Research and Development Technical Report
CECOM-81-C-0085-2

FIELD EXPEDIENT REPAIR
OF FIBER OPTIC CABLES

JOHN G. WOODS
TRW INC.
Electronic Components Group
Research and Development Laboratories
Philadelphia, PA. 19108

November 1982

INTERIM REPORT FOR PERIOD
1 MAY 1981 - 31 OCTOBER 1982

DISTRIBUTION STATEMENT
Approved for public release,
distribution unlimited.

prepared for :

U.S. ARMY COMMUNICATIONS - ELECTRONICS COMMAND
FORT MONMOUTH, NEW JERSEY 07703
NOTICES

DISCLAIMERS

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.
FIELD EXPEDIENT REPAIR
OF FIBER OPTIC CABLES

CONTRACT NO. DAAK80-81-C-0085

INTERIM REPORT FOR PERIOD
1 MAY 1982 - 31 OCTOBER 1982

PREPARED FOR:
US ARMY CECOM
FORT MONMOUTH, NEW JERSEY 07703

PREPARED BY:
TRW INC.
ELECTRONIC COMPONENTS GROUP
RESEARCH AND DEVELOPMENT LABORATORIES
PHILADELPHIA, PENNSYLVANIA 19108

APPROVED BY:
Malcolm H. Hodge, PhD
Manager, Fiber Optics

APPROVED BY:
David E. McElroy
Director, R&D Laboratories
Title: Field Expedient Repair of Fiber Optic Cables

Type of Report & Period Covered: Interim Report 1 May 1981-31 October 1982

Author(s): John G. Woods

Performing Organization Name and Address:
TRW Inc.
Electronic Components Group 401 N. Broad Street
Research & Development Labs. Phila. Pa. 19108

Controlling Office Name and Address:
USA CECOM
DRSEL-COM-RM-1
Fort Monmouth, N.J. 07703

Report Date: May 1982

Distribution Statement: Approved for public release; distributors unlimited

Supplementary Notes: Recipients of this report are requested to forward comments and/or recommendations concerning technical aspects of this effort to address in Block 11.

Keywords:
Fiber Optics
Cable Splice
Field Splice
Fiber Optic Splice

Abstract:
This second interim report describes the development of a field expedient fiber optics cable splicing system. The field splice kit will include a manually operated splicing machine which includes all of the tools, mounted on a single platform, for making the field repair. The splice consists of glass four-rod alignment guides pre-mounted in the splice housing, which also provides the means for fiber and cable retentions. The Phase I brassboard splicer is described in detail with the aid of photographs. The Phase II design is based on the concepts used in the brassboard model, with many
modifications to improve the ease and speed of repair, as well as to reduce weight and cost of the repair kit.

<table>
<thead>
<tr>
<th>Accession For</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIS GRAI</td>
</tr>
<tr>
<td>DTIC TAB</td>
</tr>
<tr>
<td>Unannounced</td>
</tr>
<tr>
<td>Justification</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution/ Availability Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist</td>
</tr>
</tbody>
</table>

Unclassified
This is the second Semi-Annual Report for the work being performed on contract number DAAK80-82-C-0085, "Field Expedient Repair of Fiber Optic Cables". The funding for the development of the repair system is provided by the U.S. Army Communications - Electronics Command (CECOM). Technical direction and coordination is provided by Claire E. Loscoe, the cognizant engineer at CECOM.

