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I. Introduction.: Nonlinear Phenomena in Electr amatic theory

The subject matter of this survey is the manifestation of nonlinear

phenomena in a wide variety of problems of electromagnetic theory. The

specific problems which we intend to focus on include shock formation

and propagation for plane electromagentic waves propagating into an isotropic

nonlinear dielectric half-space, the possible dissipative effects of

anisotropy, nonlinear conduction, dispersion, and relaxation on such

wave propagation, and the development and propagation of singularities

In electromagnetic wave propagation In nonlinear distributed parameter

tranemission lines.

In earlier work we have studied the problem of shock

formation in non-dissipative, non-dispersive nonlinear dielectric half-

spaces and singularity development in rigid, infinite, nonlinear dielectric

rods; these problems have been treated in (1] and (2] with some of the

results described in §II below. The basic achievement in (1] was to

place the problem of shock formation within the context of the general

theory of homogeneous quasilinear systems of hyperbolic conservation

laws and thus the approach differs from that taken In earlier work by

De Martini, Townes, Gustafson, and Kelley [3], Broer [4], Jeffrey [5].

and Korobeinikov (6], Kataev (71 and Donato and Fusco [8). In particular,

setting the problem within the context of the theory of quasilinear systems

of hyperbolic conservation laws allows for a relatively simple transition to

the cases where the media is either anisotropic, and exhibits a small nonlinear

conduction current, or exhibits dispersive effects or relaxation phenomena.

It is shown LIn I that in each of these cases our problem may again be

set within the theory of hyperbolic conservation laws, the difference with

the isotropic, non-dispersive case being that nhomogeneous tarms which

are possibly dissipative in nature make their appearance; a chief goal of

.... --
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the work dmribed in M1Tb will be to examine conditions under which shocks

do or do not form end in this regard recent work of Nishida [9] and Slmnrod

(101 on dissipative quasilinear systems and of Liu [11], Dafermos [12],

and Dafermos and Isiao [13] on hyperbolic conservation laws with inhomogenecity

and dissipation may prove useful. Some Interesting recent numerical studies

by Fisher and lishel [14] at Los Alamos on the interplay between dispersion and

nonlinearity for intense plane wave laser pulses are also described in 11D.

In §111 we consider the problem of shock formation and propagation in

distributed parameter nonlinear transmission lines where one of the parameters

C, the capacitance, depends on the voltage drop v accross the capacitor;

this problem has been considered previously by Landauer [15], Jeffrey [16],

Riley [42] and Kataev [7]. However, these authors considered primarily the

formation and propagation of jump discontinuities in the first derivatives of

current and voltage in the transmission line; nore were these problems previously

set within the context of the theory of quasilinear systems of conservation

laws and such a formulation is affected in §il where it is conjectured that

for sufficiently small initial gradients of current and voltage shocks will not

form in a nonlinear transmission line with either nonzero linear resistance or

leakage conductance, whereas such shocks will form if these initial gradients

are sufficiently large. Shock formation end propagation in nonlinear trans-

mission lines is of some considerable importance for as Kataev [7] points out

experimental tests have shown that such electromagnetic shock waves have led to

technically feasible methods of producing short current pulses with a fast rise

time.

Maxwell's equations, in the absence of free current, free charge, end

and external magnetization, have the standard form

-2-
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I

))- - curl, div - 0

In some bounded, open domain n c R3 , where is the magnetic field, the

magnetic intensity, k the electric field, and 4 the electric induction field

(or electric displacement). The latter field is defined by D! C_ + (r)wIth k(k)

being the polarization and eO the permittivity of free space. In a vacuum,

= 0, H u10"IB where u0 is the permeability of free space and > 0,

U0 > 0 satisfy C€0U - C 2 . In most standard texts on electromagnetic theory

only linear constitutive relations between k and k (and, hence, between

and J) are considered, i.e., () = -co)0 9 C > or perhaps, -

where is a tensor of rank four.

In [1912] Voterra propose the set of constitutive

t(I.2) Ik(x't) rG (x't) + k(Z(x't))

(1.2) -

t

which, though still representing an a priori separation of electric and magnetic

effects, are sufficiently broad enough to Include as special cases the linear,

rigid non-conductors of Maxwell [1973] the Maxwell-Hopkinson Dielectrics [1897]:

k(x,t) - C k(x,t) + qb(t-T)k,(x,T)dt

(1.3)
V(x't) U k-1(x,t)

£ > 0, Ij > 0, f(t), t > 0, continuous and monotonically decreasing, and

special cases of the holohedral and hemihedral 4sotropic dielectrics introduced

by Toupin and Rivlin (211 in order to explain the phenomena of absorbtion and

dispersion of electromagnetic waves in dielectric materials. All of these

-3-



special case refer to linear theories and are fully discussed in the recent

monograph by this author [221.

