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ABSTRACT

This Semiannual Technical Summary covers the

period 1 April 1982 through 30 September 1982.

It describes the significant results of the

Lincoln Laboratory Multi-Dimensional Signal

"Processing Research Program sponsored by the Rome

Air Development Center, in the areas of target

detection, adaptive contrast enhancement, and

image processing architectures.
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I A. INTRODUCTION AND SUMMARY

The Lincoln Laboratory Multi-Dimensional Signal Processing Research

Program was initiated in FY80 as a research effort directed toward the

development and understanding of the theory of digital processing of multi-

dimensional signals and its application to real-time image processing and

analysis. 'A specific long-range application i3 the automated processing of

aerial reconnaissance imagery. Current research projects that support this

long-range goal are image modeling for segmentation, classification and

target detection; techniques for adaptive contrast enhancement; and multi-

processor architecture to implement image processing algorithms.

This Semiannual Technical Summary discusses results in three areas. In

Section 2 we present a detailed, technical description of our efforts in

target detection. The problem is formulated as a significance test to

determine whether a small region contains one or more pixe's (picture

elements) that do not match the measured statistical properties of the

background. Examples are shown in which the resulting detection algorithms

are applied to aerial reconnaissance photographs.

Section 3 contains program documentation information for the adaptive

contrast enhancement software delivered to RADC/IRRE earlier this year. It

includes a description of all the program modes, parameters, and user

interaction as well as the typescript from a sample run.

In Section 4 we discuss our latest thoughts on a multi-processor

architecture for image processing applications. Attention is focused on the

architectural requirements for a single nodal processor. (A. currently

planned, the multi-processor will consist of 16 such nodal processors.) The

architectural study is by no means complete, but we have investigated several

architectural principles that appear to support the goals of high

computational throughput and ease of programming. In FY83, we plan to

continue in this vein, refining the architecture and de',eloping an

instruction set for the nodal processors.
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2. TARGET DETECTION BY TWO-DIMENSIONAL LINEAR PREDICTION

2.1 Introduction

This research relates to the problem of detecting targets (i.e.,

anomolous areas) in aerial photographs. We define the target detection

problem as the detection of man-made objects in a textured background (e.g.,

trees, grass, fields).

In a previous Semiannual Technical Summary (11, we developed a target

detection algorithm based on the coefficient change function (CCF). We

looked for changes in the parameters of a continuously varying autoregressive

model of aerial photographs. We hypothesized, however, that the two-

dimensional (2-D) prediction error may provide a significant improvement over

this CCF algorithm.

In this section, we develop such an algorithm and provide a rigorous

theoretical basis for it in terms of significance testing t2l. Our detection

algorithm is derived from the fact that significance testing can be expressed

in terms of the error residuals of 2-D linear prediction, We first develop

the algorithm under A stationary Gaussian assumption and then proceed to

generalize it for the case where the background is nonstationary. This more

general test involves determining the error residuals from an optimal apace-

varying predictor. The error residuals are combined over a small aresa,

suitably normalized and, finally, compared to a threshold, Since a causal

2-D prediction filter is aasociated with our significance test, w can

interpret this *s modeling the background by a 2-D causal space-varying

autoregressive random process. Ile parameters of this autoregresaive model,

therefore, need to be estimated from the background.

Our detection algorithm (as we shall demonstrate with examples) has been

applied successfully to both synthetic images and actual reconnaissance

photographs obtained ftom the Rome Air Force Development Center (RADC).

3
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2.2 Significance Testing

The problem of target detection in images is finding small areas in an
image whose statistical properties do not match those of the surrounding area

or background. Since the target statistics are generally unknown (it is
desired to detect broad classes of targets), and the background statistics

may be known or can be estimated, the problem is inherently different from a
classic detection or classification problem. Essentially, the only question

that can be asked is "Does a set of pixels under examination represent
background or does it represent something else?" The area of statistics that

addresses such questions is called significance testing 121. The basic idea
is illustrated in Figure 2-1. A measurement is made of some random

phenomenon characterized by probabilicy density p(x). Critical regions
(i.e., regions of low probability) are chosen corre3ponding to unlikely

events. If measurements fall in the critical region, we reject the
hypothesis that the measurements really belong to the density p(x).

Fig. 2-1. Illustration of significance testing.
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In our case, the probability density is that of the background. If a

set of measurements falls in the critical region, we reject the hypothesis

that the pixels form a part of the background; that is, we decide that they

represent (at least partly) a target. The significance level of the test is

determined by the probability of events in the critical region. For example,

if this probability is .05, then the significance test is at the 5% level.

The reasoning involved in the significance test may seem indirect.

However, since only the background has known or estimable statistics, this is

a logical line of reasoning to take.

2.2.1 Formulation

Given an image and small region S at (nm), let the image points in S

(see Figure 2-2) be denoted by

• x~2",x} (I)

We want to decide whether the points in S corresponds to a homogeneous random

field with probability density p(x) (i.e., S contains just background) or

whether S contains something other than the homogeneous random field (object

possibly present). We want to do thii for all (n,m).

Let the background correspond to a stationary Gaussian random process

with mean m E-x) and covariance K*Etx-m)(x-m) T. Then

exp -1t- 1(X-) T -1 (2)
(21) iKI

We shall plot the probability density function and determine a critical

region of small probability (a) which is the level of significance (see

Figure 2-3). Let H0 be the hypothesis that the points in S correspond to the

homogeneous random field. Then we accept 110 (decide "background only") it

the points in S do not fall in the critical region. Otherwise, we reject R0

(decide "more than just background"). Thi.. is repeated for every (n,m).



i Fig. 2-2. image and small region S.
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Fig. 2-3. Gaussian probability density vith critical region C.
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A criL'ical region C can be defined by p(x)<I. The relation between I

and the level of significance a is

fp(_x)dx - a

(3)

Taking the logarithm of p(x)<X, our significance test becomes:

(x-M) K (x-w) > -tn(2w) IKI-2ini (4)

Suppose that we wish to maintain a constant level of significance

regardless of the background statistics (i.e., regardless of the covariance

K). This is equivalent to enforcing a constant false alarm rate. To do this

we will find the particular form that X mast take as we vary K. We

investigate the I-D case; the N-D case is more complicated and is given in

the appendix.

Let the denaity function of the zeto-mean random variable x take the

form

p(x) -
(exp -212025)

Then the boundaries, Ix. . of our critical region are given by p(-±x) A.

Fror Equation 5 it follows that

x - ( 22o2 I(IZ o A))1/ 2  (6)
0

The level of significance in this case is given by

I2-• __ exp [-a 2/20 2] a (7

212a
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Now, let u'x/o, so that

2 / . exp [-u /21du - a (8)

For a constant u, we must have (from Equations 6 and 8):

xo/a - (-2Zn(2/i oX))1/2 . C
0

where C is a constant. Therefore, X must vary as

C
pil- (0o

That is, X must vary inversely as the standard deviation to guarantee a level

of significance that does not vary with the background statistics.

Evaluating Equation 4 for the 1-D case where K=IKI"o 2

(x-M) 2/2 /2 -Ln(2ao 2)-2LIA

> - Ln(2v2 C /22o1)

> - LOC2 - C' (II)

where C' is a constant threshold. Thus, in the I-D case, our significance

test involves comparing the squared random variable (with mean removed and

appropriately normalized) to a constant threshold.

More generally, we can show that for a constant level of aignificance,

in the N-D case (see appeadix), X =mat vary As

" C/(2") N/2 I 1/2 (12)

Thus, Equation 4 becomes:

(x-m) TK - (x-.)>C' (13)

!.,



2.2.2 Relationship of Significance Testing with Linear Prediction

We will now show that the significance test of the previous section can

be expressed in terms of the error residuals by optimally predicting each

sample of our small region S by a linear combination of its "past" samples

("past" is defined below).

Our connection can be made because the background covariance matrix K

can be uniquely factored in terms of upper and lower triangular and a

diagonal matrix [3]. Let

* T
K - LDL (14)

where L is lower triangular with ones along its diagonal, where D is a

diagonal matrix, and where T denotes transpose. Substituting Equation 14

into 13, we have

T- x~mTL-TD-IL-~•
(x-_M) TK- (x--m) - (x-m) T(LDL T) (x-m)

T

- eTD-1 C I

e D e > C' (15a)

where

'•e - L-lxm) (15b)

It is straightforward to show that since L is lower triangular with a
-1

unit diagonal, L has the same property, and thus Equation 15t represents a

causal transformation of the vector x [3]. Furthermore, it can be shown

[31 that each row of L represents the coefficients required in optimally

Spredicting an element of x, xa from its previous values, i.e., from a linear

combinatit.n of x .. ,x. Since the covariance matrix K is that of the
-n -

- "ackground, the co-efficients of L correspond to optimal prediction of the
background and not target areas. This prediction concept is illustrated in

9



Figure 2-4, where we are predicting the middle pixel of a 3 x 5 -egion S from

12 of its neighboring values. An element ekof e in Equation 15b is given by

k

ek 1(-•,I) • .- (16)

L xkJ 'ikJ

where !k is the vector of coefficients for optimally predicting xk from the
2k

values x,...XkI. The diagonal elements of D are given by a -k var (ek)

Note that the ek's are uncorrelated, i.e., they form a white process (31 when
the pixels being predicted (and duing the prediction) are background pixels.

1123368 NJ

;. .:.-, ,:-..:,:.-. ..... ..... .., , , ,' : ;. X
k 1

Fig. 2-4. Prediction of xk from its previous values xl,..,XkI.

10



As illustrated in Figure 2-4, the mask required in predicting each

eleement xk of S is a growing nonsymmetric half-plane mask [4]. Suppose that

the background happens to be governed by such a pixel relationship, i.e., we
shall assume that the background random field follows an autoregressive

process of the form:

x(n,m) = a(j,k)x(n-j,ur-k) + w(n,m) (17)
(j,k)>(O,O)

where w(n,m) is white Gaussian noise and where (kPII) < (k 2,9.X2 ) denotes thai

(klsl) is in the "past" of (k 2,12 -). For any point (s,L), we define the past

to be the set of points [5]:

((k,0)Ikas, LQ<; k<s, k eo} (18)

With a 90" rotation of coordinates, the values of S used in predicting xk

can then be those elements in S that are in the now formally defined past of

xk. For our purposes, we shall refer Lo the model of Equation 17 as a causal

model, i.e., each x(n,m) is a function of its past. Note that this notion of

causality is tied to the shape of the nonsymrsetric prediction mask of Fig-

%ire 2-4.

