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CHAPTER 1

INTRODUCTION

-- The importance of designing control systems which are robust or

insensitive to variations in the plant parameters has long been appreciated.

However, the rapid advances in design techniques for multivariable systems has

heightened interest in the study and design of robust systems. The purpose

of this report is to provide an up to date survey of the work in this field

and summarize the results of research in this area conducted at the Coordinated

Science Laboratory. 9

The report begins in Chapter 2 with a description and examples of

the robust control problem. Chapter 3 provides a survey of research in the

field of robust control. It is apparent from this survey that the work can

be divided into two areas. The first assumes unstructured perturbations and

analyzes worst case effects. The second considers large, structured perturba-

tions. The parameter space design method presented in Chapter 4 is directed

at the second area. The tools of Chapter 4 are applied to a fighter aircraft

example in Chapter 5. Chapter 6 presents an optimization approach to the same

problem. Finally, Chapter 7 summarizes the report and presents several

directions for future research.
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CHAPTER 2

THE ROBUST CONTROL PROBLEM

2.1. Description of the Robust Control Problem

The objective of a basic control system design problem is to satis

a set of performance specifications for a given dynamical system. The robus.

control system design problem adds to the basic control problem by requiring

the performance criteria to be satisfied under a specified class of perturba-

tions to the dynamical system. Typical examples of performance criteria for

which the overall closed loop system must be robust are:

1) Stability or nice stability (e.g. defined by constraints on

eigenvalue locations).

2) Limited deterioration of a performance index.

3) Limited deviation from an ideal behavior, e.g. constraints

on step responses or frequency responses or on the return

difference.

4) Limited deviation from a reference behavior, e.g. deviation

from a nominal trajectory or a reference model response.

5) Tracking, i.e. zero asymptotic error for a class of

reference and disturbance inputs.

6) Limited demand on control lul and control tate kil.

The classes of perturbations which are considered can be grouped

in two categories: structural perturbations and system parameter perturba-

t tions. Some examples of structural perturbations are:
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1) Sensor failures.

2) Actuator failures.

3) Switching from automatic to manual control.

4) Change in system order due to a failure. Example: An

aggregate description for several power generators or a

traffic flow or economic variables must be dissolved into a

more detailed description of transients between individual

components in failure situations.

Parametric perturbations are due to uncertainties in the plant model and in

the controller implementation. Examples are:

5) Analytically known dependence of a plant model on uncertain

physical parameters. Example: The linearized equations of

a crane with physical parameters m =crab mass, mL =load mass,
c4

A=rope length, g=gravitational constant, and state variables

x =crab position, x2 = crab velocity, x3 =rope angle and x

rope angular velocity are

F- 1 0 0- 0

;0 0 mLg/m + 1
j xu (i)

-- 0 0 1 m

S0 2

with 2 (mc + mL)g/mcA. Input u is the force accelerating

the crab. The crane may operate with an unknown load mass

mL between the empty hook and the maximum mass, for which

the crane is designed. It may also operate with an unknown

constant rope length between zero and the height of the crane.
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6) Numerically known dependence of a plant model on an unknown

physical parameter vector e. Example: linearized equations

of longitudinal motion of an aircraft depending on altitude

and speed

"x = A() + B(6)u (2)

3 A and B may be given for J typical flight conditions in the

flight envelope. A. =A( ) B -BOj). j=1,2,...J.

7) Known dynamics, which have disappeared in a simplified design

model by linearization, truncation of structural modes, model

reduction, neglecting of actuator and sensor dynamics. In

some cases it may be possible to pull out all uncertainties

as illustrated by Fig. 2.1, where for P =0 the nominal plant

N is obtained.

I n V

Figure 2.1. Nominal plant N with perturbations P.

In simple cases the perturbations P can be expressed as a

diagonal matrix of linear or nonlinear operators.

8) Unknown dynamics, which cannot be modeled. In this case only

vague assumptions about perturbations 6A, 6B, 6C of the

system matrices A, B, C(5=Ax+Bu, y=Cx) or perturbations

6G(s) of the transfer function matrix G(s) can be made.
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9) Quantization effects and time delays in controller

implementation.

10) Variance of components in mass produced control systems

N and circuits.

These examples of system properties and perturbations show that many special

combinations can be specified. Therefore many different definitions of

"robust control" can be found in the literature.

The design problem for a robust control system may be formulated in

one of the following three forms:

i. Given a system property, determine the class of perturbations

with respect to which the system property is robust. Design

the controller such that the class of admissible perturbations

is extended in the direction of the really expected perturba-

tions.

2. Given a class of perturbations, determine the maximum deviation

from a desired system behavior which occurs under the worst

perturbation in the given class. Design the controller such

that the maximum deviation is minimized.

3. Given a system property and a class of perturbations, determine

if there exists a set of controllers for which the system

property is robust under the class of perturbations. If yes,

select one on other criteria than robustness. If not, relax

specifications.
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2.2. Controller Structure and Other Design Considerations

Design problems for control systems are usually parameterized by the

assumption of a controller structure which defines a vector of design para-

meters. Two typical assumptions for the controller structure are adaptive

controllers or fixed gain controllers. One extreme is the attempt to obtain

as much information about the perturbations as possible by on-line identifica-

tion and failure detection. Then ideally the structure and parameters of the

controller are adapted in order to achieve the best possible performance of

the control system given the momentarily available information. An intrinsic

difficulty of this approach is that plant inputs, which admit a fast and

accurate identification, are not good to achieve the best performance and vice

versa. Also a tradeoff between a fast failure detection, identification and

adaptation and a reliable one, which avoids false alarms and noise sensitivity

of the adaptation, must be made.

The other extreme is the attempt to find a fixed gain controller

which accomodates a specified class of perturbations. In this approach it

may be necessary to sacrifice some performance in the nominal case in order

to achieve robustness for the perturbed situation. The assumed controller

structure may be state feedback, or static or dynamic output feedback. Note

that full state feedback is not the most general controller. Information

about the unknown parameters is contained in past states, their processing in

a dynamic system can therefore improve the performance. In some cases the

unknown parameters can be introduced as additional states, which may be

*estimated and fed back. Most design techniques are restricted to linear

systems, thus a linear controller is usually assumed.

only the case of a fixed gain controller is usually called robust

6
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control. However it should be apparent from the previous discussion that

robustness is also a desirable feature for an adaptive control system. The

fixed gain solution indicates whether a more complex adaptive system is needed

at all, or how far one has to go adaptive. Practical solutions to the robust-

ness problem frequently are in between the two extremes and combine features

of both cases. Examples are:

1. Gain scheduling with switching or continuous variation between

fixed linear feedbacks dependent on a measurement of an

environment condition, which has an influence on the plant

parameter values.

2. Variable structures with state dependent switching between

fixed linear feedbacks.

3. A fixed gain robust controller may be used for stabilization,

with an adaptive controller then used for improvement of

performance. (Some techniques for design of adaptive

controllers assume an open loop stable system).

4. A fixed gain robust controller may be used as backup for the

case of a failure in the adaptive system or in a gain

scheduling system. Air data measurements (e.g. dynamic

pressure) are not very reliable.

5. Under external noise an adaptive system may not adjust fast

enough to a fast change in plant parameters. In such cases,

it may be possible to switch to a fixed gain robust system

until the identification has followed and adaptation can

improve the performance.

6. Adaptive control theory usually does not deal with problems
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of structural identification (e.g. failure detection) and

structural adaptation after a failure has been detected.

However problems are related: Fast structural identification

may lead to false alarms, in particular under noisy conditions.

Slow and reliable structural identification may leave the

system in a failed unstable configuration for a while. The

control should be designed to provide robustness of stability

with respect to the failure to ensure that nothing very bad

happens until the failure is detected reliably.

7. Robust fixed gain control may be combined with some redundancy

concepts. Various levels are possible:

a) Passive redundancy be paralleled components. For example

the 50% gain reduction margin of LQ designs offers the

possibility of using two paralleled sensors or actuators

such that in case of a failure the gain is reduced only

by 50%.

b) Removal of failed components. Even if a component failure

can be tolerated, as far as stability is concerned, it

may be necessary in the long run to remove a failed

component, e.g. to close a leaking gas jet valve or to

remove a bias term entering into a control system from a

sensor failed at a nonzero constant value.

c) Analytic redundancy may help, if an adaptive observer

4 provides an estimate for a missing signal.

d) Hardware redundancy, e.g. majority voting in a multiplexed

system can bring the system back to its original performance.

4- m - - m



However this part of the system ideally should not be

vital for stability (see 6).

With the availability of cheap computers there are few constraints on the

complexity of the controller structure. However there are several practical

limitations and additional aspects for the design. Some of them are given here.

1. A main constraint on the controller complexity is given by the

presently available design methods. Also it is a question with

which methods the designer has experience and for which he

has design software available. Ideally, control theory should

provide the designer with convenient tools, e.g. for the

computer-aided design of control systems, instead of demanding

that the designer has to put all thinkable tradeoff situations

into one scalar performance index or set of inequalities.

2. In many control problems structural limitations are mainly

dictated by the cost, availability and reliability of sensors

and actuators. Thus output feedback and saturation of control

or control rate are important design considerations. For

robust control systems with control constraints it is a

particularly important rule of thumb to make only physically

reasonable requirements. For example, one should not try to

make a slow system fast or a fast system slow (i.e., do not

use one reference model, but fast and slow reference models

for different operating conditions, or demand only invariance

of damping or maximum overshoot, not of natural frequency or

time of maximum overshoot). Of course such considerations
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depend on which property of the application must be robust.

In the design of an oscillator the frequency must be constant

whereas in the design of a crane the frequency is less

important. Also it would be not reasonable to require an

unchanged performance in cases of sensor or actuator failures.

Thus emergency specifications should be given for these cases.

3. Some special consideration must be given to the case for

which there is a man (operator, pilot) in the outer loop. A

pilot does not want to be a passenger. He may want to

identify the controlled aircraft by "playing" with the input

signals. Control schemes which give him the same feeling for

a wide range of parameter variations may be dangerous if the

dynamics suddenly become bad beyond an assumed range of

parameter variation. The pilot needs a warning before the

"cliff". This is another reason why the dynamics should

change with changing parameters.

A plant operator may want to switch one or more loops from automatic to manual

control. It is desirable that he always sees a stable system or better one, Z

which he can easily control. A man can control an unstable plant piovided

the eigenvalues in the right half plane are close to the origin. He has more

problems if he has to control fast modes, even if they are slightly damped.

In other words, the imaginary axis is not necessarily the best emergency

boundary for sensor failures.

The problems of actuator and sensor failures look similar if we

interpret them as a row or a column of the feedback matrix being switched to
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zero. For the human operator these cases are quite different, since for many

variables he has sensors, which he can use as backup. This is rarely the

case for actuators.

Ul

-
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CHAPTER 3

A SURVEY OF ROBUST CONTROL RESULTS

3.1. Introduction

The discussion of the preceding chapter has demonstrated that

robustness is an important issue in areas of control system design ranging

from fixed gain controllers to completely adaptive control systems. The

intent of this report is to concentrate on fixed gain, linear time invariant

control systems. Hereafter in this report, references to robust control

system design will assume this structure.

There are two basic philosophies to the analysis and design of

robust control systems. The first assumes that the perturbations are largely

unstructured. The objective is to design the controller for the worst perturba-

tion and evaluate or bound the size of the permitted perturbations.

The second approach assumes that the structure of the disturbances

and their size are known a priori. The design objectives are to minimize the

sensitivity of the closed loop systems in the known perturbations directions.

Each of the two approaches have advantages and disadvantages. The

first is more likely to provide robustness with respect to unmodeled errors

and hence requires less accurate models. The results are often very conserva-

tive. The second requires accurate models of the perturbations which one

likely to occur. However, the control effort is directed where it is needed

most.

The purpose of this chapter is to review the work which has been

done on the robust control problem. The survey is divided into two sections

corresponding to the approaches outlined above.
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3.2. Sensitivity and Unstructured Perturbations

3.2.1. Frequency Domain Methods

The main reasons for the use of feedback are stabilization and the

preservation of desirable system properties in spite of noise inputs and

perturbations of system parameters. The reduction of nonlinear distortions

was an essential reason for the use of feedback amplifiers, (see Black [1]).

The reduction of nonlinearity by high gain feedback has been further investi-

gated by Cruz [2] and Desoer and Wang [3].

In frequency design methods the concept to compensate the loop,

such that high gains are possible without instability, is the classic rule of

thumb for the reduction of noise and uncertainty. Bode [4] expressed it in

terms of gain and phase margins and a sensitivity function, which was

generalized to the multivariable case by Cruz and Perkins [5]. A sensitivity

matrix S(s) relates the output errors E (s) due to perturbations in a feedback

system to the output errors E (s) due to the same perturbations in a correspond-

ing open loop system by E (s) =S(s)E (s). The sensitivity matrix S(s) is the
c 0

inverse of the return difference matrix, for the loop of Fig. 3.1.

* S(s) - [I + G(s)K(s)H (s)]"  (3)

FP-704 3

Figure 3.1. Feedback system, re:urn difference for loops
broken at a.

. . ..0 I - n
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Note that G(s) is the actual plant, which may be expressed by the nominal

design model GN(s) and a perturbation 6G(s), i.e. G(s) =GN(s) +6G(s). If

the known GN(s) is used in eq. (3) instead of the unknown G(s), then all

results are local, i.e. restricted to small 6G(s). For a reduction of

sensitivity it is sufficient that

S T(-jw)S(jw) -I:90 (neg. semidefinite) (4)

over the frequency band of interest, or in terms of the return difference

F(s) = I +G(s)K(s)H(s)

F T(-jw)F(jw) - I k O. (5)

Hsu and Chen [6] proved the relationship

closed loop characteristic polynomial
open loop characteristic polynomial

Thus, if no cancellations occur, closed loop stability can be analyzed using

det F(s). MacFarlane [7] studied the eigenvalues ij(s), j =1,2, ...,m of

F(s) and showed that the closed loop is stable, if all characteristic fre-

* quency loci pj(jw), j =1,2,...,m satisfy the Nyquist criterion. He also

proved a necessary condition for the system to be optimal in the sense of a
o•

quadratic criterion (y TQy+u TRu)dt:
0

SI P(j)j kl for 0sc - =  j =1,2,...,m (7)

or

4 Idet F()I kI for all u). (8)

These results have the graphical interpretation that the complex plane plots

6



o dtF(jw)i I r ' 'W must not penetrate the interior of the urnit disc.

* it follows from this that the characteristic frequency loci of an optimal

* proportional feedback controller have infinite gain margin and at least 600

phase margin.

Robustness of stability with respect to gain and phase changes may

also be achieved in design by Rosenbrock's inverse Nyquist array [8]. Here

I+ 'l -1(jw) with G (s) =G(s)K(s)H(s) (see Fig. 2) is analyzed graphically and

modified in the design. A standard technique in multivariable control system

design is to use compensation or feedback to decouple or approximately decouple

a multivariable system into several single input systems, which may be designed

by single-loop techniques. Rosenbrock [8] uses the criterion of diagonal

dominance for approximate decoupling.

Doyle showed by counterexamples [9] that these methods can lead to

highly optimistic margins for individual loop gains, even if only very small

margins exist for simultaneous change of several loop gains. Already in the

single-input case, gain and phase margins are insufficient to characterize

*what happens for simultaneous gain and phase perturbations. Another difficulty

is that by compensation or feedback for diagonal dominance the actual loca-

tion of the uncertainty is obscured.

Doyle [9] examines the properties of the return difference using the

concepts of singular values, singular vectors and the spectral norm of a

matrix. The singular value a.i of a matrix A are the non-negative square roots

of the eigenvalues of A*A, where A* is the conjugate transpose of A. Since

A*A is Hermitian, its eigenvalues are real. The singular values give a measure

of how close A is to being singular. The ratio of the smallest singular

value Z and the largest one, o, is the condition number 7/a. One may also
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interpret the singular values as generalizing to matrices the notion of gain.

This characterization is of great practical value, since good software to

compute a singular values is widely accessible [10]. Using this singular

value concept Doyle proved the following robustness theorem.

r
.. I +.L.) A(s)

FP -70 41

Figure 3.2. Perturbation by L(s).

In the system of Fig. 3.2, let G(s) be rational, square, invertible and such

that the nominal closed loop with L(s) =0 is stable, i.e. G(I+G) 1I+G "I is

stable. If the system is perturbed by L(s), which by itself is stable, then the

perturbed system is stable if

C(I+G l(ju)) >5(L(jw)) for all w. (9)

For this theorem Sandell [11] gave a different proof, in which G(s) need not

* -l
be rational. _(I+G (jw)) is a frequency dependent measure of robustness in

terms of gain margins. For the eigenvalues X of A (here =I +G- (jx)) generally

the relation

c(A) -C IX(A) £-(A) (10)

holds. It is possible that the smallest eigenvalue is much larger than _5(A).

* Thus the minimum singular value 0 gives a more reliable measure of robustness

than the smallest eigenvalue. In fact Doyle constructed an example, where

the diagonal dominance approach as well as the characterisric loci approac!h

*
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Lii generates a Nyquist or Inverse Nyquist plot, which shows + db gain margin

and 90* phase margin. However the system is only marginally stable.

The problem of uncertainties due to a reduced order design model is

interrelated with the question of which modes of the system must be influenced

by the control and which others should ideally not be influenced at all. In

vehicle control it may for example be desirable to control the rigid body

dynamics fast and accurately, i.e. with a reasonably high bandwidth, without

interferring with structural vibrations. In frequency domain design techni-

ques, this is achieved by a 40 db/decade roll off beyond the design band-
0

width. This aspect is frequently ignored in state space design techniques.

In all design techniques it is i.nportant to study carefully the behavior in a

frequency range above the bandwidth, where modes are still sufficiently

controllable and observable, such that the control may move them into the

right half s plane.

Stein and Doyle [12] give a design example for a CH-47 helicopter

with two control inputs. They apply singular value analysis and the robustness

condition (9). Rotor dynamics and rate limits are translated into a(L(jw))

using a result of Safonov [13]. The two singular values were made approxi-

mately equal and the bandwidth in both loops was increased as much as C(L(jA))

admitted. A lc4 pass helped to meet the "roll-off" requirement. The example

also showed that these methods may lead to very conservative results in cases

of large variations of parameters in specific directions, here the flight

condition variation.

3.2.2. State Space Methods

Single-input linear quadratic state feedback regulators have a

return difference greater than unity at all frequencies, a; was shown by Kalmrn
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[14]. Anderson and Moore [15] showed that this fact implies a+60* phase

margin, infinite gain margin and 50 percent gain reduction tolerance. Safonov

and Athans [16] generalized this result to the multiinput case:

x= Ax + Bu

u = -K (1.1)

with m inputs ui.

The feedback matrix K is determined by solving a Riccati equation minimizing

'6 J = j (xTQx + uTRu)dt (1.2)

0

with Q positive definite and R=diag[rl,...,rm], ri >0.

The individual inputs u. are perturbed to 7u. without interaction

between them, i.e.

1
Ax + B7m with 7=L (13)

Let each perturbation 7 . be linear time invariant with proper rational stable
I j '. (w )

* transfer function Pi(s). Its frequency response is Pi(jw) =ai(w).e

Then the closed loop remains stable under a phase perturbation i (w), with

0 (i()i-!60* for all b. It also remains stable under a gain perturbation

a i(w ) a0.5 for all w.

Note that this emphasizes the importance of the bandwidth of the

control system. The 600 phase margin without bandwidth limitations is not

sufficient to accomodate neglected error dynamics since physical actuators

have at least 90' phase lag at high frequencies. For this reason Otto Smith

[17] used the "complex gain margin", i.e. the minimum distance of G(ji) to
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the critical point, scaled by the local frequency increment along G(jw).

This approximates the negative real part of a dominant pair of eigenvalues.

A multivariable measure for the distance of G(jw) from the critical point has

been discussed already in form of the singular values of the return difference.

Doyle [18] showed by counterexample that the margins may be

aruitrary small if the state is replaced by a state estimate from an observer

or a Kalman filter. In his example, the gain margins were arbitrarily small

in both the positive and negative db direction. To improve the margin in this

situation, Doyle and Stein [19] developed a "design adjustment procedure",

which introduces fictituous noise at the control input to the plant. In this

procedure the observer eigenvalues tend to the finite transmission zeros and

to infinity. Thus the procedure works only for minimum-phase plants. The

procedure is essentially the dual of Kwakernaak's sensitivity recovery method

[20]. This however drives the plant poles instead of the observer poles to

the transmission zeros, which may lead to large control inputs u.

