ESTIMATION OF NOISY TELEGRAPH PROCESSES: NONLINEAR FILTERING VERSUS NONLINEAR
MASSACHUSETTS INST OF TECH
CAMBRIDGE STATISTICS CENTER Y YAO FEB 83 TR-29 ONR
UNCLASSIFIED N00014-75-C-0555
NL
ESTIMATION OF NOISY TELEGRAPH PROCESSES: NONLINEAR FILTERING VS. NONLINEAR SMOOTHING

BY
YI-CHING YAO

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TECHNICAL REPORT NO. ONR 29
FEBRUARY 1983

PREPARED UNDER CONTRACT
N00014-75-C-0555 (NR-609-001)
FOR THE OFFICE OF NAVAL RESEARCH

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

83 03 07 054
Estimation of Noisy Telegraph Processes: Nonlinear Filtering vs. Nonlinear Smoothing

Abstract

In the estimation problem of a two-state stationary Markov process with Gaussian white noise added, the optimal smoother is a two-filter smoother. In a special case, we compare analytically the optimal nonlinear filter and smoother and find that the latter is significantly better than the former when either the noise intensity or the rate of jump of the states is low.

Key words: Nonlinear filtering, nonlinear smoothing, telegraph process

AMS 1980 subject classification: Primary 93E14; Secondary 62M05, 93E11

1. Introduction

In a certain class of linear dynamic Gaussian systems, the optimal smoothing estimator of the states may be regarded as a two-filter smoother. See Wall et al (1981) for a complete discussion. Several authors, e.g. Rauch et al (1965) and Mehr and Bryson (1968) compared the performance of filters and smoothers in linear dynamic systems and found that in certain cases smoothers may be more preferable even at the expense of time delay.

In this paper, we consider the system of a telegraph process in the presence of additive Gaussian white noise, and study the relationship between the optimal filtering and smoothing estimators of the states. To be specific, define the signal process \(s_t = (s_t^-, s_t^+) \) to be a stationary two-state Markov process such that

\[
\text{Pr}(s_t = 1) = p \neq 1 = \text{Pr}(s_t = -1)
\]

\[
\text{Pr}(s_t = 1 | s_t = 1) = 1 - v + o(h)
\]

\[
\text{Pr}(s_t = -1 | s_t = -1) = 1 - v' + o(h)
\]

where \(p = (1-p)' \). Let the observed process

\[
\frac{1}{2} \int_0^t \eta x(t) dt = \eta t, \quad t \in (-\infty, 0)
\]

where \(\eta t \) is a standard Wiener process \(\eta_0 = 0 \).
independent of \(\{v_t\} \) and \(\alpha \) is a positive constant to represent the intensity of the noise.

In the next section, we show that the optimal smoothing estimator of \(u_t \) is a function of the forward and backward filtering estimators of \(u_t \). In Section 3, we compare analytically the performance of the optimal nonlinear filter and smoother in a special case.

2. Optimal Nonlinear Smoother as a Two-Filter Smoother

In this section, we assume the process \(\{z_t\} \) is observed from \(t = 0 \) on. Denote by \(\phi_L, \phi_R \) and \(\phi_S \) the left-sided, right-sided and two-sided conditional expectations of \(v_t \), i.e., \(\mathbb{E}_\Phi(z_t|z_{t-1}), \mathbb{E}_\Phi(z_t|z_{t+1}) \) and \(\mathbb{E}_\Phi(z_t|z_{t-1}, z_{t+1}) \), respectively, where \(\Phi \) is a fixed time span (possibly an infinite time span \(T \)).

\[v_t = \mathbb{E}_\Phi(z_t|z_{t-1}, z_{t+1}) \]

Wonham (1965) showed that \(\phi_S \) satisfies a stochastic differential equation. We can easily see that \(\phi_L \) and \(\phi_R \) must satisfy a reversed-time stochastic differential equation of the same type. Now, the following proposition tells us that the smoothing estimate \(u_t \) of \(u_t \) can be easily computed from knowing \(\phi_L \) and \(\phi_R \).

