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FOREWORD

Stability properties of the cyclotron maser instability in an annular

electron beam propagating through a cylindrical waveguide loaded with a tape

helix are investigated, in connection with applications on the gyrotron

-, amplifier. Closed form of the dispersion relation for the cyclotron maser

instability is obtained, including influence of the tape helix in stability

behavior. It is shown that the bandwidth of the gyrotron amplifier for a tape

helix is narrow in comparison with results for a sheath helix. However, the
:. growth rate of the tape helix gyrotron is comparable to that of the sheath

i helix gyrotron.
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I. INTRODUCTION

In recent years, stability properties of the electron cyclotron maser

instability1- 4 have been investigated in a great detail, in connection with

applications on the gyrotron amplifiers. Particularly, motivated by a wide

bandwidth microwave amplification, properties of the gyrotron amplifier in

a sheath helix loaded waveguide have been also investigated in a previous

5study. Although a theoretical analysis in a sheath helix loaded waveguide

is a reasonable simplifying assumption in many experiments, we expect a signi-

ficant modification of the stability behavior when the sheath helix is replaced

by a more practical tape helix. In this regard, this paper examines properties

of the cyclotron maser instability in a hollow electron beam propagating through

a tape helix loaded waveguide.

This paper extends the previous theory of the cyclotron maser instability,

developed by the authors for a sheath helix loaded waveguide, to a tape helix

loaded waveguide. The analysis is carried out within the framework of the

Vlasov-Maxwell equations for an infinitely long hollow electron beam with

radius R0 , propagating parallel to a uniform magnetic field B0  z with axial

velocity 8 c ; . The radii of the helix and the grounded conducting wall are
z -Z

denoted by Rh and R., respectively. Equilibrium and stability properties are

calculated for the electron distribution function [Equation (3)3 in which all

electrons have the same energy and the same canonical angular momentum but a

Lorentzian distribution in the axial canonical momentum. We assume that the

hollow beam is thin and very tenuous. The formal dispersion relation [Equation

(31)] of the cyclotron maser instability is obtained in Section IV, including

the important influence of the presence of a tape helix.
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In Section IV, properties of the vacuum waveguide mode loaded with a

tape helix are briefly investigated without including the influence of beam

electrons. Stability properties of the cyclotron maser instability are numeri-

cally investigated in Section IV, in connection with application on the gyrotron

amplifier. It is shown that the bandwidth of the tape helix gyrotron amplifier

for a helix mode is narrow in comparison with results of the sheath helix

gyrotron amplifier. However, the growth rate of the tape helix gyrotron is

comparable to that of the sheath helix gyrotron. In addition, the growth rate

and bandwidth of the gyrotron amplifier for tape helix are relatively less

effected by the axial momentum spread than those for sheath helix.

2

• .
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II. LINEARIZED VLASOV-MAXWELL EOUATIONS

FOR PERTURBATION

The equilibrium configuration consists of a relativistic annular electron

beam propagating parallel to a strong, externally applied magnetic field B0~z

The mean radius of the electron beam is denoted by R0 , and a grounded cylindrical

conducting wall is located at radius r = R,. Cylindrical polar coordinates

(r,e,z) are introduced in the analysis. A helix tape with width 6 and zero

thickness is located between the electron beam and conducting wall. The radius

and pitch of the helix are denoted by Rh and L, respectively, thereby defining

the pitch angle f and the unit helix vectore* by

Scotf-a 2WRh/L (1)

and

Scos e + sin e (2)

where e and e are unit vectors on the azimuthal and axial directions.

Obviously, it is assumed R0 < Rh < Rc.

In the analysis, we also assume that v/y << I, where v = Nbe2/mc2 is

Budker's parameter and mc2 is the electron energy. Here Nb is the total

Knumber of electrons per unit axial length, -e and m are the charge and rest
-mass of electrons, respectively. Moreover, it is further assumed that the

electron beam is thin, i.e., (R2-RI) << R0, where RI and R2 are the inner

3
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and outer radii, respectively, of the annular electron beam. In the present

analysis, we investigate stability properties for the choice of equilibrium

distribution function

fb (H, Pe1Pz) wJCNb P zA S(wt 6 (Pe-p 0)
3A22 A22' (3)I

4w yc +

Where H = ymc2 f (m2c4 + c2p2)l/2 is the total energy, Pz is the axial

momentum, PO = r [P8 - (e/2c)rBo] is the canonical angular momentum, " eBo/mC

is the non-relativistic electron cyclotron frequency, PO = -(e/2c) (R0
2 - r2) B0

