto account geometrical symmetry, so that

we give only the results here.

*mThe continuity equation at j = SP+I/2

"" s t. 4 =(B.28)

The momentum equations for u at i = SP+I/2 and v at j = SP + I

+ ~ ~ A~ UC~ +S?*' ~ U414

-- xSf~ Ki--)S)i,,, 0,, (B.29)r,

L +
S"'~ Y. (Xt 7  Ui.sf 4 (g'1t Crox

(Pn ~ + Oi~kxsr7 ~*$i ,Sp+2 t VZISf#

-- ,si-+Y - KtiLsS4Yz =- 0 (B.30)

here

6L
(B31
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and

=w, qw r7 + 0.- J2 +3i

TT1  ( ~ 3 ZA+ 2 jISI $SAI-'L74)(B. 32)

II

24 sf I~~4 t 9z, S F+I -Z ?Yj 3

Z, S1 f 2zZ.,r 3*is~+ (B.33)

Potential vorticity and vorticity are defined as

= t (B. 34)

A5p = 12 (B.36)AST = IMAX (B.36)

J'ts =  , ,, ,,.S p,(B.37)

( I) 1 MA

.4£14I (B.38)

-- I (B. 39)
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LEGEND

Fig. 1 The staggering of the variable based on the C grid.

Fig. 2 A horizontal domain with a circular mountain and a

vertical-section view of the two-layer fluid.

Fig. 3 Time change of the conservative quantities to their

initial values expressed by the percentage.fp : constant

f case, Bp: variable f case, the solid line: the
p

fourth-order scheme, the dashed line: the second-order

scheme.

Fig.4-23 Results of the time integration for the constant f case.

The arrows and contours represent the wind vectors and

the differential heights of the lower layer, respectively.

Fig.24-43 As in Fig. 4-23, except for the variable f case (8-plane).

Fig.Bl A portion of the sph rical grid. The area of the

dotted region is represented by (,4t /kr )i#yA, +V.

Fig.B2 The spherical grid near the North Pole. The arecas of

the dotted and hatched regions respectively represent
and ( ,AT/mn,)NP-YZ .

4

14m i u d dm l • •" 'm • " .
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The results of numerical experiments

on the f-plane

Figures 4-23:

Day 1, Hour 0 to Day 20, Hour 0.

Second- and Fourth-order Schemes

0

0
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SCL

4TH-ORDER SCHEME SCL HEIGHT

DAT 1 HOUR 0 LATER 1 20 H/SEC 100M

--- --- - - -- -

-- -- - - - - ---------- -- -- -- -

- --

SCALE
2ND-ORDER SCHEME - HEIGHT

OAT 1 HOUR 0 LATER 1 20 H/SEC 100M

- -- ~---- -------- ----------- -

---- ------- -- --
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A4TH-ORDER SCHEME fL HIT
DAY 2 HOUR 0 LATER 1 20EISEC HOO

- - -- -- 

- -

SCALE
2ND-ORDER SCHEME -HEIGHT

DAY 2 HOUR 0 LATER 1 20 H/SEC 100M

-. - - - - - - - -

-4

-- - - --4

4-------------- -- -- ---------------------

- - - - - - - - - - - - - -. . - - - -A
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SCALE
4TH-ORDER SCHEME - HEIGHT

