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Abstract

Transient acoustic signals are studied in compound waveguides

consisting of a resonant cavity attached to a semi-infinite cylindrical

waveguide. The signals are shown to have the asymptotic form

v(t,x,y) I [ v (t.y)O(x) , t *
j- -o

where x - (x ,x ) are coordinates in the cylinder cross-section, y
1 2

is a coordinate along the cylinder and t is a time coordinate. Here

(x) is an eigenfunction for the cylinder cross-section, with eigen-

". value i- ,and

S
v (t,y) = e(t,y,uj) Fj(11 y/(t 2 -y 2 ))

where 6(t,y,p) is a universal factor and F (p) characterizes the

momentum distribution of mode j . It is shown that if both the signal

sources and observation point are far from the resonator then

dir sc

F (p) F (p) + F (p)

where F is the direct wave that would exist if no resonator were

present and

F sc ( __dir , .Fdir
*'l Fj (p) S3~S (p) - S (p)Fj (/p 2+1n-nm).

~p 2+"m-"n> 0

S is the S-matrix for the compound waveguide and may be calculated

from the model functions.
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1. Introduction.

This paper deals with the propagation of transient acoustic

fields in waveguides that consist of a semi-infinite cylinder coupled

to a resonant cavity or "resonator;",, meFgx

Figure 1. Cylindrical waveguide coupled to a resonator.

-The walls of the waveguide are assumed to be rigid. The sources

of the transient sound fields, or 'osignals," are assumed to be localized

in a bounded portion of the waveguide and to act for a finite interval

of time. The goal of the work is to calculate such acoustic signals and

to analyze how their structure depends on the sources and the geometry

of the waveguide. Particular attention is given to the cases in which

the signal sources or observation point, or both, lie in the cylinder

4 and are far from the resonator.

It is well known that in the cylindrical portion of the waveguide T

each signal can be decomposed into a series of modal waves. These waves

are calculated below and are shown to be asymptotically independent for

large times. Moreover, the form of the modal waves is shown to be

[.'oo



2

determined by the geometry of the cylinder. Only the fine structure of

the modal wave profiles varies with the sources and the geometry of the

resonator.

The theory of the waveguides of Figure 1 will be developed by

*- perturbation theory, beginning with the special case of the simple

waveguide consisting of the semi-infinite cylinder, without resonator,

terminated by a plane cap. The general case of a cylinder plus

resonator, depicted in Figure!, will be called a compound waveguide.

Acoustic signal propagation in both simple and compound

waveguides will be analyzed by means of normal mode expansions. For

simple waveguides the normal modes can be constructed explicitly by

* separation of variables. For compound waveguides they are constructed

.. by a perturbation method based on those for simple waveguides. The

asymptotic wave functions that describe the signals for large times are

calculated from the normal mode expansions.

The asymptotic wave functions for a waveguide are characterized

by a sequence of functions that, physically, describe the momentum

distributions of the modal waves. With each waveguide is associated a

scattering operator, or S-matrix, that operates in the space of these

momentum distributions. The final result of this paper reveals the

significance of the S-matrix in the analysis of acoustic signal struc-

ture in waveguides. It states that the momentum distribution of the

signal generated in a compound waveguide by sources far from the

resonator is simply the image under the S-matrix of the momentum

distribution of the signal generated by the same sources in the

corresponding simple waveguide.

i"
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Normal mode expansions for waveguides and the associated S-matrix

were developed by C. Goldstein in the period 1969-74; see [1,2,3,4]1 In

1975 Goldstein's results were extended by W. C. Lyford [5], using results

of the abstract theory of scattering. Lyford also presented results on

asymptotic wave functions for waveguides in [6]. In 1977 the author

presented in [11] an exposition of the theory of normal mode expansions

and asymptotic wave functions for the more general case of several

semi-infinite cylindrical waveguides coupled by a resonator; see

Figure 2.

The purpose of this paper is to present a new construction of

the S-matrix, based on the theory of asymptotic wave functions, and to

apply the S-matrix to the construction of asymptotic wave functions due

°.4

Figure 2. Compound waveguide with resonator and three cylinders.