Let us suppose -hat. the background follows an autoregressive model of

finite order. For example, let the background follow a first-quadrant causal

autoregressive model. Then, except for certein boundary elements, each

element of e k in Equation 1b consists of the error in predicting each pixel

of S from its first quadrant neighbors (in a 90" rotated coordinate system).

Tbis is illustrated in Figure 2-5 where, except for the L-shaped boundary,

the fixed-order prediction error equals ek, That is, the remaining

coefficients of the growing nonsymmetric half-plane mask of Figure 2-4 are

zero and thus do not affect the prediction. Generally, the background random

field can be modeled by a causal autoregressive process of sufficiently large

order (41, and this model corresponds to the optimal linear prediction from

past values of the 2-D random field.
* 4



7 29[N BOUNDARY
ELEMENTS

Fig. 2-5. Representati~on of fi~rst-quadranL fixed-order predictor.

Returning to our Signifi~ance test, from Equation 15a,

mN

T D le V k (9

2
where a, is the prceict-.ovt error variance associated with predicting a

background vAlue x~
2 k*2

Although ek and -j rise from a growing predic~.or using only the samples

within region S, thoy can~ be approximated by tne residuals and variances

associated with a fixed-rdee r linear prcd.tor where samples both inside and

Rutside S are used iu ste prediction. tn this fotE lation, since the

22

background is assumed st=>ionart, a in ()uation 19 id constant over the

k'l o

sumat ion index. iThus, an appioxrmate signiLcance test can be writtein as2 22



'T

1 N e > constant (20)

ok-I

where ek is the prediction error based on a fixed-order predictor and where
2 2

a =0k

2.3 The Nonstationary Problem

The above detection algorithm depends on knowledge of stationary

background statistics. The significance test described in the previous

section uses a stationary Gaussian assumption where the covariance matrix K

is the same at each spatial coordinate (n,m). in reality, however, the

background statistics of an image are changing and the matrix K in Equation 2

is generally non-Toeplitz and differs at each (n,m). In this section we will

investigate the significance test when the data are nonstationary. We shall

see that the significance test changes little from what we found previously.

Let us consider the small region S extracted from a I-D sequence x(n)

illustrated in Figure 2-6. We investigate the I-D case for simplicity--

the 2-D case follows similarly. The time-dependence of the statistics of the

sequence is represented through the time-varying covariance matrix K(n).

The significance test associated with the region S is then given by

I Ip(X) exp - (x - m(n)) TK(n)(x - m(n))] > X (21)

where we have further indicated the time-dependence of the data through the

time-varying mean vector m(n).

1
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x(n)

n

Fig. 2-6. One-dimensional signal with small region S.

"Taking the logarithm of Equation 21, we have

(x-m(n)) TK -(n) (x-m(n)) ) -zn[(2n)NlK(n)jl - 2n X (22)

We want to maintain a constant level of significance by appropriately vary-

ing X. We can show that a constant level of significance can be maintained

such that the significance test becomes:

(x - m(n))T K -(n) (x - m(n)) > constant (23)

Since K(n) is syammetric (but note, not Toeplitz), we can again perform

an LDLT decomposition, which now becomes a function of the time variable n:

K(n) " L(n)D(n)L T (n) (24)

14



The significance test becomes

T -1 -1 -1 T
(x-m(n)) L (n)D (n)(L (n)) (x-m(n))

eT(n)D- (n)e(n) > constant (25a)

where

e(n) L -(n)(x-m(n)) (25b)

As before, it is possible to show that the transformation of Equation 25b

corresponds to successive orders of linear prediction where the diagonal

elements of D(n) are the prediction error variances. However, now the

prediction coefficients embedded within e(n) are time-varying as well as

changing with the growing order. This implies that even when the background

can be modeled by a nonstationary autoregressive process of finite order, the

prediction coefficients associated with our small region S are generally

always changing.

Let us investigate this more carefully. For example, consider a Pth-

order time-varying predictor, with prediction error of the form:

P
e(n) - x(n) - I a(n;k)x(n-k) (26)

k-l

Then using the projection theorem, we can solve for the a(n;k)'s (at each

time sample), which minimize E[e 2 (n)]:

E[e(n)x(n-1)1 0 9. 1,2,...P (27)

15



Substituting Equation 26 into 27,

P
E[x(n)x(n-9)] - ) a(n;k)E[x(n-k)x(n-x)] (28)

k-i

or

P
r(n;k=O,X) = a(n;k)r(n;k,g) (29a)

k-I

where

I A
r(n;k,X) E[x(n-k)x(n-X)] (29b)

Note that r(n ;k,I) represents the correlation of values of x(n) for n<n
0 0

since k and X are constrained to be non-negative. Thus, r(n ;k,k) reflects
0

only the past of the time-varying correlation structure of x(n).

Noting that the prediction error variance is given as

P

a2(n) r(n;OO) - I a(n;k)r(n;k,O) (30)
k-l

we can combine Equations 29 and 30 to obtain the time-varying normal

equations:

2
R(n)a(n) o(n) (31a)

16



[I--P + 1

where

R(n) ... r(n;k,,)... P + I (31b)L• _
and

2
1 (n)0

-a(n;) 0)

-a(n;2) 0
2

a(n) o(n) 0 (31c)

00-a(n;P) 01

Refer back to the small region S that is illustrated in Figure 2-6 for

the I-D case. We want Lo show that e(n) in Equation 25 dues in fact

correspond to the prediction error from successively growing time-varying

predictors. We first write the sequence of normal equations associated with

predicting each element of S (we assume our region S runs over the interval

Nn< N).7

"..1



R(O)a(O) - G2(0)

A 2

• •, R(l)a(l) = a (1)

R(N)a(N) -2(N) (32a)

where "^" refers to a growing predictor, and the index n refers not only to

the location of the sample being predicted, but also to the order of the

predictor. However, if the process of concern follows a Pth-order

autoregressive model, a(n) for n>P will be of order P; i.e., a(n;u)=O for

k>P.

Note that R(0), R(l)... are matrices growing in size, but that R(n) is a

lower right-hand corner submatrix of R(N+l)--in spite of the fact that these

matrices are non-Toeplitz. Consequently, we can express the sequence of

normal Equations 32a as

"a(0) a(N) (0)

a(N-l) (1) 0

a(2) a(N-2)

* R(N) (32b)

0 0

+ 02!(N) &(O) a2(N)
4.

where a(n) represents the reversal on a

Finally, note that (when x(n) is tero-mean) R(n) = K(n) in Equation 32b,

so that

a(0)
L u a(I) 0 (33a)I J

L a(N)

18



and

r2
Cy (0)

a2(1) 0

D (33b)

Lo o2(N),

Thus, e(n) does indeed correspond to successive orders of time-varying

(growing) predictors, provided that the process being predicted has zero

mean.

In the stationary case, we can approximate e(n) by time-varying finite-

order predictors. As before, when the background process follows an

autoregressive process of this finite order, only values of e(n) near the

boundary of the region S will be inexact. Our approximate significance test

based on Equation 25 becomes:

eT(nWD W(n)e(n) u eT(n)D -(n)e(n)

N
- ~ -2 2(34)

k-l

> constant

where ee(k) and a (k) correspond to fixed-order, but time-varying predictors

(note that the index k represents our time index over the region S).

Our approximation here may also have certain computational advantages.

For example, we do not need to recompute predictor errors (corresponding to

* j different orders) for overlapping regions S.

.i
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2.4 Adaptive Estimation and Prediction

The significance test of the previous section depends on knowledge of

the background statistics. We need to know or estimate the coefficients of

the assumed time space-varying causal autoregressive model. Hcwever, in

attempting this estimation, we encounter the infamous uncertainty principle.

That is, to obtain a reliable estimate of R(n) in Equation 31 (which is

needed to estimate a(n,k)), we require stationarity over a "sufficiently

large" window size. On the other hand, we assume statistics are generally

changing everywhere in space.

To side-step this problem, we assume that the data are stationary over

the estimation window, we(n,m). The location of the 2-D estimation window

that slides over our data will be designated by the center indey (n 0 ,m0 ) as

illustrated in Figure 2-7. The model parameters associated with this window

are defined as (n 0 ,m0 ): a(n 0 ,m0 ;j,k).

S123371 ýN I ESTIMATION WINDOW.

We(n-no. m-mon

?A

nm

no N

S~mo!M
Fig. 2-7. Representation of estimation window.
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The estimation procedure we shall use is the covariance method of linear

prediction. The prediction error associated with the estimation window at

spatial coordinates (n0 ,mO) is the error e(n 1m ) in predicting the value

x(n 0 ,mO) from its causal neighbors. Finally, the prediction error variance

a2 (n 0," 0 ) is given by the average squared prediction error under the

estimation window at (nOm0).

For each pixel location (nm 0 ), we wish to estimate the set of model

parameters a(n 03 m0 ;k,l) that vary in space. To do this we assume that x(n,m)

is a Gaussian 2-D random field stationary over each we(n-n0,m-M0), and

follows the model in Equation 17 under each estimation window, Therefore,

for this section, we drop the space dependence and work with the model given

by Equation 17.

We shall assume that the prediction coefficients a(j,k) fall within a

(PxQ) fi-st-quadrant plane mask. For simplicity, we limit our derivations to

this class of prediction masks, although it is clearly applicable to more

general mask shapes, such as the nonsymmetric half-plane mask. The objective

is to estimate from x(n,m) the model parameters a(Q,k) for j - O,1.,.,P and

k - O,1...,Q, with j - k * 0. Further, assume we have x(n,m) for

(n,m) Et-P~n,n 2 lx [-Q~mlm 2 1 (see Figure 2-8). We then define the error

.e(nm) over the region 1, given by 1 0 In1 ,n 2 ] 14mAm2 ], as

P Q
e(nw) - x(n~m) - • j a(j,k)x(n-jm-k) (n,m)cl (35)

j3O k-O
(0,k)*(OO)

Our goal becomes to minimise the sm of the squared errors given by

n2 m2
ElnO,o 0 ] 1- 2 (nM) (36)

non MIn-i
nnI 2I

c2

Si



n

(n2, m2)

r

AI

(nl. ml) I
I ---

0!

