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ABSTRACT
Ny

A horizontal difference scheme that conserves both potential en-

Ef strophy and energy for general flow and, in addition, yields fourth-

ii v order accuracy for the advection of potential vorticity in case of non-
divergent flow, is derived for the shallow water equations on the stag-
gered grid as a simple extension of the second-order potential enstrophy
ji and energy conserving scheme presented by Arakawa and Lamb (1981). This
fourth-order scheme is derived both for a Cartesian grid and for a
spherical grid.

Comparison by means of numerical experiments between the newly

Y.II AN A

derived scheme and the second-order scheme showed the distinct advantage

v

Y

of the new scheme in giving better development and faster moving speed of
the law.

N

; Accession For“ .
[’ TNTIS  @RAKI U?

nTte 1.8 O
U «onensced (]
: Jastification. o . .|
& SRR -
Fi .
" Distribution/

- ——

Availability Codes”_d
7T Ave Ll and/or
‘l pist | Special

t # |

T




Dot e NI 0 aBeat i J0n SEE A0 G S L ARa AL A e ey 4

—

vy
-®

Y

I. Introduction

Recently Arakawa and Lamb (1981) (hereafter AL) derived a second-
order potential enstrophy and energy conserving scheme for the shallow
water equations in order to improve the simulation of nonlinear aspects
of the flow over steep topography. Their numerical experiments showed
the advantages of the scheme over the (potential) enstrophy conserving
scheme for horizontal nondivergent flow, not only in suppressing a
spurious energy cascade but also in determining the overall flow regime.

A new horizontal difference scheme presented in this paper was
derived as a simple extension of their scheme focused on the increase
of the finite difference accuracy. The scheme, of course, was designed
to conserve both potential enstrophy and energy for general flow and, in
addition, to give fourth-order accuracy for the advection of potential
vorticity in case of non divergent flow; the advection term leads to a
fourth-order Jacobian proposed by Arakawa (1966).

In Section 2, the sha low water equations are presented and deri-
vation method of the fourth-order scheme is outlined. The method is
much the same as used in AL. The derivation of the scheme is performed
in Section 3. The advantage of this fourth-order scheme is demonstrated
in Section 4 through a comparison, by means of numerical time integra-
tion, with the second-order scheme by AL. The appendix presents the
scheme for a spherica] dfid that can be derived by analogy to the pro-

cedure in Section 3.

2. Outline of the derivation procedure.
The governing differential equations for quasi-static motion in a

homogeneous incompressible fTuid with a free surface can be written as

%+1ka’+V(K+§)=O (2.1)
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N‘+V\\/-0 (2.2)

Here t is the time, ¥ the horizontal del operator, {K the vertical
unit vector, ¥ the horizontal velocity, h the vertical extent of a
' . fluid column above the bottom surface and the (absolute) potential

*
vorticity q, the mass flux ¥ , the kinetic energy per unit mass K
and € are defined by

T=(4+ 61" (2.3)
Y2 hy (2.4)
K=vzv* (2.5)
$=3(hths) (2.6)
Here G is the vorticity, K-VxV » § the Coriolis para-

meter, 9 the gravitational 2.. .ieration and hs the bottom surface

g
'P height.
k-.

After some multiplications the equations for the time change of

total kinetic energy and potential energy in this fluid may be ex-

L@ pressed as:

- 2 (hK)+ V- (VK)+V:9E = 0 2.7
E‘ and

E

; 2 (h3R+ohh)+ ¥ (VE)-VIPE =0  (2.8)
4
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The summation of (2.7) and (2.8) then yields a statement of the con-

servation of total energy.

2 [ h (K+%gh+ghs)] =0 (2.9)

where the overbar denotes the mean over an infinite domain or a closed
domain. Here it should be noted that the term in (2.1) involving q
does not contribute to the change of total kinetic energy and the last
term in (2.7) and (2.8) cancel in giving (2.9). These two points must
be taken into account in the construction of the finite-difference
scheme.

The vorticity equation for this fluid motion may be written in

the form

d (W) —
.D-’E_(h%)+v (V§)=0 (2.10)
and then we obtain the potential vorticity advection equation,

%%? + VVi=0 (2.1)

Thus in the absence of spatial gradients of q there should be no time
change of q. This condition will be also used to construct the finite-
difference scheme.

Now hq times (2.11) plus 1/2 q2 times (2.2) gives the equation for

time change of potential enstrophy

2 (hhg)+ ¥ (Vg =0 (2.12)
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which leads to a statement of the conservation of potential enstrophy,
l(h}&%‘):O (2.13)
ot

Our present purpose is to derive such a finite-difference scheme
for the momentum equation (2.1) that i) it is consistent with a
reasonable advection scheme for potential vorticity advection equation
(2.11); i) it guarantees conservation of total energy (2.9)
and potential enstrophy (2.13) for the general case of divergent mass
flux; and 1{ii) it has fourth-order accuracy for the advection of
potential vorticity when flow is horizontal and nondivergent.

The derivation of the scheme is performed along the foliowing line.
First, we can derive the same constraint as in AL for the total
energy conservation, by the application of requirements discussed in
this section to a general difference scheme for (2.1). Then, since the
scheme still retains a high degree of freedom, we further impose the
following requirements to fix the scheme.
1) When q in the finite-difference analog of (2.11) is constant in
space, there is no time change of q.
2) To guarantee conservation of potential enstrophy the finite-
difference analog of (2.13) must hold.
3) In case of the nondivergent mass flux advection scheme for (2.1)
leads to the Arakawa fourth-order Jacobian (Arakawa, 1966).
4) The symmetry between the Cartesian components of the momentum

equations for the case of a square grid must be retained.
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3. Derivation of the fourth-order scheme

The arrangement of the variables and the indices on the square grid
to be used in this derivation, called the C grid, is shown in Fig. 1.
Here u and v are the Cartesian components of ¥ 1in x and y directions,
respectively.

