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ABSTRACT

—S For a genuinely nonlinear hyperbolic system of conservation laws with

added artificial viscosity, we prove that traveling wave

t x
profiles for small amplitude extreme shocks (the slowest and fastest) are
linearly stable to perturbations in initial data chosen from certain spaces
with weighted norm; i.e., we show that the spectrum of the linearized equation
lies strictly in the left half plane, except for a simple eigenvalue at the
origin (due to phase translations of the profile). The weight <2545 used

in components transverse to the profile, where, for an extreme shock, the

linearized equation is dominated by unidirectional convection.

AN

AMS (MOS) Subject Classifications: 35L65,35L75,35K45,35B35

Key Words: Conservation laws, viscosity, nonlinear parabolic systems, shock
profiles, traveling waves, stability, Burgers' equation, weighted
norms

Work Unit Number 1 - Applied Analysis

*This paper is part of the author's doctoral dissertation, written under the
direction of Professor Andrew J. Majda, at the University of California,
Berkeley.
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SIGNIFICANCE AND EXPLAMATION . = < ;% , ' %

Many equations of mathematical physics take the form of nonlinear systems
of conservation laws. Mathematically, this type of system is difficult to
5 desal with; generally, smooth solutions must develop discontinuities (shocks)
o in finite time; thus weak (i.e., nondifferentiable) solutions must be admitted
at the price of losing uniqueness: given initial data may be continued forward
o in several ways in the class of weak solutions. An extra criterion, called
o the entropy criterion (from the fact that solutions in physics have increasing
entropy) is imposed on the solution in hopes of recovering uniqueness. One
method of justifying the entropy criterion is to show that if parabolic
dissipation terms (e.g., viscosity), generally neglected, are taken into
account, and if a solution to the inviscid system is obtained as a limit of
- solutions as the viscosity vanishes, then this solution must satisfy the

entropy condition.

TR

: Py D
R AV L A S

P

Are all “entropy solutions" the limit of solutions of the viscous
system? 8o far, this question has been answered only for scalar equations,
for smooth solutions, and for simple weak solutions, namely steady shock
’ waves. Thus a steady shock satisfying the entropy condition is the limit of
smooth "shock profiles”, which are travelling wave solutions of the associated

parabolic system. -

o
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Insofar as the incorporation of viscosity into the system yields a more
accurate physical model, shock profiles becoms interesting in their own
right. More generally, travelling waves of parabolic systems arise in other
important contexts, such as nerve impulses and fronts for reaction-diffusion
systems. This paper is concerned with the stability of shock profiles with
respect to perturbation, with fixed viscosity of a simple but nonphysical
type. As opposed to the situation for a single equation, stability results
for traveling waves of nonlinear parabolic systems are few and far between.
However, D. Sattinger has established a linearized stability criterion (one
based on spectral analysis) for such waves, which can insure nonlinear
stability up to phase shift. Our result is to verify this criterion for a
certain class of perturbations for the slowest and fastest families of shock
profiles of small amplitude. Unfortunately, the class of perturbations we can
allow cannot be treated by Sattinger's methods, so the nonlinear stability

question remains open.
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The responsibility for the wording and views expressed in this descriptive
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LINEARIZED STABILITY OF EXTREME SHOCK PROFILES PFOR
SYSTEMS OF CONSERVATION LAWS WITH VISCOSITY*

Robert L. Pego

*1. Introduction
In this paper we demonstrate the stability, in a linearized sense, of

viscous shock profiles for small amplitude extreme shock waves of a hyperbolic
system of conservation laws.
u, + f(u)x =0, uvue ﬂn (1.1)
The shock profiles are travelling wave solutions of an associated parabolic
system obtained by adding “artificial viscosity",
u, + f(u)x = wm (1.2)
For ¥ > 0 fixed, we exhibit a class of perturbations, determined by a
weighted norm, with respect to which the profiles satisfy a linearized
stability criterion put forth by Sattinger (1976).
We assume that the system (1.1) is strictly hyperbolic, so that the
matrix df(u) has m distinct real eigenvalues
A1(u) € o0 £ An(u)
with corresponding right and left eigenvectors rk(u). lk(u) for k = 1

to m, with zi ey = § A k=-shock for the system (1.1) is a two-valued

3 13"

weak solution

uL x < st

u x> st (1.3)

u(x,t) =

*This paper is part of the author's doctoral dissertation, written under the
direction of Professor Andrew J. Majda, at the University of California,
Berkeley.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
This material is based upon work supported by the National Science Foundation
under Grant No. MCS~7927062, Mod. 2.
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. wvhere gy and up must satisfy the Rankine~Hugoniot jump conditions
e £lu) = £(u) - slu-u) = 0
i3 and the strict entropy :I.noqunliti(os) , )
X s>
L Yo > ¢

-, Here Xk(u) is assumed to be genuinely nonlinear, that is V\t Ork(u) #0.
» We normalize r, so that V\"r (a) 21, with up fixed, a one
‘. parameter family of k-shocks exists, with u = Gk (e) and
" s = )k(un)"' 1/2 € for €> 0 small, satisfying

) = u, :—‘z‘-(o) -r(u) .
‘, An elegant proof of this fact may be found in Conlon (1980). Also see
‘ Lax(1957).

:- A viscous shock profile for a given k-shock (1.3) is a smooth traveling
4 wave solution ¢((x-st)/u) of the system (1.2) such that ¢(§) +» u as
‘ E+-», ) + u, as g 4., The profile ¢(£) is a solution of a
a‘ysta of ODEs,
r.‘-:z ’E = £04) - flu) - s(éu)) ,
:,' joining the two rest point up and u . In the present situation,
: Foy (1964) proved that shock profiles ¢ (€ ; €) exist

% for small amplitude k-shocks (with s = Ak(uR) + k). His proof gives
\ an asymptotic description of the profile as ¢ ~ 0, showing that to
second order in ¢, the profile matches a properly scaled hyperbolic
tangent profile for the scalar Burgers' equation, ugtuu, = U,

3 along the eigenvector rk(uR).

ft: " ""We are concerned with the asymptotic stability of the solution
¢((x-st)/u; €) to perturbations in the initial data for a fixed v > 0.
Py,
?5?' 2
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Introduce the traveling coordinate £ = (x-st)/u and scale t by t’ =

t/u. Then (1.2) becomes

R (df(u) - s)ue . (1.4)

The profile ¢(£;c) is a stationary solution of this equation. But
s0 is ¢(E+y; €) for any phase shift y. The best sort of stability one can
expect in this situation is so-called orbital asymptotic stability,
which means that initial data of the form u(£,0) =¢ (&) + ugy (g)
yields decay of the form
u(g,t) - ¢(£+y) + 0 as t +

for some phase shift y, if up, is small.

The approach we follow is to examine the 1linearized stability

of the profile ¢. Writing u(g,t) = ¢(£) + v(g,t), the perturbation v

satisfies a nonlinear evolution equation

vi = £(v) . (1.5)

Linearizing this equation at v = 0 (taking a formal Gateaux derivative)

we get
= Ly

o (df(¢) - s)vg - (d’f(¢)¢5)v . (1.6)

Yt

Typically, if one can show that the spectrum of £' is contained strictly
in the left half plane, so solutions of the linearized equation decay
exponentially, then one can show that small solutions of the nonlinear
equation also decay exponentially.

However, because the phase of the profile ¢ can be shifted an arbitrary
-—-amount, the derivative ¢€ is a null function for £', so O is in the

spectrum of £'. This situation is typical for traveling waves in

general, which arise in many contexts (e.g., nerve impulses, traveling




fronts for reaction-diffusion systems). In a broad setting, Sattinger

3 (1976) showed nevertheless that if 0 is a simple eigenvalue of £’, and

ot if the rest of the spectrum of £’ on a suitable function space is con-
tained strictly in the left half plane, then indeed one obtains orbital
asymptotic stability for the traveling wave ¢ with exponential adjust-
Yy ment. Actually, he required in addition that the resolvent (A-£’)7?
t5 satisfy a certain asymptotic estimate. In our Appendix we show that

this estimate is automatically valid for the systems he considers.