Numbers in square brackets indicate references from the list at the
end of the paper.

a
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to sources remote from the resonator. The work is based on the earlier

literature, primarily the exposition [ill, and the author's monograph on

the closely related theory of scattering by diffraction gratings [12].

It will be seen that the results presented below can also be derived for

acoustically soft boundaries (Dirichlet condition) and elastic boundaries

(Robin condition), and for the general case of a resonator with several

cylinders. However, to simplify the exposition only the case of a single

cylinder and rigid boundary is treated here.

The remainder of the paper is organized as follows. §2 presents

a formulation of the propagation problem for acoustic signals in

compound waveguides as an initial-boundary value problem for the wave

equation, together with its solution by a simple Hilbert space method.

§3 develops the normal mode expansion for simple waveguides. In §4

the normal mode functions for compound waveguides are defined and the

normal mode expansions for this case are presented. In §5 the normal

mode expansions of acoustic signals in waveguides are derived and their

asymptotic wave functions, for large times, are calculated. Sections 2

through 5 present a review of concepts and results from [11]. The

exposition is therefore concise and without proofs. The new results of

this paper are contained in §6 and §7. In §6 the S-matrix of a compound

waveguide is defined and then constructed by means of the asymptotic

wave functions of §5. In §7 the acoustic signals generated by

prescribed sources in simple and compound waveguides are compared. The

principal result of this section states that, for sources far from the

resonator, the momentum distribution of the scattered signal is simply

the image under the S-matrix of the momentum distribution generated by

the same sources -n the simple waveguide.

'
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2. The Propagation Problem and Its Solution.

The notation that is used in the remainder of the paper is fixed

inthis section. Acoustic fields in waveguides will be described by real

valued acoustic pressure functions u(t,X) where t r= R is a time coordinate

and X = (x,y) - (x 1 , x 2 ,y) C R3 represents a triple of rectangular

coordinates in space. The coordinate axes are assumed to be chosen in

such a way that the simple waveguide occupies the semi-infinite cylinder

(2.1) go G x R0 {X x r G and y > 0}

where G is a bounded domain in the x1 ,x2-plane and Re - {y y > 01.

The corresponding compound waveguide domains are

(2.2) 0 g U K

where K is a bounded domain and n is connected, and hence is a domain.

The boundary of 0 is denoted by M . It must be mentioned that the local

structure of ail is not completely arbitrary since Q will be required to

have the local compactness property of (11, p. 408]. A simple geometrical

property that is sufficient to guarantee this is the finite tiling

property of [101. All the simple piecewise smooth boundaries that arise

in applications, such as unions of polyhedra, and finite sections of

cylinders, cones, spheres and disks, may be shown to have this property.

The acoustic pressure u(t,X) is the solution of an initial-

boundary problem for the wave equation which, in its classical formu--

lation, reads

(2.3) -- Au - 0 for t > 0, X r g,
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(2.4) - Vu =0 for t > 0, X ,

rr

(2.5) u(0,X) - f(x) and au(0,X) g(X) for X E 0at

where V and A are the gradient and Laplace operators in R3, respectively,
-.

while V is a unit normal field on M. The functions f(X) and g(X) in

(2.5) characterize the initial state of the acoustic field. They are

assumed to be given or calculated from the prescribed wave sources in Q.

A general theory of the initial-boundary value problem (2.3) -

(2.5), guaranteeing the existence and uniqueness of the solution for

" arbitrary domains, was given in [9]. Of course, for arbitrary domains

the boundary condition (2.4) must be understood in a generalized sense.

Here a simple alternative to the method of [9] will be based on the

acoustic propagator A in the Hilbert space K = L2 (). A is the

selfadjoint realization of the negative Laplacian defined by

(2.6) D(A) =K n {u Vu and Au are in 3, -=0 on 3a}

and

(2.7) Au = -Au for all u C D(A).

The differential operators V and A in (2.6) are to be interpreted in the

0sense of distribution theory. Of course, if aQ is not smooth then the

boundary condition in (2.6) is to be interpreted in the generalized sense

of [9]. With these conventions it can be shown that

(2.8) A* A > 0 in C;

see [10,11] for details.

