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I. Introduction: Nonlinear Phenomena in Electromagnetic theory

The subject matter of this survey is the manifestation of nonlinear
phanomena in a wide variety of problems of electromagnetic theory. The
specific problems which we intend to focus on include shock formation
and propagation for plane electromagentic waves propagating into an isotropic
nonlinear dielectric half-space, the possible dissipative effects of
anisbtr@y. nonlinear conduction, dispersion, and relaxation on such
wave propagation, and the &evelopuent and propagation of singularities
in electromagnetic wave propagation in nonlinear distributed parameter
transaission lines.

In earlier work we have studied the problem of shock
formation in non-~dissipative, non-dispersive nonlinear dielectric half-
spaces and singularity development in rigid, infinite, nonlinear dielectric
rods; these problems have been treated in [1] and [2] with some of the
results described in §II below. The basic achievenent in (1) was to
place the problem of shock formation within the context of the general
theory of homogeneous quasilinear systems of hyperbolic conservation
laws and thus the approach differs from that taken in earlier work by
De Martini, Townes, Gustafson, and Kelley -[3]. Broer [4]), Jeffrey [5),
and Korobeinikov [6], Kataev [7] and Donato and Fusco [8]. In particular,
setting the problem within the context of the theory of quasilinear systems .
of hyperbolic conservation laws allows for a relatively simple transition to
the cases vhere the media is either anisotropic, and exhibits a small nonlinear
conduction current, or exhibits dispersive effects or relaxation phenomana.
It 1is shown in §II1 that in each of these cases our problem may again be
set within the theory of hyperbolic conservation laws, the difference with
the isotropic, non-dispersive case being that inhomogeneous terms which

are possibly dissipative in nature make their appearance; a chief gosl of
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the work described in SIIb will be to examine conditions under which shocks

do or do not form and in this regard recent work of Nishida [9] and Slemrod
{10] on dissipative quasilinear systems and of Liu [11], Dafermos [12],

and Dafermos and Hsiso [13] on hyperbolic comnservation laws with inhomogenecity
and dissipation may prove useful. Some interesting recent numerical studies
by Fisher and Bishel [14] at Los Alamos on the interplay between dispersion and

nonlinearity for intense plane wave laser pulses are also described in §IIb.

In SII1 we consider the problem of shock formation and propagation in
distributed parameter nonlinear tran-:l.sl:l.o‘n lines where one of the parameters
C, the capacitance, depends on the voltage drop v accross the capacitor;
this problem has been considered previously by Landauer [15], Jeffrey {16},
Riley [42] and Kataev [7]. However, these authors considered primarily the
formation and propagation of jump discontinuities in the first derivatives of
current and voltage in the transmission line; nore were these problems previously
get within the context of the theory of quasilinear systems 6,‘. conservation
laws and such a formulation is effected in SIII where it is conjectured that
for sufficiently small initial gradients of current and voltage shocks will not
form in a nonlinear transmission line with either nonzero linear Fesiimce or
leakage conductance,whereas such shocks will form if these initial gradients
are sufficiently large. Shock formation and propagation in nonlinear trans-
mission lines is of some considerable importance for as Kataev [7] points out
experimental tests have shown that such electromagnetic shock waves have led to
technically feasible methods of producing short current pulses with a fast rise

time.

Maxwell's Equations, in the absence of free current, free charge, and

and external magnetization, have the standard form:




%

% =" curlk. d:l.vg =0

R« curl®, divD =0
'ﬁ A, "

in some bounded, open domain Q € R3. vhere B is the magnetic field, R the

magnetic intensity, R the electric field, and p the electric induction field

(or electric displacement). The latter field is defined by R = €8 + RB)with R(B)

being the polarization and € the permittivity of free space. In a vacuum,

13 where Ho is the permeability of free space and € >0,

R=0:E =y

Yo >0 satisfy eouo - c-z. In most standard texts on electromagnetic theory
only linear constitutive relations between R and R (and, hence, between

R and E) are considered, i.e., E(E) - (e-eo)E, € > gys OF perhaps, P =g E
vhere g 1s a tensor of rank four.

In [1912] Voterra propose the set of constitutive

t
(x,t) = (x,t) + P(B(x,t))
(1.2) R £R @..

o t
R(xst) =3 R(x,t) + BA(x,t))
-0
- which, though still representing an a priori separation of electric and magnetic

effects, are sufficiently broad enough to include as special cases the linear,

rigid non-conductors of Maxwell [1973], the Maxwell-Hopkinson Dielectrics [1897):

t
R(xst) = € R(x,t) + ! ¢ (t-1)E (x,T)dT

-0

(1.3)

Bx,t) = uIRGx,t)
€e>0, u>0, ¢(t), t >0, continuous and monotonically decreasing, and
special cases of the holohedral and hemihedral isotropic dielectrics introduced
by Toupin and Rivlin [21] in order to explain the phenomena of absorbtion and

dispersion of electromagnetic waves in dielectric materials. All of these
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special cases refer to linear theories and are fully discussed in the recent
monograph by this author [22].
As is clearly indicated in Bloembergen [23]), nonlinear properties of the

constitutive relations
(1.4) R=xr®Ek R=uw®R

have been recognized for some time, i.e., that the dielectric constant and
magnetic permeability can be functions of the field strengths. The importance
of nonlinearly in problems of electromagnetic theory is also emphasized in
Kataev [7] who points out that "linearization of the parameters of a media is
‘only a first approximation. For example, a linear relationship between the
conduction current and the voltage (Ohm's law) exists, generally speaking, only
if a number of conditions are observed: constancy of temperature and composition
of the medium, and absence of magnetic fields".