/ m

(-P$A1 . ~Qrn 1 ) 132N

Fig. 2-8. Know data blocks used in 2-D least equares.
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The approach we take is to transform the 7.-D problem to a 1-D problem so

chat a 1-D least squares solution is applicable. Note, however, that we will

still have solved the 2-D least squares probiem. We wish to transform

Equation 36 into a I-D error expr.'t;.-".on. To accomplish this transformation,

we define the vectors a[n 0 ,m0 ] at. a 0y

a(Ol) s(n 1 ,mI)

a(0,2) s(nl,m +I)

a(OQ) s(n 1 ,m2 )

a(l,0) s(nI+I,m'm1)
aUi, ) s(nl1+1' ,m +D'

a[nO,mO] (PQ--1) (PQ-l) (37)

a(1,Q) s(n I+I',m2 )

* I

a(P.,O) s(n,2 1 m1 )

a(P ,) s(n 2 ,m 1 1)

23



_----(PQ- I )---• A

S - (38a)

A

where

fs(n.+j-0,m i-1)..s(n +j-O,m 1+Q)1 ... [s(n +j-P,m -0)..s(n +j-P,m -Q)]

.sn+-P,m 1+-).sn+j-P,m +i-Q)iA j24 [s(nl+J-0,i+-)..s(nl+j-0,m
1 +l+Q)].. snI+j- Im+1-0)..a(n I I

[s(n +j-0,m2 - ).ns(n +j-Pm -01 ... n +j-P,m2 -0). .s(n +j-P,m -Q))
21 2

(38b)

and where we have assumed the data segment I to be of extent M x M. Note that
o is a vector consisting of the concatenation of the rows of x(n,m) over S;

a[n0 ,m0] is a vector consisting of the concatenation of the rows of a(j,k) for
(j,k)c([,pbx[O,Q] with (j,k) $ (0,0); and S is a matrix that consists of the

concatenation of rows of various subsequences of the known x(n,m) required in

predicting each value of x(n,m) over 1.

Therefore, we can write Equation 36 as:

Hjn 1 ,m1J n 2e (new)
nn mM

I I

"(Safnoom 0 ) - (saln0 - o) (39)
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We then write the solution [i] to minimizing Equation 39 with respect to

a[n0 ,m00 as:

a[n 0 ,m01 R- sTo (40a)

where

T
R S S (40b)

Note that the matrix R is of extent (PQ-I)x(PQ-l) and difficulty in its

inversion is dependent on the model order, not on the size of the known block

of data.

Since R is generally not Toepiitz, its inversion will require on the

order of (PQ)3 operations. The computation of R-I can probably be reduced by

considering its block-like structure resulting from the conversion of a 2-D

problem to a 1-D problem. Thus, assuming P,Q<<N, the bulk of the computation
T 4

is embedded within forming R - S S, which requires on the order of N

operations.

This estimation is then carried out at each pixel. Ak alternative to

this direct estimation is to accomplish the estimation recursively. However,

this may be a realistic alternative only when the estimation window size is

less than the model order [1]; i.e., the matrix required to be inverted at

each pixel is on the order of MxM. We are currently investigating methods to

"reduce this computation.

In either case, we obtain a parameter set at each pixel which represents

an estimate of the model parameters of the changing background, required in

our prediction procedure. Finally, it is straightforward to show from

Equations 39 and 40 that the estimate of the prediction error variance given

by the average squared prediction error under each estimation window can be

expressed by

--2 TOmOiT(S
(noM) - (oT 0 -a[n 0  sTs)a[no,m 0 ])N 2  (41)
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2.5 The Detection Algorithm

We can now merge the results of the previous sections to form our target

detection algorithm. From our coefficient estimates in Equation 40, we can
-2

compute Lhe prediction error function e (n,m) based on a fixed-order, but

time-varying prediction model. Then with C2(n0,m0) in Equation 41, we can

compute the 2-D version of the approximate significance test of Equation 34:

2 -2
. e(k,O)/a (k,t) > constant (42)

k,jcS

where we can think of the indices k and I as running over different

regions S.

Equivalently, we can consider generating the statistics in Equation 42

at each spatial location (n,m) of an image by convolving an N x N smoothing

window w (n,m) with the normalized prediction error to create a new smoothed
S

function E (n,m):
S

E (n,m) - a(n,m)**w (n,m) (43a)5 8

where

-2 -2
q(n,m) , e (n,m)/a (n,m) (43b)

In the estimation of the model parameters, the estimation window

w (n,m) should be small enough to preserve approximate stationary, but large

enough to obtain a reliable estimate of the required correlation

coefficients. The estimation window must also be large enough so that

anomalies (i.e., targets) do not badly corrupt the correlation estimates.
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The smoothing window should be small enough so that small-extent targets

are not overwhelmed by background in the significance test. However, it

should also be large enough so boundary effects in our finite-order model

assumption do not play a significant role.

The overall detection algorithm based on the approximate significance

test is illustrated in Figure 2-9. The first operation subtracts an estimate

of the local mean of x(n,m) (recall that our significance test requires a
zero-mean random field), which is computed by averaging x(n,m) under
W (n,m). Under the estimation window, a local covariance matrix R(n,m) as

e
defined in Equation 40b is computed. R(n,m) is then used to find a(n,m) and

C2(n,m), which are required to compute the normalized prediction error,

q(n,m). Finally, q(n,m) is convolved with the smoothing window w (n,m) and
a

compared to a threshold.

2.6 Examples

In this section, we present nine examples based on the detection

algorithm developed in the previous sections. Throughout this section, the

estimation window we (n,m) is of size l0xlO pixels, which we assume is

sufficiently larger than the size of most targets. This assumption can be

justified through our empirical observation that, in most cases, the

CCF (141 of our processed images is relatively flat; i.e., the targets'

presence appears not to adversely affect estimation of background statistics.

We also assume that a 10xl0 window is large enough to obtain a good estimate
2of the correlation coefficients required in estimating a[n,m] and o (n,m),

but also small enough to maintain approximate stationarity. Of course, this

assumption breaks down at region boundaries.

In the first examples, we consider computer-generated I-D and 2-D

signals determined by exciting all-pole filters with white noise. We then

analyze progressively more complicated real images that were obtained from

the RADC data base.
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Example 1

Consider a sequence x(n) of the form:

x(n) - 0.95 x(n - 1) + w(n) (44)

where w(n) is zero-mean white noise. A sample function of x(n) is shown in

Figure 2-10(a), and a 1-point "object" at n - 64 is shcuna in Figure 2-10(b).

The single coefficient estimate was based on a 16-poinc estimation window.
-2

Figure 2-10(c) shows the squared prediction error e The object is clearly

detected.

Consider a second sequence depicted in Figure 2-11(a) of the form in

Equation 44 created with a different white-noise input. A four-point object

has been implanted at locations n = 90, 91, 92, and 93. As before, the

single coefficient estimate was based on a 16-point estimation window. The

squared prediction error, illustrated in Figure 2-11(b), gives a clear

indication of the object.

Example 2

Figure 2-12(a) depicts a 1-D slice of an aerial photograph with a one-

point object implanted at n - 64. In particular, this I-D slice was

extracted from a section of the aerial photograph which consisted of a grove

of trees. In this example, a two-parameter noncausal model was assumed:

x(n) - aI x(n-1) + a2 x(n + I) + w(n) (45)

where w(n) is white noise. The squared prediction error, shown in

Figure 2-12(b), clearly picks out the object. A second object and its

corresponding squared prediction error are shown in Figures 2-13(a) and (b),

respectively.
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Fig. 2-10. Detection of I-point object in Example 1. (a) 1-D random

sequence, (b) random sequence with object, (c) squared prediction error.
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Fig. 2-I1. Detection of 4-point object in Example I. (a) I-D random
sequeence with object, (b) squared prediction error.
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Fig. 2-12. Detection of I-point object in Example 2. (a) slice
of trees with object, (b) squared prediction error.
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Fig. 2-13. Detection of 4-point object in Example 2. (a) slice
of trees with object, (b) squared prediction error.
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Examp1Ie 3

Consider a 2-D sequence generated by the particular 2-D difference

equation of the form:

x(n,m) - a(0,1) x(n-0,m-l) + a(1,0) x(n-l,m-0)

+ a(l,l) x(n-l,m-1) + w(n,m) (46)

The background sequence (64064 pixels in size) was generated with

coefficients a(0,1) - 0.1, a(1,0) - -0.9 and a(l,l) - 0.1. Four objects were

implanted within the image, all of a constant level, but with a variance

about equal to that of the background. Moreover, the size and level of the

anomalies were chosen to be visually difficult to detect from the background

(see Figure 2-14(a)). The model assumed in the estimation procedure is given

by the generating process (Equation 46).

The 3-D perspective and contour map of the squared prediction error

e (n,m) are given in Figures 2-15(a) and (b). All four objects are clearly

detected, and even the two closely spaced objects are resolved. This same

function, along with the smoothed e(n,m) (a 3x3 smoothing window, w (n,m)
was applied in this example), are illustrated in Figures 2-14(b) and (c)

after thresholding. Figure 2-14(d) shows the prediction error variance, and

Figures 2-14(e) and (f) show the smoothed normalized prediction error--both

appropriately thresholded.

Note that two different thresholds are applied to the smoothed

normalized prediction error. The first resolves three of the four objects,
the second resolves all four objects, but introduces false alarms. This is

due to the inaccuracies of the estimate of the prediction error variance,

which is illustrated in Figure 2-14(d). Ideally, since the background is

stationary, the estimated prediction error variance should be flat. However,
as seen in Figure 2-14(d), the estimate actually peaks in the region of

objects--contrary to what we would hope to happen. We have encountered in

this synthetic example, perhaps, what is a fundamental limitation in
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measuring the background prediction error variance: the presence of objects
can falsely increase the background residual variance. With a priori

knowledge that the background prediction error variance is constant, we were

able to improve detection.

