Final Scientific Report

Air Force Office of Scientific Research Grants, AFOSR-81-0252

Period: 1 October 1976 - 30 September 1982

Title of Research: The Constraint Method for Solid Finite Elements

Department of Systems Science and Mathematics
School of Engineering and Applied Science
Washington University - Box 1040
St. Louis, Missouri 63130

Approved for public release; distribution unlimited.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>Report Number: AFOSR-TR-83-0080</th>
<th>GoVt Accession No.</th>
<th>Recipient's Catalog Number</th>
</tr>
</thead>
</table>

4. TITLE (And Subtitle)
 The Constraint Method for Solid Finite Elements

7. Author(s)
 I. Norman Katz

9. Performing Organization Name and Address
 Department of Systems Science and Mathematics
 Box 1040, Washington University
 St. Louis, MO 63130

11. Controlling Office Name and Address
 Air Force Office of Scientific Research (AFSC)
 Directorate of Math. and Information Sciences
 Bolling Air Force Base, DC 20332

16. Distribution Statement (Of This Report)
 Approved for public release; distribution unlimited.

19. Key Words (Continue on reverse side if necessary and identify by block number)
 Finite Element Analysis, Stress Analysis, Hierarchic Families of Finite Elements, P-version of Finite Element Method, Numerical Analysis

20. Abstract (Continue on reverse side if necessary and identify by block number)
 The p-version of the finite element method is a new approach to finite element analysis which has been demonstrated to lead to significant computational savings, often by orders of magnitude (this approach was formerly called the constraint method; the new term p-version is more descriptive). Conventional approaches (called the h-version) generally employ low order polynomials as basis functions. Accuracy is achieved by suitably refining the approximating mesh. The p-version uses polynomials of arbitrary order p > 2 for problems in plane elasticity where C0 continuity is required and polynomials of order p > 5 for problems in plate bending where C1 continuity is required.
Hierarchic elements which implement the p-version efficiently are used together with precomputed arrays of elemental stiffness matrices.

Some important research results are:

1. In polygonal regions, under conditions usually satisfied in practice, if the h-version converges with order of error in energy norm $O(1/N^3)$ then the p-version converges with order of error in energy norm $O(1/N^{2.5})$, where N is the number of degrees of freedom. This applies to planar problems which require either CO or C1 global continuity.

2. Hierarchic CO elements for triangles or rectangles have been developed and implemented for $p \geq 2$. Hierarchic C1 triangular elements have been developed and implemented for $p > 5$. Hierarchic CO solid elements have been developed for $p > 2$ for bricks, tetrahedra, triangular prisms, and rectangular pyramids.

3. Modified Bernstein polynomials have been constructed over triangles which provide a smooth approximation to functions in H_0^2. These polynomials are used to prove that the p-version of the finite element method converges in the C1 case (plate bending).

4. Explicit mappings have been constructed which map triangles with one curved side into the standard triangle. These mappings have the property that the resulting elemental stiffness matrices can be integrated in closed form. The need for numerical quadrature, which may be inefficient in the p-version, is thereby obviated. The curved side can be either parabolic or elliptic. The newly constructed mappings permit the p-version to be applied to domains with curved boundaries of specified shapes.

5. The p-version analysis of stresses in a rhombic plate was completed. The results compare very favorably with those of other codes.
REPORT OF INVENTIONS AND SUBCONTRACTS
(Pursuant to "Patent Rights" Contract Clause) (See Instructions on Reverse Side)

1. NAME AND ADDRESS OF CONTRACTOR (Include Zip Code)
 I. Norman Katz
 Washington University, Box 1040
 St. Louis, MO 63130

2. CONTRACT NUMBER
 AFSOR 77-3122, AFSOR 81-0252

3. TYPE OF REPORT (Check One)
 [] INTERIM [X] FINAL

SECTION I - INVENTIONS ("Subject Inventions")

4. INVENTION DATA (Listed below are all inventions required to be reported) (II "None," as stated)

<table>
<thead>
<tr>
<th>[v]</th>
<th>[v]</th>
<th>[v]</th>
<th>[v]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME OF INVENTOR</td>
<td>TITLE OF INVENTION</td>
<td>CONTRACTOR ELECTS TO FILE U.S. PATENT APPLICATION</td>
<td>CONTINUE RIGHTS OR ASSIGNMENT</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

SECTION II - SUBCONTRACTS (Containing a "Patent Rights" Clause)

