_AD-R125 236 HODULRTIONRL STABILITY OF TWO- PHASE SINE GORDOH
HVETRR 5¢U) NE VORK UNIY NY COURANT T OF
HEMATICAL D WM CLRUGHLIN ET RL 1982

UNCLASSIFIED RFOSR TR-83- 0010 RFOSR 88 822 G 12/1

.IIIIIIIIIIIII
e




RS MM
.\ MRRRAG T
S AERRIMORACY, EPC N SN ACRONCAA ARG

k e P S e e A T St Pty

10 Bk k=
\“’,%',’ g

o

. 1

! MICROCOPY RESOLUTION TEST CHART
e WATIONAL BUREAU CF STANDARDS-1963-A




T.;‘~IJ AN vi‘

Jalated i

2.}

gy Ot Wl SA

LR Y R s

Al

§ Wt To0 eV B0 A

L g LSl ™ i i

-

W LY Ll -5y Mg L] 4 . 0
A ARRIEERCNMNE VO LSS I AR I, I Py J?ﬁ»-ﬂn’ e...xmu..- o s ...-\. O e T e e T AL

ADA125236

DTIC FILE COPY

: * UNCLASSIFIED
SECURITY CLASSIFICATION OF '_rms PAGE (When Data Entered)

READ INSTRUCTIONS
. REPORT NUM 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
APOSR-TR- 88-0010 |4.4/2
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
MODULATIONAL STABILITY OF TWO-PHASE SINE- Technical
GORDON WAVETRAINS 6. PERFORMING ORG. REPORT NUMBER
7 AUTHORFe), ®. CONTRACT OR GRANT NUMBER(s)
David W. McLaughlin* and M. Gregory Forest*+
; - AFOSR-80-0228
and Nicholas Ercolani#*#
(9. PERF "RMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS
Courarit Institute of Mathematical Sciences
New York Unive;:é:g 251 Mercer Street 2304/A4 PE 61102F
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Mathematical and Information Sciences Directorate &
Air Force Office of Scientific Research 13. nuuufoor AGES
1i (0]
%&%&%ﬁ%ﬁ%&_‘mw different from Controiling Office) | 15. SECURITY CLASS. (of thia report)
Unclassified
Se. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release —— distribution unlimited

17. DISTRIBUTION ST. MENT (of the abatract entered in Block 20, i1 ditferent from Report)

* pavid W. McLaughlin: Lepartment of Mathematics and Program in Applied
Mathematics, University of Arizona, Tucson, Arizona 85721
#* M. Gregory Firest and Nicholoas Ervlani: Dept. of Math, Ohio St. Univ., Col

18. SUPPLEMENTARY .C TES Ohio 43210

DTIC

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

E
20. ADSTRACT (Continue on reverse side If necessary and identify by block number)

In this note, we study the modulational stability of real, two-phase
sine-Gordon wavetrains., There are three classes of such waves; we find the
kink-kink trains are stable, while the breather trains and kink-radiation
trains are unstable to modulations.

DD 538 W73

SECURITY CLASSIFICATION OF THIS PAGE (When Dore

N J‘" e A A N I S R U S N N R A T Tt Tl Rt il R Tt A T ST i T TR T TRk il S R T DAL




. BTy T v o
..A.‘r-.a._\- NSRRI e et e S e e it «'\.‘ﬁ_.“. AT W AT Rl et e e e

» . AFOSR-TR- 8_3-0010

ﬁ

".‘

MODULATIOHAL STABILITY OF H

TWO-PHEASE SIHE-GORDON WAVETRAINS

by.

David W. McLaughlin®
Department of Mathematics and
Progrem in Applied Mathexetics

-University of Arizona

Tucson, Arizona 85721

and

Accession yop

M. Gregory Forest** and Nicholas Ercolani
Department of Mathematics
The Chio State University
Columous, Ohio 43210

*Supported in part by N.S.F. Grant #MCS-79-3533 and in part by AFOSR —'W 042 Jf
SIERSPPER2s. Address during academic year 1981~82: Courant

Institute, New York University, 251 Mercgr Street, New York, N.Y. 10012,

**Supported in par® by N.S.F. Grant # VCS-8002969.

88 02 028 068

. ‘ mm o= pudblie voleassi
: 4istridvution unlinited.
f
et W LW Y 4 I‘Lﬂ P .!’;_"j: e ~.'.-.'.\‘_'.Jl";:?.- RN '2:'.!.'-‘4"". ...... ‘.-."-.‘.'.‘."‘.{ PRI




‘ v . T l' 4 -Ut LKA
L T T e e i AP i ol A mpmy m‘:... RETEINA n‘ R L < W.d ! , r"~ Pt
ot RS Y M-SR SIr s rarii il i 20l e L, L) AR g -.no R A - rﬁ...- -&t “ l.. .:.a..-n-\.--w .....:..... o

y Mc.- ..- o -ic bw.nvtﬂ.. '.UJ . \- -- -.- L
-l..'.io-'- 'L g /2 /"1

% Y
‘.‘fA ‘m.

