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x ABSTRACT

A new approximation technique to a certain class of nonlinear filtering
problems is cons1dered.fﬂ—eh+s—repot§:> The method is based on an approxima-
tion of nonlinear, partially observable systems by a stochastic control
problem with fully observable state. The filter development proceeds from the
assumption that the unobservables are conditionally Gaussian with respect to
the observations initially. The concepts of both conditionally Gaussian
processes and an optimal-control approach to filtering are utilized in the
filter development. A two-step, nonlinear, recursive estimation procedure
(TNF), compatible with the logical structure of the optimal mean-square esti-
mator, generates a finite-dimensional, nonlinear filter with improved charac-
teristics over most of the traditional methods. Moreover, a “close" (in the
mean-square sense) approximation for the original system will be generated as
well. In general the nonlinear filtering problem does not have a finite-
dimensional recursive synthesis. Thus, the proposed technique may expand the

range of practical problems that can be handled by nonlinear filtering.

detailed derivation for the filter with global property is presented.
sfon of the resuits to large-scale nonlinear systems is accomplished by incor-
porating a novel decomposition scheme in the filter design.
Application of the developed filter to a sca onlinear system which
lacks model “"smoothness* is presented in [K2]. “Application of the derived
multi-dimensional filtering algorithm to two low-order, nonlinear tracking
problems according to a global criterion and a local-time criterion respec-
tively are presented.hrjgso, a comparison with traditional methods, such as
the popular Extended-Ke —~an Filter (EKF), are given via digital-computer

simulation to demonstrazx the effectiveness of the obtained results.
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NOTATIONS

The following notations will be used throughout this dissertation:

(, F, P},

tr (
E (.

<,
)

E(x/ )=X

{1,
“"J) ’

Y,.=

Y

t ’

Euclidean n - dimensional space

Space of continuous functions on [0,T]

Time interval, usually (-=, =)

Sample space

Field

Sub c-algebra TosF

Probabflity measure

Complete probability space

Trace operator

Expectation operator

Conditional expectation, E(x(t)/y, ; s(t)

Conditional-error covariance,
EC(x(t)-R(E (x(t)-R(t) fy 5 set)

An element of the subset [ ]

Transposition operator

Euclidean norm

Min (s,t)

Refer to references

Refer to equation or set of equations where

i

denotes the chapter, and J 1is the serial

(sequential) number of that equation
First-order derivative with respect to t (time)

B R T et




aV_ .y . qth

m Vs » First-order derivative (Gradient vector)

‘g;'!b = v__,ij" second-order derivative (Jacobian matrix)
1925 22

X , Random variable

Xy s Stochastic random process

(xt) ’ Sequence of random processes, i=1,2,...n

Y¢ » o-algebra generated by the observation

processes (yg; s¢t)

®, Differentiable Gaussian measure, N(X, r,)

v, Set of nonanticipative admissible controls

{w} , Wiener-process sequence

(m.s.e.) , Mean square error

RMS , Root mean square

(P.a.s.) , Almost surely with probability one
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1. INTRODUCTION

The behavior of natural phenomena in general does not follow
strict linear deterministic laws. Modern technology, with its great
refinement of {nstrumentation, has made it abundantly evident the
the formulations of natural laws in which troublesome nonlinear ter
are suppressed or neglected to achieve workable linearizations, ofte
lead to faulty results or to sacrifices of precisfon, which are . .
longer tolerable. Consequently, the simple mathematical determin-
istic model must be modified. This can be achieved by using a sto-
chastic nonlinear model representation where the dynamic behavior of
2 msicﬂ system {s formulated in terms of the evolution of the
state (xq) of the system, under the influence of random disturbance

(at). as a solutfon of a set of stochastic differential equations:

X = f(t,xy, E4),teT , (1-1)

where f (.) is a nonlinear, real n-vector function;

Xg - & stochastic process n-vector which usually cannot be
measured directly,

t - the time varfiadle, tc{0, T1,
¢ -2 vector stochastic process to model the random
disturbance.
To avoid confusion, the following notatfon will be adapted in
the sequel. By writing Xg, One interprets x as a stochastic process,

T

M




while x(t) will mean that x is a deterministic function of time.
Moreover, (x(t)), (x4) will mean deterministic and stochastic
sequences respectively.

An important special class of (1-1) is the stochastic differen-
tial equation with the random disturbance modeled as an additive
white Gaussian noise Bys which has weli-known characteristics.
Hence, a white-noise model is used here with

% = fixg, t) +Glx,, tI8, . (1-2)

It is important to note here that this model may lead to mathematical
difficulties in the case of classical integrals. However, we may
replace the white-noise model, (1-2), by an equivalent “Wiener-

process” model as follows:

dxt = f(xt,t)dt + G(xt,t)dw R (1-3)

which is interpreted in the Ito sense [L1]. More detailed discussion
of the above equivalent formulatfons 1s given in Appendix A.

In most practical problems, the states of the system, which
mode] its dynamical behavior, connot be observed directly; only noisy
versions can be measured. This nofse is due to the unavoidable meas-
urement error, and in most cases is modeled for convenience either as

an additive Gaussian process or as an additive Wiener process. Con-
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sequently, a filtering algorithm may be employed to extract and esti-
mate reliably the states of the system from the measured values.
Stated another way, a given system has its dynamics modeled by the
following version of (1-1):

$o= ft, xg Yo £y, (1-8)

where f(.), t, X¢s E¢ are as defined before. Here y,, the observable
states, (can be measured directly) evolve according to the following

nonlinear differential equations:

%8 H(t, Xes Yoo vt) . : (1-5)

Again, H(.) s a nonlinear, real n-vector function, and v, is a
vector stochastic process modeling the observation noises, which may
be caused mainly by measurement noises and environmental effects.
Assume that (1-4), (1-5) can be solved for each realization of
g,v. Then, realization of x,y which are also of a stochastic nature,
are defined. Furthermore, to completely define the filtering prob-
lem, a performance criterfon must be stated, which defines in what
sense the estimate should follow the state. In this research, the
mean-square criterion fs adapted because of both its mathematical
convenience, and the distance measure it provides the estimate to

follow "closely” the original state. Hence,




T
Hig, xg) = €[ (11xg - %, 1 12)dt (1-6)

Here, E(.), I[l.l1l, R, are the expectation, the Euclidean norm, and
the “best” estimate of x, respectively. This particular criterion
was chosen to ensure a “"global" filtering criterion. However, other
criteria might be used depending on the application of interest.

The filter equation can be modeled as:

K= K (y(s); sefo,t]) , (1-7)

where it , the estimate, {s defined once the structure of the K
operator fis obtained. Thus, if we assume that E(]ix, 112) <,
te[0,T], then it is well known [D2] that X, , the best estimate, fis

generated by the following formula:
Xy = E(x/ygs sel0,t]) , (1-8)

where E(/) denotes the conditfonal expectation. Moreover, with addi-
tional assumptions about the structure of (1-4), and (1-5), 2 recur-
sive version of (1-8), (closed form) can be found (i.e. the estimated

value of % ¢ At time (t+at) can be generated by a recursive formula

t+A
if given the value of the estimate it at time t and the observations
(ygs se(t, t+a))). This is immediately recognized within the class

of linear systems with linear observations and additive Gausstan




noises, as the optimal (in m.s.e), state estimator and consists of a
finite dimensiora®l linear filter. The latter is due to the Gaussian
assumption in the system which permits the conditional probability
density function to be completely characterized by only the condi-
tional mean and the conditional covariance [D2]. However, for non-
linear systems this fortunate sfituation does not generally exist.
Obviously, nonlinear filtering techniques are more general and
greatly expand the range of practical problems which can be
handled. But, 1its optimal estimator generally consists of an
infinite-dimensional system of moments, or equivalently a partial
differential equation that has an infinite number of dimensions.
Consequently, approximation and ad-hoc techniques usually are
employed to construt;t practical filters for nonlinear systems. The
classical methods described in recent literature for realizable
nonlinear filters can be roughly classified into two categories.
They are either probabilistic or statistical approaches. In the
statistical approaches, the basic idea is to linearize the nonlinear
equation; then the Kalman-Bucy method is applied. The linearization,
which is a first order power-series expansion of the nonlinear terms,
is generally performed efther with respect to a given “reference
trajectory” or with respect to an estimator that s obtained by
filtering, such as the case in the Extended Kalman Filer EXKF. But,
these approaches have some drawbacks. For {instance, in the first

case the true trajectory should be close to the assumed one which {s
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sometimes hard to fulfill. In the second case, since the filter
parameters are functions of the state estimate, an error in the
estimate impacts filter gain and can result in filter bias,
inconsistency, and even divergence. In the probability approach,
which was started by Stratonavich [S1] and developed by Kushner [K4],
Bucy [Bl1], Jazwinski [J1],--to mention a few, the general procedures
are as follows: First, the equatfon of evolution for the conditional
probability density functions are determined. Then, equations of the
conditional moments are developed. Finally, various heuristic
assumptions and arbitrary truncation schemes are applied to the
evolving infinite dimensional filter equations to generate finite
versions.

The basic common assumption that is used in the filtering
algorithms mentioned above, is the requirement of the “differentia-
bility"™ or “smoothness" of the nonlinear terms. This results in
replacing the global properties of the filter by local properties,
and “derivatives" which are further aggravated by noise. This
assumption restricts the range of direct application (unless they are
heuristically modified) of the above algorithms.

It is well known that linear filtering is of paramount impor-
tance to sonar (active and passive) and radar applications.
Estimation in sonar is often assocfated with the localfzation of a
target which has already been detected. Localfzation is essentially

a2 parameter estimation problem where the parameters of i{nterest
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typically are target range, ODoppler (radial velocity) and azimuth
angle. The sonar “measures” one or more of these quantities as a
function of time using the observed sensor data to obtain a history
of the target track for survefllance or fire control. In general,
the measured quantities are nonlinear functions of the localization
parameters so that nonlinear estimation techniques must be used to
establish the target track. Various manual - deterministic and
automated - sequential methods such as the EXF are currently in
use. There are obvious shortcomings of the EKF for passive tracking,
such as the "i11 conditfoning" of the error covariance matrix due to
false observability which causes the filter divergence. Detailed
studies of the EXF shortcomings are given in [A2], and [Cl].
Consequently, the development of a "global® or “local time* nonlinear
filter that does not suffer from the above shortcomings would be
quite attractive, specifically to sonar applications. The proposed
nonlinear fiiters developed herein do have the above features.

Hence, applicability to sonar applications must be fully explored.

This dissertation introduces new finfte-dimensional filtering
structures for a certain class of nonlinear systems which offers:
1. Better f{ltering accuracy than the traditional techniques.
2. Does not require the "smoothness" assumption of the existing
techniques.

3. A global filtering criterion.




It is the general goal of this work to devise a means of coping
with many of the drawbacks of the exisiting techniques. The object
of this thesis is the design of a new nonlinear filtering approx-
imation. The filter structure is recursive, easily implementable,
efficient, and finite dimensional. The concept of both conditionally
Gaussfan processes and an optimal control approach to filtering are
used in the filter derivation. The method of solution is based on a
result of Liptser and Schiryayev [L2] which was rigorously extended
to the vector case by Kolodziej [X1]. This approach combines the
advantages of a sound theoretical basis, generation of an
approximation model for the original nonlinear system, and generation
of a finite-dimensional noniinear filter which has certain improved
characteristics over most classical methods, such as the popular EKF.

The suggested technique, which could be called “an approximation
in the parameter space," consists of three basic concepts:
approximate feedback control modeling, conditionally Gaussian
filtering, and control law computation. The use of the
conditionally-Gaussian concept, which was formally introduced by
Lipster and Shiryayev [L2] allows a closed system of equations for
calculating recursively X, = E(xy/ye) and re= Cov (xy/ye) which
completely characterize the conditional Gaussian-distribution
function P(xega/y,), t30. That provides a certain class of
stochastic nonlinear systems with the same tools as the Gaussian

assumption provides for 1inear systems.
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The main advantage of this approach over the traditional
techniques are: First, the basic and most common assumption of the
"differentiability” or “smoothness® of the nonlinear terms is not
required here. This 1{s 1important for filter stability and
susceptability to noise aggravation; second, the model itself is
approximated rather than approximating the evolving filter equations,
as is the case in most of the existing filter methods. Consequently,
one has more flexibility in adjusting the approximating parameters
and end up with a good (in m.s.e. sense) approximation model, as well
as an approximated finite-dimensional nonlinear filter. That is not
the case when the filter equations are approximated directly, due to
the strict requirements of the filter theory. Finally, in most
1inearization techniques the available observations are used only
through the innovation process in the filtering algorithm so valuable
information may be wasted. Herein, more complete use of the
available observations are undertaken through the concept of
conditioning the process on the given information as well as
channeling it back through the innovations process.