The monograph [23] begins with the constitutive hypothesis (I.4) and most
recent attempts to prove focusing of polarized electromagnetic waves propagating
through a nonlinear dielectric media have been based on constitutive hypotheses
of this form with u = const. and €(}) = ¢, + 62||E| |2. €g > 0, €, > 0.
Similar constitutive relations have been employed in the work on shock formation
cited in [3]-(8], e.g., in [3] the nonlinearity of the constitutive relations
is reflected in the consideration of a material with an intensity-dependent
index of refraction and it is shown that such dependence tends to distort an
optical pulse along its direction of propagation thus giving rise to pulse
self-steepening (optical shock development). Other interesting non-linear
problems for dielectrics which have been treated in recent years, and which
are based on constitutive relations of the form (1.4), include the work of
Kazakia and Venkataraman [24] who use the method of characteristics to study
the early phases of propagation of a large amplitude electromagnetic disturbance

in a nonlinear dielectric slab embedded between two linear dielectric media,




the work of Venkataraman and Rivlin ([25] who present a method for calculating

the change in amplitudes and phases of harmonics of all orders for a plane

electromagnetic wave propagating in a nonlinear, non-dissipative, isotropic
dielectric, and the work of Rogers, Cekirge, and Askar [26] who apply a
modification of the Bergman integral operator method to a hodograph system
describing linearly polarized plane electromagnetic pulse propagation in a non-
linear dielectric, thus obtaining closed form solutions which are valid up to
the time of shock formation.

II. Singularity Development in Nonlinear Materials

a. Shock Formation in Non-dissipative, Non-dispersive Isotropic Media

We assume Maxwell's equations have the form (1.1) with conduction vector
,{ = 2 and free charge density p = 0. Our constitutive equations have the
form (1.4). We consider a linearly polarized plance wave of the form
k= (0, Ey_(x,t).O). R= (O.DY(x.t) »0), B = (0, O,Bz(z.t))and Re= (0,0.Hz(x.t))
propagating into the region x > 0 occuppied by the nonlinear medium; in what
follows we will drop the subscripts and just write E = Ey. D= Dy, etc. We

also set 'e‘:'(c) = €(0,%,0), ?x'(c) = 4(0,0,Z), VI ¢ R! and assume that

(1I.1) (ze(@))' >0, (cﬁ'(c))' > 0, at least VZ e Rl. |z| sufficiently

small.

(1I.1) suffices to yield local hyperbolicity of the resulting quasilinear system.
Substituting the assumed form of the propagating plane wave into (I.l), Maxwell's
equations reduct to the quasilinear, homogeneous, hyperbolic system

E 0 a(E) B
(11.2) + = 0

" J,t b(8) 0 B J,.x
with a(E) =1/(¥(E)E)', b(H) =1/(N(H)H)'. In all of the previous works
which dealt with this problem, i.e., [4]-[8], the system of evolution equations

has been expressed in terms of E and H; the system (I1.2), however is not
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in conservation form. To rewrite it in conservation form we note that

so that D = Et/ﬂ(l). B, = Htlb(ﬂ). Furthermore, in view of (II.l), the
integrals in (1I1.3) are monotone in E and H, respectively, and thus in-
vertible. Therefore, 3E, H# such that E =E(D), H = {(B). The system (II.2)

then assumes the form

D (] H' (B) D }
(1X.4) ( ) ( ) . ( ) -0 ]
B st E'(D) 0 B X

where E(D) = A(D)D, H(B) = Y(B)B and A(D) = L/¥(EM)), Y(®) = L/A®®)). |

(I1.4) has the form of a hyperbolic conservation law of the form

2u+ L6 @ =0 wieh D(x.t)) (H(B))
) - » u) =
* (B(x,t) 1@ e

For nonmagnetic waterials (u() =u o H'(B) = lluo and the system (I1I.4)

has associated real, distinct eigenvalues

and associated characteristics defined by the equation % = Al, 2(x,t:).

With (I1.4) we associate initial data of the form D(x,0) = Do(x), B(x,0) =
Bo(x) and we remark that a priori estimates of the type provean by Nishida [9]
and Slemrod [10] may be used to show that if E'(f) > 0, WC s.t. || 1s
sufficiently small (a consequence of the definition of E and (II1.1)) and

|¢:g Do(x)l. |s:g B (x)| are sufficiently small, then E'D(x,t)) > 0 for as

long as (:1 solution of the IVP for (11.4) exists. Thus the characteristics,
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as well as the Riemann Invariants given by
I1.5
( ) D D
a(D,B) = B 4...3..] 1 r
’ & 0 JE'(;)d" 4(DyB) - — 0 'E EC) ds,
g
are well-defined. It is a simple matter to show that x, 5 are constant along

their respective characteristics so that (II.4) is equivalent to the diagonal

system.
. n N d
r (x5t) = 3t )‘l(x’t)ﬁ - at n(x,(y,t),t) =0
(11.6)
- L s _ _d -
_4 (x,t) = g-t' + l].(x":)'a; at 5(x2(6at)0t) 0
X (1,0) = ¥, x,(8,0) = 8, v,6 €K'
1 Do
To this system with associated initial data A (x,0) = Bo(x) + —_— j /E'(;i ds
. 0

U
0
etc. we may apply the following results on singularity development
(1) [Lax, [27]). 1If Do(') is periodic and By = 0 (vhere we extend
from R to Rl by periodicity) and E"(0) # 0 (genuine nonlinearity)

then finite-time blow up must occur for

1 (xst) = B, (x,0) +/—1—_—-_ ET®  D_(x,%)

Yo
= oD, (x,t) +/—:__— E' (D) D_(x,t)
(]

i.e. V(x’t)D = (Dx.Dt) must blow-up in finite time and a shock develops.

