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Abstract

Transient acoustic signals are studied in compound waveguides
consisting of a resonant cavity attached to a semi-infinite cylindrical

waveguide. The signals are shown to have the asymptotic form
-}
v(t,x,y) ~ Z Vj(tsY)¢j(x) sy L >,
j=0

where x = (xl,xz) are coordinates in the cylinder cross-section, y
is a coordinate along the cylinder and t 1is a time coordinate. Here
\

value

(x) 1is an eigenfunction for the cylinder cross-section, with eigen-
, and

3

v, (t,y) = B(t,y,u,) F, Ké-y5%
j’ ”j jjy

where 6(t,y,u) 1s a universal factor and F,(p) characterizes the

]
momentum distribution of mode j . It is shown that if both the signal

sources and observation point are far from the resonator then

dir sc
F = F + F
j(p) j (p) 3 (p)
where ngr is the direct wave that would exist i1f no resonator were

present and

- O =3 o= T ST ey -
: pz+um-un>0

S 1s the S-matrix for the compound waveguide and may be calculated

from the model functions.
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1. Introduction.
77 This paper deals with the propagation of transient acoustic

fields in waveguides that consist of a semi-infinite cylinder coupled

to a resonant cavity or "resonator;ﬁ,son.Eigu:e—Lr‘a"'

—

Figure 1. Cylindrical waveguide coupled to a resomator.

The walls of the waveguide are assumed to be rigid. The sources
of the transient sound fields, or "signals,Y are assumed to be localized
in a bounded portion of the waveguide and to act for a finite interval

of time. The goal of the work is to calculate such acoustic signals and

°
to analyze how che}r structure depends on the sources and the geometry odf;ﬂ
of the waveguide. Particular attention is given to the cases in which it
the signal sources or observation point, or both, lie in the cylinder
and are far from the resonator. ?

It is well known that in the cylindrical portion of the waveguide J.
each signal can be decomposed into a series of modal waves. These waves -

o
are calculated below and are shown to be asymptotically independent for

large times. Moreover, the form of the modal waves is shown to be
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determined by the geometry of the cylinder. Only the fine structure of
the modal wave profiles varies with the sources and the geometry of the
resonator.

The theory of the waveguides of Figure 1 will be developed by
perturbation theory, beginning with the special case of the simple
waveguide consisting of the semi-infinite cylinder, without resonator,
terminated by a plane cap. The general case of a cylinder plus
resonator, depicted in Figurei, will be called a compound waveguide.

Acoustic signal propagation in both simple and compound
waveguides will be analyzed by means of normal mode expansions. For
simple waveguides the normal modes can be constructed explicitly by
separation of variables. For compound waveguides they are constructed
by a perturbation method based on those for simple waveguides. The
asymptotic wave functions fhat describe the signals for large times are
calculated from the normal mode expansions.

The asymptotic wave functions for a waveguide are characterized
by a sequence of functions that, physically, describe the momentum
distributions of the modal waves. With each waveguide is associated a
scattering operator, or S-matrix, that operates in the space of these
momentum distributions. The final result of this paper reveals the
significance of the S-matrix in the analysis of acoustic signal struc-
ture in waveguides. It states that the momentum distribution of the
signal generated in a compound waveguide by sources far from the
resonator is simply the image under the S-matrix of the momentum
distribution of the signal generated by the same sources in the

corresponding simple waveguide.
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Normal mode expansions for waveguides and the associated S-matrix
. were developed by C. Goldstein in the period 1969-74; see [1,2,3,4]* In

- 1975 Goldstein's results were extended by W. C. Lyford [5], using results
- of the abstract theory of scattering. Lyford also presented results on

: asymptotic wave functions for waveguides in [6]. In 1977 the author

presented in [11] an exposition of the theory of normal mode expansions

and asymptotic wave functions for the more general case of several
semi-infinite cylindrical waveguides coupled by a resonator; see
Figure 2.

The purpose of this paper is to present a new construction of
the S-matrix, based on the theory of asymptotic wave functions, and to

apply the S-matrix to the construction of asymptotic wave functions due

- -

4 b
— |
\ ]
1 t
roJ
Cd ————
v Figure 2. Compound waveguide with resonator and three cylinders.
*
¢ Numbers in square brackets indicate references from the list at the

end of the paper.
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to sources remote from the resonator. The work is based on the earlier
literature, primarily the exposition [11], and the author's monograph on
the closely related theory of scattering by diffraction gratings [12].
It will be seen that the results presented below can also be derived for
acoustically soft boundaries (Dirichlet condition) and elastic boundaries
(Robin condition), and for the general case of a resonator with several
cylinders. However, to simplify the exposition only the case of a single
cylinder and rigid boundary is treated here.