Gain and phase margins may be much smaller in discrete time linear

quadratic state feedback systems. Jacques Willems and van de Voorde [21]

give bounds for the single-input case, which show that the system may be very

sensitive to feedback gain variations. This is not surprising, since the

hold element may be approximated by a phase shift of one half sampling

interval.

Safonov and Athans [16] also generalize a single-input result by

Anderson and Moore [15], which is useful for actuator nonlinearities. If

the perturbation operator 71 in eq. (13) describes a time varying, memoryless

nonlinearity u = f (ut), then it is a sufficient condition for the closed
i s

loop stability, that
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1<! f(u,t) c M for some M < = and for all t. (14)2 u

For example, for an actuator saturation, stability is guaranteed if the inputs

do not exceed twice the saturation level.

Comparisons of numerous optimization techniques for insensitive

control systems were made by Harvey and Pope [22,23] for wing load alleviation

for the C-5A aircraft and by Vinkler and Wood [24] for a lateral autopilot

for a rudderless remotely piloted vehicle. A minimax technique by Salmon [25]

and an uncertainty weighting technique by Porter [22] were judged superior to

six other techniques in the first report; both however failed in the comparison

[27]. Here an expected cost technique by Ly and Cannon [26] and a multistep

guaranteed cost technique by Vinkler and Wood [27] came out better than four

other techniques. In [23] an information matrix approach by Kleimann and Rao

[28] compared favorably with other techniques.

In problems with insignificant constraints on the control inputs,

the weighting matrix R in a quadratic criterion may be small. This leads to

high gain solutions as they were discussed in the previous section. A

comparison of various high gain feedback systems is made by Young, Kokotovic

and Utkin [29]. This comparison also includes variable structure systems,

which in their sliding mode are insensitive to parameter variations and distur-

bances, similar to the high-gain system [30]. Young [31] applied this concept

to the design of an adaptive model following control system and compared the

results for the longitudinal motion of a Convair C-131B aircraft with other

model following techniques.

A special case of a high gain control system is useful, if the

reference or disturbance input signals can be exactly modeled and asymptotic
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Ktracking or disturbaace rejection is required. The use of integrators in

the loop for zero stationary errors in step and ramp responses is a classical

recipe. Also for other inputs an internal model of the input can be used,

e.g. a tuned oscillator (notch filter) for disturbance rejection of helicopter

rotor vibrations, whose frequency is regulated. Such a high gain at particular

frequencies makes asymptotic tracking robust to plant parameter variations

as long as the loop remains stable. This robustness problem was studied by

Davison [32] and others. In sampled-data systems the internal model is to be

implemented in continuous time, if the tracking property is required also

between the sampling instants [33].

Some common problems in all high gain concepts are

. Measurement noise goes highly amplified to the actuator inputs.

• High values for lul and ii1 may occur.

. Non-cooperative efforts of the actuators may occur.

The LQG design method offers a systematic way to avoid these difficulties by

increase in the R matrix and by the use of a Kalman filter.

3.3. Robustness with Respect to Large Perturbations in Known Directions

3.3.1. Parameter Methods

In the methods of Section 3 relatively little knowledge about the

parametric perturbation is assumed. The results are therefore primarily valid

for small perturbations. In some cases information is obtained about how big

the perturbation is allowed to be in order to maintain stability.

In situations where large perturbations in known directions occur,

the previous methods generally lead to very conservative results. In this

section some tools are discussed by which such perturbations can be accomodated

in the design. The next chapter and [341 also describe a parameter space
0
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method which is applicable to this problem.

In typical design examples not only the mathematical model of the

plant is uncertain, but also the formulation and relative weight of many design

criteria. Some of these criteria are in form of inequality constraints; others

are to be minimized. It is artificial to put all of them together into one

scalar performance index, which is then minimized over the parameters in an

assumed controller structure. For the designer an interactive computer-aided

design procedure is more useful, where he can make higher level decisions of

how to change requirements after each computer solution or failure to find

a solution. The computer may have to solve a nonlinear programming problem in

each design step. Various aerospace problems have been formulated and solved

this way. Schy [37,38] deals with a lateral stability augmentation system for

a fighter airplane, Hauser [39] with an autopilot for a flexible space vehicle.

Further design examples are given by Karmarkar [40] and Kanarachos [41]. It

is convenient to formulate all design criteria for each operating point as

components of a performance vector ,. It may, for example, contain

bounds on the individual feedback gains Iki.

and for each flight condition specifications on

. eigenvalue location.

. deviation from nominal response for typical reference and

disturbance inputs.

. bounds on the control rate Idl for typical reference and

disturbance inputs.

6 Kreisselmeier and Steinhauser [42] use in an example with five flight conditions

of a F4-C aircraft a 40 dimensional vector f. A vector constraints g<c (i.e.

componentwise gc.) is given and the feedback gains K are the solution of2.

Fe
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the problem

Min[Max gi(K)/cil. (17)

K i

Using an algorithm described in [43] Kreisselmeier and Steinhauser obtain a

Pareto-optimal solution. Figure 3.3 shows some reference step responses of

this design for an F4-C. It is stable in the five flight conditions. The

open loop responses on the left side show that the aircraft is slow in flight

condition I (landing approach). Here a slower reference response was given

than for the high speed condition 2 and 4. The desired reference response

was specified as gi(t) =gM(ait) where for each flight condition i=1,2,...,5

an appropriate time scale ai was chosen. This resulted in the insensitive

* closed loop responses on the right side of Fig. 3.3, which required only a

relatively small control rate It. The same feedback resulted in similarly

good disturbance responses.

Also the results of Shy (38] showed that an amazingly large variation

of parameters can be accomodated by a fixed gain controller, if the requirements

were in good agreement with the physical limitations. These designs result

in low gain solutions, and the dynamics change in an acceptable or desirable

* way as the physical parameters vary.

3.3.2. Integrity: Robustness with Respect to Sensor and Actuator Failures

If an actuator or sensor is connected to a high gain, then its

* failure is a larger perturbation than in a low gain situation. Thus requirements

for robustness with respect to actuator and sensor failures tend to result in

low gain solutions. Even more important is the aspect of avoiding non-

cooperative effozts of actuators. Tf, for example, one input alone places some

eigenvalues in the right half plane and another is needed to bring them back
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*O Figure 3.3. Response to a step command: F-4 (Phantom) aircraft at 5 extremal

flight conditions (altitude 0 ... 40 000 ft. Mach number .2 ... 2.2).
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I into the left half plane, then apparently no robustness of stability with

respect to actuator failures can be achieved.

One approach to achieve robustness of stability with respect to

certain failures is to try to extend gain reduction margins to include gain

zero. Belletrutti and MacFarlane [44] use the term "high integrity" for

robustness with respect to certain failures. They check the stability condi-

tions for gains reduced to a small & using Nyquist stability criteria for

characteristic loci of principal submatrices of the return ratio. In this

* analysis the loop must be broken at the point where the actual failure may

occur and thus the gain reduction margin is needed. Owens [45] derived

necessary and sufficient conditions for integrity of systems with multivariable

proportional-integral controllers.

Solheim [46] formulated the integrity problem in the context of

quadratic optimal control. In examples an increased integrity is obtained with

an increased weight R on the control in the quadratic criterion, another

indication that the solution will tend to a low gain solution. Wong, Stein

and Athans [47] show the following gain reduction result for LQ regulators:

The matrix Ac (A) =A+BAK with A=diag[j...ema], where K minimizes

x'Qx+u'Rxdt for A=I, is stable for all

A > i[I - (R1/ 2 K Q-IKRI/2)- (18) 

This generalizes the bound c >0.5 from [161. The recommendation is, from a

purely robustness standpoint, to choose Q and R such as to maximize

in= mn(RI/2K'Q_ KRI/2)'I} (19)

Kreisselmeier [481 proposes to modify the quadratic criterion, where for each
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considered failure situation, a quadratic criterion is formulated and the

overall criterion is a weighted sum of these terms.

In failure situations it may be desirable to specify other emergency

boundaries in the eigenvalue plane than only the imaginary axis. This problem

is treated by parameter space methods in [34] and in Chapter 4. The concept

is illustrated for the case of sensor failures in Fig. 3.4. A nominal region
!-

for the eigenvalue location and a larger emergency region are mapped into

the space of
k?

' J Nominal Boundary

EegnyBoundary

Figure 3.4. Illustration of failure robustness and
emergency boundaries.

feedback gains. It is assumed that the system is represented in "sensor

coordinates", then a failure of a sensor for state variable x. corresponds to

switching k. to zero. The projection of point 1 on the k axis is outside
3. I

the emergency boundary, i.e. the emergency specification is not robust with

respect to a sensor failure k. =0. It is, however, robust with respect to

k = 0 . For all points in the shaded area the emergency specifications are

robust with respect to either sensor failure. An alternative to this robust

. .. ...
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solution would be in this example to omit sensor I and to use multiplexed

sensors for x2 and failure detection.

In the multiinput case a sensor failure is equivalent to changing a

column of the K matrix to zero and an actuator failure is equivalent to

changing a row of K to zero. In [34] an actuator failure example is studied,

where the problem is formulated such that the eigenvalues are placed in a

nominal position with two actuators and move as little as possible towards

the stability boundary for failures of either one of two actuators.

Apparently a necessary condition for robustness with respect to

failures is that the insufficiently damped eigenvalues (outside the specified

region) remain controllable and observable after the failure. In the crane

example, the sensor for the crab position x1 is essential, because x1 is not

observable by other states. In such situations it is apparently misleading to

use high gain feedback and to show gain reduction to only a few percent of the

high gain. For failures of essential actuators and sensors only redundant

components can help.
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CHAPTER 4

PARAMETER SPACE DESIGN OF ROBUST ONTROL SYSTEMS

4.1. Introduction

In this chapter a new tool for the design of robust control systems

is proposed. First the type of robustness problem for which the tool can be

applied is described.

Robustness of a control system is defined in terms of system properties

which are invariant under a specified class of perturbations. The system

* property considered in this paper is "nice stability" as specified by a region

r in Lhe eigenvalue plane, in which all eigenvalues must remain in spite of

perturbations. The perturbations may be large changes of physical parameters

of the plant or failures of actuators and sensors or inaccurate implementation

of the control law.

The following assumptions are made.

1. Only linear plants

x(k+l) =Ax(k) + Bu(k) or

* k(t) =Ax(t) + B u(t) (20)

x' [xl ...*x n] ,  _ u U ...

*are considered. It is assumed that eq. (20) is written in

"sensor coordinates", i.e. all measured variables are state

variables x.. It may be part of the design task to decide

which states are to be measured.

2. A and B may depend on a physical parameter vector e. Only

some typical values
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Aj =A(j), Bj =BOj) 1,2 ... 1 (21)

may be given. Also the required system property I'. may

* depend on the operating point e..-j

3. The simplest assumed controller structure is state feedback

u -K x. (22)

U
It may not be possible to make all plant models A., B. nicely

-J -j

stable with the same fixed K, i.e. to have all roots of

J
TT det(XI-A+B K)0= (23)
j=l

in the specified region r in the X-plane. In this situation

the designer may decide

a) To relax the eigenvalue region specification such that a

solution exists.

b) To use several feedback gains, each of which nicely stabilizes

a group of pairs A.,B. The gains can then be scheduled
aj j*

depending on a measurement, which admits a distinction

* between the groups.

c) To use linear dynamic feedback of order m with controller

state vector x i.e. try to find a state feedback

u K (24)

!Uh_ M N a e

which nicely stabilizes the alimeted system
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The controller M,N,L with n inputs and p outputs may be

written in a canonical basis, such that the feedback matrix

in eq. (24) contains pn+mn+mp design parameters. ((p+m) x (n+m)

coefficients in eq. (24) of which m are normalized by the

choice of an mxm transformation matrix).

d) To use nonlinear feedback, e.g. an adaptive system
'0

estimating the physical parameter vector e in eq. (21).

The tool proposed in this paper is useful for problems of the types a), b),

and c).

If some states are not available for feedback, then the corresponding

columns of K in eq. (22) or of K and M in eq. (24) are zero.

4. A sensor failure is equivalent to switching all elements of the

corresponding column of K (or K and M) to zero. An actuator

failure is equivalent to switching all elements of the

* corresponding row of K (or K and L) to zero. Assume that M

such failures or failure combinations have to be considered,

which lead to M crippled feedback matrices K M, m=!,2,...,M.

* The design goal is to find K such that all roots of
NM J
mrl j"(),I-A +BjKm) are inside an "emergency region" in X-plane.

Apparently it is a necessary condition for nice stability to

* be robust under such failures, that the plant modes outside

the specified region F in the eigenvalue plane remain control-

lable and observable after the failure. This fact may be used
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(in the decision for which sensors and actuators redundancy

is necessary. Components which are needed to make the

insufficiently damped modes observable and controllable are

~"essential".

Example 4.1: (Essential sensor) Consider a crane with the physical parameters

mc =crab mass, mL= load mass, I=rope length, g =gravitational constant. Its

state variables are xI = crab position, x2 = crab velocity, x3 = rope angle, and

x4 = rope angular velocity. For small rope angles the linearized state

equations are

0 1 0 0 0

0 0 m~g/m c 0 1 u (26)

0 0 0 1 mc 0

0 0 2 0
p

with w2  (mc+m)g/mce. Input u is the force accelerating the crab. Eigen-

values are [0,0,jw p,-j . The observability analysis shows that x1 is not

observable by x2, x3, or x4. Since one of the zero eigenvalues is unobservable,

the crab position sensor is essential for stabilization.

5. It is assumed that desirable features of the dynamic behavior

of the control system can be specified by a region r in the

0 eigenvalue plane . Examples are

a) the stability region, i.e. the left half s plane or the

interior of the unit circle in the z plane,

* b) military specifications for damping and natural frecuency of

modes of an aircraft,

c) in some problem formulations it is convenient to define a
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family of regions Fr with a parameter r. In the z-plane
r

this may be a family of nonintersecting circles (see Fig.

4.1). For r = 0 it is a deadbeat solution, and r in the range

0.3 to 0.5 corresponds to well damped transients. (The

right shift of this circle excludes heavily oscillatory

solutions, the circles approximate the usual logarithmic

spirals for constant damping augmented by a constraint on

Izi). For r=l the stability boundary is obtained.

Similarly in the left half s-plane, a family of hyperbolas

(guaranteeing a minimum damping and a minimum negative real

part of the eigenvalues) may be introduced, augmented by

parallels to the imaginary axis in the right half plane

(see Fig. 4.2). The equations for these families of

boundaries will be given later.

Three types of design problems for robust control system may be distinguished.

i. Given a system property and a controller initially designed for

nominal parameter values, under what perturbations of the para-

* meters is the property robust? Modify the controller such as

to extend the admissible class of perturbations. Example:

Try to extend the gain and phase variations under which

4 stability is robust. It is difficult in this approach to

accomodate large perturbation in known directions, e.g.

large variations of the physical parameter vector in ea. 21.

* Typically very conservative results are obtained.

2. Given a clais of perturbations and a system property with a

parameter r, e.g. the family of boundaries r for a given

* controller which is the best value of r such that r is robust
r
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Figure 4.1. Circular boundaries in z-pJlane
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under all perturbations in the given class? Modify the

controller to improve r. The system property may be formulat-

ed such as to include several design aspects and an optimization

can be performed.

3. Given a system property and a class of perturbations, does

there exist a state feedback solution such that the property

U is robust? If not, does there exist a linear dynamic feedback

controller of order m, eqs. (24) and (25), such that the

property is robust? Find the set of admissible controllers

* and select one based on criteria, other than robustness, e.g.

based on simulations with a nonsimplified nonlinear plant model.

It is primarily this third problem formulation for which the proposed design

tool can be applied. The concepts however, are useful also in the second

problem. The design tool basically consists in mapping boundaries from the

X plane into boundaries in the parameter space ), whose coordinates are the

elements of the state feedback matrix. Then all tradeoffs between dynamic

requirements, robustness requirements, and bounds on the feedback gains can

be made in 7 space.

The details and most of the examples are worked out for single input

plants with state feedback

Su = -k'x = -[k 1 k2 ... knlX (27)

or state output feedback, i.e. some k =0. For multi-input plants the basic

result is formulated.

Parameter space methods have a long tradition, mainly in Russia
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and Yugoslavia. Siljak [49] gives a historical review of the work by

- .Vishnegradsky, Neimark, Mitrovic, and others. SilJak generalized these

parameter mapping methods significantly. A typical procedure for a continuous

time system is to assume a controller structure with two free parameters a

and A. Determine the closed-loop characteristic polynomial

nU P(s) = E0pi(aO)si = 0. (28)

Substitute s =o+jw and separate eq. (28) into its real and imaginary parts:

Re(,w,c ,) -0, Im(a,w,,O) =0. Assume these nonlinear equations have a

solution

a = (Ow), = (ow). (29)

Equation (29) allows mapping a,w pairs on the boundary into the a-0-plane.

The image boundaries divide the a-0-plane into regions characterized by the

number of eigenvalues inside and outside the s-plane region.

In the present paper the control system structure is restricted to

partial state feedback. This permits simplifying the determination of eq. (29)

by pole placement methods. Consider for example a second order single-input

system with k =a , k2 = in eq. (27). In classical parameter plane methods
1 '2

P(s) =det(sl-A+bk') = p (1, ) + pl(c,)s +s2 =0 is determined and with s =c+jw

00 solved for a and 0. In the method proposed in this paper the p i are expressed

in terms of a and w by

P(s) (s-C+j )(s-c-j L) = s -2s + +

2 (30)
=p (a,) +p(c)s + s =0.

Then by pole placement
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(31)

k2  1(PoP) =(o, W).

Thus the mapping equation (29) is obtained in a different way.

More generally for an nth order single input system in both

approaches an n dimensional parameter space 1 with coordinates pi is introduced

as an intermediate step between the set of eigenvalues A= X j and the

X-space. The relation between A and X can be expressed in both directions:

a) From ( to V by the characteristic equation P(X) =det(XI-A+bk'),

from 9 to A by numerical factorization of P(%).

b) From A to 9 by multiplication of elementary factors P(X) =

(1- 1)(X-A 2) ... (X-%n), from t to X by pole placement.

Apparently direction b) is much simpler than direction a). In this paper only
,1

direction b) is used.

In the next section pole placement is reformulated as a linear

mapping from 4 to X space. This is then used in the third section to map not

only a trial point from -C to k or from A to k, but to map boundaries.

4.2. Single Input Pole Place.ient--A Linear Mapping

4.2.1. State Feedback
n- l~n,

Theorem i: Givei a polynomial P(X)=po+po +... ++Pnl arn nxn matrix

A and an nx 1 vector b such that det R#O, R=(b,Ab ... A n-b]. The unique

solution to det(XI-A+b k') = P(%) is

k' =2 E (32)

where
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eP* [Po Pi ... Pn-l 1], E= eA

and e' is the last row of R

Proof: Existence and uniqueness of the solution were shown by Rissanen [50]

by transformation to control canonical form.

Let F=A-bk' and expand powers of F as follows:

F° =A ° I ()

F =A - b k' (2)

F2 =A 2 -Abk' -bk'F (3)

F n =An -An-lbk'- A- 2b k'F- -bk'Fn l  (nl)

Multiply the first equation by po the second by pl' etc., the (n+l)st row

by one and add the equations

P(F) =P(A) -A,A...Anb L- J

* By Cayley-Hamilton P(F) =0. Then

P_) .. An-I b](33)

k' must satisfy the last row, i.e.

k'= e'P(A), e' = [0 ... 0 1R 1. (34)

Explicitly
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n-1 n

eeA -,I+Pl p -4 +

' = [P_ .l"2n-1 A] Q.E.D.

e An

The form (34) of the result was derived in [33]. The (n+l) xn matrix E is a

convenient representation of a controllable pair A,b. It maps a vector

P 2'[Po Pl ... Pn-1] in 9 space into a vector k' =1*E= [p' IE in X space.

E is evaluated only once for a given pair A,b. The mapping of each trial

2 2
design point in C* space then requires only n multiplications and n additions.

,. This compares favorably with mapping a trial design point from the parameter

space of quadratic criteria via the Riccati equation into X space. This is

an advantage for computer-aided design methods, in which many trial design

points have to be mapped and displayed graphically.