Also, 1f the initial values differ little from a constant X,, 4 then

0 0’
the time beyond which a smooth solution cannot be continued is given by

(I1.7) toax

= uy/ET(0) / (m;‘:':_ Dy () [E"(0)]).

(11) ([Klainerman and Majda [29]) Suppose that Do(-), Bo(-) (and

hence no(-), 60(')) have compact support; then any Cl solution of

O T 7o 3.3 AT T . e
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R =38 =0, s.t. %8,€C

1 aust develop singularities in finite time

if E'(7) is not constant on any open interval.
We now describe briefly two results cbtained by this author in (2] which are

based on the aBovo theorems. For a homsnetic material of the form
2
D= (eo+x°)z+x1E » B= uH
we have E = )«OD + AIDZ + 0(1)3) s E(D) where )‘0’ )‘1 are related to the

linear optical susceptibility Xo and the first nonlinear optical

ssceptibility X, by Agy/(Sgtigds A = /gt s

|E"() | = 2|11| #0 we may take By =0 and Ey(*) periodic and apply the

results of Lax [27]. In the MKS system €,, X,» X; are all of order of

13 hile MWy 1s of order of magnitude 1077, Assuming E,

9

magnitude 10~
= anglx(x.O)I to be of order of magnitude 10° volts/meter (as it would
R

be in an intense lightwave or laser beam) we find the approximations

e = Yo&tX)

1
max
X3/2 ( E, )(max E] )
1 "‘;io 2 0

-1/2 -1/2

“beam = (uoX,) (m;glzol)

-3/2

elv=1
and s = Co(m;x+|l!o|) (ﬂ;}_IEOI)

wvhere s max is the maximum distance travelled by the beam into the media until
shock formation and C, = ull 2(e +X ) /)(3 is a characteristic constant of the
0 0 0 "0/

particular material. The above expression for 8,ax COmPaTes quite favorably
with that derived in [3] especially in as much as the two results show that

8 ax is inversely proportional to the largest initial gradiemt of the beam
(the results in [3] are derived in an entirely different manner). One of che
chief benefits of writing our system (II.4) in conservation form is that we

may now apply standard results for hyperbolic conservation laws to study the




formation and evolution of shocks. The Rankine-Hugoniomnt conditions imply,

in particular, the possible existence of two shocks with speeds sr,gl given

by
1 Q
e -t /L

Ho
while the Lax k-shock conditions [30} (which serve as an admissibility
criteria to single out a unique physically realizable weak solution of IVP for

(I1.4)) reduce to statements that for s = 8. 8 = 8p either

(11.9) - >Mge > 1

/ Ge@)E)! Y BEpE)’
or

- 1 > /;%s > - 1

/@R ALY

where E_, E+ are the respective values of E just in back of and in
front of the shock. For s = s, it 1s shown in [1] that only the first
of the inequalities is applicable while for s = sp only the second inequality

is applicable. Furthermore, it is shown in [1] that in the important special

case
v 2
€(E) = € + SZE . eo >0, g, >0,
" 6€2° ' "
where ="(D(7)) = - — - E (0(%)), so that E"(0) = 0 but
(eo+3ezc )

E"(D(g)) #0 for % # 0, the results of Klainerman and Majda {29] may

be applied and for

-1/2 -1/2

s =8y =ug'? (egre,®2 + (B, +E)E))

the admissibility criteria imply that
«9-
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© (11.10) %}e()é)  F = gEgE + %eZE ,

2

2 _ 2
2 -E_>EE_>2E

2
E,

from which it follows that Ei > EE for the shock moving to the right. In

an analogous fashion we show in [1] that the admissibility criteria imply that
BZ > Ei for the shock moving to the left. As the local electric field energy

density in the wave given by

1 -2 4

and energy must be dissipated accross the shock,(Kataev {7]),we conclude that

the shock moving to the right with speed s = S, is not physically realizable.

For the system in nonconservation form, i.e., (II.2), it can be shown
(Kataev [7]), Jeffrey and Korobeinikov [6]) that there exist simple wave

solutions of the form
(I1.11) E = Eo(x tva(D)b(H) t), H= Ho(x +/a(E)b(H) t) .

For the nonmagnetic material these simple waves propagating in the media

assume the form

(II.12) E =Eyx * ual/z/a(z):), H = H(x ¢ ua”z.’a('n'):).

It was essentially deduced by Broer [4] by a direct computation based on

(I1.12)) that E _(x,t) +® as t - t* = 2/1% g* 1f3e* > 0 s.t.