is the canonical angular momentum of an electron with Larmor radius

r [12- 1) c2/ 2̂ - (p/ms 21 and y, P and A are constants.
LC Z C- ' z

Making use of Floquet's theorem 7 we adopt a normal mode approach in

which all perturbations are assumed to vary according to

-""(x,t) n (r)exp{i(nO +.k z - t) (4)

where

kn  k - 2r(n-X)/L (5)

is the axial wavenumber of the component n, w and k are the oscillation

frequency and the axial wavenumber, respectively, and I represents the primary

azimuthal mode number. For example, for small k value, the electromagnetic

field for n L azimuthal harmonic perturbation is dominant.6

4
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In the present purposes, it is assumed that

I - ch - (k + 2lrsIL)Ozcl << c/Y 27r$c/L (6)

*." where Oz = pz/*mc, c is the speed of light in vacuo, and s is the space harmonic

number. The Maxwell equations for the perturbed electric and magnetic field

amplitudes can be expressed as

v.x E Cx) = i(w/c) B Cx)

(7)
V x B (x) = (4w/c) J (x) - i G)/c) Cx),

I where Cx) and B (x) are the perturbed electric and magnetic fields and J (x)

is the perturbed current density.

Within the content of a thin beam approximation and Eq. (6), the transverse

components of the perturbed current density in Eq. (4) is expressed asS

J = iJrx) - -exp {iU(6+k z)}

x[ ,(R O) +i Er CR0 )]XCw'k) 6 (r-R 0 ) (8)

where the effective susceptibility X (La,k) is defined by

2 2 2 2

X 32k) ( 2 (9)

5
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w" a - k8c - * LlO)

I:" is the Doppler-shifted eigenfrequency, 18, = pJ/ymc, 6z =pz/ C' = (y2 - 1)1/2/y z

22

v be /mc 2 is the Budker's parameter and the integer a is defined by

a = L - s. (11)

As noted from Eq. (8), we emphasize that consistent with Eq. (6), the

*,.- transverse current density is mainly originated from perturbations with n = a

[ since the corrections associated with other perturbations with n ' are

order QL/2w8 c (<<I) or smaller.S  Moreover, we can also approximate the
z

!i perturbed charge and the axial component of the perturbed current density by

p(r) = J (r) = 0.

In this regard, from the Maxwell equation (7), we obtain

r y -rrr Tr- 2 n Ezn(r) = 0 (12)
r c

for the axial component of the electric field with arbitrary n. Similarly,

for the axial component of the magnetic field, the Maxwell equation (7) is

expressed as

n2 2 k2 (13)
{ -r rnr 2 +  " n z(r) =0
, r c n

6

:I
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for n N a and

a 2 2 2{I.~-~ 2 } C r)
, r 2Z

(14)

" - I-rCar{ cr(r) (14)

where the r- and e- components of the perburbed current density

F:J r(r) and J (r) are defined in Eq. (8)
ra e a

The physically acceptable solution to Eq. (12) is

Jn(Pn r ) ,  O< r< Rh

E Zn(r) = a (15)

J (n  n( (Pnr) - Jn( )N (p r)
i n~n) n nn nn n n

n njn(in)Nn(.n) _ ( n)Nn(nn)
n n n n n n n n

Rh < r <R,

for all n. However, for the axial component of the magnetic

' field, we have

b [ (Par) + g (w,k)N (p r n = a,

B (r)
zn

),n ) (16)

F4,
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for R0 < r < Rh, and

, (17)

N (C )J (p r) ) J(gn)N (Pnr)
B (r)- b Jn) n n l n n flfln nP

:Zn~r) nn Jnin)N'( n) " Jn( )N'(Tn)
n n ni n n ni n n

for R n r < R and for all n. In Eqs. (15) - (17), a and bn are

constants. J n(x) and N (x) are the Bessel functions of the firstn- n

and second kinds, respectively, of order n, the prime (') denotes

(d/dx) Jn (x) and (d/dx) Nn (x), and the parameters nn o Cn and Pn

are defined by

2 2 2 2 2 2 2 2 2 2
nn = n R h/ R = PnRh = C / kn)Rh. (18)

.*." The boundary conditions of the nagnatic field at r=Rh for the tape helix

are
6 ,

.iBo 4v o
(19)

