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ABSTRACT

This document contains information on the research accomplished under
AFOSR Grant No. AFOSR 77f}219 during the time period 1 February 1981
through 31 January 1982. The work\covers several different areas of
optical comp?ting research, Studies of the limitations of incoherent
optical iterative processors for inversion of simultaneous 1linear
equations are reported. Studies of methods for finding the eigenvalues
and inverting circulant matrices are described. Development of ideas
relating to the possible use of optics for interconnections in
integrated circuits are reported. Finally, new ideas in the area of
fiver-optic signal processirg are reported. Pubiications supported by

the grant during the past year are also detailed.
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. INTRODUCTION

This report covers the work performed on AFOSR Grant No. 77-3219
during the time period 1 February 1981 through 31 January 1982. It is
divided into 7 sections, the first of which is this Intrecduction.
Immediately following, we summarize the results of a study of limita-
tions of incoherent iterative optical processors, with the details pre-
sented in an appendix. Section III contains a summary on the progress
on our continuing studies of coherent optical methods for finding the
eigenvalues of circulant matrices and for inverting those matrices.
Section IV reports the current status of our ideas related to optical
interconnections for integrated circuits, including some thoughts on
problems to which such techniques wnight be applied immediately. Sec-
tion V reports +the results of a short study of the multiplicative na-
ture of speckle noise, which is part of our continuing interest in the
problem of suppressing speckle noise in coherently formed images. Sec-
tion VI reports ideas developed over the past year on new approacheé to
fiver-optic signal processing. Finally, section VII details the public-

ations supported by the grant during the past year.
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ITI. LIMITATIONS OF ITERATIVE INCOHERENT OPTICAL PROCESSORS

A major effort during the past year was devoted to studies of the
limitaticns of incoherent optical iterative processors. This work has
been motivated in large measure by the earlier studies of Psaltis and
Casasent1, who proposed the wuse of an iterative incoherent
processor for solving sets of simultaneous linear equaticns. The
optical processor is the incoherent matrix-vector multiplier of the
type developed at Stanford under this grantz, but with the outpu¥
fed back to the input.

The use of optical processors in an iterative mocde raises serious
questions concerning the effects of noise, non-linearities, and other
defects that always plague analog systems. Our goal was to analyze the
consequences of some of these defects on the performance of systems of
this type. The results of this study are presented in detail in
Appendix A, which is a reprint of a paper recently published in

Applied Optics. Tae  problems  studied  were: (1) convergence

restrictions on the eigenvalues of the matrix of coefficients of the
set of linear equations, and methods for relieving these restrictions;
(2) effects of gain imbalance in the feedforward ahd feedback loops;
and (3) effects of noise introduced by the successive detection
processes on the convergence of the algorithm. 0f these various

problems, by far the least explored is the last.
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In our view, the most important of the results presented is an
expression that predicts the effects of noise on the performance of
such a processor. Suppose that the equations to be solved are

described by the matrix relation

vwhere B 1s a matrix of coefficients, x is a vector of unknowns, and
c is a known vector. Our results show that the signal-to-noise ratio

at the output of the processor on the nth iteration is bounded by
(s/m), = (hs7'elly/C ) & ]

where B™' is the inverse of the matrix B, K  is the
covariance matrix of the output noise, and the “ signs indicate a
matrix norm. The norm of the covariance of the output noise was shown

to be giver. by
Il = a2 - ) 220 - el

where F = I - B, I being the identity matrix. The signal to
noise ratio so defined can be shown to decrease on each iteration,

ultimately approaching a limiting value after many iterations.

More work needs to be done to understand the practical implications

of +this theoretical result. WHowever, we anticipate that more detailed
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examination will show that the limiting value of the signal-to-noise
ratio will depend strorgly on the spread of the eigenvalues of the
matrix B, as well as on how close to the allowable convergence
boundaries those eigenvalues lie. More work is planned in this area.
The reader is referred to Appendix A for the full details of the

analytical treatment.

III. OPTICAL METHODS FOR FINDING EIGENVALUES OF CIRCULANT MATRICES

For the majority of this year we have had in progress a research
effort aimed at developing coherent optical techniques for finding the
eigenvalues of circulant matrices. The methods are extendable to the
problem of inverting such matrices as well. We describe these ideas
here, and report our progress over the past 12 ‘months.

The methods rest on the well-known fact that the discrete Fourier
transform (DFT) is the linear transformation that diagonalizes any
circulant matrix. The ccmplex elements of the diagonalized matrix are
the eigenvalues of the original matrix. The pr;blem then reduces to
one of modifying a coherent optical system such that the continuous
Fourier transform relations ordinarily obtained between focal planes of
a positive lens becomes a discrete Fourier transform. We have shown in
another publication3 that such a modification is possible if the

matrix to be diagonalized is replicated several times in the front

focal plane of a lens, ané if the light distribution in the rear focal

-6~
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plane is sampled by a discrete array of detectors. The outputs of
these detectors are proportional to the squared magnitudes of the
eigenvalues in question. If the full complex values are desired,
interferometric detection must be performed in the rear focal plane.

Once a distribution of 1light amplitude proportional | to  the
eigenvalues in question is produced, then the possibility of inverting
the matrix arises. If a coherent optical 1light valve with an
appropriate non-linear characteristic (amplitude transmittance
proportional to the logarithm of incident intensity) is available, then
it is possible to show that the complex amplitude of the light
transmitted by such a light valve is proportional the reciprocal of the
original complex eigenvalues. One further discrete Fourier transform
then produces in the output plane a series of spots, each with an
amplitude proportional to one element of the inverse matrix.

