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CHAPTER 1

INTRODUCTION

\

—/ The importance of designing control systems which are robust or
insensitive to variations in the plant parameters has long been appreciated.
However, the rapid advances in design techniques for multivariable systems has
heightened interest in the study and design of robust systems. The purpose
of this report is to provide an up to date survey of the work in this field
and summarize the results of research in this area conducted at the Coordinated
Science Laboratory.

The report begins in Chapter 2 with a description and examples of
the robust control problem. Chapter 3 provides a survey of research in the
field of robust control. It is apparent from this survey that the work can
be divided into two areas. The first assumes unstructured perturbations and
analyzes worst case effects, The second considers large, structured perturba-
tions. The parameter space design method presented in Chapter 4 is directed
at the second area., The tools of Chapter 4 are applied to a fighter aircraft
example in Chapter 5. Chapter 6 presents an optimization approach to the same
problem. Finally, Chapter 7 summarizes the report and presents several
directions for future research.
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CHAPTER 2

THE ROBUST CONTROL PROBLEM

2.1, Description of the Robust Control Problem

The objective of a basic control system design problem is to satis
a set of performance specifications for a given dynamical system. The robus. a
control system design problem adds to the basic control problem by requiring j
the performance criteria to be satisfied under a specified class of perturba-

tions to the dynamical system. Typical examples of performance criteria for

which the overall closed loop system must be robust are:

1) Stability or nice stability (e.g. defined by comnstraints on
eigenvalue locations).
2) Limited deterioration of a performance index.

3) Limited deviation from an ideal behavior, e.g. constraints

on step responses or frequency responses or on the return

difference,

-
L
"

4) Limited deviation from a reference behavior, e.g. deviation
from a nominal trajectory or a reference model response,

5) Tracking, i.e. zero asymptotic error for a class of
reference and disturbance inputs,

6) Limited demand on control lul and control rate (GI.

The classes of perturbations which are considered can be grouped
in two categories: structural perturbations and system parameter perturba-

tions, Some examples of structural perturbations are:




p

)
b
b

1)
2)
3)
4)

Sensor failures.

Actuator failures,

Switching from automatic to manual control.

Change in system order due to a failure. Example: An
aggregate description for several power generators or a
traffic flow or economic variables must be dissolved into a
more detailed description of transients between individual

components in failure situatjons.

Parametric perturbations are due to uncertainties in the plant model and in

the controller implementation. Examples are:

5)

Analytically known dependence of a plant model on uncertain
physical parameters, Example: The linearized equztions of

a crane with physical parameters n2==crab mass, mL==load mass,
L=rope length, g =gravitational constant, and state variables
Xy = crab position, X, =crab velocity, X4 = rope angle and X, =

rope angular velocity are

[o 1 0 0 | 0
‘0 0 g/m_ 0 1
=" L8 _}g+r-t—- u (1)
+0 0 0] 1 c| O
Z0 0 2 0 -1/2
= W o LT e

with uF~=(mc-+mL)g/mc£. Input u is the force accelerating
the crab. The crane may operate with an unknown load mass
m between the empty hook and the maximum mass, for which

the crane is designed. It may also operate with an unknown

constant rope length between zero and the height of the crane,.

‘
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6) Numerically known dependence of a plant model on an unknown
physical parameter vector €. Example: linearized equations

of longitudinal motion of an aircraft depending on altitude

and speed
k=A®) +B®u 2)

"‘ A and B may be given for J typical flight conditions in the

flight envelope. A =A@Q)), B;=B@;), §=1,2,...0.

Pt i A natd
S

7) Known dynamics, which have disappeared in a simplified design
Ii! model by linearization, truncation of structural modes, model

reduction, neglecting of actuator and sensor dynamics. In

some cases it may be possible to pull out all uncertainties
as illustrated by Fig. 2.1, where for P=0 the nominal plant

N is obtained.

u y
____._..1 N -

. v

- P

: FP-7042

F @

i Figure 2,1. Nominal plant N with perturbations P.

s

f‘ In simple cases the perturbations P can be expressed as a

[ diagonal matrix of linear or nonlinear operators.

1 8) Unknown dynamics, which cannot be modeled. 1In this case only
[ o vague assumptions about perturbations (6A, 8B, 8C of the

system matrices A, B, C(Xx=Ax+Bu, y=Cx) or perturbations

8G(s) of the transfer function matrix G(s) can be made.
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9) Quantization effects and time delays in controller
implementation.
10) Variance of components in mass produced control systems

and circuits.

These examples of system properties and perturbations show that many special
combinations can be specified, Therefore many different definitions of
“"robust control" can be found in the literature.

The design problem for a robust control system may be formulated in

one of the following three forms:

1. Given a system property, determine the class of perturbations
with respect to which the system property is robust., Design
the controller such that the class of admissible perturbations
is extended in the direction of the really expected perturba-
tions.

2. Given a class of perturbations, determine the maximum deviation
from a desired system behavior which occurs under the worst
perturbation in the given class. Design the controller such
that the maximum deviation is minimized.

3. Given a system property and a class of perturbations, determine
if there exists a set of controllers for which the system
property is robust under the class of perturbations. If yes,
select one on other criteria than robustness. If not, relax

specifications.
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2,2, Controller Structure and Other Design Considerations

Design problems for control systems are usually parameterized by the
assumption of a controller structure which defines a vector of design para-
meters, Two typical assumptions for the controller structure are adaptive
controllers or fixed gain controllers. One extreme is the attempt to obtain
as much information about the perturbations as possible by on-line identifica-
tion and failure detection. Then ideally the structure and parameters of the
controller are adapted in order to achieve the best possible performance of
the control system given the momentarily available information. An intrinsic
difficulty of this approach is that plant inputs, which admit a fast and
accurate identification, are not good to achieve the best performance and vice
versa, Also a tradeoff between a fast failure detection, identification and
adaptation and a reliable one, which avoids false alarms and noise sensitivity
of the adaptation, must be made,

The other extreme is the attempt to find a fixed gain controller
which accomodates a specified class of perturbations. 1In this approach it
may be necessary to sacrifice some performance in the nominal case in order
to achieve robustness for the perturbed situation, The assumed controller
structure may be state feedback, or static or dynamic output feedback. Note
that full state feedback is not the most general controller. Information
about the unknown parameters is contained in past states, their processing in
a dynamic system can therefore improve the performance, In some cases the
unknown parameters can be introduced as additional states, which may be
estimated and fed back., Most design techniques are restricted to linear
systems, thus a linear controller is usually assumed.

Only the case of a fixed gain controller is usually called robust

As 2.
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control, However it should be apparent from the previous discussion that
robustness is also a desirable feature for an adaptive control system. The
fixed gain solution indicates whether a more complex adaptive system is needed
at all, or how far one has to go adaptive, Practical solutions to the robust-
ness problem frequently are in between the two extremes and combine features
of both cases. Examples are:

1. Gain scheduling with switching or continuous variation between
fixed linear feedbacks dependent on a measurement of an
environment condition, which has an influence on the plant
parameter values,

2. Variable structures with state dependent switching between
fixed linear feedbacks.

3. A fixed gain robust controller may be used for stabilization,

with an adaptive controller then used for improvement of

performance. (Some techniques for design of adaptive

controllers assume an open loop stable system).

-

4. A fixed gain robust controller may be used as backup for the

case of a failure in the adaptive system or in a gain

8

b.

L

i scheduling system., Air data measurements (e.g. dynamic

g pressure) are not very reliable.

!

; 5. Under external noise an adaptive system may not adjust fast
e

o enough to a fast change in plant parameters. In such cases,

it may be possible to switch to a fixed gain robust system

o until the identification has followed and adaptation can

' improve the performance.

6. Adaptive control theory usually does not deal with problems

o

AML ok o b ALl




of structural identification (e.g. failure detection) and

structural adaptation after a failure has been detected,

However problems are related: Fast structural identification

may lead to false alarms, in particular under noisy conditions.

Slow and reliable structural identification may leave the

system in a failed unstable configuration for a while., The

control should be designed to provide robustness of stability
with respect to the failure to ensure that nothing very bad
happens until the failure is detected reliably.

Robust fixed gain control may be combined with some redundancy

concepts. Various levels are possible:

a) Passive redundancy be paralleled components. For example
the 50% gain reduction margin of IQ designs.offers the
possibility of using two paralleled sensors or actuators
such that in case of a failure the gain is reduced only
by 50%.

b) Removal of failed components., Even if a component failure
can be tolerated, as far as stability is concerned, it
may be necessary in the long run to remove a failed
component, e.g. to close a leaking gas jet valve or to
remove a bias term entering into a control system from a
sensor failed at a nonzero constant value,

¢) Analytic redundancy may help, if an adaptive observer
provides an estimate for a missing signal.

d) Hardware redundancy, e.g. majority voting in a multiplexed

system can bring the system back to its original performance.
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However this part of the system ideally should not be

vital for stability (see 6).

With the availability of cheap computers there are few constraints on the

complexity of the controller structure. However there are several practical

limitations and additional aspects for the design. Some of them are given here.

1.

A main constraint on the controller complexity is given by the
presently available design methods. Also it is a question with
which methods the designer has experience and for which he

has design software available. 1Ideally, control theory should
provide the designer with convenient tools, e.g. for the
computer-aided design of control systems, instead of demanding
that the designer has to put all thinkable tradeoff situations
into one scalar performance index or set of inequalities.

In many control problems structural limitations are mainly
dictated by the cost, availability and reliability of sensors
and actuators. Thus output feedback and saturation of control
or control rate are important design considerations. For
robust control systems with control constraints it is a
particularly important rule of thumb to make only physically
reasonable requirements. For example, one should not try to
make a slow system fast or a fast system slow (i.e., do not
use one reference model, but fast and slow reference models
for different operating conditions, or demand only invariance
of damping or maximum overshoot, not of natural frequency or

time of maximum overshoot). Of course such considerations
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depend on which property of the application must be robust,
In the design of an oscillator the frequency must be constant
whereas in the design of a crane the frequency is less
important, Also it would be not reasonable to require an
unchanged performance in cases of sensor or actuator failures.
Thus emergency specifications should be given for these cases.
3. Some special consideration must be given to the case for
which there is a man (operator, pilot) in the outer loop. A
pilot does not want to be a passenger. He may want to
identify the controlled aircraft by '"playing" with the input
signals. Control schemes which give him the same feeling for
a wide range of parameter variations may be dangerous if the
dynamics suddenly become bad beyond an assumed range of
parameter variation. The pilof needs a warning before the
"ecliff". This is another reason why the dynamics should

change with changing parameters.

A plant operator may want to switch one or more loops from automatic to manual
control. It is desirable that he always sees a stable system or better one,
which he can easily control. A man can control an unstable plant provided
the eigenvalues in the right half plane are close to the origin. He has more
problems if he has to control fast modes, even if they are slightly damped.
In other words, the imaginary axis is not necessarily the best emergency
boundary for sensor failures.

The problems of actuator and sensor failures look similar if we

interpret them as a row or a column of the feedback matrix being switched to
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variables he has sensors, which he can use as backup,

case for actuators.
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zero., For the human operator these cases are quite different, since for many

This is rarely the
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CHAPTER 3

A SURVEY OF ROBUST CONTROL RESULTS

3.1. Introduction

The discussion of the preceding chapter has demonstrated that
robustness 1is an important issue in areas of control system design ranging
from fixed gain controllers to completely adaptive control systems. The
intent of this report is to concentrate on fixed gain, linear time invariant
control systems, Hereafter in this report, references to robust control
system design will assume this structure,

There are two basic philosophies to the analysis and design of
robust control systems. The first assumes that the perturbations are largely
unstructured. The objective is to design the controller for the worst perturba-
tion and evaluate or bound the size of the permitted perturbations.

The second approach assumes that the structure of the disturbances
and their size are known a priori. The design objectives are to minimize the
sensitivity of the closed loop systems in the known perturbations directions.

Each of the two approaches have advantages and disadvantages, The
first is more likely to provide robustness with respect to unmodeled errors
and hence requires less accurate models, The results are often very conserva-
tive, The second requires accurate models of the perturbations which one
likely to occur. However, the control effort is directed where it is needed
most.,

The purpose of this chapter is to review the work which has been
done on the robust control problem,

The survey is divided into two sections

corresponding to the approaches outlined above.
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3.2, Sensitivity and Unstructured Perturbations

3.2.1. Frequency Domain Methods

The main reasons for the use of feedback are siabilization and the
preservation of desirable system properties in spite of noise inputs and
perturbations of system parameters. The reduction of nonlinear distortions
was an essential reason for the use of feedback amplifiers, (see Black [1]).
The reduction of nonlinearity by high gain feedback has been further investi-
gated by Cruz [2] and Desoer and Wang [3].

In frequency design methods the concept to compensate the loop,
such that high gains are possible without instability, is the classic rule of
thumb for the reduction of noise and uncertainty. Bode [4] expressed it in
terms of gain and phase margins and a sensitivity function, which was
generalized to the multivariable case by Cruz and Perkins [5]. A sensitivity

matrix S(s) relates the output errors Ec(s) due to perturbations in a feedback

system to the output errors Eo(s) due to the same perturbations in a correspond-

ing open loop system by Ec(s) =S(s)E°(s). The sensitivity matrix S(s) is the

inverse of the return difference matrix, for the loop of Fig. 3.1.

S(s) = [L+G(s)K(s)H(s)] T (3)

K(s) - G(s) —>
]l

H(s) |« T

FP-7043

Figure 3.1. Feedback systemn, rezturn difference for loops
broken at a,
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Note that G(s) is the actual plant, which may be expressed by the nominal
design model GN(s) and a perturbation 8G(s), i.e. G(s) =GN(s) +5G(s8). 1If
the known GN(s) is used in eq, (3) instead of the unknown G(s), then all
results are local, i.e. restricted to small 8G(s). For a reduction of

sensitivity it is sufficient that
ST(~jw)S(jw) -1<0 (neg. semidefinite) 4)

over the frequency band of interest, or in terms of the return difference

F(s) =1+G(s)K(s)H(s)
T, . .
F (-jw)F(jw) -1 =20, )
Hsu and Chen [6] proved the relationship

closed loop characteristic polynomial

det F(s) = open loop characteristic polynomial ° (&)

Thus, if no cancellations occur, closed loop stability can be analyzed using
det F(s). MacFarlane [7] studied the eigenvalues Hj (s), i=1,2,...,m of
F(s) and showed that the closed loop is stable, if all characteristic fre-
quency loci pj(jw), j=1,2,...,m satisfy the Nyquist criterion. He also
proved a necessary condition for the system to be optimal in the sense of a

-}
quadratic criterion (yTQy+uTRu)dt:
0

lpj(jm)IZI for Osws= j=1,2,...,m )
or
ldet F(juyl 21 for all w. (8)

These results have the graphical interpretation that the complex plane plots
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of Idet F(jw)l or |Pj(jw)| must not penetrate the interior of the unit disc.
It follows from this that the characteristic frequency loci of an optimal
proportional feedback controller have infinite gain margin and at least 60°
phase margin,
Robustness of stability with respect to gain and phase changes may
also be achieved in design by Rosenbrock's inverse Nyquist array [8]. Here

I—%G;I(jw) with Go(s) =G(s)K(s)H(s) (see Fig. 2) is analyzed graphically and

modified in the design. A standard technique in multivariable control system
design is to use compensation or feedback to decouple or approximately decouple

a multivariable system into several single input systems, which may be designed

by single-loop techniques. Rosenbrock [8] uses the criterion of diagonal
dominance for approximate decoupling.

Doyle showed by counterexamples [9] that these methods can lead to
highly optimistic margins for individual loop gains, even if only very small
margins exist for simultaneous change of several loop gains. Already in the

single-input case, gain and phase margins are insufficient to characterize

what happens for simultaneous gain and phase perturbations., Another difficulty

is that by compensation or feedback for diagonal dominance the actual loca-

tion of the uncertainty is obscured.

Doyle [9] examines the properties of the return difference using the

concepts of singular values, singular vectors and the spectral norm of a

matrix. The singular value o, of a matrix A are the non-negative square roots

of the eigenvalues of A%A, where A* is the conjugate transpose of A. Since

A%A is Hermitian, its eigzenvalues are real. The singular values give a measure

of how close A is to being singular. The ratio of the smallest singular

value J and the largest one, <, is the condition number E/E. One may also
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interpret the singular values as generalizing to matrices the notion of gain.
This characterization is of great practical value, since good software to
compute a singular values is widely accessible [10]. Using this singular

value concept Doyle proved the following robustness theorem.

I+L(s) A(s) X

FP-7041

Figure 3,2, Perturbation by L(s).

In the system of Fig. 3.2, let G(s) be rational, square, invertible and such
that the nominal closed loop with L(s) =0 is stable, i.e. G(I+G)-1=I+G-l is
stable, If the system is perturbed by L(s), which by itself is stable, then the

perturbed system is stable if
ca+6Gw) >F@(w))  for all w. 9)

For this theorem Sandell {1l1l] gave a different proof, in which G(s) need not
be rational, g(Iﬁ-G-l(jW)) is a frequency dependent measure of robustness in
terms of gain margins. For the eigenvalues A of A (here==I-+G_l(jw)) generally

the relation
@y h@l=Za) (10)

holds. It is pecssible that the smallest eigenvalue is much larger than ZJ(A).
Thus the minimum singular value ¢ gives a more reliable measure of robustness
than the smallest eigenvalue. In fact Doyle constructed an example, where

the diagonal dominance approach as well as tiie characteristic loci approach
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generates a Nyquist or Inverse Nyquist plot, which shows + = db gain margin
and 90° phase margin. However the system is only marginally stable,

o The problem of uncertainties due to a reduced order design model is
interrelated with the question of which modes of the system must be influenced
by the control and which others should ideally not be influenced at all. 1In
vehicle control it may for example be desirable to control the rigid body
dynamics fast and accurately, i.e. with a reasonably high bandwidth, without
interferring with structural vibrations. In frequency domain design techni-

ques, this is achieved by a 40 db/decade roll off beyond the design band-

LA gmn ) S SER et

width, This aspect is frequently ignored in state space design techniques.
In all design techniques it is inportant to study carefully the behavior in a
frequency range above the bandwidth, where modes are still sufficiently

controllable and observable, such that the control may move them into the

Ty Y RS MR Y
.t

right half s plane,

Stein and Doyle [12] give a design example for a CH-47 helicopter
with two control inputs. They apply singular value analysis and the robustness
condition (9). Rotor dynamics and rate limits are translated into E(L(jw))
using a result of Safonov [13]. The two singular values were made approxi-
mately equal and the bandwidth in both loops was increased as much as E(L(jw))

admitted, A lcwv pass helped to meet the "roll-off" requirement. The example

also showed that these methods may lead to very conservative results in cases
of large variations of parameters in specific directions, here the flight
condition variation.

3.2.2. State Space Methods

Single-input linear quadratic state feedback regulators have a

return difference greater than unity at all frequencies, a3 was shown by Kalman
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[14]. Anderson and Moore [15] showed that this fact implies a +60° phase
margin, infinite gain margin and 50 percent gain reduction tolerance. Safonov

and Athans [16] generalized this result to the multiinput case:

% = Ax + Bu
u = ~Kx (11)

with m inputs u, .

The feedback matrix K is determined by solving a Riccati equation minimizing

3 = jxax + uRu)at (12)
o

with Q positive definite and Rﬁ=diag[r1,...,rm], ri:>0.
The individual inputs u, are perturbed to niui without interaction

between them, i.e.

_;’Z_T
1“1

X = Ax + B’u with 7u = : . (13)

ot |

Let each perturbation ﬂi be linear time invariant with proper rational stable
3oy (@)

transfer function Pi(s). Its frequency response is Pi(juo =ai(w)-e .
Then the closed loop remains stable under a phase perturbation ¢i(w), with
IQi(W)l £60° for all w, It also remains stable under a gain perturbation
ai(w) 20,5 for all w,

Note that this emphasizes the importance of the bandwidth of the
control system. The 60° phase margin without bandwidth limitations is not
sufficient to accomodate neglected error dynamics since physical actuators

have at least 90° phase lag at high frequencies., For this reason Otto Smith

[17] used the 'compiex gain margin', i.e., the minimum distance of G(j&) to
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the critical point, scaled by the local frequency increment along G(jw).
This approxiﬁates the negative real part of a dominant pair of eigenvalues,

A multivariable measure for the distance of G(jw) from the critical point has

been discussed already in form of the singular values of the return difference.,

Doyle [18] showed by counterexample that the margins may be
arvitrary small if the state is replaced by a state estimate from an observer
or a Kalman filter. 1In his example, the gain margins were arbitrarily small
in both the positive and negative db direction, To improve the margin in this
situation, Doyle and Stein [19] developed a 'design adjustment procedure',
which introduces fictituous noise at the control input to the plant, In this
procedure the observer eigenvalues tend to the finite transmission zeros and
to infinity. Thus the procedure works only for minimum-phase plants. The
procedure is essentially the dual of Kwakernaak's sensitivity recovery method
[20]. This however drives the plant poles instead of the observer poles to
the transmission zeros, which may lead to large control inputs u.

