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ABSTRACT

This document contains information on the research accomplished under

AFOSR Grant No. AFOSR 77-3219 during the time period I February 1981

through 31 January 1982. The work covers several different areas of

optical computing research. Studies of the limitations of incoherent

optical iterative processors for inversion of simultaneous linear

equations are reported. Studies of methods for finding the eigenvalues

and inverting circulant matrices are described. Development of ideas

relating to the possible use of optics for interconnections in

integrated circuits are reported. Finally, new ideas in the area of

fiber-optic signal processing are reported. Publications supported by

the grant during the past year are also detailed.
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INTRODUCTION

This report covers the work performed on AFOSR Grant No. 77-3219

during the time period I February 1981 through 31 January 1982. It is

divided into 7 sections, the first of which is this Introduction.

Immediately following, we summarize the results of a study of limita-

tions of incoherent iterative optical processors, with the details pre-

sented in an appendix. Section III contains a summary on the progress

on our continuing studies of coherent optical methods for finding the

eigenvalues of circulant matrices and for inverting those matrices.

Section IV reports the current status of our ideas related to optical

interconnections for integrated circuits, including some thoughts on

problems to which such techniques night be applied immediately. Sec-

tion V reports the results of a short study of the multiplicative na-.

ture of speckle noise, which is part of our continuing interest in the

problem of suppressirg speckle noise in coherently formed images. Sec-

tion VI reports ideas developed over the past year on new approaches to

fiber-optic signal processing. Finally, section VII details the public-

ations supported by the grant during the past year.
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II. LIMITATIONS OF ITERATIVE INCOHERENT OPTICAL PROCESSORS

A major effort during the past year was devoted to studies of the

limitations of incoherent optical iterative processors. This work has

been motivated in large measure by the earlier studies of Psaltis and

Casasent, who proposed the use of an iterative incoherent

processor for solving sets of simultaneous linear equaticns. The

optical processor is the incoherent matrix-vector multiplier of the

type developed at Stanford under this grant, but with the output

fed back to the input.

The use of optical processors in an iterative mode raises serious

questions concerning the effects of noise, non-linearities, and other

defects that always plague analog systems. Our goal was to analyze the

consequences of some of these defects on the performance of systems of

this type. The results of this study are presented in detail in

Appendix A, which is a reprint of a paper recently published in

Applied Optics. Th. problems studied were: (1) convergence

restrictions on the eigenvalues of the matrix of coefficients of the

set of linear equations, and methods for relieving these restrictions;

(2) effects of gain imbalance in the feedforward and feedback loops;

and (3) effects of noise introduced by the successive detection

processes on the convergence of the algorithm. Of these various

problems, by far the least explored is the last.

-4-



In our view, the most important of the results presented is an

expression that predicts the effects of noise on the performance of

such a processor. Suppose that the equations to be solved are

- -. described by the matrix relation

B x c

qwhere B is a matrix of coefficients, x is a vector of unknowns, and

c is a known vector. Our results show that the signal-to-noise ratio

that the output of the processor on the n iteration is bounded by

I

(SIN)n (jB_'cjJ)( Kj)

where B-1  is the inverse of the matrix B, Kn is the

covariance matrix of the output noise, and the II signs indicate a

matrix norm. The norm of the covariance of the output noise was shown

to be giver. by

1n .2 (1 IF 2n+2) _ )IF 1 2)

6 where F = I - B, I being the identity matrix. The signal to

noise ratio so defined can be shown to decrease on each iteration,

ultimately approaching a limiting value after many iterations.

More work needs to be done to understand the practical implications

of this theoretical result. However, we anticipate that more detailed

-5-



examination will show that the limiting value of the signal-to-noise

ratio will depend strongly on the spread of the eigenvalues of the

matrix B, as well as on how close to the allowable convergence

boundaries those eigenvalues lie. More work is planned in this area.

The reader is referred to Appendix A for the full details of the

analytical treatment.

III. OPTICAL METHODS FOR FINDING EIGENVALUES OF CIRCULANT MATRICES

For the majority of this year we have had in progress a research

effort aimed at developing coherent optical techniques for finding the

eigenvalues of circulant matrices. The methods are extendable to the

problem of inverting such matrices as well. We describe these ideas

here, and report our progress over the past 12 months.

The methods rest on the well-known fact that the discrete Fourier

transform (DFT) is the linear transformation that diagonalizes any

circulaut matrix. The ccmplex elements of the diagonalized matrix are

the eigenvalues of the original matrix. The problem then reduces to

* one of modifying a coherent optical system such that the continuous

Fourier transform relations ordinarily obtained between focal planes of

a positive lens becomes a discrete Fourier transform. We have shown in

* another publication3  that such a modification is possible if the

matrix to be diagonalized is replicated several times in the front

focal plane of a lens, aud if the light distribution in the rear focal

I
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plane is sampled by a discrete array of detectors. The outputs of

these detectors are proportional to the squared magnitudes of the

eigenvalues in question. If the full complex values are desired,

interferometric detection must be performed in the rear focal plane.

Once a distribution of light amplitude proportional to the

eigenvalues in question is produced, then the possibility of inverting

the matrix arises. If a coherent optical light valve with an

appropriate non-linear characteristic (amplitude transmittance

proportional to the logarithm of incident intensity) is available, then

it is possible to show that the complex amplitude of the light

transmitted by such a light valve is proportional the reciprocal of the

original complex eigenvalues. One further discrete Fourier transform

then produces in the output plane a series of spots, each with an

amplitude proportional to one element of the inverse matrix.