0
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3 With the above definitions the problem (2.3) - (2.5) may be

reformulated as an initial value problem for a function t 4 u(t,-) E K;

namely

(2.9) u + Au 0 for t > 0

(2.10) u(0) - f and du0) g

dt

A formal solution is given by

(2.11) u(t,-) - (cos t A11 ) f + (A1/ sin t A112 ) g.

The spectral theorem implies that (2.11) defines the "solution in 3V of

(2.9), (2.10) for all f,g e K. It is also the unique "solution with

finite energy" of [9] for all initial states (f,g) with finite energy.

This is equivalent to f E D(A1/2), g e a.

It will be convenient to represent the solution u(t,X) as

(2.12) u(t,X) - Re {v(t,X)}

where v(t,X) is the complex-valued function defined by

(2.13) v(t,.) - e 1  / h

and

(2.14) h - f + i A-1/2 g

This representation is valid if f and g are real valued and f, g and

A7I/2 g are in X. It is sufficient to consider such initial states since

the spectral theorem implies that they are dense in K.

4



3. Normal Mode Expansions for Simple Waveguides.

The acoustic propagator for the simple waveguide g o G x R.

will be denoted by A0. It is selfadjoint and non-negative in the Hilbert

space 0 - L2 1(0). The spectral family of A0 was calculated in (11] and

shown to be absolutely continuous. Here the generalized eigenfunction,

or normal mode, expansion for A0 is reviewed briefly.

The normal mode functions for A0 may be found by separation of

variables Ei1, p. 418ff]. They are defined by

fI1/2
(3.1) *°(x,y,p) - *j(x) cos py, p > 0, j = 0, 1, 2,**

where the functions

(3.2) 0 (x) IGIV 2 , 1(x),

are the eigenfunctions of two-dimensional negative Laplacian

A6 - 2/ax? - a2/ x2 in L2 (G), with Neumann boundary condition. The

Ncorresponding eigenvalues of AG, repeated according to their

multiplicity will be denoted by

(3.3) U0 - 0 < P1 P_ 2<_"

It is known that each j has finite multiplicity and - 00 when j 00 .

Moreover, the smallest eigenvalue is simple and 40 (x) const. IGJ is

the 2-dimensional Lebesgue measure of G. The eigenvalue problem for the

0, in classical form, is

(3.4) (A + W(p)) jl(X,p) -0, X - go,

9
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(3.5) ap(KIP)/ai 0, 1 X G l

where

(3.6) j(P) (P ( 2 + lJ1/2 > 111/2 ,j 0 , 1, 2,--

The normal mode expansion theorem for AO states that every

h EJ can be written as

(3.7) ho(xy) l .i.m. I h (y) W
J-0 Oj

where L.i.m. denote convergence in NO0 [11]. The functions

h E L2(Ro) are defined by
Oj

(38 h y 1.m. [20 / Co fih (p) dp

where

(3.9) hoj(P) - .i.m. J W ~p)h0 (X dX.

In (3.8) and (3.9), l.i.m. denotes convergence in L2(IB0) The Parseva1

relation for the expansion (3.7) - (3.9) is contained in the theorem

that the linear mapping (D defined by

(3.10) (Dho {h0O0 ,hOI 02, 9..

defines a unitary operator
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(3.11) •0 - • L2 (R0 ) .
1.0

The last notation means that N0 is the direct sum of a countable

sequence of copies of L2 (Ro).

The representation * is a spectral mapping for A0 . More

precisely, one has

(3.12) vo(t,X) = e -itA ho (x) 1.i.m. I v (t,y) W in3C.

where

(3.13) voj(t,y) = l.i.m. cos p y e-it)i(p) (p) dp

in L2 (R0).

.