‘-

A S Nl iy

-

-5
fLa
et

o’ .

Ave e

o

el ¥

~ e Ve

PR
PR

Ryt

e T . V4 TR,
o SRR SRR Y,

PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT

DISCLAIMER NOTICE
THIS DOCUMENT IS BEST QUALITY
REPRODUCE LEGIBLY.

e CROURAAYN BT BENUONE S XFXMHEE.  § AASATYN oW

- <o
-.-«n....-. o i R XSS . . N R oA PRI o oy




SRRSO § ol Lo R WL IR a0 M B R PN -.'.f-.".'-].ﬂ*
a

b L

.

I. JYNTROLCCTION

In this nole we study the modulational stability of real, twn-phase
ane s .=
sine-Gordon wavetrains, There are tiree classes of such waves; we find

the kirx-zink trazins are stable, while the breather trains and kink-

radiation trains are unstable to mcdulations. .

“>fThese resulis continue tze investigations of Flaschka, Forest, and
F&Laughlin—@ for the KAV ecguation arnd of Forest and MeLaughlin {-2-,—3;)
for the sirh-Gordon and sine-Gordon equations., In a previous paper .[-eﬁ"’

the sire-Gordon two-phese modulation theory could only be carried to an

intermediate stege. Here we use recent results of Ercolani end Forest
[Jr)’otf cozplete this project. é\

: Refererces [1, 2, 3] contain detailed accounts of how inverse spectral
theory cen be useé to prescribe and analyze the modulatiohs of quasi-
perioGic wavetrains, Here we assume some.familiarity with these references,

. In particular, we assume the sine-Gordon relevant discussions in [2] about

- squared eigenfunctions, conservation lavs, and ihe. 3 - and ; - repre-
senta#ions of two-phase solutions.. We also refer to severel calculations

in [2) wnich directly epply here. Moreover, we quote two important results

AIR FORCE OFFICE OF SCTENTT RESEARCH (AFSC

from [h]. . . NOTICEOFNM!’TALNDH?C ( )
This technical report has been revievad gnd s
approved for public release IAW AFR 190-12,
Distridbution is unlimited. »
MATTHEW J. KERPER

1I. NOTATION AND STATIIEIT OF THE PROBLIM Chief, Technical Information Division

;. We consider a real sine-Gordon wave which locally appears as a two-
phase waveirain, but which has physicsl characteristics (such as wave
nunbers asd frecuencies) that éhange slowly over large scales in space

and time, Thus, this modulating two-phase wave locally is descrided by
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- the "9 - representation”,
: -+
u =~ u(.e-l, 0,3 E(X, T)) , (11.12)

- .
vhere I = (El’ ey Eh) . The local or fast dependence is described by

o
o 9 = r5 s
"d=1,2 : (11.10)
a .
ER T B

.

the slow dependence of E on|X = E t imodels the modulaiions in the

"-4 ° -»> >
, physical characteristics of the wave. (For example, x ‘and ® are
Ea ->
. , functions of E(X, '.'L‘)f )
5 . | There ere three physically distinct classes of real two-phase sine-
: . Gordon wavetrains, corresponding to the following possible configurations -
¢ of E,, ..., E, consistent with real waves (see [2]).
: .
3 | |
Nt - * s
B Case 1. Breather Train I E), By Eg =E.1" Eh=E;, all distinct. (II.2a)
7 . * ink-Kin J B ‘0 .
4 Cese 2. Kink-Kink Train . <E, < E3. <E <O . (I1.2v)
N : . . y ‘
‘. y - 3 3 -
’ Cese 3. Kink-Radiation Train E, <E, < o, E3 12 E3 FE, . (11.2¢) .
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. The modulational eguations f'or such wavetz:a,ins constitute a first-
order system of quas:l-linear partial differential equations for E.(X, I_') y
J=1,..., 4., 1In[2], it is showm this system admits the following
representation on the underlying Riemann surface R of the curve (E, R(E)),
where

L

Ra(E) =E T (E-EJ) .. - (11.3)
ng

The modulation ecuations are described by

3 ) . .. o
= al-) _ .33(_ al ) =0 , . (I1.k2)

(+) + 1 ' . ‘
¢! =, =2 T 0_.1 ;- | _(II.!rn)

where 0 +]; R ﬂ_l are well-defined differentials on ® given by
Q. = -2 ( & (ony) <Z (11.58)

T T wEY o .