5. SUBCONTRACT DATA (Listed is information required but not previously required for Subcontracts) (II "None," as stated)

<table>
<thead>
<tr>
<th>[v]</th>
<th>[v]</th>
<th>[v]</th>
<th>[v]</th>
<th>[v]</th>
<th>[v]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME AND ADDRESS OF SUBCONTRACTOR</td>
<td>SUBCONTRACT NUMBER</td>
<td>SUBCONTRACT PATENT RIGHTS CLAUSE</td>
<td>WORK TO BE PERFORMED UNDER SUBCONTRACT</td>
<td>SUBCONTRACT DATES</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

SECTION III - CERTIFICATION

CONTRACTOR CERTIFIES THAT PROMPT IDENTIFICATION AND TIMELY DISCLOSURE OF SUBJECT INVENTIONS PROCEDURES HAVE BEEN FOLLOWED

DATE	NAME AND TITLE OF AUTHORIZED OFFICIAL	SIGNATURE
11/30/82 | I. Norman Katz, Professor of Applied Mathematics & Systems Science | Signature

J. Norman Katz, Professor of Applied Mathematics & Systems Science
TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. RESEARCH ACCOMPLISHMENTS .. 2
 2.1 Rate of Convergence of the P-version 2
 2.2 Hierarchic Families of Solid Finite Elements 6
 2.3 P-version Analysis of a Rhombic Plate 14
 2.4 Computer Implementation - COMET-X 16
 2.5 A Sample Problem ... 17

3. REFERENCES ... 18

4. FIGURES ... 20

5. PAPERS PUBLISHED AND PRESENTED SINCE THE START OF THE PROJECT 27
 5.1 Published Papers ... 27
 5.2 Presented Papers ... 28
 5.3 Seminars Presented at Government Laboratories 29
1. INTRODUCTION

Two approaches to finite element analysis are now widely recognized in the engineering and mathematical communities. In both approaches the domain Ω is divided into simple convex subdomains (usually triangles or rectangles in two dimensions, and tetrahedra or bricks in three dimensions) and over each subdomain the unknown (displacement field) is approximated by a (local) basis function (usually a polynomial of degree p). Basis functions are required to join continuously at boundaries of the subdomains in the case of planar or 3 dimensional elasticity, or smoothly in the case of plate bending. The difference between the two approaches lies in the manner in which convergence is achieved. These two approaches are:

1. The **h-version** of the finite element method. In this approach the degree p of the approximating polynomial is kept fixed, usually at some low number such as 2 or 3. Convergence is achieved by allowing h, the maximum diameter of the convex subdomains, to go to zero. Estimates for the error in energy have long been known [1, 2, 3]. In all of these estimates p is assumed to be fixed and the error estimate is asymptotic in h, as h goes to zero.

2. The **p-version** of the finite element method. In this approach the subdivision of the domain Ω is kept fixed but p is allowed to increase until a desired accuracy is attained. The p-version is reminiscent of the Ritz method for solving partial differential equations but with a crucial distinction between the two methods. In the Ritz method a single polynomial approximation is used over the entire domain Ω (Ω, in general, is not convex). In the p-version of the finite element method polynomials are used as approximations over convex subdomains. This critical difference gives the p-version a much more rapid rate of convergence than either the Ritz method or the h-version as will be explained later.
The p-version of the finite element method requires families of polynomials of arbitrary degree p defined over different geometric shapes. Polynomials defined over neighboring elements join either continuously (are in C^0) for planar or three dimensional elasticity, and smoothly (are in C^1) for plate bending. In order to implement the p-version efficiently on the computer, these families should have the property that computations performed for an approximation of degree p are re-usable for computations performed for the next approximation of degree $p + 1$. We call families possessing this property hierarchic families of finite elements.

The h-version of the finite element method has been the subject of intensive study since the early 1950's and perhaps even earlier. Study of the p-version of the finite element method, on the other hand, began at Washington University in St. Louis in the early 1970's. Research in the p-version (formerly called The Constraint Method) has been supported in part of the Air Force Office of Scientific Research since 1976. In this report we review some of the more important accomplishments during this funding period, and describe the current status of the p-version of the finite element method.