The dissertation organization s as follows: chapter one fis
mainly tutorial in the sense that it reviews briefly the significant
techniques that are used in nonlinear filtering theory. It also
includes the definition of the goals, the scope of this research, and
an outline of the organization of the dissertation. In chapter two,

a formal definition of the nonlinear filtering problem is given, and
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the structure of an optimal finite-dimensional nonlinear filtering
approximation is developed. In chapter three, a major feature, a
"decowosite;n scheme," {is 1incorporated in design strategy of
filtering a certain class of large-scale nonlinear systems. Chapter
four presents application examples to illustrate the proposed
filtering algorithm via digital computer simulations. A comparison
with traditional techniques such as the EKF and the Modified
Truncation Second-Order Filter MSOF (when it is applicable) are also
given. This comparison is based on performance, accuracy and cost of
computation and storage requirements. Finally, Chapter five presents
concluding remarks, and comments on future areas of research.
Appendix A presents a brief discussion of the equivalence
between the Wiener-process formulation and the white-noise
formulation in modeling stochastic differential equations. Appendix
B is intended to be an easy reference to two Lemmas used in this

text.
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2. AN APPROXIMATE FINITE-DIMENSIONAL
NONLINEAR FILTER

In this chapter the nonlinear filtering problem is defined, and
the derivation of a bilinear feedback-control-model approximation
with {ts corresponding finite-dimensional filter is presented. In
general, the _suggested technique uses extensively three basic
concepts, bilinear feedback modeling, control-law computation, and
conditionally-Gaussian filtering. Hence, these three significant
concepts are formally 1introduced. The new filter, in general,
consists of two major steps. In the first step, the given system is
approximated by a bilinear, feedback-control model. In the second
step, the state estimator (m.s.e.) 1{s computed using the
conditfonally-Gaussian-filter format. Thereafter, it will be
referred to as the two-step nonlinear filter (TNF).

2-1 A MNonlinear Filtering Problem

Consider as given some complete probability space (g, F, P) with
a nondecreasing, family of sub-c-algebra SysF, te(0,T]. Let ("t'l)'

{1 =1,2,....,n be mitually independent Wiener processes comprising a
vector of dimension n. Also, given a nonlinear model with dynamics
described by a family of stochastic differential equations (in
the Ito sense) of the form

dzt s f(t,2) dt + a(t.Z)dwt . (2-1)
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Here, te (0,T), z ¢ C the space of continuous functions < R", and
f : [0,T1 xR" + R" nonlinear, real n-vector functions,
o : [0,T] x R" + R? x R" matrix.

The nonlinear functions involved in equation (2-1) are assumed to
have appropriate properties to guarantee the existence, uniqueness,
and continuity of sample solution with probability one (L1). These
sample solution properties are crucial for modeling a physical
practical system by (2-1) and essential for simulating the
corresponding model by digital computer.

Suppose now that z ¢ R" is written in terms of two components
z=(x,y), where y ¢ R®, x ¢ R"®, Correspondingly, f, o can be

written as

6
f=(FH),os= .
R

where F,H are (n-m), m dimensional vectors respectively. G,R are of
dimensfons (n-m) x n, m x n respectively. The vector y represents
the noisy partial observations that are mace of the whole process.
Thus, the observation o-field is the sub o-field of z, defined by Y,
= g-algebra (y,; O¢s¢t). Notice that if m = n the system in (2-1) is




do
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completely observable. Hence, the system in (2-1) can be decomposed

as follows:

dx, = F (z,t) dt + G (z,t) dw, , (2-2-a)
(2-2)
dy, = H (z,t) dt + R (z,t) dw,. (2-2-b)

Here again (2-2-a), (2-2-b) are interpreted in the Ito sense (L1).

The system in (2-2) is nonlinear, then the optimal estimate for
a minimal-variance criterion, (i.e. mean-square-error sense), is
known to be the conditional expectation of the state of the system
given the observation, {y,; O¢s¢t}, te{0,T].

R, = E (x/yg; se (0,8) , ' (2-3)

where E(/) denotes the conditional expectation. In principle a
sequential version of (2-3) can be found, (i.e. the estimate
Xeeat 2t time (t + at) can be generated recursively if given the
value of the estimate X, at time t and the observations (ys ;
se(t,t+at]). But, {in general, the recursive formulae consist of an
infinite-dimensional system of mowment equations which are needed to
complietely characterize the conditional probability density p(xt,
t/ys s sef0,t]). Thus, an approximation must be made for practical
implementation. A new approximation method will be developed in the

following sections. .
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2-2 A Bilinear Feedback Approximation Model

A bilinear control model which approximates the nonlinear system
in (2-2) s presented here. This technique 1is called "an
approximation in the model parameter space.” Its parameters are
functions of the feedback control law u, which is itself a functional
of the observation processes Y¢o

In general, the model can be approximated as follows:

dxt = F(xt’"t't) dt + G (x t) dut,

t* Yoo

(2-4)
dy, = ﬁ (xt,ut,t)dt + E (xt,ut.t)dwt R
where (E(.), é(.), ﬁ(.), E(.)) are functionals of u,. The control ug
fs measurable with respect to VY.=o-algebra (y.; 0¢s<t), the
stochastic process defined on te[0,T], and it is chosen to minimize

the following “mean-square global® criterion:
T =2
Q(u) = E(J IIF, - F 11% dt) , | (2-5)
o
where Ft denotes any of the functions F, H, R, or G in (2-2), and

Fy. is 1{ts corresponding approximation in (2-4). Here, the norm

I1.11 fs a Euclidean norm, and the arguments (x,, y,,t), (x4,uq,t)
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are omitted for brevity. It should be noted that the choice of this
performance index (2-5) ensures a form of global filtering even
though, the search for the approximation Et falls into a class of
stochastic-control problems and depends strongly on the type of
nonlinearities in the system. However, in [K3] it was emphasized
that using a "local® filtering criterion will eliminate the
dependence of the approximating parameters on the particular form of
nonlinearities in the system. Thus, it 1s a trade off between
filtering properties and the complexity of the search for the
approximation parameters.

An important special class of (2-4) is the following bilinear

form:

dx, = [Alug,tix, + B(uy,t)1dt + Glu,,tidw,,

(2-6)
dy, = [C(ut,t)xt + D(ut,t)]dt +R (ut,t)dnt,

where (A.B,C,D,é,i) are of appropriate dimensions, and are linear
functionals of u,. The term bilinear refers to the fact that the
system is linear in the control and state, but not jointly 1linear
[M2]. Now assume Uy which minimizes (2-5) is available; then (2-6)
1s a "close" approximation model to the original system in (2-2), and
the minimization criterion fs a measure of the quality of the

approximation.
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(i1)

(i14)

(iv)

17

Remarks

Although the bilinear structure in (2-6) requires the identifi-
cation of more parameters than the ones in the original system
in (2-2), 1t {s mathematically more convenient for the
derivation of the filter.

A unique, explicit, general form for (A, B, C, D, a, and R )
cannot be given, because they depend strongly on the type of
nonlinearities in the original system.

The model may 1include a broad class of non-Gaussian noise
source, since non-Gaussian or even nonstationary processes may
be modeled by Wiener noise passed through an appropriate
nonlinear filter of this class.

The use of the feedback control in the approximation will
couple the filter equations (i.e. the covariance equations will
be functions of the estimates). But unlike the other
linearization techniques this may enhance the stability of the

filter due to the feedback structure.

g ORI L W S D i
R




-

18

2-3 Conditionally Gaussian Processes
An important concept which is used extensively in this research
is the conditional Gaussian concept. Lipster and Shiryayev [L2]

formally define 1t as follows:

Theorem 2-1:

Let (with probability one p.a.s) the conditional distribution
P(xosaolyo), ageR be Gaussian, N(mg,rg) with 0srg<s. Then the
random process (x4,ye), O¢tsT, satisfying a diffusion type of

equations as in (2-6) where the parameters satisfying conditions (11-
4)-(11-11) of [L2], 1s conditionally Gaussion such as: for any ©0,
0¢ty<ty....t st, the conditional distributions

Fyo(xo,...,xn) = P(xtosao,...,xtnsan/;t)

are (p.a.s) Gaussian.
The proof of this theorem is very long and is given in (L2).
This result is very important since it allows a closed system of
equations for generating recursively it= E(xt[yt), and
ry= Cov (xt[yt) . (This {s obtained by replacing the complex
computation of the conditional expectation in (2-3) by a simple
integration.) And these two parameters completely characterize the
conditional distribution P(x¢<a/ys), t30. So, it provides a class of
stochastic nonlinear systems with the same tools that the Gaussian

assumption provides for linear systems.
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Subsequently, for this class of nonlinear systems, the concept led to

the development of a finite conditionally-Gaussian filter by Lipster

. and Shiryayev [L2]. It also, offers more flexibility in control

applications than do linearization techniques. This advantage has
been demonstrated by Kolodziej [K1] and Mohler and Kolodziej [M1].

It should be emphasized here that in application the necessary
assumption of Xq given Yo to be conditionally Gaussian can be
satisfied under realistic operating conditions. This may result from
a physical consideration or from a direct approximation of the
distribution of xg given yy by a Gaussian process. In the first
case, for example, the error of the estimate of Xg given yg might be
caused by many random phenomena which in turn might be approximated
by a Gaussian process. Nevertheless, this does not necessarily mean

that either xq or Yg has to be Gausstan.

2-4 A Conditionally Gaussian Filter

This finite-dimensional filter is derived by Lipster and
Shiryayev [L2] and is rigorously extended to the multi-dimensional
case by Kolodziej [K1] who also, relaxed some of the required
conditions suggested earlier in [L2].

To summarize their results, consider the system in (2-6) which
is partially observable. At any time t it {s desired to estimate the
unobservable state x, using realizations of the observation state

Y¢- Let (xq,yq) be the inftial states for (2-6) which are assumed to
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be independent of the Wiener processes w;,i=1,2. The parameters
(a€.), 8(.), cl(.), of.), a(-), R(.) ) are of the appropriate
dimensions and their elements are assumed to be measurable non-
anticipative functionals on [0,TIxC;". Also, assume that up is a
measurable functional of Y, where Yy 1s the og-algebra generated by
yss Ogsstl. Then, sufficient conditions for derivation of a
recursive optimal, mean-square estimate of x¢ given (ys; Ogs¢t) are

given below. For all u e CyM,

T 2
OI I A(t,u)l1€ dt ¢ =, and (2-7)

T -
of CHB(e) 4 icte,u) 14 + 1D(t,u) 112 + 6(t,u)l1%1dtse . (2-8)
For u,neC,", te[0,T] define
R2(t,u) = R(t,u) R*(t,u) .

then 1IR"2(t,u)l] s c <= . (2-9)

Also, assume that

.
[IR(t,u) - R(t,n) (1% ¢ ( é [Tu(s) = n(s)12dk(s)

+ Hult) - n(e)11?) ,
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and (2-10)
2 T 2 2
HR(E,WIC g ¢ (of (1 + [lu(s)I € dk(s) + 1 + [lu(t)I]®),

where K(s) is a nondecreasing right-continuous function 0 & K(s) < 1;

¢ is a positive constant. The following comments are in order:

(1) conditions (2-7) - (2-10) ensure the existence and uniqueness
of a uniform parabolic solution to the system in (2-6) which is
important for real system modeling and simulation by digital
computer;

(i1) conditions (2-7), (2-8) are assumed to assert that (x,,y,) are
square integrable. For example, A(t,uy) = x2 will violate

these conditions, however A(t,u;) =7X will satisfy these
conditions. These conditions also, imply that

T
{) HB(t,uw) 1%t <=

This is f{mportant since 1t will restrict the additive
stochastic control to the square 1{ntegrable class that
satisfies E( IT llutll‘ dt)< e ;

(111) condition (Z-g) is made so that no degenerate stochastic
measure will be associated with Y. Otherwise, no uniform
parabolic solution exists for the system in (2-6) 1f a noise
term 1s missing in the equations of system (2-6);

B e m——————
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{iv) The conditfons in (2-10) restrict the noise coefficients R in
(2-6) to a class of smooth functions of u,, (due to the first
equation of (2-10) which s a generalized Lipschitz
condition). And the second equation of (2-10) ensures that its
rate of growth is 1imited to at most linear growth of us. This
is important so that the solutions (xt,yt) do not "explode® in
finite time.