As is clearly indicated in Sloembergen [231 nonlinear properties of the

constitutive relations

have been recognized for som time, i.e., that the dielectric constant and

magnetic permeability can be functions of the field strengths. The Importance

of nonlinearly In problems of electromagnetic theory is also emphasized in

Kataev [71 who points out that "linearization of the parameters of a media is

'only a first approximation. For example, a linear relationship between the

conduction current and the voltage (Oh's law) exists, generally speaking, only

if a number of conditions are observed: constancy of temperature and composition

of the medium, and absence of magnetic fields".

ii The monograph [23] begins with the constitutive hypothesis (1.4) and most

recent attempts to prove focusing of polarized electromagnetic waves propagating

through a nonlinear dielectric media have been based on constitutive hypotheses

of this form with -const. and C(W)mCO + C 2, CO >O, '2 >0

Similar constitutive relations have been employed in the work on shock formation

cited in [31-[8], e.g., in (3] the nonlinearity of the constitutive relations

is reflected in the consideration of a material with an intensity-dependent

index of refraction and it is shown that such dependence tends to distort an

optical pulse along its direction of propagation thus giving rise to pulse

self-steepening (optical shock development). Other interesting non-linear

problems for dielectrics which have been treated in recent years, and which

I. are based on constitutive relations of the form (1.4), include the work of

lazakia and Venkataramn [24] who use the method of characteristics to study

the early phases of propagation of a large amplitude electromagnetic disturbance

in a nonlinear dielectric slab embedded between two linear dielectric media,

-4-
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the work of Venkatarama and 34vlin (251 who premt a method for calculating

the change in amplitudes and phases of harmonica of all orders for a plane

electromagnetic wave propagating in a nonlinear, non-dissipative, isotropic

dielectric, and the work of Rogers, Cekirge, and Askar [26] who apply a

modification of the Bergman integral operator method to a hodograph system

describing linearly polarized plane electromagnetic pulse propagation in a non-

linear dielectric, thus obtaining closed form solutions which are valid up to

the time of shock formation.

II. Singularity Development in Nonlinear Materials

a. Shock Formation in Non-dissipative, Non-dispersive Isotropic Media

We assme Maxwell's equations have the form (I.1) with conduction vector

- and free charge density p - 0. Our constitutive equations have the

form (1.4). We consider a linearly polarized plance wave of the form

(0, E (xt),O) - (ODy~x~tO),), - (0, OBz(zt))and J - (OOHZ(x.t))

propagating into the region x > 0 occuppied by the nonlinear medium; In what

follows we will drop the subscripts and just write E Z y, D - Dy, etc. Wey yI

also set c(C) - e(0,4,O), )1(;) - i.(OO,), V1 C R and assume that

))>0, (I > 0, at least V C R1, sufficiently

small.

(I.1) suffices to yield local hyperbolicity of the resulting quasilinear system.

Substituting the assumed form of the propagating plane wave into (1.1), Maxwell' a

equations reduct to the quasilinear, homogeneous, hyperbolic system

(11.2) a+I -0

wihaH ( ): ( b(H) 0x

with a (E) /(()E) )', b(H) - I (Oj(H)H)'. In all of the previous works

which dealt with this problem, i.e., [4]-[81, the system of evolution equations

has been expressed in terms of 9 and H; the system (11.2), however is not



in conservation form. To rewrite it in conservation form we note that

(11.3) D- J - T" Bd-
0 0b (

so that Dt - 9 /a(l), Bt 8 M/b(I). Furthermore, in view of (11.1). the

integrals in (11.3) are monotone in : and , respectively, and thus In-

vertible. Therefore, 3E, H such that z - E(D), B - H(B). The system (11.2)

then assumes the form(D)t ( 0 1(B (D 0
(11.4) ()•(') f() -o0

B t E' (D) 0B,

where E(D) - X(D)D, H(B) - Y(B)B and X(D) -1I/ (E(D)), y(B)- 1M/((B)).

(11.4) has the form of a hyperbolic conservation law of the form

u + f 1  (A) - 0 with D(xt) H(B)-a B(x,t) /

For nonmagnetic materials (uq( ) - u0), H' (B) 1/U° and the system (11.4)

has associated real, distinct eigenvalues

and associated characteristics defined by the equation 7- X (x.t).
t 1,2

With (11.4) we associate initial data of the form D(x,0) - D (x), B(x,0) -
0

B (x) and we remark that a priori estimates of the type proven by Nishida (91

and Sleurod [10] may be used to show that if E'( ) > 0, V; s.t. 1i4 is

sufficiently small (a consequence of the definition of E and (11.1)) and

Is; Do(x)j, Is! 3o(x)I are sufficiently small, then E'D(x,t)) > 0 for as

long as C1 solution of the IVP for (11.4) exists. Thus the characteristics,

-6-



as wll as the Rismann Invariants given by

(11.5) D

r_ j d_ _ __B) - -

are vell-defined. It Is a simple matter to show that it, 6 are constant along

their respective characteristics so that (II.4) is equivalent to the diagonal

system.

ata dt -(x,(yt),t) 0
'(.6) (x. 0 + x,t) - - - (x2.0.0 0, ) +as _ d=

at 1 3ixa dt 6( 2 (6t)t-0

x1 (Yo) Y , x2 (6,0) - S, y,6 e

To this system with associated initial data '(xO) - Bo(x) + 1 (r) da

etc. we may apply the following results on singularity development

(I) [Lax, [27). If DO() is periodic and B0 - 0 (where we extend

from + to RI by periodicity) and E"(0) 0 0 (genuine nonlinearity)

then finite-time blow up must occur for

t (xt) B (xt,) + 1__ (D) Dx(x.t)

P -boDt(xt) + 1 ( Dx(x,t)

i.e. V D - (DxD t ) must blow-up in finite time and a shock develops.
(x.t 0,

Also, if the initial values differ little from a constant 10' 0' then

the time beyond which a smooth solution cannot be continued is given by

(11.7) tx 1 0 A"(OATv / (max D' (x)IE"(0)I).