B0  B' 4vr i~e -J sine,

where the superscript i and o represent the magnetic field components at just

inside and just outside, respectively, of the helix tape, JI is the surface

current density along the helix direction with the unit vector e*. Assuming that

4 the current in the tape flows only in the tape direction, and that it does not

vary in phase or amplitude over the width of the tape, the surface current

8

I
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density JI is reasonably expressed as6 ' 7

.- i I..Jin exp{i(n8 + k (20)

where the component amplitude ln

sin(k n/2) (21)
J= exp(-ikn /2) 2

n •

and 6 is the width of the helix tape. Substituting Eqs. (15) - (17) and (20)

into Eq. (19), it is straightforward to show that

a n  = t 2 .2 l n CSf ano - knn

SNn J J N (22)
X n n n n n n n

• Rn

and

"bn 2'2lnc On rn [jn ( T)wJc n (n) Nn I n )  n(nn Nn(;n)]".: - nnnN'

) +gN' ( ,) n = n

-i( ; .(23)

9

-I
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At the helix surface, the electric field along the helix direction is given

. iby

Y1 x) mexp~i(ne *k z)) }[E(Rhcs E( )sin#. (24)
- n

Making use of the Maxwell equation (7), and Eqs. (IS) and (16), we can show

that Eq. (24) is expressed as

EC(x) - cos*"exp i (ne + k z)1
nn

x a nj kn" i nnn) + g nNn nn]l (2S)

;x a J n r n ) ( t a n * - -- -n-L c p n

where g= g for n = a and gn = 0 otherwise. The coefficient function g (w,k)

* in Eq. (25) can be expressed in terms of the helix and geometric parameters,

* assuming that the electric field in Eq. (25) is set equal to zero along the

center line of the tape, i.e., at z = (LB/2n) + (6/2). This assumption is a

good approximation for narrow tapes. Substituting Eqs. (22) and (23) into

Eq. (25), and carrying out a tedius but straightforward algebra, we obtain

(w,(k) (;c) F(w.,k) (26)

.a 

a

10

af
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7where the vacuum dispersion function D(w,k) is defined by

sin(kn6/2).2/ kn 2 JnCnn)

D (w,k) n ~~W T f~ar4 - n

i [Jn(Cn)NnCn) - Jn (n)N Cn)]

22
..-+ J n n J n' ( c n ) N C n ) - J n( n ) N n' )  (2 7 )
c J(

and the function F (k) is given by

22 sin(k.6/2)

F (w,k) = D (w,k) + 2
c kad/2

"[J 'C )N 'C ) - J2C (2))N'( ~)
"i JaCa)NC~a)

where kn = k - 2r(n-t)/L defined in Eq. (5), and the parameters, nn  n and

P are given in Eq. (18).

Evidently from Eqs. (13) and (14), the axial component of the perturbed

magnetic field is continuous across r a R0 for all n - cept n = a. For n - a,

the physically acceptable solution to Eq. (14) is given by

B a() in CL a - 0
b i Q r a r J Par) rR < r < RRo2Ba ba[Ja(pr) +gN (par)I, (0 < 29)

"I1
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where bin and b are constants. For convenience in the subsequent analysis, we

introduce the normalized magnetic wave admittance b. defined at the inner and

outer surfaces of the electron bean by

b+ B- BZOCR")/CrC (a/ r) zalR+

(30)b,-..CRo)/[r ])B-
b- (R ar r .

Making use of Eqs. (7), (8) and (30), we obtain the dispersion relation of the

gyrotron amplifier in a tape helix waveguide

2 2
r(w,k) -- 1  3 (31)

2y R2C0+i lk LIzCBAIyz) 2

where the admittance function r (w,k) is defined by

•"•2g~w ,k)/.f&2 5j 2 .
ri(w,k) -- gw C)Ir 1 - (32)

1 + G(w,k)

Nlg (C) k/pa J(C10) + gN(a) (33)
G(w,k) g -a 2 _____

iG-) - tan#- k o/pLRt JaCria)

and the parameter a is defined by

2 2 22 22 22
a 0/R (2/€ - k )R (34)

. The dispersion relation in Eq. (31), combined with Eqs. (32) and (33), is one

of the main results of this paper and can be used to investigate gain and

bandwidth of the gyrotron amplifier for a broad range of physical parameters.

