i
{
"
|
b
3
i
H
|
)
i
|
i

al

Semntairaual Technical Summary

|

Ap126338

Mula-Dimensional
Signal Processing
Research Program

!
|
!

I

)
1

Picpared for the Department of the Al Force
gndor Eocctranic Syaitas Bivision Contract F19423-50-C03S by

Y et “ g
Lincoln Laboratory
IALSACLIUSETTS INSITIUTE OF TEGHNOLOGY

FeXINGIGN, MASSACHUSEYTS

.
pue
L
Cd
Gl Agproved for public reloase; distribution untimited.
A
w ol o
''''' s Crralaal %
L patos s Af?!sfginﬂ color
Tory 1‘1 < ETIC roproductw
(1.5 09wl B An Mlagk aza
€ b ity :
! N \""" \ '3 B \“ i/d\

[}

! 30September1982 -

-
R .

2 r
e &, 3
|

E .

L

‘.

4

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

4 MULTI-DIMENSIONAL SIGNAL PROCESSING
. RESEARCH PROGRAM

SEMIANNUAL TECHNICAL SUMMARY REPORT
TO THE
ROME AIR DEVELOPMENT CENTER

| APRIL — 30 SEFTEMBER 1982

ISSUED 1< FEBRUAPR ¥ 1583

Approved for public release; distribution unlimited.

Origiusl contninsg aoloy
platos: All DTIC roproducte

$o03 vill be in hlack amd
vhite®

LEXINGTON MASSACHUSETTS

1 BN e 0D LR LRI

O A ST P A F A |- 2

The originals of the color figures appearing in
this document are color photographic prints.
Recipients of this document desiring a similar
quality reproduction may obtain the full set at
the cost of $20.00, by submitting a check payable
to Marsachusetts Institute of Technology to:

Lincoln Laboratory

Massschusetts Institute of Technology
Pubiications Group

2.0, Box 73

Lexington, NA 02173-007)

T TR T e U2 A U UG

ABSTRACT

This Semisnnual Technical Summary covers the
period 1 April 1982 through 30 September 1982.
It describes the significant results of the
Lincoln Laboratory Multi-Dimensional Signal
Processing Research Program sponsored by the Rome
Air Development Center, in the areas of target
detection, adaptive contragt ecnhancement, and

image processing architectures.

Accegsion For

NTIS ORARI g
DTIC TAB
Unanneunced Q

Justitication e

By.
pistribution/

Avalilability ques
Avall aund/ox
Dist Spocial

A

114

TABLE OF CONTENTS

Abstract

i. INTRODUCTION AND SUMMARY

2. TARGE

T DETECTION BY TWO-DIMENSIONAL LINEAR PREDICTION

Introduction

Significance Testing

The Noastationary Problem

Adaptive Estimation and Prediction
The Detection Algorithm

Examples

3. ADAPTIVE CONTRAST ENHANCEMENT PROGRAM

4, MULTL

—

L B R g < - O - K &

.

v e . .
) D =T L WD

-0

References

APPENDIX - Derivation of Constant False-Alaram Rste Detection

Deacription of image enhanc,.c
Deacription of scale.c

Running Instructions

Installation Instructions

Glossary of the Program Variable Names

~PROCESSOR ARCHITECTURES FOR IMAGE PROCESSIRG

Ground Rules for Developing a Nodal Processor
Architecture

Architectural Requirements for a Nodal Procesaor
Three-Address lastructiocas

Acray Instructions

Data Addressing

Arrvay Data Access

Program Control

Loop Control

Subroutine Linkage

Input /Qutput

Summary of the Multi-Processor Architecture

iii
1
3

3
4
13

r

FA

26
27

61

61
71
12
7
78

79

83
84
86
87
87
88
90
9k
93
95
96

99

101

e i KA 41 48 i s A ans mime n e 5 — — —_ -
[T e en et i o e e am e L R

1. INTRODUCTION AND SUMMARY

The Liacoln Laboratory Multi-Dimensional Signal Processing Research
Program was initiated in FY80 as a research effort directed toward the
development and understanding of the theory of digital processing of multi-
dimensional signals and its application to real-time image processing and
analysis. " A specific long-range application is the automated processing of
- aerial reconnaissance imagery. Curreat research projects that support this

long-range goal are image modeling for segmentation, classification and

D g s s 3 %07 o
BT

o

t target detection; techniques for adaptive contrast enhancement; and multi~
processor architecture to implement image processing algorithms,
This Semiannual Technical Summary discusses results in three areas. In
Section 2 we present a detailed, technical description of our efforts in
target detection. The problem is formulated as a significance test to
determine whether a small region contains one or more pixe's (picture

elements) that do not match the measured statistical properties of the

background, Examples are shown in which the resulting detection algorithns
ave applied to aerial reconnaissance photographs.

Section 3 contains program documentation information for the adaptive
contrast enhancement softvare delivered to RADC/IRRE earlier this year., It
includes a description of all the program modes, parameters, and user
intersction ae well as the typescript from a sample run.

In Section 4 we discuss our latest thoughts on a multi-processor
architecture for image processing applications. Attention is focused on the
architectural requirements for & single nodal processovr. (As currently
planned, the multi-processor will consist of 16 such nodal processors.) The
srchitectural study is by no means complete, but we have investigated several
architectural principles that appear to support the goals of high
computational throughput and ecsse of programming. In FYB83, we plan to
continue in this vein, refianing the architecture aod developing an

instruction set for the nodal processors.

2. TARGET DETECTION BY TWO-DIMENSIONAL LINEAR PREDICTION
2.1 latroduction

This research relates to the problem of detecting targets (i.e.,
anomolous areas) in aerial photographs. We define the target detection
problem as the detection of man-made objects in a textured background (e.g.,
trees, grass, fields).

In a previous Semiannual Technical Summary (1], we developed a target
detection algorithm based on the coefficieat change function (CCF), We
looked for changes in the parameters of a contipuously va:ying autoregressive
model of aerial photographs. We hypothesized, however, that the two-
dimensional (2-D) prediction error may provide a significaant improvement over
this CCF algorithm.

In this section, we develop such an algorithm and provide a rigorous
theovetical basis for it in terms of significance testing [2]. Our detection
algorithm is derived from the fact that significance testing can be expressed
in terms of the error residuals of 2-D linear prediction, We first develop
the algoritham under & stationary Gaussian assumption and then proceed to
generalize it for the cage where the background is nonstationary. This wore
general test involves deterwmining the error residuals from an optimal space-
varying predictor, The error residuals are coubined over a small area,
suitably normalized and, finally, cowpared to a threshold, Since a causal
2-D prediction filter is associated with our significance test, we can
interpret this as modeling the background by a 2-D causal space-varying
autoregressive randowm process. 1The parametevs of this autoregresaive wmodel,
. therefore, need to be estimated from the background.

Our detection algorithm (as we shall demonstrate with examples) has been
. applied successfully to both synthetic imageés and actual reconnaissance

photographs obtained fiom the Rome Air Force Development Center (RADC).

[V U PR T e RS LI
B N T

‘% FRECIDING PaGE BlASK-NOT FILMRD

2.2 Significance Testing

The problem of target detection in images is.finding small areas in an
image whose statistical properties do not match those of the surrounding area
or background. Since the target statistics are generally unknown (it is
desired to detect broad classes of targets), and the background statistics
may be known or can be estimated, the problem is inherently different from a
clagsic detection or classification problem. Eesentially, the only question
that can be asked is "Does a set of pixels under examination represent
background or does it represent something else?" The area of statistics that
addresses such questions is called significance testing (2]. " The basic idea
is illustrated in Figure 2-1. A measurement is made of some random
phencmenon characterized by probabilicy density p(x). Critical regions
(i.e., vegions of low probability) are chosea correaponding to unlikely
eventa. If measurements fall in the critical region, we reject the

hypothesis that the measurewents tedlly belong to the density p(x).

CRITICAL REGION CRITICAL REGION

Fig. 2-1. 1Illustration of significance testing.

In our case, the probability density is that of the background. 1If a
set of measurements falls in the critical region, we reject the hypothesis
that the pixels form a part of the background; that is, we decide that they
represent (at least partly) a target. The significance level of the test is
determined by the probability of events in the critical region, For example,
if this probability is .05, then the significance test is at the 5% level.

The reasoning involved in the significance test may seem indirect.
However, since only the background has known or estimable statiatics, this is

a logical line of reasoning to take,
2.2.1 Formulation

Given an image and small region S at (a,m), let the image points in §
(see Figure 2-2) be denoted by

T
x = (xl,xz....,xn} €Y}

We want to decide whether the points in S corresponda to a homogeneous random
field with probability density p(x) (i.e., § contains just background) or
whether § contains something other than the howogeneous randoam field (object
possibly present). We want to do thia for all (n,nm).

Let the background correspond to a stetionary Gaussian random process

with mean wm = E(x] and covariaace R*E(i-g)(f_-g)rl. Then

plx) = (2=)NI%{K[17§ exp l-% (5_-9;)1“&‘1(5_-3)! ()
We ghall plot the probability density function snd determine a critical
region of small probability (o) which is the level of significance (sen
Figure 2-3). Let Hy be the hypothesis that the poiants in 5 correspond to the
howogeneous random field., Then we accept “0 (decide “"background oanly") if
the points in § do not fall in the critical region. Othervise, we reject RO

(decide "more than just background"). Thi. is repeated for every (n,m).

11} S B

!
| _ :
| Fig. 2-?2. 1Ilwmage and small region S.
n
Xy X2
® @ o o
| ® e o0
S
® @ o o
e @ 06 o
XN

CRITICAL REGION C. PdC) - oo

Fig. 2-3. Gaussian probability density with critical region C.

A critical region C can be defined by p(x)<A. The relation between A

and the level of significance a is

fp(_:_t_)di =a

(3)
PLx)A
Taking the logarithm of p(f)(k. our significance test becomes:
T -1 N
(x-m) K “(x-m) > -Ln(27) |K|-220) %)

Suppose that we wish to maintain a constant level of significance
regardless of the background statistics (i.e., regardless of the covariance
K). This is equivaleat to enforcing a constant false alarm rate. To do this
we will find the particular form that A must take as we vary K. We
investigate the L-D case; the N-D case is more complicated and is givesn in
the appendix.

Let the density function of the zeto-mean random variable x take the

form

p(x) = exp l=x>/20°) (s)

L Y]

Then the boundaries, txp of our critical cvegion are givea by p(:xa) -2,

From Equation 5 it follove that

12 (s)

1
x, = (=20"La(/TF0A) 6
The level of significance in this case is given by
2 7~ exp (ma'/20%)ax = o n

o VIv o

Now, let u=x/o, so that

1 2
2 fn ——exp [=u /2)du = « (8)
XO/G m

For a constant &, we must have (from Equations 6 and 8):

xO/O a (=28n(¥2n OA))U2 = C (9)
where C is a coanstant. Therefore, A must vary as
c
A = (10)
ik

That is, A must vary inversely as the standard deviation to guaraantee a level
of significance that does not vary with the background ststistics.

. . 2
Evaluating Bquation & for the 1-D case where K=|K|=0™,

(x-)2/0% = <La(2m02)-20mA

> - 2n(210282[2102)

> -l.ncz-c' (11)

where C' is a conatant threshold., Thua, in the 1-D case, our significance
test involves comparing the squared random vaviable (with mean resoved and
appropriately normalized) to a conatant threshoid,

More generally, we can show that for a constant level of significsnce,

in the B-D case (sce appendix), A muet vaty as

A c/»:z:)w2 lxl”2 (12)
Thue, Equation &4 becomes:
T,-1
(xm) 'k (xwm)>' (13

2.2.2 Relationship of Significance Testing with Linear Prediction

We will now show that the significance test of the previous section can
be expressed in terms of the error residuals by optimally predicting each
sample of our small region S by a linear combination of its '"past" samples
("past" is defined below).