Gain and phase margins may be much smaller in discrete time linear
quadratic state feedback systems. Jacques Willems and van de Voorde [21]
give bounds for the single-input case, which show that the system may be very
sensitive to feedback gain variations. This is not surprising, since the
hold element may be approximated by a phase shift of one half sampling
interval.

Safonov and Athans [16] also generalize a single-input result by
Anderson and Moore [15], which is useful for actuator nonlinearities. If
the perturbation operator 7{ in eq. (13) describes a time varying, memoryless
nonlinearity niui'=fi(u,t), then it is a sufficient condition for the closed

loop stability, that
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% < ﬁ flu,t) = M for some M < = and for all ¢, (14)

For example, for an actuator saturation, stability is guaranteed if the inputs
do not exceed twice the saturation level.

Comparisons of numerous optimization techniques for insensitive
control systems were made by Harvey and Pope [22,23] for wing load alleviation
for the C-5A aircraft and by Vinkler and Wood [24] for a lateral autopilot
for a rudderless remotely piloted vehicle. A minimax technique by Salmon [25]
and an uncertainty weighting technique by Porter [22] were judged superior to
six other techniques in the first report; both however failed in the comparison
{27]. Here an expected cost technique by Ly and Cannon [26] and a multistep
guaranteed cost technique by Vinkler and Wood [27] came out better than four
other techniques. In [23] an information matrix approach by Kleimann and Rao
[28] compared favorably with other techniques.

In problems with insignificant constraints on the control inputs,
the weighting matrix R in a quadratic criterion may be small. This leads to
high gain solutions as they were discussed in the previous section. A
comparison of various high gain feedback systems is made by Young, Kokotovic
and Utkin [29]. This comparison also includes variable structure systems,
which in their sliding mode are insensitive to parameter variations and distur-
bances, similar to the high-gain system [30]. Young [31] applied this concept
to the design of an adaptive model following control system and compared the
results for the longitudinal motion of a Convair C-131B aircraft with other
model following techniques,

A special case of a high gain control system is useful, if the

reference or disturbance input signals can be exactly modeled and asymptotic
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tracking or disturbance rejection is required. The use of integrators in
the loop for zero stationary errors in step and ramp responses is a classical
recipe. Also for other inputs an internal model of the input can be used,
e.g. a tuned oscillator (notch filter) for disturbance rejection of helicopter
rotor vibrations, whose frequency is regulated. Such a high gain at particular
frequencies makes asymptotic tracking robust to plant parameter variations
as long as the loop remains stable. This robustness problem was studied by
Davison [32] and others. In sampled-data systems the internal model is to be
implemented in continuous time, if the tracking property is required also
between the sampling instants [33].

Some common problems in all high gain concepts are

- Measurement noise goes highly amplified to the actuator inputs,

+ High values for lul and Iﬂl may occur,

+ Non-cooperative efforts of the actuators may occur,
The LQG design method offers a systematic way to avoid these difficulties by

increase in the R matrix and by the use of a Kalman filter.

3.3. Robustness with Respect to Large Perturbations in Known Directions

3.3.1. Parameter Methods

In the methods of Section 3 relatively little knowledge about the
parametric perturbation is assumed. The results are therefore primarily valid
for small perturbations. In some cases information is obtained about how big
the perturbation is allowed to be in order to maintain stability,

In situations where large perturbations in krown directions occur,
the previous methods generally lead to very conservative results. In this
section some tools are discussed by which such perturbations can be accomodated

in the design. The next chapter and [34] also describe a parameter space
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\

method which is applicable to this problem.

In typic#l design examples not only the mathematical model of the
plant is uncertain, but also the formulation and relative weight of many design
criteria, Some of these criteria are in form of inequality constraints;others
are to be minimized. It is artificial to put all of them together into one
scalar performance index, which is then minimized over the parameters in an
assumed controller structure, For the designer an interactive computer-aided
design procedure is more useful, where he can make higher level decisions of
how to change requirements after each computer solution or failure to find
a solution. The computer may have to solve a nonlinear programming problem in
each design step. Various aerospace problems have been formulated and solved
this way, Schy [37,38] deals with a lateral stability augmentation system for
a fighter airplane, Hauser [39] with an autopilot for a flexible space vehicle.
Further design examples are given by Karmarkar [40] and Kanarachos [41]. 1t
is convenient to formulate all design criteria for each operating point as
components of a performance vector g. It may, for example, contain

+ bounds on the individual feedback gains lkijl'
and for each flight condition specifications on

. eigenvalue location.

. deviation from nominal response for typical reference and

disturbance inputs.

. bounds on the control rate lﬁ| for typical reference and

disturbance inputs.
Kreisselmeier and Steinhauser [42] use in an example with five flight conditions
of a F4-C aircraft a 40 dimensional vector g. A vector constraints g<c (i.e.

componentwise giisci) is given and the feedback gains K are the solution of
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the problem

Min{Max gi(K)/ci}. 17)
K i

Using an algorithm described in [43] Kreisselmeier and Steinhauser obtain a
Pareto-optimal solution. Figure 3.3 shows some reference step responses of
this design for an F4-C. It is stable in the five flight conditions. The
open loop responses on the left side show that the aircraft is slow in flight
condition 1 (landing approach). Here a slower reference response was given
than for the high speed condition 2 and 4, The desired reference response
was specified as gi(t)==gM(ait) where for each flight condition i=1,2,...,5
an appropriate time scale o, was chosen., This resulted in the insensitive
closed loop responses on the right side of Fig. 3.3, which required only a
relatively small control rate lﬁl. The same feedback resulted in similarly
good disturbance responses.

Also the results of Shy [38] showed that an amazingly large variation
of parameters can be accomodated by a fixed gain controller, if the requirements
were in good agreement with the physical limitations. These designs result
in low gain solutions, and the dynamics change in an acceptable or desirable
way as the physical parameters vary.

3.3.2. Integrity: Robustness with Respect to Sensor and Actuator Failures

If an actuator or sensor is connected to a high gain, then its
failure is a larger perturbation than in a low gain situation. Thus requirements
for robustness with respect to actuator and sensor failures tend to result in
low gain solutions. Even more important is the aspect of avoiding non-
cooperative effosts of actuators. [£, for example, one input alone places some

eigenvalues in the right half plane and another is needed to bring them back
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into the left half plane, then apparently no robustness of stability with
respect to actuator failures can be achieved.

One approach to achieve robustness of stability with respect to
certain fai;ures is to try to extend gain reduction margins to include gain
zero. Belletrutti and MacFarlane [44] use the term "high integrity" for
robustness with respect to certain failures. They check the stability condi-
tions for gains reduced to a small & using Nyquist stability criteria for
characteristic loci of principal submatrices of the return ratio. In this
analysis the loop must be broken at the point where the actual failure may
occur and thus the gain reduction margin is needed. Owens [45] devived
necessary and sufficient conditions for integrity of systems with multivariable
proportional-integral controllers,

Solheim [46] formulated the integrity problem in the context of
quadratic optimal control, In examples an increased integrity is obtained with
an increased weight R on the control in the quadratic criterion, another
indication that the solution will tend to a low gain solution. Wong, Stein
and Athans [47] show the following gain reduction result for LQ regulators:

The matrix AC(A) =A + BAK with 1x=diag[al...am], where K minimizes

x

0

x'Qx +u'Rxdt for A=1I, is stable for all

/ 1/2,-1

A ><%[1 - /Y% kw271, (18)

This generalizes the bound ai->0.5 from [16]. The recommendation is, from a

purely robustness standpoint, to choose Q and R such as to maximize

Mo = kmin[(Rl/zK'Q-lKRllz)-l}- (19)

Kreisselmeier [48] proposes to modify the quadratic criterion, where for each
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considered failure situation, a quadratic criterion is formulated and the
overall criterion i1s a weighted sum of these terms,

In failure situations it may be desirable to specify other emergency
boundaries in the eigenvalue plane than only the imaginary axis. This problem
is treated by parameter space methods in [34] and in Chapter 4. The concept
is illustrated for the case of sensor failures in Fig. 3.4. A nominal region
for the eigenvalue location and a larger emergency region are mapped into

the space of

ka

Nominal Boundary
Emergency Boundary
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Figure 3,4, Illustration of failure robustness and
emergency boundaries.
feedback gains, It is assumed that the system is represented in "sensor
coordinates", then a failure of a sensor for state variable X corresponds to
switching ki to zero. The projection of point 1 on the kl axis is outside
the emergency boundary, i.e. the emergency specification is not robust with
respect to a sensor failure k.2 =0. 1t is, however, robust with respect to

kl:=0. For all points in the shaded area the emergency specifications are

robust with respect to either sensor failure. An alternative to this robust
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solution would be in this example to omit sensor 1 and to use multiplexed
sensors for X, and failure detection.

In the multiinput case a sensor failure is equivalent to changing a
column of the K matrix to zero and an actuator failure is equivalent to
changing a row of K to zero. In [34]) an actuator failure example is studied,
where the problem is formulated such that the eigenvalues are placed in a
nominal position with two actuators and move as little as possible towards
the stability boundary for failures of either one of two actuators.

Apparently a necessary condition for robustness with respect to
failures is that the insufficiently damped eigenvalues (outside the specified
region) remain controllable and observable after the failure. 1In the crane
example, the sensor for the crab position Xy is essential, because X is not
observable by other states. In such situations it is apparently misleading to
use high gain feedback and to show gain reduction to only a few percent of the

high gain. For failures of essential actuators and sensors only redundant

components can help.
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CHAPTER 4

PARAMETER SPACE DESIGN OF ROBUST CONTROL SYSTEMS

4,1. Introduction

In this chapter a new tool for the design of robust control systems
is proposed. First the type of robustness problem for which the tool can be
applied is described.

Robustness of a control system is defined in terms of system properties
which are invariant under a specified class of perturbations. The system
property considered in this paper is 'nice stability' as specified by a region
[ in the eigenvalue plane, in which all eigenvalues must remain in spite of
perturbations. The perturbations may be large changes of physical parameters
of the plant or failures of actuators and sensors or inaccurate implementation
of the control law.

The following assumptions are made.

1. Only linear plants

X(k+1) =A x(k)+ Bu(k) or
x(t) =4 x(t) + Bu(t) (20)

| - |
5 -[Xl...xn],y_ "‘[ul-ooup]

are considered, It is assumed that eq. (20) is written in
"sensor coordinates'", i.e. all measured variables are state
variables X It may be part of the design task to decide
which states are to be measured.

2. A and B may depend on a physical parameter vector 2. Only

some typical values
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A

Ay =A(8.), __B_j =§(§j) j=4L2...J (21)

=]
may be given. Also the required system property Fj may

depend on the operating point ﬁj.

The simplest assumed controller structure is state feedback
u=-Kx. (22)

It may not be possible to make all plant models éj’ éj nicely

stable with the same fixed K, i.e, to have all roots of

=
~
o
w
~

det(ML-A.+B.K)=0
1 = 71 71"

i
in the specified region I' in the A-plane., In this situation

the designer may decide

a) To relax the eigenvalue region specification such that a
solution exists,

b) To use several feedback gains, each of which nicely stabilizes
a group of pairs Aj’Bj' The gains can then be scheduled
depending on a measurement, which admits a distinction
between the groups.

c¢) To use linear dynamic feedback of order m with contreller

state vector X, i.e, try to find a state feedback

le
=
|rI
T
)

= - ! , (24)

which nicely stabilizes the augmented system
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x 0jx 3 0}u
= + . (25)
x 0 ||x 0 1 u
~c = ji=< - = |l=c

The controller M,N,L with n inputs and p outputs may be
written in a canonical basis, such that the feedback matrix

in eq, (24) contains pntmntmp design parameters., ((pim) x (n+n)
coefficients in eq. (24) of which m? are normalized by the
choice of an mxm transformation matrix).

d) To use nonlinear feedback, e.g. an adaptive system

estimating the physical parameter vector & in eq. (21).

The tool proposed in this paper is useful for problems of the types a), b),

and c¢).

If some states are not available for feedback, then the corresponding

columns of K in eq. (22) or of K and M in eq. (24) are zero.

4.

A sensor failure is equivalent to switching all elements of the
corresponding column of K (or K and M) to zero. An actuator
failure is equivalent to switching all elements of the
corresponding row of K (or K and 1) to zero. Assume that M
such failures or failure combinations have to be considered,
which lead to M crippled feedback matrices Em’ M= 1,2,.00,M.
The design goal is to find K such that all roots of

M

mgl jil(ll-Aj+§j§m) are inside an "emergency region'" in A-plane,
Apparently it is a necessary condition for nice stability to

be robust under such failures, that the plant modes outside

the specified region I in the eigenvalue plane remain control-

lable and observable after the failure. This fact may be used
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in the decision for which sensors and actuators redundancy

is necessary. Components which are needed to make the

insufficiently damped modes observable and controllable are

“egsential',

Example 4.1: (Essential sensor) Consider a crane with the physical parameters

m, = crab mass, m = load mass, 4 =rope length, g=gravitational constant. Its

state variables

are x1=crab position, X, =crab velocity, X4 =TOpe angle, and

X, =rope angular velocity, For small rope angles the linearized state

equations are

0 1 0 0 0
0 0 g/m 0 1
x = 13 x + %— u (26)
0 0 0 1 c | o
0 0 -X -0 -1/
L P i )

. 2 _ . , .
with wp-(mc+mL)g/mCZ. Input u is the force accelerating the crab. Eigen

values are [0,0,jwp,-jwp]. The observability analysis shows that x, is not

1

observable by Xys Xg, O X;- Since one of the zero eigenvalues is unobservable,

the crab position sensor is essential for stabilization.

5. It is assumed that desirable features of the dynamic behavior

of the control system can be specified by a region I in the

eigenvalue plane . Examples are

a)

b)

<)

the stability region, i.e., the left half s plaue or the
interior of the unit circle in the z plane,

military specifications for damping and natural frequency of

modes of an aircraft,

in some problem formulations it is convenient to define a

PRI N .

¢ Rentesa s
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family of regions Fr with a parameter r. 1In the z-plane
this may be a family of nonintersecting circles (see Fig.
4.1). For r=0 it is a deadbeat solution, and r in the range
0.3 to 0.5 corresponds to well damped transients, (The
right shift of this circle excludes heavily oscillatory
solutions, the circles approximate the usual logarithmic
spirals for constant damping augmented by a constraint on
Izl). For r =1 the stability boundary is obtained.
Similarly in the left half s-plane, a family of hyperbolas
(guaranteeing a minimum damping and a minimum negative real
part of the eigenvalues) may be introduced, augmented by
parallels to the imaginary axis in the right half plane

(see Fig., 4.2). The equations for these families of

boundaries will be given later.

Three types of design problems for robust control system may be distinguished.

1.

Civen a system property and a controller initially designed for
nominal parameter values, under what perturbations of the para-
meters is the property robust? Modify the controller such as
to extend the admissible class of perturbations. Example:

Try to extend the gain and phase variations under which
stability is robust, It is difficult in this approach to
accomodate large perturbation in known directions, e.g.
large variations of the physical parameter vector ® in ea. 21.
Typically very conservative results are obtained.

Given a class of perturbations and a system property with a

parameter r, e,z. the family of boundaries Tr’ for a given

controller whiich is the best value of r such that fr is robust

PN P TR O

PRCY S N
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under all perturbations in the given class? Modify the
controller to improve r., The system property may be formulat-
ed such as to include several design aspects and an optimization
can be performed.

3., Given a system property and a class of perturbations, does
there exist a state feedback solution such that the property
is robust? If not, does there exist a linear dynamic feedback
controller of order m, eqs. (24) and (25), such that the
property is robust? Find the set of admissible controllers
and select one based on criteria, other tham robustness, e.g.

based on simulations with a nonsimplified nonlinear plant model.

It is primarily this third problem formulation for which the proposed design
tool can be applied. The concepts however, are useful also in the second
problem. The design tool basically consists in mapping boundaries from the
M plane into boundaries in the parameter space X, whose coordinates are the
elements of the state feedback matrix. Then all tradeoffs between dynamic
requirements, robustness requirements, and bounds on the feedback gains can
be made in X space.

The details and most of the examples are worked out for single input

plants with state feedback
U=-E'§=-[k k LAY kn]l(. (27)

or state output feedback, i.e., some ki:=0. For multi~input plants the basic
result is formulated.

Parameter space methods have a long tradition, mainly in Russia
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and Yugoslavia. Siljak [49] gives a historical review of the work by
Vishnegradsky, Neimark, Mitrovic, and others, Siljak generalized these
parameter mapping methods significantly. A typical procedure for a continuous
time system is to assume a controller structure with two free parameters &
and B. Determine the closed-loop characteristic polynomial
v i

B(s) = Zop, (@,B)s” = 0. (28)
Substitute s =0+ jw and separate eq. (28) into its real and imaginary parts:
Re(o,w,a,B) =0, Im(c,w,a,B) =0. Assume these nonlinear equations have a

solution
a = a(o,w), B=B(o,w). (29)

Equation (29) allows mapping o,w pairs on the boundary into the o-B-plane.
The image boundaries divide the «-f-plane into regions characterized by the
number of eigenvalues inside and outside the s-plane region.

In the present paper the control system structure is restricted to
partial state feedback. This permits simplifying the determination of eq. (29)
by pole placement methods. Consider for example a second order single-input
system with k1=a, k2 =8 in eq. (27). 1In classical parameter plane methods
P(s) =det(sl-A+b k') = po(ot, 8) +p1(a,5)s +s2 =0 is determined and with s =g+jw
solved for « and B. In the method proposed in this paper the p, are expressed

in terms of ¢ and w by

P(s) = (s-C+jw) (s-c~ju) = 2 - 208 +6° +u?

o 2 (30)
-po(c,.u) +p1(c)s +s” =0,

Then by pole placement

P
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k, =a(p,,p;) =a(o,w)
(31)
k, =B(p,,Py) =P (0,w).
Thus the mapping equation (29) is obtained in a different way.

More generally for an nth order single input system in both
approaches an n dimensional parameter space € with coordinates Py is introduced
as an intermediate step between the set of eigenvalues A=={Xl ...Xn} and the
X-space. The relation between A and X can be expressed in both directions:

a) From X to ¢ by the characteristic equation P(A) =det (AL-A+b k'),

from € to A by numerical factorization of P(A).
b) From A to ¢ by multiplication of elementary factors P(A) =

(h-kl)(h-kz) ...(X-kn), from € to X by pole placement.

Apparently direction b) is much simpler than direction a). 1In this paper only
direction b) 1is used.

In the next section pole placement is reformulated as a linear
mapping from ¢ to X space. This is then used in the third section to map not

only a trial point from ¢ to X or from A to X, but to map boundaries.

4,2. Single Input Pole Placerent--A Linear Mapping

4,2,1, State Feedback

n-1 . .
.*-pn_lk +A , an nxn matrix

¥§]. The unique

Theorem 1l: Give. a polynomial F(A) =po+plk-+..
A and an nx 1 vector b such that det R#0, 5=[2,é§...§n-

solution to det(AL-A+b k') = P(A) is

k' = p*E (32)

where
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p* = [p, Py +-- Py 1], E=| e'A

and e' is the last row of _I_{_-l.

Proof: Existence and uniqueness of the solution were shown by Rissanen [50]
by transformation to control canonical form,

Let F=A -bk' and expand powers of F as follows:

FP=A%=1 (1)
F=A-bk' 2)
2 2 '

-bk'E 3)

n-1 (n+1)

A" %bk'F- ... -bk'F

Multiply the first equation by P> the second by Pys etc., the (n+l)st row

by one and add the equations

P(E) =PA) - [B,Ab ... A" 'b] |,
By Cayley-Hamilton P(F) =0. Then
. -1 n-1
- |=R 'P@A), R=[b,Ab...A" D] (33)
kt
k' must satisfy the last row, i.e.
' ' 1 -1
k' =e'PA), e'=[0...0 1]R ". (34)

Explicitiy

«A_s_wa
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1 =t n-1 .n
k' =e'[p I+pA+...+p A "+A7]
e’ ]
. ea |
k' =1[p  Py.-ep ;1] P*E. Q.E.D.

B

The form (34) of the result was derived in [33]. The (n+l) xn matrix E is a

convenient representation of a controllable pair A,b. It maps a vector
p'=I[p, Py--- P,_;] in & space into a vector k'=p*E=[p' 1]E in X space.

E is evaluated only once for a given pair A,b. The mapping of each trial
design point in ¢ space then requires only n2 multiplications and n2 additions.,
This compares favorably with mapping a trial design point from the parameter
space of quadratic criteria via the Riccati equation into X space. This is

an advantage for computer-aided design methods, in which many trial design
points have to be mapped and displayed graphically.

Example 4.2: (Pole placement, output feedback, gain scheduling). For the

crane of Example 4.1

im /g 0 ,ezmc/g 0
| m /g 0 Fu_lg
E = 0 0 - 4m 0 | (35)
0 0 0 -im,
_ 0 0 (mc-!-mL)g 0 !
kl = potmc/g
k2 - plimc/g

-
]

2
3 poz mc/g -pzﬁmc-+(mc+mL)g

= ‘ch (pli/b'93) .