8&(2 < E%r Vg € Rl. [CI sufficiently small; this condition is essentially

equivalent to the genuine non-linearity assumption. Shock development in the
more general case(II.ll) may be deduced directly from the work of Jeffrey
and Korobeinikov [6], i.e., it is possible to deduce conditions under which
Ex’ Hx blow up along the characteristics defined by %% = t /a(E)b(H)

by direct differentiation of (II.11) anduse of the fact that

(11.13) "(E"’)} - {f E g s {Iu ag |
4(E,H) ° vz ° A
-10-
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the Riemann invariants for this problem, are constant along their respective
characteristics.

b. Mechanisms for Digsipation: Anisotropy and Nonlinear Conduction, Dispersiom,
and Relaxation

With the exception of some rather vague remarks in Broer [4], concerning
the effects of dispersion on plane wave propagation in isotropic nonlinear
dielectrics, the numerical studies of Fisher and Bishel [14] and Shimizu [38],
on the interplay between nonlinearity and dispersion, and the effort made in
the paper of DeMartini, Townes, Gustafson, and Kelley [3] to build an exponential
relaxation process into the light pulse equation, most treatments of wave
propagation in nonlinear media, to date, have ignored’the effects on shock forma-
tion and propagation of anisotropy, nonlinear conduction, dispersion, and
relaxation. In this section we will outline an exact mathematical formulation
of some of these phenomena emphasizing chiefly the role of anisotropy and
nonlinear conduction and indicate how recent work on dissipative and inhomogeneous
quasilinear hyperbolic systems can be used to study the models obtained.
Electromagnetic shock waves are usually quite difficult to observe; even in
the case of ideal isotropy, with no conduction, no dispersion, and no relaxation
(instantaneous response) the calculations in [1] and [3], e.g. the expression
for S pax in 8IIa, indicate that whereas shocks always form the physical
observation of these shocks depends on the magnitude of the largest initial
gradient of the pulse. Gradients which are extremely large, but still within
the range of applicability of classical physics, are needed in order that
shock formation occur within physically observable distances of several meters
(or less). In [3] the authors consider an initial Gaussian pulse of the
form

p(0,t) = p, exp(-atzltﬁ)

where p = ngEZ/Bﬂ is the approximate energy density in the wave and n,

-11-
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the nonlinear refractive index; tL is the initial width of the Gaussian in
: ; time. The expression for the maximum distance travelled until shock formation

which is derived in [3] is of the form

[ H . -1 - 92 2
Smax 3, Qe win’0

where Yo is the linear velocity of propagation of the wave. Thus, 8 ax

varies inversely with (%%)min which is the largest negative slope of the

initial pulse in time. For Q-switched pulses in CS, the authors [3] indicate 1

2
that tl is about 10 nsec yielding an Spax of about 5 meters; for a mode-
locked laser, however, they [3] indicate that tl can be less than 10-11 sec

and that pulse steepening (shock formation) can occur over propagation path

lengths of less than a centimeter. The basic conjecture which we now put

forth is that anisotropy, nonlinear conduction, dispersion and relaxation may

act as dissipative mechanisms in the governing evolution equations. That

dispersion and relaxation may interfere with shock formation has been touched

o

upon in [3], [4], and [14] via appropriate (numerical) computations. No !

study, as far as we can tell, has ever touched upon the influence of anisotropy

~.’ "”—'

or nonlinear conduction on shock formation in nonlinear electromagnetic

materials, even though no material is perfectly isotropic and certainly no

dielectric is a perfect nonconductor (especially when 1nteras:fng with an

intense light wave of the type generated by a laser); we therefore begin by
~ i

- formulating a mathematical approach to the.influence of anisotropy and

conduction on plane wave propagation in nonlinear dielectrics.

We again consider plane waves of the form E = (0,E(x,t),0),
H= (0,0,H(x,t)) and assume the material to be nonmagnetic so that g -uog
and thus g = (0,0,B,(x,t)). Our assumption of anisotropy takes the form

g - g(x,E(x,t)), i.e., R and E are not parallel in the media; specifically

-12-
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we take
(I1.15)  Px.R(xut)) = (5(x), P(E(x,£)).0), §ec (R
with

38
(1I.16) sup(S(x)| < &, sup ,— < §,; 6,>0, § >0
"3 ' l =0 'xERg l 9x L 0 1

Then by the definition of the electric induction field

(11.17) R(xst) = g + P(x,E(x,t))
(6(!),203(3.t) + P(E(x,t)),0)
(8(x), D(E(x,t)),0).

Clearly div B = 0 and div ) =36/3x so that 36/9x represents the free charge
density. In response to the E field, and by virtue of the existence of an
effective free charge deansity 036(x)/3x, the conduction vector § can be
expected to be nonzero in the dielectric with J = a(x,E)E (nonlinear Ohm's
Law; the explicit dependence of the conductivity ¢ on position is consistent

with inhomogeneity). In view of our constitutive assumptions
(I1.18) = (2,3(x,E(x,t))E(x,t) ,0)

vhere 3(-,5) = 0(+,(0,5,0), ¢ eR'

and a/ac(—a-gi—")-) + V] =0 so that the equation expressing conservation of
charge is trivially satisfied. As J ¥ R the third of Maxwell's equations

must be modified so as to read
i+ 82/81: = VxH

while the fourth equation is, of eourse, just div D = 35/3x, With the
assumption of plane wave propagation these equations then reduce to the scalar

quasilinear system

M) _ _aH
t

’t\!'(x.E)E + o

(11.19)

3
L e o
Eabits -
s
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Assuming again that 3D/3E > 0 so that 3e with E(X,t) = €(D(x,t)) we

may rewrite (I1.19) in conservation form as

o, F:;.g_:. -3(x,E(D))E(D) = - J(x,D)

(11.20)

Breom .o
vhere J(x,D) = J(x,E(D))E(D). Clearly (II.20) is an inhomogeneous comservation

law of the form

du, I ()
(11.21) —3—t+ 13,‘ - g, (x,p)

/ (x,D)
vith = (). £&) '(l :‘:;)-s&-:e) - ‘(2 0 ) : '