Example 4.2: (?ole placement, output feedback, gain scheduling). For the

crane of Example 4.1

YMc/g 0 12mc/g 0

0 IMc/g 0 Y2 mc/g

E= 0 0 "mc 0 (35)

0 0 0 -IMC

_ 0 0 (mc+ML ) g 0

k = PoAMc/g

k, = p 2m /g

2
3 = pol mC/g - p2 'mc + (mc+mL)g

4, = 
2mPp 12/g-P3).
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This result admits some conclusions about state output feedback and gain

K scheduling

i) for stability p0 > 0, i.e. k1 > 0,

ii) for stability p1 > 0, i.e. k2 > 0,

iii) k3 = 0 implies the constraint

p2  P + (m+ )g/

iv) k4 = 0 implies the constraint p3 
= pl/g,

v) a gain scheduleing for different loads ML can be implemented as

k3 = k30 +mLg with k30 = poA2mc/g -P2 mc +mcg.

The other k. remain unchanged. With this gain scheduleing the

closed loop eigenvalues do not depend on the load.

in numerical calculations with large n the accuracy of the vectors e' Ai

i=l,2,...,n, must be checked. One test is to let po=Pl Pn-l=O.

,n. Evlut + n lA n . -hThen k' =e'A Evaluate det(XI-A+b e'A ) =po+plk+ +pn-l Pi

should ideally be zero. Their magnitude is a measure for the error in e'An.
yn

Another convenient test follows from the definition of e'

k 0 k=0,l,...,n-2• e'Akb =(36)

1 k=n-l.

This relation also implies that e', e'A ...e'A are invariant under state

feedback (A,b)-.(-bk',b). If the inverse of eq. (32) is needed, the last

row of E can be brought to the left side
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k'-e'An f P' n o Pl "'" pn- '-l [ e'A

e 'An-l

p'1f W(kt-eIAn). (37)

It was shown in [33] that the columns of W can be evaluated recursively by

Leverrier's algorithm, which also gives the coefficients a. of the charac-
.. xn- I n. nti

teristic polynomial of A, det(XI-A) =a +a X+... +a n. +,. In this

* case it is more convenient to express the last row of E by the Cayley-Hamilton

theorem in terms of the previous ones. Then

' f '-a)W= [a. a1 ... a n-I1

(38)
p' fWk'+ a'

4.2.2. Partial Pole and Gain Assignment. Output Feedback

So far the mapping from 9 to ( has been formulated. This is easily

extended to mapping from A " )n to (. P(X) may be written as

'0 P(%) =f (X_- 1)('%-%2) ... ('X) (39)

Then by eq. (34)

k' = e' (A- 1 ) (A-X2 1) ... (A-knI). (40)

This form of the result admits consecutive assignment of one eigenvalue after

the other. P(X) may be factorized in any form

P(X) = Q(X)R(X)

a-1
R(X) = r0 + X... + rg.X + (41)

Q(X) = qo+ql1+... +qn-g-l n-g-I+, n - g .
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Let for example the n-g roots of Q(X) be fixed, then

_k' = e'P(A) = e'Q(.)R(A) e'QR(A)

l(r. ... r.. r* 1] (42)

It is also possible to fix g gains k. =*n where n is the ith column of E.

These g linear equations in the p coefficients may be used to eliminate r'

[55]. 2* is written as

qo0 q " " qn-g- 1 0...0

1 1] = [r° ... rg I 0 qo ..... qn 1.

0 "qo""" "qn-g-l 1

2* = [r' 1] ,

where S is a gx(n+l)matrix and t' a 1x(n+l) vector. Let be the fixed gains,

which for convenience, are chosen to be the last g gains in k'. Then

IS

' = [kt k'I E = 2-[E E = [Ir' 1]

k'= rs E t 'E
-~ -b + b

which can be solved for

r'= (-t'Eb)(SEB)I (43)

if the gxg matrix SE b is invertible. Note that this condition does not

depend on the values of k'. Thus this is the same problem as in output feedback,
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_ -0, where certain pole locations cannot be achieved [51]. The singularities

of SE wbwill require further study. ak' is determined by

k =p*E a  f ( 'S+ t')E (44)

-a (44)

Assigning the n-g eigenvalues of Q(X) determines S. The remaining eigenvalues

can be determined by factoring the residual polynomial R(X) with coefficients

given by eq. (43).

Example 4.3: (partial pole placement) For the crane let

P(s) = (q +q l s+s 2 )(r +rs+s 2 ) (45)

where q and ql are fixed and r and r1 remain as free parameters.

e 'A

e= Q-= -q q 1 LeAq
0' -- • R2

_e'

cP
0 p0 q1  qq 0 g q

=ef R(A)
-Q

k' 9[ q 0 -q- 19 Y -g(6

g ol 0  qg- rQ (2- )g -q-(6

Let for example the natural frequency w of the pendulum be unchanged, but
p

2 2
introduce a damping d, i.e. Q(s) = p +2dw s+s , then

c m c2

m+c. C L

[r r I] 0 mc+ML -cg mL . (47)

0 0 0 -cg

L- --
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with c =2d , (m- ,-)mc/g.

Example 4.4: (fixed feedback gains) For the crane of Example 4.2 let k and

k4 be fixed, i.e. k'= k , kk=[kl k-a [2 k3] - [e 4]

0 2/g Am0/g 0

IMnc/g 0 0 2m C/g

, 0 -0m b 0

0o0 0 -Im

0 (mc _da 0 0 _

Then by eq. (43)

r. r,]1 = [k, k4+ql1Amc]. [ 0bn c/g ::Ax:;;:1j/0 o m Ag1
The inverse exists if q #g/I and q A 0. Then

r k1 q imck 1 q /q 0+k 4 /1 (48)
0 qojmc rI mc (qo/g-I)

and with eq. (44)

qqlm c£-klgql/qo +k 4qo
kc2 q 1-g  (49)

q2-0 2
q3g k4q1 k0

k will be fixed by the following consideration: Assume a force limitation

lu(t)l- U for all t for a typical operation of the crane, i.e. a displacement

of a load at rest, x(0) =[L 0 0 0]', L>0 (e.g. length of a loading bridge)

to a final position x(tE) = 0 0 0 01'. Typical responses of sufficiently

nuS- • m n 1 ,- . ,
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X stabilized cranes show an initial peak u(O) of the force as the maximum value

of lu(t)l. A simple approach to avoid saturation is therefore to meet a

necessary condition by fixing Iu(O)I =U and checking the conditions for

a(0)/u(O)- 0. Then lu(t)I for t >0 may be checked in a simulation. Here

u(O) = -k'x(O) = -k1L

(50)

U c(0) = -k'L(-bk')x(O) = L k 4 / e) / mc =LklP3

Thus a(0)/u(0) =-I/p3 -O for all stabilizing feedbacks and Iu(0)t =U results

in kI 
= U/L.

It is desirable to avoid the difficult measurement of the rope

angular velocity x4 =Y. Thus k 4 =0 is chosen. Then by eq. (48)

ro qlg(I-'U/Lmcqo)
r =---- r I = .(1

o Lmq 0 1 qo-g

r and rI are the coefficients of the residual polynomial, which is obtained

after q and q, have also been fixed. Necessary and sufficient conditions for

stability are qo0 >0, qI>0, r0 >0, r1 >0. With eq. (49)

qo q I mc -Ugq 1 /Lq0
k 2 qo01-g

2 2 (52)

kB=-Inc(qo+ -) -(q o-g+ ) + (mc+mL)
3 c 0 q 0 )-g Lq0  q i-

4.2.3. Sensitivities, Incremental Stabilization

The influence of a coefficient pi of the characteristic polynomial

on k', given the other pj, follows from eq. (32) as



46

-k- = e'AL. (53)
ap. - _

The influence of an eigenvalue X. on k', given the other X., is by eq. (40)

bk' . -- (A - (54)

For complex conjugate eigenvalues quadratic factors in P(X) are more convenient.g2
Let P(X) = (a+b%+X 2)R(X), then

k' = e' (aI + bA +A2 ).R(A) (55)

ak ' ak '
a -'R(A) =-I e'AR(A). (56)

rExample 4.5: (Incremental stabilization, global robustness) For the crane of

222
eqs. (26) and (35). the open loop characteristic equation is s (s +w ) =0.

Find a small stabilizing feedback Ak' with the least number of required sensors.

P(s) = (s2+as+b)(s2 +cs+2 +d) with small a>O,b>O,c >0, and small d
p

k' = e' (A2 +aA+bI) [A 2 +CA+(W2 +d)l] (57)

p

Ak' =- a + • b + - • c + •ka-- d (58)

ak' ,2 22) A3+2

-(A +aA) e) = e'( +W A)
oa b=c=d=O ba - p - -

e' ( 2  2 2 2 2
-l =d= -be( +bl)(A +W P I) = e' (A +" P I)

ok' 22= -- e ' A(A+cA+u) = e 'A3

ca=b=d=0 OC - -P- -

S ak'a 22 + (w22
da=b=c=O d e'A +d)l] = e'A2

aIoc=
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3 2 2 2
k= (a+c)A +(b+d)A +awA+bWPL]

Ak bpmc/g (mc+mL).b

1 PcAk = a2. m /g (mc-m c =).a

Ak =bw2 12m /g-(b+d)lm Ambmd

22?
Ak 4 = aw pm/g -(a+C).m =p C C .~~~ )

With a >0, b >0, c >0 this is the cone of stabilizing directions at the origin

of the four dimensional k space. It includes the directions Ak3 =0 and Ak4 = 0,

i.e. no feedback of the rope angle is necessary with

d = m b. (59)
mC

No feedback of the rope angular velocity is necessary with

C a. (60)
m

c

Lk and Ak must be positive for stabilization, i.e. crab position and crab
S1 2

velocity must be available for feedback. Output feedback

Lk' (mc+mL)[b a 0 0] (61)

with small positive a and b then stabilizes the system. For sufficiently small

a and b the characteristic polynomial is arbitrarily close to

2 2 9
P(s) = (s2+as+b)(s +a as+' T" - b). (62)

m p m
C c

If the physical parameters of the crane are unknown, and output feedback

Ak' = [:k1 Ak2  0 0] with small Lk1 >0,

S 1 20(63)

,Ak >0
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is applied, then in eq. (61) a =k 2 /(mc+mL) and b--k/(mc+mL) are unknown, but

positive, i.e. with the feedback of eq. (63) stability is robust with respect

to arbitrary changes of load mass mL, crab mass mC, rope length A, and gravi-

tational constant g. Thus in this example global robustness of stability

with respect to perturbations in four directions is achieved.

Note that it is possible to destabilize the model A and b in eq. (26)

with feedback (63), if small changes in arbitrary coefficients of A and b are

permitted. The general assumption in this paper is that A and b do not change

arbitrarily but in known directions. Only by this assumption does it become

possible to accomodate large parameter variations.

4.3. Mapping of Boundaries

4.3.1. Mapping from X plane to Y space

In the complex plane of eigenvalues

X = v + jw (64)

boundaries w2 =w2(v) (i.e. symmetric with respect to the real axis) are of

interest, which are related to desirable system properties, e.g. stability,

damping, bounds on the natural frequency. Examples were given in Figs. 4.1

and 4.2.

Assume, due to a change of the state feedback gains k', a real root

crosses the boundary at its intersection with the real axis at % =vR Then in

space a boundary

• o. n-2 n-

P(%) =(X-VR).R(%), R(,%) =r+ X+ ... +r n-2 +0 n\ (65)
R ' o I n-2

is crossed, which is linear in its parameters r,0 rP ... ,r -2 i.e. it is an
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(n-i) dimensional hyperplane. Due to the linearity of k' = *E= ' I]_,

this boundary maps into a hyperplane in K space, which is crossed by the

feedback gain vector k'.

Assume, due to a change of the state feedback gains k' a complex

r conjugate pair crosses the %-boundary at v+_jw. Then in 9 space a boundary

q P(X) = (X-v-jw)(X-v+jw).R(X) =Q(X)R(X) (66)

where

2 2 2
Q(X) =X -2vX+v +w (v)

4and

R()=r+rlX+...+r n- 3  n2
o 1 n-3

is crossed. For a fixed v, i.e. a fixed pair of eigenvalues on the boundary,

this is a (n-2) dimensional hyperplane in V and X space. However, for

different values of v different hyperplanes are obtained. For fixed R(X) the

boundary line in 1 and X space is obtained by moving a pair of conjugate eigen-

values along the boundary. In this case the form of the boundary w 2(v) in eq.

(66) determines the shape of the boundary line in 6 and K space.

Some boundaries of particular interest are:

1) Imaginary axis, stability boundary in s-plane, v=0, Q(

Q(X) =%)+ 2, boundary linear in w2

2) Parallel to imaginary axis

2 _ ) 2 2
V=Vl' Q( ) X2V +v1+w2 linear in w

3) Conic section syimnetric to the real axis, i.e.

2 2
w =c 0+c IV . (67)

Special cases are
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c <0 ellipse, of particular interest are circles c2 --l, e.g.2 2

constant natural frequency curves in s-plane, stability

limit and other boundaries in z-plane, see Fig. 1.

c2-0 parabola, or if also c =, c0 >0 straight line parallel to

the real axis. For co =c l -C2 =0 boundary between real and

complex eigenvalues.

c 2 >0 hyperbola, in particular 
2 straight lines for w =c 2(v-v)

c >0, e.g. constant damping lines in s-plane. This

boundary is frequently combined with a parallel to the
0

imaginary axis. Here it is more convenient to use a hyperbola,

which guarantees the required damping and minimum negative

real part of the eigenvalues, see Fig. 2.

Substituting eq. (67) into Q(X) from eq. (66) gives

Q(X) = X2 - 2v% + (1+c 2 )v2 +cIv + Co. (68)

The boundary is quadratic in v. It becomes linear only if c2 =-I, i.e. for a

circular boundary in X plane. In other words: If n-2 roots in R(X) are fixed

S and the remaining two roots of P(X) move as a conjugate pair along any circle

in the %-plane with center on the real axis, then the corresponding point in

- and k space moves along a straight line. This is the reason for the proposal

of a family of circl' s rr in the z-plane in Fig. 4.1. Its equation is

2 2
(v-v ) +w = r

v 0o(Vo-I) =0.99r(r-1), Vo <0.5 for r l (69)

v =0 for ral.

So
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For r-0 it is the deadbeat solution with all eigenvalues at z =0. With

increasing r the center v of the circles moves to the right until it reachesO0

0.45 for r -0.5, it then goes back to zero to produce the unit circle for

r =1. If boundaries in the unstable region are needed, concentric circles

with radius r may be used. We may begin with a radius r such that all open

loop eigenvalues are enclosed by the circle, and design the feedback such that

Ur is reduced to a radius smaller than 1. In the further reduction of r at

tradeoff with the required gains must be made. For continuous-time systems

the family of hyperbolas r P of Fig. 4.2 in the s(=a+jw)-plane may be used.

Its equation is

W2  p2 +a 2 /p 2  for a<0

(70)

a=-p for a>0.

For large P an extremely fast solution is obtained, p = 1 gives the i/2 damping

line as asymptotes, for p-0 it goes to the imaginary axis. Negative P

represent parallels to the imaginary axis in the right half plane. Beginning

with a sufficiently negative p to have all open loop eigenvalues to the left

of the boundary F , p may be increased by the feedback to positive values,

where again a tradeoff with the required gains must be made.

Besides the real and the complex root boundary there is the third

* possibility of a root leaving the region through infinity. This can be

avoided by closing the contour in the s-plane by an arc of a circle with large

radius. Practically this may be a circle corresponding to the design bandwidth.

This is of particular importance if we need a 40 db/decade "roll off" band-

width limitation, e.g. to avoid interaction with unmodeled modes at higher

frequencies.
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Typical desirable regions for the eigenvalue location in the s- or

z-plane are connected and have two intersections with the real axis. In this

case there are two real root boundaries and a (possibly piecewise defined)

complex root boundary in 1 and X space.

Equations (65) and (66) show that the mapped boundaries in 9 and

space represent the conditions under which the number of eigenvalues inside

and outside a X-region can change. The boundaries partition the 9 and X

space into regions, each of them corresponds to a fixed number of eigenvalues

inside the X region, and it must be decided for which 9 or X region all eigen-

values are inside the X region. For closed contours in the %-plane the X

region is bounded, since by eq. (32) no k. can go to infinity. If there are

several bounded regions, a simple test is to check the eigenvalues for an

arbitrary K' in the considered k region. An alternative are Siljak's "shading

rules" for the boundaries [49].

For second and third order systems it is possible to visualize

regions in Y space graphically. This is done in the following for the unit

circle, i.e. the stability region of discrete systems in K space is determined.

* Figure 4.3 shows the regions in the k1-k2 -plane for a second order system. The

two real root boundaries are two infinite straight lines intersecting at B.

Thus B can be obtained by placing one pole at z=-l and one at z=l. The

* complex root boundary is the straight line AC. A is obtained by placing a

double pole at z -1 and C by a double pole at z=1. Thus Fig. 4.3 is completely

determined by three pole placements

0
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FP-6598

Figujre 4.3. Stability triangl, B in k- 2-ln foa

second order discrete-time system
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k'[l 2 LIE

Ek=[-1 0 l]E (71)

4k [1 -2 lIE .!-c

The boundaries partition the kl-k2-plane into five regions with the properties

1) both poles inside the unit circle, 2) one left, one inside, 3) one left,

one right, 4) one inside, one right, 5) complex outside or both left or both

right (a distinction between these three cases in region five would require a

further boundary distinguishing real and complex roots). Usually only the

stability region i is of interest.

Only the stability region will be determined now for third order

systems. It is shown in Fig. 4.4. The two real root boundaries are the two

planes in which the triangles ABC and BCD are contained. They intersect along

the straight line BC. B is obtained by placing two poles at z =-l and one at

z =1, C corresponds to one pole at z=-l and two at z=l. For any fixed real

eigenvalue and the two others moving along the unit circle a straight line is

obtained. Thus the complex root boundary may be visualized as being generated

by a moving straight line from a point on AB to a point on CD. It moves as

the real eigenvalue moves from -1 to +1. A corresponds to a triple eigenvalue

at z=-l and D to a triple eigenvalue at z=+l. Thus the vertices of the

stability region are obtained as

k'= [ 3 3 lIE

k' =[-l -1 1 liE
B (72)

k'=[1 -1 -1 liE
-;c

k'= [-1 3 -3 l1E.

Dj
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kII

B FP-6594

Figure 4.4. Stability region ABCD in k I -k -sae o

third order discrete-time system.
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Apparently the tetrahedron ABCD is a convex hull for the stability region.

For the 9 space Fam and Meditch [38] showed that this property generalizes

to arbitrary degree n of the characteristic polynomial.

Theorem 2 (Fam, Meditch): For an n-th order discrete system a convex hull

of the stability region in 9 space is a polyhedron whose vertices correspond

to the n+l polynomials with zeros in the set [-1, l3.

Proof: See [38].

Corollary: If the unit circle is replaced by a circle with center v and radius

r in the z-plane, which intersects the real axis at vl =v0 -r and v2 =v0+r,

then the vertices of the convex hull of the corresponding region in V space

correspond to the n+l polynomials with zeros in the set [v,v 2 3}. This may be

shown by reducing this problem to the previous one via z' = (z-v )/r.

Theorem 3: A necessary condition for all roots of det(zI-A+bk') =0, (Ab

controllable) to be inside a circle with real center and real axis inter-

sections at z=v 1 and z-v 2 is that k' is in a polyhedron in 7 space, whose

vertices are obtained by pole placement of the n+l polynomials with zeros in

the set lV

Proof: Follows from Theorem 2 and the linearity of the map k' =f*E.

If the circle in z-plane is deformed to a different closed contour

with the same real axis intersections at v1 and v2 2 then the certices of the

region in X space and the two real root boundaries remain unchanged, only the

hypersurface for the complex root boundary is deformed. It is an open question,

how far the region in X space can be extended in the X-plane such that k'

remains in the previously described polyhedron. Tle inverse problem (given a

region in K, which is the corresponding region in the X-plane?) leads to

sufficient conditions on k' to place all eigenvalues in the resulting region.
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This problem was studied by Marden [52, Theorem 8.2]. However, these regions

in %-plane are not nicely related to desirable dynamic properties. For the

polyhedron discussed above the region in %-space is the union of two circles

with complex conjugate centers and real axis intersections at vI and v2 .