The second-order differencing for the continuity equation (2.2)

can be written

at hd'}i;)*/z +(V \V )“./ )*/2. =0 (3.1)
where
3.2
(VY (W or = et Uk car =V Y 22
(s, 0-/; -— d H, +/,_ Lt #Y i+,
(78] (3.3)
u()#/l- [ h- ](_;)*Vz
Vi = LRV T, (3.4)
and we choose
) . N
h :.r)"'/‘l. = ( h )E,)'#'/t (3-5)
w) _ )
hion; = ChJim; (3.6)

here overbars - i and - j denote the arithmetic average of two
neighboring points in x and y directions respectively.
The general fourth-order scheme for the Cartesian components of

the mamentum equation (2.1) may be written.
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'b'f u-i.j*'é - di.}*& v}%,jﬂ - P:-)‘Wz.m’;,,'ﬂ— K:;j“/'iv‘t"z-}

- &,}*'/zv‘;tx j L ew;, it utﬁ.j% - E—t-}',. j*bs uz’t‘-c, j*h
+ A b(:'r,)-u& "l:.)'U:‘;,;—;i +d ((K+3 Yiek, 504
(Kt By e ) =0 (3.7)
T U;,J/’ j + Y, A u,;w, j% t 5?.}*'Au::j*&+°l‘vj'&u§j-k
"'PIH,,‘-Z u"i-*;,-.;i * 4’.’47,, ;o,gvg;,;u - ¢«'+2s,}-}z vt?:?x,)"
T Jin, U',:,;;,j "ﬂ:,)'viy,.) t 0('[[ K+ §)€+}s.;%

'(k*§)z¢/h;.)i] =0, (3.8)

where K defined at the h points is specified by

.

¢ J
Kig jos = [ V2 UR + Vaur' ), (3.9)

j*72

Equations (3.5), (3.6), and (3.9) are designed to maintain conservetion
of total kinetic energy for the divergent mass flux (AL). The symbols
o, B, Ys 8, €5, ¢, A and u are linear combinations of the q. X and u
give additional generality to the fourth-order scheme. Note that the
terms involving q cancel by virtue of their form when we derive the
equation for the time change of total kinetic energy.

Application of (3.7) and (3.8) at the points surrounding a ¢

PP W S W ~ e I Y S W . P

......................................
,,,,,,,,,,,




ad by o) i B - ey T T
P RRli¥ie e Jhent el I o s Boue it Jovee e Atu_iynge gt Juuin Jme uron Rl T Bt R A St e e A ) ARt O R A CHC i i S e e AL i S A A A

....................................
." ------- - - ~ L . - o DA e A T T ‘-\\ NS ‘-'.\,‘-.D.-..--"a'.".'.-'-~'-'.‘.‘ L Y A T A
-

10

point gives the finite-difference vorticity equation consistent with

this scheme

3 ( P: %) T ai‘[ UMA ,ﬂ(d-.)*x <P«f’i )~ Ui "/z * (e"”" b, s )
+ Vi, 5 (Slejog0ajot M)+ Uy 5 (B - Bujost Mo )

¥ v:k,j-i ( 5-‘-}-'4 M 4’('%)'"/; ) "'7}::/.,;4 (&, 4 ‘¢:-x,)-'a )

V5 o) = Vg (Hon;)

~Wintjog ( Lotz g 1) M:ra (diyes~ &
+ u‘.-'..,;», (Bt jos ™ By o) u,,,,,.,,((a‘,,)_,, k)
Wi (olijoss =Bejnths; ) + Wity (o5 €, %)
+ LL&.)-% (A,j) + ut tyjek ()\l,,ﬁ ) ] (3.10)

where the vorticity change has been ex ®)
g pressed % (h z )‘.').

N3 "‘ki_.)')

)

with
9..= (**S)“
) ®) (3.11)
hs‘,)‘

-1
S:.}' =d [ u:,)«',; L(:,)w‘/, TU:‘W,,,' = Ui-},.j ] (3.12)

and h(q) is a linear combination of h, as yet unspecified.

Now we impose the first requirement, to wit, that 9 §/at
vanish when q is formaily set equal to a constant on the right-hand side
of (3.10), regardless of the constant. If we write a, R, v, &, €, ¢, X,

[
b
3
EO and it in general form as linear combination of the surrounding q:
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then when q is formally set equal to a constant, (3.10) can be

)
giﬂ,)‘-u‘f <

———— N——

written as

2 *
Y i.)'='Z[(A+F)(V§x,3n_uz+‘/¢.)‘)+ (C"E)(LL* :)‘*7;)

ek = U
)tA
+B-F)(VE, j- Vi )4 (D-E) (W o~ 1 o)
+(C-F)( w_‘y‘d ~ Vi)t (ATE) ( wi,;-i,l-u’?-«,,--z)
HOHFR) (Vi =V -0 4 (BHE) (Wanjy -1 jos)

¥ ¥ * X
tM (V.uwf'v«‘-'/,.)'?}t-"e,) = Via,j )
_ ¥ * ¥ o 0¥

L (M;’)‘yz+u/:,/'~'/l“u«'.,'~l/z"ui,)+"/z)] (3.14)

= = (x> , etc.
where A =Z o B=z.¢




In the case of a square grid, for simplicity and geometrical

symmetry, h(q) is defined as

@

-t . (3.15)
h,;,)- =7 ( hu}i,}‘h"’hl"&,}‘% + hz.a,) -yt hz+,g,)-u4)
Then from (3.1) and (3.15) we can write
Ll a (%) 1 « 4 ¥ 4
) b"t' hl) == ‘m [ ( v:‘O'A.,}ﬂ - ?fm,,; + urm.)w'/,. - u.',,,'-l»‘/‘ )
» ¥
+ (Vo= Vi + Wajes = Wiajen)
X ¥ ¥
+( v?‘-'/;.} - 7)"'7;.,‘-: + Wi ~ u’«'-',)*”'-)
¥ ¥ ¥ ¥
+ (Uu'/bi - Uu;i,)*u + u/w,)-‘/,_ - u'-'.;-)’:.)) (3.16)
Comparison of (3.14) and (3.16) yields the constraints,
A=B=C=D=1/4,E=F=L=M=0 (3.17)