Our connection can be made because the background covariance matrix K
can be uniquely factored in terms of upper and lower triangular and a

diagonal matrix [3]. Let
T
K = LDL (14)

where L is lower triangular with ones along its diagonal, where D is a
diagonal matrix, and where T denotes transpose. Substituting Equation 14

inte 13, we have

() ® xem) = e Toh) ™ Gem)

- (gngTL-lTD‘IL_I(EfE)
=eD e > (15a)
where
e =1 xem) (15b)

It is straightforward to show that since L, is lower triangular with a
unit diagonal, L-l has the same property, and thus Equation L5t represents a
causal transformation of the vector x [3]. Furthermore, it can be shown
[3] that each row of L“1 represents the coefficients required in optimally
predicting an elemeat of x, X, from 1ts previous values, i.e., from a linear
combinaticn of Xoops Xy Since t?e covariance matrix K is that of the
hackground, the coefficients of L ° correspond to optimal prediction of the

backgr.rund and not target areas. This prediction concept is illustrated in

Figure 2-4, where we are predicting the middie pixel of a 5> x 5 region S from
12 of its neighboring values. An element ekof e in Equation 15b is given by
k

(5] ™
*2 ™
2 (- T 1) (16)
K A . : (
L "k L P J
where a is the vector of coefficients for optimally predicting Xy from the
values LIEEERIS SRR The diagonal elements of D are given by o ~i var (ek).

Note that the ek's are uacorrelated, i.e., they form a white process (3] when

the pixels being predicted (and doing the prediction) are background pixels.

L] J] ® ®
® ® ° ®]
Pig. 2-4. Prediction of x, from its previous values LREERL e

As illustrated in Figure 2-4, the mask required in predicting each
element X, of § ig a growing nonsymmetric half-plane mask [4]. Suppose that
the background happens to be governed by such a pixel relationship, i.e., we

shall assume that the background random field follows an autoregressive

procesg of the form:

. x(n,m) = | Y a(j,k)x(a-j,mk) + w(a,m) (17)
(j,k)>(0,0)
X where w(n,m) is white Gaussian noise and where (kl,il) < (kz,ZZ) denotes that

(kl,il) is in the "past" of (kz,li). For any point {s,t), we define the past
to be the set of poiants [5]:

{(k,2) |k=s, £<t; k<s, ==< 24w} (18)

With a 90° rotation of coordinates, the values of S used in predicting X,
can then be those 2lements in 8 that are in the now formally defined past of
Xy - For our purposes, we shall refer Lo the model of EBquation 17 as a causal
wodel, i.e., each x(n,m) is a function of its past. Note that this notion of
causality is tied to the shape of the nonsymmetric prediction mask of Fig-
ure 2-4,

Let us supposa that the background follows an autoregressive model of

fiaite order. For example, let the background follow a first-quadrvant causal

autoregressive model, Then, except for certein boundary elements, each

1; ,iff elemeat of e, in Equatinn 16 consists of the error in predicting each pixel
X of § from its first quadrant neighbors (in a 90° rotated coordinate system).
This is illustrated in Figure 2-5 where, except for the L-shaped boundary,

the fixed-order prediction ervor equals e That is, the remaining

m-é‘ ; coefficients of the growing nonsywmetric talf~plane mask of Pigure 2-4 are
zero and thus do not affect the prediction. Generally, the background random
field can be modeled by a causal autoregreseive process of sufficiently large
order (4], and this model corresponds to the optimal linear prediction from

paat values of the 2-D random field.

o
B e coninirms ot enenm e 2 M e, = o s

k

11

BOUNDARY
123369-
3369N ELEMENTS

® e o o o
PETTRRR
o | K& %0‘ o o
NSNS
o
9.9,
k& © o o
ol o)
o| o .

Fig. 2-5, Representation of first~quadrant fixed-order predictor.

Returning to our significance test, from Equation l5a,

4]
=

l

—
]
-
g

> constent (19)

—
Q
b]

vhere o, is the prediction evror variance sssociated with predicting a
background value x, .

Although e, and) arise fvom a growing predicnor using only the samples
within region §, thev can be approximated by tne residuals and variances
associated with a fixed-order lineavr prcd.stor where samples both inside and
outside § are used in the prediction. In this forr lation, since the

?
background is assumed stationaty, 9 in Equation 19 is constant over the

Tttt AR AT AR TR

summat lon index. Thue, an approximate signilicance test can be writteu as

1 Y. 2
} e, ° > coastant (20)
p) k
g k=l
where ;k is the prediction error based on a fixed~order predictor and where
2_2
o7=g, .

2.3 The Nonstationary Problem

The above detection algorithm depends on knowledge of stationary
background statistics. The significance test described in the previous
section uses a stationary Gaussian assumption where the covariance matrix K
is the same at each spatial coordinate (n,m). In reality, however, the
background statistics of an image are changing and the matrix K in Equation 2
is generally non-Toeplitz and differs at each (n,m). In this section we will
investigate the significance test when the data are nonstationary. We shall
see that the significance test changes little from what we found previously.

Let us consider the small region § extracted from a 1-D sequence x(n)
illustrated in Figure 2-6. We investigate the 1-D case for simplicity--
the 2-D case follows similarly. The time-dependence of the statistics of the
sequence is represented through the time-varying covariaance matcix K(n).

The significance teat associated with the vegion § is then given by

1
N x(m|

plx) = g exp (=3 (x = m(a) R (x - ma))] > A (2D

where we have further indicated the time-dependence of the data through the

time-varying mean vector wm(n).

13

x(n) 123370-N

L lelr 11
.

I

il
[T

Fig. 2-6. Oune~dimensional signal with small region §S.
Taking the logarithim of Equation 21, we have
T,-1 N
(x-m(a)) K "(n) (x-m(n)) > -gal(2w)" |K(n)}] - 2en A (22)
We want to maintain a conscant level of significance by appropriately vary~
ing A. We can show that a constant level of significance can be maintained
guch that the significance test becomes:

(x - o)™) (x - m(n)) > constant (23)

Since K(n) is symmetric (but note, not Toeplitz), we can again perform

an LDLT decomposition, which now becomes a function of the time variable n;

K(n) = L(n)D(a)LY () (26)

14

P P R S R N TN

The significance test becomes

(e L @) @) () F(x-mn))

a g?(n)D-l(n)gﬂn) > constant (25a)
where
eln) = L_l(n)(g_t_-g(n)) (25b)

As before, it is possible to show that the transformation of Equation 25b
corresponds to successive orders of linear prediction where the diagonal
elements of D(n) sre the prediction error variances. However, now the
prediction coefticients embedded within e(n) are time-varying as well as
changing with the growing order. This implies that even when the backgrouad
can be modeled by a nonstationary autoregressive process of finite order, the
prediction coefficients associated with our small region S are generally
always changing.

Let us investigate this more carefully. For example, consider a Pth-

order time-varying predictor, with prediction error of the form:

P
e(n) = x(n) - ¥ aln;k)x(n~k) (26)
k=l

Then using the projection theorem, we can solve for the a{n;k)'s (at each

time sample), which minimize E[ez(n)]:

Ele(n)x(n=2)] = 0 £« 1,2,...P (27)

15

Substituting Equation 26 iato 27,

" Lo '
1 R
; . 3

]

3

| P
! E[x(n)x(n-2)] =) a(n;k)E[x(n-k)x(n-L)] (28)
i k=1
or
;? ey r(n;k=0,2) = § a(a;k)r(n;k,%) (29a)
e 3 k=1
“' where
‘ A
r(n;k,2) = E[x(n-k)x(n-2)] (29b)

Note that r(no;k,i) represents the correlation of values of x(n) for n<n0
since k and L are constrained to be non-negative. Thus, r(no;k,l) reflects
only the past of the time-varying correlation structure of x(a).

Noting that the prediction error variance is given as

. P
’ Uz(n) = r(n;0,0) -] aln;k)r(n;k,0) (30)
Kkl
we can combine Equations 29 and 30 to obtain the time-varying normal
equations:
- R(n)aln) = 0" (n) (31a)

16

<P + | ——

where
X R(n) = ...r{n;k,2)... P+1 (31b)
! : i 1
and
R Pcz(n;
-a(n;l)
-a(n;2)
a) = | . ol = | o (31c)

. .

.

| -a(n;P)

Refer back to the small region S that is illustrated in Figure 2-6 for

the 1-D case. We want Lo show that e(n) in Equation 25 doues in fact
correspond to the prediction error from successively growing time-varying
predictors. We first write the sequence of normal equations associated with

predicting cach element of 5 (we assume our region S runs over the interval

0SnsN):

17

R(0)4(0) = 92(0)

R(1A(D) = a2(1)

RO A(N) = o7 (M) (32a)

where "A" refers to a growing predictor, and the index n refers not only to
the location of the sample being predicted, but also to the order of the
predictor. However, if the process of concern follows a Pth-order
autoregressive model, é(n) for n?P will be of order P; i.e., Q(n;u)-o for
kOB,

Note that R(0), R(1)... are matrices growing in size, but that R(n) is a
lower right-hand corner submatrix of R(N+¢l)-~in spite of the fact that these
matrices are non-Toeplitz. Consequently, we can express the sequence of

normal Equations 32a as

MO] [A 1 []
a) 0 a1 w0
a(2) a(8-2)
R(N) - (32b)
. 0 0
i Al L 3(0), i ol(n)]

>
where a(n) represents the reversal on g(n).

Finally, note that (when x(n) is zero-mean) R(n) = K(n) in Equation 32b,
80 that

a(0)

e | a0 (33a)
a(N)

18

and

D= . (33b)

.

Lo o2 (W),

Thus, e(n) does indeed correspond to successive orders of time-varying
(growing) predictors, provided that the process being predicted has zero
mean.

In the stationary case, we can approximate_g(n) by time-vary:ing finite-
order predictors. As before, when the background proceas follows an
autoregressive process of this finite order, only values of e(n) near the
boundary of the region S will be inexact. Our approximate significance test

based on Equation 25 becomes:

e wetn) » 3 (weta)

N
. {1 L)t (36)
k-

> constant

where ¢ (k) and ;z(k) correspond to fixed-order, but time-varying predictors
(note that the index k represents our time index over the region $).

Our approximation here may also have certain computational advantages.
For example, we do not need to recompute predictor errors (corresponding to

different orders) for overlapping regions §S.

19

2.4 Adaptive Estimation and Prediction

The significance test of the previous section depends on knowledge of
the background statistics. We need to know or estimate the cocfficients of
the assumed time space-varying causal autoregressive model, Hewever, in
attempting this estimation, we encounter the infamous uncertainty principle.
That is, to obtain a reliable estimate of R(n) in Equation 31 (which is
needed to estimate a(n,k)), we require stationarity over a "sufficiently
large" window size. On the other hand, we assume statistics are generally
changing everywhere in space,

To gide-step this problem, we assume that the data are stationary over
the estimation window, we(n,m). The location of the 2-D estimation window
that slides over our data will be designated by the center inder (no.mo) as

illustrated in Figure 2-7. The model parameters associated with this window

are defined as (nO,mO): a(no,mo;j,k).

ESTIMATION WINDOW,
weln-n,, m—mOS

123371-N

pof—— 2

[....—-—-—-i

[=]

--.+

m
Rig. 2-7. GRepreseatstion of estimation window.

20

The estimation procedure we shall use 1s the covariance method of linear
predicticn. The prediction error associated with the estimation window at
spatial coordinates (no,mo) is the error e(no,mo) in predicting the value

x(n) from its causal neighbors. Finally, the prediction error variance

0""0
oz(no,mo) is given by the average squared prediction error under the
estimation window at (no,mo).

For each pixel location {(n mo), we wish tu estimate the set of model

O’

parameters a(no,m k,%) that vary in space. To do this we assume that x(n,m)

03

ia & Gaussian 2-D raudom field stationary over each we(n—n ,m—mo), and

follows the model in Eguation 17 under each estimation wingow. Therefore,
for this section, we drop the space dependence and work with the model given
by Equatiom 17,

We shall assume that the prediction coefficients a(j,k) fall within a
(PxQ) first-quadrant plane mask., For simplicity, we limit our derivations to
this class of prediction masks, although it is clearly applicable to more
general mask shapes, such as the nonsymmetric half-plane mask. The cbjective
is to estimate from x(n,m) the model parameters a(j,k) for j = 0,l...,P and
k=0,l...,Q, with j = k # 0. Further, sssume we have x(n,m) for

(n,m) EI-P*nl,nzlx(-Q*ml.m (see Figure 2-8). We then define the ervor

]
2
e(n,m) over the vegion I, given by I = [“1'“2)ximl'm21' as

P Q
e(n,@) » x(am) - 7§ } o oa(ikx(a=j,mk) (a,m)el (35)
j-o k=0
(3,x)#(0,0)

OQur goal becomes to minimize the sum of the squared ervvors given by
n ®

2
EInO,mG]) ! ez(n,m) (36)
nen, @)

21

(-Peny. ~Qemy)

. n
(ng. ma)
: I
/
N, = e ey
o
(n1. m1) —'—;
i
!
‘ | m
Mo

-

Fig., 2-8. Known data blocka used in 2-D least squares.

