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INVERSION TECHNIQUE EVALUATION 

I.  INTRODUCTION 

Aerosol particle size distributions are currently determined using discrete 

sampling techniques such as aerodynamic or single particle optical classification. 

These methods, although straightforward in application, have practical limitations. 

The statistical nature of the sampling process has the inherent limitation of sample 

size; a sufficient number of measurements must be made to insure meaningful 

results. The measurements are also labor intensive. These considerations translate 

directly into the cost of determining the size distribution. 

A technique that incorporates integral rather than discrete measurements 

has the potential to provide a rapid and less costly determination of the particle 

size distribution. Such a technique requires analytic inversion of the integral 

relationship between the measurements and the particle size distribution. The 

purpose of this study is to determine the applicability of the inversion process to 

laboratory and field measurements for spherical, homogeneous, single scattering 

particles of known complex index of refraction. Analytic kernels for scattering 

and extinction by this limited class of particles are found using Mie theory. The 

Mie kernels are used in conjunction with a particle size distribution to express 

intensity measurements in the Fredholm integral equation 

b 
g(A,0,p)   =J*K(a,e,n,k,p)    f(r)   dr   +c^ (1) 

where 

g = intensity measurements 

X = incident wavelength 

e = scattering angle 

p = polarization 

K(a, e,n,k,p) = Mie kernels 

a = size parameter 2nrl\ 

n-ik = complex index of refraction 



f    = particle size distribution 

r    = particle radius 

£[ = experimental error 

Several methods of inversion, including constrained linear inversion, Backus-Gilbert 

synthesis, Landweber iteration, and direct inversion, are to be compared using 

quantitative figures of merit and qualitative assessment of the effects of con- 

straints inherent to each method. 

It would be desirable to know, when designing an experiment, which 

measurements would provide the most information about a particular class of 

aerosols. Considering that several wavelength-angle-polarization combinations 

could be used to measure the scattering or extinction by an aerosol sample, linearly 

independent kernels would clearly be preferred; that is, the values of the kernels 

as a function of particle radius should not be just multiples or sums of each other. 

This report discusses each of the inversion methods, details an optimization scheme 

for selecting independent kernels from a set of candidate kernels, and gives a 

comparative evaluation of inversion results for optimized kernel subsets. 

At the same time that this study was being conducted for the US Army, 

the direct method of inversion was developed independently by Boeing from the 

work of Twomeyl for the purpose of gaining physical insight into both the kernel 

selection and inversion portions of problems of this type. We found that the direct 

method not only treats error effects in a straightforward manner, but also provides 

key insights into the physical limitations set by the kernels of the measurements to 

be inverted. Direct inversion provides validation of the kernel optimization 

technique by giving a quantitative measure of recoverable information from a 

kernel set for a given expected particle size distribution. Useful inversion results 

are obtained by direct inversion for the test cases studied at experimental noise 

levels of one and ten percent. For the test cases studied, direct inversion results 

are superior to constrained linear inversion and Backus-Gilbert results. Landweber 

iteration performs as well as direct inversion, but adds no understanding of how 

well a given set of measurements and kernels is expected to perform on inversion. 

Using the concept of the recoverable information fraction, we see that no method 
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of inversion will give more information about tiie actual distribution without adding 

information through smoothing constraints. 

One could argue that knowledge of certain physical processes, such as 

drop formation, implies a particle size distribution with a given form, and 

therefore a trial solution with that form could be used as a meaningful smoothing 

constraint. However, given this type of explicit knowledge, improved results could 

probably be obtained by using parameter fitting to the curve type instead of 

inverting noisy data. Other smoothing techniques, such as minimizing a particular 

order derivative of the returned funtion, obscure physical interpretation of the 

inversion process and offer no clearly justifiable method for deciding how much 

smoothing should be used. 

2.     THE METHODS OF INVERSION 

The purpose of inversion is to extract the desired solution f from the 

family of solutions that satisfy equation 1. Truly analytic inversion requires error 

free measurements and continuous knowledge of the kernels over a large interval. 

A useful inversion technique must use numerical approximations of this continuous 

knowledge, and must provide for ascertaining the stability of a solution in the 

presence of experimental noise. 

2.1   Direct Inversion 

Several years ago S. Twomeyl published a technique for determining the 

"information content" in a set of remote sensing measurements. This section will 

show how Twomey's method, with some modification, can be used as the basis for 

analytic inversion of indirect sensing experiments. In addition, this modified 

method gives the quantitative information that enables the experimentalist to 

select the optimal measurements, from a set of possible measurements, that will 

provide the desired information. Throughout this work, the notation of reference 1 

will be used wherever possible to facilitate comparison. In order to derive the 

inversion formula, the error e j will be ignored until an expression has been 

obtained.    The effects of error may then   be calculated. 

11 



Let V be the vector space over the reals   consisting of all continuous, 

real-valued functions on the closed interval (a, b), and the inner product on V be 

b 
<    t,u>   = /    t(x)   u(x)   dx t,u e   V (2) 

a 

The norm  | |   u | |  of a function u(x) is then 

I 1    u   I I    = <   u , u> ''' ( 3 ) 

Throughout this section it will be assumed that equation  1 has been normalized 

such that 

I 1    K.    I I    =   1 i = l,2,...,N      (O 

If W is the subspace of V spanned by the Ki(x) and X is the orthogonal complement 

of W in V, then the function f(x) can be written 

f(x)   =   r(x)   +   six) r(x)   e   W,   s(x)   e   X     (5) 

assuming that f(x) is a continuous, real-valued function. 

This expression differs from equation 2 of Twomey in that the latter 

expression is equivalent to the assumption that f(x) lies entirely in W, an 

assumption which is not generally true. It follows from the definition of the 

orthogonal complement that 

b b 
gj   := /   K.(x)   f(x)   dx     = /   K   (x)   {r(x)   +   s(x)}    dx 

a a 

b 
= J   K.(x)   r(x)   dx (6) 

a 

This implies that only r(x), the portion of f(x) lying in the space spanned by the 

kernels Ki(x), will have experimental consequences and, hence, be obtainable by 

inversion  of   the   measurements.     This  ambiguity  is  inherent  in  any  inversion 

technique and shows the importance of carefully choosing the Kj(x) to maximize 

retrievable information. 