Example 4

Figure 2-16(a) depicts a 64x64-pixel RADC image in which two 2x2 pixel

synthetic objects (of constant level) have been implanted. This image was

created by a 64-to-I downsampling and smoothing of the original image. The

assumed background model is the same three-parineter model used in the

previous example in Equation 46. Figure 2-16(b) shows the prediction error;

Figure 2-1 6 (c), the prediction error variance; and Figures 2-16(d) and (e),

the smoothed normalized prediction error (a 4x4 smoother, wa(n,m), was

applied). The processed part of the image is given within the boxed area.

Note that normalization of the prediction error in this case (unlike the

previous example) has helped bring out the object from the more busy field

background.

Example 5

Figure 2-17(a) depicts a 64x64 pixel RADC image in which two 3U3 pixel

synthetic objects (of constant level) have been implanted. This field-tree

image was created by a 64-to-i downsaupling and moothing of the original

image, in our first attempt to detect the two synthetic objects, the three-

parameter model of Equation 46 was assumed. Although the object in field

background was easily detected, the object in tree background was not

detected, even with normaliastion by the prediction error variance.

Consequently, in our second attempt at detection, we assumed a twelve-

parameter nonsymmotric half-plane autoregressive model III). This odel is

more general and thus more likely to accurately model the background (11).

Figure 2-17(b) shows the prediction error; Figure 2-17(c), the prediction

error variance; and Figures 2-17(d) and (e). the smoothed normalized
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Fig. 2-16. Detection of )bjects in RADC imago for Fx;anple 4.

(a) image with two synthetic objects, Wb predict i-j err-r,
(c) prediction err.,)r variAtice, Wd smoothed no,-malized

prediction error (high thresnold), (e) smojothed normalized
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prediction error (a 4x4 w (n,m) was applied). Because of the computational
8

intensity with a twelve-parameter model, only the designated region was

processed. Note that normalization of the prediction error has helped

significantly in bringing out from the background the object embedded within

the trees.

Example 6

The RADC image displayed in Figure 2-18(a) consists of 128x128 pixels

and was created by a 16-to-I downsampling and smoothing of the original

image. The assumed background model is the same three-parameter model used

in Example 3 in Equation 46. Figure 2-18(b) shows the smoothed normalized

prediction error; Figure 2-18(c), the prediction error; and Figure 2-18(d),

the smoothed prediction error--suitably thresholded. As in our synthetic

example, the smoothed prediction error without normalization yields fewer

detected objects (which may or may not be considered false alarms) than the

smoothed normalized prediction error. This happens probably because the

background variance appears reasonably constant throughout the image. The

objects, however, can potentially introduce a false increase in the local

variance, as illustrated in Figure 2-18(e), which shows a thresholded version

of the prediction error variance.

Example 7

The RADC image displayed in Figure 2-19(a) consists of 128x128 pixels
and was created by a 16-to-I downsampling and smoothing of the original

image. AP in the previous example, a three-parameter autoregressive model is

assumed. Vigures 2-19(b) to (e) make the same comparisons among the various

residuals as made in Example 6.

Example 8

Tbe RADC image displayed in Figure 2-20(a) consists of 128x128 pixels

and was created by a 64-to-I downsampling and smoothing of the original
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Fig. 2-18. Comparison of smoothed predictio, error and smoothed
normalized prediction error for Fxample 6. (a) RADC image,
(b) smoothed normalized prediction error, (c) prediction error,
(d) smoothed prediction error, (e) prediction error variance.
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(c) (d)

V .4'A

(e)

Fig. 2-19. Comparison of smoothed prediction error and smoothed
normalized prediction error of Example 7. (a) RADC image,
(b) smoothed normalized prediction errur, (c) prediction error,
(d) smoothed prediction error, (e) prediction error variance.
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Fig. 2-20. Comparison of prediction eirro and smoothed normnalized
prediction error withi first-quadrant mask for Example 8. (a) RADC
image, (b) prediction error variance, (c) prediction error, (d) smloothed
normalized prediction error.
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image. In this example, we consider a first-quadrant causal, second-quadrant

causal autoregressive model, and average of the two. This average represents

an attempt to eliminate the directionality of the approximate significance

test.

Figures 2-20 and 2-21 illustrate the results with first-quadrant (three-

parameter) and second-quadrant (three-parameter) prediction masks,

respectively. Figure 2-22 sumarizes our results by depicting the smoothed

normalized prediction errors and their average. Note that the individual

smoothed normalized prediction errors do well in detecting most c.'jects,

while the average appears to deteriorate the performance.

Two additional experiments that were performed with this `... are shown

in Figures 2-23 and 2-24. Figure 2-23 shows a different thresholded version

of the CCF (14] corresponding to the prediction of Figure 2-20. Thb. CCF

bears little resemblance to our prediction errors. Moreover, due to the

large estimation window (i.e., 10xlO pixels), this function is small

everywhere--reflecting little sample-to-sample change in !he coefficient

estimates. Finally, in Figure 2-24, we depict the smoothed noncausal

normalized prediction error. The noncausal prediction task is an eight-point

nearest neighbor mask. The results on this image and others (e.g., Example

5) are encouraging, but appear to do no better (and perhaps worse) than the

causal prediction masks.

Example 9

Consider the 64x64 pixel RADC image in Figure 2-25, generated by down-

Isampling the original image by 16-to-i wi'h smoothing. This image is

particularly interesting because of the preaence of a radio tower in the

lower right-hand corner of the image. Note that the top of the radio tower

* has been clearly detected.

It is interesting to observe Lhet in Examples 7, 8, and 9 normalization

of the prediction errors helped detection atA reduced false alarms by

reducing the background va' iance its busy regiono such as the tree and brush

areas.
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Fig. 2-21. Comparison of prediction error and smoothed normalized

prediction error with second-quadrant mask for Example 8. (a) RADC

image, (b) prediction error variance, (c) prediction error,

(d) amoothed normalized prediction error.
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Fig. 2-23. CCF corresponding to Figure 2-20.
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3. ADAPTIVE CONTRAST ENHANCEMENT PROGRAM

We have developed two algorithms for adaptive contrast enhancement of

images degraded by cloud and/or shadow. The first algorithm is a simple gain

in local contrast [7], and the second is more complex and sophisticated--

the adaptive homomorphic algorithm [8]. A computer program system that

implements these techniques was written in 'C' language under the UNIX

operating system. The adaptive contrast enhancement system offers more

operation modes than just the two techniques specified above. The following

sections describe in detail all the options that the system offers to the

user. The system consists of two programs: imageenhanc.c and scale.c;

these are described. In addition, an actual example of how to use the

program is given.

The system described was installed in RADC's AFES system and a version

of it exists on our computer (VAX with UNIX as an operating system).

3.1 Description of imageenhauc.c

Program image enhanc.c implements the adaptive contrast enhancement.

The program offers three operation modes:

1. intensity domain

2. density domain (log) on a positive image

3. density domain (Iog) on a negative image

After selecting one of the three modes, the user can choose to process the

resulting array f(n 1 ,n 2 ) in two different ways:

I. point-by-point (done in the space domain)

2. block processing with 50 percent overlap (done in the

frequency domain)
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3.1.1 Point-by-Point Processing

As shown in Figure 3-i, the point-by-point processing separates the

input array into two components: the local mean (f L) and the local contrast

(f ).

The local mean is computed as the weighted average of the input array

over a small 2-D window (W), i.e.,

I +hwsize n2 +hwsize

fL(n ,n) 1 - f(2lm 2U m * i =n C-hwsize m 2an 2 -hwsize

1W(ml-na ,m2-n ) (45a)

+n 1' 22n29(nN)

flnI. n i +gn .

0 k( C n . n 2 ))

+

LOW-PASS ________n_____'__

FILTERING )LZARIYYI' n2
D' On,, nn21

ORIGINA LOW-PASS
IMAGE •.. . im--On, 2) ( FILTERING

Fig. 3-1. Block diagram of point-by-point processing.
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whe re
hwsize hwsize

U- W(ij) (45b)
i--hvs ize j--hwsize

2
The size of the filter W is (2 hwsize+l) . W can be a rectangular window or

a Gaussian window.

The local contrast is obtained by subtracting the local mean (f ) from

the value of the point (nl,n 2 ), i.e.,

f (n ,n 2 ) f(n 1,n 2 ) - fL(nl n2 ) (46)

After separating the signal into its two components, the enhancement is

achieved by modifying each component according to a function (which is

defined by the user) of the local mean of the intensity values - DC(n 1 ,n 2 ),
i~e.3

n +hwsize ui +hwsize

DC(n ~n ) W~ v26J ~ n(71 •:(n~2) U. -s• (i~i) W(i-n ,j-n ) (47)
i.n -hwaize j.n 2 -hweize 1 2

where *(i~j) is the value of the point (i~j) in the input image (intensity
do00an).

The loctl contrast is multiplied by a gain k I.]. which is a function of

DC(nl ~n 2 ). If kjnC(nln 2)1)1. the contrast is increased; if it is lese

than 1, the contrast is decreased. The function k is defined as piecewise

linetar. The i.ew contrast fH(nion2) is defined ,s

•; fH (nin•) f l(n| n2 k[D(nWtt (48)

The local teait goes through a nonlinearity; more specifically, the new mean

ynion 2 ) is defined as

.f(nln) (" 1(n'2 )-Midrang) " LIDC(nl,n + midrang (49)
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where midrang is the value of the midpoint in che range of values in the

input array (in intensity processing it is 128 and in density processing it

is 4-0.5log (255+0)). The X function ranges between zero and one and is

defined as piecewise linear. Figure 3-2 shows the way the new local mean is

generated.

112139" N DISTANCE =fL (n . ,In2 -MIDRANG

L1I' nRMIRAN

INTENSITY 0 18f( nn 5

DENSITY 0

DISTANCE I(DC~nI. n2)) • (fLn'l. n 2 -MIDRANG)

Fig. 3-2. Local mean processing.