The approach we take is to transform the 7-D problem to a 1-D problem so
chat & 1-D least squares solution is applicable. Note, however, that we will
still have solved the 2-D least squares probiem., We wish to transform
Equation 36 into a 1-D error expres:‘on. To accomplish this transformation,

we define the vectors a[no,mol aud 0 by

‘ ﬂa(o,l)ﬂé Ps(nl,ml) 7 *
a(0,2) s(n, ,m +1)
171
a(0,Q) s(nl,mz)
a(l,0) Ae(nl+l,m1)
a(i,l) s(n1+l,ml+l)
a[no,mol = . (PQ-1) g = . (pQ-1) @37
a(l,qQ) s(n1+l,m2)
. ! .
R
a(F,0) s(nz,ml)
a(P,1) s(n_,m_+1)
2 1
SR | stny)] Y

<——(PQ~1)—»
N 1
¢ 2
§ = A M (38a)
v AM-I - '
where
- FQ-1 —-
qs(nl+j-0,ml~l)..s(nl+j-0,ml+Q)] ...is(nj+j~P,ml-0)..s(n1+j-P,ml-Q)]
AJ-=Is(n1*J"0.mi+1—l) -.s(n)+j-0,0,+1+Q)]... ls{nl+j-P,ml+l-0) . .e(n1+j-P,m1+i -Q)]
Ie(nl*‘J“O.mz-l)--s\nl‘rJ-O,mz-Q)] --.[8(01“3'1).1112*0)..B(nl*J-P.mz“Q)l i
(38b)

and where we have agssumed the data segment I to be of extent M x M. Note that
0 ig a vector consisting of the concatenation of the rows of x(n,m) aver §;
a[no,mO] is a vector consisting of the concatenation of the rows of a(j,k) for
(j,k)el0,r]x{0,Q] with (j,k) # (0,0); and § is & matrix that consiste of the
concatenation of rows of various subsequences of the known x(n,m) required in
predicting each value of x(n,m) over I.

Therefore, we can write Equation 36 ass:

n @

2
E(nl,mi]) I e“(n,m)
e, ma
- ()T) (39)
Sa(no.mol -0 (Sa(nc.mol -¢ 39

24

We then write the solution [1] to minimiziang Equation 39 with respect to
as:
a[no,mO]

-1.T
a[no,mol =R S0 (40a)

where
R = sTs (40b)

Note that the matrix R is of extent (PQ-1)x(PQ-1) and difficulty in its
inversion is dependent on the model order, not on the size of the known block
of data.

Since R is generally not Toepiitz, its inversion will require on the
order of (PQ)3 operations. The computation of R-1 can probably be reduced by
considering its block-like structure resulting from the conversion of a 2-D
problem to & 1-D problem. Thus, assuming P,Q<<N, the bulk of the computation
is embedded within forming R = STS, which requires on the order of N
operations.

This estimation is then carried out at each pixel. An alternative to
this direct estimatiusn is to accomplish the estimation recurgively. However,
this may be a realistic alternative only when the estimation window size is
less than the model order [1]; i.e., the matrix required to be inverted at
each pixel is on the order of MxM. We are curreatly investigating methods to
reduce this computation.

In either case, we obtain a parameter set at each pixel which represents
an estimate of the model parameters of the changing background, required in
our prediction procedure. Finally, it is straightforward to show from
Equations 39 and 40 that the estimate of the prediction error variance given
by the average squared prediction ervor under each estimation window can be

expressed by

Sz(no.mo) = (OTO -a[no,l:x()]’r(STS)a[nO.mo])N-2 Wl)

25

2.5 The Detection Algorithm

We can now merge the results of the previous sections to form our target
detection algorithm., From our coefficient estimates in Equation 40, we can
compute the prediction error function ;Z(n,m) based on a fixed-order, but
time-varying prediction model. Then with Ez(no,mo) in Equation 41, we can

compute the 2-D version of the approximate significance test of Equation 34:

73 %2(k,2)/3%(k,2) > constant (42)
k,LeS

where we can think of the indices k and £ as running over different
regions 8§,

Equivalently, we can coasider generating the statistics in Equation 42
at each spatial location (n,m) of an image by convolving an N x N smoothing
window ws(n,m) with the normalized prediction error to create a new smoothed

function Es(n,m):

Es(n,m) = a(n,m)**vs(n,m) (43a)
where

~2 ~2
q{a,m) = ¢ (n,n)/0" (a,m) (43b)
In the estimation of the model parameters, the estimation window

we(n,m) should be small enough to preserve approximate stationary, but large
enough to obtain a reliable estimate of the required correlation

coefficients, The estimation window must also be large enough so that

anomalies (i.e., targets) do not badly corrupt the correlation estimates.

26

The smoothing window should be small enough so that small-extent targets
are not overwhelmed by background in the significance test. However, it
should also be large enough so boundary effects in our finite-order model
assumption do not play a significant role.

The overall detection algorithm based on the approximate significance
test is illustrated in Figure 2-9. The first operation subtracts an estimate
of the local mean of x(n,m) (recall that our significance test requires a
zero~mean random field), which is computed by averaging x(n,m) under
we(n,m). Under the estimation window, a local covariance matrix R(n,m) as
defined in Equation 40b is computed. R(n,m) is then used to find a(n,m) and
oz(n,m), which are required to compute the normalized prediction error,
q(a,m). Finally, q(n,m) is coavolved with the smoothing window wa(n,m) and

compared to a threshold.
2.6 Examples

In this section, we present nine examples based on the detection
algorithm developed in the previous sections. Throughout this section, the
estimation window v, (n,m) is of size 10x10 pixels, which we assume is
gufficiently larger than the size of most targets. This assumption can be
justified through our empirical observation that, in most cases, the
CCF {14] of our processed images is relatively flat; 1i.e., the targets'
presence appears not to adversely affect estimation of background statistics.
We also assume that a 10%10 window is large enough to obtain a good estimate

. 2
of the correlation coefficients required in estimating aln,m] and ¢"(n,m),
but also small enough to msintain approximate stationarity. Of course, this

assumption bresks down at region boundaries.

In the first examples, we coansider computer-generated l-D and 2-D
signals determined by exciting all-pole filters with white noise. We then
analyze progressively more complicated real images that were obtained from

the RADC data base.

27

‘wy31I08[® V0TIV “6-T °BTd

N-ELEETL dviN
123ra0
® o
. v 4

-

(wu)Sm (wu)®3 :
{ 314 I/
DONIHLOOWS
QTOHS3IYHL

28

(wulp =

GE.ENm \.E.&N.w

(w0 (WU

Example 1

Consider a sequence x(n) of the form:
x(n) = 0.95 x(n - 1) + w(a) (44)

where w(n) is zero-mean white noise. A sample function of x(n) is shown in
Figure 2-10(a), and a l-point "object™ at n = 64 is shcwn in Figure 2-10(b).
The single coefficient estimate was based on a 16-poinc estimation window.
Figure 2-10(c) shows the squared prediction error :i. The object is clearly
detected.

Consider a second sequence depicted in Figure 2~11(a) of the form in
Equation 44 created with a different white-noise input. A four-point object
has been implanted at locations n = 90, 91, 92, and 93. As before, the
single coefficient estimate was based on a l6-point estimation window. The
squared prediction error, illustrated in Figure 2-11(b), gives a clear

indication of the object.

Examgle 2

Figure 2-12(a) depicts a 1-D slice of an aerial photograph with a one-
point cbject implanted at n = 64, In particular, this 1-D slice was
extracted from a section of the aerial photograph which consisted of a grove

of trees, In this example, 8 two-parameter noncausal model was assumed:

x(n) = a x(a-1) + a, x(a + 1) + w(n) (45)
where w(n) is white noise. The squared prediction error, shown in

Figure 2-12(b), clearly picks out the object. A second cbject and its
corresponding squared prediction error are shown in Figures 2-13(a) and (b),

respectively,

29

s

Y

b

{5 T 1 T 1T 1T 1T 1T 13 - 1T 11T 1T T 1T 7T 171
é 50 (a - sof- ® .
LIS - - - =

OBJECT

0 64 128 0 64 128

.-

— {(c} -
650~ OBJECT -
" | -
d —
- -
25 F- —
— -

z -
§ -
- -1

g ——
= u
0 64 128

Fig. 2-10. Detection of l-point object in Example 1. (a) 1-D random
sequence, (b) random sequence with object, (c) squared prediction error.

30

(@) l 123375-R|

OBUECT

(b)

OBJECT

. k 0 64 128

¢ n
3 Fig., 2-11. Detection of 4-point object in Example |. (a) 1-D random
E A sequence with object, (b) squared prediction error.

2 31

e

v

500 T T T 1T 1T 17171 11
(a) . (b) -

- -
) -

§0.000

250 +— j

0 ' 64 128 0 64 128
n n

, Fig., 2-12. Detection of l-point object in Example 2. (a) slice
| of trees with object, (b) squared prediction error.

a

| D L L _I—IjﬁTTTfl
~ (a) ~ {b)
[~ a
}— -
- OBJECY —
250 OBJECT = 26,000 -
. — -

~

0 84 128

Fig. 2-13. Detection of 4-point object in Example 2. (a) slice
of trees with object, (b) squared prediction error.

32

Example 3.

Consider a 2-D sequence generated by the particular 2-D difference

equation of the form:

x(n,m) = a(0,!) x(n-0,m-1) + a(1,0) x(n-1,m-0)
+ a(l,1) x(n-l,m-1) + w(n,m) (46)

The background sequence (64x64 pixels in size) was generated with
coefficients a(0,1) = 0.1, a(1,0) = -0.9 and a(l,1) = 0,1. Four objects were
implanted within the image, all of a constant level, but with a variance
about equal to that of the background, Moreover, the size and level of the
anomalies were chosen to be visually difficult to detect from the background
(see Figure 2-14(a)). The model assumed in the estimation procedure is given
by the generating process (Equation 46).

The 3-D perspective and contour map of the squared prediction error
zz(n,m) are given in Figures 2-15(a) and (b). All four objects are clearly
detected, and even the two closely spaced objects are resolved. This same
function, along with the smoothed e(n,m) (a 3*x3 smoothing window, we(n,m),
was applied in this example), are illustrated in Figures 2-14(b) and (c)
after thresholding, Figure 2-14(d) shows the prediction error variance, and
Figures 2-14(e) and (f) show the smoothed normalized prediction error--both
appropriately thresholded.

Note that two different thresholds are applied to the smoothed
normalized prediction error, The first resolves three of the four objects,
the second resolves all four objects, but introduces false alarms. This is
due to the inaccuracies of the eatimate of the prediction error variance,
which is illustrated in Figure 2-14(d). Ideally, since the background is
stationary, the estimated prediction error variance should be flat. However,
as seen in Figure 2-14(d), the estimate actually peaks in the region of
objects-~contrary to what we would hope to happen. We have encountered in

this synthetic example, perhaps, what is a fundamental limitation in

33

123378 0

SR

?usa..u. ‘&u

ey

=
45
(b)

A ..4..::-
VO Y v
it

3 -Q—s.::m- w.ﬂm—n—”“d 1)
TERENLHL N (T PG

i 0 et st i

e DI
\) b

ce

R e e A SR

(d)

(c)

) i, v..u. LA .m.. 1)
_ Al m.« . ._m.: ‘
.w.w m»...“m.» _Sw.ﬁ)

! AN
Q._M HEE ik &3
X ate L "
i

. ‘n .)
SO

it K

(f)

(e)

e fur Example 3,

]
]

IMAY

test

in

objeces

uf

four

Detect ton

Fig. 2-14,
{a) test

objects, (h) prediction ervor,

with

tmage

4) prediction error variance,

(

prediction ¢

(¢) smoothed prediction error

(¢

rror (hiph threshold),
rear (low threshold),

ction

d

) smonthed normalize
(£) smuothed normalized predi

(a)

T AN T T -T LR Y i v
-
bt
[—- ~4
50 ’ 1
[
L. Q % © e
4 1
n ok -
e -~
o
~4
f Q
wWr R
P— -
- ‘o - -3
4
r e B e e Kot S s 5 iR e)

% 10 16 20 25 30 35 40 45 50 66 60

0

Fig. 2-15. Prediction error for Example 3. (a) 3-D perspective,
{b) contour wap.