The conversion of a coherent optical system from one that performs
continuous transforms to one that performs discrete transforms requires
replication of the input matrix, as mentioned above. In addition, " in
order to separate the discrete spots representing ppe eigenvalues by
amounts that make their observation easy with the naked eye, rather
high resolution and minified input matrices are needed. Accordingly, a
major effort was mounted to develop the capability of accurately
writing replicated matrices to photographic film. In order to
accomplish this goal, permission was cbtained to use the DICOMED laser

printer at NASA Ames Research Center. This printer can be accessed
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remotely by a telephone-connected computer terminal. The end result is
a transparency suitable for use in a coherent optical system.

Several circulant matrices have been created in photographic form.

Each element of the matrix is encoded as an amplitude transmittance of

a cell in an array of cells. Unless some form of holographic encoding
is used, only non-negative and real elements can be allowed in the
circulant matrix. The matrix is replicated several times, as indicated
above.

Current efforts are aimed at determining +the accuracy with which
the desired circulant matrix has been created. To this enq, the
photographic recording of the matrix is scanned on a PDS digital
scanner available at Stanford. The values of density and transmittance
are thus read from the transparency, and compared with the values that
the DICOMED printer was instructed to create. In this way we close the
loop around the transparency creation process; allowing us to
understand the accuracy 1limitations of the process. Repeatability of
the exposure values has been found to range from within 4% to within
10%. By restricting the renge of exposures used, we, anticipate being
able to operate in the region of repeatability to within 4%.

Plans for the future are centered on making measurements of the
eigenvalues of a circulant matrix, and assessing the error sources and
error magnitudes. Attention will also be turned in the future to

studies of the matrix inversion process alluded to above.




IV. OPTICAL INTERCONNECTIONS IN INTEGRATED CIRCUITS

Our long-standing interest in the possible use of optics for making
interconnections, either from chip to chip or within a single chip, has
continued during the past year. While our efforts to interest a
student member of the Integrated Circuifs Laboratory in working in this
area have not yet been successful, nonetheless some important
conceptual breakthroughs have been made in the past year. Most
important amoung these has been the realization that there is a class
of applications for which it is not necessary to have on the chip
either optical sources or optical modulators. For these applications,
we need only have detectors on the chip, a task that seems far simpler
than the integration on silicon of sources or modulators (the latter
task being easier with GaAs. The inclusion of detectors as part of a
silicon chip seems straightforward in principle,‘ although no doubt
practical problems will be discovered when such integration is actually
attempted.

Under what conditions is it wuseful to contemplate placing only
detectors, rather than both detectors and sources/modulators, on a
chip? We believe that such an approach makes sense when the chip must
receive vast amounts of data from the outside world, but need only
output small amounts of data. One important problem of this class has
been identified during the past year. We are thinking in particular of

the electronic systolic array, which is currently of considerable

interest in the signal processing and VISI communities. Consider a
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simple systolic array designed to multiply a length N vector x by an
NxN matrix B, yielding a length N output vector y. It is necessary
to input to the processor chip the following items in the sequence
described: (1) the N elements of the input vector, sequentially in time
and on a single input channei; (2) the N2 elements of the matrix,
with as many as 2N-1 parallel channels, each carrying in time sequence
the elements along one subdiagonal of the matrix. Thus the data input
requirements are dominated by the necessity to have 2N parallel input
channels for the matrix elements and for the input vector elements; as
a consequence any such chip must have a 1large number of pins for
inputing data, wunless +the chip is slowed down to allow some
nultiplexing on pins.

For the same chip, the data output requirements are rather modest.
The N elements of the output vector appear sequentially in time and can
be sent to the outside world by means of a singlé output pin. Thus ¢the
number of pins connecting the chip to the outside world is determined
primarily by the requirements for entering data onto the chip.

Our proposed solution to this problem is illustrated in Fig. 1.
The pin connections to the outside world, together with the associated
bonding pads, are nearly all eliminated by the use of optical input
channels. Of course pins remain for the output of data, for power to
the chip, and for other necessary functions, but the brunt of the pin
connection problem has Ybeen transferred to a problem of connecting to
an integrated set of detectors on the chip via a series of parallel

optical input channels.

~10-
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Figure 1. Input of data to a systolic array by means of optical

connections.

One may well ask exactly what has been gained by converting from
electronic pin connections to optical connections. The problems with
the optical approach will not be fully appreciated wuntil it has been
attempted exuperimentaily. Bowever, we can say the following; The
problem of soldering the pin connections to bonding pads has been
eliminated for those pins that are no longer necessary. This soldering
process is said to be one of the most risky parts of chip manufacture.
We have not eliminated the need for parallel electronic channels
carrying data, for the optical sources must be driven by parallel
electronic channels; rather we have transferred the requirement from on
chip to off chip. The connections to the chip are non-contacting, and

therefore less 1likely to fail. The parallel electronics for inputing

-11-
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data can now be made with a larger geometrical scale than would be
allowed in the on-chip environment. This fact brings both advantages
and disadvantages. On the one hand the siwe of the opto-electronic
input device may be far larger than the chip itself and more difficult
to package in an extremely small .space= On the other hand, the
generation of the connectirg optical signals on a larger geometrical
scale, followed by a purely ortical demagnification, may make relative
alignment of the sources easier than would be the case if all work were
done with the geometrical scales of the on-chip environment.

‘The optical approach to inputing data is certainly not without its
owvn problems. First, and foremost, there will be an alignment problem
of severe magnitude in attempting to cast the proper source images onto
the proper detectors. Second, the scattering of light incident on the
detectors may be of sufficient magnitude to lead to wundesired cross-
talk. Third, it 1is uncertain how small the detectors on the chip can
be made. Since the optical signals involved can be of fairly high
power, there is reason to hope that very small integrated detectors can
be used.

Currently we are searching, together with Prof. J;mes Meindl of the
Integrated Circuits Laboratory, for a student who might undertake the
task of designing and building integrated circuits that incorporate

detectors for communicating with the outside world.