2. RESEARCH ACCOMPLISHMENTS

2.1. Rate of convergence of the p-version

Extensive computational experiments have provided empirical evidence that the rate of convergence in the p-version is significantly higher than in the h-version. For example, a shell problem consisting of a circular cylindrical shell with symmetrically located cutouts was subjected to a uniform axial end shortening of known amount as shown below.
The boundary conditions at the ends of the shell are

\[w = v = \frac{2v}{5x} = 0 \quad u = \text{constant} = 0.2 \times 10^{-3} \text{ inches} \]

The solution to this problem using the p-version of the finite element was compared to the solution by other computer programs in [4]. The table shown below gives the number of degrees of freedom needed by the different computer codes to attain the same degree of accuracy.

It is clear that the p-version requires far fewer degrees of freedom than the next best code, TRISHL which was specifically altered to solve this problem.
In other sample problems the reduction of the number of degrees of freedom used by the p-version is even more striking. In [5], the p-version is applied to problems in elastic fracture mechanics with excellent results and in [6] the p-version is used to analyze an edge-cracked panel and a parabolically loaded panel. In Figures 1 and 2 the respective triangulations are shown and in Figures 3 and 4, the error in strain energy is plotted against the reciprocal of the number of degrees of freedom.

The following two theorems, which were recently proved, provide a rigorous explanation for the efficiency of the p-version. In both theorems \(\Omega \) is a bounded polygonal domain in the plane. In Theorem 1, a model problem for the \(C^0 \) case is considered, and in Theorem 2, a model problem for the \(C^1 \) case is considered. In both cases, the problems are singularity problems, that is the smoothness of the solutions are governed by the local behavior at the vertices \(A_i \) of the polygons. Suppose that \(\alpha_i \) is the angle at vertex \(A_i \), and that polar coordinates \((r_i, \phi_i) \) are used at \(A_i \). The solution in the neighborhood of \(A_i \) is of the form

\[
\begin{align*}
 \Omega \\
 A_i \\
 \alpha_i
\end{align*}
\]
\[\rho_i(r_i) \theta_i(\phi_i) \]
\[\rho_i(r_i) = r_i \gamma_i g_i(|\log r_i|), \quad \theta_i(\phi_i) \text{ is very smooth.} \]
\[\gamma_i \text{ depends upon } \alpha_i. \]

The domain \(\Omega \) is assumed to be triangulated in such a way that \(A_i \) coincides with a vertex of a triangle. The exact assumptions on \(g_i \) and \(\theta_i \) are given in [6].

Theorem 1 (model problem for \(C^0 \) Case)

\[-\Delta u + u = f \text{ in } \Omega \quad (1)\]
\[u = 0 \text{ on } \partial \Omega \]

Let \(u \) be the solution to (1) in the weak sense, and let \(u_p \) be the finite element approximation to \(u \), using polynomials of degree \(p \) with the triangulation \(S \) fixed (i.e. \(u_p \) is the solution to (1) using the \(p \)-version of the finite element method). If \(u \in H^k(\Omega) \), with \(k > 1 \), then

\[||u - u_p||_{2, \Omega} \leq C p^{-\mu + \varepsilon} ||u||_{k, \Omega}, \quad \mu = \min_{i} (k-1, 2\gamma_i), \quad \gamma_i = \frac{\pi}{\alpha_i} \quad (2) \]

where \(\varepsilon > 0 \) is arbitrary.

Theorem 2 (model problem for \(C^1 \) case)

\[\Delta^2 w = f \text{ in } \Omega \quad (3)\]
\[w = \frac{\partial w}{\partial n} = 0 \text{ on } \partial \Omega \quad (\text{clamped edge}) \]

Let \(w \) be the solution to (2) in the weak sense, and let \(w_p \) be the solution to (3) using the \(p \)-version of the finite element method. If \(w \in H^k(\Omega) \) with \(k > 2 \), then
\[||w - w_p||_{2, \Omega} \leq c p^{-\mu+\varepsilon} ||w||_{k}, \quad \mu = \min(k-2, 2(\gamma_i - 1)) \quad (4) \]

\[\gamma_i(a_i) = \text{smallest positive root of the equation} \]

\[\sin^2(\gamma_i - 1)a_i - (\gamma_i - 1)^2 \sin^2 a_i = 0 \]

The error estimates in (2) and (4) can be compared with analogous estimates for \(u_h \) and \(w_h \), the solutions by the h-version of the finite element method. Assume, for convenience that in (2) \(k - 1 \geq 2\gamma_i \), and in (4) \(k - 2 \geq 2(\gamma_i - 1), \) that is convergence is determined by the nature of the singularities at corners. Then the analogous estimates are

\[||u - u_h||_{1, \Omega} \leq c h^\gamma ||u||_{k}, \quad \gamma = \min \gamma_i \quad (2') \]

\[||w - w_h||_{2, \Omega} \leq c h^{(\gamma-1)} ||w||_{k}, \quad \gamma = \min \gamma_i. \quad (4') \]