0

(ii) ([Klainerman and MaJda [29]) Suppose that D00 (.) () (and

hence tO('), 40(')) have compact support; then any C1  solution of

-7-



tf - 44,i 0. *..t. -04 C1 must develop singularities, in fi4nite tim

if to(~ i not constant on any open Interval.

We now describe briefly two results obtained by this author In [21 which are

based on the above theorems. For a noumagnatic material of the form

D -(C 0 +X0 )z + X1 92. 3~ - O

2 3we have Z-XYD+ XD + 0(D) e E(D) where 10 ,are related to the

linear optical susceptibility X0 and the first nonlinear optical
- 2/ dO3/2.

susceptibility X, by 1oinxi/(cod+XO)$ X I -X1/ej 0  As

IE(O) I - 21II 0' 0 we may take Bo - 0 and K0(-) periodic and apply the

results of Lax [27). In the MKS system Lo, X0, X, are all of order of

magnitude 10-13 while UO is of order of magnitude 16-7. Assuming EO

Ir sjE (x, 0) 1to be of order of magnitude 10 volts/meter (as it would

be in an Intense lightwave or laser beam) we find the approximations

R t

and 5 ax - MI i-/ mxZj-

whee xs is the maximmm distance travelled by the beam into the media until

shock formation and C0  1/2~' (C6+x0)/c3 is a characteristic constant of the

particular material. The above expression for am compares quite favorably

with that derived In 13] especially In au much as the two results show that

s.e is inversely proportional to the largest Initial gradient of the beam

(the results in [31 are derived in an entirely different manner). One of the

chief benefits of writing our system (11.4) in conservation form Is that we

my now apply standard results for hyperbolic conservation laws to study the

VS-



formation and evolution of shocks. The Rankne-Uugoniomnt conditions imply,

in particular, the possible existence of two shocks with speeds s ,a given
rL

by

(11.8) r't -5051

while the Lax k-shock conditions [30] (which serve as an admissibility

criteria to single out a unique physically realizable weak solution of IVP for

(11.4)) reduce to statements that for s r 8 M = either

"> 0 /U7,,,
(11.9) 0((_E) (F7 (E+) E.+)'

or

> >

where E_, E+ are the respective values of E just in back of and in

front of the shock. For s - sr it is shown in [1] that only the first

• of the nequalities is applicable while for a . s't only the second inequality

is applicable. Furthermore, it is shown in [1] that in the important special

case I

(g - 0 + C2 2 E0 > 0, 2 > 0,

6c
where r"(D()) 2- . E'(D()), so that E"(0) 0 but

E "(D( )) 0 for # 0, the results of Klainerman and Majda [29] may

be applied and for

--1/2 (c0+E2(E+ + (E+ + E )E_))-1/2

the admissibility criteria imply that

-9-
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2 2from which it follows that E; > - for the shock moving to the right. In

an analogous fashion we show in [1] that the admissibility criteria imply that

2 2E > E for the shock moving to the left. As the local electric field energy

density in the wave given by

(11.10) 1 2+ E 42 W 9 2E- ' I ,

and energy must be dissipated accross the shock,(Kataev [7]),we conclude that

the shock moving to the right with speed s - sI is not physically realizable.

For the system in nonconservation form, i.e., (11.2), it can be shown

(Kataev [7], Jeffrey and Korobeinikov [6]) that there exist simple wave

solutions of the form

(11.11) E - R0 (x t_'a(D)b (H)t), H - Ho(x ±v _(E)b(H)t).

For the nonmagnetic material these simple waves propagating in the media

assume the form

(11.12) E - Eo(x ± U 1 /a/(E) t), H - Ho(X -t1/ a±Et).

It was essentially deduced by Broer [41 by a direct computation based on

(11.121) that Ex(x,t) as t 4 t* - 2M1-0 e* if 3* > 0 s.t.