The system (I1.20) may be compared with that considered by Nishida [9], and

Slemrod [10], i.e.,

wt -V " 0
(11.22) (a > 0) :
vt-I‘(w)x = ~qv j

which yields the damped nonlinear wave equation

W, +aw, = F(w)xx-

Initial value prnQ&ema for (1I.22) have been shown in (9] to have global

1 solutions (wzy) provided the initial gradients ui(x,O). v*(x.O)

are sufficiently small in the C1 norm while shocks have been shown to
develop, in spite of the damping factor a, if these gradients are sufficently

large pointwise [10]. Our system (II1.20) leads to the wave equation
' -

As I'(00) = E' @) B .E@))- E@QY (+,E@)), and E'(Z) > 0, vy ¢« R}
(hyperbolicity), we conjecture that for sufficiently small initial gradients
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D (x.0), B _(x.0) solutions of IVP for (I1.20) will also be globally smooth
if I'(e,7) >0,vZ € ll‘{:ﬁ‘f(-.y)> Y?:"(ny). VY € ll. but that shocks will
develop if these initial gradients are, pointwise, sufficiently large. The

analysis in [9], [10] is based on the equivalent system of equations satisfied
by the Riemann invariants associated with (II.21). For our system (II.20) the
Riemann invariants are again given by (I1.5) where now, for the sake of
simplicity, we normalize and take ¥o = 1. Then (II1.20) 1is easily seen to be

equivalent to

(11.24) A' = -VE (Ds Z(x,D), s = 'E (D) ZI(x,D)

where: "= 3/3t 4+ A 3/3x, = 3/3t -A3/3x, )= +/E(D).
D ° ..

As 5—;—- - J vE';) dz, 3B* such that }
1}

8
D= B*(r-s) (i.e. %-IO E'Z) dg + B8 = B*(a)). :

Thus (II.24) assumes the form

n' = —p(x,n-8), ' =3/3t + A*(n-4)3/3x
(11.25)

-~

8" = p(x,n-8), ~ =3/3t - A*(n-8)3/3x
where
p(x,1-8)) = VE' (B*¥(1=8)  L(x,B8*(1-4))

I(x,B*(1-8)) = O(x,E(B*(1-8)))E(B*(1-8))
AN(1-8) = A(Br(n-8)) = VE'(BR(n-3)).

Thus, one goal of further work in this area should be to investigate the
existence or nonexistence of global smooth solutions for IVP for the system

(I1.25) beginning with the case where the conductivity is homogeneous so the

p does not depend explicitly on position. In this regard an attempt should

be made to generalize and extend the results of Nishida [9] and Slemrod [10]

for systems of the form

et AR o )< - TIN5 Tt——— ey y e " = S




A' - -% (n+s), &= - %(Im)

by examining the behavior of 2, § along thc:lr‘ respective characteristics

(in our problem the curves defined by % = t/ET(BR(n-3))= A (B*(1~4)) =

\ ' A*(2-8). Such work is now in progress.

. We note here that we could equally well work with E, H instead of D, B.

If we set a(E) = 3D/3E, b(H) =38B/3H (we do not now begin with the assumption
that the media is nonmagnetic), A(E) = 1/a(E), B(H) = 1/b(H), then (II.19)

assumes the form

el , [°o Aa®)\ (e} . _[ix®
(11.26) 2l B * O i),x 0

where I(x,E) = -0(x,E)A(E)E

The characteristics associated with (II.26) are given by

& . A®E®

0 A(E)
and the left-eigenvectors associated with (B (8) 0 ) are £ = (1,vA(E)/B(B)).

Using multiplication by the componenets of the first left eigenvector to combine

the equations in (I1I.26) in the standard fashion we find that

! E' H' 3." (x,E) I~
- + - - - - N, - -
A®  B@® A AECEBE = AR

where ' =3/3t + YA(E)B(H) 9/9x denotes differentiation along the characteristic

'. : %}t- = YA(E)B(H). Thus if we define the Riemaniann invariants

E B
‘n(E,H) = I va(%) dc+j b() d&%
0 0

H
Vol & - [ /oD dt
0

. -




5 -
. LN
§F

wve have

r’ = <-A(x,B), & = -A(x,E)

In the nonmagnetic case

B E

(11.27) A=sH+ I va(g) dz, s =-H+ I Ya(g) dz
0 0

and

(11.28) ’L‘ = -A(x,E), &= ~A(x,E)

vith “=3/3t + /AE) 3/3x, T =3/3t -~ JA(B) 23/3x.

n+s E
But, by (I1I1.27), -5 = j va(7) dz so 3g* s.t. E = gx(n+s).
0

Setting A(E) = /A(E), we then have as a congequence of (I1.28)

/Lt + M'(l(.ﬂ)lcx = <Y(x,n+s)

4, - A*(IL+4)Ax s =V(x,1+8)
where

A¥(+s) = A(gk(n+s)) = JA(g*(nt+s)

Y(x,a+s) = +A(x,g%(n+s))

= gh(n+8)VA(RE(R+3) )0 (x,g8* (A+4)) .

Finally, if we do not specialize to the case of a nonmagnetic material then

E H
ah J /al) &, 2% . j AT &
2 0 2 0

so that we may set

E = gh(1h), H = f¥(-8)
AE) = AE®) = AGRFAR)) = At(+s)
o) = /B = /BUEFREZ)) = *(r-s)

and in place of (11.29) we obtain
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x, + AR (a+s)o* (a-8)1, = ¥ (x,n+5)

(11.30)
8 - A*(n+s) ¢* (a-8) <" =¥ (x,2+8)

with ¥(x,a+s) as in (II.29).