The remainder of the paper is organized as follows. §2 presents
a formulation of the propagation problem for acoustic signals in
compound waveguides as an initial-boundary value problem for the wave
equation, together with its solution by a simple Hilbert space method.
§3 develops the normal mode expansion for simple waveguides. In §4
the normal mode functions for compound waveguides are defined and the
normal mode #xpansions for this case are presented. 1In §5 the normal
mode expansions of acoustic signals in waveguides are derived and their
asymptotic wave functions, for large times, are calculated. Sections 2
through 5 present a review of concepts and results from [11]. The
exposition is therefore concise and without proofs. The new results of
this paper are contained in §6 and §7. In §6 the S-matrix of a compound
waveguide is defined and then constructed by means of the asymptotic
wave functions of §5. In §7 the acoustic signals generated by
prescribed sources in simple and compound waveguides are compared. The
principal result of this section states that, for sources far from the
resonator, the momentum distribution of the scattered signal is simply
the image under the S-matrix of the momentum distribution generated by

the same sources in the simple waveguide.
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2. The Propagation Problem and Its Solutiom.

The notation that is used in the remainder of the paper is fixed
inthis section. Acoustic fields in waveguides will be described by real
valued acoustic pressure functions u(t,X) where t € R is a time coordinate
and X = (x,y) = (x,,x%,,y) € R} represents a triple of rectangular
coordinates in space. The coordinate axes are assumed to be chosen in

such a way that the simple waveguide occupies the semi-infinite cylinder
(2.1) Q =GxRy={X:x€Gandy >0}

where G 1s a bounded domain in the x;,x,-plane and Ry, = {y : y > 0}.

The corresponding compound waveguide domains are
(2-2) Q 'Qo UK

where K is a bounded domain and 2 is connected, and hence is a domain.
The boundary of Q is denoted by 9. It must be mentioned that the local
structure of 91 is not completely arbitrary since @ will be required to
have the local compactness property of (11, p. 408]. A simple geometrical
property that is sufficient to guarantee this is the finite tiling
property of [10]. All the simple plecewise smooth boundaries that arise
in applications, such as unions of polyhedra, and finite sections of
cylinders, cones, spheres and disks, may be shown to have this property.

The acoustic pressure u(t,X) is the solutior of an initial-
boundary problem for the wave equation which, in its classical formu-
lation, reads

3%u

(2.3) TeZ - Au =0 for t > 0, Xe Q,




(2.4) %E-\;°Vu=0fort20,xeaﬂ,
(2.5) 0(0,0 = £(0) and 2B o g2y for x e @

where V and A are the gradient and Laplace operators in R®, respectively,
while V is a unit normal field on 3Q. The functions f(X) and g(X) in
(2.5) characterize the initial state of the acoustic field. They are
assumed to be given or calculated from the prescribed wave sources in Q.

A general theory of the initial-boundary value problem (2.3) -
(2.5), guaranteeing the existence and uniqueness of the solution for
arbitrary domains, was given in {[9]. Of course, for arbitrary domains
the boundary condition (2.4) must be understood in a generalized sense.
Here a simple alternative to the method of [9] will be based on the
acoustic propagator A in the Hilbert space ¥ = L, (R). A is the

selfadjoint realization of the negative Laplacian defined by
(2.6) D(A) =X N {u : Vu and Au are in X, g—‘\: = 0 on 3N}
and

(2.7) Au = -Au for all u € D(A).

The differential operators V and A in (2.6) are to be interpreted in the
sense of distribution theory. Of course, if 3 is not smooth then the
boundary condition in (2.6) is to be interpreted in the generalized sense

of [9]. With these conventions it can be shown that
*
(2.8) A = A>0 1in ¥

see [10,11] for details.
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‘ With the above definitions the problem (2.3) - (2.5) may be

reformulated as an initial value problem for a function t + u(t,e) € i(;

ij: namely
! . d%u
= (2.9) acz + Au = 0 for £ > 0
:
(2.10) a(0) = £ and 8O .o,

A formal solution is given by
(2.11)  u(t,*) = (cos t A¥?) £ + (A2 s1n ¢ AV/?) g.