From Theorem (2-1) of [K1] the following results are quoted:

Theorem 2-2

Let equations (2-6) have a weak solution, (see Appendix A for

definition of strong and weak solutions), (xy,y¢), te [0,T] with the

initial states (xg,yg) satisfying

E[lixgll4] <,
(2-11)
PUIT yoll c=) =1

Let the conditional distribution P(xq & ag/yg) be (P.a.s) Gaussian
with  parameters Xy = El(xg/¥g)» Lo E[(xo-io)(xo-io)*[yol and
tr(rg) < » p.a.s. If conditions [(2-7) - (2-10)] are satisfied, then
the processes (x,,y:), satisfying (2-6), tc[0,T] are conditionally
Gaussian, 9J.e. for any <t[0,T] and any finite partition ty,
3=0,1,...k of [0,T] such that 0 < t; <tj,...t, < t, the conditional
distribution

e ——
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' n
P(Xt0‘ ao, Xt1\< 01,...th s at/yt) [ a € R

is p.a.s. Gaussian, Y, is c-algebra generated by {ys; 0 ¢s < t}.
Further, ft, l‘t, j.e. it = (Xt/yt) and I‘t = E[(xt- x-t)(xt'it)*/ytls

are unique continuous solutions to
dx,= (AX, + B)dt + Kdv,
K= (r,c") (RR" )05,
dv = (RR')0-5(dy, - (CK, + D)dt), (2-12)
ar, = (Ar, + A"+ 66"~ kK")dt,

with X, = x(0), ry=r(0) as fnitial conditions.

The proof of the theorem is parallel to the proof given in [K1]
and ([L1]. The interested reader is referred to the given references
for details. The equations in (2-12) are recursive formulae (filter)
for an optimal mean-square estimate of x,. The arguments (t,u) are
omitted again for brevity. The finite dimensionality of this filter
is due to the conditional-Gaussfan assumption of the processes
(x4,¥4). A schematic representation of the filter {s given in Figure
2-1 to realize a functional understanding of {ts design.

-
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2-5 A Stochastic Nonlinear Control Problem

Following Lipster and Shiryayev [L2] the partially observable
system (2-6) is transformed into a completely observable system (2-
12). Consequently the minimizatfon criterion (2-5) also must be
transformed in order to solve for the control law analytically. Let
the u;y = y(t,y) where v:[O,T]xc»Rk such that ¢ is nonanticipative,

(LLYHJ)=Hmf)ﬁyb)=fh)ﬂrs<ﬁ. Now, if ¢ is
nonlinear, (xt,yt) which satisfy (2-6) will no longer be a normal
process, but the conditional distribution of x, given {ys; s & t} is
sti11 normal with mean and covariance given by {2-12).

Let o (E,t,i,rt) denote a differentiable Gaussfian measure with
mean X , and variance I'y.

Define
L (¢, Xps Tys ut) 3 IRL (t, g, u) do (g, t, x, rt) . (2-13)

where L denotes ||F - F IIZ, and F, F are as defined before.

If ry 1s nonsingular, then

de (e, t, & 1) -Wzl——lsxp - 0.5 [e-0"rHe-0 ¢
(2-14)

where Irtl denotes the determinant of r,, and r-l is the inverse

matrix of the covariance.
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Now, using the properties of expectation, the Bayes formula, and
the definitions in (2-13) and (2-14), the cost function in (2-5) can

be written as

T -
Q) = ([ EIF - FIIZy s setiae),
(2-15)

T -
. Eé L(t, Xy, Ty, uy) dt.

The interchange of integration and conditional expectation in (2-15)
is permitted by a version of Fubini's theorem [R1], and it is
Justified if we are dealing with integrals of Gaussfan random
processes.

Thus, an equivalent completely observable system (2-12), (2-15)
emerges where the new states of the system (R, rt) are generated by
(2-12). But the parameters of this equivalent system are functionals
of the control law. Consequently, we have to solve a control-law
problem first. Thus, the filtering problem is actually replaced by a
stochastic-control problem, which results in a stochastic Bellman
equation. Apparently, this could lead to a more difffcult problem to
solve than the original f{lter problem for (2-2). But as has been
shown {in ([K2] an approximation to the control-law can be found
whithout solving the Bellman equation. In the mean time, the

X
control-law problem s formulated as follows. Let 2z = rt » A
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vector of appropriate dimensions. Then dz = g;t s and hence (2-
12) can be written as

dz = f(z,u,t)dt + o(t,uldv , (2-16)

where ,
A(t,u)x + B(t,u) |

f(z, u, t) = P .
\A!'t + I‘tA + GG - KK

k(t,u) 0
C(tsu) = 0 0}.
' Y,

Here the matrices are of appropriate dimensions.. But equation

" (2-16) is a "degenerate" equatfon because the noise term is missing
in the covariance equatfon. Thus, as pointed out in the remark about

condition (2-9), no uniform parabolic solution exist for the system

because o(t,u) o*(t,u) is singular which implifes the existence of

singular probability measure for X, Tye Hence, the approximation

of a degenerate system of stochastic equation proposed by Fleming

[F1] which satisfies condition (2-9) is adapted here, where small
white-noise terms may be added to the covariance equation. Thus (2-
16) becomes

dze- f(z. u, t) dt + ad'v (2‘17)




——- .
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K(t,u) 0

where © =
0 (Ze)o'5

16).

dv
v = ol f(.) is as defined in (2-

For the stochastic control problem (2-15), (2-17), it has been
shown by Fleming ([F1], Davis [D1], and Ahmed and Tio [Al] that there
exists an optimal control for the system described by (2-15), (2-17)
if the following conditions are satisfied: Let Q = (T x T)xR" where
To¢T;

(1) 9, f are Lipschitz continuous in 2z, (z = (X , rt) H

(11) ¥ {is nonanticipative with respect to wy, i = 1,2;

(111) f, L are bounded measurable on 6 (the closure of Q) for each
uev, where v is the set of admissable controls which is
continuous for every (t,z) ¢ 6 ;

(iv) f, L are convex for each (t,z) Q;

(v) a(t,z) = tr(oo*) is nonsingular.

Using dynamic programming it is seen that there exists a value
function V(t, X, I') which is differentiable at least once in t and

twice in z, and which satisfies:

T
v(t,z) = inf E L(t, z, u)dt) ., 2-18
v(0,T) Ee,e { ) (2-18)

The corresponding stochastic Beliman equation is

L S
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Ve + mgn [0.5 tr(c*vzzo) + V:f(z, U, t) +L (z, u, t)] =0,

and V(z, u, T) =0, (2-19)
av 3V avé
Nhﬁre vt = b3 ) vz = 3T VZZ = ?z?z—; -

Consequently, a function V(.) can be found satisfying equation (2-

19), 1.e., with corresponding control function uo(t,z), such that

Elééail flt, z, u®) + L (t, z, u°) = (2-20)

mn N (e,2) F(t, z, 0 4L (L, 2, W],

then u® {s optimal. Futhermore, if conditions (i)-(v) are satisfied,
then (2-17) has a smooth solution.

Intuitively, the optimal control {fs a function of the value
function (the solutfon of the stochastic Bellman equation) but the
computation (requires solving a nonlinear Cauchy-type problem) of the
exact value of the optimal control {is 1in general tremendously
complex. However, suggested abstract methods to solve a Cauchy-type
problem as in (2-17) will be discussed briefly.

The nonlinear Bellman partial differential equation (2-19) can
be stated in general as a Cauchy problem of the following form:

e R L T T - ——
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C(O.x) = co’

where C, denotes the partial derivative with respect to time, and C,,

Cxx the gradient and the Jacobian respectively.

Roughly speaking, there are three principle approaches for

solving the problem in (2-21):

(1) Separation of variables (also called the Fourier method, or
solution by eigen-function expansion).

(2) Green function (also called fundamental singularities, or
solution by integral equation).

(3) variational formulation (also <called the «calculus of
variations).

Accordingl: . some of the important methods that have been
discussed in the recent literature are:

(1) The parametric method, which {s developed by Friedman [F2],
[F3]. Here a fundamental solution is first constructed, then
used to solve the Cauchy prcnlém.

(2) Hilbert-space method [Gl]. The idea of separation of variables
in the context of Hi lbert space, and numerical methods are
used. This is a very elegant method but unfortunately it is

extremely l1imited in its scope of application.
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(3) Function theoretical method [G2], where the theory of integral
operators is used. But there is no unique method to determine
the integral operator, and hence a general solution.

(4) Characteristic method, [B2], where the idea of reducing the
P.D.E. problem to an 0.0D.E. problem, through the use of the
corresponding characteristic function. Then a set of
Hamiltod's equations is solved by simple integration. This
method guarantees a solution only where (t;x)+X is invertible,
that is, as long as the characteristics do not intersect. But
any nonlinearities in the Hamiltonian lead to crossing of
ciaracteristics. Hence, the application to nonlinear systems
is Timited.

(5) Transformation methods [A3], where the transformation may be
appiied to either the dependent variable, the independent
variables, the equation itself, or any combination of these.
However, the initial-condition transformation may be a real

problem in this technique. For example, if the equation in two

independent random variables tcy + xc, = 2txc, ¢(0,x) = a, fis

» transformed by v = tx into the ODE, the single variable v can
take on only a single value on any manifold tx = constant.

The chofce of method of solution to (2-21) from the above
suggested techniques, depends largely on the following factors:

(1) degree of nonlinearities in the system, (i.e. some of the

methods may not be applicable);
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(i1) degree of difficulties and complexity of the method.

However, the transformation method seems to be the most
promising one due to its simplicity and the existence of various
transformation techniques (e.g., the cononical transformation and the
similarity methods). For example, if the system in (2-19) is first
order, then the following method transforms the system to a

quasilinear system.
ct = H (t, X, CX)’ (2-22)

c(0,x) = f(x) .
Let P denote C, and q = P, = Ci. Then by differentiation with
respect to t and equating mixed partial derivatives, the following
quasilinear system is obtained:

| Cer q,

Py = dy» (2-23)

qp = H (¢, x, P) - Hp (t, x, P} gy,

c(o,x) = f(x),

P(0,x) = f,(x),

q (p,x) = H (0,x,fy(x))

That is if C is a twice continuously differentiable solution of
the Bellman equation, then (C, P, gq) is a solution of (2-22), and the

converse can be proven to be true also.

B bovddeas moos
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2-6 M Optimal Finite-Dimensional Filtering Algorithm

The general filtering algorithm consists of the following steps:

Step 1 - Approximate the given nonlinear system, (fi.e. the
system in (2-2), by a bilinear feedback model that has the form in
(2-6), where the parameters are linear nonanticipative functions/
functionals of the control uy, (which is measurable with respect to
the g-algebra Y; = {ys; s ¢ t}.

Step 2 - Choose the performance index for the global filtering
criterion as in (2-5), which is also a measure of the quality of the
model approximation in (2-6). If U, which minimizes (2-5) 1is
obtained, then (2-6) is a “close” model approximation to (2-2).

Step 3 - If the parameters (A, B, C, D, é, i) satisfy the
conditions in (2-7)-(2-10), then the corresponding finite-dimensional
filter has the form as in (2-12), with its parameters as functions or
functionals of ﬁt .

Step 4 - Transform the performance index defined in Step 2 to an
equivalent criterion as in (2-15) using (2-13), and (2-14).

Step 5 - The system in (2-15), and (2-17) forms a completely
observable stochastic control problem, which should be solved by
classical dynamic programming to find the optimal control Gt .

Step 6 - Once the optimal control Gt is obtained from Step §
and then substituted back into both (2-6) and (2-12) a model
approximation as well as a finite-dimensional nonlinear-filter

approximation will be generated.
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Remarks:

(1)

(11)

Let

The assumption that the solution of the control problem in Step
5 is close to U, which minimizes the performance criterion
defined 1in Step 2, resembles the assumption in the EXF
approach, and closes the approximation procedures.
In general, the stochastic-control problem in Step 6 results in
the nonlinear Beliman partial-differential equation as in (2-
19). Hence, it may be no simplification as compared to the
original problem of finding a filter for (2-2). This is an
indication of a possible problem one will encounter in using
this approach if the exact value of the controls are required.

However, as was emphasized in [K2], the structure of the
optimal control suggested by an approximate solution to the
Beliman equation, which results in an approx‘lmat;e control that
yields a better performance filter than the EKF.

The following example [K2] 1{llustrates the previous
filtering algorithm steps:

dXt = a2 [x| dt + Glll,
(2-24)
wt = Xtdt + “2.