The development work performed to date represents the efforts of:
Dr. Malcolm H. Hodge, Manager, Fiber Optic Development; Joseph F. Larkin, Senior Mechanical Engineer; Henry D'Amico, Design Engineer; Jeffrey Ogilvie, Jr. Designer; and John G. Woods, Program Manager. All are members of the TRW Electronic Components Group, Research and Development Labs. in Philadelphia.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>2</td>
</tr>
<tr>
<td>List of Illustrations</td>
<td>3</td>
</tr>
<tr>
<td>1.0 Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2.0 Technical Discussion</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Phase I Brassboard Splice Evaluation</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Phase II Splicer Design</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Prototype Splice Housing</td>
<td>17</td>
</tr>
<tr>
<td>2.2.1 First Cable Splice Design</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2 Second Cable Splice Design</td>
<td>18</td>
</tr>
<tr>
<td>2.4 Project Status and Future Work</td>
<td>21</td>
</tr>
<tr>
<td>3.0 Conclusions</td>
<td>22</td>
</tr>
<tr>
<td>References</td>
<td>23</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Stripping Outer Jacket</td>
</tr>
<tr>
<td>2.</td>
<td>Outer Jacket Removal</td>
</tr>
<tr>
<td>3.</td>
<td>Stripping Inner Jacket</td>
</tr>
<tr>
<td>4.</td>
<td>Inner Jacket Removed</td>
</tr>
<tr>
<td>5.</td>
<td>Strain/Retain Ring on Cable</td>
</tr>
<tr>
<td>6.</td>
<td>Crimping Sleeve over Kevlar</td>
</tr>
<tr>
<td>7.</td>
<td>First Fiber Crimping</td>
</tr>
<tr>
<td>8.</td>
<td>Second Fiber Crimping</td>
</tr>
<tr>
<td>9.</td>
<td>Stripping Fiber Jacket</td>
</tr>
<tr>
<td>10.</td>
<td>Fiber Jacket Stripped</td>
</tr>
<tr>
<td>11.</td>
<td>Scribing Fiber</td>
</tr>
<tr>
<td>12.</td>
<td>Fiber Cleaved</td>
</tr>
<tr>
<td>13.</td>
<td>Prepared Cable in Splice Housing</td>
</tr>
<tr>
<td>14.</td>
<td>Splice Housing Closed</td>
</tr>
<tr>
<td>15.</td>
<td>Splice Housing Rotated</td>
</tr>
<tr>
<td>16.</td>
<td>Completed Splice on Fixture</td>
</tr>
<tr>
<td>17.</td>
<td>Phase II Splicer</td>
</tr>
<tr>
<td>18.</td>
<td>First Cable Splice</td>
</tr>
<tr>
<td>19.</td>
<td>Second Cable Splice</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

This program is directed toward developing hardware and procedures for field repair of tactical fiber optic communications cable.

When twin metallic coaxial cable is damaged, connectorized sections are replaced in the field. Fiber optic cable will be deployed in lengths of one kilometer or more, making it attractive to consider rapid, temporary field repairs for rapid restoration of service.

This report is the second semi-annual progress and status review of an exploratory development program to obtain a field expedient repair technique, and tool kit, for fiber optic cable. The concept being developed involves the use of four-rod glass alignment guides to provide precise fiber alignment. The guides described in an earlier report (1), are enclosed in a splice housing to give the repair the mechanical strength and protection to maintain the communication link. The tools for stripping and preparing the fiber ends will be built into one assembly for ease of operation in the field.

Throughout the report, the complete cable repair is referred to as a "repair" or as a "cable splice", and includes the alignment guides, cable retention means and splice housing, or enclosure. A tool assembly, designated as a "splicer", is used to strip the cable jackets, crimp cable and fiber retention sleeves and prepare the fibers for connection.
2.0 TECHNICAL DISCUSSION

The basic approach to the development of the field expedient repair system continues to be to have all the tools in one module, with all prepared cable and fiber lengths determined by pre-set tool and fixture positions. The field operator will not have to perform any precise manipulations of the fibers or tools in preparing the cable splice.

In the past six months, several major tasks have been performed, which are discussed under the following headings:

2.1 Phase I Brassboard Splicer Evaluation
2.2 Phase II Splicer Design
2.3 Prototype Splice Housing
 2.3.1 First cable splice design
 2.3.2 Second cable splice design

2.1 Phase I Brassboard Splicer Evaluation

The previous Interim Report described the concept and operation of the splicer. A full size wooden prototype of the splicer had been constructed to check and demonstrate the concepts to be used. In this reporting period a complete working brassboard of the splicer has been constructed, and preliminary design modifications and adjustments have been made.