12 



An orthonormal basis for W can be constructed from an eigenanalysis of 

the covariance matrix C, where the element in the ith row and jth column of C is 

given by 

c..    =   <  K.,K.> (7) 

As C is a real, symmetric matrix, its eigenvalues are real and non-negative. Let j^ 

be the diagonal matrix that contains the eigenvalues of C in descending order, and 

let U be the eigenvector matrix containing the corresponding unit normalized 

eigenvectors of the covariance matrix in its columns. Let the square root of a 

diagonal matrix be given by the diagonal matrix with elements equal to the square 

roots of the respective elements of the original matrix. If K(x) is the column 

matrix whose elements are the functions KjCx), and the asterisk denotes matrix 

transposition, an orthonormal basis     i(x) for W is given by 

,j,(x)   =  A"*"' U* K(X) (8) 

The proof that the il>j(x) are orthonormal is given by Twomey. The function r(x) is 

an element of W and the <^^{x) form an orthonormal basis of W. Therefore, r(x) can 

be expressed as a linear combination of the ^[{x) as follows: 

r(x)   =   ^*  (|,(x)   =  ,j,*(x)   ^ (9) 

where  the  f. are the coefficients of the basis vectors of W. 

Expressing equation 6 in matrix form, 

b 
g   =   /  K(x)   r(x)   dx 

b 
/  K(x)  ,|,*(x)  ^   dx 

=  /   K(x)  K*(x)   dx     U A        C 
a 

I 
13 



= C U A-''^ C 

Since the eigenvectors are orthonormal the above equation may easily be solved for 

the coefficients of the '^i. 

^   = A-*"^ U*   g (11) 

This gives the analytic solution to the inversion problenn. 

r (x)   ^  K*(x)   U A"^   U*   g (12) 

Equation 12 is formally equivalent to Twomey's equation 5; however, the 

interpretation of the left-hand side is different. This may be seen by taking a 

known f(x), calculating the gj's, and using these values in the inversion process. 

Twomey's equation 5 implies that f(x) should be obtained exactly. From the 

preceeding analysis, only r(x), that portion of f(x) lying in the space spanned by the 

kernels, can be recovered. A convenient measure is obtained by comparing the 

norms of r(x) and f(x). 

I I    r   I I      =  /   {r(x)}      dx 
a 

=  J   ^* <l> (x)  **(x)  K   dx 

= ^*   I   C 

=:    K*    ? (13) 

where I is the identity matrix of appropriate order.  The norm of f(x) is given by 

II    f   I I    \  !   {f(x)}      dx 
a 

b 2 
= /   { r(x)   +   six)}      dx 

a 

\^ 



= J   (C* ♦ (x)   +   s(x)}      dx 
a -. ,.      ■ ■ 

./ b 
= K* K   +   ^* A    ' U /   K(x)   s(x)   dx 

a 

b 
+ /   { s(x)}      dx 

= ?* ^    +   I I    s   ll' d'^) 
Comparing equation 13 and equation I'f, the norm of r(x) must always be less than 

or equal to the norm of f(x). 

=1 (15) 
r 

II    f    II 

Returning now to the original problem of an unknown f(x) and errors in the 

experimental gj's, we can calculate the effect of these errors on the inverted 

function r(x).  Rewriting equation 12 in a different form yields 

r(x)   = 4,*(x) A"^' U*   g 

=   E   a-    gj (16) 

where 

(|)j(x) 

If the Cj of equation 1    are the standard deviations of the normally distributed, 

zero-mean error in the gj's, then the variance {6(x)} ^ of r(x) is 

{6(x)}'   =   Z  a?   e.2 (17) 
i 

The norm of ^(x) is then 

2 b 2 
I I   6    I I      =   /   {6(x)}      dx 

u. .        u. , b 
ELZ     -^       —!-     G:^   /   (}).(x)   (t).(x)   dx 
ijk     /   Xj      /   X,^ a     J 

15 



u . . u . . 

=   E     Xj    ^     Z   Uji   ej* (18) 

A simple expression for an upper bound on equation 15 may be obtained using the 

unit normal property of the eigenvectors. 

=    Z    Xj"'        {Z    U        2}     {J    £2} 
)      ' I        ' i 

=   |e|2     z  X:"i (19) 
j      ^ 

where the vector c is the column matrix containing the standard deviations ^i, 

and I I denotes the magnitude of a vector. A similar expression for 11 r 11 

may  be  derived  using  the  fact  that  the  Xi's are non-negative. 

|g|'   =   g*  g 

=  5*  A     U* U A     C 

=  C*  A  C 

=   ?     M   ?i' 
1 

=   {   ?   Xi}   {   Z   CiM 

= { ? Xil r c 

=   {   ?   Xj}    II    r   ll' (20) 
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Equations 19 and 20 lead to an upper bound on the ratio of the norms of 

the standard deviation in r(x) to the norm of r(x), referred to as the relative error 

in r(x), in terms of the relative error in g, where the relative error in g is given by 

the ratio of the magnitude of the standard deviation vector to the magnitude of g. 

\llMi   {   ,   x.-M'^     {   ^   X.}^^     1^ (21) 
II    r    II i      ^ i      ^ |g| 

Given a relative error in g the relative error in r(x) is controlled by the factor 

involving Xp^, Since the Xj's are arranged in decreasing order, the more 

eigenvalues that are kept for the analysis, the larger the error in the returned 

function becomes. Thus, for a desired uncertainty in the returned function r(x) 

only p ■! N eigenvalues and eigenvectors can be used in equation 12. The 

consequence of this is that only p orthogonal functions can be used to expand r(x). 

Comparing our analysis with Twomey's shows that his "pieces of information" are 

the number of independent functions, lying in the space spanned by the p 

eigenf unctions (given by equation 8), into which f(x) can be reliably decomposed. 