We could also approach these problems in terms of trying to apply and/or extend
results on the existence and behavior os solutions to inhomogeneous hyperbolic
conservation laws of the forn (II.21), where in our problem £(p) = (Qgg),
when u(H) = const. With regard to such problems the existing literature is
quite small but some important recent work (Liu [11], Liu and Li [31], Dafermos
and Hsiao [13], and Dafermos [12]) should prove to be of interest for our
particular problem. Liu [11]), in fact, constructs weak solution of (II1.21)

for the case where = ;e(x,t) is an n-vector, { is a smooth n-vector-
valued function of ] and 4 and a,;/a,e are piecewise continuous n-vector-
valued functions of x which are continuous in R and studies their asymptotic
behavior as t + +o. It is assumed that 3f(y)/3y has real and distinct
eigenvalues ll(;é) < Xz()e) < see Xn()e) for each y. The analysis in [11]

is based on a numerical scheme which generalizes the Glimm acheme [32] for
hyperbolic conservation laws. Among the results proven in [11] are the
following:

(1) when the Ai(&(x)) i=1,2,...,n are nonzero and the Ll norm of
g(x,;e(x)) is small for ;é(x) uniformly close to the initial data %(x). a
global solution of the IVP for (II1.2l) exists and tends pointwise to a steady
state solution of E&é:—) - g(x.,e).

(11) when each characteristic field is either genuinely nonlinear or
linearly degenerate (Lax [30]) the solution tends uniformly to a linear
superposition of shock waves, refraction waves, travelling waves and a steady
state solution; however, these waves are determined by the values of the

infitial data ’Co(") at x = 3o, It is assumed, in the general case,




T
e A
=

that the initial data have small total variatiom.

In [31], Liu and Li study IVP for (II1.21) under the assumption that &(x.;e)
has compact support in x, with particular emphasis on constructing non~
interacting wave patterns for conservation laws with a general moving source
term of the form

3 )
é#- f,;):) -g(x-et,,e).

(11.31)

This system can be reduced to (II.21) under the change of variables

£G) + f(u) - cy and x +x - ct. In [13] Dafermos and Hsiao consider IVP

for systems of the form (II.21) with g(x )e(x.t)) *5(x,t.g(x.t)) and

establish the existence of locally defined solutions with shock waves.

They prove the existence of globally defined solutions by introducing an

appropriate definition of dissipativeness for the source g(x.t.g‘) and showing

(via a combination of Glimm's scheme for conservation laws and the method of

fractional steps) that its'effect counterbalances the wave amplification due

to inhomogeneity.

Many of the existing results for systems of the for (II.21) in both R1 and

Rn, n > 1, with an emphasis on asymptotic behavior, are summarized in

Dafermos [12] while problems for particular forms of either the inhomogeneity

g or the function {(g) have been treated by Liu {33] and Ying and Wang [34].
Concerning the possible dissipative effects of relaxation on the

formation and evolution of shock waves in nonlinear electromagnetic materials, we

should be interested in replacing constitutive relations of the form (I.41)

t
by assumptions of either the form p(x,t) = E(E(x,T))R(x,t) with

t t
(11.32) ER(x,T)) = €4 + I €,(t-1) I5|2(x.1) dt.

and & = (0,E(x,t),0), H= (0,0,H(x,t)), k - E

=]9=




or R= (0,p(x,t),0) with
| ¢ t ,
(11.33) P(x,t) = P (E(x,t)) = J y(t-T)E°(x, 1) dT.

v ' In this latter case we would have P = (0,D(x,t),0). and

t

(11.34) D(x,t) = eoE(x.t) + I w(t-r)Ez(x.T)dT.

-0

It then follows that Maxwell's equations reduce to the system of scalar

quasilinear hyperbolic integrodifferential equations

JE t

0 3t

oH

€ ter - -w(O)Ez(x,t) - J wt(t-r)bz(x.r)'dr

-0

(11.35)

With Riemann invariants

o

)

3/3x, ~ = 3/3t - —— 3/ax,

) )

and * = 3/3t + =L

we obtain the following system of nonlinear integrodifferential equations along

\\\ the characteristics %% = 2 J:___.
~N eo
1 2 1 (¢ 2
a'. --zw(o) ts)” -7 I wt(t-t) (n+s)© (x,DdT
(11.36) =
. 1 2 1 2
8 = -0 (+e)” - I_ V(= D () (x, DT

1f we follow the constitutive hypothesis (II.32), instead of (II.33), then

we obtain, in place of (I1.38) the system

-20-




‘ )|

[t-:0 + I ez(t-'t)Ez(x.t)dt] % + =

-0

t

=00

(11.37) -52(0)1!3(::,:) - (J 52— ez(t-‘t)Ez(x.T)d‘l') _E(x,t)

wvhose characteristics are defined by the equatiomns

t

ax .+[eo+ ] ez(t:—‘l:)l:*:Z(x,'r)d'r]"”2

dt -

The system (I1.36) has the advantage of possessing families of parallel straight
lines as characteristic curves in the x,t plane but distortion of propagating
waves may occur due to the nonlinear source terms on the right hand sides of
these equations; an analysis paralleling the work of MacCamy [35], [36] and
Hattori [37] on materials with memory may be possible. The form of the con-
stitutive hypothesis (II.32) more closely follows the formulation in [3] than
does (II1.33) and a numerical treatment in [3] indicates that a rarefaction
shock may still build up. The importance of considering relaxation effects in
electromagnetic media ia emphasized in Kataev {[7] who indicates that equations
(I.4) "can be invalid for material media (if there is) a lag in the change in
induced fields which occurs in response to a rapid change in the field intensities
in the media. This lag in the reactions may be attributable to the magnetic or
dielectric viscosity of the medium"