2
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An important feature of Sattinger's analysis is the use of spatially

weighted norms for function spaces to “"push" the essential spectrum (the

spectrum aside from isolated points of finite multiplicity) of £’ to

the left. It may be verified, in fact, that the essential spectrum of
our £’ from (1.6) on unweighted Lp spaces includes the origin (see the
treatment of the essential spectrum in Henry (1981), appendix to Chapter

R
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5). Our main result is to exhibit, for € sufficiently small and k = )
or m, a weighted space on which £’ satisfies Sattinger's linearized

stability criteria. Unfortunately, our result does not immediately

R LR
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yield nonlinear stability by Sattinger's theorem, for our weight fails
to satisfy two of Sattinger's hypotheses. In particular, (a) the weight

.
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is not a scalar function, and (b) it is not bounded below in some com-

ponents, so the nonlinear terms in (1.5) may fail to be continuous on

P
“ e %% "

e the weighted space. (In a supplement, we describe the spectrum on

unweighted spaces.)
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Our main result only applies to the extreme shock profiles, for
which k = 1 or m. Our approach is to try to decouple, to second order
in ¢, the part of the linearized equation (1.6) along rk(uR) from the
components along 'j("R)' j # k. Because of Foy's result, the part along

e "y consists mainly of Burgers' equation linearized about its scalar
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profile (1 - tanh }x). For that equation the weight (cosh kx) is
standarq. The components along rj for jJ # k are dominated as ¢ + 0
by convective terms -(Aj - Ak)v% . For an extreme shock these terms
convect in the same direction. Then these components may 211 be weighted
the same to achieve exponential decay, which improves as ¢ - 0 and
permits the elimination of nonvanishing “cross-terms" coupling the '
and rj components together,

Let us now state our main result for l-shock profiles (m-shock
profiles may be treated by space reversal, x + -x). By a H'near change

of coordinates, we may assume

df(uR) = diag (Al(uk)lo-oo xm(uR))

We introduce the following spaces of functions with weighted norms:

For ¢ > 0, 1 € p < », define

(Lp): = {u: R+R"| ulcosh cx € LP, e e LA 2,....m}

with norm
= 1 =CX =
bl o = max {lulcosh cx p nule~CXy R 2,....m}
Define (C )7 and I I, . similarly, where C, is the space of bounded
1]

uniformly continuous functions on R under the sup norm.

Theorem 1.1: Fix up € R" and suppose Ay(u) is genuinely nonlinear.
Consider the linearized equation (1.6), Vg * £'v, for the evolution of
perturbations of the 1-shock profile ¢(Ese). Fix c, 0 < c <%. Then
there exists 8, 0 < B < ¢(1-¢c) such that if ¢ is sufficiently small,

...................
...........

.................................
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the spectrum of £’ on any of the spaces (Lp)!;cc » 1€p<wm, or (Cu)ﬂec.
consists of a simple isolated eigenvalue at the origin and a part which
lies in a sector strictly contained in the left half plane,

Sa(-kezs) = {26 € |Re(r + kezs).< -(cos a)[r + %%} ,

where a depends on ¢, 0 < a < n/2.

52, Scaling and Transformation

The first steps in our proof will be: (a) to scale the variables
with e, using Foy's result on the asymptotic shape of the profile ¢(&;e)
as ¢ + 0, so that the part of (1.6) corresponding to the linearized
Burgers' equation appears invariant of ¢ as ¢ =+ 0; (b) to transform
the scaled equation by introducing appropriate weight functions. Theorem
1.1 will thereby be reduced to an equivalent statement (Theorem 2.1) con-
cerned with the spectrum of the scaled and transformed operator on an
unweighted space.

Without loss of generality, assume that up * 0= f(uR). Let us
recall Foy's asymptotic description of the 1-shock profile: Fore > 0
sufficiently small,

o(Ese) = Iep(lek; €)

where y(x;e) has the form

wixie) = eB(x)ry(0) + ezlxie)

__where ¢B(x) = 1 - tanh %x and sup [z(x;e)| < C independent of ¢.

‘ X
(This estimate may be read out of Foy's proof with a little care.)

~6-
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"" Consider the terms in Eq. (1.6). By Taylor's theorem,
df(e(£)) = df(0) + d2f(0)e(g) + R(£)e*(£)
d*F(8(E))0, = d2£(0)¢, + S(E)o(E)eg(E)
where
i 1
R R(g) = [ (1-t) d*F (te(e)) at
>
1
S(g) = [ a*f(te(e)) at .
0
N R(£) and $(&) are bounded in £, and for each E represent a trilinear map
taking a vector triple to a vector. The equality
:‘ . Ra2) =
2 (Ro?) = Soeg
. holds, where each side is a matrix.
Let us now introduce the following scaled variables (which, despite
appearances, have nothing to do with the original ones):
Xx=)kef, t'=k?t , and u=v .
: Then
; . & . €2 . €
- V¢ T U o Ve T and "gg T Ux °
N so (1.6) becomes
; u = fu = o, - [—r—df =2+ d?f ylx) + keﬁ(x/'se)w(x)’] Uy
-[d’f wx(x) + %S './lgc)w(x"'z(x)] u . (2.1)
.
i -7
3
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Here the derivatives df and d2f are evaluated at 0 (= "R)‘ Define the

following matrix-valued functions:

ot i

R(x) = d?f g(x) + 3R(x/%e) w(x)?

ACADION A
il
DA AR

S(x) = d2f g, (x) + 3S(x(se) w(x)y,(x) .

Note that R, = S, and R(x;e), S(x;c) are uniformly bounded independent

of c. We also define the matrix A = (a}) by
A = d?f(0)r,(0) , so a} = zi-d’f(r,.rj) .

It is true that a) = VA,er,(0) = 1(See Lax, 1957). Now (2.1) may be

written in a slightly more coherent form:

L= Upy = [kdf-s)/ke + ¢B(x)A + eR(x)] u, - [¢3(x)A + eRx(x)] u .
(2.2)
Opserve that df - s = diag ((Ai-s)/&e. i=1,...,m) and that (A; -s)/%e

= -1 by definition. Let us write (2.2) in a convenient block form,

Write
u! mt
u-= (~ ) , where U= (u%,...,u)
u
Relative to this decomposition, also write
df' s . -1 0 A - ] a: R(x) . R: R:
T‘ ’ o -~ ’ o
€ 0 A/%e a A R1 R

where A is a diagonal matrix with positive entries A2=Ss. .0 oAp-S.

In block form, then, Eq. (2.2) is written




.......................

ul Ll Ml ul
)-[n- e
U M L u
where the matrix entries are operators defined by
Lt = 1Byt - e[Riu‘]x » MW o= '-[(¢Baf + eRf)ﬂ]x
ut = -[(o%as +eridut], o T0 = Lo [oKw eRa),

T

and the important operators LB and L' are defined by

LBy = ";x + (1 - ¢B(x))u; - ¢g(x)u1

T~

L'u = ﬁxx - (A/&e)ﬁx .

This completes the appropriate scaling of the variables as ¢ -~ 0.

The operator LB is the operator that would be obtained by linearizing

Burgers' equation ugtuu = U about the traveling wave solution

¢B(x-t) in traveling coordinates., It is well known (Peletier, 1971;
Sattinger, 1976) that considered on a weighted function space with

weight w(x) = cosh 3%x, the operator LB satisfies the linearized stability
criteria we are concerned with. (Briefly, the idea is that consideration
of LB on the weighted space is equivalent to consideration of the trans-

formed operator wLB

w™! on an unweighted space.) Roughly, what we would
like to show,using arguments from perturbation theory for linear operators,
is that LB "dominates" the first component of L' and the other components
only "contribute" spectrum strictly in the left half plane.

Two observations are of primary importance: First, in general a! # 0,

so the first component of L’ apparently cannot be considered a "small"




perturbation of LB

. Second, observe that each component of the diagonal
E'l operator LT consists of just the Laplacian plus a translational term.
The time evolution for this operator yields. in each component, solu-
i& tions of the heat equation in a frame moving at constant velocfty. No
.ll weight which is bounded below can yield exponential decay rates for such
3 solutions (which are necessary if the spectrum of LT is to lie strictly

in the left half plane), for theydecay to zero only algebraically in

sup norm. However, ineach component the solutions are being transported
in the same direction at increasingly high velocity as € + 0 (since we

are considering an extreme shock). Thus one may expect that if we use

2 weight eSX decaying in the direction of translation, we would obtain
exponential decay for solutions of ﬁt = LTE at a rate which improves

T moves further to

as € + 0. This should mean that the spectrum of L
the left as € ~ 0, so that for )\ fixed, one expects the resolvent
(A-LT)" to decay in norm as € + 0. Then the resolvent equation

(A-f')u = f might be solved as if it were diagonally dominant, regard-

-
e
p. -
L.
[ -
SR
B
e
P
.

less of the coupling terms.

The discussion above.completely describes our procedure, and moti-
vates the following transformation: Fix ¢ > 0, and in the block fbrm

used above, define the matrix weight

(x) cosh ¢x 0
W.(x) =

Introduce the new dependent variable z = ch. Then the equation Uy =

£y is transformed into

-10-
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2, =Lz = WEIW 'z
1,~1 1 .CX 1
wcL W wcn e 2
= (2.4)
e'cxnw;‘ e X[et* z
i, where wc(x) = cosh cx.
&; In this way, consideration of the spectrum of the original £’ on
!! the space (Lp)zec is equivalent to consideration of the spectrum of
Eé on the unweighted space (Lp)g » except for a scaling factor. To
verify the scaling, consider the following equivalent formulations of

the resolvent equation:

£y = Py\m
(A - tc)z f(x) in (L )o .
Set z = W, f = W.g, and mItiply by W' to obtain
(A-E = g(x) 1n (LP)D
Now set v(E) = kecu(leE). To verify the scaling, compute formally
L'v(E) = v, = ey, = & £ 'u(x)
t Bt 8

So, multiplying by €3/8, we obtain

(ie2r - £)v = n(e) in (W),

since uc(aes)h(g) € (Lp)g . Therefore, A is in the resolvent set of Eé
on (Lp)g if and only if %2\ is in the resolvent set of £' on (Lp)gec.