If \(N \) is the number of degrees of freedom then \(p = N^{1/2}, \) \(h = N^{-1/2} \) and

\[||u - u_p||_{1, \Omega} = O(N^{-\gamma}), \quad ||u - u_h||_{1, \Omega} = O(N^{-\gamma/2}) \]

\[||w - w_p||_{2, \Omega} = O(N^{-(\gamma-1)}), \quad ||w - w_h||_{2, \Omega} = O(N^{-1/2}(\gamma-1)) \]

Therefore, if the criterion used to compare methods is the number of degrees of freedom required to achieve a given error in energy, then the rate of convergence of the p-version is twice that of the h-version. This result provides a rigorous proof for the extensive computational evidence that has been gathered, and explains in part the efficiency of the p-version.

2.2. Hierarchic Families of Solid Finite Elements

In order to implement the p-version efficiently, families of finite elements are needed with the hierarchic property: computations performed for an approximation of order \(p \) should be re-usable when raising the order to \(p + 1 \). More
specifically, the stiffness matrix corresponding to the polynomial approximation of degree p should be a submatrix of the polynomial approximation of degree $p + 1$. In terms of basis functions, this implies that the basis functions for a pth order approximation should be a subset of the basis functions for a $(p + 1)$st order approximation.

Hierarchic families for triangles both in the C^0 case and in the C^1 case are described in detail in [7, 8, 9, 10, 11]. We now describe hierarchic families of polynomials for various three dimensional shapes. All of these families are globally in C^0.

tetrahedron. A hierarchic family for the tetrahedron can be constructed from the hierarchic family for the triangle by using natural coordinates. The linear element is:

<table>
<thead>
<tr>
<th>nodal variable</th>
<th>shape function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u(1)$</td>
<td>L_1</td>
</tr>
<tr>
<td>$u(2)$</td>
<td>L_2</td>
</tr>
<tr>
<td>$u(3)$</td>
<td>L_3</td>
</tr>
<tr>
<td>$u(4)$</td>
<td>L_4</td>
</tr>
</tbody>
</table>

The quadratic element has the same nodal variables and shape functions as the linear element and the additional nodes:
The hierarchic family for a tetrahedron up to the element of degree 4 is shown in Figure 5. Boundary nodal variables correspond to vertices, edges, and faces. Additional internal nodal variables are introduced to provide a basis for a complete polynomial of degree p. Complete details are given in [12].

brick A hierarchic family for the brick can be constructed from the hierarchic family for the rectangle. For convenience, we consider only the square and from it we construct a hierarchic family for the cube. The hierarchic family for the square is given as follows.

$$Q_j(\xi) = \begin{cases}
\frac{1}{j!} (\xi^j - 1) & j \geq 2, \text{even} \\
\frac{\xi}{j} Q_{j-1}(\xi) & j \geq 3, \text{odd}
\end{cases}$$
satisfies
\[Q_j^{(i)}(0) = 0 \quad i = 2, \ldots, j - 1 \]
\[Q_j^{(i)}(0) = 1. \]

Now, consider the square of side 2 as shown in the figure. Basis functions \(N_u(i) \) corresponding to the nodal variables \(u(i) \) \(i = 1, 2, 3, 4 \) are
\[
N_u(1) = \frac{1}{4} (1 - \xi)(1 - \eta) \quad N_u(3) = \frac{1}{4} (1 + \xi)(1 + \eta)
\]
\[
N_u(2) = \frac{1}{4} (1 + \xi)(1 - \eta) \quad N_u(4) = \frac{1}{4} (1 - \xi)(1 + \eta)
\]
and it is easily seen that these basis functions span the same space as 1, \(\xi, \eta, \xi \eta \) i.e. they contain the complete linear polynomial. Also these nodal variables enforce \(C^0 \) continuity across sides. Now denoting by \((ij)\) the midpoint of side \(ij \), basis functions corresponding to the nodal variables \(u_\xi(12), u_\eta(23), u_{\xi \eta}(34), u_{\eta \xi}(41) \) are
\[
N_{\xi}(12) = Q_2(\xi)(1 - \eta) \quad N_{\xi}(34) = Q_2(-\xi)(1 + \eta)
\]
\[
N_{\eta}(23) = (1 + \xi)Q_2(\eta) \quad N_{\eta}(41) = (1 - \xi)Q_2(-\eta)
\]
and these basis functions added to the ones in (5) span the same space as 1, \(\xi, \eta, \xi^2, \xi \eta, \eta^2, \xi^2 \eta, \xi \eta^2 \), i.e. they contain a complete quadratic and they enforce \(C^0 \) continuity along sides. The basis functions (5) are taken for the hierarchic rectangular \(C^0 \) linear element, and those in (5) and (6) for the quadratic element.