The conversion of a coherent optical system from one that performs

continuous transforms to one that performs discrete transforms requires

replication of the input matrix, as mentioned above. In addition, in

order to separate the discrete spots representing the eigenvalues by

amounts that make their observation easy with the naked eye, rather

high resolution and minified input matrices are needed. Accordingly, a

major effort was mounted to develop the capability of accurately

writing replicated matrices to photographic film. In order to

accomplish this goal, permission was obtained to use the DICOMED laser

printer at NASA Ames Research Center. This printer can be accessed

-7-
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remotely by a telephone-connected computer terminal. The end result is

a transparency suitable for use in a coherent optical system.

Several circulant matrices have been created in photographic form.

Each element of the matrix is encoded as an amplitude transmittance of

a cell in an array of cells. Unless some form of holographic encoding

is used, only non-negative and real elements can be allowed in the

circulant matrix. The matrix is replicated several times, as indicated

above.

Current efforts are aimed at determining the accuracy with which

the desired circulant matrix has been created. To this end, the

0• photographic recording of the matrix is scanned on a PDS digital

scanner available at Stanford. The values of density and transmittance

are thus read from the transparency, and compared with the values that

the DICOMED printer was instructed to create. In this way we close the

loop around the transparency creation process, allowing us to

understand the accuracy limitations of the process. Repeatability of

the exposure values has been found to range from within 4% to within

10%O By restricting the range of exposures used, we. anticipate being

able to operate in the region of repeatability to within 4%.

Plans for the future are centered on making measurements of the

eigenvalues of a circulant matrix, and assessing the error sources and

error magnitudes. Attention will also be turned in the future to

studies of the matrix inversion process alluded to above.

I
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IV. OPTICAL INTERCONNECTIONS IN INTEGRATED CIRCUITS

Our long-standing interest in the possible use of optics for making

interconnections, either from chip to chip or within a single chip, has

continued during the past year. While our efforts to interest a

student member of the Integrated Circuits Laboratory in working in this

area have not yet been successful, nonetheless some important

conceptual breakthroughs have been made in the past year. Most

important amoung these has been the realization that there is a class

of applications for which it is not necessary to have on the chip

either optical sources or optical modulators. For these applications,

we need only have detectors on the chip, a task that seems far simpler

than the integration on silicon of sources or modulators (the latter

task '-ing easier with GaAs. The inclusion of detectors as part of a

silicon chip seems straightforward in principle, although no doubt

practical problems will be discovered when such integration is actually

attempted.

Under what conditions is it useful to contemplate placing only

detectors, rather than both detectors and sources/modulators, on a

chip? We believe that such an approach makes sense when the chip must

receive vast amounts of data from the outside world, but need only

output small amounts of data. One important problem of this class has

been identified during the past year. We are thinking in particular of

the electronic systolic array, which is currently of considerable

interest in the signal processing and VLSI communities. Consider a

-9-
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simple systolic array designed to multiply a length N vector x by an

NxN matrix A. yielding a length N output vector y. It is necessary

to input to the processor chip the following items in the sequence

described: (1) the N elements of the input vector, sequentially in time

and on a single input channel; (2) the N2 elements of the matrix,

with as many as 2N-1 parallel channels, each carrying in time sequence

the elements along one subdiagonal of the matrix. Thus the data input

U requirements are dominated by the necessity to have 2N parallel input

channels for the matrix elements and for the input vector elements; as

a consequence any such chip must have a large number of pins for

4 inputing data, unless the chip is slowed down to allow some

multiplexing on pins.

For the same chip, the data output requirements are rather modest.

C The N elements of the output vector appear sequentially in time and can

be sent to the outside world by means of a single output pin. Thus the

number of pins connecting the chip to the outside world is determined

primarily by the requirements for entering data onto the chip.

Our proposed solution to this problem is illustrated in Fig. 1.

The pin connections to the outside world, together with the associated

bonding pads, are nearly all eliminated by the use of optical input

channels. Of course pins remain for the output of data, for power to

the chip, and for other necessary functions, but the brunt of the pin

connection problem has been transferred to a problem of connecting to

an integrated set of detectors on the chip via a series of parallel

optical input channels.

-10-
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Figure 1. Input of data to a systolic array by means of optical

connections.

One may well ask exactly what has been gained by converting from

electronic pin connections to optical connections. The problems with

the optical approach will not be fully appreciated until it has been

attempted experimentally. However, we can say the following. The

problem of soldering the pin connections to bonding pads has been

eliminated for those pins that are no longer necessary. This soldering

process is said to be one of the most risky parts of chip manufacture.

We have not eliminated the need for parallel electronic channels

carrying data, for the optical sources must be driven by parallel

electronic channels; rather we have transferred the requirement from on

chip to off chip. The connections to the chip are non-contacting, and

therefore less likely to fail. The parallel electronics for inputing

a -11-



data can now be made with a larger geometrical scale than would be

allowed in the on-chip environment. This fact brings both advantages

and disadvantages. On the one hand the size of the opto-electronic

input device may be far larger than the chip itself and more difficult

to package in an extremely small space* On the other hand, the

generation of the connecting optical signals on a larger geometrical

scale, followed by a purely ortical demagnification, may make relative

alignment of the sources easier than would be the case if all work were

done with the geometrical scales of the on-chip environment.

The optical approach to inputing data is certainly not without its

own problems. First, and foremost, there will be an alignment problem

of severe magnitude in attempting to cast the proper source images onto

the proper detectors. Second, the scattering of light incident on the

detectors may be of sufficient magnitude to lead to undesired cross-

talk. Third, it is uncertain how small the detectors on the chip can

be made. Since the optical signals involved can be of fairly high

power, there is reason to hope that very small integrated detectors can

be used.

Currently we are searching, together with Prof. James Meindl of the

Integrated Circuits Laboratory, for a student who might undertake the

task of designing and building integrated circuits that incorporate

detectors for communicating with the outside world.