<MT < R , sufficiently small; this condition is essentially

equivalent to the genuine non-linearity assumption. Shock development in the

more general case(II.11) may be deduced directly from the work of Jeffrey

and Korobeinikov [6], i.e., it is possible to deduce conditions under which
dx -+/(~~l

E, H blow up along the characteristics defined by dx-b

by direct differentiation of (11.11) anduse of the fact that

(11.13) dr.H) If E C4 (E:H) oIof
0 /'a-)

-10-
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the Riemann invariants for this problem, are constant along their respective

characteristics.

b. Mechanisms for Dissipation: Anisotropy and Nonlinear Conduction, Dispersion,
and Relaxation

With the exception of some rather vague remarks in Broer [41, concerning

the effects of dispersion on plane wave propagation in isotropic nonlinear

dielectrics, the numerical studies of Fisher and Bishel (14] and Shimizu [38],

on the interplay between nonlinearity and dispersion, and the effort made in

the paper of DeMartini, Townes, Gustafson, and Kelley [3] to build an exponential

relaxation process into the light pulse equation, most treatments of wave

propagation in nonlinear media, to date, have ignored the effects on shock forma-

tion and propagation of anisotropy, nonlinear conduction, dispersion, and

relaxation. In this section we will outline an exact mathematical formulation

of some of these phenomena emphasizing chiefly the role of anisotropy and

nonlinear conduction and indicate how recent work on dissipative and inhomogeneous

quasilinear hyperbolic systems can be used to study the models obtained.

Electromagnetic shock waves are usually quite difficult to observe; even in

the case of ideal isotropy, with no conduction, no dispersion, and no relaxation

(instantaneous response) the calculations in [1] and [3], e.g. the expression

for s in §Ia, indicate that whereas shocks always form the physicalmax

observation of these shocks depends on the magnitude of the largest initial

gradient of the pulse. Gradients which are extremely large, but still within

the range of applicability of classical physics, are needed in order that

shock formation occur within physically observable distances of several meters

(or less). In [3] the authors consider an initial Gaussian pulse of the

form

p(Ot) - P0 exp(-4t
2/t)

where p n0E 2/8iw is the approximate energy density in the wave and n
S-11-



the nonlinear refractive index; t. is the initial width of the Gaussian in

time. The expression for the maxim=i distance travelled until shock formation

which is derived in [3] is of the form

-1 3v 2

sma 2 3v2 () mIv 0

where v0  is the linear velocity of propagation of the wave. Thus,

varies inversely with (2) which is the largest negative slope of the
dt min

initial pulse in time. For P-switched pulses in CS2 the authors (3] indicate

that t 1  is about 10 nsec yielding an sm x  of about 5 eters; for a mode-

locked laser, however, they [31 indicate that tZ can be less than 10- 1 1 sac

and that pulse steepening (shock formation) can occur over propagation path

lengths of less than a centimeter. The basic conjecture which we now put

forth is that anisotropy, nonlinear conduction, dispersion and relaxation may

act as dissipative mechanisms in the governing evolution equations. That

dispersion and relaxation may interfere with shock formation has been touched

upon in [3], [4], and [14] via appropriate (numerical) computations. No

study. as far as we can tell, has ever touched upon the influence of anisotropy

or nonlinear conduction on shock formation in nonlinear electromagnetic

materials, even though no material is perfectly isotropic and certainly no

dielectric is a perfect nonconductor (especially when inter ing with an

intense light wave of the type generated by a laser); we therefore begin by

formulating a mathematical approach to the influence of anisotropy and

conduction on plane wave propagation in nonlinear dielectrics.

We again consider plane waves of the form - (0,E(x,t),),

H - (O,O,H(x,t)) and assume the material to be nonmagnetic so that _U09

and thus B - (O,O,B,(x,t)). Our assumption of anisotropy takes the form

- (x, (x,t)), i.e., and k are not parallel in the media; specifically

-12-



we take

(11.15) X(x,k(x,t)) = (6(x), P(E(xt)).O), 6 EC1C( +)

with

09.1: _<u I x-<,1 60 > o, 6 > o

Then by the definition of the electric induction field

(1.7 R(x~t) - CE+ (kXt)

= (6(x),coE(x.t) + P(E(xt)),O)

(6(x), D(Z(x,t)),O).

Clearly div , - 0 and div 4 ='36 /x so that a6t/x represents the free charge

density. In response to the k field, and by virtue of the existence of an

effective free charge density a6(x)/ax, the conduction vector can be

expected to be nonzero in the dielectric with - (x ) (nonlinear Ohm's

Law; the explicit dependence of the conductivity a on position is consistent

with inhomogeneity). In view of our constitutive assumptions

(11.18) ( =(C, (x.E(xt))E(x.t),O)

where d(.,) a(.,(O,.,0)), c £4~ a(x)

and 3/t(-) + . 0 so that the equation expressing conservation of
ax

charge is trivially satisfied. As the third of Maxwell's equations

must be modified so as to read

+ Vx

while the fourth equation is, of course, just div D 3 ad/ax. With the

assumption of plane wave propagation these equations then reduce to the scalar

quasilinear system

O(xE)E + at - ax.aax
(II. 19)

~'.ak - aE-13-



Assuming again that aD/aZ > 0 so that 3e with E(X,t) - e(D(xjt)) we

may rewrite (11.19) in conservation foarm as

1.2)a 11 = -o(xE(D))E(D) w -(x,D)+Uoy
(11.20)

+ E'(D). 2 - 0
Iat ax

where I(xD) = '(xE(D))E(D). Clearly (11.20) is an Inhomogeneous conservation

law of the form

(11.21) 1 + a - i(X )at a

with B) 0\)(

The system (11.20) may be compared with that considered by Nishida [9], and

Slemrod [10], i.e.,

i -
(11.22) (a > 0)

vt-r(w)x  -a.v

which yields the damped nonlinear wave equation

w tt+ awt - r(v)xx.