For \(j > 3 \), we have
\[
N_{\xi}(12) = Q_j(\xi)(1 - \eta) \quad N_{\xi}(34) = Q_j(-\xi)(1 + \eta)
\]
\[
N_{\eta}(23) = (1 + \xi)Q_j(\eta) \quad N_{\eta}(41) = (1 - \xi)Q_j(-\eta)
\]
as the basis function for jth order tangential derivatives at midsides, and for $j \geq 4$ we add the internal modes

$$(1 - \xi^2) (1 - \eta^2)^{j-4} \eta^i \quad i = 0, \ldots, j - 4.$$

These basis functions span the same space as a complete polynomial of degree and the two monomials of degree $j+1$, $\xi^j \eta$, $\xi \eta^j$.

Thus, the hierarchic C^0 square element of degree $p \geq 2$ has $(1/2)(p+1)(p+2)+2$ basis functions, two more than the dimension of the complete polynomial of degree p. The two extra terms correspond to $\xi^p \eta$, $\xi \eta^p$. By scaling the sides of the square the elements are easily transformed into rectangular ones.

The hierarchic family for the brick can now be constructed. Linear element:

<table>
<thead>
<tr>
<th>nodal variable</th>
<th>shape function</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u(1)$</td>
<td>$\frac{1}{8} (1-\xi)(1-\eta)(1-\zeta)$</td>
</tr>
<tr>
<td>$u(2)$</td>
<td>$\frac{1}{8} (1+\xi)(1-\eta)(1-\zeta)$</td>
</tr>
<tr>
<td>$u(3)$</td>
<td>$\frac{1}{8} (1+\xi)(1+\eta)(1-\zeta)$</td>
</tr>
<tr>
<td>$u(4)$</td>
<td>$\frac{1}{8} (1-\xi)(1+\eta)(1-\zeta)$</td>
</tr>
<tr>
<td>$u(5)$</td>
<td>$\frac{1}{8} (1-\xi)(1-\eta)(1+\zeta)$</td>
</tr>
<tr>
<td>$u(6)$</td>
<td>$\frac{1}{8} (1+\xi)(1-\eta)(1+\zeta)$</td>
</tr>
<tr>
<td>$u(7)$</td>
<td>$\frac{1}{8} (1+\xi)(1+\eta)(1+\zeta)$</td>
</tr>
<tr>
<td>$u(8)$</td>
<td>$\frac{1}{8} (1-\xi)(1+\eta)(1+\zeta)$</td>
</tr>
</tbody>
</table>
The quadratic element adds the shape functions as follows:

<table>
<thead>
<tr>
<th>nodal variables</th>
<th>shape functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_{ss}(12)$</td>
<td>$\frac{1}{4} Q_2(\xi)(1-\eta)(1-\zeta)$</td>
</tr>
<tr>
<td>$u_{ss}(23)$</td>
<td>$\frac{1}{4} (1+\xi)Q_2(\eta)(1-\zeta)$</td>
</tr>
<tr>
<td>$u_{ss}(34)$</td>
<td>$\frac{1}{4} Q_2(\xi)(1+\eta)(1-\zeta)$</td>
</tr>
<tr>
<td>$u_{ss}(41)$</td>
<td>$\frac{1}{4} (1-\xi)Q_2(\eta)(1-\zeta)$</td>
</tr>
<tr>
<td>$u_{ss}(55)$</td>
<td>$\frac{1}{4} (1-\xi)(1-\eta)Q_2(\zeta)$</td>
</tr>
<tr>
<td>$u_{ss}(26)$</td>
<td>$\frac{1}{4} (1+\xi)(1-\eta)Q_2(\zeta)$</td>
</tr>
<tr>
<td>$u_{ss}(37)$</td>
<td>$\frac{1}{4} (1+\xi)(1-\eta)Q_2(\zeta)$</td>
</tr>
<tr>
<td>$u_{ss}(48)$</td>
<td>$\frac{1}{4} (1-\xi)(1+\eta)(1+\zeta)$</td>
</tr>
<tr>
<td>$u_{ss}(56)$</td>
<td>$\frac{1}{4} Q_2(\xi)(1-\eta)(1+\zeta)$</td>
</tr>
<tr>
<td>$u_{ss}(67)$</td>
<td>$\frac{1}{4} (1+\xi)Q_2(\eta)(1+\zeta)$</td>
</tr>
<tr>
<td>$u_{ss}(78)$</td>
<td>$\frac{1}{4} Q_2(\xi)(1+\eta)(1+\zeta)$</td>
</tr>
<tr>
<td>$u_{ss}(81)$</td>
<td>$\frac{1}{4} (1-\xi)Q_2(\eta)(1+\zeta)$</td>
</tr>
</tbody>
</table>