-12-
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V. STUDIES OF 7HE MtTIPLICATIVE CHARACTER OF SPECKLE

The subject of speckle and its removal from coherently formed

images is one that has been of long-standing interest to us. We have

spent some time during the past year investigating two subjects related

to speckle. The first has consisted of a critical study of the nature

of speckle noise, and an examination of the question of whether it is

or is not multiplicative. A number of processing techniques have been

proposed in the past that are based on the assumption that a speckled

image can be regarded as the product of the ideal image intensity

distribution that would be obtained if the object were not diffuse in

the fine structure of its spatial transmission or reflection

properties, times a speckle pattern that would be obtained if the

macroscopic ideal image were spatially constant in transmission or

reflection. Similar assumptions have been frequently made in modeling

of speckle by numerical simulation. Our results, which are attached in

preprint form as Appendix B, demonstrate that such a - model is valid

only if the structure of the ideal (non-diffuse) object is completely

resolvable by the imagLng system of concern. When this is not the case

(and it is seldom true, since most objects of interest do have detail

finer than the resolution capability of the optical system being used),

the multiplicative model can be seriously in error. We refer the

reader to Appendix B, which is scheduled for publication in APPLIED

OPTICS in April, for further details.

* -13-



We have also begun investigation of some new digital processing

(methods that we feel may have potential for suppressing speckle in

coherently formed images. The suppression of speckle is a highly

desirable goal, for such effects severely limit the resolution

obtainable from synthetic aperture radar imagery, from acoustical

imaging systems, and indeed from any coherent method of forming images.

We are not yet ready to discuss our methods in detail , but we

q anticipate that by the time of next year's report we should have some

interesting results to describe.

VI. FIBER OPTIC SIGNAL PROCESSING

Our studies of systolic architectures in conjunction with the

optical interconnection project has led to some novel concepts in the

area of fiber-optic signal processing. This work was carried out in

conjunction with Prof. John Shaw of the Ginzton Laboratory at Stanford.

In fact the experimental evaluation of the ideas is being pursued in

Prof. Shaw's group, since he has the technology to bring the ideas to

fruition.

The conceptual advance that has taken place in recent months is the

origination of a signal processing architecture that can be implemented

using fiber optics and that is more general than a simple tapped delay

line. The new processor is illustrated diagramatically in Fig. 2. We

refer to it as the "double helix processor."

-14-
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Figure 2. The double helix processor

The structure consists of two single-mode optical fibers that are

connected together through a multitude of optical couplers. Input

signals travel in one direction into one of the fibers, while output

signals propagate in the opposite direction in the second fiber.

Signals are coupled into the input fiber via intensity modulation of a

laser. The output intensity modulations are detected by means of a

single detector at the end of the output fiber.

This processor can be used in either a discretd or a continuous

mode. In a discrete mode of operation, the input laser is modulated to

emit pulses of different intensities. A sequence of N pulses

represents an input vector of N elements, where it is assumed that all

elements are non-negative and real. The pulses propagating out of the

second fiber, if properly windowed in time, represent the N components

of an output vector. The 2N-1 coupling coefficients determine the

structure of the filter matrix that is realized. When the coupling

-15-



coefficients are constant in time, as would be the case with present

fiber-optic technology, the matrix realized is Toeplitz, meaning that

the filter is time invariant.

It is also possible to consider this processor to operate on

continuous functions of time, although its impulse response is

necessarily discrete. The continuously modulated input laser then

enters data into the system, and the detector measures a

continuous-time signal at the output.

There are a number of interesting properties of this processor.

First, it can be regarded as a fiber-optic implementation of a lattice

filter. The structure incorporates feedback, and as a consequence

produces an impulse response that is theoretically of infinite

duration. Such a filter can have both poles and zeros within the unit

circle in the Z-transform domain. This result should be contrasted

with the case of a simple tapped delay line, which produces an impulse

response of only finite duration, and which can have only zeros within

the unit circle in the Z-transform domain. Because of the "infinite

impulse response" (IIR) characteristic of the double helix processor,

it should allow the construction of much higher-Q filters (for a given

number of couplers) than the "finite impulse response" (FIR) filter

realized by a simple tapped delay line.

It is also worth mentioning that, when time-changing coupler

technology becomes practical in the future, the double helix processor

can be used as a systolic processor, with the input vector entered as

pulses on the input fiber, and with matrix elements entered in proper

-16-
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time sequence as time-changing coupling coefficients. In this case it

is necessary that the coupling between the fibers be weak in order to

produce the desired results.

Experimental realization of a simple double helix processor is

being carried out under Prof. Shaw's funding. Results of this work

will be published in a letter to OPTICS LETTERS, and credit for

initiating the theoretical developments will be given to AFOSR.
q

VII. PAPERS PUBLISHED AND MEETING PRESENTATIONS

We summarize in this section the various publications and

presentations made during the past year under support of the grant.

A. Papers Published

J.W. Goodman, A.R. Dias, K.M. Johnson, and D. Peri, "Parallel incoherent

optical matrix-vector multipliers," Proceedings of the Workshop on

Optical Signal Processing, Texas Tech University, Lubbock, Texas,

116-128 (1980). (actually published in 1981).

H.J. Caulfield, David Dvore, J.W. Goodman, and William T. Rhodes,

"Eigenvector determinatior by noncoherent optical methods," APPLIED

OPTICS 20, 2263-2265 (191).
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B. Papers Accepted for Publication

j.W. Goodman and Moon Song, "Performance limitations of an analog method

for solving simultaneous linear equations," APPLIED OPTICS.

M. 'Dr, K.C. Chin, and J.W. Goodman, "When is Speckle Noise

Multiplicative?" APPLIED OPTICS.

J.W. Goodman, "Two Generalizations of the Fourier Transform in Optical

Signal Processing", Signal transformations in optics,

S.P.I.E. Institute Series.

J.W. Goodman, "Architectural development of optical data processing

systems" (invited), Australian Proc. IEE.