For the requirements 2), that potential enstrophy be conserved

in finite difference form, we formally rewrite the vorticity equation as:
Z D W o
F . ——— .. ._:~-. - ~‘,.., P _-=0
;. bz—“l, g)t_) + L,'Zj,.“a..) THATS gm,)*) + b¢.} Bi; (3.18)
3 * *
s where a:.; and b:.)- are linear combination of U and V .
Then according to AL the necessary and sufficient conditions for the
3
¢ conservation of potential enstrophy in divergent flow can be formulated
b
{ as
1
-
[
F N .. 4 - -7 — o oy AN
t-. aL,J"-—"L,)"') - a-:.u,)i-) -L.) (3.19)
P
. bi; = = Qis:wvirire; (3.20)
3 ) yse Y A
t;
3
Fe
=
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To impose these constraints we use (3.13) to rewrite (3.10)

explicitly in the form giyen by (3,18) and obta’n the following:

) (2)

g = L (L
+ ( 6‘ < ¢ ) U};J.( - (o{‘;';' m) w:x,;+v- ( 6“1 ‘?m) U:‘*-h, jt!

. - /,th}‘f.l'/,,; "/f‘mU??;-x, J
3 - (¥ Winy™ (328" lL:,-.,g + (5 & w’,f.,,j, v
2 = (B MWy~ (2 6™ I Wik + (€)W
3 + )\"’LL:’[, jat 7\(3,%‘:. jHh (3.21)
E. Qij:iay = (o' 5% J“-‘w) V:’:'/.,,' +( Pm‘ &4 f*w) Wi, ;
' + (5" + $“) mtg,)-; + ¥ MU:',,,;-' ~ (% ‘#n) l)}:,,,ju
3 ~ 8 U T (XL Wi jos = (52 XY ULy,
U = (B e N jr~ (X=X Wiy
g @)

a;}:;-',)- = (d —X“‘-’r/zu) mf”,; + ((3‘31*6"'4/&“’) lf‘._’.,,‘).
+ 8 Ut (¥ ) Vi = J"'Jj.,‘,;,,
T Y (DN 6L,
~ 2RO W t €M,
Qujiiger = (o(l?;? } /Am) V:f?.,; ¥ <Pw~6w+/“m) 7)":{"‘hi
18 Vi 4 KU = (A D,

2 (2> ¢

~( PuL ¢u)u?-%,,'¢l- ( Jl)"‘ é”) uj«,;.y,"‘(s -§ +*

' 4

(@27 Wt (87 €)Wk i, t-22)
. ﬂ:.;:l,)" = (olm*ngf//l”)wfz.; *(@lr" }'u',f//‘w)ﬁ:’x,;
i' +(§ m-+ 4’“') 'lf)f&,;-) +( K‘r‘) ‘#w) U"E-'/.,,‘-v "'Olm?f::'/‘ it

Bla¥ B) L& (3 x ®) {3
~@ ﬁ{-"';f'-(é =¥ +)\ ) LLI.,‘Q'},_ = (? +¢ )?,Lﬁ-,;.'/,
Sr ¢ 3 ) @)

(-8 +X) LL’.-‘.)--',,'* (" +E )W, 5

i e AL St Py
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ai,j :Miﬂ = - 5‘”2);':5‘,)‘ \'“ 'U’:t,.,; - (o("-‘l- 4’“') U"Ly,,iu
Q) O { ) <
-8 V50 = W Vo= (V27 Wi, o

- a) L, ¥ ), ¥ )
(8 -¥ )u.‘,}v'/, - P lbm,;-;& +7\ U/t.]uh
e g) nt * “) ¢ %
Qijiii = o Vi t B0 + (8= #2500 500

)
w) ¥ ®) (¥ {3 X
+ 8 W~ Wyt L €M) Wi
ICYERVIN ¥ L ¢
- ( _(3« )('L::i"/l + 5('%?-!,)‘0’4 'fx_ lb.;,--,'/,

| ) ¥

Qijritws - 5 S 5‘“?/"5--%,,-‘&\ Vi jor
(B UL g UV = (8N,
L) Al 1y y + 0y
azj:i = J“)Z}:&) t @“)'lftq,,,; + (84 9"‘“')704;,;—/
3 (")Vz‘:}«,.;-l ‘/L‘S’V;:g,)- - dmu/’«:ﬂ)‘*h
= ( (3&1 ") LL’;«,;-'/; - (bl“:'@m) Wi + X Wik

)
w % v

Adijeing =~ M U‘.-**m,,-'t Wiw,jva ™ (5“’ u?“:}"h

Qijiin,g = - VW +o® Whsjon + 87 Winjony

bijajm = = 3’”?)“;"/.,3" Y "U:"i'i B (3 ’”U?-%m' -d
67~ ¥ Wi + X W jun

Qijiigr = o(mﬂ\;:'/,,; + P‘" :y,,; + 50,v:":‘/-.j" + OJ”l)\”“{"‘-)""

- (vlm" @m) u/f.)'-/, +X"uf,)-—.‘a

*
?fw;,,j-u

M % (@r ¥
a"')': “'l‘j+' - = X u'a“,}fl/; ) ai,)-.'l'*l,)'-l = & LLH,).“’&
1), ¥ », *
Qij:wnjra=— u/«‘u,r'/, y Qijiij2= o Uil
. 6 ¥ . 5‘3’ *
Oojrieg-a==f Unjkh y QiR = Wejota
®, ¥

{7 : ¢

Qijiid o= & Unjon O e

» (3.22)
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Applying first the constraint (3.20) for arbitrary U* and V*, and
simplifying,using (3.17), requires

()

d - @fz):: 6.(5‘)= 5(5}

CP (z) ¢n)= ‘ /?
¢ S/ %)

