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1. Introduction.

Lanchester-type combat models have been used in a number of

important U.S. Army studies and are being considered for a number

of pending ones. Such complex operational modelsI* are currently

eithor maintained by U.S. Army agencies (e.g. AMSWAG by AMSAA or

FOURCE by TRASANA) or available through contractors (e.g. VECTOR-2

from Vector Research, Inc. of Ann Arbor, Michigan). Because of

the past use and potential prominent future use, this report will

review the conceptual/operational basis for the assessment of

casualties by such operational Lanchester-type combat models.

" Thus, this report has been written on the premise that there is

a set of analytical models which are being used (and will continue

to be used) in support of various U.S. Army/DoD decision makers,

and that their underlying conceptual bases and assumptions are

not as well understood as they should be. It will attempt to make

these conceptual bases and assumptions more accessible and compre-

hensible to the users of these models.

Central to much of the practice of military operations re-

search (OR) for defense-planning purposes is the use of combat

models, of which a principal variety (especially as concerns land

combat) are deterministic-differential-equation models that are

commonly called Lanchester-type combat models, which are so-called

after F.W. Lanchester's [36) pioneering work which was first pub-

lished in 1914. The author has found it convenient to refer to

To avoid distracting the reader, all footnotes have been
placed together just before the references.
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any "force-on-force" differential-equation model of the combat-

attrition process as a Lanchester-type combat model or as a

system of Lanchester-type differential equations (or sometimes

simply as Lanchester-type equations). The state variables are

typically the numbers of the various different weapon-system

types.

The goal of this tutorial is to review (and make more accessi-

ble to U.S. Army OR analysts) basic methodology for the determina-

tion of single-weapon-system-type kill rates for use in operational

• Lanchester-type combat models. The tutorial will highlight how

the combat-attrition process is conceptualized and what are the

assumptions involved with using each particular attrition-rate-

coefficient expression (i.e. model of a single-weapon-system-type

kill rate). In particular, those aspects and methodologies that

appear to be important for command and control applications (e.g.

methodology used in the VECTOR-2 model, the FOURCE model, or the

TFECS model) will be emphasized. Thus, one might consider this

tutorial to be (in some sense) a primer for studying VECTOR-2 or

the TFECS model.
C.

*Finally, this tutorial is oriented towards the user of opera-

tional Lanchester-type combat models, not towards the research

specialist. It is assumed, however, that the reader has a general

familiarity with the material contained in the author's Force-on-

Force Attrition Modelling [50]. Since the emphasis will be placed

on communicating how the force-on-force attrition process has been

conceptualized, derivations or proofs will by-and-large be

omitted, except when some insight into the model-building process

2



will be gained by their inclusion. In all cases when a proof

has been omitted, the reader will be told where, he can find

. such information if he wants it.

.3* 3
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2. The Concept of "Models versus Modelling" and Its Implications

for Model Appraisal.

William T. Morris [40] has emphasized for teaching purposes

the intrinsic difference between models and modelling, the former

being inanimate objects while the latter is an active process.

He has conceptualized that the process of model building consists

of the three basic ingredients shown in Table I. The basic idea

is that a cor'.lex operational model is built in an evolutionary

fashion by the process of model enrichment (see Table II) from a

*! basic logical structure or paradigm.

Documentation and evaluation of complex computer-based models

has only relatively recently been explicitly recognized as a very

difficult and important problem2 . Szymczak [48] has hypothesized

that three different levels of documentation are required 'or

such models:

(Ll) decision-maker level,

(L2) ar-lyst level,

and (L3) computer-programmer level.

In particular, he has pointed out the need for documenting the

conceptual bases of a complex model to the analyst. This means

* explaining in plain language how the model operates overall and

how each part of it functions individually (both in concept as

well as in detail). It is the purpose of this tutorial to provide

such analyst-level documentation on the determination of single-

weapon-syste.-type kill rates (i.e. Lanchester attrition-rate

coefficients) for use in Lanchester-type combat models.

"5 4
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TABLE I. Three Basic Ingredients of the Model-Building Process.

(1) The process of enriching or elaborating upon a basic

logical structure

(2) The use of analogy or association with previously

developed logical structures to determine the starting

point for this enrichment process

(3) The interactive (i.e. "looping") nature of the model-

building process

5



TABLE II. Elements of the Model-Enrichment Process.