37

T N T T bt aiiistn

PAGE BLANK-SOT FILMRD

measuring the background prediction error variance: the presence of objects
can falsely increase the background residual variance. With a priori
knowledge that the background prediction error variance is constant, we were

able to improve detection,

Examgle 4

Figure 2~16(a) depicts a 64x64-pixel RADC image in which two 2x2 pixel
syathetic objects (of constant level) have been implanted. Thia image was
created by a 64-to-! downsampling and smoothing of the original image. The
assumed background model is the same three-parameter model used in the
previous example in Equation 46. Figure 2-16(b) shows the prediction error;
Figure 2-16(c), the prediction error variance; and Figures 2-16(d) and (e),
the smoothed normalized prediction error (a 4x4 smoother, ws(n.m), was
applied). The processed part of the image is given within the boxed area.
Note that normalization of the prediction error ia this case (unlike the
previous example) has helped bring out the object from the more busy field
background.

Examgle 5

Figure 2-17(s) depicts a 64x64 pixel BRADC image in whach two 3Ix3 pixel
synthetic objects (of constant level) have been implanted. This field-tree
image was created by a 64-to-l downssampling and smoothing of the original
image, In our first attempt to detect the two synthetic objects, the three-
parameter wodel of Equation 46 was assumed. Although the object in field
background was easily detected, the object inm tree background was not
detected, evin vith normalication by the prediction error variance,

Consequently, in our second attempt at detection, we assumed a twelve~
parameter nonsysmettic half-plane sutoregressive model [11]. This model is
more general and thus more likely to sccurately model the backgzround (11},
Figure 2-17(b) showe the prediction ervor; Figure 2-17{(c), the prediction

ervor variance; and Figures 2-17(d) and (e), the smcothed normalized

38

|123380 Rl

™

- B BT E BT e i

-

.

Fig., 2-16, Detection of objects tn RADC wmape for Frample 4.
(a) image with two synthetic objects, (b) prediction errr,
(¢) prediction ercvor variauce, (d) smoothed normalized
prediction error (high rhresnold), (e¢) smoothed normalized
prediction error (low threshold).

Fig. 2-17. Detection of objects in RADGC image for Example S,
(a) image with two synthetic objects, (b) prediction error,
(¢) prediction error variance, (d) smoothed normalized
prediction error (high threshold), (e) smoothed normalized
prediction error (low threshold).

. o . 1 sy

b BRI I RLANGHUT TILGD

st meen e T et Lo v e
5 . N

i

gs
L'

4

X

.

prediction error (a 4%4 ws(n,m) was applied). Because of the computational
intensity with a twelve-parameter model, only the designated region was
processed. Note that normalization of the prediction error has helped
significantly in bringing out from the background the object embedded within

the trees,
Example 6

The RADC image displayed in Figure 2-18(a) consists of 128x128 pixels
and was created by a 16-to-1 downsampling and smoothing of the original
image. The assumed background model is the same three-parameter model used
in Exawple 3 in Equation 46. Figure 2-18(b) shows the smoothed normalized
prediction error; Figure 2-18(c), the prediction error; and Figure 2~18(d),
the smoothed prediction error--suitably thresholded. As in our synthetic
example, the smoothed prediction error without normalization yields fewer
detected objects (which may or may not be considered false alarms) than the
snoothed normalized prediction error. This happens probably because the
background variance appears reasonably constant throughout the image. The
objects, however, can potentially introduce a false increase in the local
variance, as illustrated in Figure 2-18(e), which shows a thresholded version

of the prediction error variance.

Example 7

The RADC image displayed in Figure 2-19(a) consists of 128x128 pixels
and was created by a 16-to-1 downsampling and smoothing of the original
image. Aes in the previous example, a three-parameter autoregressive model is
assumed. V¥igures 2~19(b) to (e) make the same comparisons among the various

residuals as made in Example 6,

Examgle 8

The RADC image displayed in Figure 2-20(a) consists of 128x128 pixels

and was created by a 64~to~] downsampling and smoothing of the original

43 o
.\f‘(‘;..,.a..-u-_x..a...j.‘ - S e i e e ke a—en
§ PEEOKUNG PAGK BLAMK-NOT FILMGD

i
i
i
i

Fig. 2-18. Comparison of smoothed predictio. error and smoothed
normalized prediction error for Fxample 6. (a) RADC image,

(b) smoothed normalized prediction error, (c) prediction error,
(d) smoothed prediction error, (e) prediction error variance,

[s . - P e

45 lg FRECEDING PAGE BLANK-NOI FILMED

O I T P Pt WA ¥ e

|123383 Rl

Ry

Fig. 2-19. Comparison of smoothed prediction error dand smoothed
normalized prediction error of Example 7. (a) RADC image,

(b) smoothed normalized prediction ercur, (c) prediction error,
(d) smoothed prediction error, (e) prediction error variance.

Ve g

PRECKDING PAGK BLANK-NOT FILKED

LY

B . T T

o

T i) T s s, e -
- BN A s H .
. . el .

Fig. 2-20. Comparison of prediction error and smoothed normalized
prediction error with first-quadrant mask for Example 8. (a) RADC
image, (b) prediction error variance, (c¢) prediction error, (d) smoothed
normalized prediction error,

.

T

é PRECADING PAGE ELAMK-NOT FILMGD

image. In this example, we consider a first-quadrant causal, second-quadrant
causal autoregressive model, and average of the two. This average represents
an attempt to eliminate the directionality of the approximate significaace
test.

Figures 2-20 and 2-21 illustrate the results with first-quadrant (three-
parameter) and second-quadrant (three-parameter) prediction masks,
respectively. Figure 2-22 summarizes our results by depicting the swoothed
nermalized prediction errors and their average. WNote that the individual
smoothed normalized prediction errors do well in detecting most c~jects,
while the average appears to deteriorate the performance.

Two additional experiments that were performed with this ¢'~ta are shown
in Figures 2-~23 and 2-24., Figure 2-23 shows a different thresholded version
of the CCF [14] corresponding to the prediction of Figure 2~20. The CCF
bears little resemblance to our prediction errors. Moreover, due to the
large estimation window (i.e., 10x10 pixels), this function is small
everywhere--reflecting little sample~to-sample change in the coefficient
estimates, Finally, in Figure 2-24, we depict the smoothed noncausal
normalized prediction error, The noncausal prediction rask is an eight-point
nearest neighbor mask. The results on this image and others (e.g., Example
5) are encouraging, but appear to do no better (and perhaps worse) than the

causal prediction masks,

Examgle 9

Consider the 64x64 pixel RADC image in Figure 2-25, generated by down-
sampling the original image by lé6-to-1 wi‘h smoothing. This image is
particularly interesting because of the presence of a radio tower in the
lower right~hand corner of the image. Note that the top of the radio tower
has been clearly detected.

It is interesting to observe ihet in Examples 7, 8, and 9 normalization
of the prediction errors helped detaction ar.d reduced false alarms by
reducing the background va-iance iu busy regiono such as the tree and brush

areas.

51

123385 R

Fig. 2-21. Comparison of prediction error and smoothed normalized
prediction error with second-quadrant mask for Fxample 8. (a) RADC
image, (b) prediction error variance, (c) prediction error,

(d) smoothed normalized prediction error,

- ————t

53

{ FRECHDING PAGE BLANK-NOT FILMED

—_— .

[123386 R|

' ’
r
. $
\ "
\: .‘. .
LA A :
» 7
'.
(b}
b |
)
] . []
2 #
AN - » s /
<% .
J . s
',~ -i -’:‘l’, ""l_’
| h“" P ‘
' v "z
‘y - ‘4
¥ . ’.' z
T ""']
" iS ;) ‘#

(d)

Fig. 2-22. Average of smoothed normalized prediction errurs
for Example 8. (a) RADC image, (b) smoothed normalized
prediction errur (Ist quad), (¢) smoothed normalized
prediction error (2Znd quad), (d) average of (b) and (c).

e b A

TR Coadt i e

e g

LiED

55 N FECKIZ g T
o FAlR BLANK-NOT I

{
!
i Fig. 2-23. CCF corresponding to Figure 2-20,
|
1

;

Fig. 2-24. Smoothed normalized noncausal
; 57
i

R

O v

2

Fig. 2-25. Comparison of prediction error and smoothed normalized
prediction error for Example 9. (a) RADC image, (b) prediction
error variance, (c) prediction error, (d) smoothed normalized
prediction errvor.

"4 f - e .
t. FRECIDING PAGE BLANK-NOT FILMLD

&
£y

A

Y

3. ADAPTIVE CONTRAST ENHANCEMENT PROGRAM

We have developed two algorithms for adaptive contrast enhancement of
images degraded by cloud and/or shadow. The first algorithm is a simple gain
in local contrast [7], and the second is more complex and sophisticated--
the adaptive homomorphic algorithm [8]. A computer program system that
implements these techniques was written in 'C' language under the UNIX
operating system, The adaptive contrast enhancement system offers more
operation modes than just the two techaniques specified above. The following
sections describe in detail all the options that the system offers to the
user. The system consists of two progrems: image enhanc.c and scale.c;
these are described. In addition, an actual example of how to use the
program is given,

The system deascribed was installed in RADC's AFES system and a version

of it exiats on our computer (VAX with UNIX a3 an operating system).
3.1 Description of image enhauc.c

Program image enhanc.c implements the adaptive contrast enhancement.

The program offers three operation wodes:

1. intensity domain
2. density domain (log) on a positive iwmage

3. density domain {iog) on a negative image

After selecting one of the three modes, the user can choose to process the

resulting array f(“1'“2) in two different ways:
1. point-by-point (done in the space domain)

2. block processing with 50 percent overlap (done in the

frequency domain)

61

B 7
il ¥
I
-

3

; sy

s 3

" « S

3
% 4
f oo .]
3 ! i
E i
b 3
b
AL
. Lt 3
b -
g
*
b 3
FE
b.fd
; R
» .

3.1.1 Point-by-Point Processing

As shown in Figure 3-1, the point-by-point processing separates the
input array into two compoueuts: the local mean (fL) and the local contrast
f -

(H)
The local mean is computed as the weighted average of the input array

over a small 2-D window (W), i.e.,

l4-hwm’.ze n2+hwsize
1
fL(nl,nz) =5 y y f(ml,mz)
= - 1ze nyy ~ 1
m1 nl hwsiz m2 n2 hwsize
« Wia,-n -n 45a
(YL 2) (45a)
1
iy ny)
((n,. Ny}
KOClny . ny))
OC(n.l. n,)
LOW-.PASS RON-
1 CILTERING ton. o) LINEARITY
Le T2
DC(n‘. “2’
1GINA L
oﬁwigé H LOW.PASS brerrrsmmeanliie- OGN, . n.)
“ny ng) FILTERING 1 M2

Fig. 3-1. Block diagram of point-by-point processiug.

T -, D AR TR e ATV T 6
k] h'
% HB

S

e

where
hwsize hwsize
U= y y wii,j) (45b)

i=—hwgize j=—hwsize

The size of the filter W is (2 hwsize+1)2. W can be a rectangular window or
a Gaugsian window.
The local contrast is obtained by subtracting the local mean (fL) from

the value of the point (nl,nz), i.e.,
fK(nl'“Z) = f(nl,nz) - fL(nl’nZ) (46)
After separating the signal into its two components, the enhancement 1ia

achieved by modifying each component according to a function (which is

defined by the user) of the local mean of the intensity values — DC(“I’“Z)’

l.e.,
n10hwaize u2+hwsize
DG(n,0,) = ¢) 3 8(i,1) Wli-a ,j=n,) (1)

i'nx‘hwsize j=n24hvsize

vhere a{i,j) is the value of the point (i,)) in the input {mage (intensity
domain}.