*-DAY 3 HOUR 0 LAYER 1 2011/SEC 100om

-EE -- -- -- --- - - - -

SCALE
2N0-ORDER SCHEME - HEIGHT

DAY 3 HOUR 0 LATER 1 2011/SEC 10011

- - -- - - - - S

211---1 ---
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4TH-ORDER SCHEME SCL HEIGHT
OAT 4 HOUR 0 LAYER 1 20 M/SEC lOOM

~~~~~- - - - - - -- -- -- - --

-12

- - - - - - - - - - - - - - - - -

- - - - --- - - 2

fa-- - - - ---------

. . . . .. . . . . . . . . . . . . .
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14TH-ORDER SCHEME HECGLE
DRY 5 HOUR 0 LAYER 1 20 M/SEC 100M

-- - -- ------------

-e ~~- - - --- - - - - - - - - - - -- --

p . ... .S . . . . . . .. . . .
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ITK-ORDER SCHEME SCL 1EI0H13AY 6 HOUR 0 LATER 1 20 M/SEC lO

- - - -- - - - - -

- *- - - - - - - - -

SCALE H M2ND-ORDER SCHEME -HIH

DAY 6 HOUR 0 LATER 1 20 N/SEC l00M

*~ - ---------------

00

01
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4TH-ORDER SCHEME -CL HEIGHT
DAY 7 HOUR 0 LATER 1 20 M/SEC 100M

-r . . I ... .. . . U. . . . ...... . . . .

-- - - - -- - - - - -- - - -- -- -- -

------ ------ ------ --- -- - - - - -- - - --

- - -a - --- - - -- - - - - - ---

~~~- - - - - - -- - - - - - - --- --- -

SCALE
2ND-ORDER SCHEME - HEIGHT

DAY 7 HOUR 0 LATER 1 20GM/SEC 100M

U.- ---- ----- - - - - -

-a - - - - -- -



50

SCALE
4TH-ORDER SCHEME -HEIGHT

DRY 8 HOUR 0 LATER 1 20KM/SEC lOOM

- - - - - - - -A -~E9 
- -

2NDORERSCE- - HEIGHT- ---

- A - HOUR- -- 0 LAE 1 -D/E - lO--OM --

U~ ~ - - - - - - - - - - - -

- - - - - -

-6

SCL
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SCAL

4TH-ORDER SCHEME SCL HEIGHT
DRY 9 HOUR 0 LRTER 1 20 N/SEC 100M4

-- - - - - - - - - - - -

2ND-ORDER SCHEME - HEIGHT
DAY 9 HOUR 0 LAYER 1 20 N/SEC 10OM

--- -- -- -- --- -- -- -- -- - -- --- - - - --
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SCALE
4TH-ORDER SCHEME - HEIGHT

DRY 10 HOUR 0 LAYER 1 20 M/SEC 10OM

1-LvI

2N-ORDER-S-HEME - EGH

DAY 10 HOUR 0 LAYER 1 2D M/SEC loom

KIII 1 0 1 11\ 'lis 11 1 -l-ii-i

'4 - - - - - -

-
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4TH-ORDER SCHEME SCALE HIH

OAT 11 HOUR 0 LATER 1 20 M/SEC loom

- - - --- - - - - - - -

SCALE
2ND-ORDER SCHEME - HEIGHT

OAT 11 HOUR 0 LATER 1 20 M/SEC loom

- - - - - - - -

- - - - - --- - -
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SCALE
4TH-ORDER SCHEME -HEIGHT

DRY 12 HOUR 0 LATER 1 20 M/SEC lOOM

-- - - - -- - - - - - -

SCALE
2ND-ORDER SCHEME - HEIGHT

DRY 12 HOUR 0 LAYER 1 2D M/SEC 100M

-0
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SCALE
4TH-ORDER SCHEME -HEIGHT

DRY 13 HOUR 0 LATER 1 20 N/SEC loom

................................... . . . .... .. .. .. .

SCALE
2ND-ORDER SCHEME - HEIGHT

DAY 13 HOUR 0 LAYER 1 20 M/SEC loom

0-1

-- -- -- -- - - --- - - - - - - -
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4TH-ORDER SCHEME SCL HEIGHT
DAY 14 HOUR 0 LAYER 1 20 H/SEC lOOM

- - % - - - - - - - - - - - - - -- -

SCALE
2ND-ORDER~, SCEE EIH

I I I I I I I . . . . . . . . . . . . .