Marden showed that this region cannot be reduced. Note that in this direction

from the n-dimensional K-boundary to the two-dimensional %-boundary no necessary

and sufficient conditions can be obtained for an arbitrary defined k region.

This problem is overdetermined. Thus it is advisable to assume a region in

X-plane and to determine the necessary and sufficient conditions on k'.

4.3.2. Mapping to a Subspace of

Some gains may be fixed to zero, like in output feedback or under

sensor failures, or to some other values like in Example 4.4. This means that

we are looking for a solution in a subspace of k. Such a solution may not

exist; take for example Fig. 4.3 and fix kI to be bigger than kl(A). Then

there does not exist a stabilizing k2. The set of admissible solutions may

also become disconnected, even if it was connected in K space; take for example

Fig. 4.4 and fix k2 =c such that the plane k2 =c intersects the two tips of the

stability region.

Example 4.6: (Disconnected stability regions in a subspace of O

1 0 0

x(k+l) = 0 1 x(k)+ 0 u(k). (73)

0.6 -2 2.1_1 1

The system is open loop unstable (eigenvalues z =0.5, z =0.8+. 0.3b).

Fi:x k, =0 (output feedback) and find the set of stabilizing gains in the

kI-k 3-plane. The real root boundaries are the straight lines
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for z 1 k3+ -kI -0.3

for z=-1 k3 _-k 1 +5.7

Pand the complex root boundary is the hyperbola

k3c = kI + 1.5 + 1/(k 1 -0.6).

q Figure 4.5 shows the three boundaries and the two disconnected stabilizing

regions. Its vertices are

k k3
1 3

E -0.4 0.1

F 0.1 -0.4

G 1.1 4.6

H 1.6 4.1

Nonconvex and disconnected solution sets like in this example lead to difficulties

in numerical algorithms. Sirisena and Choi [53] formulate the problem of

placing poles in a specified region by output feedback as minimization of a

function J, which becomes zero, if a solution is found. Their conclusion from

computational experience is: "If however a local (nonzero) minimum of J is

reached, the algorithm should be restarted with a different initial value of

the feedback matrix. Repeated failure to reduce J to zero would indicate the

absence of a solution". If we want to find the set of admissible solutions, a

systematric or random search in the appropriate subspace may be necessary. In

order to restrict the search to a promising region, necessary conditions, like

the one provided in Theorem 3, are very useful. In Example 4.6 this is the

quadrangle EFHG, more general the polyhedral cross-section of the subspace with

Ii
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the polyhedron in the n dimensional space. If no such cross-section exists,

it can be immediately concluded that no solution exists. The example indicates

that points near the real root boundaries are promising candidates.

For a fourth order system there exist gains, for which two complex

pairs of eigenvalues cross the boundary simultaneously. Here the complex

root boundary in X space intersects itself. If the two crossing points onq
the boundary approach each other and eventually become a crossing of a double

pole, then the bow in the boundary becomes a cusp.

Example 4.7: (Partial gain fixing) For the crane of Example 4 let m =1000 kg,
c

S=10 m, g= 10 m/sec2 , U =5000 Newton, L =10 m. The load mass mL is unknown.

Example 2 showed that only k3 =k 3 0+mLg depends on the load mass mL . Without

knowledge of mL only k30k 3-lOmL can be determined. For k,=U/L=500 and

k4 =0 find the region in the k 2-k3 0-plane, for which all eigenvalues are left

of the hyperbol_:

w = (2a)2 - 1/22 (74)

in the s-plane. Then for the complex root boundary from eq. (66)

4 qo = 5a2 _ 0.25, q1 
= -2a. (75)

and by eqs. (51) and (52)

q (l-l/2qo)

4 r = I/2qo, r = (76)
o qo-I

1000q1
1'c- (q -1/2q ) (77)

2c q 0- 1

= 10000(1/2q ° - l)[qo-l+q /(q-l)]

'3c O+c 10 M L ,
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The nice stability region will be constructed in the k2-k3 0 -plane. The complex

root boundary k2 (a), k3 0 (a) is obtained by substituting values c- -0.25 into

eq. (75) and q0 and qI into eqs. (77) and (78). The real root boundary at

a -0.25 follows from eq. (65) with kI 500, k =0 as the straight line
R 1 4

k k + 10 k = 95625-42.5 k2 . (79)
3R 30R M'1  k3 0R2

Both boundaries are shown in Fig. 4.6. For a=-0.25 the complex root boundary

starts at point A. With increasing a it goes through point B and for a--0.5,

(i.e. qo-1)to infinity. In general this singularity occurs at qo=g/2. For

c<-0.5 the complex root boundary returns from the opposite side to intersect

the real root boundary at C and itself at B.

Note that the characteristic polynomial is obtained by eqs. (75) and

(76) in factorized form. Thus the determination of the eigenvalues is easy.

They are given together with the k2 and k3 0 coordinates in the following table.

k 30 Eigenvalues

A 4233 -84292 Sl2 =-0.25, s3 4 -1.867+j2.125

B 2367 -35012 s =-0.2754jO.231, s =-0.908+jl.746
1,2 -3,4

C 2769 -22056 s1 =-0.25, s2 =-1.337, s3,4=-0.591+jl.071

At A the real and complex root boundary intersect, i.e. there is a double pole

at s 1,2 =-0.25. At B the complex boundary intersects itself, i.e. here we

have two complex pairs of eigenvalues crossing the boundary simultaneously.

At C a real root at s =-0.25 crosses simultaneously with the complex pair s

The shaded region with vertices A, B and C corresponds to eigenvalues to tile

left of the hyperbola in s-plane.
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(7 4.4. Robustness with Respect to Large Parameter Variations

Most existing methods for the design of parameter insensitive control

systems try to achieve robustness of a system property, like stability, with

respect to small perturbations of plant parameters in unknown or conveniently

analyzable directions, e.g. gain or phase variations. Such methods lead to

conservative results when applied to problems with large perturbations in known

directions, e.g. for the crane with widely varying load mass or rope length or

for an aircraft with widely varying altitudes and speeds. Let the plant model

in sensor coordinates

k = AQ)x + B(O)u (80)

be given for several typical values of the physical parameter vector , i.e.

Aj =A(2j), j1 =b(ej), j=l,2,...,J. A fixed state feedback k' is sought, such

that all eigenvalues of (A-bjk') are located in a specified region F in X-plane.

For each pair Ai.,b we obtain a different matrix E which maps a

desired region from the canonical parameter space 9 into the corresponding

region R. in Y-space via k' =p*Ej. The set of solutions to the above problem,rgo j --

if it exists, is the intersection of all regions R. in space. If no inter-j

section for all j=l,2,...,J exists, then it can be tested whether at least a

group of plant models can be nicely stabilized with one gain, and it may be

necessary to switch to a different gain for a different group of plant models.

Example 4.8: (Maximum parameter variation, gain scheduling) Let the mass mL

of the crane load be an unknown constant between the weight of the empty hook

and the maximum load for which the crane is designed. Under the constraints

of Example 4.7 find the fixed gain controller which accomodates the largest

load variation.

L
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The load mass enters only into k3 =k 3 0 +10 mL. In Fig. 4.6 the

origin of the k3-axis is identical with k30 = 0 for mL =O. With increasing

load mass the shape of the region of nice stability is unchanged, but it is

moved upwards by 10 mL in the k2 -k3 -plane, or equivalently the origin of the

k 3-axis is moved downwards by 10 mL in the k 2-k 30-plane. Thus for load varia-

tions of cranes it is not necessary to plot the shifted diagrams in order to

find the intersection. The largest load variation can be accommodated at the

largest extension of the nice stability region in k3 direction, this is between

C and D. D has the coordinates k2 =2769, k30 =-45503 and corresponds to the

eigenvalues sl,2 =-0.267+jO.680 and s3, =l.118+jl.872. Thus k2 is chosen as

2769. This results in an admissible load variation mL = (-22056+45503)/10

= 2344.7 ; 2345kg. Assuming the weight of the empty hook is 50 kg, then k =-21556
3

puts the eigenvalues for mL=50 kg at si=-0.25, s2 =-1.337, s3,4 =-0.591+jl.071,

where sI and s3,4 are on the boundary F. For m =2395 kg the eigenvalues are

at sl, 2 =-0.267+jO.680 and s 3,4=l.118+jl.872, where s1. 2 is on the boundary.

In summary: The solution

k'= [500 2769 -21556 0] (81)

gives the following properties of the control system.

a) Initial peak in the force u limited to 500L, where L is

the required load displacement.

b) No measurement or estimation of the rope angular velocity

x4 = required.

c) Under the constraints a) and b) maximum possible load

2 2
variation. The eigenvalues are left of 'i= (2z) - /2 if

and only if 50 kg<m <2395 kg.

L
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ANow assume that the crane is designed for a maximum load of 3500kg, i.e. a

gain scheduling is necessary. The second load range may be chosen as

1155 kg<mL< 3500 kg, i.e. k = -10506. Then for 50 kg<mL<1155 kg, k3 =-2155633

must be used and for 2395 kg <mL<3500 kg, k3 =-10506. For the overlapping

range 1155 kg <mL< 23 95 kg either gain is good, such that the crane operator

can switch between high and low load based -n his very crude load estimate,

q which may be 135% wrong. This wide overlap provides robustness of the gain

scheduling scheme.

If the rope length of the crane is varied, the shape of the nice

stability region in Fig. 4.6 changes and an intersection of various regions

must be found.

For different values 0. of a physical parameter vector different-j

regions T. in the X-plane may be given and the intersections of the corre-J

sponding K-space regions may be found. This is particularly useful, if the

plant is slow for some parameter values and fast for others like in aircraft

control. A general recommendation for the design of robust control systems

with input constraints is: do not try to make a slow plant fast or a fast

plant slow by feedback.

The graphical determination of intersections is limited to two

parameters at a time. Intersections of three dimensional regions may be made

visible by computer graphic methods. In situations with more free controller

parameter the design may proceed iterativel', where in each design step n-2

feedback gains are fixed and admissible regions in the plane of the remaining

two feedback gains are determined. The results of Section 4.3.1 on mapping

circular boundaries give some additional insight, which is useful for a fully

computerized search for intersections of regions. First it is important to
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note that the nice stability regions are not convex and thus their intersection

may be disconnected. Consider for example the stability region for a third

order discrete-time system in Fig. 4.4. Assume that for a different value of

the parameter vector the stability region is turned around by 180 degrees

such that the two tips of the stability regions intersect. Then the set of

solutions is disconnected, even for full state feedback. In this situation1
a search in ( space may be made. Bounds for the search region are given

by the following.
J

Theorem 4: A necessary condition for all roots of !1- det(zl-A.+b.k') =0 to

be on or inside a circle with real axis intersections at z=v 1 and z=v 2 is,

that k' is on or inside the intersection of J polyhedra. The vertices of the

j-th polyhedron are obtained by assigning all (n+l) polynomials

P(z) =det(zI-A.+b.k') with zeros in the set [vlv 2j.-J - --

Proof: Follows from Theorem 3.

MThe intersection of polyhedra is a polyhedron itself, its vertices

are promising candidates in the search for points which also meet the sufficient

conditions. In order to define a rectangular grid for the search it is

convenient to put each pclyhedron into the smallest box with surfaces parallel

to the axes and to restrict the search to the intersection of the boxes.

4.5. Robustness with Respect to Sensor Failures

Sensor failures are assumed to occur in the form that the sensor

output is no longer correlated with the measured variable. As far as the

characteristic equation is concerned, this is equivalent to having a sensor

output zero. There may be a bias or other noise term introduced by the

failed sensor. This noise term can be considered as an external input. This
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may require that the failure is detected and the failed sensor is removed

from the control system. Then also the control law may be changed. However,

for this latter decision there should be sufficient time to come to a reliable

decision without false alarms. This requires that after the failure the system

at least remains stable with some stability margin. In other applications it

may suffice to be able to continue the mission after a sensor failure without

U removal of the failed sensor, e.g. to drive an automobile safely to a service

station to get a broken sensor replaced, such that optimal fuel economy,

emission control, acceleration, etc. is regained.

0 The robustness problem is: Consider M failures of a sensor or

combinations of sensors leading to the crippled feedback vectors M',

m=l,2,...,M, in which the appropriate elements of k' are replaced by zero.

Find k' such that all zeros of

M J
det(XI-A +b k1) = 0 (82)

m=]l j=1 -- -- m

lie in an "emergency region" FE in X-plane. The emergency specification is

robust with respect to a failure ot sensor i if and only if in k-space the

projection of k' into the subspace k =0 is in the intersection of all J

emergency regions.

Figure 4.7 shows an example of the intersection of emergency and

nominal regions in the kl-k 2 -plane. If we choose k' at point 1, then the
6

projection on the k2 axis is inside the emergency boundary, i.e. 7E is robust

with respect to a failure of sensor 1. It is, however, not robust with respect

to a failure of sensor 2, since the projection on the kI axis is outside the

emergency region. Points in the shaded region are robust with respect to

failure of either sensor. For no k' 7 E is robust with respect to failures of
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sensors I and 2, since the origin klI =0 lies outside the emergency region.

2oint 3 also meets the nominal specification and is a good candidate for a

robust control system. Since the nominal boundary intersects the k2 axis,

an alternative to the robust solution 3 is to eliminate the xI sensor and to

multiplex the x2 sensor. This would maintain the nominal specifications under

a failure of one of the x2 sensors. However, it requires failure detection

with at least three x2 sensors. For robustness with respect to sensor failures

a dynamic feedback structure like in eqs. (24) and (25) is more advantageous.

in Chapter 5 and [541, Franklin designs a flight control system with dynamic

feedback such that emergency conditions are robust with respect to an accelero-

meter or a gyro failure in different flight conditions.

4.6. Other Features of K-Space Design

4.6.1. Input Constraints

Constraints of the type Iu(t) I-U for all t or i(t)I 1! for all

t can be indirectly treated in K space. For the regulator problem

Iu(t)l = Ik'x(t)I ;:c (83)

with equality for the worst case of x(t) (e.g., x=ck for some c #O). Assuming

that all state variables have been normalized to their maximum value, the

norm !kl =k'----k, i.e., the distance from the origin in ,K space can be used as

a measure for jut. This provides a criterion for the selection of a gain from

the admissible set: Choose the point closest to the origin. Similarly

(t k'-A(t) - Ik'(A-b.')-(t)I and 'k'(A-bkl), can be used as a measure

for
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(1 4.6.2. Short Wordlength Control Law Implementation

The feedback control law may be implemented approximately in a short

wordlength microprocessor as

u+Au = k' + k )(2+ Ax) k'x+AkIx+kIAx. (84)

For small x the dominant term in Au is k'Ax, i.e. the gains should be not too

high. For large x the dominant term is Ak'x. Robustness with respect to Ak'

is achieved by maintaining a distance Aki from a boundary in each direction

ki.
O

Example 4.9:

0 -4 [6/16

x(k+l) = Ax(k) + bu(k), A = 4 b 5 /6

u = -[kI + Ak k+Ak]
u[ 1 +A 2-

Open loop eigenvalues z =,2 -2 . Find kl,k2 such that stability is achieved for

the following cases

a) maximum admissible Ak,

* b) Ak = 1,

c) failure of sensor 1,

d) failure of sensor 2,
• e) !ki 2 2

e) =k + k 2 minimal.

5 6

k =p*E= [po P1  11 6 4

4 -8

'The vertices of the stability triangle ALC in the k i-k2 plane of -4. 8 are

determined by the 3 poLe placements of eq. (52): kA =[21 6], k3,=t-l -14],
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k(- [-3 -101.

a) This is the center of the largest square inside ABC with

sides parallel to the axis. Here k'=[-0.4545 -10.7272].

It admits Ak=1.4545 and places the eigenvalues at z 1 =0.132,

z2 = 0.686.

b) The region for which stability is robust with respect to

Ak=1, is the triangle A'B'C' with sides parallel to those

of ABC, with a distance of the sides of V2 under +450. Note

that this region does not include the deadbeat solution at

, 2

k' =e =[4 -8]. This is a warning that points with the

maximum distance from the stability boundary in the %-plane

need not be particularly robust.

c) The region c is robcst with respect to a failure of sensor 1.

d) The region d is robust with respect to a failure of sensor 2.

e) Point E with = [48/13 -72/13] has the minimum distance

from the origin. This minimum norm solution puts the eigen-

values at sl, 2 =0.442+jO.897 on the unit circle. For stability

kI can be increased or k2 decreased by an arbitrarily small e.

4.7. Multi-Input Problems

* 4.7.1. Characteristic Parameter Assignment

In the single-input case it was convenient to have the canonical

parameter space ,6 as an intermediate step between the %-plane and K-space. It

* allowed studying the shape of stability regions without reference to a

particular plant. By the linearity of k' =p'+ linear properties in ;pace
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were preserved in the space. and 1 space had the same dimension n and

the mapping was one to one. In the case of p inputs the feedback gain

matrix K has p xn free parameters. Thus a p xn dimensional parameter space

with the elements of K as coordinates is naturally defined. The question here

is whether there exists a p xn dimensional canonical parameter space 1'
A'

which is linearly related to K but independent of the particular plant. Another

question is: If it exists, is there a simple relationship with the n-dimensional

6 space, in which stability or nice stability is defined as before. The

answer to both questions is a conditional yes. Some results are available in

0 [56], which will be reformulated and used to design simple systems for robust-

ness with respect to actuator failures. Before the main result can be formu-

lated we have to make some additional assumptions and to introduce some notation.

In the single-input case the implicit assumption was that changes

in physical parameters do not cause changes in the order n of the system

(which is true for all cranes, aircraft , and uter examples). In the generali-

zation to the multivariable case it is assumed here that the controllability

structure, as defined by the Kronecker indices, is unchanged by physical

parameter variations. For a controllable system

= Ax+ Bu, B = [b I b2... b (85)

the Kronecker indices -i. i=l,2,...,p, are the smallest integers k such that

r.,, = r iL,k, where

Ak-lBkb Akr. = rank k-I b . ] i=1,2,...,p
r.,k [-,--. BA " - b..] i i

_- (86)

o,k rp,k-l
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The Kronecker indices satisfy i + 2 +... + p=n. A vector Akb. is called

regular if rik = l+rilk' i.e. the regular vectors
l-il

bl,Ab .... A b

b Ab ... A b (87)
-2

b Ab ..... A p  b
- -p - -p

are the first n linear independent columns of [B,AB,A2B...]. By the defini- j
tion (86) A b. is not regular and can be uniquely expressed as

.. ..A bi=-[B,A B... A B]i.-[A '~b .. A b_]i(8
b'.* B]i-, bi (88)

where all elements of a. and -i multiplying nonregular vectors are zero, in

particular - 'has i. =0 if L -. By Popov's theorem on
-k = al1i-j = 3-i,

invariants [10] the Kronecker indices i. and the P-parameters Oi. i=l,2,...,p

constitute a complete set of independenc invariants for (A,B) under all

transformations

-i
u=M u (90)

In order to avoid the distinction between ce- and a-parameters in the

definition of a canonical parameter space A' first the P-parameters are

made zero by an input transformation, i.e. a modified system

x =A x+BMu = Ax + Bu (91)

11,idered with the "noraulized input"

u = -Kx+ r (92)

relaced to the original variables by
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i( -- -1
BK=BK , B=BM K=M K (93)

Now the 0-parameters of the pair (A,B) can be made zero by the choice

IL 21.....

0 1 ]0 1

M= " : = I 81

0 0 1 0 0 9
-- -- -(94)

This can be shown by putting the last term in eq. (88) on the left hand side

B - -[B, B ... A B]c~.i
0

0

Then with B =BM= [b ... b]

A~ 13A '. -[B,AB ... A BQi.

-1i - -l .-i1  -1

A -[BM -  ABM -  ... A BM ]o. (95)

A '. =-[IB,AB ... A Bjjc..
- -] . .. .