Up to this point we have totally ignored the role that dispersion might
play in propagation of waves in nonlinear electromagnetic media. In a linear
dielectric (g = eoxE) vhere the dimensionless coefficient X 1is the

polarisibility of the medium and J§ satisfies the wave equation
2E 2

so that the wave speed is given by 2 = {eouo(l+x)-1/2} and the refractive

2]~




" index n = cl'g = (1+X)1/2. dispersion and relaxation are usually introduced
into the linear theory by replacing the above conatitutive relation between 4

i : E and 5 by the Lorentz equation

“ | (11.39) _1. 3.2& + - 1
' . 7 o2t R Tk i
! wo ot

For a wave having an E field with monochromatic frequency w (II1.41) leads

‘ to the well known result that nz =1+ Xwgl (wg - wz). One way of introducing

! dispersion into the nonlinear optics relations (I.4) for an isotropic media

(vhich we also assume to be nonmagnetic) would be to take

(IL40) € = eWB) = g ) + c,WE

and consider the propagation of plane waves in which E has the form (0,E,0)

with,

-iwt eikx)

'] s (I1.41) E(x,t) = Re(Eo(x)e » k the wave number.

;",f ‘ The corresponding reduction of Maxwell's equations is a straight-forward

matter and will not be pursued here (although it is being pursued by this author

within the scope of the general research program described above).

We conclude this subsection by noting that both the numerical studies of g
]

Fisher and Bishel [14] as well as the earlier numerical studies of Shimizu

{38] have shown that shockg can form on the leading edge of pulses in a Cs,

laser when dispersion and nonlinearity are considered simultanecusly.

"
I11. Electromagnetic Shock Wave Formation in Nonlinear Distributed Parameter .
Tragnsmission Lines .

Shock formation and propagation in nonlinear transmisgion lines has been

e e R e

studied by a number of authors ([7], and the references to some of the Rugsian
litersture cited therein, [15], [16]), [42), and [43]). As Jeffrey [16] points

4 out, the method of analysis that is used for linear systems does not easily
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generalize to the study of nonlinear distributed parameter transmission

lines since the customary procedure in the linear theory is to convert the

two first order transmission line equations into a single second order equation,
the well-known equation of telegraphy. When the transmission line is nonlinear,
the voltage and current are no longer solutions to the linear telegrapher's
equation and superposition of solutions no longer applies. (Further developments
in this vein require that the nonlinearity be simplified via approximations of
various kinds, as in Ostrovskii [43]).

Landauer [15] and Riley [42] both exploited the formal equivalence between
the nonlinear transmission line equations and the one-dimensional isentropic gas
flow equations to study nonlinear transmission line behavior. In fact, Landauer's
work [15] represents a direct application of the methods of gas dynamics [41]
while Riley's [42] contains an application of the work in [15] to a nonlinear
transmission line involving a voltage dependence capacitance. but Jeffrey [16]
notes that neither of the author's ({15], [42]) "considered the problem of when
a continuous wave propagating down a nonlinear transmission line first becomes
discontinuous and.forms an electromagnetic shock wave'"j he considers in [16]
an idealized transmission line with distributed parameters C(v) the capacitance,
R the resistance, 1L the self-inductance, and G the leakage conductance per

unit length of the line (see figure below)

. L

R

e >
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Here v(x,t) 1is the voltage at a point which is x units distant from an

origin taken in the line; we also denote by 1i(x,t) the current at (x,t)

and note thac by definition C(v) = dQ/dv where Q(v) 1is the voltage dependent

charge per unit length of the line. Ohm's and Kirchoff's laws when applied to

the element of the transmission line depicted above yield the system of equations

i, W L.

L'BT 9x

(I1I1.1)

C(v)—g%+-g?j"-+cv-0

In (III.1) the analysis in [16] assumes that L, R, and G are constant. It

is clear that (III.1) has the equivalent form

(1) ( 0 1/L> <1> -3
(111.2) + -
v /,t 1/C(v) 0 v /,x - Gv

of an inhomogeneous quasilinear hyperbolic system if C(v) = %3 > 0. 1In fact,

the associated characteristics are clearly defined by % —_ . For C
YLC(v)
independent of v, C = Co = const., Jeffrey concludes [16] that
(111.32) 55 (1(%‘—-)”2 s m-( 2 1+l
0 ./‘Eé; 0
along solutions of %XE S
A,
(III.3b) _&% (i(.c_l‘_) 1/2 - v) = - (__5_ i - 59_ v) s
0 vﬁbo 0 iq
H
along solutions of %% R S
/iCy

and shows that 1, v both propagate along the linear line with attenuation

factor -G/C0 if R/L = G/Co. In attempting, however, to show that an

=24~




G tad i

P

electromagnetic shock forms in the line with C = C(v) >0, K= G =0 he

incorrectly (his eqs. (4. la), (4.1b) claims that along solutions of
dx 1

- = % ———— , respectively,
* o mm
1/2
d L
It (i(-ET;$) +v) =0 and
1/2
d L
Ic (i(-ET;TQ -v) =0

whereas the appropriate Riemann invariants must now be taken as

1 v
1) =1+-L [ @ d
I /0
(11I1.4)
v
£i,v) = 1 - L J @ .
YL ‘0

That 4, 4 as defined by (III.4) are constant along the respective character-

istics defined by %% = * 1 follows directly from (I11.2) with R = G = 0;
VEC(V)

shock formation for IVP associated with (III.2), with R = G = 0, is then a
consequence of the results of Lax [27] for the genuinely nonlinear situation
Q"(0) # 0 or Klainerman and Majda [29] for the case of compactly su-ported
initial data 1(x,0), v(x,0) with Q"(Z) # O on every open interval of Rl.
Even allowing for the incorrect form for the Riemann invariants in [16], shock
formation is obtained in this paper only for waves propagating into a constant

