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1. 1' I. Z?-%.-UCI 10.,

In this note we study the modulational stability of real, two-phase
a_ Stu .-

sine-Gordon wavetrainsA There are three classes of such waves; we find

the kir--kink trains are stable, while the breather trains and kink-

radiation trains are unstable to modulations.

'These results continue the investigations of Flaschka Forest, and

McLaughlin1±t for the KdV equation and of Forest and McLaughlin -

for the sinh-Gordon and sine-Gordon equations. In a previous paper Fe

the sine-Gordon two-phase modulation theory could only be carried to an

* intermediate stage. Here we use recent results of Ercolani and Forest

Vditj0ocomplete this project.

References [1, 2, 3] contain detailed accounts of how inverse spectral

theory can be used to prescribe and analyze the modulations of quasi-

periodic wavetrains. Here we assume some familiarity with these references.

In particular, we assume the sine-Gordon relevant discussions in (2) about
4 4

squared eigenf-uLnctions, conservation laws, and the. 9 - and p - repre-

sentations of two-phase solutions. We also refer to several calculations

in [2] which directly apply here. Moreover, we quote two important results
from &M 701 oncI O sMnEn o =SM (A)

NOTICE OF mA rITAL To DUO.
This technic.,l report has been revjewtd od is
approved for public release IZA AR 190-12.
Distribution is unlimited.

MATT=V J. JCDFPU
11. .OTATIC. AND p ? TO PF03LM Chief, TCohnifal Informetion.Division

We tonsider a real sine-Gordon wave which locally appears as a two-

phase wavetrain, but which has physical characteristics (such as wave

numbers and frequencies) that change slowly over large scales in space

and time. Thus, this modulating two-phase wave locally is described by

--- K 6MZ...-
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•the "08 - retresentation".

* 4 U - O 0~I  2; E(x, T)) ,(11.1a)

where E = (EI, ... , E,) . The local or fast dependence is described by

f " =1, 2 (II.lb)
. -- = w

the slow dependence of E on models the modulations in the

physical characteristics of the wave. (For example, K *and w are

functions of E(xLT).)

* There are three physically distinct classes of real two-phase sine-

- Gordon wavetrains, correspbnding to the following possible configurations

of El, s..,o E4 consistent with real waves (see [2]).

. Case 1. Breather Train E1, E2, E3 =El, E4= 2, all distinct. (II.2a)

Case 2. Kink-Kink Train E1 < E2 < E3 < E4  < 0 .(II.2b)

Case 3. Kink-Radiation Train E1 < E2 < O, E3 =E E E . (II.2c)

E .

%t
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The rodulational equations for such wavetrains constitute a first-

order system of quasi-linear partial differential equations for E.(X, T),

=l,..., 1 4. In [2], it is showm this system admits the following

representation on the underlying Riemann surface 2 of the curve (E, R(E)),

where

2 4
(E) E IT (E E (1.)

3=1

The modulation equaations are described by

*C-) - n(+) = 0 (II.4a)

(Q) = o + (n.4b)