Proposition 2.1

\[
\phi_L = \left(\begin{array}{c} 1 + \phi_L \phi_R + \phi_S \phi_L \phi_R \\ 1 + \phi_L \phi_R + \phi_S \phi_L \phi_R - 2 \phi_S \phi_L \phi_R \end{array} \right)
\]

\[u_t = \tanh^{-1} \frac{\phi_L}{\phi_R} \]

In particular, when \(p = 1/2 \),

\[u_t = \frac{\phi_L}{\phi_R} \]

\[\text{i.e. } \tanh^{-1} u_t = \tanh^{-1} \frac{\phi_L}{\phi_R} = \tanh^{-1} \frac{\phi_L}{\phi_R} \]

Proof of Proposition 2.1

Denote by \(F_{\Phi}(\cdot) \) (or \(F_{\Phi}(\cdot|v_0=1) \)) the Radon-Nikodym derivative of the measure on \(\mathcal{C}[0,T] \) induced by \(F_0 \) (or \(F_0^0 \)) with respect to the Wiener measure on \(\mathcal{C}[0,T] \). The existence of the derivatives is a consequence of Girsanov's Theorem (see [1], Theorem 7.2). Let \(b = 1 \) or \(-1\). Using the independence of \(v_0 \) and \(v_T \) given \(u_T \),

\[
F_{\Phi}(u_T) = \frac{\exp \left(\frac{b}{2} \frac{1}{\tau^2} (u_T) \right)}{\tau^2} \mathbb{P}(u_T) \mathbb{P}(u_T|v_0=1)
\]

\[F_{\Phi}(u_T|v_0=1) = \frac{\exp \left(\frac{b}{2} \frac{1}{\tau^2} (u_T) \right)}{\tau^2} \mathbb{P}(u_T|v_0=1) \]

\[\text{i.e. } \exp \left(\frac{b}{2} \frac{1}{\tau^2} (u_T) \right) = \mathbb{P}(u_T|v_0=1) \]

So,

\[\tanh^{-1} u_t = \tanh^{-1} \frac{\phi_L}{\phi_R} = \tanh^{-1} \frac{\phi_L}{\phi_R} \]
It should be noted that $\text{MSE}(q_t)$ is constant for $t = (-\infty, 0)$ but $\text{MSE}(q_t^+), \text{MSE}(q_t^-) = \text{MSE}(q_t^0)$ for $t = 0$. For $w = v$, for $t = 0$,

\[(3.3) \ |E(q_t^0|w) = |E(q_t^0|t = x, \mathcal{F}_t)| \]

where \mathcal{F} is the distribution of random variable Y and $\mathcal{F}(X)$ is the conditional distribution of Y given X.

In the following, we only consider $t > 0$.

We can readily modify the proof of Proposition 2.1 to show

\[\text{Proposition 3.1} \]

\[q_t^+ = \frac{q_t^0}{1 + q_t^0} \]

\[\text{Proposition 3.2} \ (\text{Monahan (1965)}) \]

\[(3.1) \ \text{MSE}(q_t^0) \leq \text{MSE}(q_t^0|w) \leq \text{MSE}(q_t^0) \]

and

\[(3.2) \ \text{MSE}(q_t^0) \leq \text{MSE}(q_t^0|w) \leq \text{MSE}(q_t^0) \]

where

\[\text{Pr}(q_t^0|w, q = q) = \text{Pr}(q_t^0|w = 1) = (1 - q)^2(1 - q^2)^2(1 - q^2) \]

and

\[\text{Pr}(q_t^0|w, q = q) = \text{Pr}(q_t^0|w = -1) = (1 - q)^2(1 - q^2)^2(1 - q^2) \]

and

\[\text{Pr}(q_t^0|w, q = q) = \text{Pr}(q_t^0|w = 1) = (1 - q)^2(1 - q^2)^2(1 - q^2) \]

and

\[\text{Pr}(q_t^0|w, q = q) = \text{Pr}(q_t^0|w = -1) = (1 - q)^2(1 - q^2)^2(1 - q^2) \]

and

\[\text{Pr}(q_t^0|w, q = q) = \text{Pr}(q_t^0|w = 1) = (1 - q)^2(1 - q^2)^2(1 - q^2) \]

and

\[\text{Pr}(q_t^0|w, q = q) = \text{Pr}(q_t^0|w = -1) = (1 - q)^2(1 - q^2)^2(1 - q^2) \]
Also, q^0_t is independent of q^0_t given u_t. Therefore, by applying Propositions 3.1 and 3.2 (a), we can readily derive the formula for $\text{MSE}(q^0_t)$. The computation of its asymptotic behavior is given in the Appendix.