/
r"L



4. Normal Mode Expansions for Compound Waveguides.

For compound waveguides Q K U no the propagator A has two

distinct families of normal mode functions. They are denoted here by

{Ij(X,p) : p > 0 and j - 0, 1, 2,---l and {* j (X,p) :p > 0 and

j -0, 1, 2,---l. Both families satisfy the differential equation and

boundary condition:

(4.1)~ ~ (A+w() p(X,p) -0 for XE C

(4.2) alp(Xp)/av 0 for X E a

The families are distinguished by the condition that in nothe fields

(4.3) +±SC(XP) - *4(X,p) - *,X,) xE 4=n

represent outgoing waves for oand incoming waves for This is

defined by the condition that the U i h sc in the transverse

eigenfunctions {0 W1) have the forms

±sc + +iV7(p-j

S(X, p) (27 LIZ- 2 T m (p) e m (x)

(4.4)

+ -Yvri 2(P)
(2Tr W (p <]I jm

j -m

The two summnations in (4.4) are over the sets of integers to > 0 for which

the indicated inequalities hold. Note that the first sum e is finite

because mp t o when m " O, The coefficients {r(p) : Wp will

be called the scattering amplitudes. It will be shown that they

determine the S-matrix for the compound waveguide.

13
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F. Rellich [8] was the first to show that for compound waveguides

- K 'lo the acoustic propagator A may have point spectrum

(n)  1 < n < M < 4-} and eigenfunctions

(4.5) *(n() E D(A) C X

such that

(4.6) A#) (n) (n) (n)

and

m (n)
-5 L (4.7) (n) MX c Cm e - l m - ( ) Obm(XW

-m (n)

The wave functions (n may be called trapping modes. The corresponding
(n)

acoustic fields

M -itx 1 /2

(4.8) v(t,x) = (n) e (n (X)
n-l

represent standing waves in 0o, by (4.7). In particular, the energy of

the wave function (4.8) does not propagate to - and hence plays no role

in the scattering theory for A. In the remainder of this paper, to

simplify the notation, it is assumed that A has no trapping modes. In

the general case the results derived below hold in the space of states

orthogonal to the trapping modes.

For propagators A with no trapping modes the normal mode

expansion theorem states that every h E 3( can be written as

CO

(4.9) h(X) = l.i.m. I h'(X)
:1=i0
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where the series converges in 3C. The components h± r= K are defined by

(4.10) h(X M 1.i.m. F~~Xp hp dp

with convergence in K, where

(4.11) f-p l (X,p h(X) d

in L2 (R0). The orthogonality and completeness of the expansions are

expressed by the theorem that the linear operators 404+ and 0? defined by

!J.

++

where tar erators to The pectr proer of nd by

~itA-it

iWj (P) A+

(4.14) (X)- .i.m. 21 (X,p) -(p) dp

The convergence in both (4.13) and (4.14) is in K.



5. Asymptotic Wave Functions for Waveguides.

The theory of asymptotic wave functions for waveguides, as

developed in [6] and [11], is reviewed briefly in this section.

Consider first the wave function v0 (t,X) for the simple wave-

-'" guide defined by (3.12), (3.13). The modal wave v0j can be written

(.)(t:) -V (ty) + v (ty)
'Oj j Oj

where

0 i(yp-twj (p))

(5.2) vout (t,y) i (2,T)±/z r e o(p)dp
-j -j (O Oj

Here and in what follows the l.i.m. notation of (3.12), (3.13) is

omitted, for brevity, but is always to be understood.

out inThe wave functions of v and v have the forma j oj

+ i 1 i(-+YP-tw(P'u))hp)d

(5.3) w-(t,y,p,h) = 1 e h(p) dp

where h E L7(R 0 ) and w(p,p) = (p2 + 1)1/2 For p > 0, (5.3) defines a,0.

dispersive wave with group speed

(5.4) U(p,P) =W(P,1)

In [11] the method of stationary phase was applied to w+. The resulting

estimate is

17
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i(Yp-tW(p,1)-'/4)

' (t,y,i,h) X e h(p)(O (taU(pm ,)/ap) 1/2 h p 4"y2 1/U2

(5.5) t _

= 8(t,y,p) h[ (tP Z)

where

(5.6) X Characteristic function of {(t,y) 0 < y. <"..I.t" t

and

(5.7) e(t,y,p) X - ti[l(t 2 -y 2 )] - 3/  e-i[I(t7y 2 )1/24-T/4]