The spectral theorem implies that (2.11) defines the "solution in X" of
(2.9), (2.10) for all f,g € . It is also the unique "solution with
finite energy" of [9] for all initial state's (f,g) with finite energy.
This is equivalent to f € D(aY?), g€ X.

It will be convenient to represent the solution u(t,X) as

(2.12) u(t,X) = Re {v(t,X)}

where v(t,X) is the complex-valued function defined by

_ieal/2
(2.13) : v(t,) = e 1A
and

(2.14) h=f+1A12g

This representation is valid if f and g are real valued and f, g and
A V2 g are in . It is sufficient to consider such initial states since '

the spectral theorem implies that they are denmse in X. y W
40\(

L . s
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3. Normal Mode Expansions for Simple Waveguides.

The acoustic propagator for the simple waveguide (y = G x R,
will be denoted by A¢. It is selfadjoint and non-negative in the Hilbert
space ¥, = L,(Qp). The spectral family of A, was calculated in [11] and
shown to be absolutely continuous. Here the generalized eigenfunction,
or normal mode, expansion for A, is reviewed briefly.

The normal mode functions for A, may be found by separation of

variables [11, p. 418ff]. They are defined by
0 2 1/2
3.1 ¥yGx.y,p) = Eﬂ 64() cos py, p >0, =0, 1,2, ,
where the functions
(3.2) : ¢Q(X) = IGI-I/2 ’ ¢1(X), ¢2(x)9'°°

are the eigenfunctions of two-dimensional negative Laplacian

Ag = -32/3x} - 32/3x% in L,(G), with Neumann boundary condition. The
corresponding eigenvalues of Ag, repeated according to their

multiplicity will be denoted by

It is known that each uj has finite multiplicity and uj + © yhen j + o,
Moreover, the smallest eigenvalue is simple and ¢4 (x) = const. [GI is
the 2-dimensional Lebesgue measure of G. The eigenvalue problem for the

p?, in classical form, is
]

(3.4) (A+qw»wymw-o,xem,
9




(3.5) awg(x,p)/av =0, X € 3Q,,

where
(3.6) w,(p) = (% + uj)"2 >u?, 1 =0, 1, 2,00 .

The normal mode expansion theorem for Ay states that every

hy € H, can be written as
(3.7 hy(x,y) = l.i.m. § hoj(y) ¢j(x)
§=0

where 1.i.m. denote convergence in ¥, [11]. The functions

ho € L,(Rg) are defined by

3

2) /2 R
(3.8) hoj(y) = 1l.i.m. I: [E} cos py hoj(p) dp ,
where

(3.9) ﬁoj(p) = 1.i.m. J wg(X,P) h, (%) dX .

2,
In (3.8) and (3.9), l.i.m. demotes convergence in Lp(k ). The Parseval
relation for the expansion (3.7) - (3.9) is contained in the theorem

that the linear mapping ¢ defined by

~

(3.10) Ohy = {fi,,,0,,,0y,,000}

defines a unitary operator




:
’

-
-
Y
- .
.
-
.

———
o N
P

@

P P e ———
v SN P

3
SR

- 5 "
v A Y L

11

(3.11) ¢ X, +H, = ] OL,RR).
j=0

"The last notation means that ib is the direct sum of a countable

sequence of copies of L,(R,).
The representation ¢ is a spectral mapping for A,. More
precisely, one has

—{tAl/2 hg
itAg hy(X) = 1.1i.m. Z voj(t,y) ¢j(x) in ¥,

=0

(3.12) vo(t,x) = e
where

1/2 -
(3.13) voj(t,y) = 1.i.m. f: [%} cospye 1twy (p) ﬁoj(p) dp

in Lz (Ro) .
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4. DNormal Mode Expansions for Compound Waveguides.

For compound waveguides = K U , the propagator A has two
distinct families of normal mode functions. They are denoted here by
{\b;'(x,p) :p>0and =0, 1, 2,***} and N)}(X,p) :p >0 and
j=0,1, 2,°+<}. Both families satisfy the differential equation and

boundary condition:

(4.1) (A + m§(p)) W§(X,p) =0 for XE€Q ,
(4.2) 3\J)§(X,p)/3\) = 0 for X € 3Q .