- cl =1/

()' ts) 5(4;_ Eu; /89 (3.23)
+‘ eﬂ) (1) d + 2“)8 /8

3

= = () _

8 = Wl

VsA To apply the constraint (3.19), each aa}:t-£13~;’ is

required to equal - Qij:iei’ joj when all pairs of
indices appearing in the former are incremented by (i',j') . This

gives the following conditions:

(¢) n_ ®) w1y S

jl3)= (3“:7= @u): sz $ =:3’ ‘5 -0
| b’ Sm— /1;) = /"m (3.24)
% oL =@ =0 = "=-2
t o{ - @(z) ‘ 5‘5‘}2 ‘/Z‘F _ u.y-_/uu)
be
: For the requirement (3), to wit, the reduction of the non-divergent
[ mass-flux advection to the fourth-order Jacobian, we rewrite (3.22) for
;" the case of no mass flux divergent introducing a stream function. By
r' equating the resultant with the fourth-order approximation of the
t‘ Jacobian (Arakawa, 1966), we can determine the following coefficients
;q' (See Appendix A)

(3.25)
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and thus, from (3.24)

(z)

o[ - @m‘=L X(sv= g(s'): |/?
c‘:g)z @an = rl‘; =S¢¢)= _ \/24(
ol(”: (;m = sz 8(3).= _ 1/21-

(3.26)

Now (3.23) and (3.24) can be combined to express unspecified

. . > ) wr Y
coefficients in terms of €', €%, ¢ and ¢ :
(€

o"“): l/&’——'f,“'/o( .-.1/9'5#3,; °{l&)___
V2126 4¢", BY=/p-g" 4 ",
Y“: 1/8"’?(”) 83;_1/2{‘_2(37_ cPu;) b,«:l- |/?+e‘3’0)
8(l7= ‘/8"“8(3'-—(#(3)) 6‘2,4|/l4-+¢(3)) 36)=|/24’,6

R P 1
€120 -¢Y £9% <12 6% $21/12-¢, F -y

/24 + ¢+ ¢
’ylzl/lq- __‘P")

v (3.27)

Finally the requirement of symmetry between the Cartesian

components of the momentum equations for the case of a square grid yields

%)

) %) Q) ) 5)_ (3) _
o(:(} /d-? ,el -@,0{ -@

%)

3.28)
7] %) 2) (Y, (s) @) 7y ) (
5. = d ' d =dol ’ <5 = ol ’ 2; = ol
From (3.27) and (3.28), we obtain
«a) ) 3 t)
¢ o - g , =" 1 12, ¢ = (/12— ¢ (3.29)
If we now choose, simply for reasons of symmetry between € and %
) (3.30)

¢ =1/24
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the terms in (3,13) are completely specified as;

1
o(z,)-+'/z = "2_4" ( 2 ?3*',5"'-'.38:.}“*23‘.‘}. + %Zﬂ,)'—gi.j#z - zi-'.iH]N
L
\6;,3#/1 =249 [3 8;,5“ "’29;.',3”* 8;..,,- +2 8;,)- ‘&ﬂ, jH -Sz,jn]
Xi.)‘*'/z = -3_1:}- (2 81,)'” + 2:"'3*' +2 ?iq,)' +3 8.3 "g:,)'-l - 2&!,)‘]

|
5.,)*4 = -24 [ gl“,)‘" +2gi,j+‘ +3 g;) + 22&,.}- "8;.;,}- - g«',}-})

r

1
ii*'/,,j*‘/I=‘22; [?w,)ﬂ +%:.5+| - (gi.j - %tfl,)‘ J
CFNZ,)'*'/:.:“;;' (- 2&!,54-! "'%i.)'H *gc‘.)' - glfl,)' ]
- i
Aijo= g Qg By )

i
Mi; =z 085 =8 jm ) /

When we disregard additional coefficients, A and u in the momentum

(3.31)

equations, it is easily shown from (3.23) - (3.30) that the final forms

of o, 8, v, 8§, € and ¢ coincide with those of the second-order scheme
presented by Arakawa and Lamb (1981).

In sumary, use of (3.5), (3.6), (3.9), (3.11), (3.12), (3.15)
and (3.31) in (3.1) - (3.4), (3.7) and (3.8) give a fourth-order
potential enstrophy and energy conserving scheme for the shallow water

equations.
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4. Numerical test of the fourth-order scheme
:!! In this section the potential superiority of the newly derived scheme
;f? is examined by means of the numerical experiments comparing its results

with those of the second-order scheme of Arakawa and Lamb. For this

purpose, a two-layer, homogeneous, incompressible fluid system model was
used. Quasi-static motion in the each layer of this fluid system may be
described by (2.1) - (2.6), but replacing h in (2.6) by vhaths;

here (and hereafter) subscripts 1 and 2 denote the lower and upper layers,
respectively; and r, equal to 1 in the upper layer and to the ratio of
density of two layers (a/ps in the lower layer, expresses the effect
of stratification. In this fluid system, the summation of total energy
for two layers is conserved, and mass and potential enstrophy are conserved

in the each layer.

In the numerical experiments, X and Y are directed toward the east and

the north, respectively. The computational domain is confined in a channel

o bounded by two parallel rigid wall at y = 0 and y = W = 7500 km; and by

.lﬂ X =0and X = L = 13500 km, where cyclic boundary conditions are applied.
-
. The mean heights of each layer top, H] and HZ’ are chosen to be 5 km and
?jf 10 km, respectively and grid size d = 500 km. The bottom topography is a
EO circular mountain, placed at the center of the domain, of circular and
- -
Et» parabolic cross section, and expressed by
s - 2,n2
- hg = h, (1-D°/R%) for 0< D < R
e
’ and hs =0 for R < D
é.' here D is the distance measured from the center of the mountain, R = 3 d so

that the bottom diameter of the mountain is 3000 km and the maximum height,

hm’ of 3 km is chosen (see Figure 2). The ratio of density r = 2/3, and

N NP . PP 1 - _‘.LA_._‘;__’AA'A_.AAA*LJ
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the acceleration of gravity g = 9.8 m s'z. are selected. Experiments