For j 0, (5.3) reduces to

(5.8) w±(tqy,0,h) (21)liz e h(p) dp =F 1 h(±y- t)

where F is the usual Fourier transform. In this case the waves are

non-dispersive and it is appropriate to define

(5.9) w (t,y,0,h) F- 1 h(y-t)

With these definitions the results of [11] imply that, for all h E L2 (R)

and all v > 0 one has

(5.10) lim Iw+(t,,Jh) - w(t,°,,h)AL ) = 0
tL 2( 0

and

(5.11) lim 1w-(t,.,u,h)IL(R) -0
L2(RO)
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These results are directly applicable to the partial waves vj

indef ined by (5.1), (5.2). It follows that v (t,-) -P. 0 and0oj

v (t,.) - Vj(t,-) *0 in L2 (R0  when t -~where

(0 111/2 y

(.2 oj~ty i(~~j FO i(t2_y2) 1/2 J

(5.13) vo 0 (t, y) -(F-' FO0 )(y -t)

and

(5.14) F0~ (P) h0 j(p) for j -0, 1, 2,***

Moreover, it was shown in (11] that if

(5.15) v''(t,X) v- v(t,y) Wjx
j0 O

then the series converges in JC, and

(5.16) lim 1V0(t,) vo7(t,-) IC 0
t-*cO

It is clear from these results that the asymptotic wave function vis

characterized by the sequence {F J} of modal wave momentum distributions

or, equivalently, the element

(5.17) Fa a {Fj {hO NO - 'h

The same analysis may be applied to the wave function v(t,X) for

the compound waveguide defined by (4.13), (4.14). If the "incoming"

* normal modes {}are chosen the partial waves have the form
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(5.18) v(t,X) = f I,(X,p) e-it h(p) hi(P)dp

For X E S0 the decomposition (4.3), (4.4) for may be written

1 e i py @j(x)

* ) (X p) w T~z e

(5.19)

+ (27r/) S jm(p) e Om(X) Xjm(p)
M-0

1" 0 -y /Uin-wj'(p)

+2,-i O jm(p) e ) m

where

(5.0)S (p) = .+ T- (p)(5.20) jm jm im

(5.21) Xjm(p)-- Characteristic function of (p w 2(p) > 1M}

and Xjm(p) + X'm(p) = 1. Substituting (5.19) into (5.18) gives

(5.22) v - v- out + V-1in + -

where the three terms on the right come from the corresponding terms of

(5.19).

Clearly

(5.23) vi'°u (t,X) - w+(t,y,j h ) i W

Moreover,



!'in
K-..
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V j'in(tX)

(5.24)
|o'_•~0 J -iy'"W, '( P) -U"m - itw °J ( P)

m 1 (270 1 FO S jm(p) e 
h i(P) Xjm(P)dpJ m(x)

On making the change of variable

(5.25) p'2 = w(p) _ 'm = p2 + -_ 
1m

in (5.24) one finds that

So

(5.26) v ,in(t,x) w-(t,y,m ,hjm) 4m(x)
.O0.

where the function h is defined by
jm

(5.27) h (pW) -xj (P) S- (ip) ii-(p) IL
jm jm p

and p and p' are related by (5.25). It is clear from (5.11) and (5.26)

that, formally,

(5.28) lim v- in(t,) = 0 in JC0.

Rigorous proofs of this, and the related property

(5.29) lim v- (t,) = 0 in,

were given for the closely related case of diffraction gratings in

[12, Part 2]. (5.23), (5.28) and (5.29) imply that

(5.30) v (t,) - v0'(t,) - 0 in X

where

I.
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(5.31) vj (t,X) - x(X) wO(t,y,Uih) *joh)

and X is the characteristic function of 00. Moreover, if

(5.32) v-'(t,x) . v '(t,x)

J-0

then it follows as in [Ii] that the series converges in X and

(5.33) lira Iv(t,') - v-'(t,')lK 0

for every h C K. Note that

1/2
S(5.34) vj (t,X) = 8(t,y,Ij) Fj (t-)1/ x), J - 1, 2, 3,*-,

(5.35) v0'(t.x) (F- ' F0)(y- t) IGI-1/2

where

(5.36) F (p) - h(p) for j 0 0, 1, 2,**'