The families are distinguished by the condition that in Q, the fields
(4.3) $5C(X,p) = ¥L(X,p) - ¥I(X,p), X €Q
. ‘Pj ’p wj(X,P = Wj( ,P), 0 »

represent outgoing waves for w; and incoming waves for w;. This is
+
defined by the condition that the developmentsofqgsc in the transverse

eigenfunctions {¢m(x)} have the forms

tiyvws (p)-u
*sc 1 + 3 m
Vv, (X)) = =g ) T, (p) e ¢_(x)
. (zm w () >y jm .
(4.4)
+ (217%‘72 ) Tf]m(p) e-y um-mj(p) ¢ (x)
wiP)SHy

The two summations in (4.4) are over the sets of integers m > 0 for which
the indicated inequalities hold. Note that the first sum is finite
because Hp > ® when m > ©. The coefficients {T?m(p) : w?(p) > um} will
be called the scattering amplitudes. It will be shown that they

determine the S-matrix for the compound waveguide.

13
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F. Rellich [8] was the first to show that for compound waveguides
=K' Qp the acoustic propagator A may have point spectrum

{A(n) :1<n <M< 4o} and eigenfunctions

(4.5) w(n) € D(A) C X
such that
(4.6) Aw(n) = A(n) w(n)
and
-y A,
.7 b ® = I epe ™.

um” (n)

The wave functions may be called trapping modes. The corresponding
(n) .

acoustic fields

M -1e
(4.8) v(t,X) = nzl ) © by ®

represent standing waves in 3, by (4.7). In particular, the energy of
the wave function (4.8) does not propagate to © and hence plays no role
in the scattering theory for A. In the remainder of this paper, to
simplify the notation, it is assumed that A has no trapping modes. 1In
the general case the results derived below hold in the space of states
orthogonal to the trapping modes.

For propagators A with no trapping modes the normal mode

expansion theorem states that every h € X can be written as

(6.9) h(X) = 1.i.m. § hi(X)
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where the series converges in ¥. The components h§ € X are defined by

b4 + At
(4.10) hj(X) = 1.1i.m. J‘:Wj(X,P) hj(P) dp ,

with convergence in #, where

*

(4.11) hj

+
(p) = l.i.m. LZ wj(x,p) h(X) dX
in L,(Ry). The orthogonality and completeness of the expansions are
expressed by the theorem that the linear operators ¢+ and ¢ defined by
(4.12) o* n = {R,R],6;,-+}

are unitary operators from ¥ to 'ﬁo’ The spectral property of o+ and ¢

is characterized by the representation

- 1/2 @
(4.13) v(t,X) = e it h(X) = 1.1i.m. 2 v?(t,x) .
j=0
where
-itw, (p)
(4.14) vj(t,X) = 1.i.m. r:wi(X,p) e i hi;(p) dp .

The convergence in both (4.13) and (4.14) 1is in ¥.




5. Asymptotic Wave Functions for Waveguides.

The theory of asymptotic wave functions for waveguides, as
developed in [6] and [11], is reviewed briefly in this section.
Consider first the wave function v,(t,X) for the simple wave-

guide defined by (3.12), (3.13). The modal wave voj can be written

(5.1) vy (8a3) = vyt (e,y) + v i(ey)
where
1(yp-tw,(p))
t i 1 3
(5.2) vy " (e,y) = viT(E,y) = 1 E e B, j(Pdp

Here and in what follows the l.i.m. notation of (3.12), (3.13) is
omitted, for brevity, but is always to be understood.

Out _1d vi® have the form

0] 0]

The wave functions of v

5.3 (0,0 = g r: L GEYP-tu(e W) oo o

where h € L,(R,) and w(p,u) = (p? + u)/? . For u > 0, (5.3) defines a

dispersive wave with group speed

In [11] the method of stationary phase was applied to w+. The resulting

estimate is

17




- . 3
-----------------------

i(yp-tw(p,u)-m/4)
w“(tsYau’h) - X[{‘] < 1 h(P)
/2 2 11/2
(£3u(p,u) /3p) o = [?%")
(5.5)
u1/z

= 6(t,y,w h[-(?z?-)%z—)

.where

(5.6) x[{} = Characteristic function of {(t,y) : 0 < %-< 1}

and
(5.7  6(t,y,n) = x{%] eup(e? - y2) "W e-i[u(tZ_yz)x/z +m/4]

For u = 0, (5.3) reduces to
(5.8) w(t,y,0,h) = iy f: YR o) dp = 7 n(ey- o)

where F is the usual Fourier transform. In this case the waves are
non-dispersive and it is appropriate to define

(5.9) w (t,y,0,h) = F! h(y - t)