Initial value prsblms for (11.22) have been shown in (91 to have global

C1  solutions (w',v) provided the initial gradients w (x,0), vx(x,O)

are sufficiently small in the C' norm while shocks have been shown to

develop, in spite of the damping factor a, if these gradients are sufficently

large pointise [10]. Our system (11.20) leads to the wave equation

(11.23) Dtt + E'(xD)Dt - E(D)3M.

As '(.,) E'Q()0(.,E())- E(Q)'(.,E(Q)), and E'(O > 0, vc a

(hyperbolicity), we conjecture that for sufficiently small initial gradients

-14-



D(x,0). 1(x,0) solutions of IV? for (11.20) will also be globally smooth

if El'(..) > 0.yVCC R !(-.Y)> yr'(.,y). Vy CR , but that shocks will

develop if these Initial gradients are, pointvise, sufficiently large. The

analysis In [91, [101 is based on the equivalent system of equations satisfied

by the Risann Invariants associated with (11.21). For our system (11.20) the

iemmnn Invariants are again given by (11.5) where now, for the sake of

simplicity, we normalize and take p - 1. Then (11.20) is easily seen to be

equivalent to

(11.24) )t' -- ' DT E(x,D). s' - A'TD) (xD)

where. ' aat + X a/ax, - a/at - Xa/x, X - +v r .
As -I D

As 2 J /T7C7 dr., a$* such that

D - 8*(r-s) (i.e. A 0(a)

Thus (11.24) assumes the form

4t' - -p(x,4-6) - - a/at + X*(4-.6)a/x
(11.25)

4 - P(x,X-6), - at - ,*(4-4)a/ax

where

p(x,4-4)) = v ' (8"(-') • r(x,8*(4-6))

Z(xB*(Qt6)) - o(x,E(B*(4.-6)))E(B*(-4))

X*(4.-,h) - ) (0"(-i)) - ,/_'(_*_.-_))

Thus, one goal of further work In this area should be to Investigate the

existence or nonexistence of global smooth solutions for IVP for the system

(11.25) beginning with the case where the conductivity is homogeneous so the

p does not depend explicitly on position. In this regard an attempt should

be made to generalize and extend the results of Nishida [9J and Slimod [10)

for systems of the form

-15-



22

by examining the behavior of 4, 6 along their respective characteristics

dx -±'ii) X0(-)
(in our problem the curves defined by 7 t = % ))( -

AL*(J-). Such work is now in progress.

We note here that we could equally vell work with E, R instead of D, B.

If we set a(E) - 3D/39, b(H) -=/HU (ye do not now begin with the assmption

that the media is nonmagnetic), A(E) - 1/a(E), 5(H) - 1/b(H), then (I1.19)

assmes the form

(1 + 2 A ((E _ (xE)
(.2)H ,t8(0) '0 ,x0

where E(x,E) -d(x,E)A(l)E

The characteristics associated with (11.26) are given by

dx + 'dt (o
and the left-eigenvectors associated with ((H) are - (1,±tvA(E)/B(H)).

Using multiplication by the componenets of the first left eigenvector to combine

the equations in (11.26) in the standard fashion we find that

El- ' ' (x,E)

i'AWE) -51 m'E wA(E)ov(xE)E I -A(xE)

where ' -3/3t + vA(E)B(H) 3/ax denotes differentiation along the characteristic

x .A(E)5(H). Thus if we define the Riemaniann invariants
dt

j (Z',l) - GO dr. + b dC
0 0

4(E'Hl) -o r d r V - (; d;

; -16-



we have

- -A(X), - -A(xZ)

In the nonmagnetic case

E 0(11.27) it a + /a( - dr.+ /a d

and

(11.28) a -A(x,), - -A(xE)

with -- a/at + XAE) a/ax. -a/at "-E) a/ax.

But, by (11.27), -4- A d ) C% so :g* *.t. E- g*(A+4)

Setting X(E) * AE-, we then have as a consequence of (11.28)

(t + A *(+6) " -(,

(11.29) | &t- X*()t+4) " -'(x,4+6)

where I *(4+) = )(g*(L+4)) - A~ g*(+7)

'(x,4+4) -+A(x,g*(t+ ))

- *(4)t6) A(&i(J,633'(X.*Qt+6)).

Finally, if we do not specialize to the case of a nonmagnetic material then

X+6 *4~
J' vrC dIf 4--)

2 0 2 0

so that we may set

E - * Q*(4 R), H - 4

A(E) M ME) AT& MA*4,65) *o46

*(H)- -

and In place of (11.29) we obtainj -17-



t + A(+*(-6& Yx46

(11.30)

with !(z.4+A) as In (11.29).