§ R et iabima
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The bilinear feedback approximation model is

dyys xpdt + dwy; te[0,T],

where u, {is chosen to minimize

t

t
Qlu) = mgn E(f"(a IxI - @ xy)2dt . (2-26)

;rom (2-12), the optimal (m.s.e)-filter equation has the following
orm:

dx dt + r dv (2-27)

t = UpXe tVe

a (98 _p 2
dr (20 ry + 1 ry ) dt,

t

where dv, = dy, - itdt ,» 1s the innovation process, having relevant
properties of the Wiener process. Now from (2-13), (2-14) the
equivalent minimization criterion to (2-26) is

- T
Q (¢, % t) = mjn £ [ (a Il - i) de(e), (2-28)

where d0(E) is as defined in (2-14).
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Using the dynamic-programming approach for the stochastic
control system defined by (2-27), (2-28) one can show [02] that the

optimal U@ 1is given by

- 281 %2 22 %
u=al[2—exp () - 2(x° +T) erf (- —)
mr oz E
(2-29)

- iy + 0.5 1 23 (3% )7t
x

2
a 1 e'O.S‘ dﬁ .

h fla) = [ —
where erf(a é/’ﬁ

Here, V is the solution to the Bellman equation
3, 0.5 1222 3 (1 12y 4 (i) (a2 - B2 2 g
T PR al ’
V(T, X, T) = 0. (2-30)

The above partial differential equation is very difficult to
solve analytically, and it is a good indication of the possible
problem one may face while attempting to solve the stochastic problem
defined in Step 6 of the algorithm. However, an approximate solution
to (2-30) of the form

; (x, I, t) = p(t) exp (- ;':) , p(T) = 0, (2-31)
t

rrer.s coe B R e TRt g




e

o e R B M S H .

—— e e

when substituted into (2-29) yields the approximate control

2x/T exp(- ;2) -2erf( - —5.-)
L VE

u=a — .
Y& (x© +T) :

which as shown in [K2] gives better performance than the EKF.

36

(2-32)
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3. APPROXIMATE - FILTER STRUCTURE

In this chapter a new filtering structure for approximating a
certain class of large-scale nonlinear filtering problems is
presented. A major feature, ij.e., a decomposition scheme is
incorporated into the filter design. The motives to develope this
scheme are: one, to resolve the “curse" of dimensionality
encountered if an optimal approximations is sought, due to the
requirement of solving a control problem which is a function of
(ﬂ..."_".z.(_’“’_l_).) variables. In general, this is a very difficult

problem to solve. Two, to alleviate the difficulties with respect to

control policy definition and calculation, which arise if the (TNF)
is applied directly and the global properties are assumed, but an
approximate control 1{is sought. Finally, using this scheme will
reduce the complexity of the algorithm, and results in significant
computer saving in the digital simulation. ‘
The strategy adapted in this decomposition scheme is based on n
the decomposition of the system into two inter-connected ’
subsystems. The definition of the subsystem can be imposed using |
purely physical reasoning. The first subsystem is only linear and it :
will act as a first stage of the filtering process. The second
subsystem includes all the nonlinearities in the system, which are
then approximated by the proposed two-step nonlinear filter (TNF).

This scheme has the following advantages:

ke it = on
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(1) only the 1inear filtering problem is solved in the first level;
(i1) the control parameter which {is needed in the TNF algorithm,
will be easy to obtain as a function of the parameters of the
first stage linear filter. So, no difficulties with respect to
measure theory or control policy will be encountered if the
global filtering criterion is retained;
(11i) in many cases, there is a substantial computational saving as
compared to the global single system solution.

An interesting class of nonlinear system has the following form

dx, = F(x,y,t)dt + G(x,y,t)dw,
(3-1)

dy, = Hix,y,t)dt + o(t)dv ,

where w,v are mitually-independent vector Wiener processes of
appropriate dimensions; o(t) is a matrix of compatible order. The

functions F(.), H(.), and G(.) can be partitfoned as follows:

Fix,y,t) = fl(t) X + fz(x,y,t) . (3-2)
A hy(t)x
H(x,y,t) =
hy(X,¥,y)

i e ————— a———
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G{x,y,t) = gl(t) + gz(x,y,t) .

Here, f;, hy, and g; are linear matrices of appropriate dimensions
and f,, hy, and g, are nonlinear functions of their arguments, and of
compatiblie orders.

The general outline of the decomposition scheme and filtering
algorithm are: (1) the given n-dimensional system as in (3-1) is
decomosed into two subsystems. Subsystem I consists of a linear
system, (i.e. linear dynamic and observation equations). Subsystem
IT 1s a nonlinear system, which contains all the nonlinearities of
the original system and is approximated by the proposed model space
approximation.

(2) Apply a classical filtering technique, f.e. the Kalman-Bucy
algorithm [D2] to the Tinear system in Subsystem I. This will be
considered as the first stage of the filtering algorithm.

(3) Find an appropriate bilinear approximation model to the
nonlinear system in Subsystem II.

(4) Finally, from Subsystem I and the bilinear approximation of
Subsystem II, form a new system. This new system will be of the form
that has a finfte-dimensional, conditionally-Gaussfan filter as in
(2-12) if certain assumptions (2-7)-(2-10) (See Chapter 2 Section (2-

3).) about the system parameters are satisfied.




42

The block diagram representation of the decomposition scheme and
the filtering algorithm is given in Figure (3-1), while a detail
schematic representation is given in Figure (3-2).

To summarize, the various algorithmic steps are:

Step 1. The given nonlinear system as in (3-1) can be
decomposed into two subsystems.

Subsystem [

det‘ fl(t) x dt + gl(t)dw s

(3-3)
dyft' hl(t) X dt + al(t) dv1 ’

where fi, hy, and g; are as defined before, and w, v; are independent
Wiener processes of appropriate dimensions. The subscript f denotes

the first subsystem.

Subsystem II

dxst- fz(x.y.t)dt + gz(x,y,t)dw . (3-4)

dyst’ hz(x,y,t)dt + CdeZ ’

where the subscript s denotes the second subsystem, f(.), hy(.), and

gp(.) are generally nonlinear functions of their arguments, and w, 7

are independent Wiener processes of compatible orders.




43

Step 2 The Kalman-Bucy filter equations for the system in (3-3)

are:
- * * .1
dRe, flifdt + ph1 (°1°1) dn, , (3-5)
dp, = (£,p + pf," + g,9," - ph (ay0, ) "I p) at

dng = dyge - hy Xg, dt,

e s o T

Rf(O) = E(xf(o)) , p(0) = cov (xf(O)) ,

where Xc 1is the estimate, and p(t) is the error covariance matrix.
Here dny is the innovation process.
Step 3 The bilinear approximation model for the system in (3-4)

has the following form:

dxg = f2 (t, ut,x) dt + 52 (t,ut) dw ,

(3-6)
dys = ;2 (t, Ugs x) dt + azdv2 s
where
;2 (x, uy, t) ='£1u1(t) xg(t) +up () = Alt,u) x +Blt,u) ,

e e
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ﬂz(x,ut,t) =jg1uj(t) X5 + un+1(t) = C(t,u) x + D (t,u) ,

(3-7) 1
g (t,u.) = gq (¢, u) .

Here n, the dimension of the system, and the second equality, is used
for mathematical convenience. The control uy(t), 1 =1 = j = 1,2--
n+l are measurable with respect to o-algebra {yg¢;se[0,t]}, and are
chosen to minimize the following global filtering criterion:
LY
b i Q(u) = gin E £ (k-k)“dt. (3-8)
1

Using the property of expectation and Bayes formula, (3-8) becomes

T -
Qu) = gin € (é E(k-k)¥/yes s ¢ t) dt)

Tt 2
= ﬂ:" E [é E-(k-k)“dt) , (3-9)

1 = min E TH(x u) dt
,f i ({) ) s

where E denotes the conditional expectation. Here again, k denotes

any of the functions f,, hy, or gp, while K denotes the corresponding

B R S O T L

-
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approximation ;2, ;2, or g, in (3-7), and H(x,u) = E%(k-R)2. The
arguments (t,y,x), (t, uy) are omitted for brevity.

The minimization of (3-9) with respect to uy, 1=1,2,...n+1, can
be performed since the expectation is conditioned on the o-algebra
(yfgs se[0,T], which is not a function of the parameters uy, 1 =
1,2...n+l. Moreover, the parameters u;, 1=1,2...n+l are functions of
the states x4, f21,2...n but the states x, i=1,2...n are not
function of the parameters uy, 1=1,2...n+l. In fact, the problem can
be treated as a special case of an open-loop control probiem formed
by dynamics (3-6) and cost (3-9), because as far as the newly formed
problem {s concerned the parameters u;, 1=1,2...n+l are functions of
t,te[0,t]. According to the argument given in Chapter 2-Section (2-
5) and {D2], uy can be found by solving the following equation:

x®
Vot 0.5tr (oV, .0 ) +» min [V f(x) + H(x,u)] =0, 1 =1,2,...n+1,
t xx L (3-10)

where f(.) denotes any of the functions f2, hy, Or gy, and Ve, Vy,
are as deiined in (2-19). But as pointed out earlier, f(x) are not

functions of u; 1=1,2,...n+l,

af(x) .
thus—sr 0 ’

and (3-10) can be written equivalently as
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g{n [H(x,n)] = 0, 1=1,2,...n+1 . (3-11)

Now, to obtain the parameters iy, 1=1,2,...n+1
which minimizes (3-9), a set of equations resulting from (3-11) must

be solved simultaneously and as pointed out previously, they are

functions of (if, p).

Step 4 The new equivalent system has the following form:

dx.= (Ay(t,d,) x, + B, (t,d,)) dt + G(t,i,) dw, !
Xex (Ay(t,0¢) xg + By (t,dy)) e (3-12) '

dy, = (C,(t,u,) x.+ D, (t,u,)) dt + adv,

where

Al(t,ﬁt) = fl(t) + A(t,Gt), Bl(t,ﬁt) 2 a(t.ﬁt),

hy (t) 0
Cl(t,ﬁt) = . ’ Dl(t’ﬁt) = ) ’
C(t.ut) D(t,ut)
cl(t) 0
G, (t,u,) = g, (t) + g.(t, G,), o = .
1'% 0 0 Tt 0 ap(t)

W e b ehe L e e e
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Here again the matrices are of compatible orders.

Step § With certain assumptions about (A, By, C;, Dj.Gyp, g)
and the distribution of the initial state x5 given y, (see Chapter 2
Sections 2-3), the corresponding conditionally-Gaussian filter is of

the following form:
dit L] (Alit + Bl) dt + S dv ’

S=(r,C *) (gg™)"0-5 ,
t-l (3-13)

dv = (es" ) 05(ay, - [C %, + 0, at]) ,
* * *
dl't = (Al I‘t + I't Al + GIGI - SS ) dt ’

where Ay, By, Cy, Dy are as in (3-12), and the arquments (t,U,) are
again omitted for brevity. A second-order example to demonstrate the

above algorithm steps will be given in the following chapter.

Remarks:

(1)  The controls iy 1=i=§=1,2,...n+1 are suboptimal, since they
are functions of the observations in the first stage. If all
of the observations are used in the first stage ({i.e. the

observations and the system are linear), then the controls




S S

(11)

(i11) In general, the state estimate obtained in Step 5 is an

(iv)
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G] , 1 =1,2,...n+1 are optimal (in m.s.e).

In using this algorithm, the control parameters are obtained
without solving the stochastic Bellman equation. However, it
is still necessary to evaluate the conditional-expectation

expressions in (3-9).

improvement relative to that obtained in the first stage, and
that due to the use of all the information in the last step.

If a “Tocal-time" filtering criterion is assumed, then, as has

been shown by Kolodziej and Mohler in [K3], there is no
control-law calculation since the approximation parameters are
not functions of u,. But, the evaluation of similar

conditional-expectation expressions are still required.
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4. TNF APPLICATIONS AND
SIMULATIONS STUDIES

The implementation of the proposed two-step, nonlinear filter
(TNF) are demonstrated via applications to a certain class of
nonlinear system. In [K2] the applicability and effectiveness of the
filter have been demonstrated for a nonlinear system that lacks the
usually necessary mode! "“smoothness". Obviously, the TNF is also
applicable to “smooth" models as demonstrated herein.

The examples that are treated here were chosen from practical
applications to 11lustrate the proposed procedures.

The claims made for improved performance, are verified through

computer simulation results in the following sections.