With these definitions the results of [11] imply that, for all h € Lz(Ro)

and all u > 0 one has

+ oo
(5.10) lim bw (t,*,u,h) - w (t,*,u,h)l =0,
tro Lz(RO)
and
(5.11) lim Iw (t,e,u,h)l 0.

t-x Lz (RD)

PR WU S Y




19

These results are directly applicable to the partial waves v
in

o]

defined by (5.1), (5.2). It follows that v _(t,*) + 0 and

v‘:;"(c,-) - v‘;‘j(:,-) + 0 in L,(R,) when t -»oojo where
- uizy
(5.12) voj(t,y) = G(t,y,uj) F°.‘l[(t2_yz)1/2 } s, J =1, 2,000,
é. (5.13) Voo (£,3) = (F' F o) (y-v) ,
: .
(5.14) Fyy(0) = ﬁoj(p) for j = 0, 1, 2,%e¢ .

Moreover, it was shown in [11] that if

(5.15) v, (t,X) = jZO Vo3 (E,3) 65(x)

then the series converges in ¥, and

(5.16) Lim vy (t,*) - vo(t, )l =0 .

0

It is clear from these results that the asymptotic wave function v: is

characterized by the sequence {F,.} of modal wave momentum distributions
0]

or, equivalently, the element

E“ (5.17) F, = {Foj} = {hoj} = oh, € ¥,

S

Ev The same analysis may be applied to the wave function v(t,X) for
;f the compound waveguide defined by (4.13), (4.14). If the "incoming"

*‘ normal modes {wg} are chosen the partial waves have the form

& WP DL A P P U S SRt o ottt . = A -~ i, PO VO P W N S S Sk
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- -itwj(p) —
(5.18) vj(c,x) = f:wj(X.p) e hj(p) dp .

For X € Q, the decomposition (4.3), (4.4) for ¢3 may be written

1 i
¢3(X.P) "G e 124 ¢3(x)

(5.19)
1 - -1y /wj’(p) '
+ Gn T ) sjm(P) e ¢, (x) Xsm (P
1 ® -Wum-mjz(p)
+* G mZO Sin(P e b (0 X5, (P)
where
(5.20) S;m(p) =8t T;m(p)

(5.21) xjm(p)-a Characteristic function of {p : w;(p) > um}
and xjm(p) + xsm(p) = 1. Substituting (5.19) into (5.18) gives
(5.22) vy = vy vorin 70

3 ] 3

where the three terms on the right come from the corresponding terms of

(5.19).
Clearly
5.2 -,0out - 4 Do
(5.23) vy (t,X) w(t,y,uj,hj) ¢j(x)
Moreover,

a ta w3 s m

LA AN Dere awt A oa -l -Yhudr Tied T L tunt AL M prting bugan Sn St~ Aitehen ™ “:‘.‘..‘-:_.._'. 0
P .
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-1y/u7§('5)7u: - 1tw, (» .

o [ 1 _
) m-Z-o [(2") ; r: Sm(P) @ B () Xyp(PYdp| ¢, (x)

On making the change of variable
12 2 - = n -
(5.25) p't = wj(p) By = P° + My g

in (5.24) one finds that

-]

-,in - - -
(5.26) vyt mzo W (E,Y Mg h ) ép ()
where the function h;m is defined by
- ' - - A L'..
(5.27) hjm(p ) ij(p) Sjm(p) hj(p) >

and p and p' are related by (5.25). It is clear from (5.11) and (5.26)

that, formally,

(5.28) lin v;*™(t,*) = 0 10 %,.

too ]
Rigorous proofs of this, and the related property
(5.29) o v °%(t,*) =0 in X, ,

£ 3
were given for the closely related case of diffraction gratings in

(12, Part 2]. (5.23), (5.28) and (5.29) imply that

- —,00

(5.30) vj(t,') - vj (t,*) 0 in XK

where
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(5.31) vj’ (t,X) = x(X) w (t.y,uj.hj) ¢j(x)

and X is the characteristic function of Q,. Moreover, if

(5.32) vl = v?”

(t,X)
3
3=0

then it follows as in {11] that the series converges in ¥ and
(5.33) lim bv(e,*) = v (), = 0

o

for every h € X. Note that

1/2
-Qw - _j___—u y = LN
(5.3[4) Vj (t,X) e(t,y,uj) Fj[(tz_y2)1/2] ¢j(X), j l, 29 3’ ’
(5.35) v (6.0 = (FL F)(y-0) 6|72
wWhere
(5.36) F.(p) = h (p) for j =0, 1, 2,%~ .