were performed with two different Coriolis parameters: one is a

4.1 (f-plane) and the other is variable

-11m—1

constant f = fo = 14
f= £ +8 (y-4/2) with 8 = 1.62 x 10 s”1(g-plane). At the north

and south boundaries, the rigid wall conditions, v = 0, and a computa-

.r-yrvﬁvﬁ.. —~—
-

o tional boundary condition, § = 0, are applied. The variable outside
! the boundaries involved in the fourth-order scheme are expressed by
g. those of interior points using the conditions that u, h, f are sym-

metric, and v is anti-symmetric, with respect to the boundaries. The

preliminary numerical integration with these conditions showed that
they worked well within the acceptable accuracies for conservative
quantities: 0.04% decrease in mass, 0.08% decrease in total energy,
0.04% and 0.03% increases in potential enstrophy for the lower and
upper layers, respectively, after 10 days. However, a certain propor-
tion of the accuracy may be attributable to round-off error from the
use of single precision in the code. As initial wind fields, uniform

Vand 30 ms™! are prescribed for the lower and

westerly flows of 20 ms~
upper layers, respectively. The height fields are then obtained from

the steady state solutions of the equations for the two layer fluid

system in the absence of a mountain. The Matsuno scheme is used first
for the initial time step, and then once in every five leapfrog time

steps. A time interval of eight minutes is applied for all experi-

ments, though the second-order scheme may allow use of a longer time

interval than that acceptable for the fourth-order scheme (Gerrity

et al., 1972). This time integration scheme is the same as that used
K|

in the UCLA-GCM, for reasons of convenience. The model time of

—— e . T L . ]
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integration was 20 days.

Fig. 3 shows the relative time changes in potential enstrophy, total
energy and mass to their initial values.

For all cases, total energy and total mass monotonously decrease
almost at the same rate up to 20 days (0.15% and 0.08%, respectively).
These rates of decrease are much smaller than those resulting from the
fourth-order scheme presented by Navan and Riphagen (1979) (1.44% ar 0.99%

for total energy and 0.54% or 0.42% for mass, after 4 days). For potential

enstrophy, the fourth-order scheme gives better conservation than the second-

order scheme does.

Figs. 4-23 show the 24-hour changes of the wind vector based on ﬁi and
Vi at h points and the differential height of the lower layer (height of
interface) h] -H], for a period up to 20 days, for the fourth- and second-
order scheme on the f-plane. Comparison of these results shows that the
fourth-order scheme yields a faster translating speed of the low (inter-
facial depression) produced by the mountain (the effect of truncation error
in general being to reduce propagation speeds). The five-day average speed

1 and

of the lows in the fourtn- and second-order schemes are 19.1 ms~
16.8 ms'], respectively, so that the difference of distance of low centers
reaches about 1000 km after 6 days. The passing event over the mountain at
Day 8 and the subsequent reformation of the traveling low on the lee side,
consistent with potential vorticity conservation are dramatically reproduced

in the fourth-order scheme, but not so distinctly done in the second-order

scheme. In the second passing event after Day 15, which exhibited somewhat

different behavior from the earlier one, the difference of the results of two

schemes is also clearly seen. The deep traveling lows in the fourth-order

scheme pass just north of the mountain, preserving their forms and “n-

e S "n A S
P I ey
.........
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tensities, and also producing the jet stream near the boundary associated
with the stationary high over the mountain{Day 16), while in the second-
order scheme the weak low is absorbed by the relatively strong high as it
approaches.

The results of the g-plane computations are shown in Figs. 24-43.
In this case the initial height fields are not of course identical to those
in the f-plane, but the differences are so small as to be negligible., Thus
we can determine the effect of 8, comparing the results in this case with
those in the f-plane case. The evolution of whole pattern in the 8-plane is
much more complex and the intensities of the high and the low are greater
than those in the f-plane case. One of the remarkable features is the

occurrence of the splitting of the lee side low into a stationary low and a

low traveling toward the northeast of the mountain, never seen in the f-plane
case. Note that the occurrence time of the splitting in the fourth-order
scheme is one day earlier than that in the second-order scheme (see Day 4

and Day 5). Here we can see the same advantages of the fourth-order scheme
as noted in the previous f-plane computations. After 6 days, the difference

of distance of the traveling low centers has increased to 2000 km, twice as

|
|
a

much as that in the f-plane case. Later, the difference gradually decreases

because the low in the second-order scheme is catching up, while the low in

v P

the fourth-order scheme is blocked by the strong blocking high over the
mount2in. The traveling lows can not easily pass over the mountain, but

go around it until they combine with another low in the south, associated
with the planetary wave. This splitting and the associated blocking
phenomenon are not produced in the similar experiment by Kasahara (1966) .

The motion in the well-developed strong high over the mountain occasionally
resembles a Taylor column, with a stagnation area just south of the mountain,

although this effect is confined to the lower layer.
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5. Summary and further comments

A horizontal difference scheme has been derived for the shallow
water equations, conserving bath potential enstrophy and total energy
for general flow, and, in addition, yielding the fourth-order
accuracy in the potential vorticity advection (in case of horizontal
nondivergent flow), in the presence of bottom topography. This de-
velopment may be considered as a straightforward (if complicated)
extension of the second-order potential-enstrophy and energy con-
serving scheme of Arakawa and Lamb (1981). Comparisons by means
of numerjca] experiments using the two-layer model with the s2cond
order scheme by Arakawa and Lamb showed the advantages of t 2 niwly
derived scheme in better development, faster traveling speeds of the
Tows produced by the mountain, and better conservation of potential
enstrophy. The increase of computation time by the fourth-order
scheme is less than 10%. On the present model, the calculation code
of the advection terms occupy the major part of the whole code, so
that the increase in computation time may become negligibly small
in more complex GCM or NWP models. The new scheme has been already
incorpolated into the current UCLA-GCM with the SICK-proof kinetic

energy for the scheme defined by

¢
Kivjon =L V3 Wsen+ Yoa CUgoat U ) Jivys
Jd
+ (V3 Ul + Vs (Viont Uiy ) 1y, (5.1)