4-1. General Simulation Comments

The digital-simulation examples that are discussed in the
succeeding sections, were coded in FORTRAN in such a manner that the
program generates solutions to the states of the original system, and
the estimated values of the states by both the TNF and the EKF.
Moreover, throughout all the simulation cases, the Wiener processes
Wy which describe the excitation noises are generated from pseudo-
random Gaussian variables v; N(0,1). The latter generated by a
standard (IMSL) Library Subroutfine. And, {increments of w, are
approximated by dw s m:-v; » where At is the integration step-
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size (.001 to .0001). In the simulation, a fourth-order, Runge-
Kutta fntegration algorithm 1is used for all trajectory filters and
differential equations of both the original system and the error-
covariance matrices.

The performance of i:he two filters are compared on the basis of
the “mean-square error” (m.s.e) of the filter output to x; such that:

T
(4-1)

.
Jep = [ (U8 - gy (0) et

and JJ gives the relative (percentage) difference between Jyyp(t),
Jexr(t) such that

Jeve(t) = deucl(t)
JJ = EKF Y T"L‘ x 100 . (4-2)
EXF

Actually, numerous simulation tests were conducted during these
simulation studies, however, only a small representative sampiing of
the results have been presented here. Nevertheless, these results,
together with the ones presented in [K2], clearly demonstrate the
effectiveness of the proposed filter. It should be noted that
throughout the simulatfon process, the following {dentification
symbols have been used to {dentify the different plots {n the
succeeding Figures of the sequel: the "a" (solid 1ine) is used to
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jdentify the state trajectory of the original system, "“v" (dashed
line) to mark the output of the TNF, while "“x" (dashed line) fis
reserved for the output of the EKF.

4~2 Example 1

An important underwater application is the sonar tracking of a
moving rigid body. This could be an active tracking of mul ti-mode
range system or passive tracking with multi-receiver-transmitter and
correlated time delay. The rigid body considered here is a point

mass.

4-2-a Problem Definition and Model Formulation

The problem at hand is to develop an optimal, (or at least
suboptimal), nonlinear finite-dimensional estimation algoritm for
the range and range rate of a rigid body based on the noisy
observation of fts position and velocity provided by a sonar signal.

The state vector, (Range = x;, Range Rate = x,), evolves accord-

ing to the following stochastic differential equation [P1]:

dx = A x dt + Gdw , (4-3)
dxl 0o 1 0
where, dx = s A= y G = » & =1/t ,
dx
2 0-a a
T  all -

A_ P W
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w is a Wiener process. Here x, is influenced randomly by target
maneuver which is characterized by t the maneuver time constant.

The measurement equations are nonlinear due to the “acoustic
propagation* time delay, when tracking is derived directly in current

time. The observation equations are

dy = H (x,t)dt + Rdw, , (4-4)
¥y X *BiM% o °
where dy = , H(x,t) = s R= ’

wy is a Wiener vector of measurement nofses, By = a/c, a is a

constant, and c is the average speed of sound in water.

4-2-b Filtering Algoritm

To find an approximate finite-dimensional filter for the
nonlinear system in (4-3), (4-4), the decomposition scheme and the
corresponding filtering algoritim, discussed in the previous chapter,

are utilized.
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Subsystem 1

Here only the ange rate information is used. Thus, the linear

system and observation equations are:
dxl = xzdt .

de'°¢X2+CIG~1,

(4-5)
WZ=det+02 MZ ’

where ¢; is a multiplicative constant. Using the Kalman-Bucy method,

§ the estimate Xy, 1 =1,2 satisfies the following 1linear

stochastic equations:

- - P3
dxlf = xzfdt + 3; dv ,

- - Py
where iif = E(X‘l/yz). {121, 2, the conditional expection, and dv

{s the 1innovation process. The corresponding error-covariance

equations are: .

@, = (2Py - P2/ 0,2) dt, (4-6)

. W gt e e 4




Subsystem 11

Let xyx, = (u1x1 + upx, + u3) .
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(4-7)

Here uj, f = 1,2,3 are measurable with respect to the o-algebra (y,e;

sc[0,t]), and chosen to minimize the following global criterion:

T
Ju) = min £ ([10xpxy = (upxy +up xp + uz))?)dt. (4-8)

Equation (4-8) can be written equivalently using the properties of

expectation as

T
J(u) = nﬁ? ECL é E ("1"2 = ugxy + upx, + u3))2/y25;sc[0.T]) dt]

T
. Ialil E [{, Et(xlzxzz - R+ k2 dt] .

where K-ulxld-uzxz*uy;;.

(4-9)
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R=2 xlsz .
Let Hix,u) = E%(x;2x,2) - E¥(R) + EV(K2) . (4-10)
Then (4-9) becomes
T
J(u) = min € ( [ H{x,u) dt) . (4-11)
Yy 0

Here, the minimization in (4-41) with respect to uy, i = 1,2,3 can be
performed since the expectation is conditioned on the c-algebra (st;
se{0,t]) which is not a function of the parameters uy, 1 = 1,2,3.
And the fact that the unobservable states x;, i = 1,2 are not
functions of the control parameters uy, i = 1,2,3. Accordingly,

aEt(xlzxzz)
--sa;--—-- 0 for i = 1,2,3 . Now, using similar arguments as in

Chapter 3, the minimization of (4-11) requires that

*
Vt+ 0.5 tr (o vxx ¢ )+ ma? [Vx X Xp* H(x,u)] = 0 for 1=1,2,3 .
{4-12)

Thus, performing the minimization with respect to uj, 1=1,2,3 in (4-
12), the following set of equations (which must be solved simultan-

eously) are obtained:

—— - e e i3ty et s R T R

W e e
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.

- 2 €8xy 2x,) + 20 EY (x)2) + 20 E%(x)) + 20,E%(x;x,) = O,

t, 2 ty, 2 t t =
-2E (x2 xl) +2 ﬂz E (x2 )+ 2 ﬂ3 E (xz) +2 ﬁlE (xlxz) 0,
(4-13)
t = = et s eti v .
-2 E (xlxz) *2ig+2 U E (xl) + 20, (xz) o .

To calculate iy, Gy, U3, which minimize (4-9) or (4-11), from (4-
13) the conditional expectation expressions must be evaluated
first. From the basic definition,

Ebx,2) =Py + %2, 1=1,2. (4-14)

To evaluate the expressions Et(xizxj) s Et(xisz) .

Et(xixj) s 1, = 1,2, the results of Lemmas (Bl, B2) from Appendix
B are utilized. Thus, '

iy 2
E (x1 xj) = Zifuij + ij Uy s
(4-15)

t 2y o
E (xix.1 ) ZXJ ugg * 21 T

eﬁﬁﬁ)-§§+ps,

C e et e ———— e i e e,




Then, from (4-14), (4-15) in (4-13),

s ﬁl = fo ’ (4-16)

Then, the new equivalent system is

? dx = A x dt + del .
: . (4-18)

dy = H x dt + D(%) dt+§du2 ,

where H = » D(x) = ,
0 1 0
- 9 0
R = » A, G are the same as in (4-3).

P T e
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Now, assume the following:

(i) 4f f denotes any of the functions A, G, H, D, R, then

T
P(é | fldt<e ) =1;
(i1) xy given yy is conditionally Gaussian. Then, from (2-12) the

corresponding conditionally-Gaussian filter is

- - 1 - - ry
dx, = Xdt + . (r; (1 +8,u;) + By, T3} dvy + e dv, ,

g g
1 2 (4-19)

T
- 1 - - 2

where,
dv1 = dy; - (1+ UpB X; + Byix, * 31"3) .
dvy = dyp - Xy,

and By,a are defined as before,

The covariance equations are

2

T
- 1 - - 2 3

2
s e 22 1 - =2 T2
d 1'2 {cl a - 20 rz‘ [5—12. (1'3(1 + Blul) + 1‘23102) + ;21‘ ]}dtl

o —————
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= 1 b i
1

(4-20)

- 1

+ r281"2)] — (r,r,l} dt,
2
where ﬁl, ﬁz. 63 are as in (4-16).

Notice that in this case (4-19), (4-20) are the same as the filter
equations of the modified-second-order truncated filter defined by
Jazwinski [JI1] because the nonlinearity is of second order, although

the aporoach is different.

4-2-¢ Extended Xalman F{lter

The filter equations are [J1]:

= 1
d Zl 2Zdt + o—z [(14-8122) P+ p331i1] dvy
1

oy (4-21)




= 1
dRz - tht + ;—2-[(1 + 8122) Py + PZBIXI)] dv1
1

+ P2 / 622 dv2 .
where By,a are as defined before, and
de = (WZ - gz) .
The covariance equations are:
2
P, = {2p, - L ((1+%8) P +%B P2 '3 }
1 3°~7 X% At By P e =2}
g g
1 2
22 1 2 ’22

91

®y = {Py - aPy - [;lz((1+eli2)P1+ %181P3) ((1 + B4%,)
1

1

63

(4-22)

—-
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4-2-d Simulation Results

Here, the previous sonar problem 1is simulated, where both
equatfons (4-3), (4-4), and the TNF, EKF equations, (4-19), (4-20),
(4-21), (4-22), were solved by the digital computer.  Numerous
simulation tests were conducted for this problem using different
initial conditions and parameter values. But only a representative
sampling of the results have been presented here. These simulation
results were tabulated in Tables (1,2), where JJ; represents the
percentage position (range) error (in m.s.e) accuracy of the TN as
compared to the EKF, while JJ, represents the percentage velocity
(range rate) error (in m.s.e) accuracy of the TNF as compared to the '
EKF range-rate output. In all cases, JJ;, JJp were calculated
! according to the equations in (4-1). In figures (4-9) - (4-16) the
‘ range root-mean-square (rms) error Q;(t), Qx(t), and the rms velocity
! error VQ(t), VQp(t), for both the TNF, the EKF respectively, were

calculated as follows:

(1) 2 W2 3
i(x, Mgy - % Me
oylt) = 1{_1—L t"n L : (4.23)

1
(1) = (1) 2 2
IL (x (t,) - x (t,)
VQJ(t) = 1 ( 1 n_tk ] i ) ’ (4-24)
i=1
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where (xJ“)(tk), ij(”(tk)) are the jh components of the true
state and its corresponding TNF, EKF estimates at time t, on the jth
simulation run, in a series of IL runs. For completeness, some
comments on the filter initialization seem in order here. Under
actual operating conditions it is extremely difficult, and indeed
rare due to one reason or another, to obtain reliable initial
" estimates of the state vector and its associated covariance matrix.
Consequently, the following set ‘of initial conditions are
realistically chosen. Throughout, the {initial range value is 5000
meters, while the initial range rate value is assumed constant and
chosen from the following set. (50m/sec, 500 m/sec, 1000 m/sec). The
initial condition of the estimates are calculated according to the

following equation:
ii(O) = xi(O) +mﬂ1 » "’1,2 (4'25)

where ngy is a random noise. The initial covariance matrix is:

PL(0)  P4(0) 106 102
P(0) = = 2 s ’
P4(0)  P,(0) 10 10

where the diagonal elements of P(0) are chosen relatively large so

that the filter will “forget® the initfal values as more data

*
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arrived, and to ensure the randomness of the intial estimates. 1In
all cases, a system noise of 1% of the initial state values is used,
and different levels of measurement noises (from 2% - 20%) of the
initial range, range rate respectively, are added. For convenience,
the time interval for each run is 10 seconds, and the number of runs
for each simulation test case is between 10 to 20 runs. Thus, all
results have been ensemble average over IL runs; {the number of runs
for each simulation test (10 to 20)1].

The effect of increasing the nonlinearity, (i.e. increases a),
of the system on the filter trajectories and the rms error levels are
demonstrated in Figures (4-2), (4-6), (4-10), and (4-14) as compared
to Figures (4-1), (4-5), (4-9), and (4-13) respectively. Accord-
ingly, the TNF performance improved substantially, and the rms-error
levels increased enormously as compared to the rms-error levels of
TNF. The above conclusions are also demonstrated by Table (1).

In comparing Figures (4-3), (4-7), (4-11), and (4-15) with
Figures (4-2), (4-6), (4-10), and (4-14), it is noticed that an
increase in the velocity measurement noise standard deviation ap by
10% will degrade the performance of the TNF, and {mprove the
performance of the EXF, while the rms-error levels significantly
decrease. However, the TNF still performs better than the EXF.

Comparison of Figures (4-4), (4-8), (4-12), and (4-16) with
Figures (4-1), (4-58), (4-9), and (4-13) respectively, and Table (2)
indicates that the EXF gains {n accuracy reiative to the TNF as the

-
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observations become more noisy (i.e. increases the range measurement
noise standard deviation, o; to 20%). This is due to the fact that
the nonlinearity, (here in the range measurement equation), is masked
by the 1large measurement noise. In essence, this is in total
agreement with the remarks pointed out by Jazwinski [J1] in his
criticism of Schwartz's simulations [S2].