Thus v- '0 is characterized by the sequence {Fj} of modal momentum

distributions where

(5.37) F - {F } , {h} -h No

The convergence of v(t,') to zero in L2 (K), which is implied by (5.33),

follows from the local compactness property of [11, p. 408]; see

[il, Theorem 6.16].
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The results (5 .16) and (5.33) imply that each wave function

v(t,-) for the compound waveguide is asymptotically equal in XC, for

t - ,to a sum of modal waves for the simple waveguide.
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The wave operators W, - W_(A/2 ,A / 2 ,J) K X .0 are defined by

(6.1) W+ -s-lim ei t ' /2 J e- i t A1 2

where J : o0 is the bounded operator defined by (Jh)(X) = h(X)1So

and s-lir denotes strong convergence. The existence of W+ follows from

(5.16), (5.17), (5.33) and (5.37). More precisely, these results imply

that

(6.2) lim le J e h - hoI -0
t-" 0

provided F0 - Oh0 - -h - F. This implies the representation

(6.3) W- D* "-.

The analogous results for t + - give

(6.4) 
W - 0* 0 + •

+

These results and the unitarity of $ and $- imply that W+ are unitary

operators from K to K o .

The scattering operator S for the pair is the unitary operator

in K 0 defined by

(6.5) S - W + W*

Combining (6.3), (6.4) and (6.5) gives

(6.6) S 0S S D

25
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where S is the unitary operator in the direct sum space No of (3.11)

that is defined by

(6.7) S = 0

S will be called the S-matrix for A (or the the waveguide 0).

The purpose of this section is to calculate an explicit

representation of S based on the scattering amplitudes {S- (p)} of thejm

normal mode functions 4J(X,p), defined by (4.4) and (5.20). To this

end let h C K and define elements h and h in NO by (4.12); i.e.,

^+ ^+A+ A+ +
(6.8) h- = {h;,h7,h,.} =(D h

Then it follows from the unitarity of + and f- that

(6.9). h= (- t) C h = h

This relation will be used to calculate S. To see how this can be done

recall that the calculation of the asymptotic wave function for

v(t,') = e h was based on the incoming representation (5.18) and

gave the representation (5.37), i.e., F = h-, for the asymptotic

momentum distribution. A second calculation of F, based on the outgoing

representation, will now be shown to yield a representation of S.

The outgoing representation of v(t,') is

(6.10) v(t,X) = I vt(t,X)
":i oJ=

where

S+ + -itw g () ,.+
(6.11) v1 (tX) = J (X,p) e h (p) dp
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For X E Q0 the decomposition (4.3), (4.4) for + may be written

+ 1 -ipy.(Xp) (27) e (x)

(6.12)

1 y+ y/z (p) -Um
SSr (p) em(x) Xjm(P)

M-0

1 + (p )

+ () 1  O S+ (P) ea(x) Xj(P)

~\

where

(6.13) Sjm(p) = 6jm + Tm(p)

Substituting (6.12) into (6.11) gives

+-" +,in +,out +,a
(6.14) vj = vi + vi + v ,

where the three terms on the right come from the corresponding terms of

(6.12) . The term

+,in. h+

(6.15) v i(t,X) = w-(t'yojIfhj) % (x)

tends to zero in K 0 when t - 00, by (5.11). Moreover, the method of

[12, Part 2, §14] may be used to show that vj (t,) - 0 in C0 when t -oo.