Higher degree elements add edge modes, face modes and internal modes. More details are given in [12, 13].

triangular prism A hierarchic family for the triangular prism can be constructed by combining the hierarchic families for the triangle (in natural coordinates) and for the square (in rectangular coordinates)
The quadratic element adds the following shape functions:

<table>
<thead>
<tr>
<th>nodal variable</th>
<th>shape function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u(1))</td>
<td>(L_1 (1-z))</td>
</tr>
<tr>
<td>(u(2))</td>
<td>(L_2 (1-z))</td>
</tr>
<tr>
<td>(u(3))</td>
<td>(L_3 (1-z))</td>
</tr>
<tr>
<td>(u(4))</td>
<td>(L_1 (1+z))</td>
</tr>
<tr>
<td>(u(5))</td>
<td>(L_2 (1+z))</td>
</tr>
<tr>
<td>(u(6))</td>
<td>(L_3 (1+z))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nodal variable</th>
<th>shape function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_{ss}(12))</td>
<td>(N_2(L_1, L_2)(1-z))</td>
</tr>
<tr>
<td>(u_{ss}(23))</td>
<td>(N_2(L_2, L_3)(1-z))</td>
</tr>
<tr>
<td>(u_{ss}(31))</td>
<td>(N_2(L_3, L_1)(1-z))</td>
</tr>
<tr>
<td>(u_{ss}(45))</td>
<td>(N_2(L_1, L_2)z)</td>
</tr>
<tr>
<td>(u_{ss}(56))</td>
<td>(N_2(L_2, L_3)z)</td>
</tr>
</tbody>
</table>
 Higher degree elements add edge modes, face modes and internal modes. Further details are given in [12, 13].

square pyramid. It can be shown [13] that no hierarchic family exists which consists of polynomials alone. However it is possible to supplement certain rational functions in such a way that the element of degree p contains a complete polynomial of degree p and additional rational functions. Furthermore, because of the special form of these rational functions, integration of all shape functions which appear in the elemental stiffness matrix can be performed in closed form. No numerical quadrature is required. The linear element is:

<table>
<thead>
<tr>
<th>nodal variable</th>
<th>shape function</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1 (1)</td>
<td>$\frac{1}{8} (1 - \frac{2n}{1-\zeta}) (1 - \frac{2n}{1-\zeta}) (1 - \zeta)$</td>
</tr>
<tr>
<td>u_2 (2)</td>
<td>$\frac{1}{8} (1 + \frac{2n}{1-\zeta}) (1 - \frac{2n}{1-\zeta}) (1 - \zeta)$</td>
</tr>
<tr>
<td>u_3 (3)</td>
<td>$\frac{1}{8} (1 + \frac{2n}{1-\zeta}) (1 + \frac{2n}{1-\zeta}) (1 - \zeta)$</td>
</tr>
<tr>
<td>u_4 (4)</td>
<td>$\frac{1}{8} (1 - \frac{2n}{1-\zeta}) (1 + \frac{2n}{1-\zeta}) (1 - \zeta)$</td>
</tr>
<tr>
<td>u_5 (5)</td>
<td>$\frac{1}{2} (1 + \zeta)$</td>
</tr>
</tbody>
</table>
Each of the vertex modes is a linear combination of $1, \xi, \eta, \zeta, \frac{\xi \eta}{1-\zeta}$.

Higher degree elements again add edge modes, face modes and internal modes. Further details are given in [13].