We could also approach these problems in terms of trying to apply and/or extend

results on the existence and behavior os solutions to InhomoSeneous hyperbolic

conservation laws of the form (11.21), where in our problem (() - D)"

when ui() - const. With regard to such problems the existing literature is

quite small but some important recent work (Liu [11], Liu and Li [31], Dafermos

and isio [13], and Dafermos [12]) should prove to be of interest for our

particular problem. Liu [111, in fact, constructs weak solution of (11.21)

for the case where P - P(x,t) is an n-vector, t is a smooth n-vector-

valued function of and % and 44 are piecewise continuous n-vector-

valued functions of x which are continuous in t, and studies their asMtotic

behavior as t -t4-. It is assumed that at(*)/aw has real and distinct

eigenvalues X1(0k) < Y2M) < ... < Xn(0 for each P. The analysis in [111

is based on a numerical scheme which generalizes the Gliim scheme [32] for

hyperbolic conservation laws. Among the results proven in [11] are the

following:

(i) when the Xi(t(X)) i - 1,2,...,n are nonzero and the LI norm of

g(x,k(x)) is mall for k(x) uniformly close to the initial data Ao(x), a

global solution of the IVP for (11.21) exists and tends pointwise to a steady

at (u)
state solution of (

(Ui) when each characteristic field is either genuinely nonlinear or

linearly degenerate (Lax (301) the solution tends uniformly to a linear

superposition of shock waves, refraction waves, travelling waves and a steady

state solution; however, these waves are determined by the values of the

initial data %.(x) at x m -. It is assumed, in the general case,
-18- i



that the Initial data have sl total variation.

In [31], Liu and Li study UYP for (11.21) under the assumption that 4(x.k)

has compact support in x, with particular emphasis on constructing non-

interacting wave patterns for conservation laws with a general moving source

term of the form

(11.31) + - g(x-ctq).

This system can be reduced to (11.21) under the change of variables

te) +* t(u) - c# and x I x - ct. In [13] Dafermos and Hsiao consider IVP

for systems of the form (11.21) with %(x )t(xt)) "," 4 (x,t,e(x.t)) and

establish the existence of locally defined solutions with shock waves.

They prove the existence of globally defined solutions by introducing an

appropriate definition of dissipativeness for the source %(x.tm) and shoving

(via a combination of Glim's scheme for conservation law and the method of

fractional steps) that its'effect counterbalances the wave amplification due

to inhomogeneity.

Many of the existing results for systems of the for (11.21) in both R a nd

en , n > 1, with an emphasis on asymptotic behavior, are smmarized in

Dafermos [12] while problems for particular forms of either the inhomogeneity

or the function have been treated by Liu (33] and Ying and Wang [341.

Concerning the possible dissipative effects of relaxation on the

formation and evolution of shock waves in nonlinear electromagnetic materials, we

should be interested in replacing constitutive relations of the form (1.41)
t

by assumptions of either the form R(xt) " E(3(x,T))k(Xst) with

I
t t

(11.32) E(X(x,T)) C + e (t-T)l,2(xT) dT,

and k (OI(z,t),O), fl (O,OH(x.t)), k

-19-



or - (O.P(x.t).O) with

(11.33) P(x.t)- P (E(xtt))- J *(t-T)E 2 (x.T)dT.

In this latter case we would have - (O.D(xt).0). and

(11.34) D(xt) - c0 E(xt) + *(t-T)E 2 (xr)dT.

It then follows that Maxwell's equations reduce to the system of scalar

quasilinear hyperbolic integrodifferential equations

ME + x -,(0)E 2 (xt) - *t (tT)D 2(XT dT
(11.35)

Eax-a
1 a'Tt ax- 0

With Riemann Invariants

.E I/--, - K-- -- H,

0 0

and V a/at + a/ax, " - /at - a/ax,

0 0

we obtain the following system of nonlinear integrodifferential equations along

the characteristics - =  -

' - 4-- (0) (4+6)2 .1 f t(tT) (,%+,)2 (x,'r)dT

(11.36) 2(

1 *40tt~)*~ ~(t- T tA (x,1)d .

If we follow the constitutive hypothesis (11.32), Instead of (11.33), then

we obtain, in place of (11.38) the system

-20-



Ir[C f-. 2 (t-)+LK

at 3x

3c E2(.2(-)x(x9Tz --

,I+(11.37) -e2(0E3(x~t) - E2 2(t-T)E2xTd E(xlt)

whose characteristics are defined by the equations

dx = +e+ 2 (t-T)E
2 (X,T)dT] -1/2

dt _[£o +

The system (11.36) has the advantage of possessing families of parallel straight

lines as characteristic curves in the x,t plane but distortion of propagating

waves may occur due to the nonlinear source terms on the right hand sides of

these equations; an analysis paralleling the work of MacCamy [35]. [36] and

Hattori [371 on materials with memory may be possible. The form of the con-

stitutive hypothesis (11.32) more closely follows the formulation in [3] than

does (11.33) and a numerical treatment in [3] indicates that a rarefaction

shock may still build up. The importance of considering relaxation effects in

electromagnetic media is emphasized in Kataev [71 who indicates that equations

(1.4) "can be invalid for material media (if there is) a lag in the change in

induced fields which occurs in response to a rapid change in the field intensities

in the media. This lag in the reactions may be attributable to the magnetic or

dielectric viscosity of the medium"