-- (1) Making Constants into Variables

(2) Adding More Variables

(3) Using More Complicated (i.e. Nonlinear) Functional

Relations Between Variables

(4) Using Weaker Assumptions and Restrictions

(5) Not Suppressing Randomness

S. -

• i

1-
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K For explaining to anyone how a complex operational model

works, it is the author's hypothesis that a simple overview should

be given and then each major part explained. In this tutorial

we will focus on the modelling of one of the most crucial parts

of any Lanchester-type model: namely, the Lanchester attrition-

rate coefficients. For communicating to a reader how the force-

on-force attrition process is conceptualized in a complex

operational model, it is the author's hypothesis that the reader

should be shown the simplest paradigm from which the complex model

has been developed by the process of model enrichment. Thus, the

reader should be shown the simplest paradigm to foster his con-

ceptual comprehension, with the expectation that although the de-

tails may very well look different and be much more complicated

in the operational model, the basic simple paradigm will have

captured the basic idea of how the attrition process has been

conceptualized. Thus, if an operational model has been built

from a basic paradigm (or paradigms) by the process of model en-

richment, then the inverse process of model simplification should

be used to recreate the basic paradigm (or paradigms) for under-

standing the complex operational model's conceptual basis.

7
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3. The Basic Lanchester-Type Paradigm.

Let us consider combat between two homogeneous forces: a

homogeneous X force (for example, tanks) opposed by a homogene-

ous Y force (for example, anti-tank weapons). We will focus

on the force-on-force attrition process in the combat between

these two homogeneous forces (see Fig. 1). The basic Lanchester-

type paradigm for modern warfare assumes that the casualty rate

of such a homogeneous force is directly proportional to the number

of enemy firers, e.g. the X-force casualty rate is given by

=
- ay, (3.1)• ~d t'"

where a denotes the rate at which a single typical Y firer

kills X targets and is called a Lanchester attrition-rate

coefficient. Here (as usual) x(t) and y(t) denote the numbers

of X and Y combatants (respectively) at time t. According

to the usual Bonder/Barfoot3 attrition-rate-coefficient methodology,

the Lanchester attrition-rate coefficient a (also referred to

as the single-weapon-system-type kill rate) is given by

Ea (3.2)
E[Txy],

where E[.] denotes mathematical expectation and

Txy - the time for a Y firer type to kill an

X target type (a r.v.).

Here the notation "a r.v." stands for "a random variable." Justi-

fication (according to Bonder and Farrell [11)) for taking the

8



a

xlt) b ylt)

Figure 1. Combat between two homogeneous forces, as

conceptualized by the basic Lanchester-type

paradigm. The quantities a and b (here

assumed to be constant) are called Lanchester

attrition-rate coefficients. The coefficient

a denotes the rate at which one Y firer
kills X targets. Consequently, it repre-

sents the fire effectiveness of the weapon-

system type used by the Y force in the
operational circumstances of the battle

under consideration.

9
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Lanchester attrition-rate coefficient as the reciprocal of the

expected time to kill a target, e.g. (3.2) above, is given in

Appendix A below. At present, we have not been very specific

about the variables upon which the attrition-rate coefficient a

depends,.but let us assume here that a is a constant for the

engagement in question. For the sake of completeness, we will

restate here the fundamental assumption behind the basic homo-

geneous-force Lanchester-type paradigm (3.1):

(Al) the casualty rate of a force is directly

proportional to the number of enemy firers.

The above assumption (Al) could be stated in an equivalent

form in more operational terms (or could be interpreted in these

more operational terms) as follows: the Y force engages the

X force with "aimed" fire, and the time for a single Y firer

to acquire an X target is constant, independent of the number

*of enemy targets (see Taylor [501 for further details). For

present purposes, however, it will be more fruitful to use

assumption (Al). Moreover, within the present context of constant

attrition-rate coefficients, an entirely equivalent (and even more

useful for future purposes) form for assumption (Al) is as follows:

(Al') the casualty rate of a force is equal to the

* product of the single-weapon-system-type kill

rate and the number of enemy firers.

Assumption (Al') may be considered to be the conceptual point of

departure for the development of the VECTOR-2 model by the

10



process of model enrichment (see Section 2 above) via its hetero-

geneous- force form.