The locel contrast is multiplied by a gaia k [.], which is & function of
DC(nl.nz). 1f klbc(nlanz)]>l. the contrast is increagsed; if it is less
than 1, the contraet is decreased. The function k is defined as piecewise
lincar. The new contrast fn(nx,nz) is defined ss

(n ,nz) - fﬂ(al’ﬂ2) leC(nl'“I)l (48)

fR 1

The local mean goes through a2 nonlinearity;, wmore specifically, the new mean

SL(ﬂl.nz) is defined as

. - . . .
EL(nl.nz) [EL(nl.nz)-mtu.angl !(DC(nl,nz)] + midrang (49)

6'\

where midrang is the value of the midpoint in che range of values in the
inpuat array (in intensity processing it is 128 and in density processing it
is 420.5log (255+0)). The % function ranges between zero and one and is
defined as piecewise linear. Figure 3-2 shows the way the new local mean is

generated,

| 123397-N D'STANCE = (L(nl, n2)-MIDRANG

« MIDRANG
t i
I Al
]
INTENSITY 0 128 fL(n1, n2) fL(ﬂ1 nz) 2565
DENSITY 0 4 8

DISTANCE = l(DC(nr n2)l : (fL(n‘, nz;-MIDRANG)

Fig, 3-2. Local mean processing.

We would like to change the local mean so it will be clcser to the
midrang., This is done for two reasons. The first is to compensate for the

degradation (clouds + high DC, shadows * low DC). The second is to account
for the increase in contrast that is achieved. The two new components {f',

fé) are combined to produce the processed atray 8(“1’n2)‘ The different

parameters are described in the next section,
Parameters

The user has cor. col over eight parameters in the point-by-point
processing. The parameters are described below, and actusl values are given
in Table 3-1.

64

" e r.-—-énpvd e
A

TABLE 3-1
PARAMETERS FOR POINT-BY-POINT PROCESSING

Range of
Parameter - Defaultsg* Normal Values

wtype g or t

hwsize <!5

var <2 hwsize+l

(0],... klnumpt-1] ., 4., 5., 7., 8., 8. 12.5k(i]>1.
£{0},...,tloumpt-1j | C.2., 0.2, 0.2, 0.2, 0.2, 0.2 | L.22[i]>0.

{;, .| en{0),..,non[nunpt=1) ., 100., 150., 175., 255., xmax?an{i]>0
255.
. —_— 255.

g
5
6
numpt 6 <21
2
¢
0

. " -
S
L s
PR *Defaults exist only for intensity processing of a cloudy image.
Y 3 '-
ol
(RE -
.
"? ',1;
r'i .
e
L
:
e
a-

wtype Shape of window to be used in computing the local mean.
g - Gaussian window

r - rectangular window

{

var Thickness of Gaussian window if chosen (see Figure 3-3).

Fig. 3-3. Thickness of Gaussian window.

. , 2 .
hwsize - (2 hwsize+l) is the extent of that window (wmax 31 x 31).
numpt - number of points in the piecewise linesr functions (k,2)

(maximum 21 pointa).

k - the array that contains the values of the k function (max
size 21).

2 -~ the array that contains the values of L (max size 21).

wn ~ the array that contains the corresponding mean values of

the k and £ functions, i.e.,
Remark
wn(0] is set to 0 {for the beginning of rhe range)

ma{numpt-1] is set to the maximum gray level allowed (usually 255.)

66

ST L S T NI R A AR S T SR T WP P TICT:

8. xmax - maximum gray level in the input image (usually 255.)

(see Figure 3-4),

nomor 1)
|

. P k{numpt-2]
rd

Z W2)

1]
KO}

? ¢ T T 1

mn{0} mn{1] mn{2] mn{numpt-2} mn{numpt-1)

Fig. 3-4. The k function described as a piecewise linear function
of the wmean value mn,

3.1.2 Block-by-Block Processing

oo

The block=-by-block processing (Figure 3-5) uses a 2-D triangular window,
iw' :{2 ,vith an overlap of 50% to window the data. Along one dimension, this looks
. like the sketch in Figure 3-6.

A high-pass filter is applied to each windowed section. The exact shape
é-u <3 . of the high-pass filter is determined according to the value DCi. which is
the average value (using a rectangular window) of the current input image
(intensity domain) section. The exact shape of the filter is defined by
three parameters (A, B, and C shown in Figure 3-7) which are givea for DC = 0

and DC = max. allowed. For an intermediate value of DCi. each of the three

S parameters is deterwined by the formula:

67

‘AOPUTA IBTNIUBIVIX ST mdB tmopuia apnduviil 81 .._.ua -3uissesoad A001¢-AQ-AV0(w "G-€ "B14

ﬁNC .Pcw
anva
¥3a NV 3oVNiI
JUNIDINO
ANC .—.&EN;
_ Em o)y wum
ONIM3LTIS
— SSVd-HOMH
* 3
xuc AN: .wct.us.)
[J [J
i L4 1"6
. o {u tuy
L4 ®
[J [J
[® [J
®
2y s » Co ‘ork Hum N
(fu) ONIY3LTIA X
SSVd-HOIH
N-OOVEZL

FUQ ANC .-,CV._:_.g

—

Fig. 3-6. Processing along one dimension.

13 |

Fig. 3-7. Gaussian-shaped filter.

69

2 2
(x - X)7 DC.
DC=max C=0 i -
X, + ch.o for X = A, B, or C (50)

t (max DC allowed)2

The filter is & Gaussian-shaped filter as shown in Figure 3-7. The following
section describes in detail the variocus parameters of the processing. The

parameters are listed in Table 3-2.

TABLE 3-2
PARAMETERS FOR BLOCK PROCESSING

Parameter Default* | Range of normal values
hwsize 8 4,8,16

xmax 255.

hfdeO 1.1

hfdcmax 1.5

LfdcO 0.53

f fdcmax 1.2

varde0 5.

vardcmax 20.

*Defaults are designed for negative density
proceassing of a cloudy image.

Parameters

1. hwsize - (2 hwsize)2 is the size of the processed section and the
filter that is applied (up to 32 x 32 for 512 x 512 images
and up to 16 % 16 for 1024 x 1024 images). It should be a

power of two.

70

2. xmax ~ Max gray level that exists in the current image (usually

255).
hfdcO - Value of A (in Pigure 3-7) for mean level = 0 (the lowest).

. hfdcmax - Value of A for mean level = xmax.
. RfdcO - Value of ¢ (in Figure 3-7) for mean level = 0.

3

4

5

6. fLdcmax - Value of C for mean level = xmax.

7. vardc0O ~ Value of B (in Figure 3-7) for mean level = 0.
8

. vardcmax - Value of B for mean level = xmax.
3.1.3 Resulting Output

After the point-by-point or block processing, the resulting output array
is expounentiated if it is a density image. Inversion of negative mode images

can te done in the program scale.c,
3.2 Description of scale.c

For some of the processing modes allowed in image enhanc.c (such as all
density processing and intensity block processing), the resulting output
array does not lie in the required range for display (0-255). Thus, the
output array muat be scaled. Since the AFES auto wndw.h software permits
only one pass over the data and scaling must be done in two passes, this led
to the need for the scale.c program to be run after image enhanc.c for the
specified modes of operation.

The program scales the output array of image enhanc.c &ccording to a
number of parameters that are provided by image enhanc.c in & file (see

running instructions). The parameters are:

. wminv - minimum value in the array to be scaled.

maxv - maximum value in the array to be scaled,

1
2
3. pat =~ point or block processing.
4. den -~ density or intensity wmode,
5

. nega - negative or positive mode.

71

(R N A I TR T LS 1 TR AN T et N R S G i e S s T e S S e

According to these values, the array is scaled in the following manner:

1. For block processing of intensity mode or for any processing of

positive density mode, scale the input array such that

3.3 Running Instructions

The following sectionsg describe the interaction between the user and

each one of the programs.
3.3.1 image_enhanc. (the load module of image enhanc.c)

User: image_enhanc <{imagel.data> {imageZ.data>
where
imagel.data is the name of the input image.
image2.data is the name of the output image.

Terminal: do you want to process in INTENSITY or DENSITY domain?

intensity - i, density ~ d
User: i (or d)

If density domain {

Terminal: do you want to process the NEGATIVE or POSITIVE image?

User; p (or n)

}

72

Terminal: do you want a POINT-by~POINT processing or a BLOCK
processing?
block - b, point - p

User: b (or p)

1f POINT processing was selected:

Terminal: do you want to change the defaults? The defaults exist only
for intensity processing of a cloudy image.
yes - y, no - n

User: n (or y)

For density processing {

Terminal: enter filename for scaling parameters to be used by scale
program

User: param.data

}
If the defaults were selected, the processing starts with no additional
interaction with the user for this program. If the defaults were not

selected, the dialogue continues.

Terminal: enter hwsize=half size of window to compute mean value ~ n
(20+1) (20+1). n is limited up to 15 for a 512 X 512 image and
up to 7 for a 1024 x 1024 image.

User: value of hwsize (integer).

Terminal: maximum gray level in the image (usually 255)7

User: value of xmax (float),

Terminal: the following inputs define the k and £ functions (as functions of
the mean value). k - multiplies the local contrast >=l1 and £ - ig
the nonlinearity that is applied to the local wean and is
0.=<8<=l, 1If &=1., then the original local mean is kept. If
£=0., then the new local wean is exactly the midrange of levels

allowed.

73

NUM OF POINTS IN FUNCTIONS (up to 21)?

first point must be for mean value=0. and last must be for mean
value=xmax.

User: value of numpt (integer)

Terminal: contrast amplifier=k[0], nonlinearity = £[0] for mean value=0,

ser: values of the contrast amplifier and nonlinearity (both float) for

mean value=0.

Terminal: mean value=mn[], contrast amplifier=k|[],
nonlinearity = [] for j=... =1,...

.. ynunpt~2

User: values of the jth mean value (float), jth contrast amplifier
(float) and the jth nonlinearity (float).

Terminal: contrast amplifier=k[numpt-1], nonlinearity=f {numpt-1] for mean
value=xmax,

User: values of contrast amplifier and nonlinearity (both float) for
mean value=xmax.

Terminal: Gaussian window - g or rectangular - r for calculating the local
mean value?

User: g (or r)

1f Gaussian window was selected {

Terminal: thickness (variance) of Gaussian window?

User: value of variance (float).
}

Processing starts with no additional interaction with the user.

1f BLOCK processing was selected:

Terminal: do you want to change the defaults? The defaults exist only for a
negative density proceassing of a cloudy image.
yes - y, no = n

User: a (or y)

14

Terminal: enter filename for scaling parameters to be used by scale program

User: param. data

1f the defaults were selected, the processing starts with no additional
interaction with the user for this program. If the defaults were not

selected, the dialogue continues.

Terminal: maximum gray level in the image (usually 255.)7

User: value of xmax (float)

Terminal: mapping variables HFDCO, HFDCMAX - the values of the high-pass
filter at the largest frequency for mean values 0. and xmax
(maximum gray level).

User: values of hfdc0 and hfdcmax (float).

Terminal: mapping variables LFDCO, LFDCMAX - the values of the high-pass
filter at W={0,0) for mean values 0. and xmax.

User: values of 2fdc0 and £fdcmax (float).

Terminal: wmapping variables VARDCO, VARDCMAX - the thicknesa of the
Gaussian high-pass filter for mean values 0. and xmax.

User: values of vardcO and vardcmax (float).

Terminal: eater hwsize=half window size for the adaptive filtering
(8,16,32..) - a number that is divisible by the row and column
length of the image. hwsize is limited up to 16 for a 512 x 512
image and up to 8 for a 1024 x 1024 image.

User: value of hwsize (integer).

End of interaction.

Specific -xample:

User: image enhanc cloud.data proccloud.data

Terminal: do you want to process in INTENSITY OR DENSITY dowmain?
intensity - i, density - d

User: i

Terminal: do you want a POINT-by-POINT processing or BLOCK processing?
block - b, poiat - p

User: P
15

U GO T s St : S d v RN s A AN SR T s drevas Al

b S, s e

Terminal: do you want to change the defaults? The defaults exist only for
intensity processing of a cloudy image.
yes - y, no -~ n

User: y

Terminal: enter hwsize=half size of window to compute nean value - mn
(20+1)(20+1). n is limited up to 15 for 512 x 512 image and up to
7 for a 1024 x 1024 image.

User: 5

Terminal: maximum gray level in the image (usually 255.)?

User: 255.

Terminal: the folliowing inputs define the k anc £ functions (ss functions of
the mean value). k = multiplies the local contrast >=1, and £ -
is the nonlinearity that is applied to the local mean and is
0.2<2<=1,, 1If £=1., then the original local mean is kept. If
0., then the new local mean is exactly the midrang of levels

allowed.