Hence Theorem 1.1 is equivalent to:

-11=-

......




Theorem 2.1: Fix ¢, 0 < ¢ < 3%. Then there exists g, 0 < B8 < ¢(1-¢),
such that if ¢ is sufficiently small, then the spectrum of fé on (Lp)g
1<p< =, or (Cu)g. consists of a simple isolated eigenvalue at the

origin and a part which lies in the sector
s,(-8) ={r€ €| Re(r+8) < -(cos a)[r+8]}

strictly contained in the left half plane, where a may depend on ¢,
with 0 < a < n/2.

The proof of this fheorem has three main parts:

(1) Resolvent estimates for the operators wcst;' and e % TeSX,

(2) Verification that the first order operator wa‘ecx has uniformly
bounded coefficients. It suffices to show that

2¢cx

sup |y(x;e)e“"] < C independent of €.
X

This yields the strict requirement ¢ < .
(3) Solution of the resolvent equation for fé by block Gaussian elimi-
nation.

In the next two sections we treat (1). The estimate for LT

» improv-
ing as ¢ » 0, is the key to the success of (3).- Since LT is diagonal,
it suffices to treat a scalar operator “xx"Z""x' as u +» o, Qur discus-

8 parallels Sattinger's treatment (1976) of the general scalar

sion of L
equation. The argument for (2) in §5 consists of observing that the

exponential decay obtained in a standard proof of the stable manifold
theorem holds independent of ¢ as ¢ + 0. (y(x3e) is a solution of an

ODE lying in the stable manifold of the point 0.)

-12-
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§3. Weighted Resolvent Estimates for Upy = Zuux as U »> =

We consider the scalar differential operator

Lou = Uy - Zuux

and define

Ly * e XL ey = u,, = (2 - 2c)u, = (2uc - c*)u

Observe that Lu" Uyt w2u is formally self-adjoint. We are concerned
with the situation u > ¢ > 0, ¢ fixed, u large. We seek norm estimates,
improving as u + =, for the operators (J\-I.c)°l and (d/dx)(» - I.c)'l
on LP and C,» uniform for A in a fixed sector of (.

The following result suffices for our purposes. We define
S,(8) = {re €| e(r-8) > -(cos a)|r-8l} ,
the sector with vertex 8 € R and angle opening 2(n -a) to the right.

Proposition 3.1: FixBE€ERandc > 0. Forany § >0, if u is

sufficiently large, there exists a < n/2 positive, depending on u, so
that

J
(L) -1 < s
%) (&) 0-ta7 <

for j = 0 and 1. The norm is the operator norm on L? (or Cu).
This proposition follows from estimates on the Green's function

for A-Lc, which is obtained by transforming through Lu' The resolvent

equation for L is (A-Lc)u = f. Now

(A~ Lc) = e(“"’)"(x - Lu)e(C-u)x
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S0 (A-Lu)e(c'")xu . e(c-u)xf
We therefore obtain the solution formula,

(A-Lc)'lf(x) . 2]’7 j’e-le'YI*(u-C)(x-.v) £(y) dy

where y(1) = V2 +1 , Gey > 0. Thus we define
K,(s:2) = 2‘7 e-YIs| * (u-c)s

so (A-Lc)"f = K,(=:A)#f. When @ey > u-c, K (+,A) € L' and it may be
verified that the solution formula yields a bounded inverse for A-L.

on Lp. 1< p<w, on the domain

(L) = {fe LP| £+ is absolutely continuous, f’,f" € LP |

(similarly for C ). We omit the details, since a similar verifica-

tion is carried out in the next section for the operator wcL w;‘. We

also find that

X
£ 0L - ,‘;[(-wu-c) [ etrueleVey) oy

+ (y+u- c‘)f elvhu-c)x=y)g(y) ¢4y ] .
X
So defining |

(ey+u-c) el rhucds 46 o s

dK (s,A) =
g (yru=c)s 46 ¢ cp

,};(wu-c) e

-14-
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we have g
el
ax A-L)f = dKu(-.A)*f .

Using Young's inequality, liKefi P <HKEk #fN _ , we find
L e WP

1 ( 1 . 1 )
2ly] \®ey - (u-c)  Rey + (u-c)

- Lc)"n <

and

Iy - (u-c)| |y + (u-c)|
L -yl < ( + )
dx 1" e 2y| \Gey - (w-c)  Gey + (u-c)

Proposition 3.2: Let y = du’ﬁ\ for A€ €. Then if u > 2¢c,

a < 1/2 may be chosen so that

(1) JY—.(-H—.C—)l < /e , if Ae-su(-uc)
Rey - (u-c)

(2) |y-(u-c)] » c¢/8 , 1{fre Sa(-uc)

|y + (u-c)|

< tan k(n-a) € 2 for A € Sa(-u’)
fey + (u-c)

These estimates yield, for u > ¢, A € Su(-uc).

d -1 1
"a;(l-l.c) I < W (3vu/c + 2)

-1 1 12 2
lI(A-L) I < _____..( ,Iﬂ"c‘ ) .
c ZIM’HI”’ c h‘z*xll”

Proposition 3.1 follows, for |u?+x| > (B+y?) sina if A€ Sa(e).

s0 the bounds above tend to zero uniformly for A € Sa(B) Asu-+ o

at the rate 1%,

-15-
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~ Figure 4. Action of the Map ) -»Vu’ +2A

Proof of Proposition 3.2: Figure 4 gives a "before and after" view
- of the complex plane under the map A + Vu’ +A.. Part (3) of the propo-
sition becomes obvious, and parts (1) and (2) are implied by the esti-

LA ..i’ g 1! .-'

mates
2 (a) sec 8 < 3/c and  (b) u > (u-c) + c/4
~ Calculation of 1
. Define

y = min Redu’ﬂ\ .
Aesu(-cu)
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)
)
.
‘ We introduce some notation: Set 8 = y*-cu, 2 = -cosa ¢ i sina,
‘g k=cosa,s=sina Fort>0, A= -uc+tz lies on the boundary
A of S (-cu) and y sqi?+r = /BFTZ . Ve mintmize Aey(t) = Re/B¥Ez
e
o with respect to t. Now (Rey)? = k(8-xt+n(t)), where n(t) = |8+ tz2].
. One calculates n’(t) = (t-gx)/[8+tz| . Then
» [ther)?])" = 206ev)(6en)’ = 5 (o L) -0
N n(t)
.
o only when |8+ tz|c = t-gk, or
- k2(82 - 2Bct + t2) = t? - 28ct + Bi?
.‘4
. or, since we seek t # 0, t(1-x?) = 28<c(1-x?). Therefore, t = 26x, whence
(u)? = gs?, so
i bl 31" a ‘uz - C\l .
Now 8 = (u-c)? + c(u-c). 1f w/c > 2, then ¢/(u=c) < 1, and we have
B> w1+ (Z-1) 2E5) > (ue) + §
: Hence we may choose a < /2 depending on u so that
<
(sinc)(u-c+§)>(u-c*§) .
3 Thus u > (u-c) + c/4.
';-
Estimate of sec 6
Define 6 by
' Iy = (u-c)|
sec 6 = max .
)es (-cu) @ey - (u-c)
: -17-
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i Claim: If o = /2, then sec?d = u/c + 1. Define
= h(t) = Iy(t)-(u-c)| = |/B%T - (u-c)]
o g(t) = @ey(t) - (u-c) ,
2 where 8 = u? - cpy as above. We proceed to maximize h2(t)/g2(t) with
- respect to t. This quantity is a maximum when g2(h2)' = h2(g?)'. We
calculate (with n(t) = |g+ti]):
hi(t) = [B+ti] - 2(u-c)Rey + (u-c)?
3 g:(t) = K(B+n(t) - 2u-clRey + (u-c)?
e (Rey)?’ = 2fey(Rey)’ = n’(t)
(h2)’ = ne(t) - 2(u-c)n’(t)/4Rey
| (92)' = ¥n’(t) - 2(u-c)n’(t)/4Rey
.? Thus h?/g? is critical when
g2(2Rey - (u=c)) = h*(Rey - (u-c)) = hig ,
3 or
» gRey = h? - g
3 Thus
(Rey)? - (u-c)@ey = (n(t) - 8) ,
Ei or
5 5(B+n(t)) - (u-c)Rey = X(n(t) - 8) ,
- s0 8 = (u-c)Rey. Therefore, u = Rey at the critical point t. Squaring,
‘ we have p? = %(g+n(t)), n(t) = 2u? - 8. Squaring again, R2+t2 =
3§ 4y - 4u?8 + g%, so t2 = 4u%(u?-8) = 4u?(uc). Therefore, the only

-18-
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positive critical point for h?/g? is t = 2u/lic. We calculate the value
of h?/g? at this point:

n(2p/hc) = Vereaic = Vi[(u-c)? + due] = wlu+c)

Since Rey(2u/lic) = u, we have

g h2 o lure) = 2(p-chy + (ueg)?
b g2 s(u(u-c) + ulure)) - 2(u-chu + (u-c)?
_ t=2uhic
= S.u: = E + ] .
cz

At t = 0, h?/g? = 1, and for large t, h?/g? < 2. Therefore, the maximum
value of h2/g? is u/c + 1, establishing our claim for a = n/2.