Finally, it d4s generally noted that the mean-square errors
0,2(t), v 2(t), Q,2(t), VQ,2(t) of the estimators and the optimal
error covariance Try(t), rp(t), and Py(t), Po(t) of the TNF, EKF
respectively are not the same. That {s due to the fact that
averaging over (IL) samples paths (10-20) does not give a good
approximation to the expectation.

From the tables and figures mentioned above, the following
remarks seem in order:

() In almost all the cases, (except Table 2), the TNF shows
significant improvement in filter accuracy as compared to the

EKF.

(11) In general, the TNF range rms error, and velocity rms error are

much smaller than corresponding EXF as shown in Figures (4-13)

- (4-16). This clearly demonstrates the effectfveness of TNF

over the EXF.
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(111) The computer utilization cost of the TNF is around 10% higher
than the cost of the EXF, while the storage requirements are

relatively equal. Thus, the computer cost consideration will

not be a preference factor as far as this application is

concerned.
(iv) Finally, the complexity of the proposed algorithm (TNF) over

the EKF might be justified by the significant improvement in

the filter accuracy.

e anm . e
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4.3 Example 2

In this example a new nonlinear filtering and tracking technique
{X3], which §s similar to the TNF, is applied to a passive-sonar-two
dimensional problem. This technique 1is suited for the type of
problem under consideration, where the observation equation is
scalar. Thus, application of the TNF will encounter difficulties
with respect to control policy calculation. However, this new method
does not require control calculation, but unfortunately, the global

properties are lost.

4-1-a. Problem Definition and Model Formulation

This problem describes the two-dimensfonal, bearings-only target
motion [A2]. Figure (4-17) presents a geometric configuration of
both the target and the observer, where {t is assumed that both lie
in the same horizontal plane.

It 1s assumed that the system behavior evolves according to the

following stochastic differential equations:
dstx +Bu, +Gw (.426)
at t t 1t °? -

where




rxl, relative range component in the x direction ] 70

Xa5 relative range component in the y direction

x = X3» relative velocity component in the x direction (| °’

L)(4, relative velocity component in the y direction
»

Uy = Ugys relative acceleration in the x direction

uy = Ugys relative acceleration in the y direction

Uy, Uy are acceleration of the target in the (x,y) direction

respectively,
F - - - . - -
; 0O 0 1 o g O ¢ 0
! A=(0 0 0 1 g = 0 0 G = o 0
0 0 o0 0}, -1 0 |, R1 0
0 0 0 O 0 -1 0 R, )
L J L . L J

Here wye, (wigxs "lty)’ is an additive noise to model random target-
1 acceleration fluctuations from the assumed constant velocity
| trajectory, (with u, = u, = 0).
; The measurement data consists entirely of passive sonar bearings

as follows:

8(t) = Arctan (xl(t)/xz(t)l + on(t) , (4-27)

e P e o b e
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where 8(t) {1s the measured target bearings, and n(t) is an
independent additive Gaussian measurement noise and has varfance
o2(t). Moreover, the observation is almost spacially continuous 1f
we consider the scenarfo for an isolated submarine tracking a surface
ship or far distance submarine. Now, if we let dy = gdt then (4-27)

can be written as

dy = H(xlpxz,t) dt + g4 d“z > (4-28)

-1 xl(t)
where dw, = n, dt is a Wiener process, H(t) = tan (;;m)-

4-3-b. Filtering Algorithm

The system 1n' (4-26), (4-28) 1is a nonlinear system with
nonlinear observations. In [A2], [C1], it has been shown that the
EXF suffers from the "{ll-conditioning” phenomena due to the error
covariance-matrices false observability [A2]. The new approach [K3]

proceeds as follows: First, the approximating system is defined with

fi (xloxzmyot) = ho(y) + [hl(y)’ hz(y)] < . (4-29)
2

Now assume the following:
(1)  1f £ denotes any of the functions F, B, G, hg, hy, hy, then
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T
P( é [f] dt < =) = 1;

1)  xg given yg is conditionally Gaussian;
1it) hys hl' h, are y, measurable.
Then, an approximating model for the target and receiver equations

(4-26), (4-28) is presented by:

de(Ax"'Buo)dt‘PGGdl,

(4-30)
dy = (hg + kx) dt + a d wy ,

where k = (hy, hy), w, wy are independent Wiener processes, uy =
. (ugys “0y)’ the observer acceleration. The arguments (x;, xp, ¥, t),.
(y) are omitted. Also, the assumptions significantly provide that in
(4-30) x,, yy are conditionally Gaussian. Hence, from (2-12), (see
Chapter 2-Section 2-3), the recursive formlas for X, (the

conditional mean), and ry (the condfitional covariance) are:

s S -
dg,, (AR + Buo) dt + 2 [dy - (hy + k%, ) dt] ,
. (a-31)
* * *
dr, = (Art+rtA +G6 =-S5 ) dt,
rtn'
S = -

where s, M= [hl, hz, 0, 0] .
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The recursive formulas in (4-31) will completely characterize the
filter equations fif hgs hy, hy are obtained. Now, using the
following mean-square criterion:

Ju) = E(IIF - FI1D) . (4-32)

Now, from (4-28), (4-30) equation (4-32) can be written as

J(u) = E ((H - (hy + kx)(H = (hy + x" &)}

= £ {ER(H?) + ng? + kE® (xx") K" - 2ng EP(H)

+ hy ket(x) + hoEt(x*) k¥ - EYHx") k¥ - KEt(Hx)} ,

(4-33)
where again €t () 1 the conditional expectation operator.
Let
as Et(xx*) p'l,
b = p-1,
c = eb(x") p'l, (4-34)
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d = EYH")-(EY(H))2- EY(x™) EV(Hx™) EB(H) + EY(x) EC(Hx) EP(H)
€bx") Ebx) - Ebx) ERxMERMIZ Pl
e = Mg + k E(x) - ESH)
¢ = hy Ebx™) + k ES(xx™) - E(ix").
Here P is a 2x2 positive definite matrix.
Now, (4-33) can be written, using (4-34), as

E {(a eoeo* +b elel*- c eoel*- eleo*c* +d)} . (4-35)

Since ab > c*c, then the minimization of (4-35) requires that ¢g = 0,

e = 0. Thus, °

ho = EXH) - %™y - EfmENT Pl eV
(4-36)
k= CESHX™) - Eb0n) ES(x™)Y p7L = Ongumpd

Hence, from (4-36), (4-29) becomes

A (xgaxpey,t) = ESH) + (E8x") - et ety (et ix))
(4-37)
To evaluate the conditional-expectation terms 1in (3-35), the

following approximation, (see (2-13), (2-14)), can be used.

e

e r—
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Let f denote either of the functions (H, Hx*), then,

EY(F) = [ FlEy,t) do (R, T, 80z f (K y, T, ),
R
(4-38)
where d ¢ (it, r, E) 1is a differential Gaussian measure as defined

in (2-14). Thus, using (4-38), (2-14)

EYH) = J [ arctan (o1) L Exp - 0.5 [(x-%)"T"L(x-R)] dx,dx
- X BTl 0T 172
(4-39)

EfHx") = [E%(x), ES(Hx,)] .. (4-40)

) ®» ® X
Eb(x,) = Y-LITTI'..I...{ x,arctan %Exp - 0.5 [(x=%)"r"! (x-%)] dx,dx ,

(4-41)

® o : X
II I %, arctan(-L)Exp - 0.5 [(x-%)" r~(x-%)] dx,dx,.

t 1
E (HXZ) il s ow %

twan
But, analytical evaluation of (4-39), (4-41) {s very difficult.
Thus, the following approximation scheme {is used, where the arctan
function s first expanded by Taylor series for a function of two
variables, then find the conditional expectation for each terms using

equation (4-38), (2-14). Thus, using the Taylor series expansion up
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to the fourth term (n=4), and utilizing (4-38), (2-14), Lemma B2
(Appendix B), (4-39) becomes

(£1%,(r 5T 1) + T p(R, % £,2)
Z

t X1 X1
arctan —J] = arctan(-=) +

X -
2 xz a

+ [3r,y (2,4 + %, - 6 %2 2,20, -r,) (4-42)

- o2 a2 2 2 2 4
+ xlxz(x2 Xy )(3r1 +3r2 - 6(r1r2+ ary, ))V/a

where a = (ilz + izz).
Also (4-41) becomes
E¥(x,arctan :lq = X Et(arctan xl) + A, +B, +C,l 2 3
e = N L7 TS U S W
(4-43-a)

=2 =
MURSRITESRATR Tl PRN

4 B



X X
Et(x, arctan_;%) = 2 (arctan ;%4 + Ay + By + Cy )2 Ky

- -2-
ML RPRSTRIRAT R TN

where

A = —T » Ay 3

2y g 3.3 3

Bl 3 ?

<2 .-2 -2
(x1 - 3x2 ) C = (3x1 - Xy

C1 * ""':;3""" i 2 """';3""' :

Therefore, from (4-42) and (4-43), (4-36) becomes

77

(4-43-b)

(4-43-c)

(4-43)

(4-44)




hz = d1 [kz rl - kl r12]n

where

- c 52
kp= DA+ B v Xy ryrgecyeCy Xy,

- < .2
kp =[Ry +B) +C 1y T3 +Cq +Cy % 140,

d; = [1/(ry 1y - rlzz)] ,
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Alt 81: clg CZ' C3 are defined in (4-43). But, in (4-31)

Ss= % [r, Mt , M= [hys byl

Then, from (4-44),

- 1 O

Ty *Thy 51

sl Faihy + T hy . |52
T3y * T3 hy 530°

T1ghy + T4 hy L’o,

Thus, from (4-45), the filter equations (4-31) become

dR, = (AR, +Bu) dt +3 (dy - EY(H) at) ,

(4-45)
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(4-46)
dry = (AT, +T A" + 66" - ss) dt ,
where S is given by (4-45), E(H) by (4-42), and A, 6, B by (4-26).
Here 'y is a 4x4 matrix, while X {is a 4xl vector.

4-3-¢

The corresponding EKF equations are

» -

- - Pt“ Xl
dﬁaﬂﬁ+ma“+:TJWmmmF«).
2 (4-47)
*
PN NP
* e Ut t
dPtﬂ(APt-"PtA + GG -——;z——)dt,
- -
- =2, =222
le (x1 *+ X, )
3 H, (x,t) = 2 ;=2 2.2
where N =|l—2t - - X 15X % x,7) ,
0
0
- .

and (A, B, G, o) are as defined in (4-26).
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4-3-d Simulation Results

The passive sonar problem described by equation (4-26), (4-28)
and the estimated algorithm by both TNF, EKF which have been
described by (4-46), (4-47) respectively, are simulated on the
digital computer.

To compare the estimator's performance, the following scenario
is devised. The target is at an initial range of 2700 yards, moves
at a constant speed of 675.13 yards/min., and maintains a steady
course of 0°. In addition, the initial bearing is 0°. Own-ship fis
assumed to be at the origin tnitially, maintains a constant speed of
954.63 yards/min., but periodically executed §0° course changes as

follows:

from 45° to -45° at t = (4 + 17%) [k = 0,1]

from -45° to 45° at t = (12.5 + 17k) [k = 0,1].

The own-ship course changes at the rate of 3%/second.

Numerous simulatfon tests were conducted for this problem using
different levels of measurement noises and initial conditions. But -
only representative sampling of the resuit: have been presented
here. These results are tabulated in Table 3 and are shown in
Figures (4-18) - (4-25) for additive, rms, measurement-noise levels
of 39, 129, respectively, and JJj, JJp are as defined in (4-22).

The initial state values were respectively
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x(0) = [0, 2700, - 675.13, 0] ,

while the estimates were {initialized according to the following

equation
£4(0) = x,(0) [1 + .01 nyl, 1 =1,2,3,4,

where n; is a random noise. The fnitial covariance matrix was
p(0) = diag [105, 105, 152, 152 .

Moreover, in all the simulation cases, system noises are added to the
velocity states (x3, x4) to compensate for random target-acceleration
fluctuations from the assumed constant-velocity trajectory (uyy = uyg
= 0).

For convenience, the time interval for each run is 20 minutes,
and the number of runs for each simulation test case is 10 runs.
Thus, all results have been ensemble averaged over 10 runs.