3 3

Thus v’ is characterized by the sequence {Fj} of modal momentum
distributions where

(5.37) F={F}=th}=0hex .

The convergence of v(t,*) to zero in L, (K), which is implied by (5.33),
follows from the local compactness property of [l1l, p. 408]; see

[11, Theorem 6.16].
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The results (5.16) and (5.33) imply that each wave function
v(t,*) for the compound waveguide is asymptotically equal in ¥, for

t + o, to a sum of modal waves for the simple waveguide.
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The wave operators W _ = W*_(A,}/2 ,AI/2 J) 1 XK+ ¥, are defined by

1/2 _qeal/2
(6.1) W, = s-lim eim" Je itA

et
where J : ¥ + X, is the bounded operator defined by (Jh)(X) = h(X) |Q°

and s-1lim denotes strong convergence. The existence of W+ follows from
(5.16), (5.17), (5.33) and (5.37). More precisely, these results imply

that

1/2 ~{raA 2
(6.2) T P P N N

£ 0

provided F, = ¢h, = ¢'h = F. This implies the representation

* -
(6.3) W+ =40 ¢
The analogous results for t + - give

(6.4) w_ =% ot .

+
These results and the unitarity of ¢ and ¢ imply that W _ are unitary
operators from ¥ to X,.

The scattering operator S for the pair is the unitary operator

in ¥, defined by

*
(6.5) S =W W .

Combining (6.3), (6.4) and (6.5) gives

(6.6) s=0"§0

25
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where S 1s the unitary operator in the direct sum space ﬁb of (3.11)

that is defined by
6.7) §=0" 0" .

S will be called the S-matrix for A (or the the waveguide 2).

The purpose of this section is to calculate an explicit

J
(X,p), defined by (4.4) and (5.20). To this

representation of S based on the scattering amplitudes {S m(p)} of the

b
end let h € X and define elements ﬁ+ and h” in ib by (4.12); i.e.,

normal mode functions ¥

(6.8) h* = {A7,h],h;,e+c} =¢* h .

Then it follows from the unitarity of ¢" and ¢ that
(6.9). A== 6™ 6t h=50t.

This relation will be used to calculate S. To see how this can be done
recall that the calculation of -the asymptotic wave function for

- 1/2
v(t,*) = e itA h was based on the incoming representation (5.18) and

gave the representation (5.37), i.e., F = f~, for the asymptotic

momentum distribution. A second calculation of F, based on the outgoing

representation, will now be shown to yield a representation of S.

The outgoing representation of v(t,*) is

(6.10) v(e,) = 5 vie,n -
j=0 J
where
-itw,(p) .
(6.11) V;(t,X) = ]‘:w'j"(x,p) e ] h;(p) dp .

T ————— T ——_— Pl RS et M i
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For X € Q, the decomposition (4.3), (4.4) for tp; may be written

1 -1
VIR = gy e 0y
(6.12)
1 * 4 iy/w;(p)—um
+ G mZO Sin(® e $p(®) X4y (P)
1 T+ —y/um-w§(p) '
MRV RLE mzo Sin(P) € 0n (%) Xjp(P)
where
(6.13) S;ﬁ(p) =8y + T;;(p)
Substituting (6.12) into (6.11) gives
(6.14) v;‘= v;’i“ + v;’OUt + ;’° .

where the three terms on the right come from the corresponding terms of

(6.12) . The term

(£,X) = w (t,y,u.,0 D) 95 (x)

v+,in
b

(6.15) j

tends to zero in ¥, when t - , by (5.11). Moreover, the method of

[12, Part 2, §14] may be used to show that v;-’o

To calculate the behavior for t + @ of v(t,X) from (6.10) - (6.14)

(t,*) ~ 0 in X, when t + =,

it is convenient to begin with the special case of an h € ¥ such that
(6.16) ﬁ;(p) =8, &(p), n fixed, and

(6.17) supp g € [0O,M], M fixed .
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For such h,

v+,out:
n

(6.18) v(£,X) = vi(t,%) = (t,X) + 0(1)

where 0(1) + 0 in ¥, when t + ©. Moreover,

(6.19) Supp X, = [VMax (O,u =1 ) ,=)

and hence

M 1y/wZ (p)-u_ - itw_(p)
vioUte,x) = z(—z;,-)l-vrj Sa® e T T g (0a(p)dp
(6.20) TIRSTICL o VMax (0,u -1 )