The above paper will also appear in the Proceedings of the Workshop on

Optical Information Processing, held in Cuernevaca, Mexico, in

January, 1982.

I

C. Oral Presentations

J.W. Goodman, "Architectural development of optical data processing

systems", Workshop on Ortical Information Processing, Cuernevaca,

Mexico, January 1982.

-18-



C Finally, the contributions of a large number of individuals to the

work reported here should be acknowledged. Many contributions to the

"double helix processor" concept were made by M. Tur, a Post-Doctoral

Fellow partially supported by the grant. Work on the diagonalization

and inversion of circulant matrices was performed by Q. Cao. The

theoretical developments pertaining to the limitations of iterative

processors are due almost entirely to Moon Song. Contributions to the

study of speckle noise were made by M. Tur and K.C. Chin.
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Performance limitations of an analog method for solving
simultaneous linear equations

joseh W. Goodafn and Moon S. Song

The limitations inherent in a recently proposed analog method for solving simultaneous linear equations are

examined, and methods for overcoming some of these limitations are discussed. In its original form the
method requires that all eigenvalues of the matrix of coefficients lie in a unit circle centered on (1,0) in the
complex plane. Proper scaling of the matrix and the data vector extends this region to the entire right half
of the complex plane (neglecting the effects of noise). A modification of the algorithm is described that .1-
lows the region to be further extended to the entire complex plane. If the product of the gains in the forward
and feedback branches is not unity, the solution produced by the algorithm is shown to be in error. Finally.
the effects of noise, which is inevitably significant in any analog realization of the algorithm, are examined.
Noise is found to produce a limiting mean square error of the solution, thus preventing perfect convergence
to the ideal solution vector. A procedure for determination of when to stop the iteration is proposed.

I. Inroduction performs inner products of this input vector with the

In recent publications' 2, an iterative procedure has row vectors of the stored matrix mask M. The resulting

been described that in principle allows the solution of output vector appears at the output of a parallel array

simultaneous linear equations by means of repeated of photodetectors, where it is added electronically to the

passes through an incoherent optical system. The known data vector c. The result is passed back to the

purpose of this paper is to point out some limitations of input of the system, where it replaces the original trial

this particular algorithm and some methods for over- solution vector. In certain conditions this input vector

coming some of these limitations. converges to the solution vector desired.

The method of concern is based on an incoherent As will be demonstrated, the iterative procedure in

optical matrix--vector multiplier described by Goodman question converges only when the magnitudes of all the

et al.3 Using such a system, Psaltis et aL.1 constructed eigenvalues Xi of the matrix of coefficients lie within a

an iterative processor with feedback that was designed unit circle centered at the point (1,0) in the complex X

to solve simultaneous linear equations, represented in plane. In Sec. II we review these constraints in prepa-

matrix-vector form by Bx = c, where B is an N X N ration for describinglcertain methods for relaxing them.

matrix of known coefficients, c is a length N column Section III considers the question of scaling the matrix

vector of known data values, and x is a length N column when its eigenvalues do not satisfy the necessary con-

vector of unknowns. Figure 1 shows a schematic di- dition, thus in principle allowing the eigenvalues to lie

agram of such a system. An input vector representing anywhere in the right half of the complex A plane.
a trial solution enters the system via a parallel array of Section IV considers a modification of the basic itera-
light-emitting diodes (LEDs). The optical system tion matrix that allows extension of the procedure to

equations whose matrix has eigerivalues anywhere in the
complex X plane. Section V studies the effects of a gain
mismatch in the forward and feedback paths, dprnon-
strating that such a mismatch leads to an error in the
solution. Finally, Sec. VI considers the effects of ran-
dom noise, which will always be present to some degree
in such systems, on the accuracy of the solution. It is

The authors are with Department of Electrical Engiaeerin'. shown that with noise present, the output of the system

Stanford University, Stanford, California 94305. fails to converge after an infinite number of iterations,

4 Received 8 September 1981. and the important problem is how to choose the number
0003-6935/82/030502.05$01.00/0. of iterations so that the solution obtained is closest to

C 1982 Optical Society of America. the true solution.

502 APPLIED OPTICS / Vol. 21, No. 3 / 1 February 1982

4 '•-

.. .."*= • o • € t • • -
•

=



VyCTOR J -- ,(B)J < 1.
LEO - c From Eq. (8) we see that the eigenvalues of B must lie

within a unit circle in the complex plane centered at the
point (1,0) (see Fig. 2). In Sec. III we consider the

0problem of scaling the matrix to extend the class of
04 ,AWA matrices for which the algorithm will converge. In Sec.

IV we consider an additional modification that allows
the matrix to have eigenvalues with both positive and

Fig. 1. Schematic diagram of an iterative optical processing negative real parts.
system.

Ill. Problem of Scaling
SdeSuppose we wish to solve a set of linear equations

described by
Bx= c, (9)

Re0.) where the eigenvalues of B* do not satisfy Eq. (8).
Thus I I - Xk (B*) 1 2- 1. We introduce a real scaling
factor a so that 11 - Xi(aB*)I < 1. Now letB = aB*,c ea*, yielding

(aB*)x = (ac*). (10)
This new equation will have the same solution vector

Fig. 2. Allowable region for eigenvalues in the complex plane. as the original Eq. (1). Thus by applying the iterative

1i. Convergence Condlions procedure with iteratcn matrix,

Consider the problem of solving a set of linear equa- F = I - aB*. (1)
tions described by the equation and simultaneously scaling the data vector by the same

Bz - c, amount, the desired solution should be obtained. By
use of the scaling factor a, the allowable region for thewhere B is a known N X N matrix of coefficients, c is a eigenvalues of B can be extended to the entire right half[: known column vector with N components, and % is anuknown column vector wh N components, ad of wich of the complexX plane (neglecting restrictions posed by

unknown column vectorofN components, all of which noise and speed of convergence).
While the above procedure appears straightforward,