Photographs of the experimental splicer are shown in Figures 1 through 16. In Figure 1 the cable is in position for stripping the outer cable jacket, with the cutting blades closed by the lever-operated cam in the upper right hand corner of the splicer platform. By pulling the cable to the right, the outer jacket is stripped off exposing the Kevlar strength member strands (Figure 2). The inner jacket is stripped, in a like manner, using a second set of stripping blades operated by the same lever as was used for the outer jacket. See Figures 3 and 4.
Figure 1. Stripping Outer Jacket

Figure 2. Outer Jacket Removed
Figure 3. Stripping Inner Jacket

Figure 4. Inner Jacket Removed
Figures 5 and 6 show the operations involved in locating the strain/retain ring and crimping sleeve in place on the cable and crimping to retain the Kevlar strands. Locating sleeves are then crimped on the fiber jackets as shown in Figures 7 and 8.

The two fiber jackets are stripped to expose the fiber to a specific length, as shown in Figures 9 and 10. In this brassboard model, the fibers are scribed and cleaved individually with the scribing tool, which is on the same sliding carriage as is the fiber stripper. Figures 11 and 12 show the fiber being scribed, and after cleaving, respectively.

In the final assembly, the fibers and crimped sleeves are placed in the splice housing (Figure 13) while simultaneously feeding the two fibers into the glass alignment guides in the center of the housing. The splice housing is closed (Figure 14) and rotated 180° (Figure 15). The other cable end to be spliced is prepared in the same manner as was described in the preceding paragraphs. The splice housing is reopened, the second cable end inserted and the housing closed and latched, shown in Figure 16.

It is estimated that, based on brassboard function, the entire cable repair can be accomplished in less than 15 minutes under benign conditions.

Several minor modifications and adjustments have been made in the brassboard splicer to improve the stripping and crimping tools. The splicer now works well with the ITT #T-2001-06 cable. The brassboard tool will continue to be used for preparation of interim repair and test samples, as well as for a tryout vehicle to test tooling modifications for the future Field Expedient model.

2.2 Phase II Splicer Design

An improved splicer design is underway, using the principles of the brassboard model, with modifications to make the operations easier to perform and to decrease total weight (now calculated to be less than 10 lbs., compared to 19 lbs.
Figure 5. Strain/Retain Ring on Cable

Figure 6. Crimping Sleeve over Kevlar
Figure 7. First Fiber Crimping

Figure 8. Second Fiber Crimping
Figure 9. Stripping Fiber Jacket

Figure 10. Fiber Jacket Stripped
Figure 11. Scribing Fiber

Figure 12. Fiber Cleaved
Figure 13. Prepared Cable in Splice Housing

Figure 14. Splice Housing Closed
Figure 15. Splice Housing Rotated

Figure 16. Completed Splice on Fixture
Figure 17 shows the preliminary layout of the splicer. Some of the stations have been moved from their original positions on the brassboard, to make the operations easier to perform. Toggle clamps have been substituted for the lever operated cam to close the cable jacket stripping blades. This was done to provide positive actuation of the blades during both opening and closing. In the brassboard model, a spring return was used to open the blades which may not be reliable when dust or dirt gets into the mechanism.

The crimping tools have been separated to make it easier to operate them individually and to facilitate crimping the Kevlar sleeve before stripping off the inner jacket. This order of operations makes it easier to assemble the sleeve to the cable, without having to thread the separated fibers through the sleeve.

Extensive modifications were made to the design to reduce weight and cost, including the use of off-the-shelf toggle clamps, a cable length gauge made of aluminum sheet and a thinner, smaller base plate.