Up to this point we have totally ignored the role that dispersion might

play in propagation of waves in nonlinear electromagnetic media. In a linear

* dielectric co - £ ) where the dimensionless coefficient X is the

polarisibility of the medium and satisfies the wave equation

(11.38) A - £0i0(4+O)321/3t 2  0,

-1/2
so that the wave speed is given by c - {C01. 0(I+X) I and the refractive

-21-
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ndex n - cie - (I+X)112 , dispersion and relaxation are usually Introduced

into the linear theory by replacing the above constitutive relation between

and I by the Lorentz equation

(11.39)+ P-42  at 2

For a wave having an k field with monochromatic frequency w (11.41) leads

to th well known result that - 1 + I /(0 2  - 2). One way of introducing

dispersion into the nonlinear optics relations (1.4) for an isotropic media

(which we also sems to be nonmagnetic) would be to take

(11.40) -- (W.-) = e0(W)+ E2(W)+2

and consider the propagation of plane waves in which S has the form (0,9,0)

with,

(11.41) E(xt) - Re(,e0 (x e e ). k the wave number.

The corresponding reduction of Maxwell's equations is a straight-forward

matter and will not be pursued here (although it is being pursued by this author

within the scope of the general research program described above).

We conclude this subsection by noting th4t both the numerical studies of

Fisher and Bishel [141 as well as the earlier numerical studies of Shimizu

[381 have shown that shocks can form on the leading edge of pulses in a Cs2

laser when dispersion and nonlinearity are considered simultaneously.

I1. Ble tromanetic Shock Wave Formation in Nonlinear Distributed Parameter
Tranmission Lines

Shock formation and propagation n nonlinear transmission lines has been

studied by a number of authors ([7], and the references to some of the Russian

literature cited therein, [15], [16]. [42], and [43]). As Jeffrey [16] points

out, the method of analysis that is used for linear systems does not easily

-22-
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generalize to the study of nonlinear distributed parameter transmission

lines since the customary procedure in the linear theory is to convert the

two first order transmission line equations into a single second order equation,

the well-known equation of telegraphy. When the transmission line is nonlinear,

the voltage and current are no longer solutions to the linear telegrapher's

equation and superposition of solutions no longer applies. (Further developments

In this vein require that the nonlinearity be simplified via approximations of

various kinds, as in Ostrovskii (43]).

Landauer [15] and Riley [42] both exploited the formal equivalence between

the nonlinear transmission line equations and the one-dimensional isentropic gas

flow equations to study nonlinear transmission line behavior. In fact, Landauer's

work [15] represents a direct application of the methods of gas dynamics [41]

while Riley's [42] contains an application of the work in [15] to a nonlinear

* transmission line involving a voltage dependence capacitance. but Jeffrey [16]

notes that neither of the author's ([15]. [42]) "considered the problem of when

a continuous wave propagating down a nonlinear transmission line first becomes

discontinuous and forms an electromagnetic shock wave'", he considers in [16]

an idealized transmission line with distributed parameters C(v) the capacitance,

R the resistance, L the self-inductance, and G the leakage conductance per

unit length of the line (see figure below)
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Here v(xt) is the voltage at a point which is x units distant from an

origin taken in the line; we also denote by i(x,t) the current at (xt)

and note that b' definition C(v) - dQ/dv where Q(v) is the voltage dependent

charge per unit length of the line. Ohm's and Kirchoff's laws when applied to

the element of the transmission line depicted above yield the system of equations

at +

(111.1) a
C(v) +a + +Gv - 0a v t ax

In (III.1) the analysis in [161 assumes that L, R, and G are constant. It

is clear that (III.1) has the equivalent form(III(:.2) 0 1 /i i

, Ic(v) v/,x G v

of an inhomogeneous quasilinear hyperbolic system if C(v) - > 0. In fact,dx .I ,Fo
the associated characteristics are clearly defined by d 1 For C

independent of v, C - C0 - const., Jeffrey concludes [16] that

d Li 1/2 R G+
(III.3a) - (i 1/ + v) R -( G i 0 v)d C0  0

0

dx I
along solutions of -

0

(III.3b) d L Gd-(Z,,=) 1/2 -v) "-( R i - 3-V)

dt 0 CO 0

along solutions of - _
dt0

and shows that i, v both propagate along the linear line with attenuation

factor -G/C0  if R/L - G/C0. In attempting, however, to show that an
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electromagnetic shock forms in the line with C - C(v) > 0, K - G - 0 he

incorrectly (his eqs. (4. la), (4.1b) claims that along solutions of

dx 1
- W + , respectively,
t VIC -(v)

( d L 1/2

T (i(-z=) + v) -0 and

d L 1/2
S(i(- ) - v) - 0

whereas the appropriate Riemann invariants must now be taken as

miv) - + A jv ) d

sThat as defined by (III.) are constant along the respective character-

dt b + follows directly from (111.2) with R - G - 0;

shock formation for IVP associated with (111.2), with R - G - 0, is then a

consequence of the results of Lax [27] for the genuinely nonlinear situation

Q"(0) 0 0 or Klainerman and MaJda [29] for the case of compactly su-ported

initial data i(x,O), v(x,0) with Q"(;) 0 0 on every open interval of RI.