2.2  Constrained Linear Inversion. 

Constrained linear inversion begins with the quadrature approximation to 

equation 1 given by 

g   -  A  f (22) 

where 

g        = measurement vector 

A        = kernel quadrature matrix 

f = vector of actual distribution 

The approach is to minimize some arbitrary nonnegative smoothing measure of the 

inverted solution f,  while  holding  constant  the  error e in the expression 

A  f '   -   g   = e (23) 

Some commonly used smoothing properties include minimum departure 

from a trial function and minimization of a particular order derivative of the 

inverted function. Using the method of Lagrange multipliers to solve this 

constrained minimization problem, we have 

17 



    {    (A   f    -   g)*   (A   f    -   g)   +  Y    (f *  H   f )   }    =0 (2^) 
5    f 

where H is the derivative smoothing matrix.  Simplification of equation 24 yields 

f'=(A*A+YH)~iA*g (25) 

The  smoothing  parameter Y  can be interpreted as a filter that eliminates small 

eigenvalues from the kernel covariance matrix.  In practice, the magnitude of 

Y   is   determined  by  starting  with  a low   value  and  increasing Y until the sum 

squared  residual of 

A   f    -   g (26) 

is approximately equal to the expected measurement errors in the g data. Further 

discussion of the constrained linear inversion technique may be found in references 

1 and 2. 

2.3    Landweber Iteration. 

The Landweber iterative approach succesively alters an initial estimate of 

the solution until sufficient convergence occurs. The solution corresponding to j 

iterations, f;, is given by 

f.    =   fj_j   +   (   A* A   + B    I)"'   A*(   g   -  A  fj_j)    (27) 

The smoothing parameter g must be chosen to compromise between large devia- 

tions from the trial distribution fj_i and large residual components of Af-g. By 

equation 25, the first iteration of Landweber is equivalent to constrained linear 

inversion. Details on the development of Landweber iteration and proofs of 

convergence properties are available in references 3 and tf-. 

2A  Backus-Gilbert Synthesis. 

The main concept used in Backus-Gilbert synthesis is the construction of 

linear combinations of kernels that approximate Dirac delta functions at the radii 

of interest.   There are two major opposing concerns that must meet a compromise 

18 



for successful Backus-Gilbert synthesis: (l) the effect of error in the measure- 

ments on the solution, or variance; and (2) the mean square difference of the 

synthesized functions and Dirac delta functions, or resolution. The principal 

equations used are given by 

where 

a(e)   -   (u*  W(6 )   u)"^   W(e)"^    u (28) 

b 
u.      =   f   K.(r)   di 

1 •'       1 

W(e) =  S  cos 9   +   c Sg.   sin Q 

S = resolution matrix 

Sg. = variance matrix 

9 = tradeoff parameter 

c = arbitrary constant 

a(9) = coefficient vector of linear combination of kernels 

Further discussion of Backus-Gilbert synthesis is found in references 5 and 6. 

3.     KERNEL OPTIMIZATION 

Selection of the absolute optimal subset, with respect to information 

content, from a large set of candidate measurements would require evaluation of 

each possible combination of the desired number of measurements. If p measure- 

ments were to be selected from q candidates, the number of subsets to examine is 

given by 

  (29) C) p!(q-p)! 

Selecting even just a few measurements from a larger set rapidly requires compari- 

son of an unmanageable number of subsets. For practical purposes, an approximate 

method for optimization is needed, together with a measure of how close the 

subset comes to including all of the information available in the full set of 

measurements. Section 3.1 highlights the advantages and shortcomings of several 

optimization schemes that were investigated.   The present optimization algorithm. 

19 



described in section 3.2, retains many of the advantages and minimizes the short- 

comings of the investigated optimization schemes. 

3.1    Development of the Selection Scheme. 

The dependencies between kernels, and hence measurements, are reflect- 

ed by the kernel covariance matrix. A perfectly uncorrelated set of normalized 

kernels would produce a covariance matrix with ones on the diagonal and zeros 

everywhere else. Mie kernels corresponding to experimentally feasible measure- 

ments are typically quite correlated, and require eigenanalysis to untangle the 

dependencies and identify how many pieces of information are truly available in 

the kernel set. 

Principal components analysis forms factors, or linear coinbinations of the 

kernels, such that the coefficient vectors defining each factor are orthogonal and 

have unit length. The factors are extracted so that each successive factor maximi- 

zes the remaining variance. The mathematical equation for extracting the ith 

factor is given by 

{     (q.*  C  q. )   + n    (1   -   qj*   qj )}    =   O (30) 

^i 

where 

qi       = coefficient vector of ith linear combination 

C        = covariance matrix with eigenvalues 1 to i-1 deleted 

r] = Lagrange multiplier 

Simplifying equation 30 yields the result that the coefficient vector for the ith 

factor is the eigenvector of the kernel covariance matrix corresponding to the ith 

largest eigenvalue, x i-  The amount of variance contributed by the ith factor is 

(31) 
tr(   K*  K) 

where tr(K K*) = trace(K K*) = sum of diagonal elements of K K*. 

20 



3.1.1 Cluster Analysis. 

Most of the variance in the system is contained in just a few factors when 

dealing with dependent kernels, so the dimensionality of the system may be 

reduced by retaining only as many factors as needed to acccount for most of the 

variance. The result of projecting the kernels onto this smaller, orthogonal set of 

axes defined by the factors is a representation of the kernels as points in p-space, 

where p is the number of contributing factors. The kernels can then be compared 

and clustered into similarity groups on the basis of simple distance. 

Clustering results give the distance levels at which each kernel joins a 

growing cluster. The number of clusters present at some given distance gives an 

intuitive idea of the information content of the kernel set. However, the non- 

physically interpretable step of projecting the kernels onto the orthogonal factors 

introduces difficulties into the determination of a rigorous distance level criterion 

for establishing the number of clusters. There is also no guarantee that the most 

independent subset of kernels would necessarily be far apart in the factor space. 

The principal components portion of the analysis does, however, provide a tool for 

constructing a set of orthogonal functions that have the same dimensionality as the 

kernels. 

3.1.2 Eigenanalysis of the Covariance Matrix. 

For the cluster analysis optimization scheme, principal components analy- 

sis was used as a preprocessor of the kernel functions in order to produce variables 

upon which synthetic kernels could be defined by projection of the old kernels onto 

the new variables. The eigenfunctions of the covariance matrix were, in this case, 

linear combinations of the radius variables. This form of principal components 

analysis, without the cluster analysis, would identify which radius measurements 

would be appropriate for a given set of wavelength-angle-polarization combina- 

tions. It would be more desirable to identify which wavelength-angle-polarization 

measurements would be suitable for a given range of radii. 