We would like to change the local mean so it will be closer to the

midrang. This is done for two reasons. The first is to compensate for the

degradation (clouds + high DC, shadows + low DC). The second is to account
for the increase in contrast that is achieved. The two new components (f,

y are combined to produce the processed array &(n The different•2

parameters are described in the next section.

Parameters

The user has cor,. col over eight parameters in the point-by-point

processing. The parameters are described below, and actual values are given

in Table 3-I.
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TABLE 3-1

PARAMETERS FOR POINT-BY-POINT PROCESSING

Range of
Parameter Defaults* Normal Values

wtype g g or r

hwsize 5 < 15

var 6. <2 hwsize+1

numpt 6 <21

k([ ],...,k[numpt-1] 2., 4., 5., 7., 8., 8. 12.>k[i]>l.

t(O,...,L[numpt-lj 0.2., 0.2, 0.2, 0.2, 0.2, 0.2 l.2[i]>O

mnt0),..,mntnuwnp-i] 0., 100., 150., 175., 255., xmax~mn[i])O

255.

xmax 255.

*Defaults exist only for intensity proceesing of a cloudy image.

65



1. wtype - Shape of window to be used in computing the local mean.

g - Gaussian window

r - rectangular window

2. var - Thickness of Gaussian window if chosen (see Figure 3-3).

VAR

Fig. 3-3. Thickness of Gaussian window.

3. hwsize - (2 hwaize+l)2 is the extent of that window (max 31 x 31).

4. numpt - number of points in the piecewise linear functions (kL)

(maxim•m 21 points).

5. k - the array that contains the values of the k function (max

size 21).

6. L. the array that contains the values of A (max size 21).

7. a - the array that contains the corresponding mean values of

the k and L functions, i.e.,

Remark

mn(O) is set to 0 (for the beginning of the range)

mn(numpt-11 is set to the maximum gray level allowed (usually 255.)
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8. xmax - maximum gray level in the input image (usually 255.)

(see Figure 3-4).

k[numpt-1]
_F 1233997-N knup-1

kJ2

kkj2]

I .. ..k 1 . . .I

mnLOj mrnll mrn2] mrnnumpt-2] mnnnumpt-11

Fig. 3-4. The k function described as a piecewise linear function
of the mean value inn.

3.1.2 Block-by-Block Processing

The block-by-block processing (Figure 3-5) uses a 2-D triangular window,

with an overlap of 50% to window the data. Along one dimension, this looks

like the sketch in Figure 3-6.

A high-pass filter is applied to each windowed section. The exact shape

of the high-pass filter is determined according to the value DC., which is

the average value (using a rectangular window) of the current input image

(intensity domain) section. The exact shape of the filter is defined by

three parameters (A, B, and C shown in Figure 3-7) which are given for DC 0 0

and DC - max. allowed. For an intermediate value of DC., each of the three

parameters is determined by the foi-oula:
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Fig. 3-6. Processing along one dimension.
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Fig. 3-7. Gaussian-ehaped filter.

J 69

. ikz



( X c a _ D ¢ O 2 D C .2

x. DCmax + XC0 for X A, B, or C (50)S(max DC allowed) 2

The filter is a Gaussian-shaped filter as shown in Figure 3-7. The following

section describes in detail the various parameters of the processing. The

parameters are listed in Table 3-2.

TABLE 3-2

PARAMETERS FOR BLOCK PROCESSING

Parameter Default* Range of normal values

hwsize 8 4,8,16

xmax 255.

hfdcO 1.1

hfdcmax 1.5

1fdc0 0.53

£fdcmax 1.2

vardcO 5.

vardcmax 20.

*Defaults are designed for negative density
processing of a cloudy image.

Parameters

1. hwsize - (2 hwsize)2 is the size of the processed section and the

filter that is applied (up to 32 x 32 for 512 x 512 images

and up to 16 x 16 for 1024 x 1024 imaget). It should be a

power of two.
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2. xmax - Max gray level that exists in the current image (usually

255).

3. hfdcO - Value of A (in Figure 3-7) for mean level - 0 (the lowest).

4. hfdcmax - Value of A for mean level - xmax.

5. tfdcO - Value of C (in Figure 3-7) for mean level - 0.

6. ldcmax - Value of C for mean level - xmax.

7. vardc0 - Value of B (in Figure 3-7) for mean level - 0.

8. vardcmax - Value of B for mean level - xmax.

3.1.3 Resulting Output

After the point-by-point or block processing, the resulting output array

is exponentiated if it is a density image. Inversion of negative mode images

can be done in the program scale.c.

3.2 Description of scale.c

For some of the processing modes allowed in imageenhanc.c (such as all

density processing and intensity block processing), the resulting output

array does not lie in the required range for display (0-255). Thus, the

output array must be scaled. Since the AFES auto wndw.h software permits

only one pass over the data and scaling must be done in two passes, this led

to the need for the scale.c program to be run after imageenhanc.c for the

specified modes of operation.

The program scales the output array of image enhanc.c according to a

number of parameters that are provided by image_enhanc.c in a file (see

running instructions). The parameters are:

1. minv - minimum value in the array to be scaled.

2. maxv - maximum value in the array to be scaled.

3. pnt - point or block processing.

4. den - density or intensity mode.

5. nega- negative or positive mode.
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According to these values, the array is scaled in the following manner:

1. For block processing of intensity mode or for any processing of

positive density mode, scale the input array such that

minv -------- > 0

maxv --------> 255

2. For any processing of negative density mode, scale such that

minv -------- > 255

maxv --------> 0

3.3 Running Instructions

The following sections describe the interaction between the user and

each one of the programs.

3.3.1 imageenhanc. (the load module of image enhanc.c)

User: image.enhanc <imagel.data> <image2.data>

where

imagel.data is the name of the input image.

image2.data is the name of the output image.

Terminal: do you want to process in INTENSITY or DENSITY domain?

intensity - i, density - d

User: i (or d)

If density domain {

Terminal: do you want to process the NEGATIVE or POSITIVE image?

User: p (or n)
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Terminal: do you want a POINT-by-POINT processing or a BLOCK

processing?

block - b, point - p

User: b (or p)

If POINT processing was selected:

Terminal: do you want to change the defaults? The defaults exist only

for intensity processing of a cloudy image.

yes - y, no - n

User: n (or y)

For density processing (
Terminal: enter filename for scaling parameters to be used by scale

program

User: param.data
I

If the defaults were selected, the processing starts with no additional

interaction with the user for this program. If the defaults were not

selected, the dialogue continues.

Terminal: enter hwsize-half size of window to compute mean value - n

(2n+l) (2n+l). n is limited up to 15 for a 512 x 512 image and

up to 7 for a 1024 x 1024 image.

User: value of hwsize (integer).

Terminal: maximum gray level in the image (usually 255)?

User: value of xmax (float).

Terminal: the following inputs define the k and t functions (as functions of

the mean value). k - multiplies the local contrast >al and X - is

the nonlinearity that is applied to the local mean and is

0.-(<X<(. If XL-., then the original local mean is kept. If

Lio., then the new local mean is exactly the midrange of levels

allowed.
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NUM OF POINTS IN FUNCTIONS (up to 21)?

first point must be for mean value-0. and last must be for mean

value=xmax.

User: value of numpt (integer)

Terminal: contrast amplifier=k[0], nonlinearity - p[0] for mean value,0.

ser: values of the contrast amplifier and nonlinearity (both float) for

mean value=O.

Terminal: mean value=mn[ 1, contrast amplifier-k[ 1,

nonlinearity 91[ 1 for j=... jul,...

.. ,numpt-2

User: values of the jth mean value (float), jth contrast amplifier

(float) and the jth nonlinearity (float).

Terminal: contrast amplifier-k[numpt-l], nonlinearity-t[numpt-1] for mean

value=xmax.

User: values of contrast amplifier and nonlinearity (both float) for

mean value-xmax.

Terminal: Gaussian window - g or rectangular - r for calculating the local

mean value?

User: g (or r)

If Gaussian window was selected (

Terminal: thickness (variance) of Gaussian window?

User: value of variance (float).
}

Processing starts with no additional interaction with the user.

If BLOCK processing was selected:

Terminal: do you want to change the defaults? The defaults exist only for a

negative density processing of a cloudy image.

yes - y, no - n

User: n (or y)
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Terminal: enter filename for scaling parameters to be used by scale program

User: param. data

If the defaults were selected, the processing starts with no additional

interaction with the user for this program. If the defaults were not

selected, the dialogue continues.

Terminal: maximum gray level in the image (usually 255.)?

User: value of xmax (float)

Terminal: mapping variables HFDCO, HFDCMAX - the values of the high-pass

filter at the largest frequency for mean values 0. and xmax

(maximum gray level).

User: values of hfdc0 and hfdcmax (float).

Terminal: mapping variables LFDCO, LFDCMAX - the values of the high-pass

filter at W=(0,O) for mean values 0. and xmax.

User: values of £fdcO and kfdcmax (float).

Terminal: mapping variables VARDCO, VARDCMAX - the thickness of the

Gaussian high-pass filter for mean values 0. and xmax.

User: values of vardc0 and vardcmax (float).

Terminal: enter hwsize-half window site for the adaptive filtering

(8,16,32..) - a number that is divisible by the row and column

* length of the image. hwaize is limited up to 16 for a 512 x 512

image and up to 8 for a 1024 x 1024 image.

User: value of hwsize (integer).

End of interaction.

Spec ific ,xample:

User: image enhanc cloud~data proccloud.data

Terminal: do you want to process in INTENSITY OR DENSITY domain?

intensity - i, density - d

User: i

Terminal: do you want a POINT-by-POINT processing or BLOCK processing?

block- b, point - p

User: p
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Terminal: do you want to change the defaults? The defaults exist only for

intensity processing of a cloudy image.

yes - y, no - n

User: y

Terminal: enter hwsize-half size of window to compute -.ean value - n

(2n+l)(2n+l). n is limited up to 15 for 512 x 512 image and up to

7 for a 1024 x 1024 image.

User: 5

Terminal: maximum gray level in the image (usually 255.)?

User: 255.