The relative range trajectory and its corresponding estimates by
both the TNF, EKF were simultaneously plotted in Figures (4-18) - (4-
19) for the rms-noise levels of 39, 129 respectively. And the
relative-velocity trajectory and its estimates were shown in Figures
(4-20), (4-21) respectively. Figures (4-22)-(4-23) showed the range
res-estimation errors (Qi(t), Qp(t)) associated with TNF, EKF

SN
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respectively and calculated in accordance to equation (4-23) for the
same noise levels as above. In addition, figures (4-24), (4-25)
showed the velocity rms estimation errors (VQ(t), VQp(t)) calculated
by equation (4-24) for TNF, EKF respectively.

Several comments can be drawn from Table 3 and Figures (4-18)
through (4-25). First, Figures (4-18) - (4-21) showed that state
estimates begin converging to their true values after own-ship
executes a maneuver relative to target motion.

Figures (4-19), (4-21), (4-23), (4-25) showed the effect of
increasing the measurements error to an rms value of 129, The EXF
performance is improved while the TNF performance is degraded a
Tittle, but still the TNF performs significantly better than the
EKF. The above conclusions are also demonstrated by Table 3.

Finally, it {s generally noted that the covariance becomes
smaller with decreasing range and grows as range increases. This was
typical in all of the simulation cases, and pointed out the
involvements of nonstationary processes. It is also, noteworthy to
point out that when own-ship does not maneuver at all, both filters
diverge (generating biased range estimates), but the EKF diverges
faster than the TNF.

In closing, the following remarks are perhaps in order:

(1) In general, the TNF rms errors are much smaller than their
corresponding EXF rms errors. This demonstrates that the TNF
is more effective than the EKF.

S e aas = ~ i -




(i)

(111)

(1v)
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Own-ship maneuvers relative to a constant-velocity target
enhaﬁce convergence. Thus own-ship maneuver or target maneuver
is essential to bearings only measurement analysis.

Computer utilization cost and storage requirements are almost
equal for both algorithms. Thus computation efficiency is not
a decisive factor in this application.

Finally, these results admittedly are not exhaustive. Thus,
more simulation tests are needed especially for the case when
the target 1{s maneuvering. Also, comparison (via digital
simulation) of the TNF with the MP (Modified Polar Coordinates)
filter developed by Adiala [A3] warrant further consideration.

PRI~ PR VT — B
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Synopsis of the Percentage Accuracy of TNF over EKF

1

1.0
1.0
1.0

1.0

313
10.91
32.37
78.60
91.42

Jd5%
35.57
57.14
90.03
98.85 7

(0= 2%, o= 10%, x;(0) = 5x10%m, x,(0) = 103 m/sec)

TABLE

4

The Effect of Measurement Errors on thePercentage

Accuracy of the TNF over the EKF

a

%1
o
3%
AR

3

2%

10%
91.42
98.03

3
10%
10%

11.0
17.47

3
20%
10%

-7.23
-16.13

(c=1.0, x5(0)=103 m/sec, x;(0)=5x10%m)

o




85

TABLE 3

Sgnopsis of the Percentage Accuracy of TNF Over
KF as a Function of the Measurement rms Error

o degree 20 30 69 129
313 32.35 38.48 36.84 13.69
A AP 98.21 97.92 98.71 98.88
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Figure 4-17

Geometric Configuration for Bearings-only Motion
Tracking

-




103

| INI'INL A8 SILYWILSI SLI GNY 3IINUY B81-+ JHNIIS

(FALMIK) WL
¥ + Ll L +- bk & +— b 4 Lok ~—t 27 wos

ﬁ

L I WX,

‘1 INL wAw
Aa0309fea) |eay wn

E._\E»S.mz. Mcw>
spaek 0022 = (0)Y
ot =0

SU0E3puo) (ej3pu L wwn

SCWVA ISNW




e ——— e

— e

S TR T T —

B R e

o ——— L

. o =,

104

AM3°4INL A8 SILIUWILSI SLII ONY 3I9NYY GI-b IFHNII S

(SILMIN) WN1L
Ly ¥ R wp . "zt R il 4 — -t N bod 4
1

L INT W Xa
‘1 dNL WA
A40303fea) (e3Y ..

9ot

"wNce

0°ws

_f »wLz

WA JONWY

[ & 1Y

009NNt

a.a 2

Up/Spak E1°G/94 = :ww>
spaek 00L2 = (0)d

ONﬂ =0

SUot3jpuo) eg3tug

- 0N

i IR




105

IMIINL A8 SILUWILSI SLII GNY ALIDO0T13A 0Z2-b 3¥N9IS

(SALONIN) 3NH1D
't R wpt 4 w N Lud 4 ' w +— 22 sz
esc
‘L oANT WX, wes
: ‘1 INL wAu
Aa0323feu) (eay O»
ujw/pak €1°GL9 = Mow>
Sp4£ 0022 = (0)y | wreee
Oﬂ =0
SUoj3tpuo) (ep3ju]
F L es-osy
sesseeesevsiesiiso. od * --mmm-.-
wmeL
e - ot N

MD/O0MA) ALI30TIA




e e = -+ ¢ gy

P et A

106

O

R e ey -

MI'INL A8 SILUWILST SLI OGNY ALID013A 12—+ 3FuN9IA
(BALANIN) D13
"w . ey . ep 0w |, 0w L
4
{1 wos
‘L N3 WX,
"L “INL b Gl
Ka0339(ex) (eay win m
ULw/Spak €1°G/9+ = Mow., m
spaef 002 = (0)y L wws
ON— = D
SUOL3IpPUC) |eiIju] i
$ o
— /
- .
4 X
3
0nwe




107

DIFINL A8 SHOHNI SWY 39NUY 22-F 3UNOLd

(SAAAMIN) W13
e + L LI wp 0 + s + hod
AN
\
(\_
/ 1_
v, 4 .:
(O
{ T,
W
45 1
upu/pdk €1°GL9 = owl"
o)

spak 002 = (0}
€ =0

SU0|3|PU0) _m_:sw

|
i
|
|
__

0"




P e o SR

[T AP

e AT AN 5

108

S WL S

INIINL A8 SHONYI SWY 3INUY £2-b 3IHUNOI4

(SRLONIN) 1L
e, wp  , wp ey, Wy e
[ g
[ ]
A ,
_:_ \y wezs
—2_ -—..v\aa f wess
RN “ \\ oz
M \‘ "o h BY |
rnf v &s / \ ﬁ--.--«
!
1 DI W Bebiit
..—. n_z.h :D.. \ﬁ g [ 2 g
I ]
/ [
uw/spah £1°G/9+ = Mow> i
spaek 002 = (O)d o
02l = D (
SUOJILpU0) (Ry3ju] w,..s.




109

ANICINL A8 SHOHYI SWY ALID0T13A b2-b FUNOIA

. R (SALMIN) BNDL |
wWwe ,  wp |, wp L, wy L, w L, M.
ég}\%o‘xftgi
b | [
: [ a1
n.
g N
-l ., h ﬁ
I
~_ K dd
|
g
I n
% 0w
LM WXy
‘1 INL nbn f
upw/pak €1°G£9 = Sw>  wee
sp4f 0042 = (0)Y
OM = 0 |
SUoLIIpuo) Leg3iug
1L e

B

——

WOMME ¢ ALIS0IA

4

o maz




110

T e — o —

M3I'INL A8 SHOHYI SWY ALIDO13A SZ2-F 3¥NILS

(gainNIN) BiIL
npz . w'st o wgt . n'p - "y R L) J
I
! I
; /
I #

‘L ANL wda
"L NI wXe

uiw/spak €1°6/9+ = (0)A
spaefk 002 = (0)Y
ocl =0

SUOL3|pU) [B3}U]

YOG W ALI20TIA




111

Chapter 5
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5. SUMMARY AND CONCLUSION

In this research an original nonlinear filter approximation is
developed for a class of nonlinear systems. The need for such a
filter which does not suffer from the shortcomings of most of the
linearization techniques, such as model smoothness, is encountered
frequently in many industrial, sonar, economic, and image-processing
applications. Obviously, the design of a filter which has improved
performance, without stringent requirements, and which is employed
with comparable implementation cost to the traditional techniques,
would be a very significant achievement. This has been the major

design goal of the work presented herein.

5-1 Significant Features of the New Filter

The effort was devoted to the development of a new finite-
dimensional filtering approximation to the typical infinite-
dimensional-nonlinear filtering problem. As a result of this effort,
new features were developed, and a modest contribution to nonlinear-
filtering approximation theory was achieved. Among these are the
following:

1) Weaker assumptions are required to derive the filter even as the
solution is assumed to be a weak solution.
2) Impeding generation of a “close”, (in m.s.e), bilinear, feedback-

control-mode? approximation to the original nonlinear system.




3)

5)

6)
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This has an impact on nonlinear approximation theory, since it
provides formal approximation procedures with flexibilfty
embedded. That is due to the fact that the appproximating
parameters are functionals of the feedback control U, which
provides some control and insight into the structure of the
approximating model.

The feedback coupling in the filter-covariance equations enhances
the stability of the filter. In all of the 1linearization
techniques only forward coupling occurs in the filter equations
and that in essence helps to destablize the filter due to error
accummulation.

An important feature of the new filter is the “global" property
which allows the filter to be independent of the local-time
discretization, and thus decreases the noise aggravation.

A new "decomposition scheme" is developed for a certain class of
large-scale nonlinear systems. This results in great
mathematical simplification 1in the development of global
nonlinear multi-dimensional filter.

This filter provides an aiternative formal approach to certain
traditional techniques, (such as MSOF [J1], and "the Smoothness
in Probability Filter ([K4]), for certain nonlinear systems even
though the approaching method is quite different.
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5-2 Future Area of Research

The following five main areas warrant further study:

1) The development of an equivalent filtering algorithm for the case
when the observation process is discrete. This is specifically
important in sonar applications since observations may be

l received as batches it random times. The following cases are of

most interest:

a) the observation {s discrete but random;

b) both the observation and the system processes are discrete
and random.

2) Investigation of a general “Decomposition Scheme" to extend the
applicability of the new filter to a broad class of nonlinear
systems. The use of a hierarchical optimality scheme s
promising.

3) Computer utilization 1s an 1{issue that should be more fully
explored. Thus, development of a standard software package for

t the TNF algorithm would make the filter quite attractive to

practical applications. Furthermore, i{ncorporation of the

microprocessor would increase the economical feasibility of the

filter.
4) The need for further testing and comparison with other existing
techniques to establish filter superiority in most cases, and to

enhance its reliability.
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5) Investigation of the use of “adaptive™ techniques to surmount the
difficulty of tracking successfully an evasive maneuvering
target, which is a typical and important subject in sonar
applications. The following techniques are promising:

a) use of an additive control that can be estimated separately
using the separation principle for stochastic conditionally
Gaussian systems [K1];

b) use a feedback scheme to correct for the target deviation

from its constant trajectory due to maneuvering.

5-3 Conclusion

This dissertation has examined and expanded the subject of
nonlinear-filtering approximation. A new global-fiitering approxi-
mation procedure has been developed with a particular emphasis on non
Gaussian processes. An {important practical feature of the proposed
method 1is the method's 1{ndependence of the model smoothness
assumption which is crucfal to traditional techniques. Furthermore,
a2 major and equally fimportant byproduct is the generatfon of a
“closed® (in the mean-square-error sense) bﬁinear mode!
approximation of the original nonlinear system.

The estimation method developed herein has been applied
specifically to practical problems to demonstrate its effectiveness
and applicability to a variety of a certain class of nonlinear

systems. In fact, the degree of ease or difficulty in extending its

e .y T
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applicability to general multi-dimensional nonlinear systems is
directly related to the ease or difficulty in calculating the
multiplicative feedback control-laws, and accordingly in evaluating
the required conditional expectation of the nonlinear terms. This is
often proven to be difficult, especially for large-scale nonlinear
systems. However, for low-order nonlinear systems, this difficulty
has been surmounted by a novel decomposition scheme. This scheme
alleviates the control problem calculation, and permits a reduction
of the multi-dimensional integrations associated with evaluation of
the condftional expectation expressions to only a single integration
which can then be evaluated analytically. It is noteworthy to point
j out that a similar approach which is developed in [K3] and has been
used in the second example, does not require any control-law

calculation but has no global filtering properties either. However,

the method requires evaluation of the conditional expectations with
corresponding mul ti-dimensional integrations.
A fundamental limitation imposed on the new approach was the
: conditionally-Gaussian assumption of xy given yj. This restriction
1s very basfc, because the filtering techniques herein are completely
dependent on the choice of the statistical model for the underlying
random processes. However, as pointed out earlier, this assumption
sometimes may be satisfied under realistic operating conditions,
and, of course, it is more general than the traditional Gaussian

assumption of both x, and ye.
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The digital-computer simulation clearly demonstrates the
efficiency and filtering accuracy improvement of the TNF over the
popular EKF. Thus, the apparent complexity of the algorithm and the
slight increase in computation cost might be justified by the
significant improvement in the filter performance. But, no claim has
been made that this filter is superior to all other existing
techniques in all cases. That certainly warrants further
{nvestigation.