Q, = Y= ( n ( -1)) 'E‘ﬁ‘(?:’)' . '(II.sb)_

_The symbol {f(u)) represents an average over the reel isospectral mani-

. Y :
fold for that class of waves, defined with respect to the © -representation

by
ar

=4
(2(u(o,, 8,))) = { i £(uley, o)) a6, 46

;")2. o+ (I1.6)

. . ->
The average is computed for frozen vslues of E(X, T) .
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N "IIT. DERIVATION OF A1 INVARIANT REPRESENTATION
K We begin with the system (II.:), (II.5) as derived in [2], and now
;E ' . use recent developrents in [4] to compute these averages as products of

-; single integrals. These arguments apply to all three classes of real two-
&

“E ' phase wé.ves; we specialize only at the end to deduce the consequences for
: each class,
B .
x Consider some function f£(u) of the modulating two-phase wave
o~ ‘

N u(al, 62) . Viewed as complex coordinates, 91, 92 parametrize- a complex
SR two-torus; the restriction ©,€[0, 2m), ©,€[0, ) identifies the real
1“ - * R -
?.’» isospectral menifold 7, which is a real two-torus 82;‘[2, %1%,

- kK nm = 32 = 0, x 0, = [0, 2) X [0, 2M) . (III.1)

W A Thus, the everege over M is given as in (II.6),

i - . | |

A N 0 .

3 (£(u)? 5 J j r(u(el, ] ))d 1d92 | (111.2)

3 (21T ) I

"-j_ . . > BEY

§ - Next we change varisbles from © to the "Y-coordinates" of 7

' o provided in.[L],
ok M= 32 = (¥, - eyele) X (¥, - cyele) , (I11.3)

[t ->
W vhere Y = '(Yl, Y2) € R X are.the following cycles (Figure 2) for the
S three classes of two-phase waves. '

to e
—
\

/
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2 M—M@MW%&; (III 2) becomes

v 3
Eg (£(u)) = f(u(Y)) l-%;-!-l dy, 4y, . (111.4)
,,‘ we write the Jacobian as a product,
2 EXARE AR
2 .= 1=l l==1,
b Y P Y
E::-_ ' and analyze each factor. First, by parallel arguments in [i, 2],
*- ' | 26 2 det p. | |
; = (o de : ‘ ) -
2 | = | = @ = - (xmse)
B .
where
= j' 3=l __z_.).d“ ..(_-)_uﬂ ' (1II.50)
Yi-cycle :

-+ -> .
Second, it is proven in [4] that the map from Y to W variables is

disgonal and globally defined, with

B =), e =uyY,)
| . (111.6)

- du dp '
O ! 2

For f£(u) given by (E-ul)(E-ué) or (-f:— -1) (-“Ee— -1),

these facts now allow us to factor the two-fold integrals (III.h)., We

L cozpute one average and thae other will be obvious. From (III.5), (III.€),

<(7‘”'1--1><§2--1)>
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and by tre nature of the integrands,

j-1
! r . E Wy (¥5)  Buy ,
Getd J .f det [ (1 - "'i(Yi) ) R(ui(viﬁ 3Y; (Yi) in] ?

/|
since M= (Yl-c:/cle) X (‘Y2-cyc1e) is a product space, Fubini's theorem

gives . ' . |

FET
B l-"i (Yi) op, _
S0 ) Ty ww O @) ()

S S
det M

det [ j (r-

Y

| i-c:,rcle |

Now that the two-fold integrals have been factored into single integrals

over the Y, -cycles, we change variables by (I11.6) from- Y; to B, ,

. o R i
and mexe use of the result in [4] that the p -cycles are globally homo-

- .
- logous to the Y-cycles of Figure 2,

* -

ki -cycle ~ Yy-cyele, 1i=1,2, ~ (111.8)

This yields

) J-1
g B ' E i .
(.(-“-—]T-l)(i;-l))fde.t[ f (1-_-;§_) Rzll.i; wi]
Y,~cycle
- i
- det M

" . J-1 :
geet [ -3y e

'Yi-cycle
= — 3T . (ITI.90)
det [ I SIME G
Yy =cycle

.
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‘ REMARK, Tre formulas (III.9a, b) are precisely those obtained in
5

R [2] for the two-prase sinh-Gordon modulations; the only change is the
¥ Y; - cycles are given by Figure 2 for sine-Gordon waves, Therefore, the
j rexeiring anelysis in [2] applies verbatim, with the following conclusions.
” © THE02EM (III.1) (AN INVARIANT PEPRESENTATION)

' (1) The three clesses of real two-phase sine-Gordon wavetrains modulate
i eccording to | S o |
3 " 2 o) 2 o) |

o . ‘ _ " A -

1_: Q = -gi-‘- (9] - ﬁ Q = 0 9 . ‘ (III.].O&)
%l :

. where

> . (%) _ + 1 .