A chad absnbe
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This result admits some conclusions about state output feedback and gain

scheduling
i) for stability P, > 0, i.e, kl >0,

ii) for stability P, >0, i.e. k2 >0,

iii) k3=0 implies the constraint
P, =P t/g+ (m tm )g/tm_,

iv) k, =0 implies the constraint p,=p,4/g,

v) a gain scheduleing for different loads m can be implemented as
2
k3—k3o+ng with k30-p0£ mc/g - pzlmc+mcg.

The other ki remain unchanged. With this gain scheduleing the

closed loop eigenvalues do not depend on the load,

in numerical calculations with large n the accuracy of the vectors _e_:'éi,

i=1,2,...,n, must be checked., One test is to let Py =Py =-:- -pn_1=0.

Then k' =g'én. Evaluate det(\1-A+b e’ én) =50 +;l>\+ ces +En_l+hn. The Si

should ideally be zero. Their magnitude is a measure for the error in e'_A_n.

Ancther convenient test follows from the definition of _e_'

0 k=0,1,...,n-2
A'D = (36)

1 k=n-1.

This relation also implies that e', e'A...e'A are invariant under state

feedback (A,b) ~(A-bk',b). If the inverse of eq. (32) is needed, the last

row of E can be brought to the left side

B
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el
- -1 '
E"‘E'én = B'H 1, p' = [po pl cee pn-ll’ H = -?—é
* -1
e'a”
2! - HG 'R 37)

1t was shown in [33] that the columns of W can be evaluated recursively by
Leverrier's algorithm, which also gives the coefficients a; of the charac-

teristic polynomial of A, det(AI-A) =a°+al}s+ coe +an xn-l_'_}\n‘ In this

~1

case it is more convenient to express the last row of E by the Cayley-Hamilton

theorem in terms of the previous ones. Then

-1
k' = ('-a"hw ", a'=[a a ...a

]
n-1
(38)
p' =Wk'+a'

4.2,2, Partial Pole and Gain Assignment, Qutput Feedback

So far the mapping from & to X has been formulated. This is easily

extended to mapping from Aﬁ={Kl ...An} to X. P(\) may be written as

P = A=A M) oee (A=A (39)
Then by eq. (34)

k' = e'@A-AD)A-MI) ... A-A T, (40)

This form of the result admits consecutive assignment of one eigenvalue after

the other. P(\) may be factorized in any form

P(A) = Q(MRA)

g-1

A+, ..+1r A% TS (41)

R(A) o1

r +r

o 1
- n-g-1  .n-g

QM) qo+q1k+...+qn_g_ﬁ. +A




T T

LA o r‘*

vy

~—vT

------

42

Let for example the n-g roots of Q(A) be fixed, then

k' = e'P@) = e'QQRQA) = e'(RA)
N
k' = [ry ..o r g 1 ' . = o*Ey = [x' 1]E,. (42)
o

It is also possible to fix g gains k; =p*n,, where n, is the ith column of E.

These g linear equations in the p coefficients may be used to eliminate r'

[55]. p* is written as
9 9p *vr Y1 1 0...0
pe=lpy «ee Py U =0, ceory 110 g weeeeq g 10
0 Qpeee 9Gh-g-1 1

where S is a gx(n+l) matrix and t' a 1x(n+l) vector. Let Eé be the fixed gains,

which for convenience, are chosen to be the last g gains in k'. Then
[ s
1 = ! ' = e = !
k' = [k! k'] = p*[E_ E, ] =[z' 11| ]IE, E,]
tl

which can be solved for

£ = (-t'E ) SE) (43)

if the gxg matrix SE, is invertible. Note that this condition does not

b

depend on the values of Eg. Thus this is the same problem as in output feedback,

S .
P T LY BIIR WW ey

Ala L

~4

~1

-4




A ot SUOETE IRTERE At g gt T GER S S0 AEMdNS
-

o

- rfvﬂr.

43

-151; =0, where certain pole locations cannot be achieved [51]., The singularities

of SE, will require further study. k; is determined by
| J— - ] 1
ky =P, = @'S+L)E,. (44)

Assigning the n-g eigenvalues of Q(A) determines S, The remaining eigenvalues
can be determined by factoring the residual polynomial R(A) with coefficients
given by eq. (43).

Example 4.3: (partial pole placement) For the crane let

P(s) = (qo+qls +sz)(ro+rls +52) 45)

where qo and ql are fixed and r, and r remain as free parameters.

e
1 = at =
gq = &'e@) =1lq  q; 11} e'A
2
e'A
£mc
= ?[qo q, 44-g 44,1
}Sl = etQ . R@)
—_
- 9, 94 fiqo-g lql
k' = —g-c‘ [z, rp M1 0 q 9,8 £9,-8 (46)

2
0 0 (egmdy)e -9;3

i

Let for example the natural frequency wp of the pendulum be unchanged, but

introduce a damping d, i.,e. Q(s) = u;':;+2du> s+sz, then

mc+mL c mLz ci

k' =[r_ r 1] 0 mc-l-mL -cg mLﬂ N

‘ 0 0 0 -cg |

PPN Y DI

eiaaatia il azA el
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with ¢ =2d +/ (mc+mL)mc/gz.

Example 4.4: (fixed feedback gains) For the crane of Example 4.2 let k., and

1
k, be fixed, i.e. Ea'.=[k2 k3], l_cb= [kl k4]
2 — —_—
0 L /g dm /g 0
2
Emc/g 0 0 J) mc/g
~a = { 0 -Imc Eb = 0 *
0 0 0 -Imc
B 0 (mcmL)i __ 0 o
Then by eq. (43)
__ ) -
q,4m /g q,4m /8
r! = [r, rl] = (kl kl{"qlmc]' .
0 Jltnc(qozlg~1)
The inverse exists if qo#gll and qo#O. Then
LAt T Ay “8)
o q_im, L m_ (9, 4/g-1)
and with eq. (44)
qoqlmcz-klgql/qo +,9,
k, = (49)
2 9 4-g
2
4,8 kgdy Ky
ky= ﬂ,(kl/qo-mc) (q,+ qox’.-g) + g(-c-l:zfg - -cc+mc +m )

kl will be fixed by the following consideration: Assume a force limitation
lu(c)l <U for all t for a typical operation of the cranme, i.e. a displacement
of a load at rest, x(0)=[L O 0 O0]', L>0 (e.g. length of a loading bridge)

to a final position :_\'_(tE) ={0 0 0 O0]'. Typical responses of sufficiently
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stabilized cranes show an initial peak u(0) of the force as the maximum value
of lu(t)l. A simple approach to avoid saturation is therefore to meet a
necessary condition by fixing |u(0)| =y and checking the conditions for

1(0)/u(0) 0. Then |u(t)i for t >0 may be checked in a simulation. Here

u(0) = -k'x(0) = ~k,L
(50)
t(0)

~k'(A-bk') x(0) = L k,(k, ~k,/4)/m_ =Tk p,

Thus G(0)/u(0) =-1/p350 for all stabilizing feedbacks and Iu(O)l =U results
in kl =U/L.

It is desirable to avoid the difficult measurement of the rope

angular velocity x4=(9. Thus k4=0 is chosen, Then by eq. (48)

ro= 22— 7, o = OIS (51)
o L cqo 1 l-qo'g

r, and r, are the coefficients of the residual polymomial, which is obtained
afcter 9, and 9, have also been fixed, Necessary and sufficient conditions for

stability are q, >0, q, >0, r, >0, rl>0. With eq. (49)

_ qoq 1mc£_qu l/qu

ky = q,4-8
2 2 (52)
q,8 U a8
ky=-dm_(q_ + qoﬁ_g) + qu(qox-g+qoz_g) + (m tm g

4.2.3. Sensitivities, Incremental Stabilization

The influence of a coefficient P; of the characteristic polynomial

on k', given the other pJ,, follows from eq. (32) as
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Hpe
tc ok' " (53)
. -_— = e .
dpi - -

The influence of an eigenvalue hi on k', given the other }‘j’ is by eq. (40)

' ok!

8 = = -g! - - - -

g a}\i e' (A }\ll) eoe (A )‘i-ll)@- }si+1;) cos (A Xn_l_). (54)
,. For complex conjugate eigenvalues quadratic factors in P(A) are more convenient,
}

Let P(A) = (a+bA+)\2)R(A), then

k' = E'(al+bé+§2)-R(é) (53)
F' ) '
e ok ' ok
L 32 = &'R@) S5 = e'AR@A). (56)

Example 4.5: (Incremental stabilization, global robustness) For the crane of
egs. (26) and (35) the open loop characteristic equation is sz(s2+w2) =0.

Find a small stabilizing feedback Ak' with the least number of required sensors.

P(s) = (52+as+b) (sz+cs+~.u§+d) with small a >0,b>0,c >0, and small d
1 1 2 2 2
[ k' = el (A +aA+bL)[A +eht(uw +d)1] | 575
k! Ak ¢ SK! Sk
"= * =< °* _— == .
E‘ Y Ak' = 3a a + ab b + e c + 3 d (58)
—Ok'l 9 1 a2 2 2 3 2
J =FE (é +aA_A_t_)(é +Ww I) =E'(é_ +u A)
9@ pec=d=0 2 p= S
I ', ')
{ a=c=d=0 P~ P~
b
._' 3 2 a
: gk =.?_C_Elé—(é2+cé+wgl) - E'é3
¢ a=b=d=0 o oo
‘. 3t 5 )
! = - et = en?
; % a=p=c=0 P
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ok' = e'.[ (a+c)é3 + (b-l-cl)é_2 + awfyﬁ+bw§}_]
bk, = bwizmc/g = (m+m )-b
Ak2 = awizmc/g = (mb+mL)-a
dky = buid’m /g - (b+d) fm, = 4(m b-m d)
Ak4 = awi!?mc/g-(a+c)£mc = £(mLa-mcc).

With a>0, b >0, ¢ >0 this is the cone of stabilizing directions at the origin

of the four dimensional % space. It includes the directions Ak3==0 and Ak4==0,

i.e. no feedback of the rope angle is necessary with

b. (59)

a, (60)

Akl and Ak2 must be positive for stabilization, i.e., crab position and crab

velocity must be available for feedback. Output feedback

k' = (m 4m )b a 0 0] (61)

with small positive a and b then stabilizes the system., For sufficiently small

a and b the characteristic polynomial is arbitrarily clese to

P(s) = (sz+as+b)(32-+;L as-+wi-+2£ b). (62)
c c

1f the physical parameters of the crane are unknown, and output feedback

ak' = [ak, 4k, O 0] with small &k

1 4% #0,

1

ik, >0

(63)

X v o .
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is applied, then in eq. (61) a==k2/(mc+mL) and b==k1/(mc+mL) are unknown, but
positive, i.e. with the feedback of eé. (63) stability is robust with respect
to arbitrary changes of load mass m crab mass m,, rope length 4, and gravi-
tational constant g. Thus in this example global robustness of stability

with respect to perturbations in four directions is achieved.

Note that it is possible to destabilize the model A and b in eq. (26)

with feedback (63), if small changes in arbitrary coefficients of A and b are
permitted. The general assumption in this paper is that A and b do not change
arbitrarily but in known directions. Only by this assumption does it become

possible to accomodate large parameter variatioms.

4.3. Mapping of Boundaries

4,3,1. Mapping from A plane to ¥ space

In the complex plane of eigenvalues

A=v 4+ jw (64)

boundaries w2:=w2(v) (i.e. symmetric with respect to the real axis) are of
interest, which are related to desirable system properties, e.g. stability,
damping, bounds on the natural frequency. Examples were given in Figs. 4.1
and 4.2,

Assume, due to a change of the state feedback gains k', a real root

crosses the boundary at its intersection with the real axis at A=v Then in

R*

# space a boundary

P(A) = (A-vp) -R(A), RQA) =r_+rh+ oo +r 3" 240" (65)

-

is crossed, which is linear in its parameters Ty Tpseeest i.e, it is an

n-2?
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(n-1) dimensional hyperplane., Due to the linearity of k'=p*E = [p' I]E,
this boundary maps into a hyperplane in X space, which 1is crossed by the
feedback gain vector k'.

Assume, due to a change of the state feedback gains k' a complex

conjugate pair crosses the A-boundary at v+jw. Then in € space a boundary

P(A) = (\-v=jw) (A=v+jw) «R(A) =Q(A)R(X) (66)
where

Q) =A% - 2vA +v2 + %2 (v)
and \

RA) =r_+rh+...+ rn_3}\n'3 +AR2

is crossed. For a fixed v, i.,e. a fixed pair of eigenvalues on the boundary,
this is a (n-2) dimensional hyperplane in € and X space. However, for
different values of v different hyperplanes are obtained. For fixed R(\) the
boundary line in ¢ and X space is obtained by moving a pair of conjugate eigen-
values along the boundary. In this case the form of the boundary w2 (v) in eq.
(66) determines the shape of the boundary line in € and X space.

Some boundaries of particular interest are:

1) Imaginary axis, stability boundary in s-plane, v=0, Q(

Q) =)\2+w2, boundary linear in wz.

2) Pparallel to imaginary axis

V=V, Q(\) =}\2 -2v17\+vi+w2, linear in w2.

3) Conic section symmetric to the real axis, i.e.

2

2 2 -
W =co+c1v+c2v . (67)

Special cases are
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c, <0 ellipse, of particular interest are circles c2=-1, e.g.
constant natural frequency curves in s-plane, stability
1limit and other boundaries in z-plane, see Fig. 1,

<, =0 parabola, or if also cl=0, <, >0 straight lire parallel to
the real axis. For LR =cl=c2 =0 boundary between real and
complex eigenvalues.

<, >0 hyperbola, in particular 2 straight lines for w2 =c, (v-vo)z,
¢, >0, e.g. constant damping lines in s-plane. This

boundary is frequently combined with a parallel to the

imaginary axis, Here it is more convenient to use a hyperbola,

which guarantees the required damping and minimum negative

real part of the eigenvalues, see Fig. 2.
Substituting eq. (67) into Q(A) from eq. (66) gives

Q) =>\2 -2vA + (l+c2)v2 tevte . (68)

1

The boundary is quadratic in v. It becomes linear only if ¢, =-1, i.e. for a

2
circular boundary in A plane, 1In other words: If n-2 roots in R()A) are fixed
and the remaining two roots of P(\) move as a conjugate pair along any circle
in the A-plane with center on the real axis, then the corresponding point in

€ and X space moves along a straight line. This is the reason for the proposal

of a family of circlcs l“r in the z-plane in Fig., 4.1, 1Its equation is

2 2
(v-vo) +wW =r¢r

vo(vo-l)=0.99r(r-l), vo<0.5 for r<l1 (69)

v =0 for r21,
o

o ea
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For r=0 it is the deadbeat solution with all eigenvalues at z=0, With
increasing r the center A of the circles moves to the right until it reaches
0.45 for r=0.5, it then goes back to zero to produce the unit circle for
r=1. If boundaries in the unstable region are needed, concentric circles
with radius r may be used. We may begin with a radius r such that all open
loop eigenvalues are enclosed by the circle, and design the feedback such that
r is reduced to a radius smaller than 1. In the further reduction of r at
tradeoff with the required gains must be made. For continuous-time systems
the family of hyperbolas Tp of Fig. 4.2 in the s(=0o+jw)-plane may be used.
I1ts equation is

w2=-92+02/p2 for o <0

(70)
g==p for o >0,

For large P an extremely fast solution is obtained, p=1 gives the 1/+/2 damping
p line as asymptotes, for p—0 it goes to the imaginary axis. Negative p
represent parallels to the imaginary axis in the right half plane. Beginning
with a sufficiently negative p to have all open loop eigenvalues to the left

of the boundary Fp’ p may be increased by the feedback to positive values,

' where again a tradeoff with the required gains must be made,
Besides the real and the complex root boundary there is the third
F. possibility of a root leaving the region through infinity. This can be
: avoided by closing the contour in the s-plane by an arc of a circle with large
s
: radius, Practically this may be a circle corresponding to the design bandwidth.
;. This is of particular importance if we need a 40 db/decade "roll off" band-

width limitation, e.g. to avoid interaction with unmodeled modes at hicgher

frequencies,
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Typical desirable regions for the eigenvalue location in the s- or
z-plane are connected and have two intersections with the real axis. In this
case there are two real root boundaries and a (possibly piecewise defined)
complex root boundary in € and X space.

Equations (65) and (66) show that the mapped boundaries in ¢ and X
space represent the conditions under which the number of eigenvalues inside
and outside a A-region can change. The boundaries partition the ¢ and X
space into regions, each of them corresponds to a fixed number of eigenvalues
inside the A region, and it must be decided for which € or X region all eigen-
values are inside the A region. For closed contours in the A-plane the X
region is bounded, since by eq. (32) no ki can go to infinity., If there are
several bounded regions, a simple test is to check the eigenvalues for an
arbitrary K' in the considered X region. An alternative are Siljak's '"shading
rules" for the boundaries [49].

For second and third order systems it is possible to visualize
regions in X space graphically. This is done in the following for the unit
circle, i.,e. the stability region of discrete systems in X space is determined.
Figure 4.3 shows the regions in the kl—kz-plane for a second order system., The
two real root boundaries are two infinite straight lines intersecting at B.

Thus B can be obtained by placing one pole at z=-1 and one at z=1. The

complex root boundary is the straight line AC. A is obtained by placing a

double pole at z=-1 and C by a double pole at z=1. Thus Fig. 4.3 is completely

determined by three pole placements

Mk aa
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Flgure 4.3. sStability triangle ABC in k;-k,-plane for a
second order discrete-time system
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k=01 2 1E

ki=[-1 0 1IE (71)
ki =[1 -2 1.

The boundaries partition the kl-kz—plane into five regions with the properties
1) both poles inside the unit circle, 2) one left, one inside, 3) one left,
one right, 4) one inside, one right, 5) complex outside or both left or both
right (a distinction between these three cases in region five would require a
further boundary distinguishing real and complex roots). Usually only the
stability region 1 is of interest.

Only the stability region will be determined now for third order
systems. It is shown in Fig. 4.4. The two real root boundaries are the two
planes in which the triangles ABC and BCD are contained. They intersect along
the straight line BC. B is obtained by placing two poles at z=-1 and one at
z=1, C corresponds to one pole at z=-1 aud two at z=1., For any fixed real
eigenvalue and the two others moving along the unit circle a straight line is
obtained. Thus the complex root boundary may be visualized as being generated
by a moving straight line from a point on AB to a point on CD. It moves as
the real eigenvalue moves from -1 to +l. A corresponds to a triple eigenvalue
at z=-1 and D to a triple eigenvalue at z=+l. Thus the vertices of the

stability region are obtained as

':
ki=[L 3 3 1

ki=[-1-1 1 1]E
(72)
ki=[l -1 -1 1]E




~ v
'

— Ty

- 1f~r-z ~

e y—> ———— v Y Y YV TV T

—r— ¥

Y

C i - adi ool RANC e

55

Figure 4.4,

k3

Stability region ABCD in kl-kv-k3-space for a
third order discrete-time System|
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Apparently the tetrahedron ABCD is a convex hull for the stability region.
For the € space Fam and Meditch [38] showed that this property generalizes
to arbitrary degree n of the characteristic polynomial.

Theo rem 2 (Fam, Meditch): For an n~th order discrete system a con\}ex hull
of the stability region in € space is a polyhedron whose vertices correspond

to the n+l polynomials with zeros in the set {-1, 1}.

Proof: See [38].

Corollary: 1If the unit circle is replaced by a circle with center v, and radius
r in the z-plane, which intersects the real axis at vy SV,TT and v, =vo+r,

then the vertices of the convex hull of the corresponding region in € space
correspond to the n+l polynomials with zeros in the set {vl,vz}. This may be
shown by reducing this problem to the previous one via z'= (z-vo)/r.

Theorem 3: A necessary condition for all roots of det(zl-A+bk')=0, (A,b
controllable) to be inside a circle with real center and real axis inter-

sections at z=vy and z=v, is that k' is in a polyhedron in X space, whose

2
vertices are obtained by pole placement of the n+l polynomials with zeros in
the set {vl,vz}.

Proof: Follows from Theorem 2 and the linearity of the map k' =p*E.

If the circle in z-plane is deformed to a different closed contour

with the same real axis intersections at vy and Vg then the certices of the

region in X space and the two real root boundaries remain unchanged, only the

hypersurface for the complex root boundary is deformed. It is an open question,
how far the region in A space can be extended in the A-plane such that k'
remains in the previously described polyhedron. The inverse problem (given a
region in ¥, which is the corresponding region in the A-plane?) leads to

sufficient conditions on k' to place all eigenvalues in the resulting region.
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This problem was studied by Marden [52, Theorem 8.2], However, these regions

in A-plane are not nicely related to desirable dynamic properties, For the
polyhedron discussed above the region in MA-space is the union of two circles
with complex conjugate centers and real axis intersections at A and Ve

Marden showed that this region cannot be reduced. Note that in this direction
from the n-dimensional X-boundary to the two-dimensional A-boundary no necessary
and sufficlent conditions can be obtained for an arbitrary defined X region.
This problem is overdetermined, Thus it is advisable to assume a region in
A-plane and to determine the necessary and sufficient conditions on k'.