This has practically eliminated the linear computational instability
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of meridionally propagating inertia-grayity waves (Arakawa and Lamb
(1981)), and has given good simulation results, GISS also has used

the scheme for their climate model.
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APPENDIX A

The fourth-order scheme for the case of no mass flux divergence

The finite-difference Arakawa fourth-order Jacobian J, ) (1966),
which originally represents the advection term in the vorticity equation
and guarantees the enstrophy and kinetic energy conservation for hori-
zontal nondivergent flow, can be directly applied to the present case
of potential vorticity and potential enstrophy because of its universal
form. Thus the schemes for the momentum equations (3.7) and (3.8) con-
serve potential enstrophy and have fourth-order accuracy, if the finite-
difference potential vorticity equation (3.10) derived from it reduces
to this Jacobian form.

The Arakawa fourth-order Jacobian for the present case can be

written as:

[J“)(g "PX)JU
i (Bt Foag i P (B )
-(q{-qu)l ﬁpl%%ﬂ)(&j+z%1)
("K«)‘i"'/’ W ¢-4,) ,,‘*/)(g‘-,ﬂg =)
= (Fagyrt Py = Pl PR .,-,)
(«,Vt.,, Py Bt §:5)- (sv,*._,- 2,30 Bigt B
(?)4/ %LW)(€‘IH+? =)~ ( Hy 74)(37*‘¢}J]
24#[(%4,,4: f',,-l)\g,ﬁ}u 2,.( “) " (‘fm,ﬁ ‘7?*-_, (4
T (%:” ”Q)g”W” (¢ —% i-2) Biaji
- (*"W- YJ"))%N mT( wl \P"—Z)%.‘v -
t (Faei %,,-.)gl,, ~(+4,,, B 8
= (Hu g,m(%) i) 82 ) (A1)
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F where lP* denotes a stream function for the mass flux.

With the definition of ¥¥ as

U PR

. Uy - *
h U‘:{,)wy,_ = o ("P.-_)-" %,‘ﬂ) (A.2)
Wiy = € (Fa,= ) (A.3)

[! the right-hand side of (3.10) can be rewritten as

- ’5'[‘5. L %a, f (—oke,j-% +5, jeht Voo jeln— em J €, A ooy py—Hin,j— Y 0jd
- i R A R A A Y L AT )
ﬁ + et (it Privs=dipmt Yoot ooy o — Pt o A=A )

+ Wi (=8 180ty Pujl ot Ponj AR A )

+ ;:,;ﬂ (s, jtha Yiojoig + €k o4 +¢i+,';_,/‘ﬁ£ )

+ kP,.:,).*, (—pi,;.ps AL g ZI Y +8-4,jt4 )

+ %t',’i" ((i, ,‘%"d«‘—',;-' "ii%,]*&“¢ c‘-yz,}"&)

o Bt oy a— P s )

+ ‘h‘f;-x (-=Aij-1) T+ i,;z(X:J"" )

-

¥ «
5 (M)t F s (i) ] (8.4)
Equation (A.4) with the right-hand side of (A.1) gives the forms of )
and u and four independent constraints on o,8,v,6,¢ and ¢ as




functtons of q:

l;,)ﬂ 14 ( %:,,n 2 1 )
M iy = '3_ ( ?,‘4,)‘-! "'3.'-«, jht )
~olij-y +Oi w*/»”‘m i~ v 1y = E st~ Bomp oMy = in
—~—(2w {+gu' Bir i 2@H)
..o(i.;*/z +Q‘ )o}ﬁ Sz j*% +K,)% 4’1.,, %~ ,,z}% )L,} - At
B -— ( g”'uﬂ"' gu'.) 81—,,ﬂ ?M,))
iy =¥ )'4+ Eint ot Pron oy,
= 31_4{4( ?w, i 8 b+ )- gzﬂ,;—f"'gu, ;fi"gm, ;"'3:, 3u}
9 ‘joa *6( “hjve ™ & /.)0/,"'¢ ¢

= "—'_{4(%«#! f‘, ) 8t*’)"+gi-;,,°l +8"1-) ?")"'}

(A.5)
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After some algebraic manipulations similar to those in AL,

we obtain the final forms as:

/
dl,}"‘}i: Ci’x,}*}é_ L7 (“ ?i,)‘ﬁ"' g(gt,}"*gzu,;ﬁ)“'.? (?C—l’)‘-f-/'"g“’)‘fz)
+ fZ*/,}'" ""ZHI,}“"( Q11,7 + 815+ ‘f?tﬁ, j+2 ‘f?tn,)-ﬂ)]
"i‘(i+¢ Yy, iv%

-@‘./j*/i = "C‘;./-‘,P}‘ + 7§ [" gc,jf.+8’(gz~,;u+fz,)-) "3 (f;,)-f.z "'gzu,jﬁ)

tiaj + Givgr = (foajn t 1 o2t 815, ))
S ASAL I

d’i,j+};= C"-'?z,- )-+‘/‘., + 9"2 [14 ?31/' +? (&:.,ﬁf;,;ﬁ) -3 (gi,j—l +f£ﬂ,,‘ )
180wt B ra~ (B 8yt fr et Buner) )
t3 (E+P )iy, 0

51,}*5,: - C;.%J.,pi‘f"ﬁ% flé Zc.; +8(8a,;+;+8zn,}-)"3 (?L—I,)' +?£,j-l )
t 8 jrat Qin e~ (§er g +§ije2t 3Z+u.j-v+?i+z,}))
"'é (SHPdiny oy

ki,}+l= 2¢ (?c‘ﬁ,}n - gc‘-';;*l)

/qu,; =a‘$ ( §eoj-1= Gost541) (A.6)

where the new variable C is defined by

=
Cz.y,,y'/z % (0(:.;0'/," (3;..,,—.'4* X:«,y'/, - 8:.;#/; ) (A-7)




APPENDIX B
The fourtheorder scheme for the shallow water equations on a

spherical grid.

i 1. The governing equations in spherical coordinates.