The above basic paradigm (3.1) says that the attrition rate

of a target type is proportional to only the number of enemy

firers. Furthermore, it may be interpreted as saying that the

total-force attrition rate (- !) is obtained by "scaling up" the

single-weapon-system-type kill rate of a "typical" enemy firer

through multiplication by the total number of firers. If one

can only determine what is a "typical" firer and what are the

environmental and operational circumstances of his employment,

then use of this paradigm (3.1) presupposes that the correspond-

ing total-force kill rate is simply obtained by "scaling up" this

single-weapon-system-type kill rate.

In the above formulation it has been assumed that the single-

weapon-system-type kill rate a is constant over time. Under

many circumstances [e.g. fire effectiveness being range dependent

and the range (distance) between firer and target changing over

time due to changes in their positions], however, it is desirable

to consider time-dependent attrition-rate coefficients, i.e.

dx
- - a(t)y. (3.3)

Although it is now considered to change over time, the Lanchester

attrition-rate coefficient a = a(t) is still given by (3.2) at

any point in time. Also unchanged is the fact that we may still

consider the basic total-force-casualty-rate paradigm to be based

on assumption (Al) [equivalently, (All)], the "scaling up" of

k-1



the total-force casualty rate from the single-weapon-system-type

kill rate.

A further enrichment of the basic Lanchester-type paradigm

-. is involved in the complex operational models built by Vector

Research, Inc. (VRI). If we assume that the single-weapon-system-

type kill rate a depends not only on time t but also on the

number of targets x (e.g. target detection depends on the num-

• .ber of targets), then one is led to the following further-enriched

* basic Lanchester-type paradigm for homogeneous-force combat:

dxt = - a(t,x)y. (3.4)

- Again, the Lanchester attrition-rate coefficient a is still

given by (3.2), but weapon-performance characteristics have been

-allowed to depend on not only time t but also the number of

-. targets x, i.e. a = a(t,x). This version of the basic paradigm

(3.4) may be considered to be the point of departure for the

development of the maneuver-unit-attrition algorithms in the

VECTOR-2 model. Moreover, it should be noted that the basic

total-force-casualty-rate paradigm (3.4) may be considered to

be based on only assumption (Al') and that assumption (Al) no

longer holds for the X-force casualty rate. Thus, the total-force

casualty rate is still "scaled up" as before, but because of the

functional dependence of the single-weapon-system-type kill rate,

i.e. a - a(t,x), this "scaling up" must be now explicitly stated

in order for one to fully grasp the dynamics of the force-on-

force attrition process.

12
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We can go even further in enriching the basic homogeneous-

force Lanchester-type paradigm, however. If we assume that the

single-weapon-system-type kill rate a depends not only on time

t and the number of targets x but also on the number of firers

y (e.g. too high a density of firers degrades their average

effectiveness), then one is led to the following "fully-enriched"

basic Lanchester-type paradigm for homogeneous-force combat:

dx - a(t,x,y)y. (3.5), dt =

* Again, the Lanchester attrition-rate coefficient a is (as al-

ways) still given (3.2), but weapon-performance characteristics

have now been allowed to depend on not only time t and the num-

ber of targets x but also the number of firers y, i.e.

a = a(t,x,y). As in the immediately preceeding case, the "scaling

up" of the total-force casualty rate from the single-weapon-system-

type kill rate can only be expressed in terms of assumption (AI),

i.e. assumptions (Al) and (Al') are no longer equivalent. Although

apparently not corresponding to the basic attrition-rate paradigm

of any current large-scale operational model, this attrition-rate-

coefficient functional form has nevertheless been included here

for the sake of completeness. It is the most general form of the

basic Lanchester-type paradigm for combat between two homogeneous

forces.

Thus, we have progressed in a step-by-step fashion via the

process of model enrichment from the simplest basic homogeneous-

force Lanchester-type paradigm to the most complicated one. This

13



evolution towards more operational complexity is depicted in

Table III. The increasing complexity of the functional depen-

dence of the attrition-rate coefficient for a typical Y firer.

illustrates element (3) of the model-enrichment process as given

in Table II.

We now turn to heterogeneous forces and will discuss how the

above concepts may be extended still further. Modern combat is

characterized by combined-arms operations involving (for exam-

ple) tanks, anti-tank weapon systems, artillery, infantry (armed

with several different types of weapons), etc. Unfortunately,,

the simple homogeneous-force paradigms considered above are in-

adequate to capture interactions armong different weapon-system

types in modern combined-arms combat. Let us therefore consider

combat between heterogeneous forces and briefly indicate how the

above simple paradigms may be extended to such more complicated

interactions.