NUM OF POINTS IN FUNCTIONS (up to 21)?

firsc point wust be for mean value=0. and last muyst be for mesn

value=xupax,
Ugerx: 3

Terminal: coatrast amplifier=k(Q], nonlinearity=2{0] for wean value=0.

User: 2. 0

Terminal: wmean valuewmn[], contrast amplifier=k{], nonlincavity=&{ | for
1= |

User: 150, 4. 0.9

Terminal: coatrsst saplifier=k(numpt-1}, nonlincarityef{numpe-1] for mcan
valuemxmrx,

User: 6., 0.2

Terminal: Gaussisn window - g or rectaengulsr - v for calculating the local

mean value?

16

B e I B o Ty

e

§ T User: g

™ . Terminal: thickness (variance) of Gaussian window?

s User: 6.

- fié Processing starts with no additional interaction with the user.
co 4
%'> f: 3.3.2 Scale (the load module of scale.c)

?’F -3 User: scale <{image2.data> <image3.data> <param.data>
i_ [

i 3 where:

i ; image2.data is the name of the ouput file of image enhanc.

imagel.data is the name of the resulting processed image.
. param.data is the name of the file that contains information for
. % the scale program. The filename was given as a parameter in
GRS image enhanc program.
-3 3.4 1Installation lastructions
i 3 The two programs were dumped on tape usiag:
N tar ¢ image_enhanc.c scale.c

To read these files from tepe, use
scale.c

tar x image enhanc.¢

To compile and load:

image enhanc.c stdio.h
cc or + add options for using math. b
scale.c

auto_wndw.h

11

S,
BT et P O AT\ Dare

Special running instructions: The program image enhanc.c requires a 64K byte

memory just for data arrays; i.e., the special setting of 64K bytes for data

and 64K bytes for program should be used.

3.5 f5lossary of the Program Variable Names

hfdcO - value of the high-pass filter at (w,r) for zero measn.
hfdcmax =~ value of the high-pass filter at (w,r) for mean valuevxmax.
hwsize - half of the window size.

k - contrast gaia function.

2 - nonlinearity applied to the mean value.

2 £dco - value of the high~pass filter at (0,0) for zero mean.
ffdcmax - value of the high-pass filter at (0,0) for mean value=xmax.
mn - array of mean values,

numpt ~- number of poiats in k,2 and mn fuactions,

var - variance of Gaussian window.

vardc0 - thickness of Gaussian-shaped high-pass filter for zero mean.

vardemax - thickness of Gaussian-shaped high-pass filter for mean value-xmax.
wtype - ghape of window,

Xmax - maximum value in the image.

78

4. MULTI-PROCESSOR ARCHITECTURES FOR IMAGE PROCESSING

During the lagt half of FY82, we have been exploring several issues
related to the development of a processor architecture suitable for image
processing problems. Typical image processing problems involve data sets
composed of several hundred thousand pixels (picture elements) and large
amounts of computation (several hundred processor instructions per pixel).

Depending upon the application, the computation may have to be carried out in

real-time at TV frame rates {30 per second) or fast enough to permit
comfortable interaction for a human operator (1 second elspsed time). It is
clear that an image processing architecture must be capable of supporting
rapid compttation on large data sets.

In imag: processing, as opposed to other multi-dimensional signal

by T P e o 10
om0 T L

processing applications, most operations tend to be local; that is, the
e processing of widely separated parts of the image is independent, Global
*éﬂ - operations, such as the 2-D Fourier transform of an entire image where each
‘E 'if output value depends on all of the input pixel values, are rarely used in
é?‘-.'§. ' tvpical imege processing operations. For this reason, it is possible to
L congider the implementation of most processing operations by a set of
S processors working in parallel on different parts of the image with a minimal
“,‘}.'? amount of communication. To be truly useful, however, such a multi~processor

:!\f’ 13 ' architecture must be capable of handling the few (but ilmportant) exceptions
. I that &ay occur in any particular application.
; A very high-level diagram of the multi-processor architecture we plan to
-;.£ pursue is shown in Figure 4~1., It consists of 16 nodal processors connected
z by a communicatious network. The number of processors is somewhat arbitrary
TR . from an architectural point-of-view but was sized based on preliminary

computational requirements and was chosen to be a power of two in order to

3) permit the use of a butterfly communication network. The system input/output
T (1/0% port is shown as being part of the communication network, but it may be
»;_ Cah necescery to alter this to provide the required I/0 bandwidth, A thorough

study of the system I/0 remains to be done,

s

TSNS R RS T T8 e SRR TR A BN TR NG T (A i 0 R B ot niens ol e O v e i

NODAL

R PROCESSORS COMMUNICATIONS
- NETWORK

R ———

P1 |t

SYSTEM
i70

. L——-——-’

g Y LT, T MG HROTEEI i Py s
Lo [N e) e - . A
.

P14 (il

DAL IS s covheni oo
>

pn il
»

123403-N

Fig. 4-1. A high-level block diagram for a multi-processor system.

80

-y

s AR iy

ekt
C)

Pty <;‘Mf o ey 90 £

S
3

~o

s

T

L=
L]

I
i

There are several pogsibilities for the communications network. The
most obvious choice is a high-speed data bus. Typical busses used in
conventional computers have bandwidths on the order of 1-2M bytes/second, but
this is not fast enough to satisfy the bandwidth requirements of a
16-processor system. It is conceivable that an advanced bus based on RF
coaxial cable or optical fibers could be developed to satisfy the bandwidth
needs which we estimate to be roughly 100-200M bytes/second.

In FY82 we have begun investigatiung the butterfly network structure
shown in Figure 4~2 for use 28 the interprocessor communication network. The
network 1s shown unfolded so that processor outputs are located ou the left
and processor inputs are located on the right. This network allows
communication between any two nodal processors and permits many sets of
conversations to take place in parallel., In another project, a four-
processor aystem was counstructed using Motornla MC68000 microprocessors and a
similar butterfly network.

Several important system—level questions remain to be addressed, We
have already meantioned the question of system~level I/0 to an outside host
computer or data source. The significant issue of how to make the
programning (and controlling) of a multi-processor system appear
straightforward also needs to be examined in detail. A multi-processor
system that is fast but difficult to program will not be very useful to the
image procesaing community,

In the following sections several architectural features for a nodal
processor will be discussed. These features are worth developing and
refining because they show promise of helping achieve the dual goals of high
computational throughput and ease-of-programming. The architectural study
is, however, far from complete, and subsaquent ideas and developments wmay

alter or eliminate some of the architectural features discussed below.

81

123404-N

T — y & PO

P1

B

P1

P2 P2

v

P3

L P R Ren ¢ st D NS e T e

P3

P4

P5 P5

P6 P6

T et 30 PRI e e
., Lt RPN

P7

2oh PR AR e e

P8

P9

PRI e
’

L P10 P10
S
S

P11 - PN
= §

Pl P12 > P12
<

. P13 P13
Do]

T P14 P14

'

- ~] P15 & P1S

: Fig. 4-2, A l6-processor butterfly network. Each circle represents a
3 2-input, 2-output switch that can pass signals straight or crossed.

82

4.1 Ground Rules for Developing a Nodal Processor Architecture

Most of our work in this area during the last quarter of FY82 has been
directed toward the architecture of a nodal processor. As a ground rule, we
have tried to separate architectural issues from implementational issues.
Some architectural principles may ultimately have Lo be compromised in the
interest of efficient and timely hardware implementation. However, our
objective thus far has been to develop the best architecture possible without
any preconceptions about implementation details. Furthermore, the technology
to support the underlying implementation of a particular architecture is
constantly evolving. Many computer manufacturers use the same architecture
(for software compatibility) but constaatly upgrade the implemeuntation to
deliver systems with improved performance/cost characteristics. With the
advent of VLSI and VHSIC technology. implementation techniques will
uadoubtedly change once again, The development of an image processing
architecture may influence future chip sets, thus permitting the
implementation of architectural featuves that mey have to be cumpromised with
today's technology. Therefore, we have decided to councentrate initially on
developing the right architecture without implementational constraints.

Processors can be compared along many dimensions: speed, efficient use
of memory, ease of programming, instruction set sophistication, word length,
size, weight, power consumption, reliability, etc. For now, we have taken
the sttitude that speed and ease of programming are most lmportant, that the
instruction set is important as an influence on the speed (minimizing the
nuaber of instructions required for some computation) and ease of
programming, and that "memory is cheap.” It 1is permissible to usc memory
inefficiently if it permits faster execution or simplifies programming.

The easiest way (up to a point) to build a fast processor i1s to use the
fastcet available logic family for the implementation. For a fixed

architecture, the basic machine cycle time will determine the speed of

83

execution, There are mitigating conceruns, of course. Fast logic, in
general, implies more power consumption, more demanding board layout, lower-
level integration, and less reliability. It will probably be necessary to
compromise between raw logic speed and other measures such as integration

level or power consumption,

4,2 Architectural Requirements for a Nodal Processor

Based on the premise that the nodal processors in a multi-processor
image processing system will have to be fast computers in their own right
that are capable of handling large arrays, we can begin to outline some of
the architectural requirements for the nodal processors. Traditional high-
speed array procegsor architectures have been very "horizomtal," using
techniques such as separate program and dats memories; separate hardware for
address computation and index register manipulation; and pipelined fetch,
decode, and execution of instructions. The nodal processor architectures
that we are now studying will use many of the same techniques, provided that
they do not impair the ease with which the machine can be programmed.

Since the nodal processors will be handling large arrays of image data,
array access must be very efficient. Similarly, it is important to provide a
mechanism for controlling program loops that accrues very little overhead.

Many processor architectures are capable of dynsmically allocating data
memoary upon each invocation of a subroutine, procedure, or function. This
capability permita re-entrant subroutines, efficient interrupt handling, and
ghared instruction code (although this is probably not important for this
application). 1In addition, dynamic memory allocation should result in a more
efficient use of the data memory than ststic allocation would, since it
permite the "time-sharing" of wmemory. Unless we uncover a sound argument
againet it, dynamically allocated mewmory will be an architectural requirement

for the nodal processors.

84

ORI O By D e s 5
. . . sl i, “'—,"'_ "-','-'" A

£

T R O L AL TR g

To permit simple, straightforward programing, the nodal processor
architecture should efficiently support a high-level language such as "C".
The machine language itself should be relatively high level so that assembly
language programing {(machine mnemonics plus macro-instruction capability) is
conducted at a high level. It is important to isolate the programmer as much
as possible from the particular implementation of the nodal processor. The
programmer should be concerned with specifying operations and data objects to
be used as operands and not with the details of address computation or index
register manipulation,

The machine language instruction set should be flexible so that it can
be "tuned" for different applications. In particular, it should provide some
simple array handling instructions such as clearing an array or adding two
arrays. A set of a half-dozen or so such array instructions could relieve a
programmer of amuch pedestrian code generation in an image processing
application and allow him to concentrate on the important parts of the
program. Machine language flexibility could be achieved by using micro-code
to realize each machine-level inatruction. WNew instructions could be
accommodated by writing new micro-code, assuming that there are enough unused
op~codes remaining in the instruction format. The fetching, decoding, and
execution of the micro-imstructions could be pipelined to increase the
gffective speed of the nodal processor,

The nodal processor architecture should be flexible enough to include
special-purpose computational devices that may differ depending on the
application, VFor example, a high-speed myltiplier or multiplier/accumulator
could be considered a "special-purpose” device, although for imdage processing
and multi-dimensional signal processing applications it is a requirement.
Other computational devices might include an FFT butterfly, a l6-point FFT,
or a CORDIC rotation element. A special-purpose device may also be necessary
to facilitate I/0 with the outside world as well as the interconnection
network. The important peint is to allow sufficient flexibility to permit
the nodal processors to be retrofitted with special-purpose components to

help increase computational throughput for a particular application.

85

The issuec of fixed-point versus floating-point arithmetic has yet to be
decided. To some extent, it is more of an implementation issue than an
architectural issue, Fixed-point arithmetic tends to be faster, but new
single-chip LSI floating-point compounents may close the gap. Fixed-point
accuracy and dynamic range can be improved by going to longer word lengths,
with the concomitant increase in hardware, but then it becomes more difficult
to use the single-chip 16-bit multipliers currently on the wmarket., There are
advantages and disadvaatages to both data representations, and the ultimate
solution may be the traditional one of supporting both. However, because of
the horizoutal architecture, it may be feasible to use fixed-point arithmetic
for addressing, counters, loop coatrol, and indexing and use floating-point
arithmetic strictly for data computation. This would enforce the natural
gseparation in the programmer's mind between data to be processed and

variables used for data access and program control.