4 57 SCALE
4TH-ORDER SCHEME - HEIGHT

DRY 15 HOUR 0 LAYER 1 20 H/SEC 100M

SCALE
2ND-ORDER SCHEME - HEIGHT

OAT 15 HOUR 0 LAYER 1 20 M/SEC 100M

- - -
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SCALE
4TH-ORDER SCHEME - HEIGHT

BAT 16 HOUR 0 LATER 1 20 1/SEC 1OOM

2N-RE SCHEME- - - H-- IG-HT--

* 1 - - - - - - - - - - - - -

SCL

6N-RE CEE-HIH
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SCALE
4TH-ORDER SCHEME - HEIGHT

DAT 17 HOUR 0 LATER 1 20 M/SEC lom

- -- - - - - - - - - - - - - - -

SCALE
2ND-ORDER SCHEME - HEIGHT

BAT 17 HOUR 0 LATER 1 20 N/SEC loom
...................................

.. ....... . . . . . .- -......-....-....-................- -
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SCALE
1TH-ORDER SCHEME - HEIGHT

DAT 18 HOUR 0 LATER 1 20 N/SEC 100M

----------------------------------- - - - -- - - - -

- - - -

-- - - - --- -~ - - o

SCALE
2ND-ORDER SCHEME - HEIGHT

DRY 18 HOUR 0 LAYER 1 20 N/SEC 100M

-1 - - -.......-.......-...................

- - - - -

C3

.
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SCALE
2ND-ORDER SCHEME -HEIGHT

DAY 19 HOUR 0 LAYER 1 20 H/SEC 100M

-

-
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SCALE

4TH-ORDER SCHEME - HEIGHT

DAY 20 HOUR 0 LAYER 1 20 N/SEC 100M

.0 0 -4 06 1

SCALE
2ND-ORDER SCHEME - HEIGHT

DAY 20 HOUR 0 LAYER 1 20 M/SEC 100M

II
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The results of numerical experiments

on the 6-plane

Figures 24-43

Day 1, Hour 0 to Day 20, Hour 0

Second- and Fourth-order Schemes
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I. - SCALE
4TH-GRDER SCEE-HEIGHT

DAY 1 HOUR 0 LAYER 1 20 M/SEC loom

2-ORE SCHEME- - - - -HEIGHT --

- -------------- -- ---

- - - - - - - - - -

2ND-ORDER~- SCEEHIHT
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SCALE
14TH-ORDER SCHEME - HEIGHT

DAT 2 HOUR 0 LATER 1 20 M/SEC loom

SCALE
2ND-ORDER SCHEME - HEIGHT

DAT 2 HOUR 0 LATER 1 20DM/SEC loom

- - - -- -- - - - - - L - - - -
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SCALE
4TH-ORDER SCHEME -HEIGHT

*DAY 3 HOUR 0 LAYER 1 20 H/SEC 1OOM

2N-ORE SCHEME- -- - HEGH

DAY 3 HOUR 0 LAYER 1 20 M/SEC loom

- - - - - - - - - - - - - - - - - - - - - - -

-0

-8Q
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4TH-ORDER SCHEME SCHEILE

OAT 4 HOUR 0 LAYER 1 20DM/SEC loom

SCALE
2ND-ORDER SCHEME -HEIGHT

DAY LI HOUR 0 LAYER 1 20 M/SEC loom

- -- - - - - - - -
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SCALE
4TH-ORDER SCHEME - HEIGHT

DAY 5 HOUR 0 LATER 1 2D M/SEC 100M

- - - --- - -

2ND-ORDER SCHEME SCL HEIGHT
DAT 5 HOUR 0 LATER 1 20 M/SEC loom

S S 5 , 5 5 , . 5 I* 5
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SCALE HIH
4TH-ORDER SCHEME HEIG...........HT

DRY 6 HOUR 0 LAYER 1 20 M/SEC loom

.I L A - -I I I A

2ND-ORDER SCHEME SCHEILE
DRY 6 HOUR 0 LATER 1 20DM/SEC loom

~ 

-1

-3Q

-T 1 N
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SCALE4TH-ORDER SCHEME - HEIGHT
DAY 7 HOUR 0 LATER 1 20 M/SEC 100M