The change of variable p -+ p' where
v 2 = nl = ' = 2 '
(6.21) we(p) =" +u_ =o' +u =w(p')

gives the representation

P ( ))
i(yp'-tw_(p' '
, 1 p' ..
vt e, = z ;—-—,,2-(2”) s* () e " MONIORE

I P AT
(6.22) HpSH, M ax(0,u_-u_)
where in the last integrand p = /p'24-um-un. The definition (5.3) of

wh implies that (6.22) can be written

(6.23) viute,x) = ) wHCE,y,u b ) 6 ()
HpSH M

where

(6.24) b (') = sT (@) &(p) %; X (p")

mn




- - - 5

-------------

imply the correctness of the factor xmn(p') in (6.24).

Equations (6.18), (6.23) and (5.10) imply that if

(6.25) vHOOe,x) = ) w(t,y,u_,hT ) ¢ (x)
2 m” nm m
Mg <H
then
(6.26) lim v(t,*) - v+’°°(t,')IJ(. =0 .
L+ 0

Combining this with (5.33) gives

(6.27) v (e, ) - v+’°°(t,°)llﬂ. =0

0
where
(6.28) vU(E,X) = mZO wT(e,y,u,00) 6 ()

Equations (6.25), (6.27) and (6.28) imply that

(6.29) b =ht form=0, 1, 2,00 .
m nm

This is a consequence of a simple lemma which states that if

h={h) ek and if

(6.30) w0 = ] (e, Y s H ) 0y (0) > 0

in ¥, when t > o then h = 0 in ¥,; 1.e., 0 = hy = h; =h, = +es

verify the lemma note that (6.30) is equivalent to the conditions

Note that the lower limit of integration in (6.22), together with (6.19),

To




---------
..............................................................

(6.31) W (t,y,H,h) = 0(1) in Ly(R)), m = 0, 1, 2,e .

To see that (6.31) implies hm = () note that, for p > 0, (5.5) implies

o t - 1/2 2
v (t,*,u,)02 = J utlu(e? -y ”“h[z;}z‘_—y*z%r] dy

(6.32)

0
= f: |h(p)|* dp .

The equality of the two integrals follows from the change of variable

1/2

u z
P =TT )

It is clear from (6.32) that (6.31) implies hm = 0 when m > 0. The case
m = 0 is equally simple; see (5.8).

Equations (6.29) can be written

o P + ot
h (p) = ————— s__(vVp*+u_-u_) h_(vp+Hu_-u ) (p) .
m /EIZT’U_m'Tn nm m ' n n m n an

These relations were derived for functions h € ¥ that satisfy (6.16),
(6.17). But sums of such functions are dense in ¥, by the unitarity of
ot and elementary properties of ﬁb. Hence the general case follows from
(6.29) by summing over n and dropping the restriction (6.17). Thus

=]

P
Bp) = § ——— st (T AL x (p)
m n=0 m nm m™n n m n T

(6.33)

P + +
- ————— 5" (VpTH_-u) B (/PR 1)
ungwg(m g, oo e
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It is clear from the last expression that the sum is finite for each

fixed p > 0. Comparison of (6.33) and (6.9) reveals the representation

P
(6.34) (8h) (p) = ] ) e — S:m(v'p"*um-un) h (T -u))
un<wm(p) 1 0TI T

which is valid for all h = {h } € &,.
f;‘ The known unitarity of § in J?o can be used to comstruct an

alternative and simpler representation of §. To derive it note that

1

fi* = §7! §i” and hence an analogue of (6.34) for §~' = §* 1s obtained by

interchanging w; and w;, and hence ﬁ; and ﬁ;, in (6.33). The result is

~ P -
(6.35) G*)y(p) = [ ———= S_(hTuu) 8 (BN
Ma<wp (P)  VPoHu -1

It follows that for all g,h € f(o one has

(8,8h) = (§%g,h) = mzo G RORNOR

(6.36)

[+ -] 0 p — .
mZO nzo f:xm(p) __/Fu-_u Snm(/pz+um-un) gn(/p5+um-un) h_(p) dp
m'n
= zo ﬁi:(P')[ 20 Xog(®") oo (@) by (B ZR_p) | dp!
n= m= )

where the last step follows from the change of variable p? + Uy = p'2+un.