4.3,2, Mapping to a Subspace of X

Some gains may be fixed to zero, like in output feedback or under
sensor failures, or to some other values like in Lxample 4.4, This means that
we are looking for a solution in a subspace of X. Such a solution may not
exist; take for example Fig. 4.3 and fix k; to be bigger than k@) Then
there does not exist a stabilizing k2. The set of admissible solutions may
also become disconnected, even if it was connected in X space; take for example
Fig. 4.4 and fix k2==c such that the plane kz =c intersects the two tips of the
stability region.

Example 4.6: (Disconnected stability regions in a subspace of X)

0 1 o . 0
x(k+l) = | 0 0 1 | x()+] 0 u(k). (73)
0.6 -2 2.1 1
The system is open locp unstable (eigenvalues zl'=0.5, 2y =0.8+j, 0.56).
-

Fix k, =0 (output feedback) and find the set of stabilizing gains in the

<

kl-k3-p1ane. The real root boundaries are the straight lines

e w

bk kol
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for z=1 k3+=-kl-0.3
for z=-1 k3_ =-k1+5.7

and the complex root boundary is the hyperbola

Figure 4.5 shows the three boundaries and the two disconnected stabilizing

regions, Its vertices are

ky ky
E -0.4 0.1
F 0.1  -0.4
G 1.1 4.6
H 1.6 4.1

Nonconvex and disconnected solution sets like in this example lead to difficulties

in numerical algorithms. Sirisena and Choi [53] formulate the problem of
placing poles in a specified region by output feedback as minimization of a
function J, which becomes zero, if a solution is found. Their conclusion from
computational experience is: YIf however a local (nonzero) minimum of J is
reached, the algorithm should be restarted with a different initial value of
the feedback matrix. Repeated failure to reduce J to zero would indicate the
absence of a solution'. If we want to find the set of admissible solutions, a
systematric or random search in the appropriate subspace may be necessary., In
order to restrict the search to a promising region, necessary conditions, like
the one provided in Theorem 3, are very useful. In Example 4.6 this is the

quadrangle EFHG, more general the polvhedral cross=-section of the subspace with
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the polyhedron in the n dimensional space. If no such cross-section exists,
it can be immediately concluded that no solution exists. The example indicates
that points near the real root boundaries are promising candidates,

For a fourth order system there exist gains, for which two complex
pairs of eigenvalues cross the boundary simultaneously. Here the complex
root boundary in X space intersects itself. If the two crossing points on
the boundary approach each other and eventually become a crossing of a double
pole, then the bow in the boundary becomes a cusp.
Example 4.7: (Partial gain fixing) For the crane of Example &4 let m, =1000 kg,
£=10m, g=10 m/secz, U =5000 Newton, L=10 m. The load mass m is unknown,
Example 2 showed that only k3 =k30+ng depends on the load mass m, . Without
knowledge of m only k30=k3-10mL can be determined. For kl=U/L=SOO and
k_,+=0 find the region in the kz-k3o—plane, for which all eigenvalues are left

of the hyperboi:x
2
W= (20)2 - 1/22 (74)

in the s-plane, Then for the complex root boundary from eq. (66)

q =5g =~0,25, ql=-26. (75)
and by eqs. (51) and (32)
q,(1-1/2q )
1 ) i
= 2 2 e——
T, l/_qo, T, P! (76)
o
1000q
= ————— - 2 -
klc qo-l (qo l/“qo) 77)
. | 2 e
%30 LOOOO(L/;qO - l)[Qo-l+ql/(qo-l)] (78
Ky, T Kgge t L0 M
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The nice stability region will be comstructed in the k2-k3o-p1ane. The complex
root boundary k2 @), k30(o) is obtained by substituting values o= -0.25 into
eq. (75) and q, and 9 into eqs. (77) and (78). The real root boundary at

O’R=-0.25 follows from eq. (65) with kl=500, k4=0 as the straight line

k3R = k30R + 10 m k30R = 95625 ~-42.5 k2. (79)

Both boundaries are shown in Fig. 4.6, For o=-0.25 the complex root boundary
starts at point A. With increasing o it goes through point B and for ¢-—-0.5,
(i.e. qo'”l)to infinity. In general this singularity occurs at qo==g/£. For
0 <-0,5 the complex root boundary returns from the opposite side to intersect

the real root boundary at C and itself at B.

Note that the characteristic polynomial is obtained by eqs. (75) and
(76) in factorized form. Thus the determination of the eigenvalues is easy.

They are given together with the k2 and k30 coordinates in the following table.

k2 k30 Eigenvalues
-842 = - 2 - 3
A 4233 84292 51’2 0.25, 53’4 1.867+j2.125

B 2367  -35012 s, , =-0.275+j0.231, s, , =-0.908+jl.746
1,2 * 3,4 +

c 2769 -22056 sl==-0.25, s, =-1.337, s

. =-0,591+j1.071

3,4
At A the real and complex root boundary intersect, i.e. there is a double pole
at sy , ==-0.25. At B the complex boundary intersects itself, i.e. here we
52
have two complex pairs of eigenvalues crossing the boundary simultaneously.
AC C a real root at s =-0.25 crosses simultaneously with the complex pair Sy 4t
3

The shaded region with vertices A, B and C corresponds to eigenvalues to tne

lefr of the hyperbola in s-plane.
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4.4, Robustness with Respect to Large Parameter Variations

Most existing methods for the design of parameter insensitive control
systems try to achieve robustness of a system property, like stability, with
respect to small perturbations of plant parameters in unknown or conveniently
analyzable directions, e.g. gain or phase variations. Such methods lead to
conservative results when applied to problems with large perturbations in known
directions, e.g. for the crane with widely varying load mass or rope length or
for an aircraft with widely varying altitudes and speeds. Let the plant model

in sensor coordinates
X=A0)2 +BQ@)u (80)

be given for several typical values of the physical parameter vector 9, i,e.
éj==é(§j), £j==§(§j), j=1,2,...,J. A fixed state feedback k' is sought, such
that all eigenvalues of (éj-éjh') are located in a specified region [' in A-plane.
For each pair éj’hj we obtain a different matrix Ej’ which maps a
desired region from the canonical parameter space ¢ into the corresponding
region Rj in ¥-space via 5'==R#§j. The set of solutions to the above problem,

if it exists, is the intersection of all regions Rj in X space. 1If no inter-

section for all j=1,2,...,J exists, then it can be tested whether at least a

group of plant models can be nicely stabilized with one gain, and it may be 1
necessary to switch to a different gain for a different group of plant models.

Example 4.8: (Maximum parameter variation, gain scheduling) Let the mass m

of the crane load be an unknown constant between the weight of the empty hook

and the maximum load for which the crane is designed, Under the constraints

of Example 4.7 find the fixed gain controller which accomcdates the largest

load variation,

— e e




.
The load mass enters only into k3 =k30+10 m . In Fig. 4.6 the E
origin of the k3-axis is identical with k3o=0 for mL=O. With increasing 1

load mass the shape of the region of nice stability is unchanged, but it is

FSUS U S

moved upwards by 10 o in the k2-k3-p1ane, or equivalently the origin of the
k3-axis is moved downwards by 10 m in the k2-k30-plane. Thus for load varia-

' tions of cranes it is not necessary to plot the shifted diagrams in order to

el

find the intersection. The largest load variation can be accommodated at the

PRt ant an o ann 4 S 24 4

k)

largest extension of the nice stability region in k3 direction, this is between

C and D. D has the coordinates k2 =2769, k30=-45503 and corresponds to the

24

eigenvalues s =-0.267+j0.680 and s =1.,118+j1.872. Thus k, is chosen as

1,2 3,4 2
2769. This results in an admissible load variation m = (-22056+45503)/10

= 2344.7 = 2345kg. Assuming the weight of the empty hook is 50 kg, then k3=—21556

) 1
puts the eigenvalues for mL=50 kg at sl=-0.25, sz=-1.337, s3’4=-0.59l_-l_-_]1.071, ]
where $1 and $3 4 are on the boundary ['. For mL=2395 kg the eigenvalues are b
at s =-0.267+j0.680 and s =1,118+j1.872, where s is on the boundary.

1,2 - 3,4 = 1.2

In summary: The solution

PRSP U TR T 1

4
| k' = [500 2769 -21556 0] (81)
L
r -l
gives the following properties of the control system.
a) 1Initial peak in the force u limited to 500L, where L is J
q the required load displacement.
L :
b) No measurement or estimation of the rope angular velocity
x4=~lP required.
] ¢) Under the constraints a) and b) maximum possible load

" )
variation. The eigenvalues are left of u” = (2:)2 -1/2"7 if

and only if 50 kg <mL<2395 kg.




>

-

P p—

-

——"

65

Now assume that the crane is designed for a maximum load of 3500kg, i.e. a
gain scheduling is necessary. The second load range may be chosen as

1155 kg <mL <3500 kg, i.e. k3=-10506. Then for 50 kg <mL<1155 kg, k3
must be used and for 2395 kg'<n&‘<3500 kg, k3==-10506. For the overlapping

=-21556

range 1155 kg~<ni;<2395 kg either gain is good, such that the crane operator
can switch between high and low load based -n his very crude load estimate,
which may be 135% wrong. This wide overlap provides robustness of the gain
scheduling scheme.

1f the rope length of the crane is varied, the shape of the nice
stability region in Fig. 4.6 changes and an intersection of various regions
must be found,

For different values Ej of a physical parameter vector different
regions Tj in the A-plane may be given and the intersections of the corre-
sponding X-space regions may be found, This is particularly useful, if the
plant is slow for some parameter values and fast for others like in aircraft
control. A general recommendation for the design of robust control systems
with input constraints is: do not try to make a slow plant fast or a fast
plant slow by feedback.

The graphical determination of intersections is limited to two
parameters at a time, Intersections of three dimensional regions may be made
visible by computer graphic methods. In situations with more free controller
parameter the design may proceed iteratively, where in each design step n-2
feedback gains are fixed and admissible regions in the plane of the remaining
two feedback gains are determined. The results of Section 4.3.1 on mapping
circular boundaries give some additional insight, which is useful for a fully

computerized search for intersections of regions., First it is important to
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B

note that the nice stability regions are not convex and thus their intersection

may be disconnected. Consider for example the stability region for a third
order discrete-time system in Fig. 4.4, Assume that for a different value of
the parameter vector the stability region is turned around by 180 degrees
such that the two tips of the stability regions intersect. Then the set of
solutions is disconnected, even for full state feedback. In this situation

a search in X space may be made. Bounds for the search region are given

by the following.

J
Theorem 4: A necessary condition for all roots of jgl det(;l-éj-kgjg')==0 to
be on or inside a circle with real axis intersections at z=v, and z=v, is,

that k' is on or inside the intersection of J polyhedra. The vertices of the
j-th polyhedron are obtained by assigning all (n+l) polynomials

P(z) =det(zl-éj+]:lj_1£') with zeros in the set {vl,vz}.

Proof: Follows from Theorem 3,

The intersection of polyhedra is a polyhedron itself, its vertices

are promising candidates in the search for points which also meet the sufficient

conditions. 1In order to define a rectangular grid for the search it is
convenient to put each pclyhedron into the smallest box with surfaces parallel
to the axes and to restrict the search to the intersection of the boxes,

4.5, Robustness with Respect to Sensor Failures

Sensor failures are assumed to occur in the form that the sensor
output is no longer correlated with the measured variable., As far as the
characteristic equation is concerned, this is equivalent to having a sensor
output zero. There may be a bias or other noise term introduced by the

failed sensor. This noise term can be considered as an external input, This
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may require that the failure is detected and the failed sensor is removed
from the control system. Then also the control law may be changed. However,
for this latter decision there should be sufficient time to come to a reliable
decision without false alarms. This requires that after the failure the system
at least remains stable with some stability margin., In other applications it
may suffice to be able to continue the mission after a sensor failure without
removal of the failed sensor, e.g. to drive an automobile safely to a service
station to get a broken sensor replaced, such that optimal fuel economy,
emission control, acceleration, etc. is regained.

The robustness problem is: Consider M failures of a sensor or
combinations of sensors leading to the crippled feedback vectors 5;,
m=1,2,...,M, in which the appropriate elements of k' are replaced by zero.

Find k' such that all zeros of

M J
™ m - "y =
oty 4Ty det(I-A +b k) = 0 (82)

lie in an "emergency region' FE in A-plane. The emergency specification is
robust with respect to a failure or sensor i if and only if in X-space the
projection of k' into the subspace ki==0 is in the intersection of all J
emergency regions.

Figure 4.7 shows an example of the intersection of emergency and
nominal regions in the kl-kz-plane. I1f we choose k' at point 1, then the
projection on the k2 axis is inside the emergency boundary, i.e, FE is robust
with respect to a failure of sensor 1. It is, however, not robust with respect
to a failure of sensor 2, since the projection on the kl axis is outside the

emergency region., Points in the shaded region are robust with respect to

failure of either sensor. For no k' ;E is robust with respect to failures of
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sensors 1 and 2, since the origin k1==k2==0 lies outside the emergency region,
2oint 3 also meets the nominal specification and is a good candidate for a

robust control system., Since the nominal boundary intersects the k, axis,

2
an alternative to the robust solution 3 is to eliminate the X, sensor and to
multiplex the x, sensor. This would maintain the nominal specifications under
a failure of one of the X, sensors. However, it requires failure detection
with at least three X, sensors. For robustness with respect to sensor failures
a dynamic feedback structure like in eqs. (24) and (25) is more advantageous.,
In Chapter 5 and [54], Franklin designs a flight control system with dynamic
feedback such that emergency conditions are robust with respect to an accelero-
meter or a gyro failure in different flight conditioans.

4.6. Other Features of X-Space Design

4.6.1. Input Constraints

Constraints of the type Iu(t)lSU for all t or |&(t)|56 for all

t can be indirectly treated in X space. For the regulator problem
lucey] = lk'xcey | = ix(ey!] (83)

with equality for the worst case of x(t) (e.g., x=ck for some c #0). Assuming
that all state variables have been normalized to their maximum value, the

norm HEH =V§F£, i.e., the distance from the origin in X space can be used as

a measure for Iu!. This provides a criterion for the selection of a gain from
the admissible set: Choose the point closest to the origin. Similarly

|&(t)| = lg'g(t)l = |_15'(§_-_131_<_')_:_<(t)| and ":5'(5\_-}_)_1_0)‘,‘ can be used as a measure

for Iﬁl.
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4,6,2. Short Wordlength Control Law Implementation

The feedback control law may be implemented approximately in a short

wordlength microprocessor as
u+du=(k'+8k") (x+A4x)~k'x+0k'x +k'ox. (84)

For small x the dominant term in Au is k'Ax, i.e. the gains should be not too
high. For large x the dominant term is Ak'x. Robustness with respect to Ak
is achieved by maintaining a distance Aki from a boundary in each direction

ki'
Example 4.9:

x(k+1)

Ax(k) + bu(k), A = b =

[~
I

= -[k; + dk  k,+4K]

Open loop eigenvalues 2z =2, Find k,,k, such that stability is achieved for

1,2 1’2

the following cases
a) maximum admissible Ak,
b) 4k=1,
¢) failure of sensor 1,
d) failure of sensor 2,

e) ki =k21+k§ minimal,

\ = &3 =
k' =p*E = [p, P, 1]

The vertices of the stability triangle ABC in the kl-kZ plane of .. 4.8 are

determined by the 3 pole placements of eq. (32): k:;.= f21 6], k}'s=[-l =147,
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Figure 4.8. Design boundaries for example 4.9.
a) maximally Ak robust
b) A'B'C' is robust to &k =1
¢) robust to failure of sensor 1
d) robust to failure of sensor 2

e) minimum fk'l solution
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‘== -
kC [-3 10].
a) This is the center of the largest square inside ABC with
sides parallel to the axis. Here k'=[~0.4545 -10.7272].

It admits Ak =1.4545 and places the eigenvalues at z, =0.132,

1
z, = 0.686.
b) The region for which stability is robust with respect to
Ak =1, is the triangle A'B'C' with sides parallel to those
of ABC, with a distance of the sides of 42 under +45°. Note
that this region does not include the deadbeat solution at
k! =e'A2 =[4 -8]. This is a warning that points with the
maximum distance from the stability boundary in the A-plane
need not be particularly robust.
¢) The region ¢ is robust with respect to a failure of sensor 1.
d) The region d is robust with respect to a failure of sensor 2.
e) Point E with Eé==[48/l3 ~-72/13] has the minimum distance
from the origin. This minimum norm solution puts the eigen-
values at sl’z==0.442ij0.897 on the unit circle. For stability

kl can be increased or k2 decreased by an arbitrarily small e,

4,7. Multi-Input Problems

4.7.1, Characteristic Parameter Assignment

In the single-input case it was convenient to have the canonical
parameter space ¢ as an intermediate step between the A-plane and X-space, It
allowed studying the shape of stability regions without reiference to 4

particular plant. By the linearity of k' =p*E linear properties in = ;pace
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were preserved in the X space. X and € space had the same dimension n and

the mapping was one to one. In the case of p inputs the feedback gain

matrix K has pxn free parameters. Thus 2 pxn dimensional parameter space

with the elements of K as coordinates is naturally defined. The question here

is whether there exists a pxn dimensional canonical parameter space ék,

which is linearly related to X but independent of the particular plant, Another

question is: If it exists, is there a simple relationship with the n-dimensional

¢ space, in which stability or nice stability is defined as before. The

answer to both questions is a conditional yes. Some results are available in

[56], which will be reformulated and used to design simple systems for robust-

ness with respect to actuator failures. Before the main result can be formu-

lated we have to make some additional assumptions and to introduce some notation,
In the single-input case the implicit assumption was that changes

in physical parameters do not cause changes in the order n of the system

(which is true for all cranes, aircraft , and other examples). In the generali-

zation to the multivariable case it is assumed here that the centrollability

structure, as defined by the Kronecker indices, is unchanged by physical

parameter variations. For a controllable system

the Kronecker indices =i i=1,2,...,p, are the smallest integers k such that

Ty T Ti.p g Where
- k, k
r. . = rank [B,A3... Ak lB,A b, ...ab.] i=1,2,...,p
i,k B:d3...4 BADy...2 by
(86)
o,k = Tp,k-1
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The Kronecker indices satisfy Hl-+%2-+...-+gp==n. A vector éKEi is called

regular if r, k==1-+ri_l,k, i.e. the regular vectors

2

wo-1
1

....é El
Mo -1

, a7 b, @87)

bo-1
P

b ,Ab

=1’=-1

are the first n linear independent columns of [g,é_@,ézg...]. By the defini-

o
tion (86) A& lhi is not regular and can be uniquely expressed as

o

O Moo=l xw i
LeeeA TRy 1B (88)

A, =-[B,AB...A " Bl2. -[A b

-1

where all elements of gi and Ei mulziplying nonregular vectors are zero, in
i = ! - = i = '
particular 8 [ei1°f' Bii-ll has aij 0 if " ;- By Popov's theorem on
invariants [10] the Kronecker indices . and the f-parameters Bi, i=1,2,...,p
L
constitute a complete set of independent invariants for (A,B) under all
transformations

= g‘lu (90)

fe.

In order to avoid the distinction between o~ and £-parameters in the

definition of a canonical parameter space first the PB-parameters are

A’

made zero by an input transformation, i.e. a modified system

$=AX+BMu=Ax+ 3u (91)
~nsidered with the '"mormalized input"
u=-Kx+I (92)

relacted to the original variables by

N “WOPG G IR

IO IR WY

P SV TR LN

1
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o
#
I
I=
Jome

]
=
=

—
* o OO spl
B
pp-1
0 1

(93)

o
H
K]

T(94)

This can be shown by putting the last term in eq. (88) on the left hand side

Then with _I~§=§§= [_E

1>

lw

O e O

'[E:ég cee B

A comparison with eq, (88) shows that now the B-parameters multiplying

(S
1=
A D

By

-~

A

i

2.1

do not appear in eq.

(95).

(95)

Ry Popov's theorem the 5-parameters remain zero under feedback,

T~ =1
the closed loop system with input r=M "r

¢ . . S
PSPPSR
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= @-BRx+Br=@-BRx+Br=Fx+3: (96)
H‘i,_
has no B-parameters and F Ei can be expressed as
My . TR
E'b =-[B,FB...E = Blp,. (97)

The n elements of P> i=1,2,...,p, i.2. nxp parameters will be used in the
following as coordinates of a canonical parameter space Gk, in which desired
closed system properties can be specified without reference to the particular
plant, with the only condition that the closed loop must have the same
Kronecker indices Wy as the open loop. In the single-input case B; =B i.e.
P consists of the n coefficients of the desired characteristic polynomial,

in the multi-input case the nxp elements of 2 "'Bp will be called charac-

teristic parameters, Note that

[ {-'
I kB xAB kA
0 1 kB
L~ ~ .~ k~
8,48 ... aB = (B, EE ... EBl |, o, . 98)
9 9 "1 _

Both sides may be truncated at any column of égg, always the second factor on
the rigut hand side is nonsingular and thus 5551 is regular if and only if
ékgi is regular. Due to the particular form of M in eq. (94) the same

relationship exists between é@ﬁi and 5591

M 0 o0

(3,48 ... a8 = (8,48 ... a%81 |0 H. : (99)
0 M
-

imadihasididd ot
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Thus in eq. (97) the regular vectors are in the same locations as in eq.