~12-
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V. STUTIES OF THE ¥ULTIPLICATIVE CHARACTER OF SPECKLE

The subject of speckle and its removal from coherently formed
images is one that has been of long-standing interest to us. We have
spent some time during the past year investigating two subjects related
to speckle. The first has consisted of a critical study of the nature
of séeckle noise, and zn exzmination of the question of whether it is
or is not multiplicative. A number of processing techniques have been
proposed in the past that are based on the assumption +that a speckled
image can bYe regarded as the product of the ideal image intensity
distribution that would be obtained if the object were not diffuse in
the = fine  structure of its spatial transmission or reflection
properties, times a speckle pattern that would be obtained if the
macroscopic ideal imzge were spatially constant in transmission or
reflection. Similar assumptions have been frequently made in modeling
of speckle by numericezl simulation. Our results, which are attached>in
preprint form as Apperndix B, demonstrate that such a <-model is wvalid
only if the structure of the ideal (non-diffuse) object is completely
resolvable by the imaging system of concern. When this is not the case
(and it is seldom true, sirce most objects of interest do have detail
finer than the resolution capebility of the optical system being used),
the multiplicative model can be seriously in error. We refer the
reader to Appendix B, which is scheduled for publication in APPLIED

OPTICS in April, for furtrer details.

-13-
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We have also begun investigation of some new digital processing
methods that we feel may have potential for suppressing speckle in
coherently formed images. The suppression of speckle is a highly
desirable goal, for such effects severely 1limit the resolution
obtainable from synthetic aperture radar imagery, from acoustical
imaging systems, and indeed from any coherent method of forming images.
We are not yet ready to discuss our methods in detail , but we
anticipate that by the time of next year's report we should have some

interesting results to describe.

VI. FIBER CPTIC SIGNAL PROCESSING

Our studies of systclic architectures in conjunction with the
optical interconnection project has led to some.novel concepts in the
area of fiber-optic signal processing. This work was carried out in
conjunction with Prof. John Shaw of the Ginzton Laboratory at Stanford.
In fact the experimental evailuetion of the ideas is being pursued in
Prof. Shaw's group, sicce he has the technology to bring the ideas to
fruition.

The conceptual advance that has taken place in recent months is the
origination of a signal rrocessing architecture that can be implemented
using fiber optics and that is more general than a simple tapped delay
line. The new processor is illustrated diagramatically in Fig. 2. We

refer to it as the "doubie heliz processor."”

-14-~
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Figure 2. The double helix processor

The structure consists of two single-mode optical fibers that are
connected together through a multitude of optical couplers. Input
signals travel in one direction into one of the fibers, while output
signals propagate in the opposite direction in the second fiber.
Signals are coupled into the input fiber via intensity modulation of a
laser. The output intensity modulations are detected by means of a
gingle detector at the end of the output fiber. |

This processor can be used in either a discrete or a continuous
mode. In a discrete mode of operation, the input laser is modulated to
emit pulses of different intensities. A sequence of N pulses
represents an input vector of N elements, where it is assumed that all
elements are non-negative and real. The pulses propagating out of the
second fiber, if properly windowed in time, represent the N components
of an output vector. T™he 2N-1 coupling coefficients determine the

structure of the filter matrix that is realized. When the coupling




coefficients are constant in time, as would be the case with present
fiber-optic technology, the matrix realized is Toeplitz, meaning that
the filter is time invariant.

It is also possible to consider this processor to operate on
continuous functions of time, although its impulse response is
necessarily discrete. The continuously modulated input laser then
enters data into the system, and the detector measures a
continuous-time signal at the output.

There are a number of interesting properties of this proceséor.
First, it can be regsrded as a fiber-optic implementation of a lattice
filter. The structure incorporates feedback, and as a consequence
produces  an impulse response that 1is theoretically of infinite
duration. Such a filter can have both poles and zeros within the wunit
circle in the Z-transforn domain. This result should be contrasted
with the case of a simple tapped delay line, which produces an impulse
response of only finite duration, and which can have only zeros within
the unit circle in the Z-transform domain. Because of the "infinite
impulse response” (IIR) characteristic of the double helix processor,
it should allow the construction of much higher-Q fiiters (for a given
number of couplers) than the "“finite impulse résponse" (FIR) filter
realized by a simple tapped delay line.

It is also worth mentioning that, when time-changing coupler
technology becomes practical in the future, the double helix processor
can be used as a systolic processor, with the input vector entered as

pulses on the input fiber, and with matrix elements entered in proper

-16-
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time sequence as time-changing coupling coefficients. In this case it

is necessary that the coupling between the fibers be weak in order to

produce the desired results.

Experimental realization of a simple double helix processor is
being carried out under Prof. Shaw's fundiﬂg. Results of this work
will be published in a letter +to OPTICS IETTERS, and credit for

initiating the theoretical developments will be given to AFOSR.

VII. PAPERS PUBLISHED AND MEETING PRESENTATIONS

We summarize in this section the various publications and

presentations made during the past year under support of the grant.

A. Papers Published

J.W. Goodman, A.R. Pias, X.M. Johnson, and D. Peri, "Parallel incoherent
optical matrix-vector rultipliers,” Proceedings of the Workshop on
Optical Signal Processing, Texas Tech University, Iubbock, Texas,

116-128 (1980). (actually published in 1981).

H.J. Caulfield, David Dvore, J.W. Goodman, and William T. Rhodes,

"Eigenvector determination by noncoherent optical methods," APPLIED

OPTICS 20, 2263-2265 (1981).

-17-
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B. Papers Accepted for Publication

J.W. Goodman and Moon Song, "Performance limitations of an analog method

for solving simultaneous linear equations,” APPLIED OPTICS.