Combinations

Hierarchic families of the different shapes shown here have been constructed so that they join together continuously. Thus geometries such as the ones shown below can be modeled using as few elements as possible. In this way the subdivision of the polyhedral domain Ω can be made very coarse and accuracy can be obtained by increasing p, without using added degrees of freedom to describe the geometry. As has been shown (at least for two dimensional problems) the rate of convergence in the p-version is twice that obtained for the h-version. Therefore subdividing

in this way leads to computational efficiency, since it makes maximum use of the p-version. It also requires significantly simpler input.

2.3 P-Version Analysis of a Rhombic Plate

The problem of the stress analysis of a rhombic plate is a difficult one which has attracted much attention [14, 15, 16, 17]. We consider the rhombic plate shown in Figure 6, which is simply supported, uniformly loaded and whose acute angles are 30 degrees. A very strong singularity occurs at the obtuse vertex when plate bending theory is applied to this problem, and this singularity leads to $\mu = 0.4$ in Theorem 2, Equation (4). As a result many finite element
models of the rhombic plate either fail to converge or converge very slowly. The hierarchic C^1 family used in the p-version contains corrective rational functions. These rational functions absorb the singularity very well and lead to the best results thus far obtained for this problem. Shown below are the values for the deflection at the central point, w_c, using the C^1 p-version analysis, with $p = 5$ and with different numbers of elements. These results are compared with results obtained by other methods.

C^1 p-version

<table>
<thead>
<tr>
<th>no. of elements</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>no of degrees of freedom</td>
<td>8</td>
<td>16</td>
<td>25</td>
<td>33</td>
<td>42</td>
<td>51</td>
<td>60</td>
</tr>
<tr>
<td>w_c</td>
<td>2.8938</td>
<td>3.1520</td>
<td>3.4651</td>
<td>3.8217</td>
<td>4.0049</td>
<td>4.0217</td>
<td>40824</td>
</tr>
<tr>
<td>% error</td>
<td>29.2</td>
<td>22.8</td>
<td>14.9</td>
<td>6.4</td>
<td>1.8</td>
<td>1.4</td>
<td>0.x</td>
</tr>
</tbody>
</table>

other codes

<table>
<thead>
<tr>
<th></th>
<th>no. of degrees of freedom</th>
<th>% error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sander [14]</td>
<td>> 1000</td>
<td>24</td>
</tr>
<tr>
<td>Argyris [15]</td>
<td>≈ 1300</td>
<td>2</td>
</tr>
<tr>
<td>Basu, Szabo et al [16]</td>
<td>≈ 130</td>
<td>2</td>
</tr>
<tr>
<td>Basu, Szabo et al [16]</td>
<td>≈ 180</td>
<td>1</td>
</tr>
</tbody>
</table>

Morley [17] exact value (analytic expression) = 4.08
2.4. Computer Implementation - COMET-X

COMET-X is an experimental computer code which implements the p-version of the finite element method by using the hierarchic families which have been constructed. COMET-X is maintained by the Center for Computational Mechanics at Washington University and it is the only computer code in existence which implements the p-version. COMET-X can be used as a code to implement the h-version as well simply by fixing the polynomial order p and refining the mesh.

COMET-X currently has the following capabilities:

A. Element types: Stiffeners, triangular elements, triangular elements with one side curved, rectangular elements, solid elements of the shapes described earlier.

B. Types of Analysis: Laplace and Poisson equations, plane elasticity, elastic plate bending, stiffened elastic plates, 3-dimensional elasticity, temperature distribution in 3-dimensions.

C. Special Capabilities: non-uniform p-distribution, elastic fracture mechanics computations in two dimensions, nearly incompressible solids, linear boundary layer problems.

D. Pre- and Post processing capabilities including graphics and visual displays.

The capabilities and usage of COMET-X are described in detail in [16].
2.5. A Sample Problem

As an example of a problem analyzed by the p-version using hierarchic solid finite elements, [18], consider the finite element model of a gear casing, shown below. The model on the right was used in COMET-X, the one on the left was used by NASTRAN. Stress contours shown in Figure 7 were obtained from COMET-X.

Finite Element Meshes for a Gear Casing
3. REFERENCES

4. FIGURES
FIGURE 1
Edge cracked rectangular panel and finite element triangulation

FIGURE 2
Parabolically loaded square panel and finite element triangulation
FIGURE 3
Edge cracked rectangular panel. Estimated error in strain energy vs. reciprocal of the number of degrees of freedom.
Parabolically loaded square panel. Error in strain energy vs. reciprocal of the number of degrees of freedom.
Figure 5. Nodal variables and shape functions for the first four hierarchy tetrahedral C^0 elements.