- To complete estimate (a) for sec 6, fix u, and observe that
h?/g*(t,a), properly defined, is continuous in both variables so long
as /2 - a s so small that g > c/4. Therefore, if #/2 - a 1is suffi-
ciently small (depending on u), then

max 2 (ta) € 9wk .
0€<t<= @2

establishing (1) of Proposition 3.2.

: M. The Resolvent Set for LB = u_ + (tanh ix)u + (hsech®ix)u
o
g In this section we discuss the resolvent of LB on the weighted spaces
- (Lp)é and (cu); with weight wc(x) = cosh cx. Equivalently, we study the
3
L operator
N
i! Lg z wcl.au;'
S
-19-
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on the spaces Lp. 1< p< e, and Cu. L~ may be obtained by linearizing

Burgers' equation ut+-uu = U, about the traveling wave solution ¢(£x)

= ] - tanh %g in traveling coordinates. Our present analysis may be

considered an extension of that of Sattinger (1976), whose results

apply to the formally self-adjoint operator L:. Our result is that

B
C

a simple eigenvalue at the origin, a discrete set of‘eigenvalues in

if 0 < ¢ <)%, the spectrum of L_ on the spaces t? and Cu consists of

the interval (-%,0), and-a part contained in the parabolic region

zxe €] ®er < -c(l-c) -({%)1 .

Because of the next section, our results for c strictly less than
1/2 are required in the last section. In conjunction with Sattinger's
treatment of nonlinear stability, these results imply that the traveling
wave solution of Burgers' equation is stable to sufficiently small per-
turbations which decay exponentially as |x| + =, no matter what the
rate. A similar result might be obtained for other types of scalar
equations that Sattinger considers. For scalar conservation laws with
viscosity however, a more general result may be found in I1'in and
Oleinik (1960)),

Our proof uses the transformation to the self-adjoint form Lz to

carry information about that well-studied operator (its Green's function,

the location and multiplicity of its eigenvalues) over to analyze the

E;é non-self-adjoint Lg . Let us collect the facts we require about Lg ’
| xad following the development of Sattinger for the most part.

A short calculation shows that

L%u = U - %(1 - 2 sech¥x)u
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Lemna 4.1: Define y(A\) = A+% , Rey > 0. If vy # 0, the homogen-
eous equation (L:-'A)u = 0 has a system of solutions ¢_, ¢,, V_, and
v,(x,1) with the following asymptotic properties:

¢, = % (140(1)), 0; = ¢ X(ty+0(1)) as x+ =
v, = €(140(1)), ¥ = €2y +0(1)) as x+ =

These functions are single-valued analytic functions of A in the complex

plane cut from -« to -k along the real axis.

Proof: This 1is a standard result on the asymptotic behavior of
solutions to 1inear ODEs. To obtain ¢_, seek a solution of the form
o_ = 2.¢Y% Then z_ must satisfy the equation z2° - 2yz' + pz_= 0,
where p(x) = jsech?ix. Assuming that z' «+Oand z_ + 1 as x + =,
integrate to get -
z'(x) = fezY("'s) pz_(s) ds

X

2.(x) =1

- (1 - ‘2Y(x-3) )pz (s) ds .

Choose x, so that

-[ pds < Xly| .
Xo

Then a bounded solution z_(x) may be obtained on the interval [x,,=)
through successive approximations. This solution does indeed satisfy

z_+1,2'+0as x+=, yielding the desired behavior for ¢_.

-21-
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To obtain ¢, set ¢, = z+e7x. Then we must have z: + Zyz; + pz,

= 0. Set z,(x) =1, 2/(xo) = 0. Then, integrating,

' b
2)(x) = -_[ e-2v(x-s) pz,(s) ds

“2v{x-
- e~ 2v(x-s) )pz+(s) 4

X
z,(x) = 1- ./' (]

Our choice of x, ensures that this last equation may be solved for a

bounded 2 (x) by successive approximations on the interval [x,=).

This solution has a nonzero 1imit as x + =, so we normalize Z,» making

vafs 1imit 1 and obtain"‘o+ with fhe desired asymptotic properties.

Because of symmetry, we may set "’:(") = ¢.(-x). Since z, and

z_(x,y) are obtained by successive approximétions. they are analytic

in v in the right half plane. They are therefore analytic functions

of A in the complex plane cut from -= to -k.

Each pair d_sd, OF Y_s¥, clearly forms a basis of solutions to

the homogeneous equation (Lz -2 Ju = 0. Define the Wronskian

W(A) = ¢ v, - oy,

(it is independent of x). The homogeneous equation has a bounded solu-
tion precisely when efther ®ey = 0 or W(A) = 0. If Rey = 0 (so A € -%),
all solutions are bounded. If W(A) = O but Rey > 0, then ¢_ is a mul-

tiple of ¢,» which then spans the set of bounded solutions. Conversely,

if ey > 0 and W()\) # 0, then any solution bounded as x + « is a multiple

of ¢_, but ¢_ = Ap_+ By, , where A # 0. So no solution can remain bounded

=22~
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for all x.
. Claim: The spectrum of LZ on LP or Cu consists exactly of the zero
set of W(A) plus the interval (-=,-%]. Clearly, these points are eigen-
values for Lg on the space Cu’ If (1) = 0 and Rey > 0, then the eigen-
function ¢_(x,1) is in LP for an p>1. If Rey = 0, then all solutions
of the homogeneous equation osciilate. and ¢_ 1s bounded but not in LP, .

It is then easy to verify that A is in the approximate point spectrum
of Lg on LP, 1< p<= (Consider the sequence u, = J(x/n)¢_(x), where
J(x) = 0 for |x| > 1, J(x) = 1 for |x| <%, and j is smooth.) It will
follow from our analysis of the resolvent of Lz below that A is in the

resolvent set for Lg when Rey > 0 and W(A) # 0.

- Lemma 4.2: Let A be a zero of W(A) in the complex plane cut from
~» to - along the real axis. Then (a) A is real and isolated, and
(b) A<0.

Proof: (a) ¢_(x,\) decays exponentially as x + 2=, so defining

(u,v) = fu(x) v(x) dx ,

we have
Mooo)) = (Lo o) = (osLBe) = Woe)
so that A = X. W(A) is analytic and not identically zero in €\(-»,-%],
so has isolated zeros.
(b) The function ¢_(x,0) = ksech Jx is positive. (Lg kills a
positive function because it came from linearization about a monotone

traveling wave.) If W()) = O for some A > 0, define

<23-
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u(x) = ¢_(x,r)/¢_(x,0) .

Then since y(A) > y(0), u(x) + 0 as x + =, Also, u satisfies the

equation

'
u, + (tanh kX + 2 ¢ (x0) ) u, - Au = 0
xx o_(x,0) | *

By the maximum principle, it follows that u = 0, for u cannot have a
positive maximum (at which Uy < 0, u, =0, u> 0), nor a negative
minimum. (This argument applies to both real and imaginary parts if u

is not real.) This contradicts the fact u # 0. So W(A) # 0 for A > 0.
B
c
Rey > 0 and W(A) # 0. The Green's function for A-Lg is

We turn now to construct a resolvent formula for L Assume that

L Y. (A) ¢ (y,d)  for x <y

W())

K;,(xa.Y9A) =
1

—_— ¢_(Xol) ¢+(y,k) for x > y

wW(xr)

The resolvent formula for Lz is

(-7 = [ K (xya) £(y) dy

Now formally,
B -‘ . Wc B '1 wc
(A-LC) (w“!;)(A-Llﬁ) (w_!!

This yields the resolvent formula




DA §

e = R R Vs g s nasarhiid
+
.

D N

(-1 = [ K (xayad) £ly) dy

where

1 cosh cx cosh
H(A) ¥, (x) Soshnx © ¢.(¥) Egﬁ_:% for x<y

K (xs¥51) = h "
cos CX cos 5!

.
W(A)
The essential step in proving that A is in the resolvent set for Lg
on LP is to prove that the resolvent formula above yields a bounded

operator on LP. Here is a sufficient condition that an integral
operator be bounded on LP:

Lemma 4.3: Let K(x,y) be measurable, with IIK(x,e)I . <C,
L
independent of x, and ux(-.y)nL, < C, independent of y. Then the
map

f+ [ Kixy) fly) dy

is bounded on LP, 1 < p < =, with norm at most ¢,' = /Pcl/P,

Proof: Using Jensen's inequality and Fubini's theorem, we find

/

f K(x,y)f(y) dy

dx

-] [} [ p-1
< f f 1£(y) 1P [K(x.y)] dy (f |K(x,s)| dS) dx

p

< C'::Hf If(y)lpf |K(x,y)| dx dy < cf"c,ufan

«25-
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The following estimate is therefore our main tool for describing the

resolvent of Lzz

Proposition 4.4: Assume 0 < c <%, Re/A+% > J-c and W()\) # O.
Then (a) an(x.-,A)u . < C(A) independent of x, and
L . '

(b) Ill<c(-,,\r.x)|ll-l < C(A) independent of y.