Even allowing for the incorrect form for the Riemann invariants in [161, shock

formation is obtained in this paper only for waves propagating into a constant

state i0 , v0  and follows from the fact that characteristics of one family

adjacent to the constant state have constant slope and are thus straight lines.

Moreover, the shocks obtained are weak in the sense that the fields are required

to be everywhere continuous so that"shock formation"involves the development of

jump discontinuities in the first derivatives of the fields. For the model

(111.2) with R2 + G # 0, Jeffrey shows [16, §51 that disconinuities form

if either

I as

m(i< x0v or4 -25-



> and(F+=<1
o x La Lo 0

where the zero subscript indicates evaluation at the constant state ahead of

the wavefront trace and the superposed %, indicates the limiting value along the

wave front trace. However, as Q - Q(v) and C(v) a > 0 the expression
dv

Q(v) = 0 C()dg may be inverted to yield v - V(Q) and the inhomogeneous
v0

system (111.2) may be rewritten in conservation form as

ai 1 -Ri
T+ (V(Q)),x

(1 + U -GV(Q).

at ax

If C - 0 (no leakage current between the conductors) then by direct analogy

with the damped Quasilinear system (11.21) [w - Q, v -)i, 1 r v and a R]

it should follow from the work of Nishida [9] and Slemrod [10] that C1

solutions of IVP for (111.5), and thus also for (III.1)), should exist globally

if ix(x,0) and Qx(x,0) are sufficiently small in the C1 normbut that

shocks should develop if either of these initial gradients is sufficiently large

at some point in the transmission line; this contrasts sharply with the results

of Jeffrey [16] cited above where discontinuities are proven to form (albeit,

weak shocks) if IxQ(V)0 < 0 and the wave is propagating into a constant state.

Work is now in progress which involves analyzing the system (111.5), with C # 0,

by re-writing (111.5) in terms of the appropriate Riemann invariants and studying

the behavior of these Riemann invariants along their respective characteristics;

in this sense the study of (111.5) is expected to have close connections with

the study of the systems (11.25), (11.29), and (11.30).

In the model considered in (7], Kataev begins with the equations

-26-
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(111.6) at ax'

iq+ 2'1 -J

at ax

where J is the leakage current and 0 the magnetic flux per unit length

between the conductors. The connection with (11I.1) is that 0 - 0(i), L(i) -

a/ai (the differential inductance), J - J(i,v) - G(i,v)-v and, as previously

assumed, Q - Q(v); in (II1.1), where R 0 0, it has been assumed that L(i)

and the conductance G(v,i) are constant. Kataev [7] then specializes to the

case where L(i) - L - const., C(v) - C0 - const. and thus obtains from (MI.6)

the system

LO 2- + 2-v- 0) Lat ax
(111.7) v i

co 2. + 2- - -G(i,v).v
C0 at+ ax

whose characteristics, defined by ". = + -, are straight lines (we assumedt -
0 0

that LoC0 > 0). He looks for solutions of (111.7) in the form of stationary shocks,

i.e., for solutions which are functions of w - x - Bt where B is the velocity

of propagation; in this case i - i(w), v - v(v) and (11.7) becomes

v - v0 - BLoUi-io )

(111.8)

i 0 d- (i(w),v(w)).v(,)

after integration of the first equation. In (111.8), i0, v0 refer to the

initial values of the current and voltage. Solutions of (111.8) are then

Asought for which i - i0  as w-*4- and i-P i 0 + i 0 as w-.m, where

is the amplitude of the stationary wave; this is achieved by integrating (111.8):

(- oC) - i GR ,Lo(;-i O) + vO] [LoO(;-i) + vo ]

and then Imposing the boundary conditions so as to conclude that
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(a) for i0 < i < i0 + 10 . and v -BAO(i-iO) +v O , G(iv) > 0

i di
(b) G(i ,v)vi divergent for v - BLo(i-i ) + v0i0o

when i - i0 and i - i0 + 0.

A further analysis then shows that (a), (b) require that as we approach points

on the profile of the wave G(i,v) - 0 yielding (in Kataev's notation) at each

point on the profile a relation of the form v a y(i). Taking this last relation

into account, Kataev then rewrites the first equation in the system (111.7) in

the form

(111.9 3i (L /AXL)-
(11.9) x'- 0 dii

for which (approximate)smple wave solutions of the form

411110) i = I(x - y id . t)

(III.1)LO di

are immediate. The development of discontinuities in the current i now follows

immediately, under obvious conditions on y(i), via a direct computation of the

gradient ix. A more satisfactory approach to the study for (111.7)

in our opinion, consists of introducing the Riemann invariants

(1.11) 4(i,v) - /0 i + c v, J(i,v) - /I0 i - /0 v

which satisfy (along their respective characteristics defined by =

00

the equations

- Go ,,-+6,4-4 (t-A)

(111.12)
2- 0

0 0A + -L-,()t+A A,-,4). ( -A)

where, G0 (+6,-) - G( -__. (4+6), 1 (4-6)). The inhomogeneous terms on the

0 0
right hand side of (111.12) simplify considerably if the conductance G(iv)

is independent of the current i.
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