- The shallow water equations (2.1) and (2.2) on a spherical grid

may be described as:

T o8 ﬁ ‘ R
e AT
. o T .

%(u)—gmr %;(K+§) =0 (B.1)
b §,L )bl ,z(K+§)=O .2
;

g (m) +2 (h )+ h%):o (8.3)

—— N A4
s Ta

where m and n are metric factors in the spherical coordinates § = X
(Tongitude) and 7 = ¢  (latitude) expressed by 1/m = a cos ¢f

and 1/n = a (the radius of the earth). U and V are the component of ¥V

in g and q , respectively and q, K and ¢ are defined in Section 2.

The vorticity § =K-PXV can be expressed as

4

- -

- PV _d U

E‘ mn [ﬁi‘ﬁﬁ] (8.4)
T

q Then the equation for the time change of kinetic energy can

< be obtained as

o

3 2 (h )+ 2 (AR p)ed (A0 )+ RUDE A

. = (N + AU LY+ [AV )4 AU Vb

t 5t("an) )E}( M K) YY) ’h‘tk) %-bz"l‘ms\ O (B.5)
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2. The finite-difference scheme for interior points of the spherical

grid.

A portion of the spherical grid with the variables staggered as
in the C grid and the indices (i.j) centered at a q point is shown in
Fig. Bl. Here 4¢ and AfQ  are constant grid intervals in 4
and 7, respectively, and m and n are assumed to vary only in j.

For the continuity equation (B.3) multiplied by AgAiz , the

following finite difference form is chosen:

J

Q2 ¥ * ¥ - JF
ot Hif‘/.,ju/z t u"fl))'4.'/z - LL:,,-% *U.»'/,_,)‘“ U‘*'/t,j =0 (B.6)

AtA
Hw,,)'f'/z = g n
(’"L"'))'o‘/L

hiﬁ.,)'f}'z (8.7)

¥ L = W
Uijep = (h 2/—):,)'+yz ﬂ.
,n)"‘yz (B-B)
13 07 A%

Mmy,,)- (h U') ;+y,,)~ —/_);L——
)

Wi

Here 49,A’l / (mn)s‘vz is area of the stippled region

in Fig. Bl and h("), h(v) are as-yet-unspecified functions of h,

Ignoring pressure gradient forces, the remaining terms in (B.1)

and (B.2) can be represented as in the square grid case,
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ot ‘m.., uv)"' o(i;j*'/z 17}47;;+/‘P¢-,‘*'/z vz, il T c}f/zvf-)&)

61 )4/; lrl§yz) + 2(0’, )4‘/" u.&l,)flz EFV; ,f'/; u‘-l,)f'/z
-"Ai,)'ﬁ uﬂ'.)"'f/z "')\\.)' uaL.)-Vz t [ KdVl,)*‘VZ - Kt-%,)*‘/z ] = 0, (B.g);

*
-g-f% Vs ey Yo Jjthe U«H')*/z'* g-;"'r’zl'('“)""z N d‘}"" Jv2 |
+ p;.u,,'-y, U, , j- et ¢i+7:,jw; U\’«;Vz,)‘u + Y, y-vz v;w/z,j- |

oy U= oy Vo + U aomon = Koo jix 3 = 0 .10

* %*
but U and V are now defined by (B.8). The coefficients a, B, vy, 8, €,
¢, A and u are again functions of q to be determined, where Saja(fi'S)‘-.;/,{?; l
and h(Q) is an as-yet-unspecified function of h. The finite-difference

form for § chosen is

o= MR r o ARy (A2 ag w:
G T [(UT)M)_ (UT),/,) + (u )u)/z 48) ')J (B.11)

As in the square grid case, h(u) and h(v) are chosen as

w) ¢
h"=h S (B.12)
. I
h =h
Then it is easily shown from the finite-difference analog of (B.5) that

we must specify

-

Koo o = 0% [+ 254 NI Uz’] (8.13)
AiA’Z M)'q'/,n)wgi 2 mjnj ii'/,;f&

to maintain conservation of total kinetic energy for divergent mass flux.
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Since tne procedure to determine a, B, v, §, €, o, A and u as
functions of q is identical to that presented for the square grid, we
can directly use the results of (3.31) with consistently determined h(q)
in q for the spherical grid (AL);

g .= Ji+ 25
W (mm); [ Riow,jeva+ hi-m, ot + loagst h,-.y,;.-y,]
4 (mn )j.y‘ (’mn)_;-y‘

23284 he, )

(mn);
)
/4- [ H:.y,,)wys'f Ht'-'a,)‘*'ﬁ + Hc'fyz,j-l/;'*' HI‘-'&J"/;J

(B.14)

aedn _ 188t Agay

(mn)j -2

(MR-t (MmN, (B.15)
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3. Modification of the scheme at the pole

The arrangement of the variables and the indices near the North Pole
(NP} is shown in Fig. B2.
The continuity equation at j = NP-1/2 in the grid system can be

expressed as

% HI%,NP—M'* Wesr np-ve = Wi np-tp — Viryp np-1 = O
A%4

(mnyp-va
The momentum equations for u at J = NP-1/2 and V at j = NP-1

(B.16)

H irva, NP-Vy = hws,ﬂf-}'z

can be written

__D_(uAE

Y 4 ¥
ax m ),‘,NP_ PA xl' NP-Vz I)?-‘/;,NP'I -él.Nf-Vz véﬂ/z JNP-1
/ * ’ ¥ . *
t Eirvap-va Wisiwp-va™ Eiyy v Wimi -y = Aip-1 Uipp-y,  (8.17)