12
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III. VACUUM WAVEGUIDE MODES

Assuming no beam electrons (v - 0) in this section, we obtain the vacuum

• !dispursion relation

D (wk) = 0 (3S)

from Eqs. (26), (31) and (32). In Eq. (35), the vacuum dispersion function

D (w,k) is defined in Eq. (27). Even though the dispersion relation is a

very complicated transcendental function of w and k, in the limiting case

where the outer conducting wall is very close to the helix (i.e., R/R h + 1),

the vacuum dispersion relation is simplified to three distintive relations.7

These are the transverse electric like, the transverse magnetic like and the

helix modes. Particularly, the helix mode is represented by a straight line

W ±[ kc sin* + I (C/Rc) cos*] (36)

in the (w,k) parameter space. The characteristic electron beam mode in the

gyrotron amplifier is given by

w k z c + (2s/L)Bzc + Wc/Y (37)

qc

from Eq. (6). In this regard, we conclude from Eqs. (36) and (37) that a super

wideband microwave amplifier can be developed by a choice of beam parameters

satisfying

8z sin ,

W c/y (c/R )cosf (-s), (38)

for Rc/Rh 1.

13
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In general case where R1/Rh 4 1, the dispersion relation in Eq. (3S) is

numerically solved to find w for specified k value. Shown in Fig. 1 is plots

of the normalized oscillation frequency wRh/c cos* versus the normalized axial

wave number kRh tan* for I = 0 helix mode, - w/6, S/L = 0.3 and several

values of the parameter Rc/Rh . It is noted from Fig. 1 that dispersion curves

of the helix mode approach to the straight line defined by Eq. (36) as the

parameter Rc/R h is reduced to unity. Moreover, the helix mode dispersion curves

wiggle more prominately as the parameter Rc/Rh increases from unity to infinity.

Obviously in the limit Rc/R h  -, every minimum points of w in the dispersion

curves are equal to zero. Detailed analytic and numerical investigation of

the dispersion relation in Eq. (27) and (35) has been carried out in the

7previous literature by authers. For additional information of the vacuum

dispersion properties, we urge the reader to review this literature.
7

I.1

14
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IV. CYCLOTRON MASER INSTABILITY

In this section, we investigate stability properties of the cyclotron

maser instability in a hollow electron beam propagating through a tape helix

hloaded waveguide, by making use of the dispersion relation in Equation (31).
The growth rate and bandwidth of the cyclotron maser instability are directly

related to the gain and bandwidth of the tape helix gyrotron amplifier. Making

use of the fact that the "Doppler-shifted" eigenfrequency in Equation (10) is

well removed from the electron cyclotron resonance, i.e., IflI << wC/ and

evaluating the wave admittance function r(w, k) at k = kb = (w - wc/y)/Bc

- 2Ws/L, the dispersion relation in Equation (31) can be approximated by

r~w, kb) - ( + i /
0 zC(Wr k b Yz

V o (39)2

2y R

In the remainder of this section, the growth rate 1 _ImQ and the Doppler-

shifted real oscillation frequency 0r = RePZ are numerically calculated from

Equation (39) for the electron beam parameters v = 0.002, 0 0.4 and * 1.118

(0z  0.2). Obviously from Equation (10), the normalized gain kic/: c is expressed

as

k = -a / . (40)
1 C 1 Z

Shown in Figure 2 is plots of the normalized growth rate k.c/w versus w/1
1 c c

obtained from Equation (39) for the helix mode, Rc/Rh = 1.1, R0 = Rh - rL, s 0,

15
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6/L = 0.3, (a) a = 0.02 and (b) A = 0.04, and optinum values of the parameters

(Rhwc/c, +) for each azimuthal harmonic number 1. The optimum values of the

parameter (Rhc , ) are given by (1.06, 10.70) for f = 1, (2.15, 11.40) for

£ = 2, (3.2, ii ° ) for f -3 and (4.2, 100) fort = 4. The bandwidth of the

tape helix gyrotron amplifier for the helix mode in Figure 2 is narrow in
!:comparison with results of the sheath helix gyrotron amplifier. 5  However, the

growth rate of the tape helix gyrotron for the helix mode is comparable to that

of the sheath helix gyrotron. In addition, the growth rate and bandwidth in

Figure 2 are relatively less effected by the axial momentum spread a than those

of the sheath helix gyrotron.