A comparison with eq. (88) shows that now the 0-parameters multiplying

A A... _ do not appear in eq. (95)

By Popov's theorem the Z-parameters remain zero under feedback,

i.e. the closed loop system with input rzM r
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:_=( -BK)x+Br= (A-_K)x+Br=Fx+Br (96)

has no P-parameters and F -h can be expressed as

F b.=-[B,FB.••F B]i" (97)

The n elements of pi, i=l,2,...,p, i.e. nxp parameters will be used in the

following as coordinates of a canonical parameter space 9 A, in which desired

closed system properties can be specified without reference to the particular

plant, with the only condition that the closed loop must have the same

* Kronecker indices ,i as the open loop. In the single-input case 2i =P2 i.e.

p, consists of the n coefficients of the desired characteristic polynomial,

in the multi-input case the nxp elements of p, "'' p will be called charac-

teristic parameters. Note that

I K B KAB KAk B

0 I KB

[B,AB ... Ak B] [B, FB ... FB] 0 0 1 (98)

I •I
0 0"

Both sides may be truncated at any column of AkB, always the second factor on

the rigat hand side is nonsingular and thus Fkb. is regular if and only if

A .-- is regular. Due to the particular form of M in eq. (94) the same

relationship exists between A kb. and Akb.- 3 -. -3--

M 0 0

k- k 0c k
[3,AB ... A = [B,AB ... AkBj k. . (99)

0
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C Thus in eq. (97) the regular vectors are in the same locations as in eq. (96),

i.e. the list of regular vectors is the same as in eq. (87) with A replaced

by F =A-BK and b. replaced by b." Then eq. (97) may be rewritten as

..- i -I

F b &- F p b Pi2- -- - 1 •.--2 (100)

I Pip

where pij =[Pijo "'"p iij-' is a t.j- vector. Now define the pxn coefficient

matrix

-A " (101)

It generalizes .2' =(po ... Pn-1 to the multi-input case. The generalization

of p* = [po ... Pn- 1] is the "characteristic matrix"

1 P 1 p2 0 ... pip 0

p 1 2' 0 '9 1 p

= .•(102)

1 O -2p2 0
pp

Now eq. (100) for i=l,2...p may be written

[ 1  F"'-- ]=-,b b .- p -- A

(103)

* which also can be expressed as

t,
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"F -2 .. .. ... "F PIP*'0. (104)

In the single-input case the characteristic polynomial is obtained from eq.

(104) by replacing the vector F i in eq. (104) by X k. In the same way in

the multi-input case a "characteristic polynomial matrix" is defined as

PA = -A. ' =[ I x ... . (105)

It is related to the characteristic polynomial of F by

P(%) = det P (106)

as was shown in [56]. The main advantage over a direct calculation of the

det(XI-A+BK) with general elements k.. is that eq. (106) does not involveLj

A and B and is done only once for all systems with the same Kronecker indices.

The multilinear problem of solving eq. (106) for some characteristic coefficient

becomes a linear one if the n coefficients of one row of P are expressed in

terms of the pi, i=l,2,...,n and the remaining p x(n-l) free parameters of the "

other rows of PX" We are now able to formulate

Theorem 5: A-BK has the characteristic matrix P if

KMPA E (107)

where M is given by eq. (94) and

i'
E E 1 (108)

E , %"

e. is tlie last row of the .jxn matrix in
th-n-arx .i
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R "  R ... A b I  h 2 .. A p bp (109)_ m b .

Proof: Follows from [56].

Example 4.10:

5 -1 2 0 1 .4

_ -2 -2 6Jx+ u=Ax +Bu. (110)

4 -3 ti

Find an output feedback

U = _X

k21 0 k23

if it exists, which places poles at s,=-I , s -2, s 3 - and minimizes the

maximum ik.. I

det[b b 2  Ab # 0, i.e. 1=2, .2 1

For M we need the 1 parameter

Ab o = - iAb b-a b l - b_ .

it is

1 -5
P =-5 and i=

21
o0 1

The controllability vectors e and are obtained from
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[ b A--ib21 L- ]=[ -i -

b 1 -].

e0A -1 0 1

1- 0

E1A 2  -1 -2 5' Pi72 'T3 D

_ 0 -1 1

e2A 6 -1 1

The characteristic matrix has the form

P l,0  Pill 1 P12 0  0

P210 P2 1 1  0 P2 2 0

It is related to the characteristic polynomial by

2 Plo +P llO+ s-2 P120

p(s) =po+Pls+P2s +s = det p. = det LP210 +P 211s P220 +s__

Use the coefficients of the second row as free parameters Y =p 2 1 0,

-P and6 - 2 1 1 ' an -P220.

* Po = YP20" CPll0

P= 6P12 "'Pill+P 1 O (11)

P2= pill"

With eq. (107) the output feedback condition results in

re
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£-Y =1

u Substitute into eq. (111)

p0  (E-l)pl2 0 -e(
2 +P 1 2 0 ) =

O P1 = 6P12 0 - oplI +2+ p12 0 = 2 -eplll
+ (6+l)Pl20

P2 = Pill " C.

The particular choice P 12 0 
= 0 leaves 6 undetermined and Po = -2e, P1 =

2-Epl,

2 3
P2 =pill-e, and with P(s) = (s+l)(s+2)(s+3) =6+ils+6s +s, -3, pill =3,

Pil = 2 , Y =-4.

The remaining four feedback gains are

* Lk21 k 3

1 .5 Plopl -1 _Pll0ePlll+5'Pl20

0 1 -y ~6

, q1
1o - - -5 5 - 6 -,

II

is chosen as -5.8 in order to minimize madk..KL Then1.]

6
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-23 0 -23

4 .2 0 5.8

4.7.2. Robustness of Multivariable Systems

In principle all concepts for the design of robust control systems

in X space carry over from the single-input to the multi-input case. However,

the ( space now has dimension p xn, such that graphical methods in several

two-dimensional subspaces require many iterations and can become feasible only

* with a good software for graphical displays and interactive design. General

results, which would give a clearer understanding of the multivariable X space,

are presently not available.

Changes of physical parameters can be tackled in the same way as

in the single-input case. Sensor failures now result in p coefficients of

one column of K becoming zero. Actuator failures could not be handled at

all with the siigle-input method. Here some insight into the geometry of the

problem and possible problem formulations can be gained from eq. (107), as

will be illustrated by

* Example 4.11:

-ll-Ii
1 11 1 u (k)l

x(k+l) 0(k) + (113)

SL i2 _ 2! _ )LO; u2(k'

The state feedback u=Kx may have three configurations

a) nominal
* -

Kk 1
k)kC2I,
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C b) failure of actuator I

0 0
k I k21

21 L22

c) failure of actuator 2

K 0I

Find K such that it places a double pole at z =0.4 and the eigenvalues in the

two failed cases are in the smallest possible circle in the family of circles

Tr of Fig. 4.1.

In eq. (107) M=I and

p 1 0PI22 -1-12 2 1

~ ~ p22 1 0i

2 p, 1 +2 -P1 2  -p1 1 + 1 l

J2P 2 1 - P2 2  -P21 + P22

i l + z P12
2

P(z) = det I z + (pll+P2 2 )z+ (P plP, P1P21) .

P21 p2 2 + z

2 2
In case a) P(a) (z-0.4) z -0.8z+0.16. Use =-p2 1 ) =P-2 2 as free
parameters, then p,1 

= ' 0.8 and P2  p( )/a. Eliminating c and by k,, and

k211

k 2 2 gives
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(k 2 1 +2k 2 2 + 1.4)2

k 1 1 (k 2 1 1 k 2 2 ) = k +k2+1 2k2 1 -4k 2 2 - 1.6
21 22

(114)
) =- )-2k -3.2.

k12 (k21,2 -k3'(k 2 1 ,k 2 2 ) k2 1  2k22

These two equations describe a two dimensional surface in the four dimensional

space. All points on this surface give the desired pole placement.

The failed cases are single-input problems for which a circle in

z-plane maps into a triangle in the subspaces of the remaining gains. The

problem can then be described geometrically as follows: For a given circle

radius the two triangles are obtained. Now we are looking for a point in

the surface (112) which has projections into the k l-k 2-plane and the k 21-k 22-

plane, which lie in the respective triangles. To check whether such a solution

exists we could find the regions in the surface (112), which have such pro-

jections, and see whether the two regions overlap. It is more convenient

however, to use one of the planes, say the kl- k1 2-plane, where the triangle

is one of the regions and the other is obtained by reflecting the triangle

in the k2 1-k2 2 -plane at the surface (112) into the k,,-kl-plane. if there

exists an intersection, then the radius of the z-plane circle is reduced until

the set of admissible solutions shrinks to a point.

We begin with r =0.5. The two triangles are shown in Fig. 4.9a and

* b. The vertices D,E,F are now mapped by eq. (111) into D',E',F' in the

k1l-k1 2-plane. The sides of the figure D'E'F' are not straight lines, since

they have been reflected through a curved surface. However, it is easy to

* check that there exists a set of admissible solutions between F' and C, thus r

,may be reduced. Figure 4.9c shows the case r=0.4, where no solution exists.
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CGoing to r=0.41 as shown in Fig. 4.9d then results in the solution

0.278 0.522
K =

0. 020 0.190

The following eigenvalue locations are obtained

nominal Z = 0.4

failure of actuator I Z, 2 = 0.8 on circle T0.41

failure of actuator 2 Zl ) 0.6+0.344j on FO.41

* both failures Z1, 2  1 open loop unstable.

4.8. Conclusions

CThe design of control systems in the parameter space of state

feedback gains has been studied. Conceptually this offers the following

advantages:

1. Robustness with respect to large parameter variations can

be achieved. It is possible to design the feedback such as

to maximize the admissible variations in known directions.

2. Robustness with respect to sensor and actuator failures can

be achieved. The feedback can be designed such that in the

considered failure situations at least some emergency specifi-
6

cations are met or such that the deviation from the nominal

bhavior is minimized.

3. The feedback can be designed such that for the worst case

initial conditions the ma:Kimal required control input

Iu(t)i is minimizcd and thus saturation can be avoided.
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,  4. The feedback system can be designed for robustness with

respect to short wordlength implementation or other

inaccuracies of the feedback law.

5. Static output feedback or fixing some gains simplifies the

analysis since it reduces the number of free parameters.

It will of course give less favorable results.

1 6. Dynamic feedback can be tackled by the same methods. It is

particularly desirable in situations with sensor failures.

These conceptual advantages are apparent in situations with only two essential

parameters. Here it is general engineering practice to present and analyze

results in diagrams, showing boundaries, regions and their overlap, etc.

C However, in most cases the boundary points have to be calculated point by

point in more or less involved computations. In this paper desirable dynamic

properties of control systems are specified in ternis of regions in the eigen-

value (k) plane. A particularly simple pole placement algorithm is introduced

and used for mapping boundaries from the X-plane to the 3( space. The mapping

of boundaries point by point becomes very simple. In fact all examples of

* this paper were done by pocket calculator. This makes it promising to develop

software for computer-aided design with rapidly changing graphical displays

of boundaries in various subspaces.

* Due to the simplicity of the mapping it was possible to obtai:n a

fe.w general results on the shape of boundaries and stability regions in

space. For the design of digital control systems a family of circular

* boundaries in -he z-plane can be used to characterize desirablu dynamic

properties. Circles have particularly nice mapping properties and the conv-z

6
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hull of their image in the ~(space is easily determined. For arbitrary order

systems, it is useful as a necessary condition for the existence of various

robust solutions. Further research will be necessary to obtain more general

results on the shape of boundaries, sufficient conditions, etc. also for

other than circular boundaries in %-plane. The development of good numerical

algorithms will depend on such insights into the geometry of the solution sets.

It was shown that already in very simple examples this set may be disconnected.

A systematic search inside the convex hull of the K space region may be

necessary.

In its present stage the design in K space is already a useful design

tool. It may be used for example in conjunction with the root locus method,

which visualizes the influence of one gain on the eigenvalue location. The

present method visualizes the influence of two gains on the eigenvalue loca-

tions. The use ot this tool has been shown in this paper by the example of a

crane. In Chapter 5, it will be used to design a dynamic controller for the

short period longitudinal mode of an F4-E aircraft with canards, which is

unstable in the subsonic flight conditions. A solution using two gyros and

*one accelerometer was found which meets the nominal specifications for the

unfailed system or after a failure of any single sensor, and also meets the

emergency specifications after failure of any two sensors, where these properties

* pertain to four very different flight conditions.

S

. ..0 . . . ..
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CHAPTER 5

APPLICATION TO THE LONGITUDINAL CONTROL OF A FIGHTER AIRCRAFT

5.1. Introduction

The purpose of this chapter is to apply the parameter or K space

design procedure described in Chapter 4 to a realistic design problem. The

system to be considered is a third order model of the longitudinal axis of a

McDonnell-Douglas F4-E fitted with horizontal canards.

5.2. System Description and Design Objectives

5.2.1. Model formulation

Airframe dynamics. The example chosen to illustrate N-space design

is control of the longitudinal axis of a fighter aircraft. The complete

equations of motion describing the dynamics of the airplane are nonlinear

and too complex to be used in control law development. Standard procedure

is to linearize these equations about typical flight conditions, and then use

these linear system representations to design the control system. The

linearization decouples the dynamical equations into two separate sets of

equations called the longitudinal, and lateral-directional. Typically a

separate control system is designed for each set of equations. For fighter

aircraft two dominant modes describe the longitudinal rigid body motion. One

of these modes, called the phugoid mode, is usually very slow. It is easily

controlled by the pilot, and therefore is not included in the control law

design. The other mode, called the short period mode, is the mode that most

effects the handling qualities of the aircraft, and is the only airframe

mode considered in this report.



*!

90

The state description of the short period mode depends on the

- individual aircraft and flight condition. The aircraft chosen for this paper

-was a special F4-E fitted with horizontal canards. Figure 5.1 shows the

F4-E flight envelope and those flight conditions for which linearized

aerodynamic data are available.

80,
. Study Flight Conditions

• .lator

. ' F M iitry t

60

40
o oe

0 0.4 0.8 1.2 1.6 2.0 2.4
Mach Number

Figure 5.1. Flight envelope and operating points (57].

A complete description of the aircraft including aero data is

given in [57]. One notable feature is that the uncontrolled short period

* mode is unstable for all subsonic flight conditions. Table 5.1a lists the

uncontrolled short period eigenvalues for each of the four flight

conditions.
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Table 5.1a. Open Loop Short Period Eigenvalues

FC Mach Altitude Open Loop Short Period Eigenvalues

1 .5 5000' -3.07 1.23

2 .85 5000' -4.90 1.78

3 .9 35000' -1.87 .56

4 1.5 35000' -.87+j4.3

Actuators. The two major control surfaces available for control

of the short period mode are the elevator position (6 ) and the canard
e

position (6 ); these are shown in Figure 5.2. Simplified models for the
c

canard and elevator actuators were used. The actuator state equation used was

f -a6 + a6cor (115)

where 6 is the actuator position, a is the actuator eigenvalue (time constant
or equivalent bandwidth) and 6 com is the commanded actuator position.

Sensors. Typical sensors which are used to control the pitch axis

are (for definitions see Figure 5.2):

1) Inertial sensors which measure pitch rate (q) and normal

acceleration (Nz).

2) Air data sensors which measure angle of attack (a) and dynamic

pressure.

3) Position sensors which measure the elevator and canard positions.

Only the pitch rate and normal acceleration are assumed to be available

for feedback. Air data sensors were not used due to their unreliability.

Position sensors, although reliable, would not be useful without an estimate
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Hori ElevatorS e)
canars(6e

Sa

w
VE veloci4ty vector
WV= weight
.L angle of attack
0-* =pitch angle
q--= pitch rate

~z~nrmalacceleration at sensor(*)

Figure 5.2. Aircraft nomenclature.
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of the equilibrium (trim) surface position. This estimation was

undesirable. A failed sensor will be one which in the output is uncorrelated

with the input.

System state description. The aero data and equations of motion

given in [57] were transformed to a state space description resulting in the

following system representation for the airframe and actuators

a a a3  a4 a 0 0

d q 5  6 7 8 q 0 0 ]
__ ffai + ecom (l16a)
dt 6 0 0 -a 0 6 a 0 6  (

e e e e ccomj

6 0 0 0 -a 6 0 a

Nz cI c 2  c3  x (116b)
q 0 1 0 0

where a1-a8 and c1-C4 depend on the flight condition and are listed in

Appendix I.

This two-input representation was reduced to a single input problem

by considering the canard command to be proportional to the elevator command.

A study was done in [57] to determine this proportionality constant, KC, for

minimum drag flight under a wide range of conditions. That minimum drag

value, K -.7, was the value used in this paper. There is not much loss of

generality in this assumption of dependent inputs since the ratio of control

surface effectiveness (essentially a /a since a and a are small) between

the canard and elevator does not change much as flight conditions change.

To study the effect of sensor failures it is easiest to have the

system equations written in sensor coordinates. Equations (116) were
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transformed to make the normal acceleration a state variable. Transforming

the system, using K --.7, and assuming a -a resulted in the followingc c e

system description.

Nz a 1 12 a13 N z b1

d q a a a 3 + [o u (117a)

dt 21 22 260 0 -a ae

with output

[lOJ 
(117b)

0 1 0

e
canard, and "a" represents the effective bandwidth of both act ators. his

effective bandwidth was assumed to be 14 rad/sec. Appendix I gives a tabula-

tion of the aij, bI used.

5.2.2. Design Objectives and Design Specifications

6 Using normal acceleration and/or pitch rate feedback, the basic

design objective is to design a continuous time, fixed gain controller which:

1) meets certain nominal performance requirements at all four flight condi-

tions when all sensors are available and 2) meets emergency performance

requirements after sensor failure. The specific requirements to be met are:

1) the controlled short period eigenvalues must be in the range

specified by military standards [58],

2) the remaining closed loop eigenvalues resulting from actuator and

controller dynamics should be in a specified region,



95

3) time responses of the so called CN output to pilot step commands

. should be acceptable in the sense of [57].

*- The region of allowable short period eigenvalue location is given in [58]

as a requirement on the range of damping and natural frequency for the short

period mode. For the short period mode described by

2 2
s 2sp=sp s + Wsp 0 (118)

the restricted range of s and w under normal operating conditions is
sp sp

.35 < sp < 1.3 (119a)

a - sp -b

and for emergency conditions is

.15 < (120a)

c :W (120b)c sp -

where w , wb, and w depend on flight condition.
a b c"

Table 5.2 lists the frequency range for each flight condition and

Figure 5.3 shows the region defined by equations (119). Since the short

period damping can be greater than 1, a single real eigenvalue is permitted

outside the circle of radius wb or inside the circle of radius w a. As

discussed next, the single real eigenvalue region S> wb would overlap with

the permissible region for non-short period eigenvalues and thus make a

distinction between the two types of eigenvalues impossible. To prevent

this overlap, the simplified region shown in Figure 5.3 will be used as the

short period eigenvalue permissible region. Since all real pairs of eigen-

values inside the simplified region result in a damping less than 1.3, all

eigenvalues in the simplified region meet military specifications.
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Table 5.2. Short Period Frequency Limits

Mach Altitude Wa (rad/sec) wb(rad/sec) W (rad/sec)a c

.5 5000' 2.02 7.23 1.53

.85 5000' 3.50 12.6 2.65

.9 35000' 2.19 7.86 1.65

- 1.5 35000' 3.29 11.8 2.49

• -

---=.35 -;=.35,i
Wb;

Wa a

r r

Simplified
region

Figure 5.3. Allowable sh3rt period eigenvalue locations.

As described in [57] this aircraft has several lightly damped

structural modes which were not modeled in this paper. The control bandwidth

should be less than the lowest structural frequency, which is 85 rad/sec, so

4
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the upper limit on all eigenvalues was set at 70 rad/sec. This is a high

limit, and in the design process an attempt will be made to lower this value.

The requirements on the non-short period eigenvalues (requirement 2) will be

that they lie in the region defined by

Ob < w < 70 rad/sec (121)

with a minimum damping of .35 (see Figure 5.4). In the emergency situations

no distinction between eigenvalues will be made. Figure 5.5 shows the

required region for all eigenvalues under emergency conditions.

Well placed eigenvalues do not guarantee good time responses.

Requirement 3 will ensure well behaved transient response. The response of

most interest will be the C* response. As discussed in [57], CN is a linear
N N

combination of normal accleration and pitch rate given by

CN (Nzp + 12.43q)/Kc* (122)

where Nzp is the normal acceleration at the pilot's location (same as Nz

for this plane) and the stationary value, Kc*, is used for normalization. The

C* response to a pilot step command should fall in the region shown inN

Figure 5.6.