An element of the kernel covariance matrix that corresponds to wavelength 

identification, for example, for a radius range from a to b is given by 

21 



b 
f    K.(r)   K.*(r)   dr (32) 

1 ] 

where 

r = particle radius 

Kj      =   Mie  kernel   for K ( Xj,r) 

X i       = incident wavelength of ith measurement 

In matrix notation, the kernel covariance matrix is given by 

K K* (33) 

where 

K        = mxn kernel matrix 

m       - number of measurements 

n = number of radii 

kij      =  K CXi,rj) 

whereas the covariance matrix used for cluster analysis preprocessing is given by 

K*  K (3^^) 

The eigenvectors of the kernel covariance matrix are linear combinations 

of the wavelength kernels that are orthogonal and of length unity. To identify the 

most important kernels from these linearly independent combinations, consider the 

matrix U containing the eigenvectors of the kernel covariance inatrix such that the 

ith column of the matrix is the ith eigenvector. The elements of largest magnitude 

identify the major contributing kernels to particular kernel combinations. 

However, there is no accounting for the exclusion of kernels that describe highly 

oscillatory components of the desired function that are perhaps irretrievable due to 

measurement error. That is, a particular kernel may account for most of the 

structure of one particular combination, but that combination may in turn 

contribute only a minute portion of the total variance. Variations of this maximum 

element selection criterion included: (1) selecting the maximum element from the 

eigenvector matrix, where each column was additionally weighted by a power of its 

corresponding eigenvalue; and (2) selecting the kernels with maximum variance as 

given by the largest contributions overall to significant eigenvectors,indicated by 

the maximum sums of the squares of the rows of the eigenvalue weighted 

eigenvector matrix. The groups resulting from these different selection techniques 

were similar, but examples were easily found for which the selection techniques 

would choose clearly non-optimal subsets.   For example, the selection by maximum 
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variance method would choose two very nearly parallel kernels if they were both 

orthogonal to the remaining kernels. 

Yet another method of selection utilizing eigenanalysis of the kernel 

covariance matrix is to maximize the amount of recoverable information from a 

set of kernels. From section 2.1, we have seen that the desired distribution f(x) is 

composed of functions orthogonal to the kernels as well as functions in the space 

spanned by the kernel set 

f(x)   =   r(x)   +   s(x) ; (35) 

where r(x) is the recoverable function, or the function in the space spanned by the 

kernels, and s(x) is the portion of the function that lies outside the kernel space. 

By selecting kernels such that | | r(x) | | /| | f(x)| | is maximized, the maximum 

amount of recoverable information about f(x) is retained. Assume, for the 

moment, an analytic f(x) similar to the expected experimental distribution. Using 

the gi from 

b 
g.    -   J   K.(x)   f(x)   dx (36) 

we have 

r(x)   =  ^* A"^' U*  K(x) (37) 

and 

U*   g (38) 

The measure of the fraction of information retrievable is given by 

II '^ II     ,    K* K    y^ 
=   {       } (39) 

I I   f  I I /  fMx) 

and is a useful measure for comparing kernel groups selected by any optimization 

scheme. Explicit information about the dependencies among the kernels is 

ultimately given by the kernel covariance matrix itself.   The concepts to develop 
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are then analysis of the kernel covariance matrix, and the fraction of recoverable 

information. 

3.2   The Optimization Technique. 

The kernel covariance matrix has elements CJ; defined by 

b 
c..   = J   Kj (r)   K  *(r)   dr (i^O) 

'        a ' 

The kernels have been normalized such that Cj, =1 when i=j. The first inclination 

one might have is to select the two kernels that have the smallest covariance, and 

then add on more kernels using a similar criterion. The problem with this reasoning 

is that the optimal subset of, say, five members does not necessarily contain the 

optimal four-subset. The number of possibilities becomes overwhelming. 

In order to approximate the solution of this enumeration problem, assume 

that a finite set of kernels is given to choose from. The optimization technique we 

found to be most satisfactory iterates through an elimination procedure that 

identifies and deletes the most dependent kernel of each successively smaller 

subgroup. The specific procedure is to: (1) Sort through the kernel covariance 

matrix for the largest off diagonal element, cy. (2) Calculate SSj, the overall 

correlation of kernel i with the others, given by the sum of the squares of the ith 

row elements. (3) Calculate SS;, the sum of the squares of the jth column 

elements. (^) Delete the row and column i (eliminate measurement i) if SS] if 

larger than SSj, otherwise delete row and column j (eliminate measurement j). (5) 

The index of the deleted row and column indicates the most dependent kernel. 

Return to step 1 and continue until only p kernels remain. There is no guarantee 

that this method indeed selects the optimal kernel subset. This method has, 

however, produced superior results for the fraction of recoverable information as 

well as for actual inverted distributions for noise-free and noisy measurements. 

i^.   RESULTS 

Scattering kernels were generated using J.V. Dave's routine^ for computing Mie 

functions.   The kernels were used for generating the quadrature weighted kernel 
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matrices, kernel covariance matrices, and synthetic measurement data. The 

number of points used to approximate the integral equation 1 was set at 500 in 

order to compromise between computing time and necessary accuracy. Initially 

confounding poor results from good kernel sets pointed out the need to evaluate the 

kernels at precisely the same radii for kernel matrix, covariance matrix, and syn- 

thetic measurement calculations. This requirement indicates that finer resolution 

for numerical integration is needed, even though the values of the approximated 

integrals showed variations of only fractions of a percent as several hundred inte- 

gration points within the fixed interval were added. Overall, we expected an error 

level of approximately 0.1% to accrue throughout the various numerical calcula- 

tions executed in the course of generation and eigenanalysis of the kernel 

covariance matrix with the functions evaluated at 500 points. 

Normalization was found to be of critical importance as the investigation pro- 

ceeded. Without normalization, kernels that described different portions of the 

radius range in a structurally nonoverlapping manner could easily appear to be 

totally dependent as the effect of magnitude was overemphasized. To circumvent 

the magnitude problem, the kernels were normalized such that 

J  K. (r)   K.*(r )   dr   =   1 ('f 1 ) 
a 

where Kj (r) is K(Ai,r). These normalized kernels were then used to generate 

synthetic intensity data and the kernel covariance matrix. 
1 

^■A    Optimization Results. 