1.0

SCALE2ND-ORDER SCHEME -HEIGHT
DAT 7 HOUR 0 LATER 1 20 M/SEC loom

4

N.
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SCALE
LTH-ORDER SCHEME - HEIGHT

DAY 8 HOUR 0 LAYER 1 20MH/SEC loom

SCALE
2ND-ORDER SCHEME - HEIGHT

OAT 8 HOUR 0 LATER 1 2D M/SEC loom

I ~ ~ ~~~~ - - - - - - - - - -

-
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SCALE
2ND-ORDER SCHEME - HEIGHT

DAT 9 HOUR 0 LATER 1 20 M/SEC IOOM

SCL

.
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SCALE
4TH-ORDER SCHEME - HEIGHT

OAT 10 HOUR 0 LATER 1 20DM/SEC loom

SCALE
2ND-ORDER SCHEME -HEIGHT

DRY 10 HOUR 0 LATER I 20DM/SEC loom

. . . . . . . .
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4TH-ORDER SCHEME SCL HEIGHT
OAT 11 HOUR 0 LATER 1 20 M/SEC lOOM

SCALE
2ND-ORDER SCHEME - HEIGHT

DAY 11 HOUR 0 LAYER 1 20 M/SEC 100M

. . . . . . .
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4TH-ORDER SCHEME SCL HEIGHT
DAY 12 HOUR 0 LAYER 1 20 M/SEC loom

. . . .. . . . . .. . . . . .. . . . . . I

SCALE
2ND-ORDER SCHEME - HEIGHT

DAT 12 HOUR 0 LATER I 20 M/SEC loom

. . . . . . . . .
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4TH-ORDER SCHEME SCL HEIGHT
DAY 13 HOUR 0 LATER 1 20DM/SEC loom

SCALE
2ND-ORDER SCHEME -HEIGHT

DAY 13 HOUR 0 LATER 1 20 M/SEC loom
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4TH-ORDER SCHEME - HEIGHT
DAT 14i HOUR 0 LATER 1 20 M/SEC loom

2N0-ORDER SCHEME -HEIGHT

DAT 14l HOUR 0 LATER 1 20 M/SEC loom

* ~~ r-* . . .T
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4TH-ORDER SCHEME SCL HEIGHT
DAY 15 HOUR 0 LAYER 1 20 H/SEC loom

SCALE
2ND-OROER SCHEME - HEIGHT

DAY 15 HOUR 0 LATER 1 20 M/SEC loom
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SCALE
4TH-ORDER SCHEME - HEIGHT

DAY 16 HOUR 0 LAYER 1 20 H/SEC loom
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4TH-ORDER SCHEME CLE HEIGHT

DRY 17 HOUR 0 LAYER 1 20 M/SEC lOOM

SCALE
2ND-ORDER SCHEME - HEIGHT

OAT 17 HOUR 0 LATER 1 20 M/SEC 10OM

:4
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SCALE
4TH-ORDER SCHEME -HEIGHT

OAY 18 HOUR 0 L~n'ER 1 20 M/SEC loom

SCALE
2ND-ORDER SCHEME - HEIGHT

OAT 18 HOUR 0 LAYER 1 20 M/SEC loom
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4TH-ORDER SCHEME SCL HEIGHT
DAT 19 HOUR 0 LATER 1 20 M/SEC 100M

SCALE
2ND-ORDER SCHEME -HEIGHT

OAT 19 HOUR 0 LATER 1 20 ti/SEC 100OM
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4TH-ORDER SCHEME CLE HEIGHT
DAY 20 HOUR 0 LAYER 1 20 M/SEC loom

SCALE
2ND-ORDER SCHEME - HEIGHT

DAY 20 HOUR 0 LATER 1 20 M/SEC loom
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I Figure Bi.
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