It follows that
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“ ———————
Sn) (p) = mzo Xom (P) S (P) hy (VPTH1 )
(6.37)
- Eu,z( ) s (») h (/o7 S0
: Mg <w (p
t?j The identities (6.34) and (6.37) clearly imply the relations
L (6.38) s TR = ()
X ' - nm m'n mn ‘
r VPz+um u,
&
i - A
E‘i The unitarity of S imposes further restrictions on the
= coefficients {Sim}' The analogue of (6.37) for $~' = §* is obtained
: from (6.37) by replacing S;n by S;n' If in (6.37) h is replaced by
§-lh, represented in this way, one finds after simplification using

(6.38) that

-t
u ng(p) Sim(p) Skm(¢52+un-”k) /bz+un-um = I/1:’2"'“n-1"k Sk
m o n

for all p > vMax 0,1 -u) .

Ly
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7. Acoustic Signal Structure in Waveguides.

The signals generated by sources that are localized in a
cylindrical portion {X = (x,y) : y, <y £y, + 8} of the waveguide Q
are analyzed in this section. To make explicit the dependence on y the

initial values will be assumed to have the form

u(0,X) = f(xsyo) = fo(x,Y'Yo)

(7.1)

Qgéﬁle = 8(X,70) = 8,(x,y-y,)
where
(7.2) supp £, U supp g, C G x [0,8,] .

For simplicity, the special case for which g = 0 will be
discussed. The initial state (7.1) with g = 0 generates a signal in the
simple waveguide ;, whose asymptotic momentum distribution F, is given

by (5.14) with h = £(*,y,); i.e.,

(7.3) Fo(p) = {Foj(p)} = {?j(p,yo)}

where

(7-4) % (P:Yo) = I WO(X,P) f(X,Yo) dX .
3 3

By (3.1),

(7.5) V&0 = T €' 0,0 + oy e 6 )

33
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Substituting this in (7.3), (7.4) gives

di fl
(7.6) Foy(@) = 77 (p) + 35 (p)
where
7.0 e = B en) = e JQ e 4, (0) £(X,70) aX .

0

ngr(p) and F;:efl

f(*,y9) in a doubly infinite cylinder G x R which have positive and

(p) represent the momentum distributions generated by

negative momenta, respectively. Thus, for &, F?ir represents the

signal component that propagates directly outward while F§ef1

the component that is reflected at the end y = 0 and then propagates

represents

outward.

Now consider the signal generated in the compound waveguide
Q = Q, UK by the same initial state (7.1) with g = 0. It has an
asymptotic momentum distribution F that is given by (5.36) with

h = £(°,y,); i.e.,

(7.8) F(p) = {Fj(p)} = {fg(p,yo)}

where

(7.9) ,f‘;(p’}'o) = J ‘P;(X,P) £(X,yo) dX .
Q

Substituting the decomposition (5.19) into (7.8), (7.9) gives

dir sc

(7.10) Fj(p) = Fj (p) + Fj (P
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where Fdir(p) is given by (7.7) and is again interpreted as the direct

]
part of Fj(p). F?c(p) may be interpreted as the component of Fj(p) that

is due to scattering by the resonator K = Q - Q,. A short calculation,

using (5.19) and (6.37), gives

(7.11) FC(py = (§ Frefl

(0]
j )j(p) + Fj(p)

where F?(p) contains the exponentially damped terms of (5.19):

- 1 Yo +6 ® -yfum-w§(p) .

Fj(p) = zi;gwﬁr-f fc mZO Sjm(p) e ¢y (%) xjm(p) f(X,yq)dX .
(7.12) °
(7.11) and (7.12) suggest that
(7.13) F¢ = 8 PP 4 0 (1) tn 3, vy >
that is,
(7.14) 1im #1F°%¢ - § Frefly, .o .

yo-ioo J(O

It is not difficult to show from (7.12) that F?(p) + 0 when y, » =,
uniformly for p on compact subsets of the set R - {v:;:;; : m,j=0,1,2,000};
cf. (12, Lemma 14.1]. However, this is not strong encugh to prove
(7.14). Unfortunately, (7.14) cannot be proved without additional
information about w}(x,p). This problem was studied in [12] for the
analogous case of diffraction gratings. There it was shown [12,

Theorem 15.1] that if the analytic continuation of the resolvent (A- z)”!
across the spectrum of A has no singularities at the points z = Hm then

(7.14) holds. The same method can be applied to the waveguide problem

of this paper. The method also extends to the case of general initial

values (7.1), (7.2). {Ql”&)
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