(96),

i.e. the list of regular vectors is the same as in eq. (87) with A replaced

by _F_=é-§_l_~( and Ei replaced by -Ei' Then eq. (97) may be rewritten as

[(2;,
H-ls 5 N Irli-l~ _ pp-l p
F l=-[hl,g§1...£ 21:92...::...F Ep] .12 (100)
| Fip_
- ' s o . .
where pij [pijo cee pijp.j-l] is a l"j vector. Now define the pxn coefficient

]
Bin »0 By
EA = . . (101)
L]
Rpl oeo Bpp
It generalizes p'= [po pn-l] to the multi-input case. The generalization
of px= [po T T 1] is the "characteristic matrix"
-T ' ' Y]
Py 1 P 0 soe p]_p 0
pl 0 pl ]. pl 0
. fr2l 2 2p
2‘& - . L) L] (102)
1
Bt O B 0 £pp '
Now eq. (100) for i=1,2...p may be written
“ ‘ -1 n -1~
"1 “Pr o, "1~ L = . . p b 1p!
[E gl...g _lgp]-—[_tgl..._k: _b_l:gz...::...g —p’=A
(103)

which also can be expressed as

CLaamaaas s

e

| STPPA
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~ bJ']_». ~ M ~
[by ... F 31532...::...31’%]23%0. (104)

e o

In the single-input case the characteristic polynomial is obtained from eq.
(104) by replacing the vector g_kEi in eq. (104) by )\k. In the same way in
the multi-input case a '"characteristic polynomial matrix" is defined as

"

It is related to the characteristic polynomial of F by

P(\) = det P (106)

A

as was shown in [56]. The main advantage over a direct calculation of the
det(AI-A+BK) with general elements kij is chat eq. (106) does not involve

A and B and is done only once for all systems with the same Kronecker indices.
The multilinear problem of solving eq. (106) for some characteristic coefficient
becomes a linear one if the n coefficients of one row of P, are expressed in
terms of the B> i=1,2,...,n and the remaining p x (n-1) free parameters of the

other rows of _P}\. We are now able to formulate

Theorem 5: A-BK has the characteristic matrix 2: if

K=MPyE (107)

where M 1s given by eq. (94) and

— — —. 7
E, | g;
E=1{. E, = el (108)
E -
P ela *

e. is the last row of the p. xn matrix Q. in
=i i i

SCRIVORTOUIR TR TSR
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Q
-1 '1 “'1_1 'r"p-l
-R_ = ép 3 §=[El.'._A— _b'l :22 ...::.l‘é RPIB (109)
o~
Proof: Follows from [56].
Example 4.10:
5 -1 2 0 1
x=]-2 -2 6 |x+|1 5| u=Ax+Bu. (110)
L4 -3 7 1 6
Find an output feedback
Ky 0 kg ]
u = X
ka1 0 Ky

if it exists, which places poles at sl=~1, s, ==2, s, =~

2 3

maximum Ikl
i
det[lo_l _132 égl]# 0, 1i.e. F1

For M we need the ] parameter

it is

o

Lo ' ! .
The controllability vectors e and e, are obtained from

=2, ¥

3 and minimizes the

2=1.




[b; Ab; ; bl "~ = =i+ v -
0 -1 1
o ' — s 1 ——
& 1 1 -
1
311_\_ -1 0 1
E = 'Wl=1 -1 -2 5 1 =D T Tl
L R
E'; 0 -1 1
L]
e, A 6 -1 1
2= ] L |
The characteristic matrix has the form
« P16 Py Y Pro O
EA - .
Prio Pai1 @ Py 1

It is related to the characteristic polynomial by

2
Pr1o*tP1115%s  Pipo

_ 2 3_ _
p(s) —po+pls+pzs + s~ = det p}\ det .

P10t Pp118 Pogg*

L—Cn

Use the coefficients of the second row as free parameters Y=p210,

& =-Py11> 304 € ="Py0

P, = YP120 " %Py10
Py =8Py P31+ Prg0 (111)
Py = Ppyp” ¢

Wwith eq. (l07) the output feedback condition results in




v

-y

v

81
k), 0
TR
22
P110 ~P120 = 2 (112)
e~-Y=1.

Substitute into eq. (1lll)
Py = (e-L)Pyy0 = €(2¥Pypq) = =2€ = Pip

Py = 0pyp0 =€y ¥ 2+ P1gg = 2-eppg t B+D)pyy,

Py = Py33 =€

The particular choice p120==0 leaves 6§ undetermined and po==-2€, p1.=2-ep111,
Py =Pj1176> and with P(s) = (s+1) (s+2)(s+3) = 6+lls+6$2+s3, € ==3, P111 = 3,
Pi1g=2> Y = =4,

The remaining four feedback gains are

ki1 Kia
= wr
K K ﬂEALT‘]. 713]
L21 23
= o oop p. . Ap . +5tp.. |
110 111 110 111 120 ;
| 0 1 L—y+§+6 v-0-e+l J
— (—
1 —5_] -2 6‘-§ =52 - 58 6 - 56‘—1
= | = LY
o | A o
1 0 1_1 LO+5 -IS_J 10+6 =& _}

|
& is chosen as -5.8 in order to minimize max‘.kij‘. Then

s

- iR
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4,7.2. Robustness of Multivariable Systems

In principle all concepts for the design of robust control systems
in X space carry over from the single-input to the multi-input case. However,
the X space now has dimension p xn, such that graphical methods in several
two-dimensional subspaces require many iterations and can become feasible only

with a good software for graphical displays and interactive design. General

results, which would give a clearer understanding of the multivariable X space,

are presently not available.

Changes of physical parameters can be tackled in the same way as
in the single-input case. Sensor failures now result in p coefficients of
one column of K becoming zero. Actuator failures could not be handled at
all with the siagle-input method. Here some insight into the geometry of the
problem and possible problem formulations can be gained from eq. (l07), as

will be illustrated by

Example 4.11:

rf _] 11 B l(k;}
x(ktl) =4 (k) + ] - Lo (113)
o ] RN IIO)

The state feedback u=Kx may have three configurations

a) nominal

I
l

k k..
g =] u 2
Ky kayl

PROSRNS
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b) failure of actuator 1

[—6 0
X =
k1 K2

c) failure of actuator 2

k11 kyp

0 0

I
P
Find K such that it places a double pole at z=0.4 and the eigenvalues in the
two failed cases are in the smallest possible circle in the family of circles

f'r of Fig. 4.1.

In eq. (LC7) M=1 and

- — -
. !pll L opp, 042 -1y
K=PE-= | 2 1]
- 0 1 1
| P21 P2 -1 Ly
-1 0
[ S— —
2
} l2p,, 20y, PLat it |
}2 -p,. "1 -p.q +
[Py = Pgy Py1 Py
| —
! 1tz P1y ?
P(z) = det | v, + (P +Py)2+ (Py1Pyy ~ P1yPyy)-
P21 Pao ,

In case a) P(a) = (z—0.~4+)2 =22-0.82+O.16. Use X==py15 2=-p,, as free
parameters, then pll='6-0.8 and P1s =P(f)/x. Eliminating « and & by k"l and

k22 glves

Y

(RN T ST W L

RIS S TP U

PN

. 4
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2
(k21 +2k22 +1.4)

k,,(k,;,k,,) =
11v721° 722 k21+k22+1

2k21 - 4k22 -1.6
(114)

kyp(kypakyn) = ~kyi(kygskyy) ~kyy = 2k,, = 3.2,

These two equations describe a two dimensional surface in the four dimensional
X space. All points on this surface give the desired pole placement.

The failed cases are single-input problems for which a circle in
z-plane maps into a triangle in the subspaces of the remaining gains., The
problem can then be described geometrically as follows: For a given circle
radius the two triangles are obtained, Now we are looking for a point in

the surface (l12) which has projections into the k -plane and the k

117512 217F22”
plane, which lie in the respective triangles. To check whether such a solution
exists we could find the regions in the surface (1125, which have such pro-
jections, and see whether the two regions overlap. It is more convenient
however, to use one of the planes, say the kll-klz-plane, where the triangle
is one of the regions and the other is obtained by reflecting the triangle
in the kzl-kzz-plane at the surface (112) into the kll-klz-plane. I1f there
exists an intersection, then the radius of the z-plane circle is reduced until
the set of admissible solutions shrinks to a point.

We begin with r=0.5. The two triangles are shown in Fig. 4.%9a and
b. The vertices D,E,F are now mapped by eq. (lll) into D',E',F' in the
kll-klz—plane. The sides of the figure D'E'F' are not straight lines, since
they have been reflected through a curved surface., However, it is easy to
check that there exists a set of admissible solutions between F' and C, thus r

may be reduced. Figure 4.9c shows the case r=0.4, where no solution exists,

M AaA el A
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Going to r=0.,41 as shown in Fig. 4.9d then results in the solution

0.278 0.522
K = L)
0.020 0.190

The following eigenvalue locations are obtained

nominal z 0.4

failure of actuator 1 0.8 on circle I

1,2 0.41
5 0.6+0.3445 on T

N
]

failure of actuator 2 z

0.41

both failures 2y 1 open loop unstable,
3

4.8. Conclusions

The design of control systems in the parameter space X of state

feedback gains has been studied. Conceptually this offers the following

advantages:

1‘

Robustness with respect to large parameter variations can

be achieved. It is possible to design the feedback such as

to maximize the admissible variations in known directions.
Robustness with respect to sensor and actuator failures can
be achieved, The feedback can be designed such that in the
considered failure situations at least sone emergency specifi-
cations are met or such that the deviation from the nominal
behavior is minimized.

The f{eedback can be designed such that for the worst case
initial conditions the maximal required control input

{
fu(t)x is minimized and thus saturation can be aveided.

N SR R )
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Figure 4.9.

Image of the circle T,

a) and

c) r

d) r

i

b) for r = 0.5 in two subspaces
0.4
0.41
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4, The feedback system can be designed for robustness with
respect to short wordlength implementation or other
inaccuracies of the feedback law.

5. Static output feedback or fixing some gains simplifies the
analysis since it reduces the number of free parameters.

It will of course give less favorable results.
6. Dynamic feedback can be tackled by the same methods, It is

particularly desirable in situations with sensor failures.

These conceptual advantages are apparent in situations with only two essential
parameters. Here it is general engineering practice to present and analyze
results in diagrams, showing boundaries, regions and their overlap, etc.
However, in most cases the boundary points have to be calculated point by
point in more or less involved computations., In this paper desirable dynamic
properties of control systems are specified in terms of regions in the eigen-
value (M) plane. A particularly simple pole placement algorithm is introduced
and used for mapping boundaries from the A-plane to the X space. The mapping
of boundaries poin:t by point becomes very simple. In fact all examples of
this paper were done by pocket calculator. This makes it promising to develop
software for computer-aided design with rapidly changing graphical displays
of boundaries in various subspaces.

Due to the simplicity of the mapping it was possible to obtain a
few general results on the shape of boundaries and stability regions in
% space, For the design of di;ital control systems a family of circular
boundaries in the z-plane can be used to characterize desirable dynamic

properties., Circles have particuvlarly nice mapping pruperties and the convex
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hull of their image in the X space is easily determined, For arbitrary order
systems, it is useful as a necessary condition for the existence of various
robust solutions, Further research will be necessary to obtain more general
results on the shape of boundaries, sufficient conditions, etc. also for
other than circular boundaries in A-plane. The development of good numerical
algorithms will depend on such insights into the geometry of the solution sets,
It was shown that already in very simple examples this set may be disconnected.
A systematic search inside the convex hull of the X space region may be
necessary.

In its present stage the design in X space is already a useful design
tool. It may be used for example in conjunction with the root locus method,
which visualizes the influence of one gain on the eigenvalue location. The
present method visualizes the influence of two gains on the eigenvalue loca-
tions. The use ot this tool has been shown in this paper by the example of a
crane, In Chapter 5, it will be used to design a dynamic controller for the
short period longitudinal mode of an F4-E aircraft with canards, which is
unstable in the subsonic flight conditions. A solution using two gyros and
one accelerometer was found which meets the nominal specifications for the
unfailed system or after a failure of any single sensor, and also meets the
emergency speclfications after failure of any two sensors, where these properties

pertain to four very different flight conditionms.
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CHAPTER 5

APPLICATION TO THE LONGITUDINAL CONTROL OF A FIGHTER AIRCRAFT

5.1. Introduction

The purpose of this chapter 1s to apply the parameter or K space
design procedure described in Chapter 4 to a realistic design problem. The
system to be considered is a third order model of the longitudinal axis of a

McDonnell-Douglas F4-E fitted with horizontal canards.

5.2. System Description and Design Objectives

5.2.1. Model formulation

Airframe dynamics. The example chosen to illustrate X-space design

is control of the longitudinal axis of a fighter aircraft. The complete
equations of motion describing the dynamics of the airplane are nonlinear

and too complex to be used in control law development. Standard procedure

is to linearize these equations about typical flight conditions, and then use
these linear system representations to design the control system. The

linearization decouples the dynamical equations into two separate sets of

equations called the longitudinal, and lateral-directional. Tvpically a

separate control system is designed for each set of equations. For fighter

4 aa g g e

aircraft two dominant modes describe the longitudinal rigid body motion. One

-
of these modes, called the phugoid mode, is usually very slow. It is easily ]
controlled by the pilot, and therefore is not included in the contreol law f}

1
design. The other mode, called the short period mode, is the mode that most ,1
1

effects the handling qualities of the aircraft, and is the only airframe

mode considered in this report. 1
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The state description of the short period mode depends on the

individual aircraft and flight condition. The aircraft chosen for this paper

was a special F4~E fitted with horizontal canards. Figure 5.1 shows the
F4-E flight envelope and those flight conditions for which linearized

aerodynamic data are available.

80
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Figure 5.1. Flight envelope and operating points [57].

A complete description of the aircraft including aero data is
given in [57]. One notable feature is that the uncontrolled short period
mode is unstable for all subsonic flight conditions. Table 5.1a lists the
uncontrolled short period eigenvalues for each of the four flight

conditions.
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Table 5.1la. Open Loop Short Period Eigenvalues

FC Mach Altitude Open Loop Short Period Eigenvalues

1 o5 5000' -3.07 1.23
2 .85 5000' -4.90 1.78
3 <9 35000' -1.87 .56
4 1.5 35000' -.87+34.3

Actuators. The two major control surfaces available for control
of the short period mode are the elevator position (Ge) and the canard
position (Gc); these are shown in Figure 5.2. Simplified models for the

canard and elevator actuators were used. The actuator state equation used was

§ = -aé + as_ (115)

om
where 8 is the actuator position, a is the actuator eigenvalue (time constant
or equivalent bandwidth) and Gcom is the commanded actuator position.
Sensors. Typical sensors which are used to control the pitch axis
are (for definitions see Figure 5.2):
1) 1Inertial sensors which measure pitch rate (q) and normal
acceleration (Nz).
2) Air data sensors which measure angle of attack (a) and dynamic
pressure.
3) Position sensors which measure the elewator and canard positions.
Only the pitch rate and normal acceleration are assumed to be available
for feedback. Air data sensors were not used due to their unreliability.

Position sensors, although reliable, would not be useful without an astimate

AJJAJ{
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Elevator(ﬁe)

_ V= velocity vector

° W= weight

ns angle of attack

6%,pitch angle

g=CZ pitch rate

NzZnormal acceleration at sensor(*)

Figure 5.2. Aircraft nomenclature.
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of the equilibrium (trim) surface position. This estimation was
undesirable. A failed sensor will be one which in the output is uncorrelated

with the input.

System state description. The aero data and equations of motion

given in [57] were transformed to a state space description resulting in the

following system representation for the airframe and actuators

] 3 1IF 1 r T
o al a2 a3 a4 o 0 0
q a a a a q 0 0
é% - 5 6 7 8 + ecom (116a)
§ 0 0 -a 0 § a 0 8
e e e e ccom
8 0 0 0 -a 8 0 a
L c- L. c_. L. ¢ L C-
[Nz] [ec c c c, |
e (116b)
| q ] _0 1 0 0 ]

where a,-ag and i ¢, depend on the flight condition and are listed in
Appendix I.

This two-input representation was reduced to a single input problem
by considering the canard command to be proportional to the elevator command.
A study was done in [57] to determine this proportionality constant, Kc’ for
minimum drag flight under a wide range of conditions. That minimum drag
value, Kc=-.7, was the value used in this paper. There is not much loss of
generality in this assumption of dependent inputs since the ratio of control
surface effectiveness (essentially aS/a7 since ay and a, are small) between
the canard and elevator does not change much as flight conditions change.

To study the effect of sensor failures it is easiest to have the

system equations written In sensor coordinates. Equations (116) were

—ttndd
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transformed to make the normal acceleration a state variable., Transforming
the system, using Kc=-.7, and assuming a =a, resulted in the following

system description.

o -1 - N - -
Nz all a12 a13 Fﬁ Fbl
d
3| @ ay; 8y, a4y, q |+ |0 |u (117a)
é 0 0 -a ) a
L. e. L - L e.j I
with output _
NzT
1 0 0
y = q . (117b)
0O 1 o
8
. e-

where Ge now represents the effective control position of the elevator and
canard, and "a" represents the effective bandwidth of both actuators. This
effective bandwidth was assumed to be 14 rad/sec. Appendix I gives a tabula-

tion of the a,,, b1 used.

i3

5.2.2. Design Objectives and Design Specifications

Using normal acceleration and/or pitch rate feedback, the basic
design objective is to design a continuous time, fixed gain controller which:
1) meets certain nominal performance requirements at all four flight condi-
tions when all sensors are available and 2) meets emergency performance
requirements after sensor failure. The specific requirements to be met are:

1) the controlled short period eigenvalues must be in the range

specified by military standards [58],

2) the remaining closed loop eigenvalues resulting from actuator and

controller dynamics should be in a specified region,

el it
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Eﬂ 3) time responses of the so called C; output to pilot step commands

should be acceptable in the sense of [57].

The region of allowable short period eigenvalue location is given in [58]
as a requirement on the range of damping and natural frequency for the short

period mode. For the short period mode described by

+ wz =0 (118)

s + ngpwsps sp

the restricted range of Csp and msp under normal operating conditions is

.35 < gsp <1.3 (119a)

w, < wsp < wy (119b)

and for emergency conditions is

.15 < csp (120a)

W, < wsp (120b)

where Wy Wy and w, depend on flight conditiom.
Table 5.2 lists the frequency range for each flight condition and
Figure 5.3 shows the region defined by equations (119). Since the short
period damping can be greater than 1, a single real eigenvalue is permitted
outside the circle of radius w,_ or inside the circle of radius W . As ]

b

discussed next, the single real eigenvalue region S > w, would overlap with

b
the permissible region for non-short period eigenvalues and thus make a
distinction between the two types of eigenvalues impossible. To prevent

this overlap, the simplified region shown in Figure 5.3 will be used as the

short period eigenvalue permissible region. Since all real pairs of eigen-

1
PSP U RS

values inside the simplified region result in a damping less than 1.3, all

eigenvalues in the simplified region meet military specifications.
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Table 5.2. Short Period Frequency Limits

Mach Altitude wa(rad/sec) wb(rad/sec) wc(rad/sec)

.5 5000' 2.02 7.23 1.53
.85 5000’ 3.50 12.6 2.65
.9 35000' 2.19 7.86 1.65
1.5 35000’ 3.29 11.8 2.49
[ Jw
) .35 . L z=. 35
b b
s Wa L/ ¥
Is1 o]
i
r r
Simplified
region

Figure 5.3. Allowable short period eigenvalue locationms.

As described in [57] this aircraft has several lightly damped
structural modes which were not modeled in this paper. The control bandwidth

should be less than the lowest structural frequency, which is 85 rad/sec, so
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the upper limit on all eigenvalues was set at 70 rad/sec. This is a high
limit, and in the design process an attempt will be made to lower this value.
The requirements on the non-short period eigenvalues (requirement 2) will be

that they lie in the region defined by

wo<w < 70 rad/sec (121)

with a minimum damping of .35 (see Figure 5.4). In the emergency situations
no distinction between eigenvalues will be made. Figure 5.5 shows the
required region for all eigenvalues under emergency conditions,

Well placed eigenvalues do not guarantee good time responses.
Requirement 3 will ensure well behaved transient response. The response of
most interest will be the C; response. As discussed in [57], c* is a linear

N

combination of normal accleration and pitch rate given by

* *
Cy = (Nzp + 12.43q)/Kc (122)

where Nzp is the normal acceleration at the pilot's location (same as Nz

for this plane) and the stationary value, Kc*, is used for normalization. The
C§ response to a pilot step command should fall in the region shown in

Figure 5.6.