Terminal: the folLowing inputs define the k anu X functions (as functions of

the mean value). k - multiplies the local contrast >-I. and X -
is the notillnearity that is applied to the local mean and is

0.<i<-I.., If L-l., then the original local mean is kept. If

XO., then the new local mean is exactly the midrang of levels

allowed.

NUM OF POINTS IN FUNCTIONS (up to 21)?

first point must be for mean valueuO. and last must be for mean

valuouexwax.

User: 3

Terminal: contrast 4mplifier-k[01. nonlinearity-11O] for mean value-O.

User: 2. 0.7

Terminal: mean valueawn[ 1. contrast amaplifierek[ 1, noalinearic1tvw I for
i-

User, 150. 4. 0.5

Terminal: contrast mplifiertktnumpt-1I, nonlinearity••(numpt-11 for mean

Va Iue-Xmp .

User: 6. 0.2

Ter minal: Gauselin window g or rectrtnguI - r for calculating the local

mean value?
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User: g

Terminal: thickness (variance) of Gaussian window?

User: 6.

Processing starts with no additional interaction with the user.

3.3.2 Scale (the load module of scale.c)

User: scale <image2.data> <image3.data> <param.data>

where:

image2.data is the name of the ouput file of imageenhanc.

image3.data is the name of the resulting processed image.

param.data is the name of the file that contains information for

the scale program. The filename was given as a parameter in

image_enhanc program.

3.4 Installation instructions

The two programs were dumped on tape using:

tar c image enhanc.c scale.c

To read these files from tape, use

tar x image enhanc.c *cale.c

To compile and load:

imageenhanc c stdio.h

CC or * add options for using math.h

scale .c auto_wndw.h
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Special running instructions: The program imageenhanc.c requires a 64K byte

memory just for data arrays; i.e., the special setting of 64K bytes for data

and 64K bytes for program should be used.

3.5 Glossary oý the Program Variable Names

hfdcO - value of the high-pass filter at (a,w) for zero mean.

hfdcmax - value of the high-pass filter at (n,i) for mean value-xmax.

hwsize - half of the window size.

k - contrast gaia function.

- nonlinearity applied to the mean value.

£fdcO - value of the high-pass filter at (0,0) for zero mean.

£fdcmax - value of the high-pass filter at (0,0) for mean value-xmax.

mn - array of mean values.

numpt - number of points in k,k and mn functions.

var - variance of Gaussian window.

vardcO - thickness of Gaussian-shaped high-pass filter for zero mean.

vardcmax - thickness of Gaussian-shaped high-pass filter for mean value-xmax.

wtype - shape of window.

xmax - maximum value in the image.
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4. MULTI-PROCESSOR ARCHITECTURES FOR IMAGE PROCESSING

During the last half of FY82, we have been exploring several issues

related to the development of a processor architecture suitable for image

processing problems. Typical image processing problems involve data sets

composed of several hundred thousand pixels (picture elements) and large

amounts of computation (several hundred processor instructions per pixel).

Depending upon the application, the computation may have to be carried out in

real-time at TV frame rates (30 per second) or fast enough to permit

comfortable interaction for a human operator (Q second elapsed time). It is

clear that an image processing architecture must be capable of supporting

rapid compLtation on large data sets.

In ima&2 processing, as opposed to other multi-dimensional signal

processing applications, most operations tend to be local; that is, the

processing of widely separated parts of the image is independent. Global

operations, such as the 2-D Fourier transform of an entire image where each

output value depends on all of the input pixel values, are rarely used in

typical impge processing operations. For this reason, it is possible to

consider the implementation of most processing operations by a set of

processors working in parallel on different parts of the image with a minimal

amount of commuurication. To be truly useful, however, such a multi-processor

architecture must be capable of handling the few (but important) exception@

that ,.ay occvr in any particular application.

A very high-level diagram of the multi-processor architecture we plan to

pursue is shown in Figure 4-1. It consists of 16 nodal processors connected
by a comuiýuicatioas network. The number of processors is somewhat arbitrary

from an architectural point-of-view but was sized based on preliminary

computational requirements and was chosen to be a power of two in order to

permit the use of a butterfly communication network. The system input/output

(i/0' port is shown as being part of the communication network, but it may be

necescary to alter this to provide the required I/O bandwidth. A thorough

study of the system I/O remains to be done.
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Fig. 4-1. A high-level block diagram for a multi-proceasor system.
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There are several possibilities for the communications network. The

most obvious choice is a high-speed data bus. Typical busses used in

conventional computers have bandwidths on the order of 1-2M bytes/second, but

this is not fast enough to satisfy the bandwidth requirements of a

16-processor system. It is conceivable that an advanced bus based on RF

coaxial cable or optical fibers could be developed to satisfy the bandwidth

needs which we estimate to be roughly 100-200M bytes/second.

In FY82 we have begun investigating the butterfly network structure

shown in Figure 4-2 for use as the interprocessor communication network. The

network is shown unfolded so that processor outputs are located on the left

and processor inputs are located on the right. This network allows

communication between any two nodal processors and permits many sets of

conversations to take place in parallel. In another project, a four-

processor system was constructed using Motornla MC68000 microprocessors and a

similar butterfly network.

Several important aystem-level questions remain to be addressed. We

have already mentioned the question of system-level I/O to an outside host

computer or data source. The significant issue of how to make the

programming (and controlling) of a multi-processor system appear

straightforward also needs to be examined in detail. A multi-processor

system that is fast but difficult to program will not be very useful to the

image processing community.

In the following sections several architectural features for a nodal

processor will be discussed. These features are worth developing and

refining because they show promise of helping achieve the dual goals of high

computational throughput and ease-of-programming. The architectural study

is, however, far from complete, and subsequent ideas and developments may

alter or eliminate some of the architectural features discussed below.
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4.1 Ground Rules ýor Developing a Nodal Processor Architecture

Most of our work in this area during the last quarter of FY82 has been

directed toward the architecture of a nodal processor. As a ground rule, we

have tried to separate architectural issues from implementational issues.

Some architectural principles may ultimately have Lo be compromised in the

interest of efficient and timely hardware implementation. However, our

objective thus far has been to develop the best architecture possible without

any preconceptions about implementation details. Furthermore, the technology

to support the underlying implementation of a particular architecture is

constantly evolving. Many computer manufacturers use the same architecture

(for software compatibility) but constantly upgrade the implementation to

deliver systems with improved performance/cost characteristics. With the

advent of VLSI and VHSIC technology, implementation techniques will

undoubtedly change once again. The development of an image processing

architecture may influence future chip sets, thus permitting the

implementation of architectural features that may have to be compromised with

today's technology. Therefore, we have decided to concentrate initially on

developing the right architecture without implementational constraints.

Processors can be compared along many dimensions: speed, efficient use

of memory, ease of programming, instruction set sophistication, word length,

size, weight, power consumption, reliability, etc. For now, we have taken

the attitude that speed and ease of programming are most important, that the

instruction set is important aq an influence on the speed (minimizing the

number of instructions required for some computation) and ease of

prograuming, and that "memory is cheap." It is permissible to use memory

inefficiently if it permits faster execution or simplifies programming.

The easiest way (up to a point) to build a fast processor is to use the

fastest available logic family for the implementation. For a fixed

architecture, the basic machine cycle time will determine the speed of
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execution. There are mitigating concerns, of course. Fast logic, in

general, implies more power consumption, more demanding board layout, lower-

level integration, and less reliability. It will probably be necessary to

compromise between raw logic speed and other measures such as integration

level or power consumption.

4.2 Architectural Requirements for a Nodal Processor

Based on the premise that the nodal processors in a multi-processor

image processing system will have to be fast computers in their own right

that are capable of handling large arrays, we can begin to outline some of

the architectural requirements for the nodal processors. Traditional high-

speed array processor architectures have been very "horizontal," using

techniques such as separate program and data memories; separate hardware for

address computation and index register manipulation; and pipelined fetch,

decode, and execution of instructions. The nodal processor architectures

that we are now studying will use many of the same techniques, provided that

they do not impair the ease with which the machine can be programmed.

Since the nodal processors will be handling large arrays of image data,

array access must be very efficient. Similarly, it is important to provide a

mechanism for controlling program loops that accrues very little overhead.

Many processor architectures are capable of dynamically allocating data

memory upon each invocation of a subroutine, procedure, or function. This

capability permita re-entrant subroutines, efficient interrupt handling, and

shared instruction code (although this is probably not important for this

application). In addition, dynamic memory allocation should result in a Oore

efficient use of the data memory than static allocation would, since it

permito the "time-sharing" of memory. Unless we uncover a sound argument

against it, dynamically allocated memory will be an architectural requirement

for the nodal processors.
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To permit simple, straightforward programing, the nodal processor

architecture should efficiently support a high-level language such as "C".

The machine language itself should be relatively high level so that assembly

language programing (machine mnemonics plus macro-instruction capability) is

conducted at a high level. It is important to isolate the programmer as much

as possible from the particular implementation of the nodal processor. The

programmer should be concerned with specifying operations and data objects to

be used as operands and not with the details of address computation or index

register manipulation.

The machine language instruction set should be flexible so that it can

be "tuned" for different applications. In particular, it should provide some

simple array handling instructions such as clearing an array or adding two

arrays. A set of a half-dozen or so such array instructions could relieve a

programmer of much pedestrian code generation in an image processing

application and allow him to concentrate on the important parts of the

program. Machine language flexibility could be achieved by using micro-code

to realize each machine-level instruction. New instructions could be

accommodated by writing new micro-code, assuming that there are enough unused

op-codes remaining in the instruction format. The fetching, decoding, and

execution of the micro-instructions could be pipelined to increase the

effective speed of the nodal processor.

The nodal processor architecture should be flexible enough to include

special-purpose computational devices that may differ depending on the

application. For example, a high-speed multiplier or multiplier/accumulator

could be considered a "special-purpose" device, although for image processing

and multi-dimensional signal processing applications it is a requirement.