4.3 Three-Address Instructionsg

In many cases, execution of & machine instruction will tske two source
operands and perform an operation on them to produce a single result to be
stored at a particular destination. Thus, three addresses need to be
specified in & typical instruction. Some computer architectures use one of
tha source addresges as the deatination address, while more primitive
architectures use an accumulator register as one source as well as the
destination. However, programs written for these acrchitectures usually
vrequire a significant number of LOAD, STORE, or MOVE instructions that
simply transfer data without doing any computation. The three-asddress
architecture should alleviate some of this overhead, resulting in an
inherently faster nodal processor, The use of three-address instructions is
also consistent with the philosophy of a horizontal architecture, permittiag
the addregses of the sources and destination to be computed in parallel,

There are occasiong, however, wen the destination sddress is identical
to one of the source addresses. Some code compaction will result if two-

address instructions are iuncluded in the inatruction set. On other

86

Do

O - 2T LIt o e T iy ORI
09 - . -

| S
5 i
e
.!; . -' . .
X it R
Ele LI
4 s
bi: - ;
: B 3
2L 3
_
htY
K :‘7 :{
:4 . -,
i i

e

occasions, the result of an operation needs to be stored only temporarily
because it will be an operand for the unext instruction. Thus, it may be
prudent to provide a stack of temporary storage registers to be used as
easily accessed cnerand sources and destinations. (Actually, a '"temporary
variables" stack is an implementational rather than an architectural issue.
The three-address instructions do not need a stack to be useful,
particularly if access to data memory can be made as fast as access to the

stack.)
4.4 Array Iastructions

For image processing as well as other array processing applicatioms, it
geems prudent to provide the nodal processor architecture with a small but
powerful set of instructions for performing array operations. These
operations would include element-by-element addition, subtraction,
multiplication, and division of two arrays, and other operations such as
element~by-element maximums and minimums may also be worth including. Other
candidates are inner products, sum-of-elements, sum-of-elements-squared,
absolute value, and 2-D convolution,

These array instructions would be implemented in micro-code to utilize
the maximun apeed advantage of the architecture. It should also be possible
to implement other array instructious in micvo-code for particular

applications.
4.5 Data Addressiang

An underlying assumption of the nodal processor architecture is that it
myst support a fairly large data memory (256K bytes-iM byte} for image
processing applications. For direct addressing, thia implies addresses at
least 20 bits in length, and perhaps 24 bits or even 32 bits tor future
expansion of the data memory. With three-addreas instructions, the number of
bits needed for epecifying source and destination locations thus ranses from

60 to 96 bits, vesulting in very wide inetruction words., To keep the

87

B
%Ev' | "'.
Fl'h . .
S
; :
A

b

§ -
v

instruction width down, some computer architectures make use of address
registers. These registers, which contain the addresses of the desired
operands, are few euncugh so that they can be sp-cified with a small number of
bits in an instruction word. Operands are thus accessed indirectly.

However, address registers must be saved and restored during context switches
like subroutine calls and returns and interrupt servicing, and this may imply
a high level of overhead.

Because it fits in nicely with the notion of dynamic memory allocation,
we have been investigating a stack-oriented data wemory. Data in the stack
can be accessed relative to the stack pointer (which points to the top of the
stack), a frame or environment pointer (which points to a memory location
determined by the current program context; see Section 4.9), or a global
pointer (which for simplicity may be taken as the bottom of memory). It may
also be ugseful to provide other pointers into the stack to facilitate data
access. This question is still open,

With this structure, single data items (as opposed to arrays of data
items) will be generally accessed by specifying in the instruction word a
pointer register and a constant offset value to be added to the contents of

the pointer register to compute the effective address,

4.6 Array Data Access

In & typical computer architecture, array elements are accessed by
computing an effective addreas, which is the sum of a bas» address plus an
offset or index, PFor two- or higher-dimensional arrays defined in a high-
level language, it is necessary to explicitly compute the effective address
by repeated multiplications and additions. When array elements ave accessed
sequentially (within a loop, for example), much ot this address cowmputation
can be eliminated by eimply iucrementing the effective address by the proper
amount .

From a programmer's point of view, however, the computation of an

effective address from an array base address and index values is & nulsance

88

-

oy R B e, = s T

P,

to be handled by a compiler or directly by the hardware. In image processing
applications, we expect that a great deal of computation will use two-
dimensional arrays accessed sequentially within loops. Consequently, it is
important that the architecture handle the implied address computatiocns
rapidly.

We have been investigating two concepts for accessing array elements.
The simpler consists of providing the necessary arithmetic capability to
compute effective addresses by adding the coatents of two address registers
while simultaneously incrementing one of the address reglsters by an amount
contained in a third register. This allows the base address to be contalned
in one address register with the periodically updated offset to be contained
in the second address register. This scheme 1is relatively straightforward,
but it forces the machine language programmer to get involved in keeping
track of effective addresses rather than simply specifying an array name and
the values of its indices,

As an alternative, we have benn exploring the concept of array access
registers (AARs). In its simplest form, an AAR contailas laformation about an
array, such as its base address in memory, the number of dimensions, the
waxiaum number of sturage cells in each dimension, and the number of bytes of
memory uged to contain 2 single storage cell, which will allow havdware to
convert & rvoquest fur a particular element of a particular array into an
effective memory address. Going one atep further, we can actually
incorporate index registers, as well as the effective address corresponding
to the current values of the index registers, into the AARs. This permits &
separate, noninterfering set of index registers for accessing e¢ach distinct
arvay.

The i1adex registere can be initialized or reset by machine-level
instructions specifying the AAR and the new values of the tndices. In
addition, inetructions can specify that an array index be incremented,
decremented, ve zeroved out after being used. Ravdware will be vegponsible
for computing a new effective address frowm the altered index (or indices) and
gtoring it back in the AAR for future use. This mode ahould be very
efficient for loops which perform the same basic operation on ali elements of

an array.

89

gt o The AARs can be allocated dynamicaliy, *ust as data memory is. This

‘ "gé will permit efficient use of AARs by effaectively "time-sharing'" them as

T‘ eri different subroutines become active. AARs will alsc permit arrays to be

. passed as subroutine arguments i an efficient wmanner. If AARs are allocated
by a stack, however, it implies thit srray data are accessed by two levels of

indirection, one with respect to a stack pointer (or frame pointer) to get

o .‘i the appropriate AAR, and the szecond to use the effective address provided by
H E the AAR. We will have to examine the AAR concept carefully to see :f the

l, o doubly indirect access leads to an unacceptably sicw 2rihitecture.

; fi In theory, scalar-valued variables could also bu accessed using AARs.

.;' i This would provide a consistent atchitecture in that scalar and array

%E;;'if variables would be accesged in a similar manner, with the programmer treating
i . % each variable as a data object with certaln attributes. However, this would
:éf'f- i mean that scalars as well as grrays would require two levels of indirection
gﬂ't ‘i for accessing. It does not seem that ev extra level of indirection fov

scalars will improve the access efficiency that is potentiallvy available for

e arvays, because scalar variables do not have indices to be manipulated or

effective addresses to be computed., Nevertheless, the architectural
consistency which would vesult may overvule this conclusion upon cloger

examinat toan.
4.7 Program Coantvol
S Currently, the nodal provessor architecture contsins geversl uweful

instructions for transferving program control, The instfrugiions consist of

BRANCH, JUMP, CALL, RETURN, BREAK, and HEXT. The lastructions may be used in

e e
ol Db a

both conditional and unconditional formats.

N 3 A BRANCH instruction transfers control to an instvurtion lecated st some
address relative to the BRANCH instruction; that is, it ix a pelstive jump,
Conversaely, a JUMP inetruction transfers control tu an sbiolute saddress in
the instruction wmemory. CALL transfers contrel to an sbuolutc sddress as
well, but it also ksepa track of a nusber of thieps (discussed in Sec-

tion 4.9) ueefu) for trensferring cowtrol o & subvoutine., RETURN allows

90

L Ik Sy AN et e
\
4

" dra

control to be transferred back from a subr..itine using the absolute address
stared by CALL., BREAK and N¥XY are esseatially BRANCH instructions useful in
controlling program loops. {(They will be discussed i=n that context in
Section 4.8.)

The conditional versicns of these control-trensferring iastructions make
use of a set of condition codes. The condition codes consist of bits that
indicate whether a result from an operation was positive, negative, zero,
caused a carry or an overfiow, etc. The condition codes are set by an
operation resulting freom aa instruction that had its test flag set, Codes
from subsequent instructions that had their test flags set are ORed with the
existing condition codes. The codes are reset (cleared) by a coanditional
control-transferring instruction, uniess that instruction indicates (via a
flag! that the codes are not to be altered. Finally, the architecture should
support instructions that can store the condition codes in data memory and

can restore the condition codes from data memory.

4.8 Loop Control

The image processing applicstions for the nodal processor wiil
doubtlessly lead t2 programs containing many, relatively short, nested
loops. Consequently, it 1s important for the architdcture to support program
loops in a very eificisnt wmaaner. Theae joops will have the characteristic
that the number of times they are egaculed i3 independent of the data heing
processad. Thus, in a typical architecture, 2 register iz inttialized to
contain thw number of times that the tnstructions in the laop will he
execuytaed, Then the register is decremented at the hottom of the loop and
tested to deturmine whether to branch back te the top of the loop. Xvery
time the loop is execulwd, the decrement, test, and conditional hranch.
instructiong are also executed. F¥For shnrt loops, these (astructions can
represent a significant overhead compared to the ureful computation carried
out within the loop.

For wost of the loops vsed in image processing software, a simple

architectural feature can be used to support the overhead for loop vontvol,

8!

Since loops are verfectly nested, a stack of loop counters can be used to
keep track of the current iteraiion. When a loop is initialized (by a single
machine-language instruction), an initial value for the loop counter is
pushed on the stack. At the ead of the loop, another inestruction causes the
loop counter to be decremented and, if it is 3till positive, control to be
transferred to the top of the loop. The top-of-loop address can be set up at
loop initialization in a stack parallel to the loop couunter stack. When the
loop counter finally reaches zerc, the loop is exited and the stacks holding
the loop counter and the top-of-loop address are popped.

Under certain circumstances, it is desirable to exit prematurely from
one iteration of the loop and to begin the next. The NEXT imstruction, which
may be conditionally executed, performs this function, It may be desirable
to exit a loop entirely before all the iterations have been completed. The
BREAX instruction, also conditionally executable, can be used for this
purpose.

The NEXT and BREAK instiuctions are essentially conditional BRANCH
instructions, The NEXT instruction branches to the end-of-loop instruction,
which decrements the locp counter and tests it as usual, The BREAK
instruction branches out of the loop, but it must also pop the loop-counter
stack and the top-of-loop address stack. The offsets needed for calculating
the next instruction address can be computed by a compiler or assembler,
Aithough it is not necessary, there may be some speed advantage to storing
the transfer addresses for BREAK and NEXT instructions on stacks parallel to
the loop counter stack. This implementational issue will have to be examined
in more detail.

Loops in which the number of iterations is data-dependent can also be
implemented with the specialized loop instructions. An infinite loop could
be set up by setting an "infinity" bit in the loop counter, The loop would
be exited by using a conditional BREAK instructionm,

Structured programming texts argue for testing at the top of the loop
rather thaun the bottom as a defensive programming tactic., It may be prudent
to incorporate other specialized loop control mechanisms in the architectural

requirements to support both top-of-loop and bottom-of-loop testing.

92

. 4_,:-.-4.--4, s 2

- O e B P AT 0 3D

= o it cmmatntini

-

4.9 Subroutine Linkage

Structured software tends to have many subroutines and consequently
many subroutine calls. Thus, it is important to have an efficient subroutine
linkage wechanism so that the overhead for short subroutines is not too
large. One subroutine linksge mechanism we have been exploring is an
elaboration of those used on stack—oriented computers such as the HP-3000.
At present, it actually involves seven parallel stacks.