5.3. Design Using Static Output Feedback

5.3.1. Robustness with Respect to Changing Flight Counditiouns

The first design objective will be to design a controller which
meets the nominal requirements at all flight conditions. We initially assume
a controller structure using only static, or unliltered, feedback of the two

states; normal acceleration, and pitch rate. Figure 5.7 shows the svstem




Figure 5.5. Constraint region for non-short period eigenvalues.
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Figure 5.5. Emergency eigenvalue constraint region. ;
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Figure 5.7. Structure with static output feedback.
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structure where equations describing the F4-E dynamics were given in
Section 5.2, and the pre-filter used to shape the step responses is the
same as in [57].

Computer programs using the algorithms of Chapter 4 were developed
to perform the mapping of the eigenvalue constraints given in Section 5.2.
Boundaries in the sz, kq plane were found for each flight condition. A
typical boundary (for flight condition 2), is shown in Figure 5.8a. For
gains in the region Rnom2 the closed loop eigenvalues will all be in the
region FnomZ’ which is shown in Figure 5.8b. Fach section of the K-space
boundary is described in Figure 5.8b.

The regions R were found by mapping the eigenvalue

noml_Rhom4

constraints for each flight condition (T r _The intersection of

noml nomd)'

these regions, R , is shown in Figure 5.9. For any gain chosen in R the
nom nom

ith flight condition will have closed loop eigenvalues in Fi, i=1,2,3,4.

Therefore, the requirement that the system be robust with respect to changing

fiight condition can be met by using static output feedback. Since Rnom does

not intersect either axis, no robustness with respect to either sensor failure

can be achieved by static output feedback.

5.3.2. Selection of a Gain in the Permissible Region

Any gain choice from Rnom would meet the nominal eigenvalue
requirements. Several alternative methods are available to aid in the
selection of a specific design point. One method could be analvsis of the
eigenvalue locations corresponding to different points in K-space as described

in [49]. Every point in the k,\J kq plane represents a set of closed loop

z’

eigenvalues for each flight condition. Using the mapping algorithms of
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s-plane

. d ] f— 0o,
-80 -607 -20
For sz, k_on -
a'-p! the short period eigenvalues are on a-b (w2=3.5) f
b'-c!’ the short period eigenvalues are on b-c (3,=.35) ;f
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Chapter 4 families of constant damping, constant frequency and single real
root curves may be obtained. Figure 5.10 shows such families for flight
condition 2.

Another method would be to decrease the allowable eigenvalue regions
and thereby decrease the size of R . Figure 5.11 shows the region R(l)

nom nom

where the high frequency limit has been lowered from 70 to 50 rad/sec, the
minimum damping has been increased to .5, and the minimum short period

frequency has been increased by fifty percent for each flight condition. Any

gain chosen from R(l)

nom would meet these tighter requirements at all four

flight conditions.

A further technique is to use gains which will require smaller
control inputs. In [34] Ackermann shows for systems where the state variables
have been normalized to their maximum values, the distance from the origin in

K-space can be used as a measure of the maximum control needed. Where
lu = J'x| < kh-Hix. (123)

Even though Nz and q have not been normalized to their maxima, this principle
can easily be demonstrated. For gains 815 855 83 of Figure 5.11, the Ge and
C; responses to a step command for flight condition 1 are shown in Figure 5.12.
As seen from the figure, the control (essentially Ge) is less for the smaller
gains, as is the control rates.

Using the above methods as guides, point Q1 of Figures 5.8-5.10
was selected as a trial design point. Using these trial gains, the step
responses shown in Figures 5.13a,b were obtained. The C; responses are seen

to be well within the required boundaries for all flight conditions.

Table 5.3 lists the closed loop eigenvalue locations using the gains of point
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Ql’ The notation (;,mn) refers to the damping and natural frequency of the
complex pair of eigenvalues. All eigenvalues are well within the limitations

and point Q1 appears to be a good choice for the controller gains.

Table 5.3. Closed Loop Eigenvalues sz=-.115 kq=-—.8 (point Ql)

F.C. Mach Altitude Closed Loop Eigenvalues

1 .5 5000' (.94, 4.68) -19.31
2 .85 5000' (.61, 9.18) -37,29
3 .9 35000’ (.79, 4.63) =-17.78
4 1.5 35000 (.55, 8.11) -27.04

5.3.3. Robustness with Respect to Sensor Failure

An additional method to help choose a final gain from Rnom would
be to consider only those gains which will meet the emergency specifications
after sensor failure. To determine these gains the emergency eigenvalue
regions were mapped into the KNz’ kq plane for each flight condition. The
intersection of these four regions, Rem, is shown in Figure 5.14 along with
the region Rnom redrawn from Figure 5.9.

For the controller structure of Figure 5.7, failure of either
sensor results in the corresponding gain going to zero. Since Rem does not
intersect either axis, there is no gain choice which is robust with respect
to failure of either sensor. Additional sensors or dynamic feedback are
therefore needed to meet the requirement that the system meet the emergency

eigenvalue requirements after sensor failure.
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For a controller with m identical sensors with summed outputs, a
sensor failure reduces the total feedback gain by only a fraction ((m~-1)/m).
For the controller structure shown in Figure 5.15 (m=2), any sz,_kq chosen
from the region R of Figure 5.16 will for all flight conditions:

1) meet the emergency requirements after failure of any single sensor;

2) meet the emergency requirements after the combined failure of an
accelerometer and gyro, and
3) meet the nominal eigenvalue requirements when no sensor has failed.
After an accelerometer failure the Nz feedback is havled. For design point
Ql’ shown again in Figure 5.16, this failure would result in point A.
Similarly a single gyro failure would result in point B. A combined failure

of an accelerometer and a gyro would result in point C.

5.4. Design Using Dynamic Qutput Feedback

5.4.1. Search for Filters

As shown in Section 5.3, a controller using static output feedback

requires two sensors to meet the nominal specifications, and four sensors to
meet the emergency specifications after failure of any single sensor. The use 1
of dynamic feedback of the outputs may reduce the minimum number of sensors.
For example, if an estimate of the normal acceleration was obtained from the
gyro signal, the accelerometer may no longer be necessarv. A preliminary 4
provlem is to find a candidate dvnamic feedback structure.

At first it may seem all that need be done is to use a Luenberger
observer to construct these estimates. Figure 5.17 shows how an observer

might be implemented. Now, when the pitch gvro fails, and the dashed branch )

L.t s
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Figure 5.15. Output feedback with m=2.
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* OBSERVER

— F4-E

Figure 5.17, Possible observer structure.

is no longer available, the estimate ﬁ still remains. There are two serious
problems with this method. First, the system dynamics change dramatically
with flight condition and finding a non-adaptive observer that gives reason-
able estimates of q and Nz would be difficult, possibly impossible, to find.
As seen from the data in Appendix I the control effectiveness, essentially the
open loop gain, changes by a factor of three with changing flight condition,
and the open loop eigenvalues vary as shown in Table 5.1.

The second undesirable feature is when one sensor fails, the
observer connected to it still is driven by the control u. Therefore the

observer still has an effect on the closed loop characteristic equation. Even

et
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for adaptive observers which closely match the system, this effect would
complicate the design since the separation principle would no longer hold
after sensor failure. For these reasons observer structures were not
considered.

In [48] G. Kreisselmeier discusses the use of inverse filters for
robust control, which are applicable to minimum phase systems. Figure 5.18

shows the structure of the controller.

N &
e N
| |
Nz 1 |
d,@ | 1 ™ ] g ;
l D I -+
JQ 3 — kz
| I
L Fi:E —_— — — _J ___g ™ K3 i

v % 2 r +
N = .'(aT(S -+ als - Zo)

ul .

No = Xg(S + Zy) PETT ER T RS TS,

Figure 5.18. Structure of the inverse filter.

If the filter elements N, and ﬁ(

N are chosen equal to N

and NO’ the wvariables
~

) N

ﬁz, g would be estimates of Nz and q. For this case by choosing

R S SR Y ¢
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-

:C ky = kg =k /2 (124)
3

: ky = K, = k /2 (125)
}

the feedback is the same as that shown in Figure 5.15. Since NN and NQ change
with flight condition a non-adaptive controller will not generate true
estimates of Nz and q, but only signals which hopefully are closely enough
related to Nz and q in magnitude and phase to help. If as flight condition
changes, KN/KQ and the roots of NN and NQ remain close, the inverse filter

idea may succeed. Table 5.4 lists the critical values,

Table 5.4. Open Loop Zeros and Gain Ratio

Mach Altitude q-Zero Nz-Zeros _ KN/KQ
.5 5000 - .884 -.542+35.33 .527
.85 5000' -1.57 -.929+39.12 .536
.9 35000' - .637 -.392+j5.67 .537

1.5 35000 - .826 -.481+38.05 577

Averaged values - .98 0.586 j7.04 .543

The averaged values were used to construct two filters

~

4§ _ _1.84(s+.98)

3 5 Filter 1 1
N2 5 41.172s + 49.9 ]

o
Sz 2 4 1.172s + 49.9 ]
Ne | : o Filter 2

q 1.84(s+ .98)(s + 10)

where the pole at -10 was added to make Filter 2 realizable.
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The poles of Filter 1 are only slightly damped, and do not cancel
well with the system zeros. When it was tried, highly oscillatory step

responses resulted and this filter was discarded. When Filter 2 was imple-

mented, reasonable step responses resulted using typical gains chosen with the
aid of the results from subsection 5.3.1. This filter was retained for
further investigations. The pole at -.98 is weakly controllable since
essentially it is cancelled with the pitch rate zero. The system eigenvalue
resulting from this pole will be exempt from the eigenvalue requirements gives
in Section 5.2. The system time responses will give a measure as to the
validity of this.

The system of Figure 5.19 was used to study different types of
dynamic feedback of Nz. Several filters were tried. One that appeared

promising was

7
n]
i

]
1

=4

(3]

Figure 5.19. Acceleration feedback only.
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Nz s+15 ° (126)

As discussed in [59) Nz is a close approximation to a which, if used as a
feedback signal, can increase the short period damping. For low frequencies
this filter acts as a differentiator.

Figure 5.20 shows the structure of the controller to be investigated,

which may be represented in state form as

-Nz-l _a a 0 0 0 A FN ] —b )
11 %12 %13 z 1
q ay, 3,5 353 0 0 0 q 0
d Gc 0 0 =14 0 0 0 é 14
I = €1+ u=Ax+bu (127a)
Wl 0 21.79 0 0 -9.9 0 Wl 0
W2 0 -5.331 0 1 -10.98 0 W2 0
w3 1 0 0 0 0 -15 W3 0
L p - ] - - L

u = -(k1 k, k, k,) X. (127b)

5.4.2. Dvnamic Feedback of Pitch Rate

To check if the design specifications can be met using only pitch

rate feedback, the system of Figure 5.20 was used with kl and k4 both zero.

Each nominal (emergency) eigenvalue region was mapped into the k3. k2 plane.

The intersection of the four regions, R (R }, is shown in Figure 5.21.
nomq = emq

The nominal eigenvalue specifications can be met bv choosing any gain set

Aas o -
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Figure 5,20. Structure of controller using dynamic output feedback.

from Rnomq' Similarly the emergency specifications can be met by use of any
gains in Remq'
Gyro failure now corresponds to a simultaneous reduction of k2 and

k3. For a system using m parallel gyros with identical feedback gains, the

failure of f gyros reduces both k2 and k_, by a factor (n-f)/m. For m=2 and

3

f=1, any gain in R,, of Figure 5.22 will meet the nominal specifications for

21

the unfailed system and ualso meet the emergency specifications after failure

of either gyro. Similarly for m=3, f=1 or 2 anv gain in R32 will meet the
nominal specifications without failure and still meet the emergencv specifica-
tinns after anv two sensor failures. This is an especiallv nice result since 4

reliability criteria often stipulate that the control system be capable of
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Figure 5.21. The regions R and R
emq

nomq '




121

RZ 1 ta~b~c

Figure 5.22. The regions R?.l and R3,,.
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handling a failure of any two sensors. Specific eigenvalue locations and

typical C§ responses are shown in the last section of this chapter.

5.4.3. Dynamic Feedback of Normal Acceleration

The system of Figure 5.19 was studied using the filter of equation
(126) . The nominal eigenvalue regions were mapped into the kl, k4 plane.
There was no intersection of these regions. Thus, for the controller structure
of Figure 5.20 the gyro is necessary. The intersection of the emergency

regions Re is shown in Figure 5.23. Any gain chosen from RemNz will meet

mN2

the emergency specifications at all flight conditionms.
K, x19

—Bﬁ -3.38 ~8.38 ~3.34 -3.32 -2.38
| [ 1 I 1 1 1 ] | -3.959

Ak

PR

Y PN

Figure 5.23. The region RemNZ
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5.4.4. Dynamic Feedback of Both Outputs

Now the total system of Figure 5.20 wili be considered and the
complete regions in K-space will be four dimensional. First the system using
a single gyro and a single accelerometer will be considered.

For the system to be robust with respect to either sensor failure,

k2 and k3 should lie in the region Remq of Figure 5.24 (partially shown in

Figure 5.21), and kl’ k, should lie in the region Re of Figure 5.23. Since

4

graphical representations are limited to two dimensional subspaces of K-space,

mNz

two of the four gains will have to be at least temporarily fixed. As kl and

the closed loop eigenvalues do not move

1

k, range throughout the region Re

A

much. It is therefore natural to select k1 and k4 as the gains to be fixed.

mNz

They were fixed as

(k,, k,) = (-.034, -.1) (128)

1’ 4)

designated Q2 in Figure 5.23. There are two free gains to be determined, k2

k

and k,. The four dimensional problem has been reduced to looking in the k3, 2

3

plane for a solution.

As before, the nominal eigenvalue boundaries, T ., are mapped

nomi

into the k3, kz plane using the algorithms of Chapter 4. A typical mapping

is shown in Appendix II. Figure 5.23 shows the intersection of all four

regions, labeled R . For any k,, k, chosen from R of Figure 5.24 the
nom 2 nom

3

nominal eigenvalue requirements will be met at all flight conditions. Since

b P S S S

of Figure 5.23, the emergency requirements are

k,, k, were chosen from R
1 4 e

met after gyro failure. If kz, k

mNz

are also chosen from Remq the system will

3

also be robust with respect to accelerometer failure. All gains in the 1

region R of Figure 5.24 meet the above requirements for k. and kA fixed as in

1

equation (123).
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Figure 5.24. The regions R, Rnom, and Remq.
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5.4.5. Dynamic Feedback Design Summary

The eigenvalue requirements for the nominal and emergency conditions

F! can be met with one accelerometer and one gyro, or with two gyros. With the
assumed filter structure the gyro is necessary. Step responses were obtained

E for several robust gain combinations. The gains chosen were based on the

f!l parameter plane, tightening constraints and minimal control magnitude

techniques discusses in subsection 5.3.2. The responses behaved as antici-
' pated with the exception of some responses for flight condition 2. For this
k‘ flight condition the pitch rate zero was the farthest from the '"cancelling"
! pole in the Nz filter (see Table 5a). Figure 5.25 shows typical C§ responses

at flight condition 2 using:

1) gains Ql from Chapter 4, sz = -,115 k2 = -.8,
2) gains Q2 kl’ k2, k3, k4 = (-.034, -1.5, -1, ~-.1),
3) gains (0, -1.5, -1.0) (no accelerometer).

The filter pole at -.98 was exempted from the eigenvalue constraints under the

assumption that it would have little effect on time response. As seen in

Figure 5.25 the more acceleration feedback (and less use of ﬁz), the better -]
this assumption is. An accelerometer will therefore be included in the trial
design point.

To ensure the system is robust with respect to any two sensor
failures, two gyros will also be included. The gains chosen were those repre-
sented above bv point Q2 shown in Figures 5.5-5.8. The final configuration
is shown in Figure 53.26. Figures 5. a,b show the response to pilot step
commands for the unfailed svstem. The C; responses are well within the
required boundaries at all flight conditions. Table 5.5 lists the eigenvalue

locations for the unfailed svstem and aiter all possible combinations of sensor

. | e
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Figure 5.25. CN responses for flight condition 2.
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Table 5.5. Eigenvalues for System with Gains Q;

Flight No All Sensors One Gyro
Condition Failures Failed Failed
-.89 1.23 -.89
(.64, 4.85) -.98 (.52, 4.29)
1 (.78, 12.9) -10.0 (.89, 9.88)
-27.6 -14.0 ~31.76
-15.0
-1.43 1.78 ~1.35
(.84, 5.66) -.98 (.94, 6.28)
2 (.66, 15.5) -10.0 (.53, 10.3)
-48.13 -14.0 ~55.5
-15.0
-.67 .56 ~-.70
(.61, 4.98) -.98 (.49, 4.4)
3 (.79, 12.3) -10.0 (.9, 9.76)
-26.5 -14.0 ~30.1
-15.0
-.88 -.98 ~.91
(.77, 6.4) (.20, 4.4) (.91, 7.84)
4 (.66, 13.2) -10.0 (.45, 8.33)
-37.1 -14.0 ~42.5
-15.0
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Table 5.5 (continued)
Flight Accel. Accel. and Two Gyros
Condition Failed Gyro Failed Failed
-.87 -.84 -.98
(.65, 4.38) (.59, 3.07) (.80, 1.77)
1 -15.0 -15.0 -5.78
(.56, 18.1) (.82, 13.7) -10.0
-35.33
-1.62 -1.81 -.98
(.72, 4.62) (.66, 3.83) -3.54
2 -15.0 -15.0 (.27, 6.73)
(.35, 28.3) (.59, 17.8) -10.0
-61.43
-.62 .59 -.98
(.62, 4.46) (.51, 3.23) (.43, 2.34)
3 -15.0 -15.0 -6.44
(.60, 16.9) (.85, 13.2) -10.0
-33.27
-.86 -.89 -.98
(.68, 5.26) (.53, 5.56) (.16, 6.27)
4 -15.0 -15.0 -5.35
(.42, 22.3) (.69, 14.4) -10.0
-46.98

*
The notation (Z,w ) refers to the damping and natural

frequency of a comple pair of eigenvalues.
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failure. All eigenvalues, of course, are in the required regions. Figures
5.28a,b,c show C; responses for all possible sensor failures. In these
figures the normalizing factor (Kc* of equation (122)) was taken to be the

value of C* at 3 seconds, which is sufficiently close to the stationary value

for the closed loop responses and finite for the unstable open loop responses.

5.5. Summary and Conclusions

A fixed gain controller has been designed for the short period mode
of a F4-E aircraft which is destabilized by horizontal canards. The
uncontrolled mode is unstable at all subsonic flight conditions and insuf-
ficiently damped in supersonic flight. Therefore, the control system is
necessary at all flight conditions in order to achieve handling qualities as
specified by the military requirements. The problem of sensor failures is
usually solved by use of redundant sensors and failure detection. 1In this
paper controller schemes not requiring failure detection were studied. The
control system was designed using graphical techniques based on the K-space
methods of Chapter 4. The main feature of this graphical design method is the
ability to determine the effect of two controller parameters on the systeo..
eigenvalues. First the unfailed system using one gyro and one accelerometer
was studied. This is a third order system with the two free parameters being
the two feedback gains. The set of admissible gains was determined for which
the nominal requirements are met at all flight conditions. No gains from this
set are robust with respect to either sensor failure. 1If both sensors are
paralleled by an identical sensor, the system can be made robust with respect

to any single sensor failure, corresponding to a fiftv percent gain recuctiocn.
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{ In order to reduce the number of sensors needed to three and to
E achieve robustness for double sensor failures, various dynamic feedback con-
i! figurations were studied. In order to avoid the increased dimensionality of
a general dynamic feedback configuration, preliminary studies were made to
find good candidates for two filters, one for each input, such that after

failure of either sensor there reamin two independent variables for feedback.

Using the most promising configuration, it turned out that without zgyros omnly
the emergency specifications could be met. The gains for the accelerometer and
its filter were thus fixed to guarantee this property. In the plane of the two
remaining gains for the gyro and its filter, the set of admissible solutions
for both the nominal and emergency specifications was determined. A solution
using two paralleled gyros and one accelerometer was found which met the
nominal specifications with no failure or a failure of any single sensor, and
met the emergency specifications after failure of any two sensors. These
robustness properties pertain to all flight conditions.

Like all graphical methods this design technique is very intuitive

for two dimensional problems, but not as well suited for higher dimensional

problems, where the dimension here refers to the number of controller para- '
meters being considered in a particular design step. To make the problem

tractable, the designer has to break the problem into a series of two dimensional
problems by fixing the additional parameters. While in this study the proper '
sequence was clear, for higher dimensional problems it will ir general be more
difficult. The multi-input and general dvnamic feedback problems are particu-~
larly difficult because of the increased dimensionalitv. As seen from the
results of this Chapter, however, h-space techniques are useful tools in the

design of control systems.