1. Linear
 4 terms: Values of the approximating function at the vertices.
 \[N_1 = L_0, \quad N_2 = L_0, \quad N_3 = L_0, \quad N_4 = L_0 \]

2. Quadratic
 6 additional terms: Second derivatives at the midpoints of edges.
 Normalizing factor: \(-1/2\)
 \[N_5 = L_1L_2, \quad N_6 = L_1L_3, \ldots \quad N_8 = L_1L_4 \]

3. Cubic
 10 additional terms: Six third derivatives at the midpoints of edges.
 Normalizing factor: \(1/12\)
 \[N_9 = L_1^2L_2 - L_1L_2^2, \quad N_{10} = L_1^2L_3 - L_1L_3^2, \quad \ldots \quad N_{18} = L_2^2L_4 - L_2L_4^2 \]
 Four face modes:
 \[N_{19} = L_1L_2L_3, \quad N_{20} = L_1L_3L_4, \quad N_{21} = L_1L_4L_2, \quad N_{22} = L_2L_3L_4 \]

4. Quartic
 13 additional terms: Six fourth derivatives at the midpoints of edges.
 Normalizing factor: \(-1/48\)
 \[N_{23} = L_1^3L_2 + L_1L_2^3, \quad N_{24} = L_1^3L_3 + L_1L_3^3, \quad \ldots \quad N_{30} = L_2^3L_4 + L_2L_4^3 \]
 Eight face modes:
 \[N_{31} = L_1^2L_2L_3, \quad N_{32} = L_1L_2^2L_3, \quad N_{33} = L_1^2L_3L_4, \quad N_{34} = L_1L_3^2L_4 \]
 \[N_{35} = L_2^2L_3L_4, \quad N_{36} = L_2L_3^2L_4, \quad N_{37} = L_2^2L_4L_1, \quad N_{38} = L_2L_4^2L_1 \]
 One internal mode:
 \[N_{39} = L_1L_2L_3L_4 \]
(h = 0.1", E = 30,000 ksi, ν = 0.3, λ = 5/6)
UNIFORM LATERAL LOAD = 0.1 ksi

60°-Skew Simply Supported Plate Under Uniformly Distributed Load

Figure 6. The Rhombic Plate Problem
5. PAPERS PUBLISHED AND PRESENTED SINCE THE START OF THE PROJECT (1977)

5.1. Published Papers:

5.2. Presented Papers:

5.3. Seminars Presented at Government Laboratories

abstract

With one exception, all finite element software systems have element libraries in which the approximation properties of elements are frozen. The user controls only the number and distribution of finite elements. The exception is an experimental software system, developed at Washington University. This system, called COMET-X, employs conforming elements based on complete polynomials of arbitrary order. The elements are hierarchical, i.e. the stiffness matrix of each element is embedded in the stiffness matrices of all higher order elements of the same kind. The user controls not only the number and distribution of finite elements but their approximation properties as well. Thus convergence can be achieved on fixed mesh. This provides for very efficient and highly accurate approximation and a new method for computing stress intensity factors in linear elastic fracture mechanics. The theoretical developments are outlined, numerical examples are given and the concept of an advanced self-adaptive finite element software system is presented.

abstract

In conventional approaches to finite element stress analysis accuracy is obtained by fixing the degree p of the approximating polynomial and by allowing the maximum diameter h of elements in the triangulation to approach zero. An alternate approach is to fix the triangulation and to increase the degrees of approximating polynomials in those elements where more accuracy is required. In order to implement the second approach efficiently it is necessary to have a family of finite elements of arbitrary polynomial degree p with the property that as much information as possible can be retained from the pth degree approximation when computing the $(p+1)$st degree approximation. Such a HIERARCHIC family has been formulated with $p > 2$ for problems in plane stress analysis and with $p > 5$ for problems in plate bending. The family is described and numerical examples are presented which illustrate the efficiency of the new method.
The theoretical basis of the p-version of the finite element method has been established only quite recently. Nevertheless, the p-version is already seen to be the most promising approach for implementing adaptivity in practical computations. The main theorems establishing asymptotic rates of convergence for the p-version, some aspects of the algorithmic structure of p-version computer codes, numerical experience and a posteriori error estimation will be discussed from the mathematical and engineering points of view.