Proof: (a) Assume x > 0 (the estimate for x < 0 is entirely

similar). We estimate the integral

_/ IKc(nyOA)l dy

separately on the three intervals (-«,0], [0,x), and [x,»). On the

half line y € 0, and for x > 0, we have the estimates

Jo(n SBhex | < o) BT Bamelx <) L a2)

Then, since x > 0, these estimates imply

6 |
C,C 1
K (X,y,A)| dy € —1=2—.
.j.,lcxy o IW(A)| ey - (%-c)

Now v, is a linear combination of ¢_ and ¢,. So for y > 0, we estimate

[valy) SR | <y elfer * Bimedly ()

Together with the estimate (3.2), this yields

-26-
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X
|K (xoy'x)l dy < C,C '—"—'1'—'— .
of ¢ IW(2)| @ey + (- c)

Finally, on the half line y > 0, for x > 0 we estimate

|¢_(y) cosh ﬂcy I < C.(a) e (@ev - (s-c))y

|oaln) SERER | < caln) ol - amcdx

which yields our last estimate,

|K( gng) dy < Cul '_—!_—
x[ byl IW(A)] Rey - (-c)

(b) We do the estimate for
[ _J

[ 1k (xyan)| dx

similarly. Assume that y > 0. Then for x < 0, we estimate

IU") -ﬁ%ﬁ.‘-%l < Co() el®ev - (-c))x

Together with (3.4), we get (since y » 0)

0
[K.(x,ys2)]| dx < Cule 1 .
.’{. ‘ | [W(\)| ®ey - (%-c)

The estimates (3.4) and (3.5) yield

y
K.(x,y,A)| dx < CaCs . ]
0/" Al [W(A)| Gey - (%-c)

2]~
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Finally, (3.2) and (3.3) imply that

. C,C 1
K ? DA d < 2=d
yjlc(” o [W(A)] @ey + (%-c¢)

The estimate for y < 0 is similar.

Remark: Suppose that 0 < ¢ < 3. Then Re/A+% > %-¢ if and only
if

2
Qex > -¢(1-¢) - (1—-2—1’:' c)

We include the simple proof: ®e/z > a > 0 when 2(RevZ)? = Re z + |z]

> 2a%. Then

(Re 2)2 + (Im 2)? > (2a% - Qe 2)? ,

so (Im 2)2 > 4a"“ - 4a%Re z , and

Imz)’

Qe 2 > az-( 3

Now take z = A+%, a = k-,

This essentially completes the determination of the resolvent set

for I.g . To complete the formal proof that A is in the resolvent set

when Rey > % -c and W()A) # 0O, we need to verify that the (bounded)

integral operator with kernel Kc(x,y,x) actually yields the inverse

of A-Lg on a suitable domain. This verification is straightforward;

we include it for completeness.

B
c

continuous first derivative such that u, u’, and u” are in LP. (On Cu.

The domain of L. on LP is the set of C! functions u with absolutely

require u’, u” in Cu') Given f in LP, define

-28-
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6f(x) = [ Ke(xyad) fly) dy .

To show that G is a right inverse for A-L: » W& must show that v = Gf

is in the domain of Lc

and that (A-Lg)u = f. We wmay write
X ©
w " w
W(1) ;': u(x) = w,(x)[ ¢, ;': f(y) dy + o_(x)/ v, ;,-': fy) dy
-t X

Clearly u(x) is absolutely continuous, so may be differentiated almost
everywhere. We calculate

X @
) 1 4
w(x)(;’:u)(x) - vl / o_:':f(y) dy + ¢(x) / w+§’:f<y) ay
-8 X

a.e. Now it is clear that u’ {s absolutely continuous. One may verify
that u’ is in LP using the proof of Proposition 3.4, for v, and ¢ have
the same asymptotic properties as vy, and ¢_.

Differentiating again, we find

X
w [}
u(x)(;’:u)(x) . -u(x)}',ff(x) + x) [ o_%f(y) dy

+ ¢2(x) f‘%:":f(” dy a.e.
x

Since ¢_ and ¥, are eigenfunctions of I.g » We get

B ™ w
(A-L,’);':u = ;‘:f a.e.

.................
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..................................
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Therefore (A-Lg)u = f a.e., hence in LP. This implies that u is in
the domain of L:. So G is a right inverse for A-Lg on LP.

. To show G is a left inverse for A-Lz on its domain, it suffices
a to show that A-Lg is one to one. (For then if u is in the domain, and

f = (A-Lg)u. we have (A-Lz)(Gf-u) =0, 50 6f = u.) But if A-L

is not one to one, there exists v in its domain with (A-Lg)v = 0.

Then v” is absolute1} continuous, so v is in C2 and LP. Ssince A is

not an eigenvalue and Rey > - c, one may show that v must be zero.
Remark: In the discussion above we needed to know that if A is in
- 2. then (d/dx)(x-Lg)" s a bounded operator
on LP. This is actually quite a general fact for the second order systems

the resolvent set for L

considered in Satiinger (1976). Also, in our treatment we did not follow
Sattinger in pursuing resolvent estimatcs asymptotically for large

IA]. Estimates such as he requires (see Sattinger (1976), Lemma
3.4i1)) are automatically valid for the class of second order (matrix)
differential operators he considers. We defer a discussion of these
issues to the Appendix.

Only one fact remains to be proved in this section:

Proposition 4.5: For 0 < ¢ < ), the efgenvalue 0 is a simple

eigenvalue for LE on LP (and Cu).

Proof: We must show that the associated projection operator on Lp.

Pe = ooy (a0 &
r

.................................
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is one-dimensional. (Here I' is a smooth closed curve in the region
Rey > - enclosing the origin.)

First, observe that the kernel of Lz is one-dimensional. (If
L2 = 0, where u s in the domain of L], then u” is absolutely continu-
ous, so u is in C? and LP, hence is a multiple of ¢_.) We claim that

the quasinilpotent Dc associated with the eigenvalue zero,
o, = 1B = oL [e(z-1B) 4
c cc o c .
r

is actually zero. This suffices to show that Pc has one dimensional
range.

We argue as follows: First consider the case ¢ = % on the Hilbert
space L2. The operator Lz is then actually self-adjoint, and one
obtains D,i = 0onlL? (we cite Kato (1976), V.3.5-6). But then we

may write

Ke(xsy,2) fly) dy dt

88

0flx) = o [o
r

- w < )

: = -£ ] ﬁ =
L ) 7y [e [npara it eve = o
& I ==

g for any f in Co(R). But D, is bounded on LP, so Do *= 0. Therefore,
% the eigenvalue 0 is simple.

3
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§5. Weighted Estimates of the Shock Profile
The k-shock profile ¢(E:c) obtained from Foy (1964) when Ak(u) is

gonuinely nonlinear is 2 colution of the equation

og = f(e) - so
(Here s = Ak(uR) + )¢ and, for convenience, up = 0 = f(uR).) For each
€, ¢{E;c) is in the stable marifold at 0 for this enuation. We need
the following estimate, for the 1-shock profile in pqrticu]ar):(see the
end of §2)

Proposition: Fix ¢ < )% positive. Then there exists a constant K,
such that if ¢ is sufficiently small,

sup |o(Ee)] < eKe SEE .,
£

Proof: From Foy's proof, ¢(Eie) = dew(lcE;c), where

vixse) = (1 - tanh x)r, (0) + ez(x;e)
and
sup |z(xse)] < C
X €R
0<€<€o
We will show that

sup |u(xie)| < Ke 2
X

(independent of €). ¢ satisfies the equation

v, = A%+ FE(y) (5.1)
where
FE(W) « flsey) - df(0)key
(%¢)?
and

.32.
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A° = diag {(2,(0)-s)/%e, 1=1,...m} .

Then AL, = =1 and 0 = F€(0) = dF(0). Also, d*FS(v) = d2f(ev).

Our proof follows a standard proof of the existence of the stable
manifold based on solving an integral equation by successive approxima-
tions (Coddington and Levinson (1955), p. 330).

In block form, write

e (MO Moo 0 o0
A-(o a/’ u'(t)-(o o)' u’(t)'(o e"‘z)

where A! 1is diagonal with negative eigenvalues, A? is diagonal with posi-
tive eigenvalues. Choose ¢ < % positive. Then if ¢ is small enough,
there is a 0 > 0 so that

Ui(x)| < e(2etolt g0 150

fUa(t)] < for 1<0 .

Fixing a € R". we consider the integral equation

T
o(r,a) = U (t-T)a ¢ f U,(t-s)FE(e(s,a)) ds
T

- fl.lg(‘bS) F€(e(s,a)) ds . (5.2)
T

The following Lipschitz estimate holds for F€: 1If |6,],|6.] < &, then

|F€(0,) - F€(82)] < sup |dF(B)| |6, -02] < M§|6;-62] ,
lo]<s

where M is a bound for d?f in a neighborhood of 0.
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Therefore, restrict ¢ and a so that 2|a] < & and M§(1/0 + 1/(2c+0))
<% We solve Eq. (5.2) by successive approximations: set 6°(t,a) = O.