The four positions of the cable for processing, prior to assembly into the splice housing sled, are shown in Figure 17. Position (1) is the station where the outer cable jacket is stripped, the strain/retain ring being slipped on before placing the cable in the toggle operated stripping blades. Stripping is accomplished by pulling the cable to the right. At position (2), the cable crimping sleeve is slipped over the cable and Kevlar strands, and then crimped in the mounted crimping tool. The cable is moved to position (3), where the inner cable jacket is stripped with the second set of stripping blades. The remaining fiber preparation operations are performed in position (4): The two locating sleeves are crimped in a single action over the fiber jackets; the fiber jackets are simultaneously stripped from the two working fibers by two stripping tools mounted in tandem. The operation is accomplished by actuating a toggle which depresses...
the handles of the strippers, and then by moving the lever to the left, rotating the tools about the bearing axis in the upper left hand corner of the platform. After fiber jacket removal, the scriber is moved into working position, as shown on the drawing. The two fibers are then scribed and cleaved in single motion. This completes the preparation of the cable and fibers for one cable end.

The prepared cable is lifted from position (4) and placed in the sled at the lower left side of the platform. The crimped sleeves and the slots in the sled locate the fibers in the correct position to permit automatic insertion of the fibers in the fiber alignment guides. (See the cable splice design discussion below). As before, the same procedure is used to prepare the other cable end and the splice is completed.

Among the major improvements of the splicer design just described compared with the brassboard tool, are those involving the positioning and preparation of the fibers. Insertion of the fibers into the stripping tools will be facilitated by conical "lead-ins", or funnels, to lead the fibers into the strippers. Several operations are performed on both fibers simultaneously: crimping of the fiber sleeves; stripping of the fibers; scribing and cleaving the fibers. The fine manipulation and skill required for handling of fibers has been virtually eliminated by the tool improvements and splice housing revisions. As was the procedure in the design of the Phase I splicer, a full scale wooden model has been constructed, and is being used for three-dimensional visualization of tool placement and optimization.

2.3 Prototype Splice Housing

During the past period, the first splice housing was built and evaluated. The basic principles are sound, but it became apparent that the use of a separate insert, or sled, would substantially aid in the assembly of the fibers into the alignment guides. The second cable splice design incorporates this approach.
2.3.1 **First Cable Splice Design**

A model of the initial cable splice housing has been constructed and was used in the evaluation of the Phase I brassboard splicer. This is the housing that is shown on the splicer platform in Figures 11 through 16. Figure 18 is a line drawing, showing the completed cable splice in more detail than can be seen in the photographs. The drawing shows the crimped cable retainer, which captures the Kevlar strength members. The crimped aluminum sleeves (with rubber liners) on the fiber jackets serve to prevent any motion of the fibers in the alignment guides, as well as to provide the precision location of the fibers necessary to insure mutual contact of strain-relieved fibers in the four-rod alignment guides. The rubber liners, which protrude from the proximal end of the aluminum sleeves cause the sleeve to locate at the rear end of the housing cavity. The principle of the guides was described in the first Interim Report (1).

Assembly of the prepared cable in the housing is simple: the two cleaved fibers are fed into the chamfered slots; the crimped sleeves are placed in a housing cavity; and the crimped cable retainer is placed in its cavity. After assembly of both cable ends in this manner, the housing is simply closed and latched.

2.3.2 **Second Cable Splice Design**

The concept of the first splice housing was found to be basically adequate for the field splice. However, it was realized that feeding the fibers into the slots leading to the alignment guides would be difficult under field conditions. Accordingly, the design was revised to make it possible to assemble the two prepared fibers, of one cable end, into the guides simultaneously.

An assembly drawing of the new housing is shown in Figure 19. After preparing a cable end as described in Section 2.2, the fibers, crimped fiber sleeves
and cable retainer are pressed down into prepared slots in one of the sleds which is temporarily mounted on the Phase II splicer. The sled is then nosed into the large housing cavity with the fiber ends toward the alignment guides. The dimensions and tolerances are such that the fibers must enter the plastic funnel-like openings which direct the fiber ends into the guides.