.

§ . | L yy._dE

. Oy = -F (E-w)E-8) ) my

L% .

Y

{ 2

N = - 2. £ ot gi1y 4E_ (II1.11e)

_ 2 jo1 3 R(E T

A ' B 4
! Y
n .
H:\,l
P o
~~
9
H
[
a®
o~
]
H
[
e’
N,
[~%
=

1 £ R > ™ 'i',‘,' ER(E)

A n -

- | . 1 (1 .2 ol-) gdy QE | (III.11b)
& .2 je1 9 ER(E) ° .

N . ' o

. (2) o, y &re the uaique Abelien differentials of the second kind which
- satisfy ihe following criteria:

3 . (1) ﬂﬂ is rolozorphic except at E =« ,

'g 0, is holozorphic except at E=Q .

=S LWL TR R I ORI P g &) ‘15‘.3..\.-":
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(1) Near E=§ " =o, respectively E=§ =0,
' ag .
/ ﬂ_l_ ~ —= + (a holomorphic part) .
. +1 §2
(1ii) j‘ Q+1 =0, i=1,2, vhere
Yi-cycle
a, - b +'b2 a2+bl-.b2' | Bresther Train
Yl = bl , 72 = : b2 for the Kink-Kink Tz:am |
. ' by 8, ’ -Kink-Radiation Train .

'(3) Awey from the branch points, the expansions of Q+1 in local coor-

—

" dinates are given by (III.lla, b).

IV._ CONSZOUZICES O TR II‘T“IARIA?ET .REPRESEI\?EAET;‘ION
| The three cla.s.ses of real, two-phase sine-Gordon waves modula;te according
to ) ‘ -~ '
o - -:—T- al-) .-:T alt) oo . (w.)
As in [2], expanding (IV.l) near E=0 and E = yields the averages of
‘the fazmilier "polynomial" conservation laws, such as energy end momentum.
Likewise, the saze ;rgmxments in Section (IV.e) of [2] yield a Hamiltonian

forz ol these modulation ecuations. We do not expand oa these points of

view here, but rather move on to deduce the predictiors for modulational

stability of {rhese three classes of waves.
As in [2), we expand (IV.I) in the local coordinate near each branch
point E=E, , k=1, 2 3, 4, invoke 0=0, and the vanishing of the

leading order term in these expansions ylelds
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TH=0RZw (IV.1) (2iermann Invariants for the Modulation Eouations)

For &ll three clazsses of real waves, the branch psints {Ek)?_ are ‘
Riemann invariants, with J
|
> _ (x)
a,I I:rk - S ax Ek - 0 ¥ k - 1’ seoeo » ’4” (IV-28.) ‘
with the chzaracteristic speeds given by J
3 J-1
: k i =
‘ S( ) - J O > k=l, so0 o l""’ (IV.Qb)
3 (=) 1. S
r D E~k
- j=0 Y
T et - . (i) .. N e . « (i) s 0
where D p are given in terms of the coefficients Cj of +
(£) _ 2 c(+) = L e o)
: Dj = 5 [CJ Ty Ek C:j 1, 3=13, 29,
(Iv.2¢c)
N TE '
D(i) = + ________L D(i) = - _];
o - 32 ’ 3 2 °

Apalysis of the characteristic speeds S(k) for each c¢lass of waves fields.

THZOAZM (IV.2) (Modulational Stebility of Two-Phase Waves)

(1) - Kinx-Xink Trein. The characteristic speeds s(k), k=1, ..., &

are real; modulational stability is predicted.

(2) Breatrer Train. The characteristic speeds s(k) , k=1, ..., 4

are coxplex, with [S(S)]* = S(l) s [S(h)]* = 8(2) 3 modulational insta-
bility is predicted.

wedr. oA . : .  ors k
(3) xinx-Radiation Train.- The characteristic speeds S( ), k=1,..., 4

L) x 1
are cozplex, with [S( )]*.-.- S( L); moduldtional instability is predicted.

e ——
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