/

/
[ Kivve,up-va™ KE-V;,/VP-'/z }J=0

d . /
;{ (y%)&xﬂﬁ_/-{- ( Kuf*):u,ﬂf-’/, + (8 uf)i,w.y,“’ (0( u:y)i,hl’- ¥2

* -
+( @ Tid Desu NP3~ i+Va, NP-2 U v, wP-2 +//i+l,NP-t <tH NP

* , (B.18)
- ﬂi,N"'U\i-y,,NP—l +( Kieva,mp-va = Kicv;,NP-VJ.] =0

where the primed variables are to be determined and the others are

defined as in (3.31).
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At the North Pole, we define q through the circulation theorem

v e
% 2= m:a;‘;.uz (8.19)
- where nP

_ 1 max,yAg B.20
# Cw*‘;\'i'% (522 ): e (8.20)
't’; NP iwl
: A:, = IMAX 4847 (8.21)
, (mn)wp
L]

The factor A§AN /(mn)y in (8.21) represents the area

of the hatched region in Fig. B2, and IMAX is the total number of grid
points in the g direction.
For the conservation of total kinetic energy in the divergent

mass flux, K' at j = NP-1/2 must be given by

i
{ :___‘1._(1"12“&& Agﬂ’t 2 { At4) L B.22
Koo e = Z A%An L(mn it t T G ”_,lhm,m.-) (8.22)

After the application of requirement on potential vorticity
advection and potential enstrophy conservation to (B.16)-(B.21), we
obtain the constraint on the area-weighting factors, the form of hp(q)

and y', &' and ¢' as functions of g.
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2 (mn)dnp-) 2 L (0nninp-y, (MN)wp-¥2
L}‘ L)) M ll
: 1 AX
= é hiex,np-be (B.24) 1{
agan 1. 4%47 (B.25)

(M)~ 2 (mn ).y,

’ i
Viwess = 24 L3 %2 Bune-i t 3 Biey = Qine-z = Bio e ]
,‘ w—— —-—i——
di umy, = 24 (3 Bt 38 wp-1% 2 8ear -t — Gy et = B np-2 ) (8.26)

€ i NP = 31;[ 28— Biwp-1 — S, np1 )

and
: =1
Adinr-y = 24 L2 Be -1 +38 inrit 2802 80102~ B gi-‘,"?-']

) 1 .27
@c, NP-3 = ;4-[3 Qivp-1 1285 ﬂp.l"'g;-c,NP-Z','zgiﬂf-Z-g&l,Nf-l "?nr] (8.27)

1
Mune-t = 24 (%o nr2 - 3~r]
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The proceudre used for the North Pole can be directly applied to

the South Pole (SP) taking into account geometrical symmetry, so that

we give only the results here.

The continuity equation at j = SP+1/2

2 g ¥ d B.28
STH i’}'x’s”l/z." u..‘,-'lisﬂ)j - u;'spﬂ + vt%,SP’l b O ( )

A%41

(‘”L n);"y;

Hig spely = Pivs, spey;

The momentum equations for u at J = SP+1/2 and v at j=SP+1

i see h‘l’*'é uzsm i,SP’& &, SPH

! ¥ *
t im,s..xu;..,,m,- Ein s Ui srey + Aisrnt Ui spoa

+ [Kws,sr*‘a" Ki-)s,sm,) =0 (B.29)

]J h + ’
( );,4 spes +( YU )c‘f‘,wx‘? (S Dispey t (« U:’)i,:w}',
«
+ (P w )54'19’*& + %;&/sﬂklf;%srn Tﬂmlsw U’:%’syﬂ
-/‘I.Sl’*lwfn,sm + [KHK,SI'+": - Kltm,spy;] = 0 (B.30)

here

KI i(mn)_gw.[AiAl_L( 1 4%s% ] (B.31)

i SH% = 7 2547 Loanyges T 2 Gan dspes vu& sP+
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y 1
G(t,sr#'/z = 24

’ 1
£t+‘/z,sr+!5= ?4‘[ 2;‘.,5.”; + Zz.sw - zgsp ]

[2 gzu, sper t 3 2 i, Sp+ 1"'3 3,, = zi,srfz - ?z-‘,sro l ]

‘ i
ﬁc‘, Sp = z3 [3 i sper 12 3;..,sm+32"—23,;,p.|-3z,sr+z)

(8.32)

: -4
Xt,SH n= —23_— [ 2 2"’5"1"' ?;-;, spe2 + Z%t—hsrﬂ +3 gi,sﬂ" _8?(;_%2#‘;5?'!]

1
Suspip = = [ ?Tf‘,SNz"'Z?I,SHZ +3 8 sp+1+2 %m,sru—g;.,,spu's,'] (B.33)

i
Mugn= 3% [ ?,, - ?iﬂ,SHZJ

Potential vorticity and vorticity are defined as

3,y = _i%&z
R,

Gsp == '4":' %)‘ (%5 .spen

sP i“
Ad = IMAX D542
(mn)g,
3 IMAX
|
hsp = TAX %. R ieva, Pt

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(8.39)
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L.EGEND
The staggering of the variable based on the C grid.

A horizontal domain with a circular mountain and a

vertical-section view of the two-layer fluid.

Time change of the conservative quantities to their
initial values expressed by the percentage.fp : constant
f case, Bp: variable f case, the solid line: the
fourth-order scheme, the dashed line: the second-order

scheme.

Results of the time integration for the constant f case.
The arrows and contours represent the wind vectors and

the differential heights of the lower layer, respectively.
As in Fig. 4-23, except for the variable f case (g-plane).

A portion of the spr rical grid. The area of the
dotted region is represented by (A4 /mn )i%,jwz .

The spherical grid near the North Pole. The arecs of
the dotted and hatched regions respectively represent

(Agan/mn )., and (A$AN /mn )yp-y, .
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The results of numerical experiments

on the f-plane

Figures 4-23:
Day 1, Hour O to Day 20, Hour O.

Second- and Fourth-order Schemes
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The results of numerical experiments

on the g-plane
h Figures 24-43

Day 1, Hour 0 to Day 20, Hour 0

Second- and Fourth-order Schemes
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