We may also compute the MSE for the Wiener filtering estimate of u_t, and the best linear estimate based on I_{-1}.

$$
\text{MSE}_W : \text{MSE for the Wiener filtering estimate of } u_t
$$

$$
(3.4) \quad \begin{cases}
J_t & \text{(for } y = 0^n) \\
1 - (4y)^{-1} \cdot 0(y^2) & \text{(for } y = w)
\end{cases}
$$

$$
\text{MSE}_{B_t} : \text{MSE for the best linear estimate of } u_t
$$

$$
(3.5) \quad \begin{cases}
J_t & \text{(for } y = 0^n) \\
1 - (4y)^{-1} \cdot 0(y^2) & \text{(for } y = w)
\end{cases}
$$

Now we are ready to compare the performance of the
various estimates. See Table 3.1 for the summary of the asymptotic results on their MSE.

Remark 1: As \(y \to 0^+ \), the linear estimates are not efficient. It seems that in non-Gaussian systems linear estimates are rather inflexible and therefore cannot perform well.

Remark 2: As \(y \to 0^+ \), the optimal smoother is more efficient than the optimal filter by a factor \(\log 2 \). This factor is about 4.9 when \(y = 0.001 \) [e.g., \(y = 0.1 \)]. Therefore, when either the noise intensity or the rate of jump of the states is low, the optimal smoother is significantly better than the optimal filter.

Remark 3: In finite-state processes, error probability is also an interesting criterion. In the following, we present the error probabilities for several optimal decision procedures. We consider decisions on whether \(x_0 \) is 1 or -1.

(i) Based on \(E_{\omega} ? \)
An optimal decision \(d_L \) is:

\[
d_L(\omega^0) = 1 \text{ iff } \Pr(x_0 = 1|\omega^0) \geq \frac{1}{2}.
\]

The error probability is

\[
e_2 = c(q) \int_{-\infty}^{\infty} \frac{1}{1-q^2} \left(e^{-\frac{|x|^2}{2}} - e^{-\frac{|x|^2}{2}} \right) dx
\]

\[
- \frac{1}{2} \log \frac{1}{1-q^2} \left(e^{-\frac{|x|^2}{2}} \right)
\]

\[
\frac{1}{2} \left(1 - \frac{1}{1-q^2} \right) \left(e^{-\frac{|x|^2}{2}} \right)
\]
<table>
<thead>
<tr>
<th>Estimate</th>
<th>Linear</th>
<th>Smoothing</th>
<th>MMSE \tilde{L}</th>
<th>\tilde{L}-log</th>
<th>\tilde{L}-exp \tilde{L}-exp \tilde{L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{a}</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>2^{-2}</td>
<td>2^{-2}</td>
<td>2^{-2}</td>
</tr>
<tr>
<td>\hat{b}</td>
<td>2^{-1}</td>
<td>2^{-1}</td>
<td>2^{-1}</td>
<td>2^{-1}</td>
<td>2^{-1}</td>
</tr>
</tbody>
</table>

References

Appendix

Proof of the Asymptotic Expansions for MSE(Q) in Proposition 3.1

In the following, c(x) is abbreviated to \(c \). We use the notation \(A \sim B(\epsilon) \) to mean (ie \(\frac{A}{B} = \epsilon \).

(i) The case of \(\epsilon = 0 \):

\[
\begin{align*}
\epsilon^{-1} &= \int_{0}^{1/2} (x-1/2)^{-1} e^{-2x} dx \\
&= \int_{0}^{1/2} u^{1/2} (u-1/2)^{-1} e^{-2u} du \quad (x = u) \\
&= \int_{0}^{1/2} (u+1/2)^{1/2} (u-1/2)^{-1/2} e^{-2u} du \quad (u = v+1/2) \\
&= \int_{0}^{1/2} \frac{1}{2} e^{-1} \\
&= \int_{0}^{1/2} \left(\frac{1}{\pi} e^{-1/2} \right) \frac{1}{\sqrt{1-2v}} dv (\epsilon = 0) \\
&= \frac{1}{\pi} \int_{1/2}^{1} \frac{1}{\sqrt{1-2v}} dv (\epsilon = 0) \\
&= \frac{1}{\pi} \left[\frac{1}{2} \left(\frac{1}{e-1} \right) \exp\left(-\frac{1}{e-1} \right) \right] (\epsilon = 0) \\
&= \frac{1}{\pi} \left[\int_{0}^{1/2} \frac{1}{\sqrt{1-2v}} dv \right] (\epsilon = 0)
\end{align*}
\]

Here \(\epsilon \) is a small positive number.

\[
(\epsilon + 1/2) = \frac{1}{\pi} \left[\int_{0}^{1/2} \frac{1}{\sqrt{1-2v}} dv \right] (\epsilon = 1/2)
\]