A solution for vector x can be found by means of an we have not yet addressed the important question as to
iterative algorithm4  how the scaling factor a should be chosen. The rate of

x+, = ( - B)x. + c, (2) convergence of the algorithm is dependent on the
which can be rewritten magnitude of the largest eigenvalue, which is known as

the spectral radius, of the iteration matrix F. There-
(9.+1 .- B-1 c) = (I - B)(x, - B-c). (3) fore, to assure most rapid convergence, we should choose

where we have assumed that B- 1 exists. the scaling factor to make the magnitude of the maxi-
f- - Bewe may interpret y, as the mum eigenvalue of the iteration matrix as small asIfweh etyr f te te sayin r e The possible. Note that small eigenvalues of F are not

deviation or error from the true solution B-'c. The achieved simply by choosing a small scaling factor, for

error state equation Caln be written as a approaches zero all the eigenvalues of F approach
Yn+l - Fy.. (4) unity. The convergence of the process is also limited

I-B, and the initial condition is y o - by the presence of random measurement noise. Thewhere F -smaller the eigenvalues of F, the more significant theB-c. The convergence condition for this iterative effects of this noise become. We defer a discussion of
procedure is that y, should vanish as n increases: noise effects to Sec. VI and consider here only the op-

timum choice of a to achieve a minimum of the magni-lJira y. lima FnYo = 0 tude of the largest eigenvalue of F. At this point we

or equivalently restrict attention to the class of Hermitian matrices, so
that all the eigenvalues are real. For non-Hermitian

lira F - 0. (6) matrices, we can use the transformation method de-
scribed in Sec. IV.

The necessary condition for Eq. (6) to hold is that all Noting that
the eigenvalues of F be less than unity in magnitude, (B) =X (aB) = (B'), (12)

I(F)I < for 1 : 5 N, (7 we see that in passing from B* to the iteration matrix
or equivalently, since Xi (F) = 1 - X, (B), F, the maximum eigenvalue ,.(B*) will be mapped
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-.into I - amx(B), while the minimum eigenvalue "

X,,(B-) will be mapped into 1 - aXmi,(B*). Thus to xo- U. G
make the maximum eigenvalue ofF as small as possible,
we should choose a so that the maximum and minimum
eigenvalues of F are equal in magnitude and opposite -+1
in sign,

C I1-aXm.(B*)i - 1-aAm ,(B*)l. (13)
which yields an optimum value of a given by

2 (1)Fig. 3, Block diagram of iterative sysemn.

=,.(BO) + -,(B*)" (14) allows such matrices to be dealt with. By introducing

Now suppose that the spread of eigenvalues of B* is a scaling factor, the region of allowable eigenvalues can
fixed at value T =- km(B*)/Xma(B*). With the use of be extended to the entire left half-plane (neglecting
the optimum value of a above, we find that the magni- limitations posed by noise and convergence speed).
tude of the maximum eigenvalue of the iteration matrix Suppose that the matrix B has some eigenvalues with
F is given by positive real parts and some eigenvalues with negative

r real parts. Neither algorithm presented will allow such
I1A,-(F)I -I1 - 4 (w*i =(Bl)j - (15) matrices to he included. However, there is a simple

il+ti modification of the algorithm that will do so. Let theU This result represents the smallest achievable value of equation to be solved, i.e., Eq. (9). be modified by
the magnitude of the eigenvalue of F having largest multiplying the left and right sides by the Hermitian
magnitude and can be realized only by choosing the transpose B*H of B*, giving
scaling constant a to be given by the value specified in
Eq. (14). (B*)HB*x = (BO)Hce. (19)

While the above choice of a gives the most rapid The matrix (B*)HB * is non-negative definite (practi-
I convergence rate theoretically, we do not have the ei- cally positive definite since B* is assumed nonsingular),

genvalues at hand in advance. But we can make an and therefore the use of an iteration matrix F = I -
estimate of the maximum eigenvalue of B by using the a(B*)HB * and a proper choice of a will assure that the
well-known Gerschgorin theorem 5 and the Schur the- eigenvalues of F are non-negative and less than unity
orem.' The Gerschgorin theorem states in magnitude. Furthermore, the solution set for Eq.

N (19) is precisely the same as the solution set for Eq. (9).
A-- :ua5 X d.1 - maXi E I bii ,. (16a) Thus the multiplication of both the matrix B* and the

i-1.

N" data vector c* by (B*) H has generated a new equation
>"5 XbOd.2 = maxj E Ibij 1. (16b) with the same solution set but with matrix eigenvalues

The Ssatisfying the necessary requirements. In this way the
The Schur bound gives space of allowable eigenvalues has been extended to the

entire complex plane.
V. Effects of Gain Mismatch In the Forward and

Since these bounds do not impose a heavy computa- Feedback Paths
tional !oad, it is reasonable to compute all of them and Since the optical system in question involves opti-
choose the smallest one: cal-to-electronic and electronic-to-optica! conversion,

-< Ajbw,, -, min{x .. dj,Xbu,xb.ud3j. (16d) and since they are analog systems, the strong possibility
But since it is not easy to estimate the upper bound of exists for differences of the gains in the forward and
the minimum eigenvalue, it seems practically reasonable feedback paths. Figure 3 illustrates the general nature
to choose the scaling factor a c7 of the systems of concern. G1 represents the inherent

gain matrix associated with passage of the signals in the
a - 2/0b.). (17) forward direction, while G 2 is the corresponding gain

matrix in the feedback direction. The matrices areIV. Extension to Matrices B with Elgenvalues not diagonal, but the elements along the diagonal need not
Confined to the Right Half of the Complex Plane be equal, since the different channels of an incoherent