M. Tur, K.C. Chin, and J.W. Goodman, "When is Speckle Noise

Multiplicative?" APPLIED OPTICS.

J.¥W. Goodman, "Two Generalizetions of the Fourier Transform in Optical

Signal Processing", Signal transformations in optics,

S.P.I.E. Institute Series.

J.W. Goodman, "Architecturzl development of optical data processing

systems" (invited), fustralian Proc. IEE.

The above paper will also appear in the Proceedings of the Workshop on
Optical Information Processing, held in Cuernevaca, Mexico, in

January, 1982. :

C. Oral Presentations

J.W. Goodman, "Architecturzi development of optical data processing

systems", Workshop on Cptical Information Processing, Cuernevaca,

Mexico, January 1982.

~-18-
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Finally, the contributions of a large number of individuals to the
work reported here should be acknowledged. Many contributions to the
"double helix processor"” concept were made by M. Tur, a Post-Doctoral
Fellow partially supported by the grant. Work on the diagonalization
and inversion of circulant matrices was performed by Q. Cao. The
theoretical developments pertaining to the 1limitations of iterative
processors are due almost entirely to Moon Song. Contributions +to the

study of speckle noise were made by M. Tur and K.C. Chin.
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performance limitations of an analog method for solving

simultaneous linear equations

Joseph W. Goodman and Moon S. Song

The limitations inherent in a recently proposed analog method for solving simultaneous linear equations are
examined, and methods for overcoming some of these limitations are discussed. In its original form the
method requires that all eigenvalues of the matrix of coefficients lie in a unit circle centered on (1,0) in the
complex plane. Proper scaling of the matrix and the data vector extends this region to the entire right half
of the complex plane (neglecting the effects of noise). A modification of the algorithm is described that al-
lows the region to be further extended to the entire complex plane. If the product of the gains in the forward
and feedback branches is not unity, the solution produced by the algorithm is shown to be in error. Finally.
the effects of noise, which is inevitably significant in any analog realization of the algorithm, are examined.
Noise is found to produce a limiting mean square error of the solution, thus preventing perfect convergence
to the ideal solution vector. A procedure for determination of when to stop the iteration is proposed.

I. introduction

In recent publications!-2, an iterative procedure has
been described that in principle allows the solution of
simultaneous linear equations by means of repeated
passes through an incoherent optical system. The
purpose of this paper is to point out some limitations of
this particular algorithm and some methods for over-
coming some of these limitations.

The method of concern is based on an incoherent
optical matrix--vector multiplier described by Goodman
et al.3 Using such a system, Psaltis et al.} constructed
an iterative processor with feedback that was designed
to solve simultaneous linear equations, represented in
matrix-vector form by Bx = ¢, where Bisan N X N
matrix of known coefficients, ¢ is a length N column
vector of known data values, and x is a length N column
vector of unknowns. Figure 1 shows a schematic di-
agram of such a system. An input vector representing
a trial solution enters the system via a parallel array of
light-emitting diodes (LEDs). The optical system
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performs inner products of this input vector with the
row vectors of the stored matrix mask M. The resulting
output vector appears at the output of a parallel array
of photodetectors, where it is added electronically to the
known data vector e. The result is passed back to the
input of the system, where it replaces the original trial
solution vector. In certain conditions this input vector
converges to the solution vector desired.

As will be demonstrated, the iterative procedure in
question converges only when the magnitudes of all the
eigenvalues \; of the matrix of coefficients lie within a
unit circle centered at the point (1,0) in the complex A
plane. InSec. II we review these constraints in prepa-
ration for describingcertain methods for relaxing them.
Section U1 considers the question of scaling the matrix
when its eigenvalues do not satisfy the necessary con-
dition, thus in principle allowing the eigenvalues to lie
anywhere in the right half of the complex A plane.
Section IV considers a modification of the basic itera-
tion matrix that allows extension of the procedure to
equations whose matrix has eigerivalues anywhere in the
complex A plane. Section V studies the effects of a gain
mismatch in the forward and feedback paths, demon-
strating that such a mismatch leads to an error in the
solution. Finally, Sec. VI considers the effects of ran-
dom noise, which will always be present to some degree
in such systems, on the accuracy of the solution. It is
shown that with noise present, the output of the system
fails to converge after an infinite number of iterations,
and the important problem is how to choose the number
of iterations so that the solution obtained is closest to
the true solution.
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Fig.1. Schematic diagram of an iterative optical processing
system.
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Fig. 2. Allowable region for eigenvalues in the complex plane.

it. Convergence Conditions

Consider the problem of solving a set of linear equa-
tions described by the equation

Bx = ¢, 1)
where B is a knewn N X N matrix of coefficients, cis a
known column vector with N components, and x is an

unknown columu vector of N components, all of which
we wish to find.

A solution for vector x can be found by means of an
iterative algorithm¢*
Xne1 = (I — B)x, + ¢, (2)
which can be rewritten

(Xn41~ B=¢) = (I - B)x, — B~ l¢), (3)
where we have assumed that B—! exists.
I( we lety, = x, — B~l¢, we may interpret y, asthe
deviation or crror from the true solution B-!¢c. The
error state equation can be written

Y413 Fy,, 4)

where F' = | — B, and the initial condition is yo = %o —
B-le, Thg convergence condition for this iterative
procedure is that y, should vanish as n increases:

lim y, = lim Fry,=0 (3)

nea [ T

or equivalently

lim F» = 0. (6)

n—ew

Thg necessary condition for Eq. (8) to hold is that all
the eigenvalues of F be less than unity in magnitude,

INMF{ <1for1<i <N, (7)
or equivalently, since A\;(F) = 1 — A, (B),

1-MB) <1, (8)