where 0 1 are well-defined differentials on 2 given by

+1 -l( T1T

~~~ -IT-( _ (II.5a)
+1 - 2 E1 R(E)~) RE

o = JW (2 (A~.dE

-l ~ 1= -1) E(E " u.

-The syr.bnl' (f(u)) represents an average over the real isospectral mani-

fold for that class of waves, defined with respect to the e- representation

by

S((u(e1 , e2))> ( J J f(u(el e2 )) de 1 de 2 . (11.6)

The average is computed for frozen values of E(X, T)
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1III. M..Il:'ATION4 OF AN'. IT.IARIA-:. PI;--,ZNPP3ETON"

We begin with the system (11.4), (11.5) as derived in [2], and now

use recent developments in [4] to compute these averwas as products of

single integrals.. These arguments apply to all three classes of real two-

phase waves; we specialize only at the end to deduce the consequences for

each class.

Consider some function f(u) of the modulating two-phase wave

u(81 , 02) . Viewed as complex coordinates, e1, 02 parametrize a complex

two-torus; the restriction 01 E (0, 2g), 02 E [0, ZT) identifies the real

isospectral manifold 74, which is a real two-torus 3[2, 4) ,

=2 e 1X = (0, 21T)x([, 2TX. (III.1)

Thus., the average over 7 is given as in (11.6),

(f(u)) j 2 J m l' 2 Od 1.2
(21r)2 f~u(01, e))dOz dO . (111.2)

4 4.
-Next ve change variables from 0 to the "Y - coordinates" of ?

provided in. [],

= = (Y1 -cycle) X (Y2 -cycle) (111.3)

where Y= (.Yl, Y2 ) E 2 X R are.the following cycles (Figure 2) for the

N three classes of two-phase waves.

" .4,* "
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. . , , , A. (111.2) becomea

744

We write the Jacobian as a product,

and analyze each factor. First, by parallel arguments in [1, 2),

TI2 det P (II .5a)

where

Mj = f J-1 dii (II.5

cY:,.ycle

Second, it is proven in [4] that the map from Y to l variables is

* diagonal and globally defined, with

: (Y) -m PJ(Yl) , 2(Y) P 2(Y2) ,
" (III.6)I 4 I1 ol) ap" 2 ')#o

For f(u) given by (E-P )(E-i.) or (-Y-- E)( -

these facts now allow us to factor the two-fold integrals (m1I.4). We

compute one average and the other will be obvious. From (111.5), (111.6),

P2

* o
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-"-. j (1- ---- %C') I ) (Yl) "- ) d'Y dY

det M l S- )Y

and by the nature of the integrands,

K".

J-1

= et Ir det(l (Y.) dY)

since 7 = (YI -cycle) X (Y2 .cycle) is a product space, Fubini's theorem

gives

J-1
1. E P (Yj) p

d e f j ( E- P '* (y dY(
Yi-cycle

N ow that the two-fold integrals have been factored into single integrals

over the Yi -cycles, we change variables by (111.6) from Yi  to pI ,

and make use of the result in [4'] that the p- cycles are globally homo-

logaus to the Y- cycles of Figure 2,

P' -cycle Y1  cycle, i = 1$ 2 * (111.8)

This yields

-. 1

~2. 2 *Y -cycle Pi ~.

detM

-4-I1

*det( J (2--) ( Cd-
'Y -cycle

datE

Y, cycle

. . . . . ...... ... .

IA~ 3' f
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REM'.AK. The formulas (III.9a, b) are precisely those obtained in

[2J for the two-phase sinh-Gordon modulations; the only change is the

" cycles are given by Piguxre 2 for sine-Gordon waves. Therefore, the

re-aining wnalysis in [2] applies ",erbatIm, with the following conclusions.

THEOZ.M (III.1) (AN IVARIA)MI PSPRESENTATION)

(1) Tne three classes of real two-phase sine-Gordon wavetrains modulate

according to

+  = 0 (III.lOa)

* where

. (+)E 0- i 1 01 ,I (III.lOb)

. 1 ( )(E P dE

=, =-

, 2 1 2 ( R(E)

E2- E ( c(+) EJ) dE (flI.la)

(___+_i olmrpi exp a___=

0I. is 1ooopi exet__E

-2 PP 2 ER(E)

E2 dE
2 (1 i E CJ J) E R(E) * (nI1.nb)

*(2) £%1 are the unique Abelian dif~erentials, of the second kind which

* etisfy 'toe following criteria:

(1) 0 is holomorphic except at E w0

O is holozorphic except at E a
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(ii) Near E = , respectively E, = 0

I t- + (a holomorphic part)

±1
- (iii) f = 0, i = 1, 2, where

Yi-cycle

a-b +b ba2 '-b Breather Train

* l 1 2 { 1+ 2{
bl , = for the Kink-Kink Train

b1  s 2  Kink-Radiation Train

(3) Away from the branch points, the expansions of 0 in local coor-
_I1

dinates are given by (III.lla, b)

* IV. COSEbC= S OF T=F- EiA.RIAT REPRESEMIATIOT

The three classes of real, two-phase sine-Gordon waves modulate according

to

W. (-) a (+) 0 (Iv.l)

BT ax

As in [2], expsndi:g (IV.i) near E = 0 and E : - yields the averages of

the familie.r. "polynomial" conservation laws, such as energy and momentum.

Likewise, the same arguments in Section (IV.c) of [2] yield a Hamiltonian

form of these =odulation equations. We do not expand on these points of

view here, but rather move on to deduce the predictions for modulational

stability of these three classes of waves.

As in (2], we expand (IV.I) in the local coordinate near each branch

point E - E, k - 1, 2, 3, 4. invoke 0=0, and the vanishing of the

leading order term in these expansions yields



TriEORE:' (IV.l) (Riem-ann Invariants for the Modulation Equations)

4
For all three classes of real waves, the branch paints (E k 1  are

.1 Riemp-nn invvriants, with

i _s (k)  (V a
- Ek ax k

['

with the c-aracteristic speeds given by

,:'D(+) Ek
s(k) 3=0 -0
S j3 , k=l, ... , 4P, (IV.2b)

E D E3

where D are given in terms of the coefficients C. of

D" +) (C(+) rT)
2 [C-u k -3 [c 2-

(IV. 2c)

D() + k Y D(±)
0 32 ' 2

Analysis of the characteristic speeds S(k) for each class of waves fields.

!Ta-ORE:: (IV.2) (.'odulational Stability of Two-Phase Waves)

(1) Kink-K.Knk Train. The characteristic speeds S(.) k=l, ., 4

are real; mod ulational stability is predicted.

(2). Breather Train. The characteristic speeds S(k)I k=l, ,

are co=plex, with [S(3)]*  M = ) (s)3* = ( ; odulational insta-

bility is predicted.

(3) Kint-.adiation Train. The characteristic zneeds S(k) , k = I, ...,

are co-Dlex, -with [S(r).*=5(); modulational instability is predicted.
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