4.1.1    Test Case Description. 

The baseline set of kernels optimized consisted of unpolarized direct 

backscatter kernels for 85% by weight phosphoric acid smoke at forty wavelengths 

evenly spaced between 0.2660 and 10.3000 microns. The range of radii considered 

extended from 0.001 to 1.3 microns. For a given particle size distribution, the 

amount of recoverable information from ^ set of kernels may be calculated by 

equation 39.    The particle size distribution used for this purpose, as well as for 
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generating the synthetic data, was a lognormal distribution with geometric mean 

diameter of 1.6 and geometric standard deviation of 1.2. The baseline kernel set 

was then compared to several other kernel sets. 

The alternative sets included kernels that were: (1) identical to the 

baseline in all parameters except the sample material was water fog; (2) identical 

in all parameters except the sample material was fog oil; (3) identical in all 

parameters except the angular resolution was increased to ± 1° ; W for 40 

scattering angles between (? and i^CP and an incident wavelength of 1.06 microns; 

(5) for forty scattering angles between (P and 20^ and incident wavelength of 

0.2660 micron; (6) for incident wavelength of 10.300 microns and 20 angles 

between OP and 180° for parallel and perpendicular polarizations separately; (7) for 

incident wavelength of 0.2660 microns and 20 angles between CP and 180* for each 

of the polarizations. 

4.1.2   Test Case Results. 

A summary of results for the baseline and the seven additional cases is 

given in Table I. The baseline case and the first two variations show that there is 

only a minute component of the particle size distribution that is orthogonal to each 

kernel set for the three materials under consideration. The third case results are 

very similar to the baseline case results, indicating that experimentally achievable 

angular resolutions will not degrade the information content of discrete angle 

kernels. Kernel sets with angular variation for a fixed wavelength show a 

noticeable drop in the fraction of recoverable information in cases four and five, 

and indicate that for unpolarized kernels, wavelength variation is preferable to 

angular scanning. Separating the polarizations does nothing to improve the 

information content of angular scan data, as illustrated by cases six and seven. 

Comparing cases four and six with cases five and seven indicates that the shorter 

wavelengths produce kernels with more recoverable information if angular scanning 

data is to be used. At times, the error level exceeds the expected 0.1% error, 

giving a recoverable fraction value greater than one. For these cases, the number 

of significant eigenvectors is equal to the maximum number of eigenvectors for 

which the recoverable fraction is less than one. 
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Table 1.  Information Content in Variations of the Baseline Case 

Case Significant 
Eigenvectors 

BASELINE:    H3PO^ 
40 wavelengths 0.266-10.3 microns 
0.001-1.3 micron radius 
Backscatter kernels 
Lognormal distribution with 
ag=1.2, dg=1.6 1* 

Fraction 
of Recoverable 

Information 

0.997 

1. Water fog 

2. Fog oil 

3. H^POtf.   180° ± 1° 

^,  Forward angles 
0.266 micron wavelength 

5. Forward angles 
1.06 micron wavelength 

6. Polarization 
0.266 micron wavelength 

7. Polarization 
10.30 micron wavelength 

1* 

9 

I* 

10 

6 

16 

2 

0.999 

0.998 

0.997 

0.960 

0.966 

0.899 

0.346 

Table 2. Optimally Selected Subsets of the Baseline Case 

Number of 
Measurements 

Significant 
Eigenvectors 

Fraction of 
Recoverable 
Information 

l^0 14 0.997 

30 14 0.999 

20 12 0.999 

16 10 0.994 

12 11 0.999 

6 6 0.971 
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Returning to the baseline case, we now consider the results of optimal 

subset selection according to the optimization technique described in section 3.2. 

Table 2 is a summary of recoverable information fraction results for several 

optimal subset sizes. The number of significant eigenvectors, and thus "pieces of 

information" by Twomey's definition, stays the same or decreases with decreasing 

number of kernels or measurements; however, the recoverable information 

fraction stays very close to 100 percent until only 12 of the original 'fO 

measurements are retained. The large fraction of recoverable information 

available in these subsets indicates that the optimal subsets have been closely 

approximated. A list of the baseline wavelengths and the subsets is given in 

appendix A, table A-1. The distributions produced by direct inversion of these 

subsets are further discussed in section ^^.2.2. 

4.1.3    Experimental Implications. 

Selection of an optimal kernel set is, in essence, selection of a set of 

measurements to be made to obtain data for inversion. While the kernel sets 

tested were not exhaustive, a variety covering several plausible experimental 

approaches were tried with the backscatter set offering the most promise. It was, 

therefore, selected as the set to be optimized. Some of the experimental concepts 

tested with the eigenanalysis of the covariance matrix were forward scattering 

using liO wavelengths, near-forward scattering with 'fO wavelengths, a mixture of 

measurements made at different angles and wavelengths, plus the cases 

enumerated in section 4.2.2. The forward scattering approaches showed that only 

one or two significant eigenvectors ("pieces of information") could be obtained. 

They were, therefore, omitted from further consideration. 

Table 1 shows the number of significant eigenvectors and the fraction of 

recoverable information for the various experimental approaches. The first 

observation of interest is that the backscatter measurement at a variety of 

wavelengths contains essentially all the information for phosphoric acid, water fog, 

and fog oil aerosols with the stated size distribution. The forward differential 

scattering measurements at 0.266 and 1.060 microns contain slightly less recover- 

able information and the polarization measurements significantly less. 
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As there are only 14 independent "pieces of information" contained in the 

'fO measurements made at different wavelengths, it is desirable to reduce the 

number of measurements as much as possible while still retaining the available 

information. Table 2 shows how the recoverable information varies as the number 

of measurements is reduced using the algorithm described in section 3.2. To retain 

all available information, a minimum of 12 measurements at different wavelengths 

is required; these are listed in table A-1 of appendix A. Thus, out of a set of 

backscatter measurements at i^O wavelengths, 12 have been selected as the 

minimal, optimal set.  Fewer measurements means a loss in information. 