(A.2) \[
\begin{align*}
\epsilon^{-1} &= \int_{0}^{1/2} (x-1/2)^{-1} e^{-2x} dx \\
&= \int_{0}^{1/2} u^{1/2} (u-1/2)^{-1} e^{-2u} du \quad (x = u) \\
&= \int_{0}^{1/2} (u+1/2)^{1/2} (u-1/2)^{-1/2} e^{-2u} du \quad (u = v+1/2) \\
&= \int_{0}^{1/2} \frac{1}{2} e^{-1} \\
&= \int_{0}^{1/2} \left(\frac{1}{\pi} e^{-1/2} \right) \frac{1}{\sqrt{1-2v}} dv (\epsilon = 0) \\
&= \frac{1}{\pi} \left[\int_{1/2}^{1} \frac{1}{\sqrt{1-2v}} dv \right] (\epsilon = 0) \\
&= \frac{1}{\pi} \left[\int_{0}^{1/2} \frac{1}{\sqrt{1-2v}} dv \right] (\epsilon = 0)
\end{align*}
\]

Here \(\epsilon \) is a small positive number.

\[
(\epsilon + 1/2) = \frac{1}{\pi} \left[\int_{0}^{1/2} \frac{1}{\sqrt{1-2v}} dv \right] (\epsilon = 1/2)
\]
\[\frac{1}{2} \left[\frac{1}{2} \right] \]

\[(A.1) \quad \frac{1}{4} (2qy + 2p) \]

\[\int \int \frac{1}{1 + (1+y)^2 (1+x) (1+y)} \exp \left(\frac{-2}{2} + \frac{2}{2} \right) \, dy \]

\[\int \int \frac{1}{(1+y+y) (1+x+y)} \exp \left(\frac{-2}{2} + \frac{2}{2} \right) \, dy \]

\[\text{(A.2)} \quad \frac{1}{4} \int \int \frac{1}{(1+y+y) (1+x+y)} \exp \left(\frac{-2}{2} + \frac{2}{2} \right) \, dy \]

\[\text{(A.3)} \quad \frac{1}{4} \int \int \frac{1}{(1+y+y) (1+x+y)} \exp \left(\frac{-2}{2} + \frac{2}{2} \right) \, dy \]

\[\text{(A.4)} \quad \frac{1}{4} \int \int \frac{1}{(1+y+y) (1+x+y)} \exp \left(\frac{-2}{2} + \frac{2}{2} \right) \, dy \]

Therefore, from (A.1), (A.2), (A.3), (A.4).

\[\text{MSE}(y) = 2y (y > 0) \]

(1) The case of \(y = 0 \).

\[a^{-1} = \int \frac{1}{2} (1-x) - 2x \, dx \]

\[\int \frac{1}{1-x} \frac{1}{2} (1-x) - 2x \, dx (x \text{ is small positive}) \]
\[\int \left[1 + \frac{1}{2} (x-\frac{1}{2}) \right] \left(x^{2} - 2x \right) \exp \left(-\frac{2x}{1-x} \right) \text{d}x \]

(E.5) \[\exp \left(-\frac{2x}{1-x} \right) \text{d}x = 2 \int \frac{1}{x} \exp \left(-\frac{2x}{1-x} \right) \text{d}x \]

\[\int \left[\frac{1}{2} \exp \left(-\frac{2x}{1-x} \right) \text{d}x \right] \left[\frac{1}{2} \exp \left(-\frac{2x}{1-x} \right) \text{d}x \right] \]

(E.6) \[\exp \left(-\frac{2x}{1-x} \right) \text{d}x = 2 \int \frac{1}{x} \exp \left(-\frac{2x}{1-x} \right) \text{d}x \]
\[(A.9) = 2 \omega^{-1} (z^{-3/2} x_1^{-1/2} x_2^{-1/2} + o(z^{-3/2})) \]

From (A.5), (A.7), (A.8),

\[
\begin{align*}
\int_{-1}^{1} \int_{-1}^{1} \frac{(xy - 1)^2}{(1 + x^2 y^2)(1-y^2)} \exp \left(\frac{-2x}{1+y^2} + \frac{-2y}{1+y^2} \right) dy dx
\end{align*}
\]

So, from (A.5) and (A.9),

\[
\text{NEE}_{x_1} = \frac{2^{-3/2} \omega^{-1} - 2^{-3/2} \omega^{-1} + o(\omega^{-1})}{\left[2^{-3/2} \omega^{-1} - 2^{-3/2} \omega^{-1} + o(\omega^{-1}) \right]^2}
\]

\[
= 1 - \frac{1}{2} \omega^{-1} + o(\omega^{-1})
\]

This completes the proof. \Box