From Eq. (8) we see that the eigenvalues of B must lie
within a unit circle in the complex plane centered at the
point (1,0) (see Fig. 2). In Sec. III we consider the
problem of scaling the matrix to extend the class of
matrices for which the algorithm will converge. In Sec.
IV we consider an additional modification that allows
the matrix to have eigenvalues with both positive and
negative real parts.

iif. Problem of Scaling

Suppose we wish to solve a set of linear equations
described by

B*x = ¢*, (9)

where the eigenvalues of B* do not satisfy Eq. (8).
Thus |1 — A\;(B*)| 2 1. We introduce a real scaling
factor aso that |1 — A;(aB*)] < 1. Now let B = aB*,
¢ = ac*, yielding

(aB*)x = (ac*®). (10)

This new equation will have the same solution vector
as the original Eq. (1). Thus by applying the iterative
procedure with iteraticn matrix,

F =1~ aB*, 1)

and simultaneously scaling the data vector by the same
amount, the desired solution should be obtained. By
use of the scaling factor «, the allowable region for the
eigenvalues of B can be extended to the entire right half
of the complex A plane (neglecting restrictions posed by
noise and speed of convergence).

While the above procedure appears straightforward,
we have not yet addressed the important question as to
how the scaling factor a should be chosen. The rate of
convergence of the algorithm is dependent on the
magnitude of the largest eigenvalue, which is known as
the spectral radius, of the iteration matrix F. There-
fore, to assure most rapid convergence, we should choose
the scaling factor to make the magnitude of the maxi-
mum eigenvalue of the iteration matrix as small as
possible. Note that small eigenvalues of F are not
achieved simply by choosing a small scaling factor, for
as « approaches zero all the eigenvalues of F approach
unity. The convergence of the process is also limited
by the presence of random measurement noise. The
smaller the eigenvalues of F, the more significant the
effects of this noise become. We defer a discussion of
noise effects to Sec. VI and consider here only the op-
timum choice of « to achieve a minimum of the magni-
tude of the largest eigenvalue of F. At this point we
restrict attention to the class of Hermitian matrices, so
that all the eigenvalues are real. For non-Hermitian
matrices, we can use the transformation method de-
scribed in Sec. IV.

Noting that

A(BY = A (aB*) = al,(B*), (12)
we see that in passing from B* to the iteration matrix

F, the maximum eigenvalue A,(B*) will he mapped
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: — aAmex(B*), while the minimum eigenvalue
ﬁ:&g') will be mapped into 1 = aAmin(B*). Thus to
make the maximum eigenvalue of F' as small as possible,
we should choose a so that the maximum and minimum
eigenvalues of F are equal in magnitude and opposite

in sign,

{1 = aAmin(B*)| = |1 — aAuu(B*)], (13)
which yields an optimum value of a given by
2 a0

™ Nwx(B*) + Ain(B*)
Now suppose that the spread of eigenvalues of B* is
fixed at value T = Anin(B*)/Amax(B*). With the use of
the optimum value of « above, we find that the magni-
tude of the maximum eigenvalue of the iteration matrix
F is given by

1—r
1+r

This result represents the smallest achievable value of
the magnitude of the eigenvalue of F having largest
magnitude and can be realized only by choosing the
scaling constant a to be given by the value specified in
Eq. (14). -

While the above choice of « gives the most rapid
convergence rate theoretically, we do not have the ei-
genvalues at hand in advance. But we can make an
estimate of the maximum eigenvalue of B by using the
well-known Gerschgorin theorem® and the Schur the-
orem.® The Gerschgorin theorem states

PanlF) = |1~ GophaialBY)] = |

. (15)

N
Amax S Apound.l = MAaYX; _Zl 16i51, (16a)
‘ N
Amax < Apound 2 = masx; Y {b;]. (16b)
i1
The Schur bound gives
N N W12
Awmax X Abounda = 'Zl. 2 b..z,) . (16¢)
iml jol

S_ince these bounds do not impose a heavy computa-
tional load, it is reasonable to compute all of them and
choose the smallest one:

Acaz = Apound = min|Abound,1. Abound.2, Abound.a) (16d)

But si_n'ce it is not easy to estimate the upper bound of
the minimum eigenvalue, it seems practically reasonable
to choose the scaling factor as?

o= 2/()\5«;...) an

IV. Extension to Matrices B with Eigenvalues not
Confined to the Right Half of the Complex Plane

_ We assumed in the previous discussion that all the
eigenvalues of the matrix B lie in the right half of the
complex plane. Here we discuss further generalizations
that allow matrices not satisfying this restriction to be
dealt with.

) Fi{'st we note that if the matrix B has eigenvalues that
lie within aunit circle centered at (—1,0) in the complex
plane, a simple modification of the algorithm to

Xney = (I + B)x,+ ¢ (18)
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Fig.3. Block diagram of iterative system.

allows such matrices to be dealt with. By introducing
a scaling factor, the region of allowable eigenvalues can
be extended to the entire left half-plane (neglecting
limitations posed by noise and convergence speed).

Suppose that the matrix B has some eigenvalues with
positive real parts and some eigenvalues with negative
real parts. Neither algorithm presented will allow such
matrices to he included. However, there is a simple
modification of the algorithm that will do so. Let the
equation to be solved, i.e., Eq. (9), be modified by
multiplying the left and right sides by the Hermitian
transpose B*H of B*, giving

(B*Y1B*x = (B%)Hes, (19)

The matrix (B*)HB* is non-negative definite (practi-
cally positive definite since B* is assumed nonsingular),
and therefore the use of an iteration matrix F = | —
a(B*)HB* and a proper choice of a will assure that the
eigenvalues of F are non-negative and less than unity
in magnitude. Furthermore, the solution set for Eq.
(19) is precisely the same as the solution set for Eq. (9).
Thus the multiplication of both the matrix B* and the
data vector c* by (B*)# has generated a new 2quation
with the same solution set but with matrix eigenvalues
satisfying the necessary requirements. In this way the
space of allowable eigenvalues has been extended to the
entire complex plane.