Other improvements to the clam shell splice housing design include a piano hinge, and simplified latches. A closed pore urethane gasket helps to prevent dirt and water from entering the assembled cable splice. As before, the alignment guides are pre-filled, with silicone fluid which precludes the entrance of dust and moisture in the area of the fiber ends and provides low loss index-matched optical coupling.

2.4 Project Status and Future Work

The Phase I brassboard splicer has been constructed and will be maintained for assembly of the interim and test repair samples.

The Phase II splicer is in the wooden prototype phase, and is being used for evaluating areas of tool interference, work flow, etc. The resulting design will be the basis for the deliverable splice kits at the end of the program.

A second model of the splice housing has been fabricated with the insertion sled feature. A sample repair will be made for evaluation and then the housings for the interim repair samples will be ordered in November. The results of processing and testing the interim repairs will be used in designing the production model of the splice housing, which is expected to include die cast, molded and stamped parts.
3.0 CONCLUSIONS

The development of the field splice system is proceeding close to schedule. The brassboard splicer will be used to prepare the interim repairs in the next reporting period. The new splice housing design will be used for these interim samples.

The operation of the splice repair equipment is being simplified, and the splicer is being reduced in weight at every step in the development. Both the splicer and splice housings are being designed for future manufacturing producibility and low cost.

There are no perceived unresolvable problems apparent at the present stage of development.
REFERENCES

Corning Glass Works
Telecommunication Prod Dept
Corning, NY 14830
ATTN: F. Quan

Stevens Institute of Technology
ATTN: Dr. G.J. Herskowitz
Castle Point Station
Hoboken, NJ 0703

Deutsch Co.
Elec Components Div
Municipal Airport
Ranning, CA 92220

General Cable Corporation
ATTN: Mr. M. Tener
160 Fieldcrest Avenue
Edison, NJ 08817

President Communications Electronics Board
ATTN: ATSH-80-TE
Fort Gordon, GA 30905

NKA Incorporated
40 Beechwood Road
Lincroft, NJ 07738
ATTN: J.R. Dunlap

Hughes Aircraft Corporation
Tucson Systems Engg Dept
PO Box 802, Room 600
Tucson, AZ 85734
ATTN: Mr. D. Fox

Belden Corporation
Technical Research Center
2000 S. Patava Avenue
Geneva, IL 60134
ATTN: Mr. J. McCarthy

Optelecon, Inc.
15940 Luane Drive
Gaithersburg, MD 20760

Bell Telephone Laboratories
Whippany Road
Whippany, NJ 07981
ATTN: Mr. G. A. Baker

Harris Electronics Systems Division
PO Box 37
Melbourne, FL 32901
ATTN: Mr. R. Stachouse
Fiber Optics Plant
Rodes Boulevard

ITT Defense Communications Division
492 River Road
Nutley, NJ 07110
ATTN: Dr. P. Steensma
V. Mordovita

Defense Electronics Supply Center
ATTN: DESC-EMT (Arthur Hudson)
Dayton, OH 45444

GTE Sylvania Inc.
Communications System Division
77 A Street
Needham Heights, MA 02194
ATTN: Mr. J. Caggiano
Naval Ocean Systems Center
Hawaii Laboratory
1205 Akamai Street
Kailua, Hawaii 96734
ATTN: G. Wilkins

Harris Corporation
Government Communications System Division
PO Box 92000
Melbourne, FL 32901
ATTN: R.H. Painter

Spec Tran Corporation
Hall Road
Sturbridge, MA 01566
ATTN: Dr. R. Yaeger

Siecor/Optical Cable
PO Box 610
Hickory, NC 28603
ATTN: M.G. Massaran

Naval Ocean System Center
ATTN: Steven Cowen, Code 521
271 Catalina Blvd
San Diego, CA 92152