We assumed in the previous discussion that all the matrix-vector multiplier may have different gains.
eigenvalues of the matrix B lie in the right half of the The presence of the gain matrices G1 and G2 modifies
complex plane. Here we discuss further generalizations Eq. (2) describing the iterative algorithm to become
that allow matrices not satisfying this restriction to be
dealt with. 1.+i = G2GI - B)x, + c. (20)

First we note that if the matrix B has eigenvalues that To see the effects of a gain mismatch, suppose that the
lie within a unit circle centered at (- 1,0) in the complex product of gain matrices is close to the identity ma-
plane, a simple modification of the algorithm to trix,

+ (I+ B)x, + c (1) G2G] = 1+ , (I1)
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where the diagonal matrix c represents the gain mis- W

matches in the various channels and is assumed to have

small elements. The iteration equation becomes n

14 1 ( 1i+ )(I - B)z , + c - V - [B - W - B)]lx. + c. ]

(22) c

From the above equation we can see that, when gain n+1

mismatches exist, the iterative procedure will produce
a solution that is appropriate for a matrix B - e(l - B)
rather than the matrix B. We now investigate the
magnitude of the errors associated with the solution Fig. 4. Block diagram of system with noise.

vector x. mean. Figure 4 shows a block diagram of the system
Suppose that the iteration procedure has reached considered. The state equation with a noise component

convergence; i.e., present must be rewritten as

X.+i = X. - X. (23) z.+i -(I - B)z. + c + wn, (30)

Then the iteration equation can be written where wn is the noise vector of concern. The error state
[1 - (1+ )(1 - B)JI - c. (24) equation becomes

Solving this equation for x, we find y,.+ 1 -Fyn + wn, (31)

x - [I - B- 1 (I - B)-lB-1c. (25) where again we have used the definition Yn = xn -
B-1c.

If the elements of matrix f are all small, the result for x The solution of Eq. (30) can be divided into two
can be approximated as components: (1) a deterministic homogeneous solution

x B-lc + B-1e(I - B)B-1c. (26) 9n due to the initial condition, and (2) a stochastic
particular solution 9n due to the noise input. Since the

Thus in the presence of gain mismatch, the iterative system is linear, we may consider these components
procedure converges to an incorrect answer. The error separately. Note that Sn is the solution tovector is given by

= + f y (32)
B-'(I - B)B-lc. 

(27)

with S o = x0- B'1c, while 9n is the solution to
The relative size of the error due to gain mismatch can
be written (assuming a symmetric B) qn+ i F9. + w, (33)

I I-e OB-(I - B)BcIe with 9o = 0. The complete solution is given by

IB-1i I - B)I- HB-icI Y = t. + 9. (34)

- B-Ych The homogeneous part of the solution was analyzed in
the earlier sections. Here we consider only the noisy--<.el -JIB-' -III <s Ol [- (OB-1[1 + 1), (28) part q..

where 11.11 indicates a matrix norm, defined by From Eq. (33) we write

IIKII i [largesteigenvalue of KHKI 1/2, (= F + w9) = f - (35)
and the superscript H indicates a Hermitian transpose. 9-o

Thus as might be expected, the bound on the relative Squaring both sides of this equation and taking averages
error is proportional to the gain mismatch I[ll and to with the assumption that the noise is both white and
II B- 111 (which is essentially the inverse of the smallest stationary yield the following expression, for the co-
eigeivalue of B). variance matrix of the noise output.

K. ~f.+f O= 62 X (FFH)k, (36)

VI. EHcts of Noise on the Convergence of the =- o

Algorithm where U21 is the covariance of noise vector wn.
When an iterative procedure such as that of interest Using the definition of matrix norm in Eq. (29), the

here is implemented with an analog system, concern following inequality can be used to put a bound on the
naturally arises as to the effects of noise. Noise is in- error covariance:
troduced on every pass through the loop, and it should n I --
be expected that its effects will eventually build up to -K1I 

< a2 o IF112 = 
O

2 - (37)
the Point where they cannotbe neglected. Our purpose With the above result in mind, we define a time

here is to examine the effects of noise in as quantitative v ing the by
a way as possible. varying (SNR), by

We make the approximation that the noise involved (SNR),1 -
i- purely additive, and we further assume that it has zero
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0 -We can monitor the equation error at each iteration by

measuring some form of the vector norm of e. (One

easy method would be by taking the absolute value of
the maximum component of e,.) This quantity thus

Cprovides the required estimate of closeness to the true
solution.

The last question is: how can we obtain the equation
comp Serror experimentally? If we note that

ISION Xn+I - X, - Bx. + C - x. + e., (43)
which is readily available after the (n + 1)st iteration,

Fig. 5. Block diagram of system with criterion to stop. we can obtain en simply by subtracting xn from Xn+1.
The system then must contain a means for storing one

From Eq. (38) we see that, due to the increasing nature vector xn. A block diagram of the method is illustrated
of HKn II with iteration number, the (SNR), becomes in Fig. 5.
smaller at each iteration. Furthermore, when the norm
[IF is less than one, the (SNR)n ultimately approaches VII. Conclusions
a limiting value that is independent of the iteration We have discussed some performance limitations of
number. We h a i mlementation of

During the initial iterations, the starting condition a certain optical implementation of an iterative algo-
will be sufficiently far from the true solution that the rithm that can be used to solve simultaneous linear
deterministic component of error will dominate, and the equations. The method, as originally proposed, re-
output vector will start to move toward the solution quires that all eigenvalues of the matrix of coefficientsvector. The erre" will therefore begin to decrease. s lie within a circle in the complex plane having a unitvt iTeonumber grows, the noise component of the radius and centered on the point (1,0). We have de-the iteration nubrgos h os opnn fte scribed a method for modifing the matrix and the dataoutput builds up, and eventually it becomes the domi-