V. Effects of Gain Mismatch In the Forward and
Feedback Paths

Since the optical system in question involves opti-
cal-to-electronic and electronic-to-optica! conversion,
and since they are analog systems, the strong possibility
exists for differences of the gains in the forward and
feedback paths. Figure 3 illustrates the general nature
of the systems of concern. G, represents the inherent
gain matrix associated with passage of the signals in the
forward direction, while G5 is the corresponding gain
matrix in the feedback direction. The matrices are
diagonal, but the elements along the diagonal need not
be equal, since the different channels of an incoherent
matrix-vector multiplier may have different gains.

The presence of the gain matrices Gy and G modifies
Eq. (2) describing the iterative algorithm to become

Xna1 = GGl - B)x, + ¢ (20)

To see the effects of a gain mismatch, suppose that the
product of gain matrices is close to the identity ma-
trix,

GG =1+e¢, "
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where the diagonal matrix ¢ represents the gain mis-
matches in the various channels and is assumed to have
small elements. The iteration equation becomes

2= U+ U —B)xatc={~[B- el -B)lixa +ec.
(22)

From the above equation we can see that, when gain
mismatches exist, the iterative procedure will produce
a solution that is appropriate for a matrix B — ¢(I — B)
rather than the matrix B. We now investigate the
magnitude of the errors associated with the solution
vector x.

Suppose that the iteration procedure has reached
convergence; i.e.,

Xn41 ™ Xp =X (23)
Then the iteration equation can be written
U-U+eU-Blx=c (24)
Solving this equation for x, we find
x = [~ Bl — B)]"'B~le. (25)

If the elements of matrix € are all small, the result for x
can be approximated as

x = B-l¢ + B-le(I — B)B-lc. (26)

Thus in the presence of gain mismatch, the iterative
procedure converges to an incorrect answer. The error
vector is given by

%error = B~1¢(I — B)B-lc. 27)

The relative size of the error due to gain mismatch can
be written (assuming a symmetric B)

'Smofu - "B“E(! - B)B-‘c"

iB-tel iB-1clf
I1B-1«1 — B)|| - 1B-1ell
iB-tcl
S hell- B2 — Il < el - (1B + 1), (28)

where |-l indicates a matrix norm, defined by
K} = |largest eigenvalue of K#K|1/2, (29)

and the superscript H indicates a Hermitian transpose.
Thus as might be expected, the bound on the relative
erro¢ is proportional to the gain mismatch |¢|| and to
1Bl (which is essentially the inverse of the smallest
eigenvalue of B).

VI. EHects of Neise on the Convaergence of the
Algorithm

When an iterative procedure such as that of interest
here is implemented with an analog system, concern
naturally arises as to the effects of noise. Noise is in-
troduced on every pass through the loop, and it should
be expected that its effects will eventualiv build up to
the point where they cannot be neglected. Our purpose
here is to examine the effects of noise in as guantitative
a way as possible.

. We make the approximation that the noise involved
18 purely additive, and we further assume that it has zero

x - P I - B
-]

ot

n+l

Fig. 4. Block diagram of system with noise.

mean. Figure 4 shows a block diagram of the system
considered. The state equation with a noise component
present must be rewritten as

Zp+1 = (I = B)xp + c + Wy, (30)

where w,, is the noise vector of concern. The error state
equation becomes

Yn+1 = Fy, + w,, (31)

where again we have used the definition y, = x, —
B-1e,

The solution of Eq. (30) can be divided into two
components: (1) a deterministic homogeneous solution
¥» due to the initial condition, and (2) a stochastic
particular solution ¥, due to the noise input. Since the
system is linear, we may consider these components
separately. Note that §, is the solution to

Fne1=F9y (32)

with $o = xo — B~1¢, while ¥, is the solution to

Va1 = FS'u + w, (33)
with ¥ = 0. The complete solution is given by
Yn =$n + ¥n (34)

The homogeneous part of the solution was analyzed in
the earlier sections. Here we consider only the noisy
part §,,. Co

From Eq. (33) we write

nt1 = FPnt o= T Frtem,. (35)
k=0

Squaring both sides of this equation and taking averages
with the assumption that the noise is both white and
stationary yield the following expression for the co-
variance matrix of the noise output.

Kat1 = EFae1984)) = o2 .i (FFH), (36)
=0

where o2/ is the covariance of noise vector w,,.

Using the definition of matrix norm in Eq. (29), the
following inequality can be used to put a bound on the
error covariance:

n 1~ Fj2n+2
ol €02 F||2* = g2 ——— . (37)
IKall <o h};o ral T

With the above result in mind, we define a time

varying (SNR), by

18-t
viKai

(SNR), = (38)
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From Eq. (38) we see that, due to the increasing nature
of |1K,|| with iteration number, the (SNR),, becomes
smaller at each iteration. Furthermore, when the norm
[ Fll is less than one, the (SNR),, ultimately approaches
a limiting value that is independent of the iteration
number.

During the initial iterations, the starting condition
will be sufficiently far from the true solution that the
deterministic component of error will dominate, and the
output vector will start to move toward the solution
vector. The errc: will therefore begin to decrease. As
the iteration number grows, the noise component of the
output builds up, and eventually it becomes the domi-
nant component of error, preventing the error from
vanishing. Thus the process initially converges, but
then the mean square error approaches a nonzero as-
ymptotic value. A key question concerns the means for
judging when to stop the iteration. When the process
is sufficiently slow to allow a human observer to interact
with the system, judgment can perhaps be made as to
when to terminate the procedure. However, interest
is greater when the processing speed is high, and in such
cases the possibility of human intervention vanishes.
An automatic means for judging when to terminate the
iteration is needed. We now describe one such
method.