5.3. Design Using Static Output Feedback

5.3.1. Robustness with Respect to Changing Flight Conditions

The first design objective will be to design a controller which

meets the nominal requirements at all flight conditions. We initially assume

a controller structure using only static, or unfiltered, feedback of the two

states; normal acceleration, and pitch rate. Figure 5.7 shows the svster
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Figure 5.5. Constraint region for non-short period eigenvalues.
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6Figure 5.5. Emergency eigenvalue constraint region.
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Figure 5.6. C~ response envelope.
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structure where equations describing the F4-E dynamics were given in

Section 5.2, and the pre-filter used to shape the step responses is the

same as in (57].

Computer programs using the algorithms of Chapter 4 were developed

to perform the mapping of the eigenvalue constraints given in Section 5.2.

Boundaries in the kNz, kq plane were found for each flight condition. A

typical boundary (for flight condition 2), is shown in Figure 5.8a. For

gains in the region Rnom2 the closed loop eigenvalues will all be in the

region rnom 2, which is shown in Figure 5.8b. Each section of the K-space

boundary is described in Figure 5.8b.

The regions R -R were found by mapping the eigenvalue
nomi nom4

constraints for each flight condition ( noml- nom4). The intersection of

these regions, Rnom, is shown in Figure 5.9. For any gain chosen in Rnom the

ith flight condition will have closed loop eigenvalues in Pi, i=1,2,3,4.

Therefore, the requirement that the system be robust with respect to changing

flight condition can be met by using static output feedback. Since R does
nom

not intersect either axis, no robustness with respect to either sensor failure

can be achieved by static output feedback.

5.3.2. Selection of a Gain in the Permissible Region

Any gain choice from R would meet the nominal eigenvaluenoma

requirements. Several alternative methods are available to aid in the

selection of a specific design point. One method could be analysis of the

eigenvalue locations corresponding to different points in K-space as described

in [49]. Every point in the kN, k plane represents a set of closed loop
NZ q q

elgenvalues for each flight condition. Using the mapping algorithms of

S_
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20

s-plane

d, e 0

-80 -0 2

For k Nz k qon

a'-b' the short period eigenvalues are on a-b ( 3.5)
2

bl-C' the short period eigenvalues are on b-c (2=.35)

c'-d' the actuator eigenvalue is at d (a 2=-70)

de a short period eigenvalue is at e (C7 =-12.61

e1 -a* the actuator eigenvalue i~s at e (a2=-12.6)

Figure 5.8b. Region in s-plane and description of K-space boundary.
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Figure 5.9. The region R nom
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Chapter 4 families of constant damping, constant frequency and single real

root curves may be obtained. Figure 5.10 shows such families for flight

condition 2.

Another method would be to decrease the allowable eigenvalue regions

and thereby decrease the size of R . Figure 5.11 shows the region R
(

nom nom

where the high frequency limit has been lowered from 70 to 50 rad/sec, the

minimum damping has been increased to .5, and the minimum short period

frequency has been increased by fifty percent for each flight condition. Any

gain chosen from R (  would meet these tighter requirements at all four
nom

flight conditions.

A further technique is to use gains which will require smaller

control inputs. In [34] Ackermann shows for systems where the state variables

have been normalized to their maximum values, the distance from the origin in

K-space can be used as a measure of the maximum control needed. Where

Jul - jk'xi S Ilkl lxI. (123)

Even though Nz and q have not been normalized to their maxima, this principle

can easily be demonstrated. For gains g1, g2 ' g3 of Figure 5.11, the S andO 9 e

C* responses to a step command for flight condition 1 are shown in Figure 5.12.
N

As seen from the figure, the control (essentially 6 ) is less for the smaller
e

gains, as is the control rates.
0

Using the above methods as guides, point Q of Figures 5.8-5.10

was selected as a trial design point. Using these trial gains, the step

responses shown in Figures 5.13a,b were obtained. The C responses are seen

to be well within the required boundaries for all flight conditions.

Table 5.3 lists the closed loop eigenvalue locations using the gains of point
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-. 2 kNz -. 12 N

~~=. 15 "/
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Figure 5.10. Constant damping, single real root. and natural frequency
curves for flight condition 2.
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Q1" The notation (4,wn) refers to the damping and natural frequency of then

complex pair of eigenvalues. All eigenvalues are well within the limitations

and point Q1 appears to be a good choice for the controller gains.

Table 5.3. Closed Loop Eigenvalues k N-.115 k q.8 (point 1)

F.C. Mach Altitude Closed Loop Eigenvalues

1 .5 5000' (.94, 4.68) -19.31

2 .85 5000' (.61, 9.18) -37.29

3 .9 35000' (.79, 4.63) -17.78

4 1.5 35000' (.55, 8.11) -27.04

5.3.3. Robustness with Respect to Sensor Failure

An additional method to help choose a final gain from R wouldnom

be to consider only those gains which will meet the emergency specifications

after sensor failure. To determine these gains the emergency eigenvalue

regions were mapped into the KNz, kq plane for each flight condition. The

intersection of these four regions, Rem' is shown in Figure 5.14 along with

the region R redrawn from Figure 5.9.nora

For the controller structure of Figure 5.7, failure of either

sensor results in the corresponding gain going to zero. Since R does notem

intersect either axis, there is no gain choice which is robust with respect

to failure of either sensor. Additional sensors or dynamic feedback are

therefore needed to meet the requirement that the system meet the emergency

eigenvalue requirements after sensor failure.
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For a controller with m identical sensors with summed outputs, a

sensor failure reduces the total feedback gain by only a fraction ((m-l)/m).

For the controller structure shown in Figure 5.15 (m-2), any kNz, k chosen

from the region R of Figure 5.16 will for all flight conditions:

1) meet the emergency requirements after failure of any single sensor;

2) meet the emergency requirements after the combined failure of an

accelerometer and gyro, and

3) meet the nominal eigenvalue requirements when no sensor has failed.

After an accelerometer failure the Nz feedback is havled. For design point

QI, shown again in Figure 5.16, this failure would result in point A.

Similarly a single gyro failure would result in point B. A combined failure

of an accelerometer and a gyro would result in point C.

5.4. Design Using Dynamic Output Feedback

5.4.1. Search for Filters

As shown in Section 5.3, a controller using static output feedback

requires two sensors to meet the nominal specifications, and four sensors to

meet the emergency specifications after failure of any single sensor. The use

of dynamic feedback of the outputs may reduce the minimum number of sensors.

For example, if an estimate of the normal acceleration was obtained from the

gyro signal, the accelerometer may no longer be necessary. A preliminary

problem is to find a candidate dynamic feedback structure.

At first it may seem all that need be done is to use a Luenberger

observer to construct these estimates. Figure 5.17 shows how an observer

might be implemented. Now, when the pitch gyro fails, and the dashed branch
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Figure 5.17. Possible observer structure.

is no longer available, the estimate j still remains. There are two serious

problems with this method. First, the system dynamics change dramatically

with flight condition and finding a non-adaptive observer that gives reason-

able estimates of q and Nz would be difficult, possibly impossible, to find.

As seen from the data in Appendix I the control effectiveness, essentially the

open loop gain, changes by a factor of three with changing flight condition,

and the open loop eigenvalues vary as shown in Table 5.1.

* The second undesirable feature is when one sensor fails, the

observer connected to it still is driven by the control u. Therefore the

observer still has an effect on the closed loop characteristic equation. Even
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for adaptive observers which closely match the system, this effect would

complicate the design since the separation principle would no longer hold

after sensor failure. For these reasons observer structures were not

considered.

In [48] G. Kreisselmeier discusses the use of inverse filters for

, robust control, which are applicable to minimum phase systems. Figure 5.18

shows the structure of the controller.

4 +

7t-----] ' Iz

[ _4-E _

= T(S2+ zS + Zo )

D = , a2+ a =S +iS + a", <Q (S + 7 2)

Figure 5.18. Structure of the inverse filter.

If the filter elements N and N, are chosen equal to NN and No, the variable-

1 z, would be estimates of Nz and q. For this case by choosing
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kI = k3 = kNz
2  (124)

k = k - k /2 (125)2 4 q

the feedback is the same as that shown in Figure 5.15. Since NN and NQ change

with flight condition a non-adaptive controller will not generate true

estimates of Nz and q, but only signals which hopefully are closely enough

*related to Nz and q in magnitude and phase to help. If as flight condition

changes, N/KQ and the roots of N and N remain close, the inverse filterI Q N Q
idea may succeed. Table 5.4 lists the critical values.

Table 5.4. Open Loop Zeros and Gain Ratio

Mach Altitude q-Zero Nz-Zeros K/KQ

.5 5000' - .884 -.542+j5.33 .527

.85 5000' -1.57 -.929+j9.12 .536

.9 35000' - .637 -.392+j5.67 .537

1.5 35000' - .826 -.481+j8.05 .577

Averaged values - .98 0.586 j7.04 .543

The averaged values were used to construct two filters

4 = 1.84(s+ .98) Filter I
Nz 2s + 1.172s + 49.9

Nz s2 + 1.172s + 49.9

* q l.84(s + .98)(s + 10)

where the pole at -10 was added to make Filter 2 realizable.

6
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The poles of Filter 1 are only slightly damped, and do not cancel

* well with the system zeros. When it was tried, highly oscillatory step

responses resulted and this filter was discarded. When Filter 2 was imple-

mented, reasonable step responses resulted using typical gains chosen with the

aid of the results from subsection 5.3.1. This filter was retained for

further investigations. The pole at -.98 is weakly controllable since

q essentially it is cancelled with the pitch rate zero. The system eigenvalue

resulting from this pole will be exempt from the eigenvalue requirements gives

in Section 5.2. The system time responses will give a measure as to the

4 validity of this.

The system of Figure 5.19 was used to study different types of

dynamic feedback of Nz. Several filters were tried. One that appeared

promising was

Figure 51 ceeto

Figure 5.19. Acceleration feedback only.
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S (126)
Nz s+15

As discussed in [59] 9z is a close approximation to c which, if used as a

feedback signal, can increase the short period damping. For low frequencies

this filter acts as a differentiator.

Figure 5.20 shows the structure of the controller to be investigated,

which may be represented in state form as

Nz a11 a12 a13 0 0 0 Nz b1

q a21 a22 a23 0 0 0 q 0

6 0 0 -14 0 0 0 6 14

dt + u=Ax+bu (127a)
Wi 0 21.79 0 0 -9.9 0 W1 0

W2 0 -5.331 0 1 -10.98 0 W2 0

SW3 1 0 0 0 0 -15 W3 0

1 0 0 0 0 0

0 1 0 0 0 0

u -(k 1 k2 k3 k4 ) x. (127b)
0 0 0 0 1 0

1 0 0 0 0 -15

O

5.4.2. Dynamic Feedback of Pitch Rate

*To check if the design specifications can be met using only pitch

rate feedback, the system of Figure 5.20 was used with k and k both zero.
1 4

Each nominal (emergency) eigenvalue region was mapped into the k3, k2 plane.

* The intersection of the four regions, R (R ), is shown in Figure 5.21.

nomq emq

The nominal eigenvalue specifications can be met by choosing any gain set
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"S

Fgr + 15

'NZ

qemq

$2+I'172S*49"9

1.94 (S+. 98) (S+!0) k

Figure 5.20. Structure of controller using dynamic output feedback.

from R nomq . Similarly the emergency specifications can be met by use of any

gains in R m

Gyro failure now corresponds to a simultaneous reduction of k2 and

k 3  For a system using m parallel gyros with identical feedback gains, the

failure of f gyros reduces both k and k by a factor (m-f)!m. For m=2 and
2 3 yafco mf/n o ~ n

f=l, any gain in R2 1 of Figure 5.22 will meet the nominal specifications for

the unfailed system and 4lso meet the emergency specifications after failure

of either gyro. Similarly for m = 3, f = 1 or 2 any gain in R32 will meet the

nominal specifications without failure and still meet the emergency specifica-
I

tions after any two sensor failures. This is an especially nice result since

reliability criteria often stipulate that the control system be capable of
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Figure 5.21. The regions R e and R nm
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Figure 5.22. The regions R 1and R 32 '
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handling a failure of any two sensors. Specific eigenvalue locations and

typical CN responses are shown in the last section of this chapter.

5.4.3. Dynamic Feedback of Normal Acceleration

The system of Figure 5.19 was studied using the filter of equation

(126). The nominal eigenvalue regions were mapped into the kl, k4 plane.

There was no intersection of these regions. Thus, for the controller structure

of Figure 5.20 the gyro is necessary. The intersection of the emergency

regions RemNz is shown in Figure 5.23. Any gain chosen from RemNz will meet

the emergency specifications at all flight conditions.

K, X12
-0.42 -2.38 -2.36 -2.34 -2.32 -2.32

-0.275

_ K,

• "--0. 1199

Figure 5.23. The region Rez

erS~
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5.4.4. Dynamic Feedback of Both Outputs

Now the total system of Figure 5.20 will be considered and the

. complete regions in K-space will be four dimensional. First the system using

a single gyro and a single accelerometer will be considered.

For the system to be robust with respect to either sensor failure,

* k and k should lie in the region R of Figure 5.24 (partially shown in
2 3 emq

Figure 5.21), and kV k4 should lie in the region RemNz of Figure 5.23. Since

graphical representations are limited to two dimensional subspaces of K-space,

two of the four gains will have to be at least temporarily fixed. As k and

k4 range throughout the region RemNz the closed loop eigenvalues do not move

much. It is therefore natural to select k and k as the gains to be fixed.
1 4

They were fixed as

(ki, k4) = (-.034, -.1) (128)

designated Q 2 in Figure 5.23. There are two free gains to be determined, k2

and k The four dimensional problem has been reduced to looking in the k3, k2

plane for a solution.

As before, the nominal eigenvalue boundaries, rnomi, are mapped

into the k3, k2 plane using the algorithms of Chapter 4. A typical mapping

is shown in Appendix II. Figure 5.23 shows the intersection of all four

regions, labeled Rn. For any k,), k chosen from R of Figure 5.24 the
nom - 3 nom

nominal eigenvalue requirements will be met at all flight conditions. Since

kl, k were chosen from R of Figure 5.23, the emergency requirements are
1'4 emNz

met after gyro failure. If k2, k3 are also chosen from Remq the system will

also be robust with respect to accelerometer failure. All gains in the

region R of Figure 5.24 meet the above requirements for kI and k4 fixed as in

equation (123).
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-7.5

R

k2

Figure 5.24. The regions R, Rnom, and Remq.



125

5.4.5. Dynamic Feedback Design Summary

The eigenvalue requirements for the nominal and emergency conditions

can be met with one accelerometer and one gyro, or with two gyros. With the

assumed filter structure the gyro is necessary. Step responses were obtained

for several robust gain combinations. The gains chosen were based on the

parameter plane, tightening constraints and minimal control magnitude

techniques discusses in subsection 5.3.2. The responses behaved as antici-

pated with the exception of some responses for flight condition 2. For this

flight condition the pitch rate zero was the farthest from the "cancelling"

pole in the Nz filter (see Table 5a). Figure 5.25 shows typical C* responses
N

at flight condition 2 using:

1) gains Q1 from Chapter 4, kNz -.115 k = -.8,

2) gains Q2 k1 9 k2 9 k39 k4 = (-.034, -1.5, -1, -.1),

3) gains (0, -1.5, -1.0) (no accelerometer).

The filter pole at -.98 was exempted from the eigenvalue constraints under the

assumption that it would have little effect on time response. As seen in

Figure 5.25 the more acceleration feedback (and less use of Nz), the better

this assumption is. An accelerometer will therefore be included in the trial

design point.

To ensure the system is robust with respect to any two sensor

failures, two gyros will also be included. The gains chosen were those repre-

sented above by point Q2 shown in Figures 5.5-5.8. The final configuration

is shown in Figure 5.26. Figures 5. a,b show the response to pilot step

commands for the unfailed system. The C* responses are well within the
N

required boundaries at all flight conditions. Table 5.5 lists the eigenvalue

locations for the unfailed system and after all po.sible :ombinations of sensor
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Figure 5.25. C N responses for flight condition 2.
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Figure 5.26. Final controller configuration.
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Table 5.5. Eigenvalues for System with Gains Q2

Flight No All Sensors One Gyro
Condition Failures Failed Failed

-.89 1.23 -.89
(.64, 4.85) -.98 (.52, 4.29)

1 (.78, 12.9) -10.0 (.89, 9.88)
-27.6 -14.0 -31.76

-15.0

-1.43 1.78 -1.35
(.84, 5.66) -.98 (.94, 6.28)

2 (.66, 15.5) -10.0 (.53, 10.3)
-48.13 -14.0 -55.5

-15.0

-.67 .56 -.70
(.61, 4.98) -.98 (.49, 4.4)

3 (.79, 12.3) -10.0 (.9, 9.76)
-26.5 -14.0 -30.1

-15.0

-.88 -.98 -.91
(.77, 6.4) (.20, 4.4) (.91, 7.84)

4 (.66, 13.2) -10.0 (.45, 8.33)
-37.1 -14.0 -42.5

-15.0
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Table 5.5 (continued)

Flight Accel. Accel. and Two Gyros
Condition Failed Gyro Failed Failed

-.87 -.84 -.98
* (.65, 4.38) (.59, 3.07) (.80, 1.77)

1 -15.0 -15.0 -5.78
(.56, 18.1) (.82, 13.7) -10.0

-35.33

-1.62 -1.81 -.98
(.72, 4.62) (.66, 3.83) -3.54

2 -15.0 -15.0 (.27, 6.73)
(.35, 28.3) (.59, 17.8) -10.0

-61.43

-.62 .59 -.98
(.62, 4.46) (.51, 3.23) (.43, 2.34)

3 -15.0 -15.0 -6.44
(.60, 16.9) (.85, 13.2) -10.0

-33.27

-.86 -.89 -.98
(.68, 5.26) (.53, 5.56) (.16, 6.27)

4 -15.0 -15.0 -5.35
(.42, 22.3) (.69, 14.4) -10.0

-46.98

The notation (,w n) refers to the damping and natural
frequency of a comple pair of eigenvalues.

0L

SJ
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II
failure. All eigenvalues, of course, are in the required regions. Figures

5.28a,b,c show C N responses for all possible sensor failures. In these

figures the normalizing factor (Kc* of equation (122)) was taken to be the

value of C* at 3 seconds, which is sufficiently close to the stationary value

for the closed loop responses and finite for the unstable open loop responses.

5.5. Summary and Conclusions

A fixed gain controller has been designed for the short period mode

of a F4-E aircraft which is destabilized by horizontal canards. The

uncontrolled mode is unstable at all subsonic flight conditions and insuf-

ficiently damped in supersonic flight. Therefore, the control system is-

necessary at all flight conditions in order to achieve handling qualities as

specified by the military requirements. The problem of sensor failures is

usually solved by use of redundant sensors and failure detection. In this

paper controller schemes not requiring failure detection were studied. The

control system was designed using graphical techniques based on the K-space

methods of Chapter 4. The main feature of this graphical design method is the

ability to determine the effect of two controller parameters on the syst2..

eigenvalues. First the unfailed system using one gyro and one accelerometer

was studied. This is a third order system with the two free parameters being

the two feedback gains. The set of admissible gains was determined for which

the nominal requirements are met at all flight conditions. No gains from this

set are robust with respect to either sensor failure. If both sensors are

paralleled by an identical sensor, the system can be made robust with respect

to any single sensor failure, corresponding to a fifty percent gain recuction.
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In order to reduce the number of sensors needed to three and to

i" achieve robustness for double sensor failures, various dynamic feedback con-

figurations were studied. In order to avoid the increased dimensionality of

a general dynamic feedback configuration, preliminary studies were made to

find good candidates for two filters, one for each input, such that after

failure of either sensor there reamin two independent variables for feedback.

Using the most promising configuration, it turned out that without gyros only

the emergency specifications could be met. The gains for the accelerometer and

its filter were thus fixed to guarantee this property. In the plane of the two

remaining gains for the gyro and its filter, the set of admissible solutions

for both the nominal and emergency specifications was determined. A solution

using two paralleled gyros and one accelerometer was found which met the

nominal specifications with no failure or a failure of any single sensor, and

met the emergency specifications after failure of any two sensors. These

robustness properties pertain to all flight conditions.