A sensitivity analysis was performed using the optimal twelve wave- 

lengths to see how changes in the particle size distribution affected the inversion 

results (see appendix B, figures B-1 - B-5). The significant result is that size 

distributions with smaller average diameters can not be accurately inverted from 

the data that is available at these wavelengths. This will represent a severe 

experimental handicap as the wavelength range from 0.266 micron to 10.30 microns 

was covered in the selection process. There are three possible ways out of this 

problem that should be investigated; find a different combination of experimental 

parameters that contains information on smaller particles, obtain shorter 

wavelength lasers, or try tightly constrained fits to the ill-conditioned 

experimental data.  All of these approaches have obvious problems. 

The backscatter measurements at the twelve wavelengths chosen enable 

one to obtain particle size distributions with means and standard deviations similar 

to the baseline case. Distributions with larger means and standard deviations are 

also experimentally accessible. However, data from smaller particles are difficult 

to invert using these measurements. 

'f.2    Inversion Results. 

^^.2.1    Test Case Description. 

The baseline kernel set of section i^A was reduced to 12 members by 

optimization to provide a standard set of kernels upon which the various inversion 

techniques   could   be   tested.     Experimental  error  was  simulated  by  generating 
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normally distributed random numbers with mean zero and standard deviation equal 

to an error level of either one or ten percent. 

^^.2.2   Test Case Results;   Four Methods of Inversion. 

The results for constrained linear inversion, Backus-Gilbert synthesis, 

Landweber iteration, and direct inversion are shown in figure B-6 for intensity data 

with no error. Notice that although the returned points are connected in the 

figure, only the direct inversion method has the capability to deliver the value of 

the inverted function at virtually any ordinate value. That is, the constrained 

linear, Backus-Gilbert, and Landweber techniques all return a limited number of 

points, with difficulty of inverting increasing as the number of returned points 

increases, while the direct method gives, in essence, a formula for computing the 

returned function at any point. Ten evenly spaced radius values in the range of 

interest were returned for Backus-Gilbert, Landweber, and constrained linear 

inversions. 

The form of the kernel matrix for such a limited number of radius points 

must be considered. The integrals of smooth kernels involving, for example, simple 

exponential expressions, can be approximated using numerical quadrature techni- 

ques with relatively few points. Mie kernels, however, are typically not smooth in 

the regions of interest, and require many integration points for accurate evalua- 

tion. Backus-Gilbert, Landweber, and constrained linear inversion invert the 

matrix A*A, which is a square matrix with order equal to the number of returned 

points, where A is the quadrature weighted kernel matrix. Clearly, it is not 

acceptable to just perform the inversion for a large number of returned points; 

rather, special treatment of the kernel matrix is necessary. Each element ajj of 

the kernel quadrature matrix A is given by 

r j +A / 2 

r 
1J 

a: :   = /  K(Xj ,r)   dr (^2) 

rj-A/2 

where r; is the jth radius or returned point, and A is the ordinate spacing between 

the returned radii. The integrals in equation it2 are each evaluated with the 

appropriate one-tenth of the 500 radii points. 
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Both direct and Landweber inversion give good results for the error free 

case. Constrained linear inversion and Backus-Gilbert show some spurious oscilla- 

tion in the returned function at radius values in the lower end of the radius range. 

The quality of direct and Landweber results is maintained for measurement data 

with one percent simulated noise as shown in figure B-7. Backus-Gilbert results 

still show an erroneous tail for the smaller radii with good peak tracking for one 

percent noise, while constrained linear inversion continues to give adequate peak 

tracking with oscillations for smaller radii. Figure B-8 summarizes inversion 

results for a ten percent noise level in the measurement data. Landweber iteration 

gives the most reasonable approximation of the actual distribution. Direct 

inversion results are generally similar to the Landweber results, with some added 

oscillation at the larger radii. Constrained linear inversion still has problems 

inverting at smaller radii, but the overall solution is also acceptable. Backus- 

Gilbert results retain the left tail for smaller radii, and produce a peak and right 

tail similar to Landweber and direct inversion results. 

The principal advantage of the direct inversion method is its straightfor- 

ward approach to evaluating measurement error effects. Where constrained linear 

inversion and Landweber iteration require incorporation of arbitrary smoothing 

constraints, direct inversion gives a mathematically rigorous criterion for eliminat- 

ing oscillatory components as a function of anticipated measurement error. Where 

Backus-Gilbert attempts to construct linear combinations of the kernels such that 

Dirac delta functions are approximated, direct inversion makes use of the 

eigenfunctions that maximize variance and are orthogonal by definition. The 

direct-inverted function also has the advantage of radius resolution as fine as the 

resolution used for the master set of kernels; that is, the numerical approximation 

of integrals of oscillatory functions by quadrature with only a few points is not 

necessary. 

4.2.3    Direct Inversion Sensitivity Results. 

Sensitivity analysis of direct inversion of the baseline 'fO and the standard 

subset of 12 measurements was performed to gain a better understanding of the 

limitations and strengths of the direct inversion method. We have already 

considered   some   interesting   parameter   variations   in   previous   sections.      For 
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example, a summary of direct inversion results for the various error levels 

discussed in section ^.2.2 is given in figure B-9. The effect of the number of 

measurements decreasing from ^0 to six, briefly described in table 2, is illustrated 

in figure B-10 . Figure B-1 compares inversion with optimal kernel sets for each of 

the three materials for a ten percent measurement noise level. Each of the 

materials produce similar inverted results since the number of significant 

eigenvectors and the recoverable information fraction are similar for the three 

materials. 

We have seen a subset of 12 measurements that contains most of the 

information about the lognormal size distribution with geometric mean diameter dg 

of 1.6 and geometric standard deviation Gg of 1.2. Recalling the optimization 

scheme of section 3.2, notice that the kernels are selected without regard to the 

particle size distribution. The kernel covariance matrix determines the optimal 

measurements. The particular size distribution only enters into computing the 

recoverable information fraction. Since the actual particle size distribution is not 

known, there is a need to understand how varying the size distribution affects 

inversion quality. The standard subset of 12 measurements was regenerated using 

identical kernels, but varying particle size distributions. All size distributions were 

lognormal, and only one of the parameters Og or dg was varied from the standard 

values for each of the sensitivity cases. Figures B-2 and B-3 the standard 

distribution and the inverted results as well as two actual-inverted pairs for 

distributions with decreased geometric mean diameter. In figure B-2, dg is 1.2, and 

in figure B-3, dg is 1.0. Although the same ten eigenvectors are used in each 

inversion, results are significantly degraded as the geometric mean diameter 

decreases. The recoverable fraction decreases dramatically as dg decreases. The 

effects of increasing or decreasing the geometric standard deviation are shown in 

figures B-I4 and B-5. In figure B-4, Qg is I A, and in figure B-5, Og is 1.1. The 

recoverable fraction data indicates that although the inversion results are 

degraded, the effects are not as severe as when the peak is shifted to lower radii. 