- - - - ———a PRI e 3
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r
(ﬂ CHAPTER 6

Dl s

AN OPTIMIZATION TECHNIQUE FOR ROBUST CONTROL SYSTEM DESIGN

ey

6.1. Introduction

This chapter formulates an alternative design technique for the
control of systems which are subject to large, structured perturbations. The
problem formulation is the same as that of Chapter 4. It is assumed that a
finite number of operating points can be used to accurately characterize the
perturbations. Design objectives and constraints are modeled as constraints
on the locations of the closed loop eigenvalues in the complex plane. The
objective is to choose a fixed gain control system which satisfies the
constraints on the pole locations.

The approach of this chapter is to use a quadratic cost functional
to represent trade-offs between possible design points. The problem is refor-
mulated as an optimization problem over the free parameters of the control
system. This optimization is then solved using an augmented Lagrangian

approach.

The outline of this chapter is as follows. 1In Section 6.2, a precise
mathematical formulation of the problem is given. Section 6.3 discusses the
nonlinear programming method which was used to solve the problem. Section 6.4
derives the gradients which are necessary to solve the problem. In Section
6.5, a second order numerical example is presented. The purpose of presenting
this example is to discuss some of the problems involved in implementing this

method. Finally, this approach to controller design is applied to the problem

considered in Chapter 5 of designing a fixed gain controller for the linearized
longitudinal flight dynamics of an F4 aircraft. The resulting design is compared

to the corresponding design of Chapter 5.




6.2. The Problem and Its Reformulation

The purpose of this section is to present a precise mathematical
formulation of the problem discussed in the Introduction of this thesis and
then to reformulate the problem in a form that is computationally easier to
work with. As mentioned in the previous section, this chapter deals with the
froblem of using output feedback to control a fixed structure system. The
design problem is to choose the constant feedback gains which are best with
respect to some cost function such that the closed loop system satisfies
certain design specifications. It is assumed that these design specifications
can be represented most naturally as regions in the complex plane where the
eigenvalues of the closed loop system must be located. The system is also
assumed to be linear time invariant.

The precise problem formulation is as follows:

min J = HZE{f [xT(t)Qx(t)4-uT(t)Ru(t)]dt} (129)
kes o)
subject to

%(t) = Ax(t) + Bu(t); x(ty) = X, (130)
E{xo} = 0; E{xoxg} = X,

y(t) = Cx(t) (131)
u(t) = -Ky(t) (132)
g, (M) <0 i=1,...,¥ (133)
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where lc_(t)eRn, u(t)GRm, and y(t)eRp. S is the space of permissible feed-
back gains. The expectation of the integral is used so that the cost, J, is
independent of any particular initial state of the system, but depends instead

on an average initial condition of all the possible initial states. Q and R

are nonnegative definite constant matrices chosen so that given some
predetermined criteria, by minimizing J, one is improving the closed loop
behavior of the system. For example, if Q is the zero matrix and R is the
identity, J represents the total energy used to control the system. By
minimizing J, one is minimizing the total energy used. The functions, gi(l),
represent constraints on the location of the eigenvalues, A, of the closed

loop system in the complex plane.

The problem (129)-(133) looks computationally difficult to salve;

however, it can be reformulated as follows:

min J = 'ntr{M(k)P} (134)
kes
subject to
siQ) <0 i=1,...,N (135)
where
S = {k/(A-BKC) is asymptotically stable} (136)
M(k) = Q + CTK'RKC (137)
A(k) = a- BKC (138)
X, = E{x(0)x(0)} (139)
ier + i) = X . (140)

Here ? is a constant positive definite matrix; k is a vector comprised oi the

elements of the matrix K; x(0) Is the inirial state of the svstem; and A(k) is
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the closed loop system for a given k. Given this formulation, the cost J is
easily found. To solve for J directly from (129), one would first have to
calculate x(t) for each k; whereas to solve (134), one has to solve the Lyapunov
equation (140) for each k and then perform a few simple matrix operations.
The derivation of (134)-(140) is a direct consequence of the results in [60].
Problem (134)-(140) is a mathematical representation of the problem
(described in the introduction of this chapter) of choosing constant output
feedback gains for a linear time invariant system subject to certain design
criteria which are represented by a cost function and comnstraints on the
locations of eigenvalues in the complex plane. The question of how to solve
the problem (134)-(140) remains. Problem (134)-(140) is a nonlinear constrained
minimization over a finite dimensional space. The next section will discuss

methods of solving such a problem.

6.3. Nonlinear Programming Solution Procedure

There are several wavs to solve a nonlinear problem of the form

(134)-(140). As stated previously, the basic problem is

min J(k) (141)
kes
subject to
gi(E) <0 i=1,...,N (142)

where the exact form of the cost Zunction is defined explicitly bv eguaticns
(134), (139), and (140) in Section 6.2. Iwo of the most common

metnods of solving a problem of this type are penalty function and Lagrange
multicliar mechods [4]l]. Each of these methods has certain protlams (t2 be

descrived bzlow) which are inherant co the method. However, bv using 2a
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»(f combination of both methods, these problems can be avoided and a better
approximation to the solution for (141)-(142) can be obtained [62].

In its simplest form the Lagrange multiplier method solves the

following problem [61]

max ¢ (d) (143)
subject to

d; >0 i=1,...,N (144)
where d€ RN and

p(d) = E;g J(k) + igldigi(g). (145)

This problem is often easier to solve since the nonlinear comstraints, gi(g),
have been revlaced by simple linear ones. The problem (143)-(144) is the dual
problem of problem (141)-(142). The duality theorem states that as long as
¢(d) > -=» for some positive di's and J(k) <= for some k€S, the solution to
(143)-(144) is less than or equal to the solution to (141)-(142). When the
solution to ( 143)-(144) is strictly less than the solution to (141)-(142), a

duality gap exists [61]. For convex functions with convex constraints, this

difficultv does not occur. The solution to (143)-(144) is also the solution

for (141)-(142). However, for a general function, J(k), a duality gap may

exist so that the solucion to (143)-(144) is a lower bound on the solution to )

(141)~-(142), rather than the minimum [61]. i
On the nther nand, exterior penalty functions solve the problem 1
{151:
min J(k) + cH(k) (146)
€35 1

. . . ; . . m
wnere ¢ is some positive constant, S, is the region in R where all the

1
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constraints, (142), are satisfied, and H(k) is a functional with these

properties:
H(k) > 0 for all keR" (147)
H(k) is continuous (148)

H(k) = 0 <=> k€S (149)

1

As long as k€S H(k) =0, so problems (141)-(142) and (146) are identical.

1’
When k is outside Sl, the function J(k) +cH(k) is large. As c becomes large,
the minimum of J(k) + cH(k) approaches Sl. The most common penalty function
is
N 2
H(k) = £ max(0,g.(k)]". (150)
- i=1 1=
for this function, the value of H(k) is the sum of the squares of the
distances by which each constraint is violated, so the penalty term increases
rapidly when the distance k is outside Sl' The advantage of this method is
that problem (146) is an unconstrained minimization problem which is often
easier to solve than problem (141)-(142). The disadvantage of this approach
ig that to obtain a good approximation to problem (141)-(142), ¢ must become
large. However, as c approaches infinity, the matrix of second partial
derivatives of J(k) + cH(k) (the Hessian) becomes increasingly ill
conditioned. Many algorithms for unconstrained minimization depend on
either the Hessian or an approximation of the Hessian to find the minimum.
1Z the Hessian is ill-conditioned, these algorithms will converge verw slowly
fol;.
3y combining penalty Zunction methods with Lagrange multipliier

methods, cne can eliminate the duazlity zap and use a smaller value of ¢, thus
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improving the conditioning of the Hessian at the solution [62]. Using the

penalty function H(k), in (150), consider the problem:

min J(k) + cH(k) (151)
kes

subject to
g; (k) <0 i=1,...,N. (152)

Given the properties of H(k), problem (151)-(152) is equivalent to (141)-(142).

The dual of problem (151)-(152) is

max gc(g-) (153)
subject to

d, 20 i=1,...,N (154)

i
where

N 1
d) = inf{J(k) +cB(k)+ I d.g.(k)}. 155)
g.(d ik W ek (

Theorem l: There exists a c€R with 0<c <= such that the solution to problem
(153)-(154) is also the solution to problem (151)-(152).
Proof: See Bertsekas ([63].
Theorem 1 implies there is no duality gap for problems (151)-(152) and (153)-
(154). Moreover, since the value of ¢ needed to solve this problem exactly
is finite, the structure of the Hessian is more favorable for solving the
oroblem.

Bertsekas [64] discusses a variation of problems (151)-(152) and
(153)-(159) and suggests a verv straightforward wav to solve the maximization

cver d. He suggests solving the problem

max gc(g) (156)

adad oa ol .

ISR

Aadad bkl




143

subject to

d. 20 i=1,...,N (157)
1
where
(4,5 = 1nf{I(0) +=2 3 (max[0,d. +c'g, (k) ]}2-a2]} (158)
gc Uy LES X 2¢ ' 1=1 ¥4, (o] 81 X i .

For the case where the ith constraint is violated, the corresponding term in

the summation is

' 2
4,8,(1) + ¢'/2 g5 (1) (159)

wnich is identical to the corresponding term in (153) for c=c'/2 and H(k) as

defined in (150). For the case where the ith constraint is satisfied, but

]
di + c gi(E) > 0 (160)
equation (139) also applies; and, when
di + c'gi(g) <0 R (161)

the corresponding term in the summation is

- 5er 45 (162)
Bertsekas nas shown that the solution to (136)-(157) is equivalent to that of
problem (141)~(147) for all values of c' greater than some lower bound ¢ (¢
exists and is finite).
One can solve the proolem (156)-(157) iteratively, viewing the

iteration over d as a fixed stepsize gradient problem [64]. The partial

of g (d,<) with respect to di is
PREE
3g_(d.x) ' s . 4
5a = ma:t[—di/c ’ gl(i).' LT a, N (163)

3
-

Hence the gradient of g _(d,x) with respect to d is the vector of these
AEX a

sartials. The appropriate updats of d is

J-1
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44 = 4; +c'Veg (d,k). (164)
For J(k) and gi(g) convex, Bertsekas has shown that his method has demon-
strated global convergence for a wide range of step sizes. The main advan-
tages of using this method is that it combines the advantages of both penalty
function and Lagrange multiplier methods and that the iterative method to
solve the maximization over d is very simple.

There remains the problem of solving the minimization over k for a
fixed d. This problem can be solved using a variable metric algorithm [65].
each iteration of the routine the user must supply the value of the function
to bz minimized and its gradient. From this information, the routine builds
up an approximation to the inverse Hessian which improves as the routine
gathers information from more points.

To solve for gc(g,g) in (158) at each iteration, one must solve
for J(k) and gi(E)’ i=1,...,N. For problem (134)-(140) from Section 2, J(k)
can be solved using (134) and (140). The constraints gi(A(E)) are chosen by
the designer and thus are also readily available. The gradients are also
needed at each iteration. Taking Fhe partials of gc(g,g) in (158) with

respect to k,

g (d,k)  3J3(K) 3g. (k)

= : 1
31‘,-_ 3ki + max[0, di+C/gi(‘k‘)] ——Bki . (165)

Thus to solve problem (155), the gradient of the constraints and of the cost
with respect to k must be provided. Section 6.4 discusses the computations

required to solve for TkJ(E) and ng(E).

PP G U WA
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6.4. Cost and Constraint Gradient Calculations

As described in Section 3 our approach to the solution of problem (134)-
(140) is to solve the equivalent problem (156)-(158) iteratively. To solve
the minimization over k, for a fixed d, the gradient of J(k) with respect to
k and the gradient of gi(lﬁk)) with respect to k must be computed. Using
linear operator theory, one can derive a fairly simple expression for the
gradient of J(k). Using eigenvalue sensitivity theory, one can derive an
expression for the gradients of the constraints with respect to k [66].

The gradient of J(k) with respect to K is as follows:

Theorem 2: VKJ(E) = (RKCP—BTZP)CT
where P and I are solutions of

s+ A + M) =0
(166)

AP+PS.T+XO 0

and X and M(k) are defined in (138) and (137) respectively.

Proof: TFollows directly from [60].

VKJ(E) is found by rearranging VKJ(E) (k is a vector of the elements of the

To compute the gradient of the constraints with respect to K,
one must compute the gradient of the eigenvalues with respect to k. After
findinz the latter, one can use the rules of implicit differentiation to

find the former. Consider equation (167).

W (A=3I)v = 0 (167)

: - b — " “ . & - . - - .
(167) Is =Zvrue. Whea the rracnet differeatial of a Iunccoion
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2

a
§F(k,0k) = == F(k+esk)|__,- (168)

The Fréchet differential (168) can also be written in terms of an innmer

product as

SF(k,0Kk) = (VF(k),aK (169)

where T
(VF(E),AE) = cr{VF (E)AE}. (170)

Take the Fréchet differential of both sides of (167)

swl(A-AI)v + v (A-AI)8v + wl(SA-6AI)v = 0. (171)

. T , . ,
Again since W' and v are eigenvectors, the first two terms are identically
zero, thus

ETGAX = £T5~X- (172)

Since 8\ is a scalar,

sxe'y = w'oky. (173)
: T .
Since w v is also scalar
w'SAy
Eh = —5— . (174)
vy

Notice, however, that if.i%i’ 0, equation(174) will not hold. If g?xfro,
T

then the left eigenvector, w , is perpendicular to the right eigenvector, v.

This only happens when A has a Jordan block of dimension greater than one.

Continuing, from definition (138) and (169)

- 3~ '
SA(K,AK) = — A(K+ eiK) |

3¢ £=0

|

[A-B(X+ z2K)C]! z=0

Q2
™

= -BAKC. (175)
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*‘ Using definition (169)
SAR,K) =( 7A(K), &K
= er{vAT ()oK} . (176)

Substituting (175) and (176) in (174):

er{VARIK} = ———
wy
. w' (BAK)CY
= ol T
vy
T
Cvw B
= tr{-[-——T——] AK}. (177)
w Vv

Since (177) must hold for an arbitrary AK,

T Cyu'B
VR = -5 (178) 4
LWy -
or 3'1
: Bluvic’ ]
JA(K) = - T, . (179) -

1€

7RL<E) is found bv rearranging VKA(K) (k is a vecter comprised of the elements o

of X).
* 1
Define Ai in terms of two real variables, o and W, 4
1
- + - ‘
A, = 0, W, .
i i 3% (180) |
Then .
30"; ali * 1
— = Real(s
3K, G (131)
i i
LIRS ER
i - . 1 .
—— = Imaginary(—). (182)
7k, k. ¢ Y
i i
)
)
The constraint functions g, (%) from equation (133) are conmsidered functions ]
- |
cf the two real variables, 7 and w. For the purposes of problam (134)-(140)) }
each constraint will be a Zunction of onlv one 2izenvalue. II all ths ®
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eigenvalues must lie inside a particular boundary, them n of the constraints
will be the equation for the boundary (one for each eigenvalue). Given this

sitvaction,

98, (9,,0,) Bgi(oj,ij) 3, A CATRANE
k) \ " a0 % ) T\ T e 7Y ) . (183)

ey
C | a3
1]

h| 3

Since the regions in the complex plane are chosen by the designer, it will

be assumed that the regions are chosen so that the partials with respect to

o and w exist. For the same reason, the functions gi(c,w) are known explicitly, 

and thus, so are the partials. Thus using equations (179)-(183), the gradient

of the constrainté with respect to the feedback gains, k, can be calculacted.
In summary, both the gradients of the constraints with respect to

k and the gradient of the cost J(k), as well as the values of the constraints

and the cost, can be calculated given a point k. Using this information, one

can find the solution to (134)-(140) by solving the equivalent problem (lSB)—(lSSf
as described in Section 6.3. The next section will discuss some of the specific ﬁ
details and problems involved in implementing this method to solve the

reformulated problem (134)-(140).

L o o

6.5. Second Order Example

L e

{ The purpose of the numerical example of this section is to demon-

g
atimiindh

strate how well the method developed in Section 6.2 to solve problem (129)-(134%)

works on a simple second order example. The problem is as follows: .

® ® T
» min J = Y[ u (t)u(r)dt (184)
kes °

subject to ;

A
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x(t) = Ax(t) + Bu(t) (185)
u(t) = -[kl kzlﬁ(t) (186)
§ = {k/(A-Bk) is asymptotically stable} (187)
\ -1 5 [0
{ A= B = (188)
- -5 -1 L1
{
5 g;(0,0) <0 i=1,4 (189)
.
t- where G and w are the real and imaginary parts of the eigenvalues of the
¢

clesed loop system. The constraints are (see Figure 6.1):

gl(o,m) = w=-2.60 (190)
gz(O,w) = y+2.60 (191)
2 2 2

83(0,m) = 4,0804-0"-w (192)
2 2 193

gl‘(o”w) =g +w -53-1441- ( )

Each of these four equations must be satisfied for both eigenvalues so there

are actually eight constraints.

Examining a second order system with a single input is particularly

convenient for demonstrating the behavior of this algorithm. First, for a

second order svstam one can derive explicit equations relating the feed

tack ;

-9

gains to the eigenvalues of the closed loop system. Second, equations %
’

mapping the boundaries in the complex plane to boundaries in k-space (the T T

- = . N . . . . . A

space of fesedback gains) can be obtained using the mapping method describea in .

A

Chapter 4. For this second order svstem and reasonable boundaries, like those j
’

given in (190)-(193), the boundaries in k-spacle are not too complex (Fiaure 6.2). -

Since the minimization is actually over k in the k-plame, Figure 6.2 shows

exactly what the constraints are in this space.

alh il wibeusinamis - i . -—M
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The closed loop characteristic equation for this system is

2

A+ (2+k2)x + (26+ 5k +k2) a (. (194)

1

Applying the quadratic formula to (194) yields

Yy

2 2
Al’)‘Z -(1+ .Skz) + .S(R2 - 20k1 -100) . (195)
Taking the partials of Al and Azwith respect to kl and kZ’

3A 1

—322 = 3 10(k2 - 20k, - 100) ™ % (196)
akl 2 1

A 1
1,2 2 =ty

—— - - <. 197
3k2 S5+ .Skz(k2 20k1 100) ( )

From (196) and (197), one can see that these partials have discontinuities

precisely at the boundary where the closed loop system poles change from a
complex pair to two real poles or vice versa. Not only are these partials
discontinuous at this boundary, their magnitude approaches infinity as the

poles approach this boundary. The equation of this boundary in k-space is

2
kz- 20kl- 100 = 0 (198)

which corresponds to boundary 9 in Figure 6.2.

The other boundaries in Figure 6.2 correspond to the boundaries in
the complex plane (Figure 6.1) as follows: the large circle (Figure 6.1) maps
into the triangle formed by 1, 2, and 3 (Figure 6.2), the small circle maps
into the triangle formed bv 4, 5, and 6, ‘the two lines into boundaries 7 and
8. The region enclosed by the solid line in Figure 6.2 is the region in the
k-plane where all the constraints (190)-(193) are satisfied. The reason for
choosing these boundaries in the complex plane is that such boundaries do

occur in real problems (e.g., the aircraft example in the next section) as

b
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constraints on the locations of closed loop system poles. A nice feature of
using circles for boundaries in the complex plane is that for second order
systems circles map into triangles in the k-plane. Hence some of the
boundaries in the k-plane are straight lines (Chapter 4).

The problem (184)-(189)1s to find the minimum energy control subject
to the indicated constraints. Since system (185) is stable, the minimum
energv control without constraints corresponds to zero gain. With the feed-

back gains set to zero, the poles of (185) are

Apsx, = -1t35. (199)

With the given constraints (Figure 6.1), the minimum energy feedback gains were
found to be

k = [-.273 +1.68] (200)
which places the closed loop poles at

Apyh, = -1.84 + j4.788. (201)

l’AZ
This answer makes sense. From Figure 6.2, one can see that this
point k (points b) is approximately the point inside the ccnstraint region
closest to the origin. From Figure 6.1, one can see that the closed loop
eigenvaluas (pcints 4) are about as close to the open loop eigenvalues
(points b) as possible given the constraints. The algorithm converged to

the mininum k (200) for a wide range of initial guesses for k. Initial

uv
[
[
n
0
1%
w
ry
O
ry
”

& which placed the closed loop poles outside the larze circle
and to the la2ft of boundarv 1 were the only ones for which the alecrithm é:id
not converze to the value of k given in (200).

The rezion in the complax plane for which the alzoricha did not

converge zorrasponds to the area in the x-plane (Fizure h.2) to the
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]
(I line 1 and just below curve 9. The fact that the algorithm could not converge

from these points can be explained by the discontinuities in the partials of

the eigenvalues with respect to k mentioned in (196)-(198). Consider point ¢
Figure 6.2) as a typical point in this region. It corresponds to a complex
pole pair outside the large circle in Figureé6.l. Line 1 in the k-plane
represents the boundary for a complex pole pair crossing this circle; thus,
the negative of the gradient in the k-plane for these points points towards
line 1 and nearly perpendicular to it. Moving in this direction should
reduce the cost function (158). However notice that from point ¢, for

example, movement in this direction will lead to guesses for k which fall
above or on curve 9. A point on curve 9 corresponds to a double real root
for which the partials of the eigenvalues with respect to k are infinite.