Then 6'(t,a) = U;(t~-T)a, and
[0} (r.a) - 8°] < e2¢(t-T)y
By induction, we show that
Ielﬂ(‘l’.a) - e!-l < lal e'ZC(T'T). 2'2

Indeed,

161 (r,2) - 6% < fe-(2c+o)(t-s)(mlale-ZC(s-T).2-9,4»1)ds
T

+ feo(‘r-s) (Mslale-ZC(s-T)_z-lﬂ) ds
T

T

Mslal2~ ! (e-Zc(t-T)e-o-r[ &5 ds
T

+ eoT*2CT j o~ (2c+0)s ds)

T

-2¢(t-T) ( -2+

1 1
st 7w ) 2
-ZC(T-T).Z-R .

< Mé|ale
< Jale

Therefore 6% converges uniformly to 6(t,a) with
le(r,a)| < 2|a|e°2°(T'T) fort>T . (5.3)

This 6 is a solution of (5.1) and 6(T,a) has a special form: eJ(T,a) =
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2 if j < k. What is more, 6(t,a) is the unique solution of (5.1)

with ej(T) =3y for J<k so 06+ 0as t+ = (here we apply the stable
manifold theorem). What we have shown is that the size of the neigh-
borhood in the proof of the stable manifold theorem on which the esti-
mate (5.3) holds does not shrink to zero as ¢ - 0. Instead, this esti-

mate holds whenever

la] <« -g- <
" (3+ 7crs)

Now ¢(t:e) = (1 - tanh t/2)rk + eg(13e), where || < C independent of ¢.

Thus 1f ¢o is sufficiently small, say eo < 6/4C, then there exists a
fixed T so that

lW(Tse)] < &/2 for all e < ¢

Since y(t) » 0 as t + =, this implies that y(t) = 6(t,u(T)) by the

stable manifold theorem (for ¢ fixed). Therefore,

[¥(tie)| < (GeZCT) e 2T for all € < €o ad T > 7T,
Since y(t3;e) is bounded, there exists K such that

[¥(t.e)| < Ke~2¢T for all € < ¢o and T real,

56. The Resolvent Equation for Ié

We proceed to complete the proof of Theorem 2.1 by showing that if
A # 0 lies exterior to a suitable sector strictly contained in the left

half plane, then A is in the resolvent set for Ié ; 1.e., the solution




....................................

operator to the resolvent equation (fé-x)u = f is a bounded operator
on (Lp)g (or (Cu)g). We introduce some convenient notation for the

components of fé in block form (see §2):

L. 1,,~1 1 . 16X
Lc wcL W Nc wa e
S o o-CXg -1 ¥ a=CX~ CX
Nc e xch Lc e “Le .
Also set
B _ B -1 11=_[1"1]
Lc wCL we Rcz w. Rl"c |,
LT = e 6% Tetx RZ = -e'cx[wa\ + eﬁ)ecxi]
c c X
Then
B 1 1
i . Lc + eRc Nc
C -~ T ﬁ
Nc Lc + c

The operators Ré. R, and ﬁc are first order differential operators

c
~with smooth, uniformly bounded coefficients as ¢ + 0. Provided ¢ < k%,

the same is true for Né because of the result of the previous section:

2CX|

sup |v(xie) e < K independent of ¢ .
X

Consider the resolvent equation, for A€ L , f€ (Lp)g or (Cu)g:

B

Le

1 _ 1 1 1
+ ERC A Nc Y 4 f

—

~

Ne Le * R

-

- A 2 f

Fix 8 with 0 < 8 < ¢(1-c) and a, 0 < a < m/2 so that the only point in
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Sa(-e) (see §3) in the spectrum of Lg is the point A = 0. Choose r,
0 < r < 8, and delete from the right-facing sector Sa(°8) the disk of

radius r centered at the origin, obtaining a region

P, = sa(-e)\{xeu |A\] <r} (see Fig. 5)

Claim: If ¢ is sufficiently small, o < /2 may be chosen (depending

on ¢) so that P, is contained in the resolvent set of Eé )

Proof: (1) There exists C, so that nRé(Lg - A)"tu< ¢, for all A
in P. (For this we require some asymptotic control on n(LE-A)'ln and
n(d/dx)(LE-A)"ilas [A] + = in Sa(-B). The necessary estimates, proved
in detail on C, are found in the Appendix.)

(2) For € <1/2C, , the operator

B
c

L c

verl -2 = [1+eR20B-07] (B

is invertible for all A in Pu. with norm

HLi-17n < 2 ("2 -

(3) For A in P and € < 1/2C, we may eliminate N, from the resol-

vent equation, obtaining

1 1 1 1

Lc - A N 2 f
0 (r+qlf-MHT-n|\:z F-R_(L1-0)'

C C c'C

= N 1yl
where Q RC NC(LC 2) NG -

(4) There exists C, so that for all A in P°l

N 1
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= e
"Nc(Lc AN < C,

T
¢ *
€o > 0 so that if ¢ < €5, we my find a < 1/2 so that if A € Pa. then

(5) Apply Proposition 3.1 for each component of L There exists

1 T- -1
“NC(LC AT < 1/4C,

and
-t < 2

Therefore, we may immediately solve for z, obtaining the estimate

b3 < 20(L -0 0 (Fi + Calf)
Then 2! is determined by
2! = (LL-2)7H(F - NlE)
and since
o= (LL-07BEF- N -0
where B = (I-HZ)(I.I--J\)“).l , SO lIBIl < 2, we find (using (5) to estimate
N 2) that

izh < 2||(L2-A)"|| (e + z%; (F1 + C )

This establishes the claim above, showing the Pa is in the resolvent
r4
setoftc.
To complete the proof of Theorem 2.1, it remains only to show that
inside the disk |A| < r, the spectrum of fé consists solely of a simple

eigenvalue at the origin. Consider two projections P, and PE defined

p\m m
on (L )0 or (cu)O by




ﬁ,r,m-fﬁ,.ﬁ,w,_,_
f 8 - SRREAG P ASSEOO% PUAOONES F iy

in block form, where

Py = Z‘ﬁ-rf(c-l.g)" dg

Here the integration is taken in the positive sense around a circle I
centered at the origin with radius r, r < ¥ < 8. From the theory for

LE in §4, P, is a one-dimensional projection,

Claim: If ¢ is sufficiently small, then "Pe"P°" <1.

This implies that P, is one dimensional. But £', hence Eé. has
an eigenvalue at 0, since £'°E = 0. The point zero is therefore the
only point inside the circle of radius r in the spectrum of £é.

The proof of this claim is straightforward, using the resolvent
estimates we have developed. For A on T, f in (LP)" , let

1 fl
(1) wn() e et

2
Then it suffices to show that given 6 > 0, then for ¢ sufficiently small,

nzK < &ifl and Nz2'-2°H < SIFH

for all A on T. The first inequality is clearly guaranteed by our pre-
vious estimate for z and the resolvent estimates for LZ (Proposition

3.1). For the second, consider z! in more detail:
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2! = (LE-A)"[IM:RC(LE-k)-’]-x
. [f’ - Né(LI- A)7'B(F - N (L) - A)”f‘)]

By Proposition 3.1, we can make uNé(LI- A)"'1 as small as we like by

choosing € sufficiently small, and we can also achieve
-1
II[I +eRé(LE-A)'1] -1l < s,

from which we may extract the second estimate. So the claim holds, com-

pleting the proof of Theorem 2.1.

/
//
/

a ,,\Y‘
L/

/ |/

&S

Figure 5. The Set F&
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APPENDIX:

RESOLVENT ESTIMATES IN WEIGHTED NORM
FOR CERTAIN PARABOLIC SYSTEMS

Here we deveiop an abstract treatment of some resolvent estimates
which were required in the theory of asymptotic orbital stability of
traveling waves developed by Sattinger (1976). For the class of opera-
tors and spaces with scalar weights considered by Sattinger, we show
that the asymptotic estimates he required hold automatically, so need not be
separately checked. Similar estimates are commonly developed for para-
bolic operators in unweighted spaces in the theory of fractional powers
of sectorial operators, which are generators of analytic semigroups (a
good reference is Henry, 1981). Our treatment is self-contained, and
proceeds in the spirit of perturbation theory for operators generating
quasi-bounded semigroups. At the end of this section we prove a result
involving matrix weights, validating the estimates for cur operator L'’
on the spaces (cu)? considered in the main body of this paper,

Let us describe the estimates involved. Consider an operator
lu = Puxx + M(x)ux + N(x)u ,

where u(x) € Rm. P is a positive definite matrix, diagonal for simplicity,
and M(x) and N(x) are bounded uniformly continuous matrix-valued func-
tions. Let w(x) be a given scalar weight function. L will be considered

a8s an operator on the weighted space

B, * Ju: R+ R™ | w(x)u(x) is bounded and uniformly continuous| ,




.......................

with domain

p(L) = {ueB, | u and u are in B, } .

The space Bw is equipped with the norm

Hult, = u?x sup |w(x) ui(x)l
X

We also define a norm

= + .
Ilullw’1 Nult , + Hudo

The weight function w(x) should satisfy
(1) w(x)>1 for all x;
(1) sup |1 - w(x+t)/w(x)| + 0 as t+0.
X

In Sattinger's framework, L was obtained by linearizing about a given
traveling wave of a nonlinear parabolic system. Condition (i) above
is explicit, and (i) implicit, in Sattinger's analysis. Condition
(34) ensures that the shift u(x) = u(x+t) is a bounded operator on B,
continuous in t, and implies that w(x) is continuous and grows only
exponentially as |x| + =». The use of spaces of uniformly continuous
functions is also implicit in Sattinger's work.