* nant component of error, preventing the error from vector so that the eigenvalues of the matrix of interest
vanishing. Thus the process initially converges, but can (in principle) lie anywhere in the complex plane. It
then the mean square error approaches a nonzero as- has been shown that a difference in gains associated
ymptotic value. A key question concerns the means for with the forward and feedback paths causes the algo-
judging when to stop the iteration. When the process rithm to converge to an incorrect solution vector. The
is sufficiently slow to allow a human observer to interact effects of measurement noise on the algorithm have also
with the system, judgment can perhaps be made as to been examined. It has been shown that the presence
when to terminate the procedure. However, interest of noise affects the convergence of the algorithm, leading
;s greater when the processing speed is high, and in such to a mean square error between the true solution vector
cases the possibility of human intervention vanishes, and the experimental solution vector that fails to vanish
An automatic means for judging when to terminate the as the iteration number grows large. Finally, we have
iteration is needed. We now describe one such suggested a means for determining when the iterations
method. should be stopped, based on the difference between the

Suppose we obtain on a particular iteration a solution solution vectors on two successive iterations. All the
k which may differ from the true solution B-1c. Ob- above considerations are of considerable importance
viously, it is our hope that 1 will satisfy the given when the algorithm is implemented by means of an
equation as closely as possible, i.e., that analog optical system.Be = e. tha The work described here was supported by the AirForce Office of Scientific Research.

* Thus our efforts to solve the equation are equivalent to
the minimization of the equation error, c - BY, which References
will be zero ifi happens to be B-c. Hence we can use 1. D. Psaltis. D. Casasent, and M. Carlotta, Opt. Lett., 4, 34S
this error as a measure of closeness to the solution. Let (1979).
the equation error associated with solution x, be rep- 2. H. Maitre, Comput. Graphics Image Process. 16, No. 2, 05
resented by e,; i.e., (1981).resne b. e; i3. J. W. Goodman. A. R. Dias. and L. M. Woody. Opt. Lett. 2, 1

e - c -- Bx,. (40) (1978).

4. G. Strang, Linear Algebra and its Applications (Academic. NewThen it is easy to demonstrate that e, satisfies York. 1976), p. 297.
e, i Fe, (41) 5. R. J. Goult et al.. Computtional Method in Linear Algebre

(Wiley, New York. 1974), pp. 93, 159-160.
with the initial condition eo = c - Bx 0. If B and c have 6. E. Kreyszig, Advanced Engineering Mathematics (Wiley. New
been properly scaled so that F is a stable matrix, we see York, 1979), p. 823.

that en should vanish as the iteration proceeds 7. There is a subtlety that should be mentioned. If Abou.d happen;

to equal exactly ' choice (17) for a yields a maxinumn eigen.
ima en = lima Pe0 = 0. (42) value of unity for the iteration matrix. T,, be safe. o should be

n-.. n-" chosen somewhat smaller than Eq. (17).
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* APPENDIX B

WHKN IS SPECKLE NOISE MULTIPLICATIVE?

M. Mr

K. C: Chin"

J. W. Goodman

Information System Laboratory, Stanford University, Stanford, Ca. 94305

In coherent illumination, objects with roughness on the order of a

wavelength cause speckle to appear in their images as formed by imaging sys-

tems which cannot resolve the microscale of the objects' roughness [1]. Thus,

when a laser illuminates a composite object composed of a diffuser (whose com-

plex amplitude transmittance is d('.y') ) in contact with a transparency

f (,-y') (see Fig. 1) the spatial intensity distribution in the image plane will be

very noisy (i.e. speckled ), provided the amplitude point spread function of the

optical system is broad by comparison with the microscopic surface variations

of the diffuser. Recent publications [2]-[4] as well as older ones [5]-[71 have

assumed that speckle noise is multiplicative, i. e.

hs (x.y) = ah (x= ) , (x= (1)

where: I,(x,y) is the (random) spatial intensity distribution in the speckled

image of the transparency t (z',y'). Is (x,y) is the intensity distribution in the

image of the diffuser alone (t(z',Y) = I ) and I (x,y) is the incoherent image

of the transparency t(z',y') . The proportionality factor a depends on the sys-

tem parameters. Eq. (1) is mainly based on the work of Lowenthal and Arsenault

[8]. who showed that when d(x',y') is a stationary. 5 correlated random pro-

cess with independent real and imaginary parts having zero means and the same

On leave from the Dept, of Physics, 3e.1ag Universty, People's Republic of China.
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variances, the mean and standard deviation of Ih (x ,y) are equal to AM (x ,y).

(7 That is.

= . <(x.y) ; = 21,,(z.j) (2)

where < > denote an ensemble average over different realizations of the

diffuser and/or the illumination. Using Eqs. (1)-(2), we also find that a in Eq. (1)

is given by: a = <I.(@,t)> -1 . While Lim and Nawab [2] specifically restricted

q their multiplicative model to the case when the degraded image has been sam-

pled coarsely enough such that the degradation at any point can be assumed to

be independent of that at all other points, most other investigators have used

Eq. (1) without further limitations.

It is the purpose of this letter to point out that Eq. (i) is only an approxima-

tion which is certainly not valid when the transparency t(z',y') has spatial

details which cannot be resolved by the coherent system. This observation is of

practical importance since most objects contain fine details well beyond the

resolution capabilities of the systems that are used to image them.

Due to the finite resolving power of the imaging system, the complex wave

amplitude U at the image point P (see Fig. 1) is the result of a coherent addi-

tion of contributions from many independent areas within a finite patch R,u

*G  which is of the order of a resolution cell. The (random) intensity at P= (xp yp) is

given by

(zIt. (Py)= IU(zX,y')I 2 = Iff 'dyx (h(zpz,yp -y) t(x',y') exp[iV(x',y')] 3)

where h(x,y) is the amplitude impulse response of the system (assuming unity

magnification) and V(z',y) is a random phase delay which is introduced by the

diffuser at the object point (z',y) : d(i*,y') = exp[iV(x'yi)] . Obviously, when

t(z') does not change appreciably within Rc.!, Eq. (3) reduces to

e. ... . .