Like all graphical methods this design technique is very intuitive

for two dimensional problems, but not as well suited for higher dimensional

problems, where the dimension here refers to the number of controller para-

meters being considered in a particular design step. To make the problem

tractable, the designer has to break the problem into a series of two dimensional

problems by fixing the additional parameters. While in this study the proper

sequence was clear, for higher dimensional problems it will in general be more

difficult. The multi-input and general dynamic feedback problems are particu-

larly difficult because of the increased dimensionalitv. As seen from the

results of this Chapter, however, h-space techniques are useful tools in thc

design of control systems.
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CHAPTER 6

AN OPTIMIZATION TECHNIQUE FOR ROBUST CONTROL SYSTEM DESIGN

6.1. Introduction

This chapter formulates an alternative design technique for the

control of systems which are subject to large, structured perturbations. The

problem formulation is the same as that of Chapter 4. It is assumed that a

finite number of operating points can be used to accurately characterize the

perturbations. Design objectives and constraints are modeled as constraints

*on the locations of the closed loop eigenvalues in the complex plane. The

objective is to choose a fixed gain control system which satisfies the

constraints on the pole locations.

The approach of this chapter is to use a quadratic cost functional

to represent trade-offs between possible design points. The problem is refor-

mulated as an optimization problem over the free parameters of the control

system. This optimization is then solved using an augmented Lagrangian

approach.

The outline of this chapter is as follows. In Section 6.2, a precise

* mathematical formulation of the problem is given. Section 6.3 discusses the

nonlinear programming method which was used to solve the problem. Section 6.4

derives the gradients which are necessary to solve the problem. In Section

* 6.5, a second order numerical example is presented. The purpose of presenting

this example is to discuss some of the problems involved in implementing this

method. Finally, this approach to controller design is applied to the problem

considered in Chapter 5 of designing a fixed gain controller for the linearized

longitudinal flight dynamics of an F4 aircraft. The resulting design is compared

to the corresponding design of Chapter 5.
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6.2. The Problem and Its Reformulation

The purpose of this section is to present a precise mathematical

formulation of the problem discussed in the Introduction of this thesis and

then to reformulate the problem in a form that is computationally easier to

work with. As mentioned in the previous section, this chapter deals with the

problem of using output feedback to control a fixed structure system. The

design problem is to choose the constant feedback gains which are best with

respect to some cost function such that the closed loop system satisfieE

certain design specifications. It is assumed that these design specifications

can be represented most naturally as regions in the complex plane where the

eigenvalues of the closed loop system must be located. The system is also

assumed to be linear time invariant.

The precise problem formulation is as follows:

min J 1VE{f [x T(t)Qx(t) +u T(t)Ru(t)]dt} (129)
kES o

subject to

(t) - Ax(t) + Bu(t); x(to) x (130)

E{x 0 1 0; Ex x} X

v(t) = Cx(t) (131)

u(t) - -Kv(t) (132)

gi(\) <0 i I,...,N (133)

. . ... .. .. . .. .....
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where x()E Rn, u(t)E Rm , and y(t)E Rp . S is the space of permissible feed-

back gains. The expectation of the integral is used so that the cost, J, is

independent of any particular initial state of the system, but depends instead

on an average initial condition of all the possible initial states. Q and R

are nonnegative definite constant matrices chosen so that given some

u predetermined criteria, by minimizing J, one is improving the closed loop

behavior of the system. For example, if Q is the zero matrix and R is the

identity, J represents the total energy used to control the system. By

minimizing J, one is minimizing the total energy used. The functions, g(_M),

represent constraints on the location of the eigenvalues, X, of the closed

loop system in the complex plane.

The problem (129)-(133) looks computationally difficult to solve;

however, it can be reformulated as follows:

min J = - 112 tr{M(k)P} (134)
~kGs

subject to

gi(X) 4 0 i -,...,N (135)

where
0 S - {k/(A-BKC) is asymptotically stablel (136)

M(k) - Q + CTKTRKC (137)

A(k) - A- BKC (138)

X = E{x(O)XT (0) (139)
0 -

A(k)P + e. T(k) = -X 0 (140)

* Here P is a constant positive definite matrix; k is a vector comprised of the

elements of the matrix K; x(0) is the inicial state of the system; and A(k) is

0
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C the closed loop system for a given k. Given this formulation, the cost J is

easily found. To solve for J directly from (129), one would first have to

calculate x(t) for each k; whereas to solve (134), one has to solve the Lyapunov

equation (140) for each k and then perform a few simple matrix operations.

The derivation of (134)-(140) is a direct consequence of the results in [60].

Problem (134)-(140) is a mathematical representation of the problem

(described in the introduction of this chapter) of choosing constant output

feedback gains for a linear time invariant system subject to certain design

criteria which are represented by a cost function and constraints on the

locations of eigenvalues in the complex plane. The question of how to solve

the problem (134)-(140) remains. Problem (134)-(140) is a nonlinear constrained

minimization over a finite dimensional space. The next section will discuss

methods of solving such a problem.

6.3. Nonlinear Programming Solution Procedure

There are several ways to solve a nonlinear problem of the form

(134)-(140). As stated previously, the basic problem is

rain J(k) (141)

kES

subject to

s (k) < 0 i= ... ,N 
(142)

where the exact form of the cost function is defined explicitl: by equatizns

(134), (139), and (140) in Sect'on 6.2. Two of the most common

methods of solvin a problem of this type are penalty function and Lagrange

multiclier mechods [613. Each of these methods has certain problems (t be

described b-low) which are inherent to the method. HoT7ever, by using a
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C combination of both methods, these problems can be avoided and a better

approximation to the solution for (141)-(142) can be obtained [62].

In its simplest form the Lagrange multiplier method solves the

following problem [61]

max P (d) (143)

subject to

di  0 i=,...,N (144)

where de .' and

N

P (d) = min J(k) + Z dig.(k)" (145)
- kES i i

This problem is often easier to solve since the nonlinear constraints, gi(k),

have been replaced by simple linear ones. The problem (143)-(144) is the dual

C problem of problem (141)-(142). The duality theorem states that as long as

9(d) > - for some positive di 's and J(k) <- for some kES, the solution to

(143)-(144) is less than or equal to the solution to (141)-(142). When the

solution to ( 143)-(144) is strictly less than the solution to (141)-(142), a

duality gap exists [611. For convex functions with convex constraints, this

difficulty does not occur. The solution to (143)-(144) is also the solution

for (141)-(142). However, for a general function, J(k), a duality gap may

exist so that the solution to (143)-(144) is a lower bound on the solution to

(141)-(142), rather than Lhe minimum [61].
6

On the ither nand, exterior penalty functions solve the problem

(151:

min J(k) + cH(k) (146)

where c is some positive constant, S is the region in R7 where all the

6
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constraints, (142), are satisfied, and H(k) is a functional with these

properties:

H(k) > 0 for all ke Rm (147)

H(k) is continuous (148)

H(k) 0 0 <=> kES I .  (149)

As long as kE S, H(k) = 0, so problems (141)-(142) and (146) are identical.

When k is outside S1 , the function J(k)+cH(k) is large. As c becomes large,

the minimum of J(k) + cH(k) approaches S . The most common penalty function
1*

is
N 2

H(k) = Z max[Ogi(k)] . (150)
- i=l1

For this function, the value of H(k) is the sum of the squares of the

distances by which each constraint is violated, so the penalty term increases

rapidl> when the distance k is outside S1. The advantage of this method is

that problem (146) is an unconstrained minimization problem which is often

easier to solve than problem (141)-(142). The disadvantage of this approach

is that to obtain a good approximation to problem (141)-(142), c must become

large. However, as c approaches infinity, the matrix of second partial

derivatives of J(k) + cH(k) (the Hessian) becomes increasingly ill

conditioned. Many algorithms for unconstrained minimization depend on

either the Hessian or an approxdmation of the Hessian to find the minimum.

'f the Hessian is ill-conditioned, these algorithms will converge vez- slowly

fI;l.

By combining penalcty func:ion methods with Lagrange multiplier

methods, one can eliminate the duu ity gap and use a smaller value of z, thus
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improving the conditioning of the Hessian at the solution [62]. Using the

penalty function H(k), in (150), consider the problem:

min (k) + cH(k) (151)
kES

subject to

gi(k) <0 i = 1,...,N. (152)

Given the properties of H(k), problem (151)-(152) is equivalent to (141)-(142).

The dual of problem (151)-(152) is

* max g (d) (153)

subject to

d. > 0 i=l,...,N (154)
1

where
N

g(d) = inf(J(k) +cR(k) + Zldigi(k)}. (155)

Theorem 1: There exists a cE R with 0< c< - such that the solution to problem

(153)-(154) is also the solution to problem (151)-(152).

Proof: See Bertsekas [631.

Theorem I implies there is no duality gap for problems (151)-(152) and (153)-

(154). Moreover, since the value of c needed to solve this problem exactly

is finite, the structure of the Hessian is more favorable for solving the

* problem.

Bertsekas [64] discusses a variation of problems (151)-(152) and

(153)-(159) and suggests a very straightforward w,'av to solve the maximization

* over d. He suggests solving the problem

max g (d) (156)

Sc
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subject to

d. > 0 i=1,...,N (157)

where
1 N22

g (d,k) inf{J(k) -7 iZ 1max[O,di+ci(k)}2 -d i D .  (158)

For the case where the ith constraint is violated, the corresponding term in

the summation is

d (k+ c/2 g 2 (k) (159)
'igi/2

which is identical to the corresponding term in (155) for c=c'/2 and H(k) as

defined in (150). For the case where the ith constraint is satisfied, but

d. + c'gi(k) > 0 (160)

equation (159) also applies; and, when

d. + c'g,(k) < 0 (161)

the corresponding term in the summation is

- d. (162)2c' 1

Bertsekas has shown that the solution to (156)-(157) is equivalent to that of

problem (141)-(147) for all values of c' greater than some lower bound c (c

exists and is finite).

One can solve the problem (156)-(157) iteratively, viewing the

iteration over d as a fixed stepsize gradient problem [64]. The partial

of g_(d,k) with respect to d. is

g _(d~k)

= max[-d /C' , g(6(k)} 3)
d. 1

Hence the gradient of g.(d,k) witn respect zo d is the vector of these

partials. The appropriate update of d is
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C d l  d + c'Vg (d,k). (164)
-J+1 -j C

For J(k) and g.(k) convex, Bertsekas has shown that his method has demon-

strated global convergence for a wide range of step sizes. The main advan-

tages of using this method is that it combines the advantages of both penalty

function and Lagrange multiplier methods and that the iterative method to

solve the maximization over d is very simple.

There remains the problem of solving the minimization over k for a

fixed d. This problem can be solved using a variable metric algorithm [65]. At

each iteration of the routine the user must supply the value of the function

to ba minimized and its gradient. From this information, the routine builds

up an approximation to the inverse Hessian which improves as the routine

gathers information from more points.

To solve for g c(d,k) in (158) at each iteration, one must solve

for J(k) and g.(k), i=l,...,N. For problem (134)-(140) from Section 2, J(k)

can be solved using (134) and (140). The constraints gi(X(k)) are chosen by

the designer and thus are also readily available. The gradients are also

needed at each iteration. Taking the partials of g c(d,k) in (158) with

respect to k,

3g c (d,k) ;J (k) agi (k)

-k i  k-- max[ , d i+  c / g , (k ) ]  -- k . (165)

Thus to solve problem (155), the gradient of the constraints and of the cost

with respect to k must be provided. Section 6.4 discusses the computations

required to solve for 7kJ(k) and 7kg(k).

*
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6.4. Cost and Constraint Gradient Calculations

As described in Section 3 our approach to the solution of problem (134)-

(140) is to solve the equivalent problem (156)-(158) iteratively. To solve

the minimization over k, for a fixed d, the gradient of J(k) with respect to

k and the gradient of gi(X(k)) with respect to k must be computed. Using

linear operator theory, one can derive a fairly simple expression for the

gradient of J(k). Using eigenvalue sensitivity theory, one can derive an

expression for the gradients of the constraints with respect to k [66].

The gradient of J(k) with respect to K is as follows:

T T
Theorem 2: KJ(k) = (RKCP-B TP)c

where P and Z are solutions of

A T + LA + M(k) =0

-p + p-T + X = 0 (166)

0

and A and M(k) are defined in (138) and (137) respectively.

Proof: Follows directly from [60].

7,J(k) is found by rearranging 7KJ(k) (k is a vector of the elements of the

matrix K).

To compute the gradient of the constraints with respect to k,

one must compute the gradient of the eigenvalues with respect to k. After

finding the latter, one can use the rules of implicit differentiation to

find the former. Consider equation (167).

w (A-',)-, = 0 (167)

-'ere "v is the _f: eigenvect:or of A and ": is the riht eigen:eor

:crre A:-r to i-,i'.:al"e . Einze w' and v are the azeinvect.rs or .,

(167) -- tre. en the Freahe- differential of a 7unorion T(k) exist, It

z-,,;ven y :
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6F(k,Ak) )_k _ =o .  (168)

The Frechet differential (168) can also be written in terms of an inner

product as

5 F(k,Ak) - (V F(k) ,A__ (169)

whe re (VF(k),Ak - tr{VFT (k)Ak}. 
(170)

Take the Frechet differential of both sides of (167)

Sw T(A-XI)v + w T(A-Ai)av + w (6A-SAI)v 0 0. (171)

Again since wT and v are eigenvectors, the first two terms are identically

zero, thus

w dy " w TAy. (172)

Since 8X is a scalar,

6xwTv = wTdiv. (173)

Since w v is also scalar
wT6 v

8x: T (174)

W V

* Notice, however, that if wT v 0, equation(174) will not hold. If wTv 0,
T

then the left eigenvector, w , is perpendicular to the right eigenvector, v.

This only happens when A has a Jordan block of dimension greater than one.

Continuing, from definition (138) and (169)

SA(K, K) -- s--- A(K+ F2.K)

I:=O

• =- [AB( z\K)C r=

-B.1KC. (175)
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Using definition (169)

T
tr{VAT(K)AK}. (176)

Substituting (175) and (176) in (174):

wT(-BKC)v
tr{VX T(Y)K} T

W V

T (BAK)CX
-tr{,- -

T

Cv w B
- tr{-[ -- I LK}. (177)

W V

Since (177) must hold for an arbitrary -K,

- T-T Cv wB

T(K) Tv (178)

or

BTw vTc T
VX(K) T (179)-- T

W V

7k (k) is found by rearranging 7K,(K) (k is a vector comprised of the elements

of K).

Define X. in terms of two zeal variables, . and ..
1 3. 1

a O'i + jW. i(180)

Then

__.- Real( A.

= imaginar(-). (182)
1

The constraint functions g.(X) from equation (13-) are considered function54

of the two real variables, .7 and . For the purposes of problem (134)-(iAO)

each constraint will be a function of only one eienvalue. I: a!- th
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eigenvalues must lie inside a particular boundary, then n of the constraints

will be the equation for the boundary (one for each eigenvalue). Given this

situation,

ag 3i0iagi( j j / 3 a) +w (183)

Since the regions in the complex plane are chosen by the designer, it will

be assumed that the regions are chosen so that the partials with respect to

a and w exist. For the same reason, the functions gi(a,w) are known explicitly,

* and thus, so are the partials. Thus using equations (179)-(183), the gradient

of the constraints with respect to the feedback gains, k, can be calculated.

In summary, both the gradients of the constraints with respect to

k and the gradient of the cost J(k), as well as the values of the constraints

and the cost, can be calculated given a point k. Using this information, one

can find the solution to (134)-(140) by solving the equivalent problem (153)-(155:

as described in Section 6.3. The next section will discuss some of the specific

details and problems involved in implementing this method to solve the

reformulated problem (134)-(140).

6.5. Second Order Example

* The purpose of the numerical example of this section is to demon-

strate how well the method developed in Section 6.2 to solve problem (129)-(134)

works on a simple second order example. The problem is as follows:

min J - 1/2fJuT(t)u(t)dr (134)
kES 0

subject to

S
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" k(t) = Ax(t) + Bu(t) (185)

u(t) = -[k1  k2]x(t) (186)

S = {k/(A-Bk) is asymptotically stable} (187)

A -- B ] (188)
1 -- 1

'I I.

g (aW) < 0 i-1,4 (189)

where a and w are the real and imaginary parts of the eigenvalues of the

closed loop system. The constraints are (see Figure 6.1):

gl(au) = w- 2.6a (190)

g2 (a,w) = w+2.6a (191)

22 2

g3 (a,w) = 4.0804-a W (192)

g4(a) = a 2+W -53.1441. (193)

Each of these four equations must be satisfied for both eigenvalues so there

are actually eight constraints.

Examining a second order system with a single input is particularly

convenient for demonstrating the behavior of this algorithm. First, for a

second order system one can derive explicit equations relating the feedback

gains to the eigenvalues of the closed loop system. Second, equations

mapping the boundaries in the complex plane to boundaries in k-space (the

space of feedback gains) can be obtained using the mapping method describea in

Chapter 4. For this second order system and reasonable boundaries, like those

given in (190)-(193), the boundaries in k-spa-e are not too complex (Figire 6.2).

Since the minimization is actually over k in the k-plane, Figure 6.2 shows

exactly what the constraints are in this space.
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The closed loop characteristic equation for this system is

X + (2+k 2 )X + (26+5k +k 2 ) 0. (194)

Applying the quadratic formula to (194) yields

2/2XiX - -(l+.5k2 ) + .5(k2 - 20k 100) . (195)

Taking the partials of X and A with respect to k and kq1 2 1 k2,

1,2 - l0(k - 20k 100) 2 (196)
k1  1

1 , 2  -5 + .5k2(k 2 - 20k I - 100)-. (197)

3k2  -

From (196) and (197), one can see that these partials have discontinuities

precisely at the boundary where the closed loop system poles change from a

complex pair to two real poles or vice versa. Not only are these partials

discontinuous at this boundary, their magnitude approaches infinity as the

poles approach this boundary. The equation of this boundary in k-space is

k -20k 100 = 0 (198)
2 1

which corresponds to boundary 9 in Figure 6.2.

The other boundaries in Figure 6.2 correspond to the boundaries in

the complex plane (Figure 6.1) as follows: the large circle (Figure 6.1) maps

into the triangle formed by 1, 2, and 3 (Figure 6.2), the small circle maps

into the triangle formed by 4, 5, and 6, 'the two lines into boundaries 7 and

8. The region enclosed by the solid line in Figure 6.2 is the region in the

k-plane where all the constraints (190)-(193) are satisfied. The reason for

choosing these boundaries in the complex plane is that such boundaries do

occur in real problems (e.g., the aircraft example in the next section) as
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Qconstraints on the locations of closed loop system poles. A nice feature of

using circles for boundaries in the complex plane is that for second order

systems circles map into triangles in the k-plane. Hence some of the

boundaries in the k-plane are straight lines (Chapter 4).

The problem (1 8 4 )-(1 8 9)is to find the minimum energy control subject

to the indicated constraints. Since system (185) is stable, the minimum

U energy control without constraints corresponds to zero gain. With the feed-

back gains set to zero, the poles of (185) are

XIX2 -l+j5. (199)

With the given constraints (Figure 6.1), the minimum energy feedback gains were

found to be

k = [-.273 +1.681 (200)

which places the closed loop poles at

2 -1.34 + j4.788. (201)

This answer makes sense. From Figure 6.2, one can see that this

point k (points b) is approximately the point inside the constraint region

closest to the origin. From Figure 6.1, one can see that the closed loop

eigenvalues (points a) are about as close to the open loop eigenvalues

(points b) as possible given the constraints. The algorithm converged to

the ,inimum k(200) for a wide range of initial guesses for k. Initial

;uesses fcr k which olaced the zlosed 1oo poles outside the large circle

and ,j tne left of boundary 1 were the only ones for which the alcrithm 4d

not converze to the value of k given in (200).

The region in the complex plane for which the adiorit>, did not

converge zorresponds to the area in the k-4 ane (Ficure 6.2) to ti ,i~ht 'cF
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line 1 and just below curve 9. The fact that the algorithm could not converge

from these points can be explained by the discontinuities in the partials of

the eigenvalues with respect to k mentioned in (196)-(198). Consider point c

(Figure 6.2) as a typical point in this region. It corresponds to a complex

pole pair outside the large circle in Figure 6.1. Line 1 in the k-plane

represents the boundary for a complex pole pair crossing this circle; thus,

the negative of the gradient in the k-plane for these points points towards

line 1 and nearly perpendicular to it. Moving in this direction should

reduce the cost function (158). However notice that from point c, for0

example, movement in this direction will lead to guesses for k which fall

above or on curve 9. A point on curve 9 corresponds to a double real root

for which the partials of the eigenvalues with respect to .k are infinite.