In general, we can show
5

r(w, k b) 0,

(41)

Car(w, k)/ak]k 0,

b

near the minimum oscillation frequency W0 in the hybrid vacuum waveguide mode

and its corresponding wavenumber k Therefore, in order to correctly evaluate

the gain of the gyrotron amplifier at (w, k)= (w0, ko), we approximate Equation

(31) by

r, kb a r)kb a, 1 32

______ 2 ~ 22
x P + i 1W2"V C (42)

z

16

-. - - - - - -



NSWC TR 82-528

Of course, the dispersion relation in Equation (39) is used to obtain the

gain for a broad range of physical parameters except near the point (w, k) =

('w ko) where use of Equation (42) is made to estimate the gain.

As a typical example of the gyrotron amplifier for the hybrid waves, which

consist of the transverse electric and transverse magnetic modes, shown in

* Figure 3 are plots of the normalized gain kic/ c versus w/1c obtained from

Equations (39) and (42) for s = 0 , Rc/Rn = 1.5, 6/L = 0.3, A = 0.04, R0 = Rh - rL,

. = -300 and Rh-c/c = 1.86 for f =0, Rhwc/c = 1.45 for £ = 1 and Rhic/c - 2.4

* for £ - 2. The maximum gain in Figure 3 is considerably larger than that of

the ordinary gyrotron amplifier. For example, the maximum growth rate for the

L = 1 prturbation in Figure 3 is more than triple that of a smooth conducting

waveguide without helix. As expected, the bandwidth of the tape helix gyrotron

SS
is narrower than that of the sheath helix gyrotron.S

In order to illustrate influence of the space harmonic number s on stability

- behavior, Figure 4 presents plots of the normalized growth rate versus W4 c

obtained from Equations (39) and (42' for L = 2, Rc/Rh = 1.5, 6/L = 0.3, --300,

and (a) s a 1 and corresponding optimum value Rhc/c = 2.15, (b) S = 0 and

R c/C =2.4 and (c) s * -1 and Rhjc/c - 2.54. As expected from the relation

4 E:l + (c/Rhwd)B; s cot (43)

the eigenfrequency correspnnding to the maximum growth rate increases with

decreasing value of the space harmonic number s for a negative pitch angle.

However, the gain reduces drastically when the eigenfrequency of the maximum

*growth rate increases.

17
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V. CONCLUSIONS

In this paper, we have examined the excitation of electromagnetic waveguide

modes by the cyclotron maser instability in a hollow electron beam propagating

through a waveguide loaded with a tape helix. Stability analysis was carried

out within the framework of the linearized Vlasov-Maxwell equations, assuming

that the electron beam is thin and tenuous. The formal dispersion relation of

the cyclotron maser instability was obtained in Section II, including the

important influence of the presence of a tape helix. Properties of the vacuum

waveguide mode loaded with a tape helix were briefly investigated in Section III,

without including the influence of beam electrons. Stability properties of the

cyclotron maser instability were numerically investigated in Section IV, in

connection with application on the gyrotron amplifier. It was shown that the

bandwidth of the tape helix gyrotron amplifier for a helix mode is narrow in

comparison with results of the sheath helix gyrotron amplifier. However, the

growth rate of the tape helix gyrotron is comparable to that of the sheath helix

gyrotron.

18
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FIGURE 2 PLOTS OF THE NORMALIZED GROWTH RATE kic/w VERSUS w/n OBTAINED FROM

EQUATION (39) FOR THE HELIX MODE, RdRh - 1.1, R0 - Rh - rL, s - 0, 6/L = 0.3,
(a) & - 0.02, (b) & - 0.04, AND OPTIMUM VALUES OF THE PARAMETERS (RhIc, )
GIVEN BY (1.06, 10.70) FOR R- 1, (2.15, 11.40) FOR 2- 2,(3.2, 110) FOR Q 3, AND
K 14.2,10 0 ) FOR Q 4
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FIGURE 2 (CONTINUED)
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30- TAPE HELIX GYRO
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FIGURE PLOTS OF THE NORMALIZED GAIN GYROVERSUS OTAINEDFROEUATIONS
(30) AND (42) FORs 0, RcIRh 1.5. L 0.3, A - 0.04, R0 = Rh - rL. 0 -3 AND
Rh- < 2Fi 1.86 FOR3 F, R °hw/c2.4FOR R 2
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FIGURE 4. PLOTS OF THE NORMALIZED GROWTH RATE kic/cO. VERSUS WO~ OBTAINED FROM
EQUATIONS (39) AND (42) FOR 2 2Z R/R h - 1.5,. 6/L - 0.3. 0 -360o, AND (a) R h wcZ 15
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FIGURE 4. (CONTINUED)
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FIGURE 4. (CONTINUED)
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