Suppose we obtain on a particular iteration a solution
X which may differ from the true solution B-l¢. Ob-
viously, it is our hope tha: X will satisfy the given
equation as closely as possible, i.e., that

BT =c. (39)

Thus cur efforts to solve the equation are equivalent to
the minimization of the equation error, ¢ — BX, which
will be zero if X happens to be B-'c. Hence we can use
this error as a measure of closeness to the solution. Let
the equation error associated with solution x,, be rep-
resented by e,; i.e.,

e, =c¢ - Bx,,. (40)
Then it is easy to demonstrate that e, satisfies

ens1 = Fe, (41)

with the initial condition ey = ¢ ~ Bx,. 1f B and ¢ have
n properly scaled so that F is a stabie matrix, we see
that e, should vanish as the iteration proceeds

lim e, = lim Freq = 0. {42)

n-eew n--e
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We can monitor the equation error at each iteration by
measuring some form of the vector norm of en. (One
easy meghod would be by taking the absolute value of
the maximum component of e,.) This quantity thus
provides the required estimate of closeness to the true
solution.

The last question is: how can we obtain the equation
error experimentally? If we note that

Xn41 = Xn = Bx, + c=x, + ¢, (43)

which is readily available after the (n + 1)st iteration,
we can obtain e, simply by subtracting x,, from x,4,.
The system then must contain a means for storing one

vector x,;. A block diagram of the method is illustrated
in Fig. 5.

Vil. Conclusions

We have discussed some performance limitations of
a certain optical implementation of an iterative algo-
rithm that can be used to solve simultaneous linear
equations. The method, as originally proposed, re-
quires that all eigenvalues of the matrix of coefficients
lie within a circle in the complex plane having a unit
radius and centered on the point (1,0). We have de-
scribed a method for modifing the matrix and the data
vector 8o that the eigenvalues of the matrix of interest
can (in principle) lie anywhere in the complex plane. It
has been shown that a difference in gains associated
with the forward and feedback paths causes the algo-
rithm to converge to an incorrect solution vector. The
effects of measurement noise on the algorithm have also
been examined. It has been shown that the presence
of noise affects the convergence of the algorithm, leading
to a mean square error between the true solution vector
and the experimental solution vector that fails to vanish
as the iteration number grows large. Finally, we have
suggested a means for determining when the iterations
should be stopped, based on the difference between the
solution vectors on two successive iterations. All the
above considerations are of considerable importance
when the algorithm is implemented by means of an
analog optical system.

The work described here was supported by the Air
Force Office of Scientific Research.
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A APPENDIX B

WHEN 1S SPECKLE NOISE MULTIPLICATIVE?

M. Tur
K C Chin’
J. W. Goodman

(]

Information System Laboratory, Stanford University, Stanford, Ca. 94305

L‘ In coherent illumination, objects with roughness on the order of a
| wavelength cause speckle to appear in their images as formed by imaging sys-
} tems which cannot resolve the microscale of the objects’ roughness [1]. Thus,
{ when a laser illuminates a composite object composed of a diffuser (whose com-
plex amplitude transmittance is d{(z',y)) in contact with a transparency
) t(z'.y) (see Fig. 1) the spatial intensity distribution in the image plane will be
J;'( very noisy (i.e. speckled ), provided the amplitude point spread function of the
optical system is broad by comparison with the microscopic surface variations

of the diffuser. Recent publications [2]-[4] as well as older ones [5]-[7] have

assumed that speckle noise is multiplicative, i. e.

I (z.y) = ¢ Linc (z.y) i (xy) (1)

¢ where: /,(z.y) is the (random) spatial intensity distribution in the speckled
| image of the transparency t{z'y). L(z.y) is the intensity distribution in the
image of the diffuser alone‘( t{iz'y)=1)and fn(z.y) is the incoherent image
f ‘ of the transparency t(z’y"). The proportionality factor « depends on the sys-
tem parameters. Eq. (1) is mainly based on the work of Lowenthal and Arsenauilt
[8]. who showed that when d{z’%) is a stationary, & correlated random pro-

' cess with independent real and imaginary parts having zero means and the same

Y e
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variances, the mean and standard deviation of I, (z.y) are equal to [y, (z ).

That is,

Jeo(2.Y)> = Inc (z.y) © <IE(zy)> = 208 (z.y) (2)

where < > denote an ensemble average over different realizations of the

. diffuser and/or the illumination. Using Eqs. (1)-(2), we also find that a in Eq. (1)

is given by: a = <J;(z,y)>"!. While Lim and Nawab [2] specifically restricted
their multiplicative model to the case when the degraded image has been sam-
pled coarsely enough such that the degradation at any point can be assumed to
be independent of that at all other points, most other investigators have used

Eq. (1) without further limitations.

It is the purpose of this letter to point out that Eq. (1) is only an approxima-
tion which is certainly not valid when the transparency t(z'y’) has spatial
details which cannot be resolved by the coherent system. This observation is of
practical importance since most objects contain fine details well beyond the

resolution capabilities of the systems that are used to image them.

Due to the finite resolving power of the imaging system, the complex wave
amplitude U at the image point P (see Fig. 1) is the result of a coherent addi-

tion of contributions from many independent areas within a finite patch R,

which is of the order of a resolution cell. The (random) intensity at P=(2:p .y,) is

given by
1] ] * v . 2
Ia(zp yp) = |U(zp )12 = ;{fdz' dy h(zp—2 yp—y) £ (=) expliv(z ¥)] £3)
“evil

where h(z,y) is the amplitude impulse response of the system (assuming unity
magnification) and ¢(z’,y") is a random phase delay which is introduced by the
diffuser at the object point {z'y") : d(z'y") = exp[ig{z'y)]. Obviously, when

t(z'.y") does not change appreciably within Rgey . Eq. (3) reduces to




.................