-3-

(XP.Y)= It (X.y.) 2 fdz dy' h(xp-x'.y,-y) expIi (4)

Since in this limiting case i*(p,!j)a It(zP.,) 12 and the second factor on

the right hand side of Eq. (-) is f.(z.y/p) . Eq. (4) has the same form as Eq. (1).

This explains why Lee [3] was successful in verifying Eq. (1) for the flat areas in

his synthetic aperture radar images. However, when t (x.y) has spatial details

smaller than or comparable to R,,u . Eq. (1) is no longer valid. As an example.

q consider the case of a sharp opaque edge object and denote by It, the speckled

(random) intensity at the geometrical image of the edge G (see Fig. 2) and by

I the intensity of the speckle at the same point in the absence of the sharp

edge. Based on a random walk model [9]. 1. is the intensity of the sum of two

independent random walks Z+ and Z- originated respectively from RU and

R[,u in Fig. 2. Obviously. I, is the intensity of Z+ . Assuming exponential dis-

tributions for the intensities, it is readily shown that the joint probability den-

sity function for Ju and 1, is given by:

1 [_ <I, >I.+<4.> I ] dlpI.,)= [ <i.>_<i > ]<i!, exp [ <1 >_.<1 > ]<i ,> Io[2[ <i,>_<I,> ]

(5)

where </4> and <I,> are the ensemble averages of I,' and 18 , and I0 is a

modified Bessel function of the first kind, zero order. Therefore, the quotient

Q = -\assumed corstar in Eq. (1). is instead a continuously distri-

buted quantity with a probability density given by:

p(Q) = 2Q (B-1)Q2 + B(B-1) (6)

<I> 1+2B2)Q2+B2 T

where B > (In the simplest case, when R,. is equally divided by the

edge, B=2). Since for large values of Q ,p(Q) Q-3, Q has an infinite
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variance which means that the zeroes of I&. occur independently of those of

l71, . in contradiction to Eq. (1).

* To further validate our assertion, we have carried out one-dimensional

numerical simulations of the image forming system of Fig. 1 for slanted objects

with different slopes. The speckled image was generated using convolution tech-

niques rather than Fourier domain methods. Results for A near the point G
it,

in Fig. 2. show that for two different realizations of the diffuser, the steeper the

edge. the larger the difference between the two realizations. We have also
I.

confirmed that for B = 2. < > assumes the value 1.91 which is the first

6 moment of the distribution p (Q) . Eq. (6).

A statistical estimate for the error introduced by the multiplicative model

can be obtained from the mean square error M(x,y)

,f(X.) = <[. (Xy) - .I. (=.Y).i, (Zy 2 > (7)

In order to evaluate M we follow the assumptions and results of Lowenthal and

Arsenault [8]. so that Eq. (7) reduces to:

M (=,y) --:2'. ( ,y)[ 2 (8,))
I I* (X-Y) -<I. (XY) > I8

Using the above assumptions together with the additional fact that the complex

wave amplitudes Ut, and U, at the image point (z,y), originate from the

4 same diffuser, we may conclude that Ul (z,y) and U, (x,y) are two complex

mutually circular Gaussian random variables, and therefore:

<It. (=, )., ,Y)> = <u (Xy)u (.y)>. (XY)u:(XY)> (9)

I I
-.. .( X.Y ) .<4.( X Y > + < (.,y )U.(.Y ) > 12



The star denotes complex conjugation. Substituting Eq. (9) in Eq. (8). we find:

-u (z.y) - ). l> r

Recalling that <dxj.yj)d(x .y)> = 6(xi -x)6(yj -) and that

d(i'.y)l 1 , Eq. (10) may be rewritten as:

ff di dy' t(,y) Ih(z-x'. --y') 2

-~M(z,YA -- _

2-1(Z.-y) ff d- dy" It(.'y') j2.jh(x-x.y.-y') ff dx'dy'lh(Z-x',y--Y) 1

(ii)

4 Due to Schwart's inequality. 0 -! M(z.y) ! 1. Moreover. using the condition for

equality in Schwartz's inequality, the multiplicative model holds, i.e. M=0, if

and only if t(x',y) is constant over the resolution cell of the system (where

h~x-', -') 0 ).

Figures 3 and 4 describe the spatial distributions of M(xy) and It, (z,y)

for a sharp edge as well as for slanted (see insert in Fig.4) objects, as obtained

from an imaging system with unit magnification and a square aperture. It is

readily seen that far from the edge .1 approaches zero. Also, as the slope of the

object decreases, so does M.

We have thus shown that the multiplicative model fails when the object con-

tains fine details which cannot be resolved by the imaging system.
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Figure Captions

1'z

Figure 1: The optical system. d(x',V') and t (z,-) are, respectively, the

complex transmittances of the diffuser and the object transparency.

Figure 2: Same as Fig. 1 but with a sharp edge object. R& is the part of

the system's resolution cell ( Re.u ) which is blocked by the object.

U
Figure 3: The spatial variation of M(xy) for a sharp edge object. The

incoherent image of the sharp edge is also included. The abscissa is scaled

6 by the transverse dimension of Rc.u . X is the wavelength. f is the focal

length of the imaging system and a is the size of its square aperture.

Figure 4: Same as Fig. 3, but for two slanted objects (see insert). While the

change in object 1 occurs on a scale comparable to R,,u , object 2 is

fully resolved by the system. The incoherent impulse response of the sys-

tem is also included in the insert.
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