Finally, the methodological formulation developed in this work
is intended to generate further interest and insight into the design
of a future filter for general nonlinear systems. Moreover, it f{s
hoped also, that this filter's potential, as an effective filtering
algorithm for a nonlinear system, should be fully explored by

practical applicat'ion to coomunication and tracking.
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APPENDIX A

WIENER-PROCESS FORMULATION AND WHITE-NOISE FORMULATION EQUIVALENCE
Theorem Al Levy (L1, Thm 4.1, pp.82) defines a Wiener process as
follows:

Let (a,F,p) be a probability space and (F,), tc[0,T] be a
nondecreasing family of sub-g-algebras of F. The random process
(wy,Fe), tc[0,T], is called a Wiener process if
(1) the trajectories Wes te[0,T] are Gaussian, continuous (p.a.s.)

on (0,71,

(11) wy, te[0,T] is a square-integrable martingale [A4] with wy=0,

p.a.s. and E[('t""s)(”t"s)*]'(s“”’ t>s

Thus, any Wiener process is a Brownian motion process [L11,(A4].

Definition A1[A4]
A sequence of quadratic mean square continuous [xt"]. te[-w,e]
1s said to converge to a white noise if for each function f(t), g(t),

( [ If (t)ldtm), there exists a positive constant Sy, i.e.

Vmit € ([ ] ) ols) x"x"dt ds) =5, [ f(t) g(t) dt.
e -9 -8 -

As pointed out earlfer, a stochastic differential equation with
an additive, exciting, white-Gaussian noise is given by

————— -
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Here, 8¢ is a white noise, and is thus nefther mean square Riemann
integrable nor integrable with probability one. Hence equation (A-1)
{s not mathematically meaningful as it stands. However, if the white
noise s as defined in (Al) and is considered as the formal
derivative of the Wiener process (wy, teT), (Thm.Al), then (A-1) may
be considered formally equivalent to

dx, = f(xt.t)dt + G(xt,t)dwt, teT. (A-2)

t
At least formally it is known that (f) Btds has all the properties of

Brownian motion, w,. Hence, (A-1) can be made meaningful in terms of

a stochastic integral equation [D2].
T T
Xy® Xg +{) fxg,s)ds + {) G(xg,s)dw, (A-3)

The last integral in (A-3) is interpreted as a stochastic integral
which needs to be defined. Since, as it may be recalled, wy has a

realization of unbounded variation in any small interval of time, the
last-integral camnot be defined in the usual Lebesque-Stieltjes
sense. One generally accepted definition {is due to Ito [L1] and is
often referred to as an Ito stochastic integral, and (A-2) is cailed
the Ito stochastic differential equatfon interpreted in terms of the
Ito calculus [A4] which 1s not compatible with results of ordinary
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calculus. Accordingly, the following definition is appropriate.

Definftion A2 [L1], [K1].
A process x, is said to satisfy (A-2) for te[0,T], with initial

state xq if

(1) for anl t[0,T], ItG(xs,s)dws can be interpreted as a
stochastic integral, 0

(11) for all te[0,T], xo is almost surely equal to the random

variadble
t t
Xq* 6 f(xs,s)ds + é G(xs,s)dns.

Under certafn conditions imposed on xg,f,6 [L1], (A-2) has a unique,
strong/weak, sample-continuous, Markov solution. The strong-solution

notion {s defined as follows

Definition A3 [L1]
For a_given complete probability space, (2,z,p), and a Wiener
process w,, the stochastic differential equation (A-2) has a strong

solution Xy if:

t
1) P(é Hf(x,,t) | [dtem) = 1 (A-4)
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.
2) P( {’ IIG(xt.t)llz dtw) = 1 (A-5)

3) Condition (if) of Definition A2 is satisfied. (A-6)
X w
That implies that C,'<€¢g," ,

where ctx' c-algebra [x; O¢sct],

ct' = g-algrebra [w_; O¢s<tl.

b The weak solution notion is defined as:

Definition A4 [L1].
Let F(a) = P{nga), probability measure for n random variables. ;
If there exist (2,;,p), X, p-a.s. continuous, conditions (A-4), (A-
5), (A-6) are satisfied, and F(a = P(xg¢ag). Then x, is a weak ‘
solution to (A-2) which impiies ¢, *> ", and g%, ¢, as defined
previously.
It {is noteworthy to point out that the use of Ito calculus,
which led to the definition of the Ito finteg-a! étﬁ(xs.s)dws in
equation (A-3), results in adding a correction term to the result of 1

the ordinary differentiation rules when stochastic process is

differentiated. This will help in transforming the differential dxy

as in equation (A-2), into a form that can hopefully be recognized as

[
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the differential of a known function. For example, consider the

following stochastic differential equation.
dx = xdw, (A-7)

with fnitial conditions x(0) = 1, w(0) = 0, and E(dw(t)?) = dt.
Using ordinary integration rules or Stratonovich rule, the analytical

solution is

x(t) = Exp w(t) . (A-8)
However, using Ito integral, the solution is

x(t) = Exp [w(t) - 0.5t], : (A-9)

which s actually’ the integral of the following stochastic
differential equation

dx = x dw + 0.5 x (dw)2, (A-10)
where (du)2 = dt.

The last term in equation (A-10) is what is referred to as the
correction term. Thus, the addition of the correction term to
equatfon (A-7) will make it compatible with ordinary rules of
differentiation and integration.

In simulating equation (A-3) or its differential equivalence
(equation (A-2)) specfal care must be given to the simulation of the

USSP
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term [B(xg,s)dwg because (dw) is highly uncorrelated. Thus, it fis
difficult to find an appropriate integration step-size at. However,
the following approximation scheme is appropriate.

Let R be the maximum rate of change and defined as

2
[F(x,t)] , G5(x,t)
R = e 1. (A-11)
Rt Lremrt T2

Now let &t<<k , E (dw)2 at.
Then, equation (A-2) or equation (A-3) can “2 integrated using
digital computer as follows

Mea1® X At Flxe, ) + aw Glx,, t)

(A-12)
aG(xk,tk)

) ———.

+ 0.5 at G(xk, tk X

Hence, the last term in equation (A-12) is the correction term which
is essential for the simulatfon of the Ito differential or (integral)
equation by digital-computer.

Let us return for a moment to equation (A-3) and try to find
some physical 1interpretation to it. If x(t) is the state of a
dynamical system, then the terms on the right-hand side of equation
(A-3) can have a nice {interpretation. The term x5 fs Just the
initial condition. The first integral describes the evolution of the
component of the state with time. The second integral can be
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considered as the irregular component, which is entirely due to
noise. Furthermore, it is well known, (using practical engineering
assumptions) that any continuous noise can be regarded as a smooth
transformation of a standard Wiener process. Unfortunately, the
standard Wiener process is not differentiable with respect to time,
hence no such dw exists. Thus, only the stochastic integral as in
equation (A-3) is available for modeling real systems. However, as
pointed out earlier, if the white Gaussian nofse is considered as a
formal derivative of the Wiener process then the stochastic
differential equations (A-1), (A-2) would have a particular appeal to
engineering applications. Furthermore, the white-noise concept
allows us to manipulate the Wiener integral (which is a special case
of the Ito integral, if certain conditions about the function G(xg,s)
are satisfied i.e. G(xg,s) is square integrable) as an ordinary
integral but not in the same sense as the Stieltjes integral is
defined. It also allows a suitable mathematically tractable model
for many continuous physical noises encountered in real engineering
systems.

Now that equations (A-1), (A-2) and (A-3) have been presented
formally, let us dfiscuss brifefly the use of such equations fin
modeling real physical processes if they are going to be of any
practical value. As it is known in many practical problems both in
control and communications, dffferential equations arise from the

laws of nature, but it 1s not advisable to take derivatives of

oA e n
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certain signals. Thus, it is appropriate to model these signals by
so-called stochastic differential equations. In addition, almost any
mathematical model of a physical process involves a degree of
idealization that produces a good match with reality only within
certain ranges of the parameters involved. Thus, the result of such
2 modeling can be Jjudged only by comparison with practical
experiments within the prescribed ranges of the parameters
involved. For example, the erratic motion of a particle or point
mass submerged in a fluid caused by impact of the molecules of the

1iquid on the particle. The force acting on the particle can be

‘ approximated by

~ax(t) + 8 up(t). ' (A-13)

where x(t) denotes a posftion of the velocity of the particle at time
t. Here, the first term in (A-13) represents friction or drag, while
the second represents the push imparted upon the particle by some
projecting force which is random in nature. If the process u,(t) is

replaced by white Gaussian noise Ne. Then the motion of the particle

can be approximated by

e el e

x(t) + g x(t) =% n, 0. (A-14)

Here m is the mass of the particle, and &(t) {s the acceleration.

! Hence we arrived at the famous Langevin equation. Thus, the velocity

— o———
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coordinate, (with certain assumptions about the initial conditions),
will be an Ornstein-Uhlenbeck process which can be obtained as the
solution of the stochastic equation

dxt = -axt + Cﬁlt, (A-ls)

where wy is a Wiener process and a,c are positive constants.

The relevance of the model (A-14) or equivalently (A-15) can now
be tested, for example, by observing to motion of the particlie and
deciding whether the statistic, (mean, variance), of the displace-
ments of the particle can be described as a white Gaussian noise.

The practical implementation of the concept of weak/strong

i solutions depends in large on the particular application at hand, and
| the system modeling approach. A strong solution usually deals with a
“given" Wiener process as a model for a wide spectrum random noise,
while a weak solution is based on the promise that there exists a
Wiener process which can be used as such a model. Thus, f{f the
physical properties of a given problem specifies 'the probability
space (a,z,p), the system's possible outcome event set(gy), te[0,T1,

and the Wiener process w = ("t’ then the strong solution approach is

appropriate. On the other hand, if the physical nature of the :
s problem does not specify the complete probability space (a,z,p),
) then, the weak solution approach might be more suitable as a modeling

approach. Thus, we may construct a pmbclgi'lfty space (a,z,p), a

system (gy), te[0,7], and a Wiener process w=(w;), for which (A-5)-

(A-6) are satisfied (p.a.s.), to satisfy the modeling purpose.
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APPENDIX B

AUXILIARY RESULTS

Lemma Bl [D2]

Let [xt"] and [y,"] be two jointly normal processes and let
¢ - Then, the
conditional characteristic function, (for the vector case),

E(x/yg) = X = P Yy, the projection of x onto H

n on
!x/y(w) = Exp[jwX, - 0.5‘!.:1 jzlwiwju”]. (B-1)

where ws (“l,uz,o.own).

X, = (%), X,...% ) , the conditional expectation,

= *,

Ugg® Uyt E((x,- xi)(xj-ij) Iyg: s4t),
the conditonal covariance.
The proof is an extensfon of the proof given in [D2, pp. 53] for the
scalar case, and is omitted for brevity.
Lemma B2, (P2, pp. 146]

Let [x4], 1=1,2,...n be Jointly normal processes with the

conditional characteristic function ¥, /y(v‘:) as given in Lemma B2.
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| Then, the conditonal expectation of order r = k; + kp +...k,, 1s

JEL(xyseeuxy fygs s6t)] = —p e .

1 -
awl awz eee 'R 'n 0

(B-2)

The proof is parallel to the proof given in [P2] using the above two

lemmas; the following results are noted;

Elxy x%5/y 5 sst) = RjUpat Kol gt Xauy ot R RoRy (B-13)

Elx)XpX3Xg/y g5 S€T) = ugaliggt Uyqliogt Upgupst X Xligy

* Ry R3Upgt R Repat RpRauy 0+

r——————— A e g me

.
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Elx;XpX3xgXg/¥gi $6t) = Ry RoRaR Ret X [Upqupet Upquzgt Upglizy)

+ Xplugqugst ugquzs* U gu3el + X3luygupg + Upslyy

+ upoups] + Ryluyouagt Uy3Ung* UygUnsl

+ X5uppUset uy3upy Uy 4Up3]

. + R XRquggt KyXokquagt X KoXgusy

+ KpXgRpug e+ KpRakouy o+ XaXgXouy o

+ X XgRgupat XyXakguogt XpXgXguyy

Kl

Here ug4= E{ (x, 'ii’("j'iﬁ )*/y,; s¢t)} = the condition covariance,

e ———