Other computational devices might include an FW" butterfly, a 16-point FFT,

or a CORDIC rotation element. A special-purpose device may also be necessary

to facilitate 1/0 with the outside world as well as the interconnection

network, The important point is to allow sufficient flexibility to permit

the nodal processors to be retrofitted with special-purpose components to

help increage computational throughput for a particular application.
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The issue of fixed-point versus floating-point arithmetic has yet to be

decided. To some extent, it is more of an implementation issue than an

architectural issue. Fixed-point arithmetic tends to be faster, but new

single-chip LSI floating-point components may close the gap. Fixed-point

accuracy and dynamic range can be improved by going to longer word lengths,

with the concomitant increase in hardware, but then it becomes more difficult

to use the single-chip 16-bit multipliers currently on the market. There are

advantages and disadvantages to both data representations, and the ultimate

solution may be the traditional one of supporting both. However, because of

the horizontal architecture, it may be feasible to use fixed-point arithmetic

for addressing, counters, loop control, and indexing and use floating-point

arithmetic strictly for data computation. This would enforce the natural

separation in the progranmmer's mind between data to be processed and

variables used for data access and program control.

4.3 Three-Address Instructions

In many cases, execution of a machine instruction will take two source

operands and perform an operation on them to produce a single result to be

stored at a particular destination. Thus, three addresses need to be

specified in a typical instruction. Some computer architectures use one of

:ht source addresses as the destination address, while more primitive

architectures use an accumulator register as one source as well as the

destination. However, programs written for these architecturev usually

require a significant number of LOAD, STORE, or MOVE instructions that

simply transfer data without doing any computation. The three-address

architecture should alleviate som> of this overhead, resulting in an

inherently faster nodal processor. The use of three-address instructions is

alma consistent with the philosophy of a horizontal architecture, permitting

the addresses of the sources and destinarion to be c(mputed in parallel.

There are occasions, however, 4ien the destination oddCess is identical

to one of the source addresses. Sow code compaction will result if two-

address instructions are included in the instruction set. On other
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occasions, the result of an operation needs to be stored only temporarily

because it will be an operand for the next instruction. Thus, it may be

prudent to provide a stack of temporary storage registers to be used as

easily accessed operand sources and destinations. (Actually, a "temporary

variables" stack is an implementational rather than an architectural issue.

The three-address instructions do not need a stack to be useful,

particularly if access to data memory can be made as fast as access to the

stack.)

4.4 Array Instructions

For image processing as well as other array processing applications, it
seems prudent to provide the nodal processor architecture with a small but

powerful set of instructions for performing array operations. These

operations would include element-by-element addition, subtraction,

multiplication, and division of two arrays, and other operations such as

element-by-element maximums and minimums may also be worth including. Other

candidates are inner products, sum-of-elements, sum-of-elements-squared,

absolute value, and 2-D convolution.

These array instructions would be implemented in micro-code to utilize

the maximum speed advantage of the architecture. It should also be possible

to implement other array instructions in micro-code for particular

applications.

4.5 Data Addressing

An underlying assumption of the nodal processor architecture ia that it

must support a fairly large data memory (256K bytes-iN byte) for image

processing applications. For direct addressing, thiq implies addresses at

least 20 bits in length, and perhaps 24 bits or even 32 bits for future

expansion of the data memory. With three-address instructions, the nqmber of

bits needed for specifying source and destination locations thus ranges from

60 to 96 bits, resulting in very wide instruction words, To keep the

87



instruction width down, some computer architectures make use of address

registers. These registers, which contain the addresses of the desired

operands, are few enough so that they can be sr-cified with a small number of

bits in an instruction word. Operands are thus accessed indirectly.

However, address registers must be saved and restored during context switches

like subroutine calls and returns and interrupt servicing, and this may imply

a high level of overhead.

Because it fits in nicely with the notion of dynamic memory allocation,

we have been investigating a stack-oriented data memory. Data in the stack

can be accessed relative to the stack pointer (which points to the top of the

stack), a frame or environment pointer (which points to a memory location

determined by the current program context; see Section 4.9), or a global

pointer (which for simplicity may be taken as the bottom of memory). It may

also be useful to provide other pointers into the stack to facilitate data

access. This question is still open.

With this structure, single data items (as opposed to arrays of data

items) will be generally accessed by specifying in the instruction word a

pointer register and a constant offset value to be added to the contents of

the pointer register to compute the effective address.

4.6 Array Data Access

In a typical computer architecture, array elersents are accessed by

computing an effective address, which is the sum of a base address plus an

offset or index. For two- or higher-dimensional arrays defined in a high-

level language, it is necessary to explicitly compute the %ffective address

by repeated multiplications and additions. When array elements are accessed

sequentially (within a loop, for example), much ot this address computation

can be eliminated by simply incrementing the effective address by the proper

amount.

Vrom a programmer's point of view, however, the computation of an

effective address from an array base address and index values is a nuisaece
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to be handled by a compiler or directly by the hardware. In image processing

applications, we expect that a great deal of computation will use two-

dimensional arrays accessed sequentially within loops. Consequently. it is

important that the architecture handle the implied address conputations

rapidly.

We have been investigating two concepts for accessing array elements.

The simpler consists of providing the necessary arithmetic capability to

compute effective addresses by adding the contents of two address registers

while simultaneously incrementing one of the address registers by an amount

contained in a third register. This allows the base address to be contained

in one address register with the periodically updated offset to be contained

in the second address register. This scheme is relatively straightforward,

but it forces the machine language programmer to get involved in keeping

track of effective addresses rather than simply specifying an array name and

the values of its indices.

As an alternative, we have been exploring the concept of array access

registers (AARs). In its simplest form, an AAR contains information about an

array, such as its base addre.s in memory, the number of dimensions, the

aaxx,.ium number of storage cells in each dimension, and the number of bytes of

memory used to contain a single storage cell, which will allow hardware to

convert a request fur a particular element of a particular array into an

effective memory address. Going one step further, wo can actually

incorporate index registers, as well as the effvctive address correspondi'lg

to the current values of the index registers, into the AARG. This permits a

separate, noninterfering set of index registers fur accessing each distinct

array.

The index registers can bc initialized or reset by machine-level

instructions specifying the AAR and the new values of the indices. In

addition, instructions can specefy that an array index be incremented,

decremented, or teroed out after beink used. Hardware will be responsible

for computing a new effective address from the altered index (or indices) and

storing it back in the MAR for future use. This mode should be very

efficient for loops which perform the same basic operation on all elements of

an array.
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The AARs can be allocated dynamicalLy, lust as data memory is. This

will permit efficient use of AARs by effe.ctively "time-sharing" them as

different subroutines become actice. AARs will alsc. permit arrays to be

passed as subroutine arguments ;- an efficient manner. if AAR; are allocated

by a stack, however, it implier, that array deta are accessed by two levels of

indirection, one with respect to a stack pointer (or frame pointer) to get

the appropriate AAR, and the second to use the effective address provided by

the AAR. We will have to examine the MAR concept carefully to see :f the

doubly indirect access leads to an unacceptably slow .-rchitecture.

In theory, scalar-valued variables could also ba accessed using AARs.

This would provide a consis.tent architecture in that scalar and array

variables would be accessed in a similar manner, with the programmer treating

each variable as a data object with certain attributes. However, this would

mean that scalars as well as arrays would require two le.vels of indirection

for accessing. It does not oeem that an extra level of indirection for

scalars will improve the accws,3 efficiency that is potentially available for

arrays, because scalar variables do not have indices to be manipulated or

effective addresses to be computed. Nevertheless, the architectural

consistency which would result way overrule this conclusion upon closer

examinat ion.

4.7 Program Control

Currently, the nodal pro•.er-or archiutctur. contsina saveral. uuitkui

instructions for transferring program control. The it rer.i ons consist of

BRANCH, JUMP, CALl., REiTURN, BREAK, w-di 4XT. The intriiction% may 4t Uýed in

both conditional and unconditional formeq.

A BRANOI instruction transfera control to an inutrorrion locatred a M XAQ

address relative to the BRANCH in•s• uction; thnt ls, It ki A relative jump.

Conversely, a JUMP instruction transfers control -L, m *i bolutv' r'ddreas in

the instruction memory. CALL transfers control -3 .ei Asolvtc aiddress a%

well, but it also keeps track of a number of thiog-, ýigcosved in Sec-

tioii 4.9) useful for transferring corntrol Ito a subroutine. RETURN allows



control to be transferred back from a subr_.tine using the absolute address

stored by CALL. BREAK and NFZi.2 are essentially BRANCH instructions useful in

controlling program loops. (They will be discussed io that context in

Section 4.8.)

The co.rditional versionq of these control--tranferring instructions make

use of a set of condition codes. The condition codes consist of bits that

indicate whether a result from an operation was positive, negative, zero,

caused a carry or an overfiow, etc. The condition codes are set by an

operation resulting froma ati instruction that had its test flag set, Codes

from subsequent instructions that had their test flags set are ORed with the

existing condition codes. The codes are reset (cleared) by a conditional

control-transferring instruction, unless that instruction indicates (via a

fLia) that the codes are not to be altered. Finally, the architecture should

support instructions that can store the condition codes in data memory and

can resto-ee the condition codes from data mýmory.

4.8 Loop Control

Tho image proceos.ing applicutions for the nodal processor will

doubtlossly lead t.: programa containing many, relAtivvly short, netwed

loops. Consequently, it us i•oportant for thty nrch tecturv to support program

loops in a very asfic tent mannor. Thoq. ocops will have the ch4racteristic

that the nuober of times they A.- ýeiutd is indepndent of the dats h(iog

processed. Thus, in a typicsl archit ctcir,, i rkgistor is Init j•l ited to

contain tCw. number of times that the inoatruct i on in the loop bi 1 he
executd, Then the register is docrementfd at the bottom of the loop and

teated to detormitw whether to branch back to thr top of the loop. 1ivery

time the loop is execrated, the decrement, test. 4nd contitinnzal branclh

instý-uctions are alan executed. Vor short loopn, there ifntrkictioiia can

repreoeEt a significant overhead cnvapared to the %ineful complitation carried

out within the loop.