The seven stacks are called the instruction address stack (I-stack), the
data stack (D-stack), the array access register stack (A-stack), the data
frame stack (DF-stack), the AAR frame stack (AF-stack), the number-of-data-
parameters stack (#DP-stack), and the number-of-AAR-parameters stack (#AP-
stack). Figure 4-3 is an outline of how these stacks are manipulated during
subroutine calls and returus,

The simplest stack to understand is the I-stack. When a subroutine is
called, control is pasgssed to the starting address of the subroutine and the
return address is pushed onto the I-stack, When a RETURN instruction 1is
executed in the subroutine, the return address is popped off the I-stack and
into the program counter,

The D-stack, the Df-stack, and the #DP-stack are closely related, At
any given level of subroutine nesting, the D-stack contains the information
needed for the current subroutine context. The data stack pointer, which
itself sits atop the DF-stack, points to the top of the D-stack and is
updated when data are pushed on or popped off the D-stack, One of the
addr "aging modes allows data to be accessed with a negative offset relative
to the data stack pointer. Data on the D-stack may also be accessed
relative to the data frame pointer, which itself resides just below the data
stack on the DF-sgtack, The data frame pointer points to the top of the
parameter list for the current subroutine,

To call a subroutine, space is first allocated on the D~stack to hold
any values to be returned by the subroutine. This is accomplished simply by

incrementing the data stack pointer. Next, the parameters specified by the

93

RS R v

.

% R . . wp,.»m,-mwmw e e e
: et . A
. L - 3

o

]
LR
+ i3
.
4
L
i

DP-STACK

DATA PARAMETERS

- (3

AP-STACK

4 PARAMETER AARs

Fig. 4-3,

I-STACK
RETURN ADDRESS

DF-STACK
DATA STACK PTR.

DATA FRAME PTR.

AF-STACK
AAR STACK POINTER

AAR FRAME POINTER

.
3

.

i

—

PROGRAM COUNTER

D-STACK

TEMPORARY VARIABLES

LOCAL VARIABLES

PARAMETERS

SPACE FOR RETURNED VALUES
TEMPORARY VARIABLES
LOCAL VARIABLES
PARAMETERS
SPACE FOR RETURNED
VALUES

*

-

-

ASTACK

TEMPQRARY AARs

LOCAL AARs

PARAMETER AARs

SPACE FOR RETURNED AARs
TEMPORARY AARs
LOCAL AARs
PARAMETER AARs
SPACE FOR RETURNFD
AARs

Seven stacks used for subroutine linkage.

9%

arguments of the CALL instruction are pushed onto the D-stack and the number
of parameters is pushed onto the #DP-stack. When the CALL is executed, a
duplicate copy of the data stack pointer is pushed onto the DF-stack, making
the new data frame pointer equal to the old data stack pointer. After
control is transferred to the subroutine, the data stack pointer is again
incremented to allocate storage for dynamic variables that are local to the
subroutine. Additional temporary storage may be allocated simply by pushing
values onto the D-stack and updating the data stack pointer.

When a subroutine RETURN is executed, the DF-stack is popped restoring
the old data frame pointer and the data stack pointer to the state that
existed after the subroutine parameters were pushed on the D-stack but
before the subroutine was actually called. The number of data parameters is
then popped off the top of the #DP-stack and subtracted from the data stack
pointer to effectively de-allocate the memory used to pass parameters to the
subroutine.

The other three stacks--the A-stack, the AF-gtack, and the #AP-stack--
are handled in a fashion analogous to their data stack counterparts. Rather
than hoiding data values, however, the A-stack contains the names of AARs,
which in turn point to arrays of data values,

As we mentioned earlier, it is possible to use the AAR concept to access
scalars as well as arrvays. If this were done, the resulting architectural
consistency would permit the reduction from seven stacks to four stacks. The

separate D-stack, DF-stack, and #DF-stack would not be needed.

4.10 Input/Output

There are two aspects of nodal processor I/0: communication with the
outside world and communication with other nodal processors in the multi-
processor system, Here we shall limit our discussion to the latter, In
terms of architectural requirements, we want the nodal processor to handle
the protocols for I/0 as little as possible for two primary reasons. First,

we do not want to slow the nodal processor with bookkeeping tasks related

95

R R e e ettt gt ety

to the I/0 and second, we want the flexibility to interface improved
interprocessor connection networks eaaily as they are developed.

These requirements argue for a direct memory access (DMA) capability
with a separate 1/0 processor to handle the necessary communications
protocols., The nodal processor should simply be able to request that data
be sent to another processor or be received from another processor. In
addition, it should be possible to interrupt the nodal processor to inform it
that data has been received from another processor, A great deal remains to
be done in the sgpecification of architectural features to support both

interprocessor 1/0 as well as system I1/0.
4.11 Summary of the Multi-Processor Architecture

The architectural specifications for a multi-processor system are far
from complete. As descrided in the previous sections, we have begun looking
at some of the architectural requirements for the nodal processors, In FY83
we plan to continue, with the immediate goal of specifying a nodal processor
instruction set and architectural features to permit its efficient
implementation. Major areas of concern include 1/0, array access, loop
control, and subroutine linkage. FEase of programming, flexibility of the
instruction set, and the ability to incorporate special-purpose
computational hardware are also important,

The 16 features listed below contribute to our goals of high
computational throughput and ease of programming. Much wore study needs to
be done and further development may alter the desirability of these features.
Nevertheless, at this stage, these are important specifications of a system

architecture for image processing applications.
1. Multi-processor architecture consisting of 16 nodal processors

conmunicating via an interprocessor communications network.

2, Butterfly-type communications network.

96

13.
4.
15,
16.

Modular interface between nodal processors and communications
network,

"Horizontal"™ architecture for nodal processor.

Dynamic allocation of data memory using data stacks.
Thirty-two-bit-wide data words.

Flexible instruction set implemented in micro-code.
Pipelining of instruction fetch, decode, and execution.
Support for special purpose computational elements.
Three-address instructions,

Array handling instructioms,

Stack-oriented data access with separate hardware for address
computation,

AARs for rapid access of array elements,

Specialized instructions for loop control.

Stack-oriented subroutine linkage.

Separate 1/0 processur to support DMA communications.

97

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

REFERENCES

Semiannual Technical Summary, Multi-Dimensional Signal Processing
Research Program, Lincoln Laboratory, M.I.T. (31 March 1982),
DTIC AD-A118186/6.

A.W. Drake, "Fundamentals of Applied Probability Theory", McGraw-Hill
Book Company.

C.W. Therrien, "On the Relation Between Triangular Matrix Decomposition
and Linear Prediction", to be publiished.

M.P. Ekstrom, J.W. Woods, "2-D Spectral Factorization with Applications
in Recursive Digital Filtering'", IEEE Trans. Acoustics, Speech, and
Signal Processing, Vol. ASSP-24, Wo. 2, pp. I15-178 (April 1976).

T. Marzetta, "The Minimum Energy-Delay Property of 2-D Minimum-Phase
Filters", IEEE Trans. Acoustics, Speech, and Signal Processing,
Vol. ASSP-30, No. 4, pp. 658-659, (August 1982).

A, Papoulis, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, New York, 1965.

"Adaptive Filtering for Image Enhancement", T. Peli and J.S. Lim,
Optical Engineering, January/February 1982.

T. Peli and T.F. Quatieri, "Exposing Objects Under Light Cloud Cover
by Adaptive Homomorphic Filtering," Technical Report 587, Lincoln
Laboratory, M.1.T. (6 January 1982), DTIC AD-Al12338/9.

99

g b e s

12t e ——

?’ FRECEDING PAGE BLAMK<NOT FILMNGD

APPENDIX
DERIVATION OF CONSTANT FALSE-ALARM RATE DETECTION

In this appendix, we derive the general functional form of A to maintain
a coastant level of significance in Equation 3, regardless of the background
statistics (i.e., regardless of the covariance K). Without loss of
generality, we shall agsume a zero-mean process. Then from Equatioas 2, 3,

and 15a, we have:

a = p(é)(x (ZW)N/;IKIIIZ exp (- %'E?K-li dx]
- p(.{i)(\ (21:)N/;|Ki172 exp (- —;— (L-ii)TD-l(L-lz&)] " D)
Now, let
=" L.li (A-2)

sc that, since L-.1 has unit diagonals, using the method of Jacobians (6], we

have,
de = dx (A-3)

Thuas, substituting Equations A-2 and A-3 iato A-l, ve obtain

¢ 1 1 T, -1
exp (- 5 ¢ D ‘elde = u (A-4)
p(L§_)<\ (:r--)””\xl“2 ?
101

1, o Sebrariely vor Vi ¢ L ol P S

i

§ PHECKNING PAGE BLANK-NOT FILMGD

. -1/2 . .
Furthermore, we have (since D / is diagonal):

| _____er_rr[exp [- I 02T 0 e
p(Le)<A (2m) "' “ K|
= ———-—Wé———-—vz- exp [- :TA]]Dll/z e = Q (A’S)
pLol/2gycn (2m 7T K|

where we have used the substitutions:

§.= D-I/Ze (A-b6a)

ad = fp| 72 de {a=6b)

Noting that |K| = |D]| [3], we have from Equation A-S,

1 AT
-—-—~T— exp {- i §_3]d3 = q (a-6¢)

pcuot/ < (2%

Note that the integrand in Equation A-6 does not depend on the statistics of
X. Fuvthermore, the boundary of our transformed critical region is, from

Equation A-6, given by the equation:

p(LD 12y €) =) {A~7)
-0

which, from Equations 2 and 154, can be expressed as

T T
‘“vlr“vz exp |- 31 (w”z“) L o“xf‘(w”zg{))]
(2m)" k|
. . exp w88 =2 (A-Ba)
(2:)"12}x{]/2 7 <ov

102

or

- %-ngo - 2u[(21)N/2|x11/2A1 (A-8b)

Therefore, to maintain a constant level of significance, we must have:

N/ZlKlI/Z

tal(2¢)] = constant (A-9a)

or

C

- (A-9b)

A

as ve had proposed earlier in Equation 12.

103

UNCLASSIFIED

SECURITY CLABSIFICATION OF THIS PAGE (When Data Entered)

; REPORT DOCUMENTATION PAGE pEpAD INSTRUCTIORS
:1' 1. REPORT NUMBER 2. GGVT ACCESSION NO. 3. RECIMENT'S CATALOG MUMBER
f . .
ESD-TR-82409" 3
i AD A/ 333
H 4. TITLE (and Subtitle) §. TYPE OF REPOAT & PERIOD COVERED
,i Semiannual Technical Summary
i Muiti-Dimensional Signal Processing Research Program 1 April — 30 September 1982
BE 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(y) €. CONTRACT OR GRANT KUMBER(s)
Dan E. Dudgeon F19628-80--0002
9. PEAFORMING ORGAMIZATION MAME AND ADDAESS 10. PROGRAM ELEMENT, PROJECT, TASK
Lincoln Laboratory, M.LT. AAEA & WORK UNIT NUMBERS
P.O. Box 13 Program Element No. 62702F
Lexington, MA 02173.0073 Project No. 4594
1+ CONTROLLING OFFICE NAME AND ADOARESS 12 REPORT QATE
Rome Air Development Center 30 September 1982
Grifliss AFB, NY 13440 13 ?lljgm OF PAGES
T4 MORITORING AGERCY KAME A ADORESS ({f differsat from Consrclling Office) 16 SZCUAITY CLASS. (af this roport)
Unclassified

Eleetranic Systerms Division

Hanseom AFB,MA 0173] o, DECLASSIFCATION DOWNGRADING SCHEGULE

18, DISTRAUTION STATEMERT (of this Repury

Approved for public relesse; distribution unlimited.

12 DISTRUTION STATEMENT (of the abairurt enberedd in Blork 20, {f diffoevas from Roporg

V8 SUPALERENTARY BOTLS

None

18 LKV WORDS [Continue an recerss slils if nocssanry and idontlfy by blork aumber

target detection image processing srchitertures
sdaptive contrast cuhancement

2 NSTRACT (Continue wa wide if y and idenilfy by black mumber)
{f
2= This Semiennual Technical Summary covers the pericd 1 April through 30 September 1982,
It describen the significant results of the Lincoln Laboratory Multi-Dimensional Signal Procer
sing Rencarch Program sponsored by the Rome Air Development Center, in the areas of image
scgrentation, classification, target detection, and adaptive contrast enhancement. "

(R

00 O™ 14723 somion oF 1 wov 6 18 casouETE UNCLASSIFIED

SECURITY CLABSIFICATION OF THIB PAGE (¥ how Data Ludsml