To calculate the behavior for t o of v(t,X) from (6.10) - (6.14)

4 it is convenient to begin with the special case of an h E X such that

(6.16) h.(p) =6 g(p), n fixed, and

(6.17) supp g C [0,M], M fixed

4
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For such h,

+ +,out(6.18) V(tX) - vn(tX) vn (tX) + 0(1)

where o(i) + 0 in 0 when t - o. Moreover,

(6.19) supp X =  ["ax (01m-11 n ) ,o)

and hence

v+OlttX =yW (p -Uf' m itw (p)vn Lj(2)X S (p) e 4m(x)g(p)dp

(6.20) mn /Max (0, Umn)

The change of variable p p' where

(6.21) w2 (p) = p2 + Un = p, 2 + j m . w2 (p,)

gives the representation

v+out (tX) (2Tr) (p) e m(X) g(p) dp'

(6.22) m< n+M2  Mlax(0, n-P m

* where in the last integrand p - ,/p?2++im-n" The definition (5.3) of

w implies that (6.22) can be written

(6.23) v+,out (t,X) w+(t,y,Ih) + (X)n <U 1+M 2  m nm m
m- n

where

(6.24) h+ (p') =S + (p) g(p) x ')~ru nm p m(
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Note that the lower limit of integration in (6.22), together with (6.19),

imply the correctness of the factor ,(p') in (6.24).

Equations (6.18), (6.23) and (5.10) imply that if

_+",

(6.25) v '(c,X) - O w(tvyqI ,h) XW
m -

n

then

+,oo
(6.26) lrn Iv(t,-) V v (t-)Ix 0

Combining this with (5.33) gives

(6.27) IV "(t,.) - (t,*)flI 0
,_0

where

(6.28) V(tX) 0 itr t ,nm. tm et wh

Equations (6.25), (6.27) and (6.28) imply that

(6.29) h , h for m (0, 1, 2, m(

This is a consequence of a simple lemma which states that if

h - {h 1 6 ECK and if

(6.30) w(tX) Iv~ w,( y',h M) M ) - 0

m-0 m

in o when t wthen h - 0 in X; i.e., 0 - ho - h, - h2  To

verify the lema note that (6.30) is equivalent to the conditions
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(6.31) w(tsYt1mh m O(1) in L2(R,), m 0, 1, 2,...

To see that (6.31) implies hm - 0 note that, for P > 0, (5.5) implies

1w (t,• ,Ii,h)l1t - h [.(tVy 2 ) /z dy

0
(6.32)

= Ih(p)I2 dp

The equality of the two integrals follows from the change of variable

p1/ 2

.

y

It is clear from (6.32) that (6.31) implies h - 0 when m > 0. The case
• m

m = 0 is equally simple; see (5.8).

Equations (6.29) can be written

p + _ _

These relations were derived for functions h E K that satisfy (6.16),

(6.17). But sums of such functions are dense in X, by the unitarity of
+ A

(D and elementary properties of No. Hence the general case follows from

4| (6.29) by summing over n and dropping the restriction (6.17). Thus

00

p + A+_

"(p) 1 h P S(n (/pfmn h npZ" m-n) Xmn(P)

(6.33) Mn

- p S+P'Wz nm s+'P'm-n n ( 'm-n)
" n<mn(P) '/Pz'lm-lln

,- , , .' .. .. ." -1. •. ... . . . . . ...
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fla It is clear from the last expression that the sum is finite for each

K, fixed p > 0. Comparison of (6.33) and (6.9) reveals the representation

(6.34) ( h)m(P) = + h2 mn n~p mP+ n

which is valid for all h - {hm} E 0

The known unitarity of S in 30 can be used to construct an

alternative and simpler representation of S. To derive it note that

- and hence an analogue of (6.34) for -1 , is obtained by

interchanging q and * and hence hj and hj in (6.33). The result is

j

(6.35) (S*g)(p)- 2 S( p2 -1-m ) n-InJ
-. %t%(P) Y'PZ+Um-" n

It follows that for all g,h E X, one has

(g,§h)~ ~~ ,,(~~), Sg)m(p) hm(P) dp

(g,h)-(g , Oh) m 0

(6.36)

.= F (P) 'S (,/p 2 +m-..) gn( p +pm-vn) hm(p) dp
mu'0 un 0 To~ m11mlnn

= ~('I X .(p') S!--(p') hmIp2U- dp'

where the last step follows from the change of variable p 2 + Jim p 2=,n

It follows that

" 1
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(6.37)

UME2(p m n m

The identities (6.34) and (6.37) clearly imply the relations

p + ___(6.38) S (.pZ+jm-. n) - (p)
mum

The unitarity of S imposes further restrictions on the

coefficients {S }. The analogue of (6.37) for - S is obtained

from (6.37) by replacing S by S+ . If in (6.37) h is replaced by
m- mn

S h, represented in this way, one finds after simplification using

(6.38) that

["-- z Snm(P S{km rP'PZ4n-)'k) '/Zln-'m "/P+n-k 6nk

-Ipm< )p)

" for allp ax (O,1ik-n).