For most of the loops un.'-d in iraago processing software, a simple

architectural feature can be used to support the ovrhead for loop control.
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Since loops are perfectly nested, a stack of loop counters can be used to

keep track of the ct'rrent iteration. When a loop is initialized (by a single

machine-language instruction), an initial value for the loop counter is

pushed on the stack. kt the end of the loop, another instruction causes the

loop counter to be decremented and, if it is 3till positive, control to be

transferred to the top of the loop. The top-of-loop address can be set up at

loop initialization in a stack parallel to the loop counter stack. When the

loop counter finally reaches zero, the loop is exited and the stacks holding

the loop counter and the top-of-loop address are popped.

Under certain circumstanceo, it is desirable to exit prematurely from

one iteration of the loop and to begin the next. The NEXT instruiction, which

may be conditionally executed, performs this function. It may be desirable

to exit a loop entirely before all the iterations have been completed. The

BREAK instruction, also conditionally c:-.ecutable, can be used for this

purpose.

The NEXT and BREAK instructions are essentially conditional BRANCH

instructions. The NEXT instruction branches to the end-of-loop instruction,

which decrements the loop counter and tests it ar' usual. The BREAK

instruction branches out of the loop, but it must also pop the loop-counter

stack and the top-of-loop address stack. The offsets needed for calculating

the next instruction address can be computed by a compiler or assembler.

Although it is not necessary, there may be some speed advantage to storing

the transfer addresses for BREAK and NEXT instructions on stacks parallel to

the loop counter stack. This implementational issue will have to be examined

in more detail.

Loops in which the number of iterations is data-dependent can also be

implemented with the specialized loop instructions. An infinite loop could

be set up by setting an "infinity" bit in the loop counter. The loop would

be exited by using a conditional BREAK instruction.

Structured programming texts argue for testing at the top of the loop

rather than the bottom as a defensive programming tactic. It may be prudent

to incorporate other specialized loop control mechanisms in the architectural

requirements to support both top-of-loop and bottom-of-loop testing.
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4.9 Subroutine Linkage

Structured software tends to have many subroutines and consequently

many subroutine calls. Thus, it is important to have an efficient subroutine

linkage mechanism so that the overhead for short subroutines is not too

large. One subroutine linkage mechanism we have been exploring is an

elaboration of those used on stack-oriented computers such as the HP-3000.

At present, it actually involves seven parallel stacks.

The seven stacks are called the instruction address stack (I-stack), the

data stacK (D-stack), the array access register stack (A-stack), the data

frame stack (DF-stack), the AAR frame stack (AF-stack), the number-of-data-

parameters stack (#DP-stack), and the number-of-AAR-parameters stack (#AP-

stack). Figure 4-3 is an outline of how these stacks are manipulated during

subroutine calls and returns.

The simplest stack to understand is the I-stack. When a subroutine is

called, control is passed to the starting address of the subroutine and the

return address is pushed onto the I-stack. When a RETURN instruction is

executed in the subroutine, the return address is popped off the I-stack and

into the program counter.

The D-stack, the DU-stack, and the #DP-stack are closely related. At

any given level of subroutine nesting, the D-stack contains the information

needed for the current subroutine context. The data stack pointer, which

itself sits atop the DF-stack, points to the top of the D-stack and is

updated when data are pushed on or popped off the D-stack. One of the

aedr ,;sing modes allows data to be accessed with a negative offset relative

to the data stack pointer. Data on the D-stack may also be accessed

relative to the data frame pointer, which itself resides just below the data

stack on the DF-stack. The data frame pointer points to the top of the

parameter list for the current subroutine.

To call a subroutine, space is first allocated on the D-stack to hold

any values to be returned by the subroutine. This is accomplished simply by

incrementing the data stack pointer. Next, the parameters specified by the
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I-STACK
RETURN ADDRESS - PROGRAM COUNTER

# DP-STACK DF-STACK D-STACK
DATA STACK PTR. 0 TEMPORARY VARIABLES

# DATA PARAMETERS • LOCAL VARIABLES
DATA FRAME PTR. -- PARAMETERS

SPACE FOR RETURNED VALUES

TEMPORARY VARIABLES
LOCAL VARIABLES
PARAMETERS
SPACE FOR RETURNED

VALUES

# AP-STACK AF-STACK A-STACK
AAR STACK POINTER - TEMPORARY AARs

# PARAMETER AARs f LOCAL AARs
AAR FRAME POINTER -- PARAMETER AARs

SPACE FOR RETURNED AARs
° TEMPORARY AARs
* LOCAL AARs

PARAMETER AARs
123405-N ISPACE FOR RETURNFD

AARs

Fig. 4-3. Seven stacks used for subroutine linkage.
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arguments of the CALL instruction are pushed onto the D-stack and the number

of parameters is pushed onto the #DP-stack. When the CALL is executed, a

duplicate copy of the data stack pointer is pushed onto the DF-stack, making

the new data frame pointer equal to the old data stack pointer. After

control is transferred to the subroutine, the data stack pointer is again

incremented to allocate storage for dynamic variables that are local to the

subroutine. Additional temporary storage may be allocated simply by pushing

values onto the D-stack and updating the data stack pointer.

When a subroutine RETURN is executed, the DF-stack is popped restoring

the old data frame pointer and the data stack pointer to the state that

existed after the subroutine parameters were pushed on the D-stack but

before the subroutine was actually called. The number of data parameters is

then popped off the top of the #DP-stack and subtracted from the data stack

pointer to effectively de-allocate the memory used to pass parameters to the

subroutine.

The other three stacks--the A-stack, the AF-stack, and the #AP-stack--

are handled in a fashion analogous to their data stack counterparts. Rather

than holding data values, however, the A-stack contains the names of AARs,

which in turn point to arrays of data values.

As we mentioned earlier, it is possible to use the AAR concept to access

scalars as well as arrays. If this were done, the resulting architectural

consistency would permit the reduction from seven stacks to four stacks. The

separate D-stack, DF-stack, and #DF-atack would not be needed.

4.10 Input/Output

There are two aspects of nodal processor 1/0: communication with the

outside world and communication with other nodal processors in the multi-

processor system. Here we shall limit our discussion to the latter. In

terms of architectural requirements, we want the nodal processor to handle

the protocols for I/0 as little as possible for two primary reasons. First,

we do not want to slow the nodal processor with bookkeeping tasks related
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to the I/O and second, we want the flexibility to interface improved

interprocessor connection networks easily as they are developed.

These requirements argue for a direct memory access (DMA) capability

with a separate I/O processor to handle the necessary communications

protocols. The nodal processor should simply be able to request that data

be sent to another processor or be received from another processor. In

Addition, it should be possible to interrupt the nodal processor to inform it

that data has been received from another processor. A great deal remains to

he done in the specification of architectural features to support both

interprocessor I/0 aa well as system I/0.

4.11 Summary of the Multi-Processor Architecture

The architectural specifications for a multi-processor system are far

from complete. As described in the previous sections, we have begun looking

at some of the architectural requirements for the nodal processors. In FY83

we plan to continue, with the immediate goal of specifying a nodal processor

instruction set and architectural features to permit its efficient

implementation. Major areas of concern include I/0, array access, loop

control, and subroutine linkage. Ease of programming, flexibility of the

instruction set, and the ability to incorporate special-purpose

computational hardware are also important.

The 16 features listed below contribute to our goals of high

computational throughput and ease of programming. Much more study needs to

be done and further development may alter the desirdbility of these features.

Nevertheless, at this stage, these are important specifications of a system

architecture for image processing applications.

1. Multi-processor architecture consisting of 16 nodal processors

communicating via an interprocessor communications network.

2. Butterfly-type communications network.
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3. Modular interface between nodal processors and communications

network.

4. "Horizontal" architecture for nodal processor.

5. Dynamic allocation of data memory using data stacks.

6. Thirty-two-bit-wide data words.

7. Flexible instruction set implemented in micro-code.

8. Pipelining of instruction fetch, decode, and execution.

9. Support for special purpose computational elements.

10. Three-address instructions.

11. Array handling instructions.

12. Stack-oriented data access with separate hardware for address

computation.

13. AARs for rapid access of array elements.

14. Specialized instructions for loop control.

15. Stack-oriented subroutine linkage.

16. Separate 1/0 processor to support DMA communications.

9
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APPENDIX

DERIVATION OF CONSTANT FALSE-ALARM RATE DETECTION

In this appendix, we derive the general functional form of X to maintain

a constant level of significance in Equation 3, regardless of the background

statistics (i.e., regardless of the covariance K). Without loss of

generality, we shall assume a zero-mean process. Then from Equations 2, 3,

and 15a, we have:
I 1 l -I

a j r I exp I x TK-Ix dx]

p(x)<X (270 ) KIKZ-

- f •12exp U- 5L-x) T (L- x)] dx (A-I)

p(x)<\ (21f 17-

Now, let

i -l

=L x (A-2)

5so that, since L has unit diagonals, using the method of Jacobians 161, we

have,

de - dx (A-3)

Thus, substituting Equations A-2 and A-3 into A-I, we obtain

exp T- IeT0-lde -4)

p(Le)<\ (2•',) _KA
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1/2
Furthermore, we have (since D is diagonal):

f exp [- • (D' 2 e )T( D-/2e)de

p(Le)<A (2 W)NI 
2 1KflZ-"e () e)

I ATA 1 ^ J^/2 dAp f~/2)l e /Z exp [ •_ e D A5

where we have used the substitutions:

e D e (A-6a)

A -1/2
d: -D- de (A-6b)

Noting that IKI 101 (31, we have from Equation A-5,

1~ IATA A
fe1 p 1 -eTde Q (A-6c)

1/A (20 N[
P(L'D /2)<X' • ,: I _ _ :

Note that the integrand in Equation A-6 does not depend on the stati~tics of

x. Furthermore, the boundary of our transformed critical region is, from

Equation A-6, given by the equation:

1/2,p(LDI2 e -A, (A-7)

which, from Equations 2 and 15a, can be exptessed as

SI 1/2 T IT 12^

( (2) IKL 1 102
"-- TI I-(2w )NT- T ee71-• (A-8a)
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or

I ATA N1/2 1/2(y e •P e - Xn[ (21) ]K (A-8b)

Therefore, to maintain a constant level of significance, we rmust have:

N1/2 1/2tn[(2s) IKI / 2 constant (A-9a)

or

C
N1 T (A-9b)

T ~(211) K

as we had proposed earlier in Equation 12.

1
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