The ten eigenfunctions used to construct f(x) are shown in figures B-11 through B- 

20. These eigenfunctions do not show much structure in the lower radius region, 

and since by equation 9, successful inversion requires forming linear combinations 

of the eigenfunctions to resemble the desired inverted function, good inversion 

results in the lower radius region are not expected. 
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The upper radius limit for integrating the size distributions was arbitrarily 

set at 1.3 microns for the baseline case, with the idea that the value of the 

distribution at 1.3 microns is greatly diminished from the peak value occuring at 

0.8 micron. Direct inversion results for this region show a tail on the right that 

gets progressively worse as the error level in measurements increases. The 

sensitivity to upper range limit was tested by adding a section of 0.2 micron width 

on to the upper end of the radius interval. The number of points at which the 

kernels were evaluated was proportionately increased to "yll, and the standard 

optiinal 12 measurements were correspondingly recomputed and subsequently 

inverted. The results for ten percent noise for the baseline and revised radius 

range cases are given in figure B-21. For the noise-free case, the number of 

significant eigenvectors for the extended range kernels increased to 11, but the 

recoverable fraction exceeded 1.0, indicating that perhaps the error level is higher 

than the expected 0.1%. Note that the optimized kernels for the 0.001 to 1.3 

micron range are not necessarily the optimal kernels for the 0.001 to 1.5 micron 

range. The important finding from this case is that the limits of the integrations 

can profoundly affect inversion results. The correlation between the two kernels 

could be large over one radius interval, yet quite small for a different and perhaps 

more interesting radius interval. 

The effects of changing the form of the actual distribution provide some 

additional insight into the direct inversion technique. A bimodal distribution 

composed of a lognormal with Og of 1.2 and dg of 1.6 added to a lognormal with Og 

of 1.3 and dg of 3.0 was used to generate synthetic backscatter measurements 

which were then input to the direct inversion method. The radius range extended 

from 0.001 to 3.0 microns. For the baseline 'fO wavelengths for Wi^Oi^ smoke, 

there were 21 significant eigenvectors for noise free data, giving a recoverable 

fraction of 0.993. The optimization technique was applied to the 'fO kernels, and 

the set of 25 optimal kernels was tested for inversion quality at the several levels 

of error. The selected kernels, given in table A-2, reflect a preference for more 

medium and long wavelength kernels for this radius range. For the optimal-25 

subset, there were 21 significant eigenvectors, giving a recoverable fraction of 

0.997. The twentieth eigenvector adds a good portion of the information fraction, 

indicating that for low error levels, keeping fewer than 20 eigenvectors would not 

provide sufficient structure to produce a desirable inversion result.    Figure B-22 
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gives the bimodal distribution and the noise-free, one percent, and ten percent 

measurement error direct inversion results. Figure B-23 gives inversion results for 

a lognormal distribution, with dg larger than the dg of the baseline case, in the 

same radius region as the bimodal distribution of figure B-22. Note that the right 

tails of the returned distributions do not suddenly turn up the way they do for the 

cases inverted in a smaller radius range. The ten percent noise results show a 

serious degradation of results, with a recoverable fraction of only 0.660. 

Sensitivity to radius range, bimodal shape, and numerical integration procedure will 

provide interesting insights as investigation into the direct inversion method 

continues. 

5.    CONCLUSIONS AND RECOMMENDATIONS 

The information content of a set of measurements has been the focal 

issue of the Inversion Technique Evaluation study. The direct method of inversion 

has been developed into a tool for determining the information content of a set of 

kernels as well as a complete method of inversion, including prediction of 

experimental error propagation in the solution. Unpolarized backscatter intensity 

measurements for small incident wavelengths were found to be the most desirable, 

with respect to information content, when compared to transmission data, polari- 

zation data, angular scan data, and wavelength data for various fixed angles. The 

direct inversion method identifies how many of the orthonormal eigenfunctions 

should be taken for any given measurement set and level of experimental noise. 

The number of measurements may then be reduced to the number of eigenfunc- 

tions, and the process repeated to assure that the number of significant eigenvalues 

and the recoverable information are not significantly degraded. The eigenfunc- 

tions, when plotted as a function of radius, provide a clear representation of the 

radius regions in which successful inversion can be expected. Results are excellent 

for inversion of the optimized measurements by the direct inversion method for 

experimental noise levels of one and ten percent. Landweber iteration also 

produces excellent results, but adds no insight into the physical processes involved 

that help to determine under what conditions inversion may be successfully applied. 

Backus-Gilbert synthesis and constrained linear inversion were found to be lacking 

in both inversion quality and ease of physical interpretation. 
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The eigenfunctions examined point out that distributions with larger 

particle sizes can be inverted more successfully than those with small particles. 

No structure is apparent for smaller radii, and that lack of structure causes 

difficulties when requiring a linear combination of the eigenfunctions to sum to a 

smooth function over the entire radius range of interest. It would be interesting to 

delete the lower portion of the radius interval, reoptimize, and invert to see if 

improvement in results was obtained as the no-information, no-structure portions 

of the original eigenfunctions were deleted. Shorter wavelengths would also help 

inversion of smaller size distributions, but are not available for measurements. An 

understanding of why each of the methods performs as well or as poorly as it does 

would offer further insight into kernel selection and the strengths and limitations 

of each of the methods. Further sensitivity analysis of the radius interval and 

particle size distribution is necessary to more fully understand kernel optimization 

for realistic laboratory conditions. 

Developing a physical understanding of the effects of smoothing con- 

straints could be important for kernels sets that may not contain much informa- 

tion, but must be inverted, and for cases in which something is known about the 

actual distribution. The relative merits of inversion with these smoothing 

constraints as opposed to a procedure such as parameter fitting could then be 

compared without the arbitrariness now prevalent in inversion techniques using 

smoothing constraints. 