7. Acoustic Signal Structure in Waveguides.

The signals generated by sources that Are localized in a

cylindrical portion {X - (x,y) :Y 0 < Y < yo + 60} of the waveguide SI

are analyzed in this section. To make explicit the dependence on y the

initial values will be assumed to have the form

r u(OX) - f(X,y o ) -f(xy-yo)

(7.1) Lau(OX) g(xy-y.)
at g(X'Y°)

where

(7.2) supp f0 U supp go C G x [0,60]

For simplicity, the special case for which g = 0 will be

discussed. The initial state (7.1) with g - 0 generates a signal in the

simple waveguide Q0 whose asymptotic momentum distribution F0 is given

by (5.14) with h = f(-,y 0 ); i.e.,

(7.3) Fo(p) = {F oj(p)} {fj(P,yo)}

where

(7.4) f (PYo) - f '(X,p) f(X,yO) dX

By (3.1),

(7.5) 0, 1 eipy + 1 -ipy
777- + " / e33 (x)

~33
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Substituting this in (7.3), (7.4) gives
_dir. _refl

(7.6) F0j(P) F i(P) + F (P)

where

(77) dir ( refl. . 1 e-ipy (x f(X,yo) dX

dir reflF. (p) and F (p) represent the momentum distributions generated by

f(',yo) in a doubly infinite cylinder G x R which have positive and

negative momenta, respectively. Thus, for 20, F.ir represents the
3

signal component that propagates directly outward while Frefl represents

the component that is reflected at the end y = 0 and then propagates

outward.

Now consider the signal generated in the compound waveguide

SIO U K by the same initial state (7.1) with g = 0. It has an

asymptotic momentum distribution F that is given by (5.36) with

h f(.,yO); i.e.,

(7.8) F(p) {F(p)} = {f (P,y0)}

where

(7.9) f(pY 0 ) f (Xp) f(Xy 0 ) dX

Substituting the decomposition (5.19) into (7.8), (7.9) gives

(7.10) F (p) - dir p) + Fc(p)

6g



I -. - - -.. I- .. - .. , ,--. . - .- . - .,. --. . .

35
whredir,

where (p) is given by (7.7) and is again interpreted as the direct

• part of F (p). Fsc(p) may be interpreted as the component of F (p) that

is due to scattering by the resonator K 0 - Q0 . A short calculation,

using (5.19) and (6.37), gives

(7.11) F c(p) - (S Frefl (p) + F'(p)

where F .(p) contains the exponentially damped terms of (5.19):

fS-()-yvli -(PT '
(P) (~17r- I (( (p e, )m()F ~ Yo6 fG M=Oej.p

(7.12)

(7.11) and (7.12) suggest that

(7.3)Fs -- 'refl OD

Fsc3) S F + O(1) in Jo, Yo

that is,

Fsc  Frefll

(7.14) lim IF - Fr I.-

It is not difficult to show from (7.12) that FJ(p) 0 when y,

uniformly for p on compact subsets of the set R - {v' -Ij : m,j-0,1,2,...};

cf. [12, Lemma 14.11. However, this is not strong enough to prove

(7.14). Unfortunately, (7.14) cannot be proved without additional

information about 0.(X,p). This problem was studied in [12] for the
ii

analogous case of diffraction gratings. There it was shown [12,

Theorem 15.1] that if the analytic continuation of the resolvent (A- z)-

across the spectrum of A has no singularities at the points z p m then

(7.14) holds. The same method can be applied to the waveguide problem

of this paper. The method also extends to the case of general initial

values (7.1), (7.2).
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