This will obviously cause problems. Notice also that for two real poles,

the direction or decreasing cost is determined by boundary 2; whereas, for a
complex pair, the direction of decreasing cost is determined by line 1. For all
these points -points for which the routine would not converge to (200) - the
minimization routine found points which approached boundary 9. However, the

algorithm was not able to move across or along the boundary. In summary,

the derivatives of the constraints with respect to the feedback gains are
not continuous. This fact can lead to convergence problems. However, one )

can avoid these problems by choosing a better initial guess for k (and

lower values for c).

This example was also used to study the behavior of the algerithm ;

; ® with respect to changes in the constant c' in (158). As discussed ia the

Y W

section on nonlinear programming, for a verv large value of c¢', the minimi-~
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zation over k converges to a soclution which is close to the solution to the
actual problem, in this case (184)-(189)., For a smaller c', each iteration
over k stops farther from the real solution than with a largzer c¢', but the
iterations over d lead more quickly to the true solution of the problem. For

this problem, ¢’

equal to 2000 seemed to work best. The minimization over k
led to a solution which was very close to the final solution of the algorithm.
The iterations over d merely served to bring the point a bit closer to the
boundaries (within 10—7, instead of 10-3). This was true even for smaller
values of ¢', 20 and 200. The smaller values of ¢’ led to more iterations
over d, but fewer over k at each substep. For c¢' equal to 2, the fiést
iteration over k did converge to a solution which was different from the
solution with c¢' equal to 2000. However the iterations over d led to the

same final solution as with ¢' equal to 2000. In terms of total function -

!

evaluations, c¢' equal to 2000 was the most efficient; moreover, the solutions

for smaller values of c¢'

were not significantly different from those with c¢'
equal to 2000.

To summarize the results for this example, this algorithm works
provided a good initial guess for k and a reasonabtle value of ¢' are used.

Provided these two conditions are satisfied, the minimum energy Ieedback gains

for problem (184)-(189) are
< = {-.273 +1.68]. (202)

This gain places the closed locop svstem poles at

The next two seczions will oresant 3 mors complex exampla and discuss sonme
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6.6. F-4E Example

The problem studied in this example is the same as that of Chapter 5.

The system is a linearized model of the longitudinal motion of the F-4E
Phantom. The model equations and design criteria are summarized here for

clarity.

The system equations are:

- i r -3 -
N, 311 212 313 [N, by
d
Ic q = aZl a22 a23 q +10 u (204)
§ 0 0 -a 8 a
e e
_ 1
1 0 0 Nz-1
y(t) =10 1 0 q (205)
0 0 1 8
L 3L el
u(t) = -ky(t). (206)

The actuator bandwidth, a was assumed to be 14 rad/s. The values a, and bl

are different for each flight condition and are given in Appendix I. The matrix

k 1s to be determined.

One design problem for this airplane was to choose k such that the
closed loop eigenvalues for each flight condition are in certain regions in
the complex plane (Figure 6.3). Ideally one would like to find ome set of
gains which worked for all four flight conditions. The constraints on the
short period eigenvalues are given by restrictions on the damping and the

natural frequency of the short period mode. The characteristic equation for

P TPY

these eigenvalues is

Aaehd bt s
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2 2 _ L’
AT+ Zsspwspx + msp 0 (207)

where gsp is the damping and wsp is the natural frequency. Under normal
operating conditions (i.e., no sensor failures), gsp and wsp are required

to satisfy -

.35< gsp <1.3 (208)

Wa S Wgp < Wy (209)
vhere w_ and w, depend on the flight condition (see Table 6.1). For the case

when one of the sensors fail, Esp and msp must satisfy
15 € asp (210)
W S w (211)
c sp

where W depends on the flight condition (Table 6.1). For the emergency

situation, the actuator pole is also required to satisfy (210)-(211). TFor the s

N
<
nonemergency situation, the actuator pole (Aa) is required to satisfy 1
-1
@y < Aa < 70 rad/s. (212)
These regions in the complex plane are shown in Figures 6.3 and 6.4. ]
For this chapter, an additional design criterion was added. The "1
feedback gains were to be chosen such that the minimum total control energy ]
is used given the constraints on the locations of the closed-loop poles ‘
described above. The appropriate cost function to minimize is T
T
min J = [ u (t)u(e)de (213)
keS o
where S 1s the set of feedback gains for which the closed loop system (204)-

(206) 1s asymptotically stable. Taken together with appropriate equations

- n e oaa oash

for the constraints in Figures 6.3 and 64, equations (204)-(206) and (213) repre-
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developed in the previous sections of this report can be applied. The
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results for this example are discussed in the next section.

Table 6.1. Frequency limits which determine boundaries
in Figures 4 and 5

- o - .
.. ;A.A a

- 4
b 4

sent a problem of the form (129)-(134) in Section 6.2, Thus the method of soluti;i

RN .
ntestebdentendendeinsh

h . .

Flight Flight Flight Flight
Condition #1 | Condition #2 | Condition #3 | Condition #4
wa(rad/s) 2.02 3.50 2.19 3.29
wb(rad/s) 7.23 12.6 7.86 11.8
mc(rad/s) 1.53 2.65 1.65. 2.49
6.7. Results and Discussion for Airplane Example
The design problem for the F4~E airplane is to find
one set of constant feedback gains for =~ which the closed

loop system poles are in the appropriate region in the complex plane for each

one of the four flight conditions under normal operating concitions.

finding such a solution, the next problem is to look for a set of gains that

satisfies the above criteria and also is robust with respect to sensor

failures.

fixed gain controller could be found to satisfy the constraints under normal

operacting conditions.

First, each flight condition was studied separately to see if a

As mentioned in Section 6.5, a good initial guess for

Ot T
aA'a 4 4

Aag 4 g o

I EDVIR SN

-
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the feedback gains is important for the algorithm to converge properly.
Since the problem is to find the constrained minimum for J in (213),
one sensible starting point is the set of gains which correspond to the
unconstrained minimum of J. One can find these gains simply enough by
solving a Riccati equation for each set of system matrices [68]. These gains
were used, and gains for a fixed gain controller were found for each flight
condition. The next step was to find one set of gains which would work for
all four flight conditions.

Such a set of gains was found both for the case when all three
states (204) were available and for the case when only the first two were
available. Chapter5 considered the latter case. Rather than loocking
for a particular set of gains, the procedure used was to map the
constraints from the complex plane (Figure 6.3) into the space of feedback

zains. The entire region of possible gains which satisfy the constraints

(Figure 6.5) was found. Using the method described in this thesis, the
minimua energy k using only two gains was found to be (see Table 6.2

2 1

k= [-2.8281124 x 107" -2.0652172x10 "]. (214)

This point is marked in Figure 6.5 and is near the boundary of the enclosed
region found by Franklin, at the point approximately nearest the origin.
Thus the recults presented in this thesis are consistent with Franklin's.
For the case with three feedback gains, the minimum enerzv k was found to be

(see Table 6.3)

2 1
B - N s =y - ~=4l - - ~
k = (-3.8498269 x 1077 -21.7574095 < 1371 3.3295187- 1071 (213)
An important measure of svystem performance is the C: response discussed
in Chaoter 5. The C; is a linesr combinazion o7 tha2 normal accelerstion
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Table 6.2. Minimum energy feedback gains: normal operating
condition solution (2 gains)

k= [~2.8281124x107% -2.0652172x107 1]
c°§ﬁi§2§n " Clo§ed Loop Eigenvalues

1 -2.0483019, -2.0200008, -14.537826

2 -3.1624007 + §5.2143045, -18.493321

3 -1.589176 + 31.7992842, -14.547498

4 -2.1992634 + §5.8851873, -16.308839

Table 6.3. Minimum energy feedback gains: normal operating
condition solution (3 gains)

k= [-3.8498269x107% -2.7574095x107"  3.3295187x10 "]
Coiii%ggn # ! Closed Loop Eigenvalues
1 ~2.0194637 + 13.3183791x107°, -20.227559
2 i -3.3792113# §5.0261318, -25.502133
3 L-1.59778171-j1.7690526, -20.060981
4 | -2.2968881 + §5.7580029, -22.569045 | .
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and the pitch rate of the plane, given by

* - ) * 216)
Cy = (N +12.43q)/k} (

Ty

where kc is the stationary value of Cg and is used for normalization. The
C§ response to a step input should fall in the region shown in Figure 6.6.

Figure 6.7 shows this response for each of the four flight conditions. The
first column consists of the responses for the design presented in this

section with k as given in equation (215). Comparing these responses with

Figure 6.6, one can see that they do lie within the required region. The

%

* second column contains the CN

responses for the following gain matrix
k= [-.115 -.8] (217)

which is the design used in Chapter 5, These C¥

N time responses appear to be

faster and to satisfy the requirement given by Figure 6.6 better than those

presentad in this section. This is not surprising; the gains (217) were

chosen on the basis of the C§ criterion. The criterion used to choose the
gains for this thesis was the minimization of the control energy. Thus,
slower C§ responses should be expected.

More specifically, the design criterion used to choose the gains in
equation (215) was the minimization of the control energy required to bring the

system back to equilibrium from a disturbance. Figure 6.8 shows u(t) for each

of the four flight conditions (the first column contains the ones for this

section; the second for those of Chapter 4). From these figures, one can see that

the controls for this section are considerably smaller than the controls which

P VP W

result from Chapter 5. However, the system is stabilized faster (but at the

expense oi actuator control) for the gain (217).
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(? The feedback gains of Chapter 5 were chosen by looking at the time »
b

responses for several points and picking the best one. For this section, the
gains (215) were chosen by using a cost function which represented the

ﬁ! minimum energy control. By changing the cost function or the constraint M

*
N

criterion into the design. One could also choose the cost and the boundaries

boundaries in the complex plane, one could easily incorporate the C7 response
f' so that the solution would be a compromise between the minimum energy control ¥
g and a fast response. Moreover, the results from this design indicate where
trade-offs can be made and how to make them. In short, using a cost function
to choose a set of feedback gains may provide more insight than trial and ’
error alome.

Chapter ¥ also mapped the emergency regions in the complex

plane (Figure 6.4) into the gain space for the case with only two feedback

zains. Unfortunately, the region for which all the constraints for both the

normal and the emergency situations are satisfied does not intersect either

axis in the gain space. For the problem with only the first two states

available for feedback, this means no set of gains satisfying the‘constraints

is robust with respect to the failure of either sensor.

" In light of the results of Chapter 5, the problem of a robust controll 1
: was considered for the case with three feedback gains. For flight condition 4, :
L a fizxed gain using only the first two states was found which satisfied all
‘ the constraints and was robust with respect to either the first, the second, 1
or both sensors failing. Adding the third gain set equal to zero, vields a
b
%. set of three gains which is completely robust. However, this result is not 1

surprising since the open loop poles for flight condition 4

already satisiv the emergency specifications. For
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the other three flight conditions considered individually, no gains could be
found which were robust with respect to the first sensor failing. Thus none
could be found for all the flight conditions taken together. When considered
individually, a set of gains which is robust with respect to the failure of
the second sensor was found for each flight condition. A set of gains which
is robust with respect to the second sensor failing was also found when the
first three flight conditions were considered together (see Table 6.4).
Unfortunately, when éll four flight conditions were considered, no cormon
solution which was robust with respect to the second sensor could be found.
A solution which is robust with respect to the third sensor failing is just
the solution given in Table 6.2 with a third gain equal to zero added. These
results seem to indicate that a fixed gain controller is not adequate to
satisiy the robustness requirements for this example.

Wnile studying this example, some of the problems in implementing
the algorithm for the seccnd order erxample in Section 6.5 were also problems
for this example. First, the gradient of the cost with respect to the
feedback gains is discontinuous at a double real pole (see Section 6.4). For
the minimum energy gains in Table 6.2, the eigenvalues of the first flight
condition seem to be converging to a double real pole on the boundarv of
the constraints. Since the gradient is discontinuous at this point, it was
nec2ssary to try initial guesses for x close to the apparent solution but on
both sides of the discontinuity to be sure the algorithm was not hanzing up
there. 22 alzorithm converged back zo the double pole from both directions

indicating that that poiInt was ind2ed the solution. Also, an intallazent

o]
(a

(§1v)

initial guess for kX was important in order to avoid being hunz ur at the
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* Table 6.4. Minimum energy feedback gains which are robust with
respect to the failure of the second sensor (for the
first 3 flight conditions only)

k= [-5.0138477x107% -4.0115944x10"1 5.0676513x10™]
Flight ‘Sensor #2 Closed Loop Eigenvalues
Condition #
NF | -2.7084034, -2.0196952, -23.109933
. F H -.72136579+ 31.3337152, -26.395321
NF -4.0968046 + j5.1326, ~29.668796
: F -.77106637 + §5.0911232, -36.320273
NF -1.8964697 + §1.7951444, -22.887455
{ ’ F -.49872359+ j2.0622586, -25.682948
i :

NF:
F:

Sensor #2 has

Sensor #2 has

not failed
failed

PTG I

PP |

P
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( double root boundaries away from the solution. In that case, a pole placement
which places the poles on the opposite side of the double root boundary could
be done. Using those gains as a new starting point might allow the algorithm
to converge to the real solution.

{ Another observation was that the value chosen for c¢' in (158) affected

the final solution returned by the algorithm. For large values of c'

(200-2000), the algorithm converged quickly to the boundary of the constraint

region, but had trouble moving along the boundary to the minimum with

iterations over d (156)-(157). As explained in Section 6.3, this is due to the

ill conditioning of the Hessian for large values of c¢'. For smaller values

of ¢', the minimization over k converged to a solution outside the boundary

of the constraint region. The maximization over d forced the solution to

the boundarv. For this particular example, choosing ¢' equal to a smnall

FPPRPOEY

number for the initial iteration over k and ther increasing it gradually for
subsequent iterations to enforce the constraints more quicklv seemed to work
|

well. The results in this section are Zor c¢' equal to 1 for the initial

iteration and doubled thereafter.

P T S

Summarizing the results of this section, the algorithm developed in P
this chapter was applied to che problem of desizning a controller for the
F4-F aircrafr. A fixed gain contraller was [ouad which satisfied the
cesizn specifications under normal cperating coenditicons. However, a fixed Y
zaia controller which was robust to either sensor failure vas not 20s3ible.

This example also served to re-emphasize some of the innerent problems with

this design technigque: the discontinuizies oI the gradient, the initial L

U

aia af

suess for k, and the cholice oI 2.
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6.8. Conclusion and Summary

This chapter has dealt with one method of solving the problem of
designing a fixed gain controller for a linear time invariant system when o
some of the design criteria are represented as constraints on the location of
the closed loop system eigenvalues in the complex plane and others are repre-
sented by a quadratic cost function which is to be minimized. First, the ’
original problem (129)-(133) is reformulated to yield (134)-(140). In the
form, the cost function is easier to calculate. Second, problem (134)-(140) is
solved by an augmented Lagrangian method. The problem is a max~-min problem. !
A variable metric method is used to solve the minimization over k. A fixed
step size method is used to solve the maximization over d {64]. Third,
expressions for the gradients needed to solve (153)-(155) are derived.

Two examples are studied: a simple second order numerical example

and a model of the longitudinal motion of a F4-E plane. Both examples serve

jo-

to point out several problems with implementing the solution of (153)-(155).
First, there are discontinuities in the gradients for the case when a complex
pair of sy:zem poles change to a real pair or vice versa. If the algorithm
gets hung up at such a point, a new starting noint on the other side of the

boundary may help. 3econd, the value of ¢' in (155) nust be chosen appro-

priately for a given problem. Too large a value of c¢' causes slow convergence
of the algorithm. Too small a value yields a solution outside the boundary.
The best approach seems to be to choose c¢' small for the first iteration and
increase it thereafter. rinally, a good initial guess for k is important in

order for the algorithm to converge properly,
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There are advantages to this design method. First, it has the
ability to incorporate diverse design criteria such as minimum energy
control, rate of change of input, constraints on the location of poles in
the complex plane, etc. Second, multi-input, multi-output systems can be
considered. Third, it has the ability to handle larger systems than some
of the other methods used to solve this type of problem. Finally, it provides
insight into the effects of the various design constraints. It can be used
to determine which of the design specifications can be satisfied and which

ones may be too stringent.
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CHAPTER 7

SUMMARY AND FUTURE RESEARCH

As Chapter 2 illustrates, the robust control problem statement
encompasses a great variety of problems. However, the work can be classified
into two general areas. The first models the plant perturbations as being
largely unstructured. The design and analysis proceeds for the worst case
situation and attempts to develop aposteriori bounds for the perturbation.

As a result, the designs and bounds are often conservative. The second area
assumes that the perturbations can be modeled apriori. The control system

is then developed for the class of plants described by the perturbation model.
This provides hope of designing less conservative (and likely more efficient)
control systems. However, this problem appears to be more difficult and

much less research has been conducted in this area.

The research presented in Chapters 4 through 6 of this report is
directed at the second area described in the preceding paragraph. The
parameter space design method of Chapter 4 provides great insight into the
problem for the designer. Chapter 5 demonstrated that this method works well
for single input, low order problems. The extension of this technique to
higher order systems appears straightforward, with only technical problems
to be overcome. The extension to multiple input systems will require more
thought. One possible generalization is to use the multivariable pole
placement equation [33] which exploits the characteristic polynomial matrix.

The optimization procedure of Chapter 6 also provides considerable
insight for the designer. It also allows high order, multi-input systems

to be considered. However, the computational procedure suffers from several

2 R S S

|
o
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technical problems. The most serious of these problems are the extreme
sensitivity of closed loop eigenvalues at double real roots and the require-
ment that an initial stabilizing guess be supr”ied. It is anticipated that
additional computational experience with the algorithm and the designer's
insight into the problem can alleviate these difficulties.

In conclusion, it should be emphasized that it is unlikely that a
single technique can be developed which is able to handle all problems. It
is necessary to have several design tools available and to use the method
best suited to the problem at hand. A major purpose of this report is to
present methods that will extend the domain of problems which can be

handled by control system engineers.

)
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APPENDIX I

AERODYNAMIC DATA

Table I.1 contains the values for a;, cj defined in equations (116).

P
'..' 414 ‘.

; These data were obtained by transforming the aero data in [57] to be compatible
with the state space representation of equations (116).

"l The data used in equations (117) are shown in Table 1.2

S

Table I.1. Aero Data for Equations (3.2)

M=.5 M= .85 M=.9 M=1.5
5000 5000 35000 35000 .
a, - .8532 - 1.514 - .6314 - .8527
a, .9931 .9940 .9974 .9982
a, - .08756 - .1315 - .04332 - .04669 s
a, 0 0 0 - .02274
ag 4.641 11.25 1.488 -18.50
a - .9876 - 1.606 - .6680 - .8881
a, -10.25 -26.15 - 8.104 -15.53
& ag 4.246 14.46 4.590 8.860
. -
b e 17.53 51.11 18.14 26.83 - 4
: ¢, - .5152 - .85%0 - .3576 - .4879 i
_ [
{ c - 5.078 -12.95 - 4.018 - 7.842
o 3
; ¢, 2.723 9.273 2.944 6.714 - 4
3
®
F: ‘i
: 1
‘
{. -
| — — o L, N |
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Table I.2. Aero Data for Equations (3.3)

M=.5 M= .85
5000' 5000'

- .9896 - 1.702
17.41 50.72
96.15 263.5

.2648 .2201

- .8512 ~ 1418

-11.39 - 31.99

-97.78 -272.2

M= .9

35000'

18

84.

-10.

-85.

.6607

A1

34

.08201

.6587

81

09

M=1.5
35000'
- .5162
26.96
178.9
- .6896
- 1.225
- 30.38

-175.6
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>(! APPENDIX II

A TYPICAL CONSTRAINT MAPPING

F~r flight condition 2 and the system of equations (127), the

eigenvalue constraint regions shown in Figure II.1 will be mapped into K-space.

e _ij
e
d
c a=-3.5
£l 9/ a b _ =-12.6
i
\ =-50
I III \JI I

Figure II.1. Eigenvalue constraint region (not drawn to scale).

After k k& were arbitrarily fixed at (-.03,0), these constraints were

1’

mapped into the regions shown in Figures II.2., Points a'-g' of Figures II.2

are the images of points a-g of Figure II,1, with points a',f',g’' corre- ' )
sponding to double eigenvalues at a,f,g. ]
The boundaries partition K-space into regions which correspond to é
r. the number of eigenvalues in each region of Figure II.1, labeled I, II, III. Lbj
The desired combination is:
, one eigenvalue in region I,
;. two eigenvalues in region II, - 1
three eigenvalues in region III.
i Table II.1 lists how the eigenvalues are distributed among regions I, I1I, III
¢ for gains in the regions labeled A-M in Figure II.3. .,
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Table II.1. Distribution of Eigenvalues

Region Number in I Number in II Number in III
A 1 2 3
B 3 0 3
C 5 0 1
D 3 2 1
E 4 1 1
F 2 1 3
G 2 2 2
H 4 2 0
I 2 2 2
J 3 1 2
K 4 2
L 1 2
M 1 4 1
N 1 1 4
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