To summarize, the major conclusions of this study are: 

• Excellent inversion results for the problem considered here are 
achievable using the direct or the Landweber methods on measure- 
ment data with noise levels to 10%. 

• The information content of a set of measurements and error 
propagation predictions are also available from the direct inversion 
method. 

• The direct inversion method provides a physical understanding of 
kernel dependencies and their effect on inversion quality. 

• A quantitative measure of the maximum information available from 
a given set of measurements is available from the direct inversion 
method. 
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• A group of candidate measurements may be systematically reduced 
to an optimal subset which retains a known fraction of the informa- 
tion present in the larger set. 

• Unpolarized backscatter measurements at small wavelengths have 
the highest information content of the measurement sets analyzed. 

The major recommendations for further study are: 

• An understanding of the effects of the radius interval used for 
integration should be more thoroughly developed. 

• Incorporation of a priori knowledge or smoothing constraints into 
the inversion process should be further investigated. 

• Further analysis of why each of the four methods performs well or 
poorly for a given data set should be performed. 

• Inversion of bimodal distributions requires further investigation. 
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APPENDIX A 

TABLES 

Table A-1.  The Optimal Subsets of the Baseline Case    .001 - 1.3 Microns 

avelengths Subset Subset Subset Subset Subset 
microns of 30 of 20 of 16 of 12 of 6 

0.266 X X X X X 
0.52'A X X X X X 
0.782 X X X X X 
l.OifO X X X X 
1.290 X X 
1.550 X X X X 
1.815 X X X 
2.075 X X X 
2.330 X X X X 
2.590 X X X X 
2.850 X X X X X 
3.110 X X 
3.335 X X X 
3.625 X X X X 
3.880 X X X X 
^.1^0 X X X X X 
i^.WO X X 
t^.660 X X 
t^.3[Q X X X X X 
5.170 X 
5.^30 X 
5.690 
5.950 X 
6.210 X 
6.^70 X 
6.720 X 
6.980 X 
7.240 X 
7.500 
7.750 
8.020 
8.270 
8.530 
8.790 X 
9.050 
9.300 
9.560 
9.830 
10.075 X 
10.300 X X X 
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Table A-2. The Optimal Subsets of the Baseline Case Extended  .001 - 3.0 Microns 

Wavelengths Subset Subset Subset Subset Subset 
microns of 30 of 20 of 16 of 12 of 6 

0.266 X X X X X 
0.52'f X X X X 
0.782 X X X 
l.OfO X X X X 
1.290 X X X X 
1.550 X X X X X 
1.815 X X X X 
2.075 X X X 
2.330 X 
2.590 X 
2.850 X X X X X 
3.110 X X 
3.335 X X 
3.625 X 
3.880 X X X 
'f.l'fO X X X X 
i^AOO X 
^.660 X X X X X 
^^.910 X X 
5.170 X 
5A30 X 
5.690 X X 
5.950 
6.210 X X X X X 
GA70 X 
6.720 X 
6.980 X 
7.2^0 X X X 
7.500 
7.750 
8.020 
8.270 
8.530 
8.790 X X X X 
9.050 X 
9.300 
9.560 
9.830 
10.075 
10.300 X X X X X 
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APPENDIX B 
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Figure B-1.  Direction Inversion Results for Three Materials 
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Figure B-2.  Direct Inversion Results:   Sensitivity to Decreased 
Geometric Mean Diameter   Og = 1.2, dg = 1,2  Recoverable Fraction = 0.89^ 
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Figure B-3. Direct Inversion Results:   Sensitivity to Decreased 
Geometric Mean Diameter   Og = 1.2, dg = 1.0  Recoverable Fraction = 0,630 
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Figure B-^.  Direct Inversion Results:   Sensitivity to Decreased 
Geometric Standard Deviation   Og = 1.1, dg = 1.6 Recoverable Fraction = 0.960 
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Figure B-5.  Direct Inversion Results:   Sensitivity to Increased 
Geometric Standard Deviation   CTg = 1.^, dp = 1.6  Recoverable Fraction = 0.98'f 
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Figure B-6.  Comparison of Results for the Four Inversion Methods: 
Noise Free 
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Figure B-7.  Comparison of Results for the Four Inversion Methods 
1 % Noise 
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Figure B-8.  Comparison of Results for the Four Inversion Methods: 
10 % Noise 
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Figure B-9.  Direct Inversion Results for Tiiree Noise Levels 
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Figure B-10.  Direct Inversion Results for Varying Number 
of Measurements 
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Figure B-U.  The Ten Most Significant Eigenfunctions for thie Baseline Case:(t)i 
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Figure B-12.  The Ten Most Significant Eigenfunctions for the Baseline Case:<l)2 
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Figure B-13.  The Ten Most Significant Eigenfunctions for the Baseline Case: (J)3 
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Figure B-l'f.  The Ten Most Significant Eigenfunctions for the Baseline Case: \ 
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Figure B-15. The Ten Most Significant Eigenfunctions for the Baselien Case: <l>^ 
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Figure B-16.  The Ten most Significant Eigenfunctions for the Baseline Case: <t>5 
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Figure B-17.  The Ten Most Significant Eigenfunctions for the Baseline Case: (j)/ 
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Figure B-18.  The Ten Most Significant Eigenfunctions for the Baseline Case: 4)g 
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Figure B-19. The Ten Most Significant Eigenfunctions for the Baseline Case: (j)^ 
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Figure B-20. The Ten Most Significant Eigenfunctions for the Baseline Case: '^[Q 
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Figure B-21.  Direct Inversion Sensitivity to Extended Radius Range: 
Baseline Twelve Measurements 
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Figure B-22.  Direct Inversion Sensitivity to Extended Range and 
Distribution:   Bimodal 

Appendix B 66 



2: 
o 

CJ 
CJ 

CO 
LU 

CJ 

en 
<: 
Q. 

2. 0 

1.0- 

ACTUAL 
NOISE FREE 
1 X NOISE 
10 X NOISE 
DIRECT INVERSION 
25 MEASUREMENTS 

0.  0 
RADIUS   (MICRONS) 

3. 0 

Figure B-23.  Direct Inversion Sensitivity to Extended Range and 
Distribution:   Increased Geometric Mean Diameter 
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