state 1 and follows from the fact that characteristics of one family

0’ Yo
adjacent to the constant state have constant slope and are thus straight lines.
Moreover, the shocks obtained are weak in the sense that the fields are required

to be everywhere continuous so that"shock formation'involves the development of

jump discontinuities in the first derivatives of the fields. For the model

(111.2) with RZ + G2 ¢ 0, Jeffrey shows [16, §5] that disconinuities form
if either

ac
W L&D, <0 or
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2

C
aC 0 R G
(i) YX(-TVZ >0 and '{_a-c—)— (f + q') <1

X" v 0

where the zero subscript indicates evaluation at the constant state ahead of
the wavefront trace and the superposed " indicates the limiting value along the

wave front trace. However, as Q = Q(v) and C(v) -.%%-> 0 the expression

v
Qv) = I C(z)d; may be inverted to yield v = V/(Q) and the inhomogeneous

v
0
system (III1.2) may be rewritten in conservation form as

91 , 1
ST V@) = -m

(1I1.5)

9Q 31 _ _
8t+8x GV(Q) .

If G=0 (no leakage current between the conductors) then by direct analogy
with the damped Quasilinear system (II.21) [w+Q, v+4, T +3v and a+B&]
it should follow from the work of Nishida [9] and Slemrod [10] that C!
solutions of IVP for (III.5), and thus also for (III.1l)), should exist globally
if ix(x,O) and Qx(x,O) are sufficiently small in the C1 norm,but that
shocks should develop if either of these initial gradients is sufficiently large
at some point in the transmission line; this contrasts sharply with the results
of Jeffrey [16] cited above where discontinuities are proven to form (albeit,
weak shocks) if 'XxQ(v)0 < 0 and the wave is propagating into a constant state.
Work is now in progress which involves analyzing the system (III.5), with G ¢ 0,

by re-writing (III.5) in terms of the appropriate Riemann invariants and studying
the behavior of these Riemann invariants along their respective characteristics;
in this sense the study of (III.5) is expected to have close connections with

the study of the systems (II.25), (1I.29), and (I11.30).

In the model considered in [7], Kataev begins with the equations




-

+

?‘le q:lz:
[ |
o

(I11.6)

[ ]

+&2 . g

e wje
(o} [, aL:]

where J is the leakage current and ¢ the magnetic flux per unit length
between the conductors. The connection with (III.l) is that ¢ = ¢(1i), L(1) =
09¢/31i (the differential inductance), J = J(i,v) = G(i,v)ev and, as previously
assumed, Q = Q(v); in (III.1), where R ¥ 0, it has been assumed that L(1)

and the conductance G(v,i) are constant. Kataev [7] then specializes to the

cagse wvhere L(i) = Lo = const., C(v) = Co = const. and thus obtains from (III.6)

the system
i , v _
L0 33'+ ax 0 ]
(1I11.7)
ov , 91

whose characteristics, defined by %% = % ——l-—, are straight lines (we assume

C
070 |
that Loc0 > 0). He looks for solutions of (I1I.7) in the form of stationary shocks,

i.e., for solutions which are functions of w = x - 8t where 8 1is the velocity

of propagation; in this case i = i(w), v = v(w) and (II.7) becomes ) i

v-v,= BLo(i—io)

(111.8)
%% = BC, %% - G(i(w) ,v(w)) *v(w) ' 1

after integration of the first equation. In (III.8), 10. Yo refer to the

initial values of the current and voltage. Solutions of (I1I.8) are then 7

sought for which 1 + 10 as w+ 42 and 1~ 10 + 10 as w + +o, vwhere 10

is the amplitude of the stationary wave; this is achieved by integrating (III.8):

i

1 - dg
(1-321,0%) 1y GIZ.8LG(5-1g) + vol-(LyB(@-1) + vo]

and then imposing the boundary conditions so as to conclude that |
1
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(a) for 15 <1< iy+ io. and v = gL (1-1)) + vy, G(1,v) > 0

i
di
(b) Lo LY is divergent for v = BLo(i-io) + Yo
vhen i =1, and 1-1°+£°.
A further analysis then shows that (a), {(b) require that as we approach points
on the profile of the wave G(i,v) + 0 yielding (in Kataev's notation) at each
point on the profile a relation of the form v & y(i). Taking this last relation

into account, Kataev then rewrites the first equation in the system (III1.7) in

the form
i . _q (), 31
(111.9) 2 = -@e/~5377) 3¢

for which (approximate)simple wave solutions of the form

Lddd)

Lo di

are immediate. The development of discontinuities in the current i now follows

(111.10) 1= I(x -

immediately, under obvious conditions on Yy(i), via a direct computation of the
gradient ix' A more satisfactory approach to the study for (III.7)

in our opinion, consistsof introducing the Riemann invariants

(II1.11) a(i,v) = /I; 1+Cyv, 4(1,v) = /1; i- /q v

which satisfy (along their respective characteristics defined by % = El_)
o®o

the equations

P Gp (b8 J1=8) * (1=8)
-2yL,.C 0
00
(111.12)
1
4" = G (A -8) (N=8)
2/L.C 0
0”0
wvhere, GO(IL'M N=8) = G( L (n+s), 1 (2=4)) . The inhomoganeous terms on the
2/ 2/%,

right hand side of (I1I.12) simplify considerably if the conductance G(i,v)

is independent of the current i.
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