‘2

Since in this limiting case Jinc(Z,.%p) @ [t(2,,%,) ]2 and the second factor on

I (Zp ) = 18(zp.9p) 1% (4)

{fd.'r dy h(zp~z'yp—y) explig(z.y))]
oell

the right hand side of Eq. (¢) is L(Zp.Yp) . Eq. (4) has the same form as Eq. (1).
This explains why Lee [3] was successful in verifying Eq. (1) for the flat areas in
his synthetic aperture radar images. However, when £(z’,y") has spatial details
smaller than or comparable to Reau « Eq. (1) is no longer valid. As an example,
consider the case of a sharp opaque edge object and denote by [, the speckled
(random) intensity at the geometrical image of the edge G (see Flg 2) and by
I, the intensily of the speckle at the same point in the absence of the sharp
edge. Based on a random walk model [9], I, is the intensity of the sum of two
Independent random walks Z* and Z~ originated respectively from R2,; and
Rgu inFig. 2. Obviously, I is the intensity of Z* . Assuming exponential dis-
tributions for the intensities, it is readily shown.that the joint probability den-

sity function for f;; and I; is given by:

1 <Ly >l +<[,>D, | VI, ]
ple.tis) = exp|- Igl 2
[ I >=<Ipy> 1<ly> [ <f>=<Uys> [<Uie> | [ <Ls>=<ys> ]|
(5)

where <[,> and <[;,> are the ensemble averages of [, and J;; , and 4 is a
modified Bessel function of the first kind, zero order. Therefore, the quotient

1 ‘
Q= 7’— .assumed constant in Eq. (1), is instead a continuously distri-
ts

buted quantity with a probability density given by:

p(Q) = 2@ E=N€ + B(F-1) (6)
{Q4+2(3—2)Q2+32]2

<1’>

where B =
<[ig>

(In the simplest case, when R, is equally divided by the

edge, B=2). Since for large values of @ .p(@)~ @ %, @ has an infinite
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variance which means that the zeroces of [;; occur independently of those of

I, . in contradiction to Eq. (1).

To further validate our assertion, we have carried out one-dimensional
numerical simulations of the image forming system of Fig. 1 for slanted objects

with different slopes. The speckled image was generated using convolution tech-

niques rather than Fourier domain methods. Results for ;L- near the point G
te

in Fig. 2, show that for two different realizations of the diffuser, the steeper the

edge, the larger the difference between the two realizations. We have also

|

B}
2 {%> assumes the value 1.91 which is the first

confirmed that for B =2, < T
ts

moment of the distribution p(Q) , Eq. (6).

A statistical estimate for the error introduced by the multiplicative model

can be obtained from the mean square error M(z,y):
: 2
Hzy) = <[la(z.y) = o ine (2.9 L (2 )] > )
In order to evaluate M we follow the assumptions and results of Lowenthal and

Arsenault [8], so that Eq. (7) reduces to:

2 _ <]gs (z.y)'[s (Z‘,y)> ] (8)

H(z.y) = 208 (z.y) L (Z.y) <L (z ¥)> |

Using the above assumptions together with the additional fact that the complex
wave amplitudes U, and U, at the image point (z.y). originate from the
same diffuser, we may conclude that Ug(z.y) and U,(z,y) are two complex

mutually. circular Gaussian random variables, and therefore:

<lia(zy) iz .y)> = <Us(z y)Ug(z . y)0s (2 ) Uz y)> (9)
= Lna (2 Y) <y (2.9)> + | < (2 1)Uz 10> |
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The star denotes complex conjugation. Substituting Eq. (9) in Eq. (8), we find:

|<Ug; (z.¥)U(z.¥)> r ]
T Zy) <l (z.y)> ] (10)

H(zy) =2L&(zy)| 1 -

Recalling  that <d(z;.y,)d(z2.y2)> = 6(x; —x2)6(y1 —yz) and  that
|d(z’.y)| =1.Eq. (10) may be rewritten as:

M(zy) _ 1- _]f:/'d.'z dy' t(z'\y) |h(z-z'y~y)|?
215 (z.Y)

= — ,
f_;f dz’ dy’ |t{z"y)|* [h(z -z y—y)|? _/if dz’ dy'|h(z—z"y—y)|?
(11)
Due to Schwart's inequality, 0< ¥ (z.y) < 1. Moreover, using the condition for
equality in Schwartz's inequality, the multiplicative model holds, i.e. M=0, if
and only if #{(z’.y) is constant over the resolution cell of the system (where
h(z-z'y—y) #0).
Figures 3 and 4 describe the spatial distributions of M(z,y) and [ (z.y)
for a sharp edge as well as for slanted (see insert in Fig.4) objects, as obtained
from an imaging system with unit magnification and a square aperture. It is

readily seen that far from the edge M approaches zero. Also, as the slope of the

object decreases, so does .
We have thus shown that the multiplicative model fails when the object con-

tains fine details which cannot be resolved by the imaging system.
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Figure Captions

Figure 1: The optical system. d(z'y) and t(z'y’) are, respectively, the

complex transmittances of the diffuser and the object transparency.

Figure 2: Same as Fig. 1 but with a sharp edge object. R is the part of

the system's resolution cell { F.u ) which is blocked by the object.

Figure 3: The spatial variation of M(zx.y) for a sharp edge object. The
incoherent image of the sharp edge is also included. The abscissa is scaled
by the transverse dimension of R, . A is the wavelength, f is the focal

length of the imaging system and a is the size of jts square aperture.

Figure 4: Same as Fig. 3, but for two slanted objects (see insert). While the
change in object 1 occurs on a scale comparable to Rgy . object 2 is

fully resolved by the system. The incoherent impulse response of the sys-

tem is also included in the insert.
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