This will obviously cause problems. Notice also that for two real poles,

the direction ot decreasing cost is determined by boundary 2; whereas, for a

complex pair, the direction of decreasing cost is determined by line 1. For all

these points -points for which the routine would not converge to (200) - the

minimization routine found points which approached boundary 9. However, the

* algorithm was not able to move across or along the boundary. In summary,

the derivatives of the constraints with respect to the feedback gains are

not continuous. This fact can lead to convergence problems. However, one

* can avoid these problems by choosing a better initial guess for k (and

lower values for c).

This example was also used to study the behavior of the algcrithm

* with respect to changes in the constant c' in (158). As discussed in the

section on nonlinear programming, for a ver- large value of c', the minimi-
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zation over k converges to a solution which is close to the solution to the

actual problem, in this case (184)-(189). For a smaller c', each iteration

over k stops farther from the real solution than with a larger c', but the

P iterations over d lead more quickly ro the true solution of the problem. For

this problem, c' equal to 2000 seemed to work best. The minimization over k

led to a solution which was very close to the final solution of the algorithm.

q9 The iterations over d merely served to bring the point a bit closer to the

-7 -3boundaries (within 10- ,instead of 10- ) This was true even for smaller

values of c', 20 and 200. The smaller values of c' led to more iterations

over d, but fewer over k at each substep. For c' equal to 2, the first

iteration over k did converge to a solution which was different from the

solution with c' equal to 2000. However the iterations over d led to the

( same final solution as with c' equal to 2000. In terms of total function

evaluations, c' equal to 2000 was the most efficient; moreover, the solutions

for smaller values of c' were not significantly different from those with c'

equal to 2000.

To summarize the results for this example, this algorithm works

provided a good initial guess for k and a reasonable value of c' are used.

?rovided these t7'o conditions are satisfied, the minimum energyi feedback gains

for problem (184)-(189) are

k = j-.273 +1.681. (202)

This gain places the closed loco system poles at

', 2 = -1.84 + j4.788. (203)

7he next two sec:ions w:l! zresant a more conplex example and 1iscuss some

results for that ::ml.
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6.6. F-4E Example

The problem studied in this example is the same as that of Chapter 5.

The system is a linearized model of the longitudinal motion of the F-4E

Phantom. The model equations and design criteria are summarized here for

clarity.

The system equations are:

N aB a1 a13 Nz b
d aqZ q +0 u 24

d 21 22 23 (204)
Q 1 0 0 -aa

-I 0 O-0 Nz

y(t) 0 1 0] q (205)

0 0 1 6~e

u(t) -ky(t). (206)

The actuator bandwidth, a was assumed to be 14 rad/s. The values aij and b1

are different for each flight condition and are given in Appendix I. The matrix

k is to be determined.

One design problem for this airplane was to choose k such that the

closed loop eigenvalues for each flight condition are in certain regions in

the complex plane (Figure 6.3). Ideally one would like to find one set of

gains which worked for all four flight conditions. The constraints on the

short period eigenvalues are given by restrictions on the damping and the

natural frequency of the short period mode. The characteristic equation for

these eigenvalues is

IA
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[ ~2 2 psp s

+2& W X 2  0 (207)
SP SP sp

where s is the damping and w is the natural frequency. Under normal
sp SP

operating conditions (i.e., no sensor failures), %p and w are required
sp sp

to satisfy

.35 4 sp 1.3 (208)tlp

a sp • b (209)

where wa and wb depend on the flight condition (see Table 6.1). For the case

* when one of the sensors fail, &sp and w sp must satisfy

.15 < &sp (210)

w < W (211)c sp

where w depends on the flight condition (Table 6.1). For the emergencyc

situation, the actuator pole is also required to satisfy (210)-(211). For the

nonemergency situation, the actuator pole (X ) is required to satisfy

a

ab < Xa < 70 rad/s. (212)

These regions in the complex plane are shown in Figures 6.3 and 6.4.

For this chapter, an additional design criterion was added. The

feedback gains were to be chosen such that the minimum total control energy

is used given the constraints on the locations of the closed-loop poles

described above. The appropriate cost function to minimize is

min J f uT(t) u(t)dt (213)

kES 0

* where S is the set of feedback gains for which the closed loop system (204)-

(206) is asymptotically stable. Taken together with appropriate equations

for the constraints in Figures 6.3 and 64, equations (204)-(206) and (213) repre-

0
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sent a problem of the form (129)-(134) in Section 6.2. Thus the method of soluti

developed in the previous sections of this report can be applied. The

results for this example are discussed in the next section.

Table 6.1. Frequency limits which determine boundaries
in Figures 4 and 5

* Flight Flight Flight Flight
Condition #1 Condition #2 Condition #3 Condition #4

w a(rad/s) 2.02 3.50 2.19 3.29

W (rad/s) 7.23 12.6 7.86 11.8

5 (r a d /s )  1.53 2.65 1.65- 2.49

6.7. Results and Discussion for Airplane Example

The design problem for the F4-E airplane is to find

6 one set of constant feedback gains for which the closed

loop system poles are in the appropriate region in the complex plane for each

one of the four flight conditions under normal operating conditions. After
6

finding such a solution, the next problem is to look for a set of gains that

satisfies the above criteria and also is robust with respect to sensor

failures.

First, each flight condition was studied separately to see if a

fixed gain controller could be found to satisfy the constraints under normal

operating conditions. As mentioned in Section 6.5, a good initial guess for
• 4
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the feedback gains is important for the algorithm to converge properly.

Since the problem is to find the constrained minimum for J in (213),

one sensible starting point is the set of gains which correspond to the

unconstrained minimum of J. One can find these gains simply enough by

solving a Riccati equation for each set of system matrices (68]. These gains

were used, and gains for a fixed gain controller were found for each flight

condition. The next step was to find one set of gains which would work for

all four flight conditions.

Such a set of gains was found both for the case when all three

states (204) were available and for the case when only the first two were

available. Chapter5 considered the latter case. Rather than looking

for a particular set of gains, the procedure used was to map the

constraints from the complex plane (Figure 6.3) into the space of feedback

gains. The entire region of possible gains which satisfy the constraints

(Figure 6.5) was found. Using the method described in this thesis, the
I

minimum energy k using only two gains was found to be (see Table 6.2)

k = [-2.8281124 ×0 -  -2.0652172 x 10-]. (214)

This point is marked in Figure 6.5 and is near the boundary of te enclosed

region found by Franklin, at the point approximately nearest the origin.

Thus the re:ults presented in this thesis are consistent with Franklin's.

For the case wi:h three feedback gains, the minimum energy k was found to be

(see Table 6.5)

= [-3.3498269 "10 -. 7574095 < i$ 3.3295187 1e -  (215)

An important measure of s';stei .erformance is the C* response discussed

in Chate- 5. The CN• is a line-r conbina:--ior, of the normal acceleratior
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Table 6.2. Minimum energy feedback gains: normal operating
condition solution (2 gains)

k- [-2.8281124x10
- 2 -2.0652172x10]

-1

-Flght
lition Closed Loop Eigenvalues

1 -2.0483019, -2.0200008, -14.537826
I

2 -3.1624007+j5.2143045, -18.493321

3 -1.589176±+J1.7992842, -14.547498

41_ -2.1992634+j5.8851873, -16.308839

Table 6.3. Minimum energy feedback gains: normal operating
condition solution (3 gains)

k- [-3.8498269xi0
-  -2.7574095x0

-  3.3295187xi0 - I ]

Flit Closed Loop Eigenvalues

I 1 -2.0194637+ J3.3183791xlO - , -20.227559

2 -3.3792113tj5.0261318, -25.502133
3 I -1.5977817+J1.7690526, -20.060981

4 -2.2968881t±j3.7580029, -22.569046

It
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and the pitch rate of the plane, given by

C- (N +12.43q)/k* (216)
N z c

where k is the stationary value of C* and is used for normalization. The
c N

C* response to a step input should fall in the region shown in Figure 6.6.N ,

Figure 6.7 shows this response for each of the four flight conditions. The

first column consists of the responses for the design presented in this 3

section with k as given in equation (215). Comparing these responses with

Figure 6.6, one can see that they do lie within the required region. The

- second column contains the C* responses for the following gain matrixN

k = [-.115 -.8] (217)

which is the design used in Chapter 5, These C time responses appear to be

N

faster and to satisfy the requirement given by Figure 6.6 better than those

presented in this section. This is not surprising; the gains (217) were

chosen on the basis of the C* criterion. The criterion used to choose the
N

gains for this thesis was the minimization of the control energy. Thus,

slower C* responses should be expected.N

More specifically, the design criterion used to choose the gains in |

equation (215) was the minimization of the control energy required to bring the

system back to equilibrium from a disturbance. Figure 6.8 shows u(t) for each

of the four flight conditions (the first column contains the ones for this

section;the second for those of Chapter 4). From these figures, one can see that

the controls for this section are considerably smaller than the controls which

result from Chapter 5. However, the system is stabilized faster (but at the

expense of actuator control) for the gain (217).
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The feedback gains of Chapter 5 were chosen by looking at the time

responses for several points and picking the best one. For this section, the

gains (215) were chosen by using a cost function which represented the

minimum energy control. By changing the cost function or the constraint

boundaries in the complex plane, one could easily incorporate the C* response
N

criterion into the design. One could also choose the cost and the boundaries

qso that the solution would be a compromise between the minimum energy control *
and a fast response. Moreover, the results from this design indicate where

trade-offs can be made and how to make them. In short, using a cost function

to choose a set of feedback gains may provide more insight than trial and

error alone.

Chapter 5 also mapped the emergency regions in the complex

plane (Figure 6.4) into the gain space for the case with only two feedback

gains. Unfortunately,the region for which all the constraints for both the

normal and the emergency situations are satisfied does not intersect either

axis in the gain space. For the problem with only the first two states

available for feedback, this means no set of gains satisfying the~constraints

is robust with respect to the failure of either sensor.

In light of the results of Chapter 5, the problem of a robust control3-

was considered for the case with three feedback gains. For flight condition 4,

a fixed gain using only the first two states was found which satisfied all

the constraints and was robust with respect to either the first, the second,

or both sensors failing. Adding the third gain set equal to zero, yields a

set of three gains which is completely robust. However, this result is not

surprising since the open loop poles for flight condition 4

already satisfy the emergency specifications. For
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Cthe other three flight conditions considered individually, no gains could be
found which were robust with respect to the first sensor failing. Thus none

could be found for all the flight conditions taken together. When considered

individually, a set of gains which is robust with respect to the failure of

the second sensor was found for each flight condition. A set of gains which

is robust with respect to the second sensor failing was also found when the

first three flight conditions were considered together 
(see Table 6,4).

Unfortunately, when all four flight conditions were considered, no cormon

solution which was robust with respect to the second sensor could be found.

A solution which is robust with respect to the third sensor failing is just

the solution given in Table 6.2 with a third gain equal to zero added. These

results seem to indicate that a fixed gain controller is not adequate to

satisfy the robustness requirements for this example.

While studying this example, some of the problems in implementing

the algorithm for the second order example in Section 6.5 were also problems

for this example. First, the gradient of the cost with respect to the

feedback gains is discontinuous at a double real pole (see Section 6.4). For

the minimum energy gains in Table 6.2, the eigenvalues of the first flight

condition seem to be converging to a double real pole on the boundary of

the constraints. Since the gradient is discontinuous at this point, it was

necessa. " to tr initial guesses for k close to the apparent solution but on 0

both sides of the discontinuity to be sure the algorithm was not hanging u:

there. The algorithm converzed back -o the double pole from both directions

indicating that that point was indeed the solution. Also, an inteli2gent 0

in:itial zuess for k was imvortant in order to avoid being hunz un at the

0
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Table 6.4. Minimum energy feedback gains which are robust with
respect to the failure of the second sensor (for the
first 3 flight conditions only)

k= [-5.0138477x10 -4.0115944x10 5.0676513x0I]

Flight 'Sensor #2 Closed Loop Eigenvalues
Condition #

NF 2.7084034, -2.0196952, -23.109953
O1 T

F -.72136579±jl.3337152, -?6.395321

NF -4.0968046+j5.1326, -29.668796
2

F -.77106637±J5.0911232, -36.320273

NF -1.8964697+jl.7951444, -22.887455
F -.49872359+ j2.0622586, -25.682948

NF: Sensor #2 has not failed

F: Sensor #2 has failed

-0
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(double root boundaries away from the solution. In that case, a pole placement

which places the poles on the opposite side of the double root boundary could

be done. Using those gains as a new starting point might allow the algorithm

to converge to the real solution.

Another observation was that the value chosen for c' in (158) affected

the final solution returned by the algorithm. For large values of c'

(200-2000), the algorithm converged quickly to the boundary of the constraint

region, but had trouble moving along the boundary to the minimum with

iterations over d (156)-(157). As explained in Section 6.3, this is due to the

ill conditioning of the Hessian for large values of c'. For smaller values

of c', the minimization over k converged to a solution outside the boundary

of the constraint region. The maximization over d forced the solution to

the boundar-i. For this particular example, choosing c' equal to a small

number for the initial iteration over k and then increasing it gradually for

subsequent iterations to enforce the constraints more quickly seemed to work

well. The results in this section are for c' equal to 1 for the initial

iteration and doubled thereafter.

Summarizing the results of this section, the algorithm develooed ii,

this chapter was applied to the problem of designing a controller fnr the

F4-E aircraft. A fixed gain controller was fouaid which satisfied the

design specifications under normal ooeratin? ccnditins. towever, a rixed

gain controller which was robust to either sensor failure .v-as not -)c s e.

.his example also serv;ed to re-emohasize some of the inheren: Droblew- witz

this design technimue: the dis3continuizies of the -radient, the initial •

=uess for k, and the choice of -
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6.8. Conclusion and Summary

This chapter has dealt with one method of solving the problem of

designing a fixed gain controller for a linear time invariant system when

some of the design criteria are represented as constraints on the location of

the closed loop system eigenvalues in the complex plane and others are repre-

sented by a quadratic cost function which is to be minimized. First, the

original problem (129)-(133) is reformulated to yield (134)-(140). In the

form, the cost function is easier to calculate. Second, problem (134)-(140) is

solved by an augmented Lagrangian method. The problem is a max-min problem.

A variable metric method is used to solve the minimization over k. A fixed

step size method is used to solve the maximization over d [64]. Third,

expressions for the gradients needed to solve (153)-(155) are derived.

Two examples are studied: a simple second order numerical example

and a model of the longitudinal motion of a F4-E plane. Both examples serve

to point out several problems with implementing the solution of (153)-(155).

First, there are discontinuities in the gradients for the case when a complex

pair of sy-ter poles change to a real pair or vice versa. If the algorithm

gets hung up at such a point, a new starting point on the other side of the

boundary may help. Second, the value of c' in (155) nust be chosen appro-

priately for a given problem. Too large a value of c' causes slow convergence

of the algorithm. Too small a value yields a solution outside the boundary.

The best approach seems to be to choose c' small for the first iteration and

increase it thereafter. Finally, a good initial guess for k is important in

order for the algorithm to converge properly.

6
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( There are advantages to this design method. First, it has the

ability to incorporate diverse design criteria such as minimum energy

control, rate of change of input, constraints on the location of poles in

the complex plane, etc. Second, multi-input, multi-output systems can be

considered. Third, it has the ability to handle larger systems than some

of the other methods used to solve this type of problem. Finally, it provides

Ut insight into the effects of the various design constraints. It can be used

to determine which of the design specifications can be satisfied and which

ones may be too stringent.

*-

6

!
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CHAPTER 7

SUMMARY AND FUTURE RESEARCH

As Chapter 2 illustrates, the robust control problem statement-S

encompasses a great variety of problems. However, the work can be classified

into two general areas. The first models the plant perturbations as being

Ulargely unstructured. The design and analysis proceeds for the worst case

situation and attempts to develop aposteriori bounds for the perturbation.

As a result, the designs and bounds are often conservative. The second area

assumes that the perturbations can be modeled apriori. The control system

is then developed for the class of plants described by the perturbation model.

This provides hope of designing less conservative (and likely more efficient)

control systems. However, this problem appears to be more difficult and

much less research has been conducted in this area.

The research presented in Chapters 4 through 6 of this report is

directed at the second area described in the preceding paragraph. The

parameter space design method of Chapter 4 provides great insight into the

problem for the designer. Chapter 5 demonstrated that this method works well

for single input, low order problems. The extension of this technique to

higher order systems appears straightforward, with only technical problems

to be overcome. The extension to multiple input systems will require more
0

thought. One possible generalization is to use the multivariable pole

placement equation [33] which exploits the characteristic polynomial matrix.

The optimization procedure of Chapter 6 also provides considerable

insight for the designer. It also allows high order, multi-input systems

to be considered. However, the computational procedure suffers from several

S"
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technical problems. The most serious of these problems are the extreme

sensitivity of closed loop eigenvalues at doubJe real roots and the require-

ment that an initial stabilizing guess be supr'led. It is anticipated that

additional computational experience with the algorithm and the designer's

insight into the problem can alleviate these difficulties.

In conclusion, it should be emphasized that it is unlikely that a

single technique can be developed which is able to handle all problems. It

is necessary to have several design tools available and to use the method

best suited to the problem at hand. A major purpose of this report is to

present methods that will extend the domain of problems which can be

handled by control system engineers.

0A

0

S
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T'11 APPENDIX I

AERODYNAMIC DATA

Table I.1 contains the values for ai, c. defined in equations (116).

These data were obtained by transforming the aero data in [57] to be compatible

with the state space representation of equations (116).

The data used in equations (117) are shown in Table 1.2

Table I.i. Aero Data for Equations (3.2)

M= .5 M= .85 M= .9 M= 1.5

5000' 5000' 35000' 35000'

a - .8532 - 1.514 - .6314 - .8527

a .9931 .9940 .9974 .9982a2

a3 - .08756 - .1315 - .04332 - .04669 -

a4  0 0 0 - .02274

a5  4.641 11.25 1.488 -18.50

a6 - .9876 - 1.606 - .6680 - .8881

a7  -10.25 -26.15 - 8.104 -15.53

a8 4.246 14.46 4.590 8.860
6

c 17.53 51.11 18.14 26.83

c2  - .5152 - .8560 - .3576 - .4879

c3  - 5.078 -12.95 - 4.018 - 7.842

c4 2.723 9.273 2.944 6.714
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Table 1.2. Aero Data for Equations (3.3)

M= .5 M= .85 M= .9 M=1.5

5000' 5000' 35000' 35000'

a1 1  - .9896 - 1.702 - .6607 - .5162

a1 2  17.41 50.72 18.11 26.9,

a13 96.15 263.5 84.34 178.9

a21 .2648 .2201 .08201 - .6896

a22 - .8512 - 1 418 - .6587 - 1.225

a23 -11.39 - 31.99 -10.81 - 30.38

b -97.78 -272.2 -85.09 -175.6

.4
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APPENDIX II

A TYPICAL CONSTRAINT MAPPING

F-r flight condition 2 and the system of equations (127), the

eigenvalue constraint regions shown in Figure II.1 will be mapped into K-space.

e

d .C a=-3.5

g 4 g=-12.6

f=-50

JT

Figure 11.1. Eigenvalue constraint region (not drawn to scale).

After kl, k4 were arbitrarily fixed at (-.03,0), these constraints were

mapped into the regions shown in Figures 11.2. Points a'-g' of Figures 11.2

6 are the images of points a-g of Figure II.1, with points a',f',g' corre-

sponding to double eigenvalues at a,f,g.

The boundaries partition K-space into regions which correspond to

0 the number of eigenvalues in each region of Figure II.1, labeled I, II, III.

The desired combination is:

one eigenvalue in region I,

two eigenvalues in region II,

three eigenvalues in region III.

Table II.1 lists how the eigenvalues are distributed among regions I, II, III

for gains in the regions labeled A-M in Figure 11.3.



179

k3

-4 -3 -2 -1 t 1

toS

b5

Figure L2i. -r i ~tn - 32



180

k3

-S -4-3 -2-t 1a

LI.

qg

k

Figure 11.2b. Boundaries in K-space (enlargement of A2.2a).
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Table II.1. Distribution of Eigenvalues

Region Number in I Number in II Number in III

A 1 2 3

i B 3 0 3

C 5 0 1

D 3 2 1

E 4 1 1

* F 2 1 3

G 2 2 2

H 4 2 0

I 2 2 2

J 3 1 2

K 4 2

L 1 3 2

N 1 4 1

N 1 1 4

0

0
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