The second proposition below contains the estimate Sattinger
requires in his Lenma 3.4 and Theorem 4.1. The first proposition simply
states that -L is a sectorial operator in the sense of Henry (1981) or

m-sectorial in the sense of Kato (1976).

Proposition A.1: The operator L on Bw with domain D(L) is a closed, 1

densely defined operator. For some a,8 real, with 0 < a < n/2, the

sector
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S = “et]ae(x-s)>-cos<x |A-8|}

aB
is in the resolvent set of L, and for any such sector SaB’
=] cq,
-1, <« 2y (A.1)
w lA'BI w

for all A € ScB’ f e Bw'

-l

Proposition A.2: For any A in the resolvent set of L, ﬁ%-o (A-L)
is a bounded operator on Bw’ and for any sector Sua contained in the

resolvent set of L,

c'
-1 a
M- < -I:-El_l‘."f“" (A.2)
for all A € SaB’ fe Bw’

Our approach to the proofs will be as follows: First we verify
(A.1) for the scalar operator u + Uy, then (A.1) is valid for the
diagonal operator u -+ P"xx' We then establish the result for L by
treating the lower order terms by perturbation arguments. The same

procedure is used for Proposition A.2.

Our analysis begins with a study of the translation group U(t)
acting on Bw by
(U(t)u)(x) = u(x+t)

Lemma A.3: U(t) is a strongly continuous, quasi-bounded group,

AR P RIS |

meaning that for some constants M and b,

W(thun , < me2! thyu (A.3)

AEREARES -4 LA TR
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The infinitesimal generator of U(t) is the operator

Du = ux ’

with domain
p(0) = {ues, |u€B,}.

The resolvent set of D includes the set of A € € with |[er| > b, and
for such A we have the estimate

H(x-0)"tun_ <
w |Rer| - b

un, . (A.4)

In order to carry out the proof, we first estimate the weight:

Claim: There exist constants M and b such that

sup w(x+t)/w(x) < medlt]

pos” X

for all t . (A.5)

Proof: Using property (ii) satisfied by w(x), we may find ¢ > 0
and 8 > 0 so that

sup sup w(x+t)/v(x) = e | (A.6)

[t]<e x
Given any real t, we may write t = ne+t , where n is an integer and
[t] < e. Since w(x+je)/w(x+(j-1)e) < Y€ for any j, we obtain
n]
wix+t)/m(x) < () e < mebltl

where M = e2P€. So the claim (A.5) is established.

Proof of Lemma A.3: The claim above implies the estimate (A.3).

For u € B,, let us verify strong continuity:
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sup Jw(x)(u(x+t)-u(x))|
X

< sup |(w(x)-w(x+t)) u(x+t)]| + sup |[w(x+t) u(x+t) - w(x)u(x)]
X X

The second term tends to zero as t + 0 because wu(x) is uniformly con-
tinuous, and the first term tends to zero because wu(x+t) is bounded
and

sup |1 - w(x)/w(x+t)| +0 as t-+0
X

Consider the operator Du = u,. It is not hard to show that D(D)

X
is dense in Bw' We claim that, if ReX > b, then A-D is invertible,

with

(A-D)7}f = fe'XtU(t) fdt , feB

" (A.7)
0

Indeed, letting v denote the right-hand side, we have
-thRel bt M
i, < ofe dt 1fl, < grep UMM,

Also,

vix) = [ eMe(xet) at = e [ e f(t) ot
0 X

so v is differentiable and J\v-vx = f, so v is in the domain of D.
Therefore A-D is invertible on BW and (A.7) holds.
When Re) < -b, a similar analysis holds with (A.7) replaced by

(-0 = [ etue) fat . (A.8)
0

-45-




The identities (A.7) and (A.8) imply that D is the infinitesimal genera-
tor of the group U(t), but we will not use this fact. Refer to Kato
(1976) for the details.

Proof of Proposition A.1 for D2: The domain of the operator D?

is

p(0?) = ju€B, | u and u, are in B, | .

Consider the resolvent equation for D2:
(\-D*)u = f

Write A = y2, Rey > 0. Then A-D? = (y-D)(y+D), and if Rey > b, then

ty is in the resolvent set of D, so

u = (A-02)7'f = (y+D)'(y-D)7'f
and

2
it € —M— n

" (fey-b) "
So the resolvent set of D? includes the region Re/X > b, which is "exterior"
to the parabola Re/X = b. This region'contains a sector suB' where
B>b2, 0<ac<mn/2. Let Saa now denote any sector in the resolvent
set of D?, with 0 < a < n/2. We seek to show (A.1) holds. The resol-
vent is uniformly bounded in any compact subset of SaB' so we need only
verify (A.1) for |A| sufficiently large. It suffices to prove the follow-
ing:

Claim: There exist constants C and ¢ so that if )\ € Sas and

|A] > C, then
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(Re/X - b)? > c|r-g|

For the proof, first choose a, 0 < & < a and pick C > 2|8| so large

that if A € saB and |A| > C, then A € S50 » 1€, arg A < n-a . Since

the set Re/A = 2b is a parabola, we may inflate C so that if A € Sag
and [A| > C, then Re/X > 2b. We also have arg /% < (n-a)/2, so it
follows that (Re/X - b)/|/X| has a positive infimum c; for A € Sq

{A] > C. Then

B.

(ReVX - b)2 > cy|)|

and since C > 2|8|, |A] > cs|r-8] for |A] > C, ¢y > O, and the claim
follows. Hence Proposition A.1 is established for the operator D2.

Now Proposition A.1 is valid for pD?, p > 0, by a simple scaling
argument. We may separately analyze each component of the resolvent
equation for PD?,

(A-PD2)u = f ,

where P is a positive definite diagonal matrix, and find that Proposition

A.1 is valid for this operator as well.

Our treatment of the lower order terms of L is based on the notion

of relative boundedness of closed operators, and on a Landau-Koimogorov

inequality for generators of bounded semigroups (a recent reference is

Chernoff, 1979).

Definition (cf. Kato, 1976): Let A and B be operators on a Banach

space, with D(B) > p(A). B is said to be A-bounded with bound ¢, if

for any ¢ > ¢y, there exists C so that for all v € p(A),

1Bvii < Civl + cllAvi
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Lemma A.4: Let M and b be given from Lemma A.3. Then for any
u € p(D?),

1(0-blun < Lu(0-b)2un + (M+1)r 0wl for al1 2> 0 (A.9)

W

I (D-b)uu: < Coll(D-b)2ull , Hull,, for some constant C, (A.10)

. 2_
Corollary: D is D*-bounded with bound 0 on Bw'

» T
I R L

Proof: For A > 0,

(A - (D-B))"'n < M/A

For u € D(D?), we may write

(r+D-b)u = (A-(D-b))"*(r2-(D-b)2)u ,

$0
M/, _h)2
II(D-b)ullw< Mlullw Y (x Ilullw +1(D-b) ullw ’

yielding (A.9). Put A = (ll(D-b)zulwlllull'.')}5 to obtain (A.10). For the

corollary argue as follows: D is (D-b)-bounded, since
IDu,, <u(D-bui, + biwi, .

By (A.9), (D-b) is (D-b)2-bounded with bound 0. Finally, (D-b)2? is

D2-bounded, for

- bh)2 2 - 2
I(D-b)2ull < UD ull, + 2bi (D b)ullw + bAull
2 - h)2 2
< uD*un,, + 2b(ell (D - b) ulr, + C(e)llullw) +b un

Taking ¢ sufficiently small, we find
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- h)2 2
1(D-b) ullw < D ull, +Cllullw . (A.11)

Then D is clearly D2-bounded with bound O.

Proof of Proposition A.1: Let Lu = Puxx + M(x)uxi-N(x)u, and
let Lou = P"xx’ Bu = M(x)ux+'N(x)u. Since M(x) and N(x) are bounded

matrices, B is D-bounded, i.e.,

HBull < clu i + cuuuw for u € p(D)

Applying the previous corollary, B is D?-bou.ded with bound 0, hence
Lo-bounded with bound 0. But then L, is L-bounded, for

lll.oullw< i Lullw + 1 BullW < lILuII" + t»:IILouIIw + Cleh ul,

and if € < 1 we obtain ||L.,u||w < cHLuI& + Cllullw . Hence B is L-bounded
with bound 0.

Fix a sector SaB with 0 <a <m/2. If A€ ; and [A] is suffi-

]
ciently large, A-L, is invertible and (A.1) holds for L,. Rewrite (A.1)
in the equivalent form,

caB
Null , < I(A-L)ul for ue p(L) . (AR.12)
w IA'Bl W

We claim that (A.12) holds for A in S , if |A| is sufficiently large:

For v € D(L),

II(A-L,)uIIw < Il(A-L)ullw + ||Bu||w< II(A-L)uIIw +ellun, + c(e)uunw

< (P+e) nx-Lhun, + ([afe + C(e)) nun,

Now (A.12) holds for L, for some constant Ca Fix ¢ < ]/4Ca8’ Then

g*
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if |A| is sufficiently large,

c
—%_ (]ale+Cle)) < %,
|A-8]

and we have

tul < _Cag WA -L)ull + % Hul
w 'A'Bl w w

for |A| sufficiently large, yielding (A.12). So Proposition A.1 is
established.