Commander
ERADCOM Flight Test Activity
ATTN: DELAF (J. Mac Namara)
Lakehurst, NJ 08733

Commander
101st Airborne Division (AASLT)
ATTN: AFZB-50 (MAJ Reeves)
Fort Campbell, KY 42223

Booz-Allen and Hamilton
ATTN: B.D. DeMarinis
776 Shrewsbury Avenue
Tinton Falls, NJ 07724

Xerox Electro-Optical Systems
ATTN: Mr. R.E. Purkis
300 North Halstead Street
Pasadena, CA 91107

Commander US Army Missile R&D Command
ATTN: DRSMI-RDD (R. Powell)
Redstone Arsenal, AL 35898

The Mitre Corporation
ATTN: Scott Large
PO Box 208
Bedford, MA 01730

Martin Marietta Aerospace
ATTN: Dr. G.L. Harmon
Orlando Division
PO Box 5837 MP-3
Orlando, FL 32805

Naval Ocean Systems Center
ATTN: Howard Rast, Jr. Code 8115
271 Catalina Blvd
San Diego, CA 92152

Bell Laboratories
2000 N.E. Expressway
Norcross, GA 30071
ATTN: James A. Aberson, Jr., Lightguide Joining Group

Reliability Analysis Center
ATTN: RADC/RBRAC (I.L. Krulac)
Griffiss AFB, NY 13441
Commander
US Army MERADCOM
ATTN: DRDME-XIC (J.A. Karick)
Ft. Belvoir, VA 22060

Commander
US Army Training & Doctrine Command
ATTN: ATCD-TEC
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATCD-TM
Fort Monroe, VA 23651

NASA Scientific & Tech Info Facility
Baltimore/Washington Int'l Airport
PO Box 8757, MD 21240

Project Manager, ATACS
ATTN: DRCRM-ATC-TM (Mr. J. Velasquez)
Fort Monmouth, NJ 07703

Honeywell, Inc.
Communication Technology
Tech Strategy Center
1700 West Hwy 36
St. Paul, Minn. 55113

Commander
USACECOM
Fort Monmouth, NJ 07703
ATTN: DRSEL-COM-RM-1 (C. Loscoe)
(8 copies)

GTE Sylvania, Inc.
Connector Products Operation
RD #2 Box 29
Titusville, PA 16354
ATTN: Mr. D. Knecht

CDR, US Army Avionics Lab
AVRADCOM
ATTN: DAVAA-D
Fort Monmouth, NJ 07703

Times Fiber Comm, Inc.
358 Hall Avenue, ATTN: Dr. D. Pirnow
Wallingford, CT 06492

Bell Northern Research
PO Box 3511, Station C
Ottawa, Canada K1Y 4H7

Valtec Corporation
99 Hartwell Street
West Boylston, MA 01583
ATTN: Dr. I.D. Aggarwal

Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, CA 90265
ATTN: Dr. G. Targnon

MAJ Bob Warren
HQ, USAF/RDOG
Washington, DC 20330
Collins Radio
Telecommunication Products Div
855 35th Street N.E.
Cedar Rapids, Iowa 52498
ATTN: Mr. Duane Weltha
Mail Station 137-148

ITT Cannon
PO Box 8040
Mountain View, CA 92108
ATTN: Mr. L. Borsuk

Boeing Aerospace
PO Box 3999
Seattle, WA 98124
ATTN: Mr. Owen R. Mulkey

Litton Data Systems
8000 Woodley Avenue
Van Nuys, CA 91409
ATTN: Mr. R.F. Bergfeld

Bausch and Lomb
Instruments and Systems Division
42 East Avenue
Rochester, NY 14603
ATTN: Mr. Willard W. Hunter

Naval Avionics Center
600 East 21st Street
Attn: Sukhbir Singh
Indianapolis, IN 46218

Department of the Army
US Army Human Engineering Laboratory
Attn: DRXHE-CC (R. Phelps)
Aberdeen Proving Ground, MD 21005