Proof of Proposition A.2: Define the operators L, Ly, and B as

above. Let us show that if A is in the resolvent set of L, then

D(A-L)"? is a bounded operator on B,. Observe that since D is D2-
bounded with bound O, and L, is L-bounded, it follows that D is L-
bounded with bound 0. Then, since range (A-L)™! = p(L) € p(D), we

have, for any f € Bw’

llD(A-L)"fllw < cllL(A-L)"fIlw +C||(A-L)"f|lw

-1
< cifu, + (c[a[+C) n(x-L) "fu
< C(x) Hf“w .
ng Let us now assume that (A.2) holds for the operator L, for |A| suffi-
2ﬁi ciently large, A in any given sector SaB’ 0 < a < n/2, and show that
E%g it holds for L if |A] is sufficiently large. Rewrite (A.1) in the
E; equivalent form,
Sﬁ c
N Nl + 00U, < —21-,; (A= L)ull (A.13)
& |- 8
-,
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for ue p(L), 2 € SGB. |A| sufficiently large. Now
I (A-Lo)ullw < ll(A-L)uIIw + IlBuIIw

< ||(A-L)u||w + C(lhut + nDut)

_Since (A.13) is assumed to hold for L,, we therefore have

c’.C C
(ar_ +nouw )1 - )< “LE (A=L)ul
w w |A-8l§ |>\°B| w

Therefore, if |A| is sufficiently iarge, (A.13) holds for L as well,
perhaps with f larger constant C&B'

The last step in our proof is to establish (A.13) for the operator
D2. By considering each component separately, it will follow immediately
that (A.13) is valid for the diagonal operator L,. Our approach is
use the Landau-Kolmogorov inequality (A.10), along with the sectorial
estimate (A.12) for D2, |

Fix any sector S g. Then for A in this sector, |A| sufficiently
large, A-D? {s invertible and (A.12) holds. Recall from (A.11) that
(D-b)? is D2-bounded. Using (A.10), we find that for u € D(D?),

- 2 2
It (D b)ullw < Couunw(cHD ull,, + CHun)

Now #D2ull , < I (A-D*)ull, + [\]nul, , so, estimating liul, via (A.12),

we obtain

CoC c
II(D-b)ulI:‘ < l—;—ﬁ! (c + (¢|A]| +C) I—;—“;—)II(A-D’)MI:‘

Therefore, for |A| sufficiently large,
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I(D-bJull . < Cap (A - D?)ull (A.14)
- u W |)‘-5|;5 - u W . .

Now D is (D-b)-bounded, and we have
IlullW + IIDuIIw < Il(D-b)ulIW + (b+1) |Iullw

Using (A.14) and (A.12), we obtain (A.13) for D? for all x € Su with

B
|A] sufficiently large. This concludes the proof of Propositici A.2.

We conclude this section with some brief remarks about matrix-
valued weight functions which show that our operator £’ of (1.6) satis-
fies the estimates (A.1) and (A.2), at least on the spaces (Cu)zec
for ¢ sufficiently small. Consider a smooth matrix function W(x) which
is diagonal for all x for simplicity, with Nii(x) > 0 for each i.
Define the weighted space

B, = fu: R+R" | Wu(x) is bounded and uniformly continuous }

with norm
ut = mzx s:p 'Nii(x) u; (x)|

For example, if W;,(x) = cosh cx and ij(x) = e % for j > 1, then

By = (Cu)? . The theory of this appendix does not apply in By e.9.»
multiplication by a constant, nondiagonal matrix M need not be a bounded
operator in BH' However, in special circumstances the estimates (A.1)
and (A.2) may hold if the weight W(x) may be used to define a similarity

transformation which takes the operator under consideration to a "nice"
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operator acting on the unweighted space (Cu)m.

Let L be an operator on Bu.
Lu = Puxx + M(x)ux + N(x)u ,

where P is a positive definite diagonal matrix, and M and N are smooth

bounded matrix-valued functions. Define an operator on (Cu)m by
-l ~ ~
Lyv = WW v = vax + M(x)vx + N(x)v

Now M(x) and N(x), in general, are not bounde? functions of x, but suppose
they are. (This is the case of interest in this paper, where Lw corresponds
to fé , ¢f. (2.4).) Then the results of this appendix apply for Ly

on the space (C,)", ylelding (A.1) and (A.2) for L. Consider the
equivalent formulations(A.12) and (A.13). Then (A.12) holds immediately
for L on B“: Given any u € p(L), then v = Wu is in D(Lw). and

c c
tuy = v, € —2 yo-ww v, = —2E oLy .
|- 8] [ - 8]

To verify (A.13), observe that
Wou = Dv - wxw"v
Require that sup |wxw"(x)| <C<w, (This is valid for the weights we
X
have used in this paper.) Then

c;8(1+C)
Hully, +UDul, < (T+C)nvi, +HDvi_ < -l———-l-,; “(*'Lu)""a

. S8 1(x-1)ul
IA- 8" W
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Supplement: Marginal Stability on Unweighted Spaces

Here we show, using Theorem 1.1, that the linearized operator (' for
the weak 1-shock profile has no unstable eigenvalues. More precisely and more
generally:

Theorem For € > 0 sufficiently small, the resolvent set of L' on the
unweighted space (cu)m (also (LP)®) includes all complex X exterior to the
sector sa(-’/4 ezB) of Theorem 1.1 and exterior to some parabolic region P, =

{\|ReA € =C{Im A)z} which lies in the left half plane but includes the
origin.

Por the proof, it is enough to show that £' has no eigenvalues in the
region described. This is due to a characterization of the essential spectrum
(spectrum aside from isolated points of finite multiplicity) that may be found
in Henry (1981): Let A = df(uR) -8, A_= dt(uL) - 8, and form the sets

st = {Ae¢l det(-‘r2 - iz At - 1) =0 for some real T }.
Then S, U s_ is contained in the essential spectrum, but the connected
component of t\(s+ U 8_) which is unbounded to the right is devoid of
essential spectrum. Note that here, any A €S, is of the form

t
2
Re A= =1", ImA=T (xj(uR‘L) - 8) for some j = 1,...m,
so S, US_ is contained in a parabolic region {A € ¢IRe A < ~C(Im A)z} for
some C > 0. Now suppose A € ¢\ (sq(-’/.‘ 628) UPc) and A is an
eigenvalue, so (L'=1) ¥ = 0 for some function ¥(x) in Dom(£L'), (Therefore

¥ is bounded and smooth.) It will be convenient not to scale the

independent variable, so for 0 < c <Y, we let
1 1

-1 Lb Mc cosh ecx/2 0
L' = w Ll'w = - - . W (x) =
c c c "c Lc c 0 e ecx/2

We claim that wc! is bounded, so that )2 is an eigenvalue of £é .

contradicting Theorem 1.1,




-
e

PPy P
Al F2adf3 . g SRR A dd

VR

Step 1. We claim l.-tcxlz

¥ (x)| ¢ const, x < 0. We apply standard
theorems on asymptotic behavior of solutions of linear ODEs (Coddington and

Levinson 1955). As x + -», ¥ ig asymptotic to a solution of u, = A_u, -

Au = 0, i.e.,

Y (x) = e"-"(1+0(1)), ana ¥ (x) = u_e'-"(1+0(1))

where det (uf - u_A;-A) =0 and Re u_ > 0. In this case, yu_ is of the

1
form 2p_= (lj(uL)-s) + ((A (uL)-s)2+ AV@ for some j. PFor A “exterior"

3
1
to S_, we have Re((xj(uL)-s)z-o- A)/2> Xj(un)-s, so Re u_ > A (u )-s. Recall

= 1 L ] = = 2
that s 11(uR) +He, vx1 r‘(uR) 1, and v uR+ er, + 0(¢’), so

1
Re u_>%e - 0(e?). Por € small, we then must have Re u - €/2 >0,

80 the claim holds.

|°eex/Z

Step 2 We claim !1| < const, x » 0. A different argument is needed

here. In block form, ¥ = (!1, ¥), and

(L)-2) (cosh ecx/2 ¥'] = -ul(e”* %y

The right side is bounded, from step 1. By the construction of the resolvent

of Ié in § 6, A is in the resolvent set of L

c if A ¥ 0 1is exterior to

-h

sc(-e28/4). Therefore we may find '® in Dom(L'), so bounded, with

c

-ecxlz;].

1 1
(Lc-l) o= -Mc[e
Hence

(L;-X)[!1 -sech ecx/2 ¢] = 0

The expression in brackets is bounded, so has asymptotic behavior

e"+x(1+o(1)) as x + +», where (since A1(0R)‘l = -¢/2)




2

1
so u = - -j- - ((%) 2«“)/2 . Since A is exterior to S,

Reu+ < - -:- s 80 Reu+ + €c/2 < 0, and the claim follows.
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