4 For illustrative purposes, we will consider an engagement

with m different types of weapon systems on the X side and

n for Y (see Fig. 2). For notational convenience we will al-

ways let the subscript i refer to the X force and the sub-

-, script j refer to the Y force. Thus, the index i will

always take on the integer values 1 through m, and the index

j ill always take on the integer values 1 through n. The

r" generalization of (3.1) to heterogeneous-force combat is then
1~ given by

r 7

dxI A j yj, (3.6)

14



F TABLE III. Summary of the Step-by-Step Enrichment
(Showing the Evolution Towards More
Operational Complexity) of Attrition-
Rate Coefficients in the Basic
Homogeneous-Force Lanchester-Type
Paradigm.

Total-Force Functional Form Functional Depen-
" Attrition-Rate of Attrition-Rate dence of Attrition-

Paradigm Coefficient for a Rate Coefficient
(Eq. No.) Typical Y Firer

(3.1) a constant over time

(3.3) a(t) depends only on time

(3.4) a(tx) depends on time and
also the number of
targets

(3.5) a(t,x,y) depends on times,
the number of tar-
gets, and the number
of firers

..

~15



X FORCE (m different Y FORCE (n different
weapon-system types) weapon-system types)

b..

AA

xt)
Fg

c Figure in Sheatersogens-orceio cot.e onven-

tion adopted here is that the first subscript
~will denote the target type and the second

subscript will denote the firer type, e.g.
Ai denotes the rate at which a typical Yj

ijj )

~firer kills X i targets in the opposing

..

" ' enemy force.
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where A.. denotes the rate at which a single typical Y. firer
1] )

kills Xi targets. In this heterogeneous-force case (according

to the Bonder/Barfoot methodology), the Lanchester attrition-rate

coefficient A.. (also referred to as the single-weapon-system-

type kill rate) is given by

4%

A. (3.7)":Aij E[T xiYjT

where

T x = the time for a Y. firer type to kill an

Xi target type (a r.v.).

The fundamental assumptions behind the above basic heterogeneous-

force Lanchester-type paradigm (3.6) are as follows (cf. the

homogeneous-force case):

(Ahetl) the attrition-rate effects of various different

enemy weapon-system types against a particular

*: friendly target type are additive,

and (A het2) the loss rate of a particular friendly target

type to each enemy weapon-system type is propor-

tional to the number of enemy firers of that

particular enemy-firer type.

Although assumption (AhetI) is fairly restrictive (it means that

there is no mutual support among different wetpon-system types,

i.e. no synergistic effects), the author does not know of any

17
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heterogeneous-force model that does not use it. It should be

noted that (3.6) and (3.7) are straightforward generalizations

of the basic homogeneous-force paradigm given by (3.1) and (3.2).

,*' It is instructive to note that assumption (Aet2) may be also

stated in the following equivalent form [cf. the restatement of

the homogeneous-force assumption (A2) in the (not always)

equivalent form (A2')]:

(Ahet2 ') the loss rate of a particular friendly target

type to each enemy weapon system type is equal

to the product of the single-weapon-system-type

kill rate and the number of enemy firers of that

, particular enemy-firer type.

Assuming (Ahel) and (Aet 2 _), one can formulate the following

ediciched basic Lanchester-type paradigm for heterogeneous-force

combat:

dx. n
= - A.. (t,x) yj, (3.8)dt j i j3

where x denotes the appropriately-sized vector of the number

of each weapon-system type comprising the X force (i.e. an m-

vector) and the Lanchester attrition-rate coefficient A.. =
1)

A. (t,x), is still given by (3.7). Maneuver-unit attrition in

VECTOR-2 is based on the above heterogeneous-force paradigm

[19, pp. 51-521.

18
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4. Additional Operational Factors to be Considered.

As discussed in the previous section, the homogeneous-force

Lanchester-type paradigm (3.1) and (3.2) may be considered to be

basic for building force-on-force combat models. Let us there-

fore consider this basic paradigm further and investigate what

combat factors it may be thought of as representing and what

factors it omits. This brief examination will set the stage for

some important topics subsequently to be investigated in this

report.

Let us accordingly consider the basic homogeneous-force

Lanchester-type paradigm

dx
t - ay, (4.1)

where the Lanchester attrition-rate coefficient a is given by

1

a = E [Txy], (4.2)

and

T = the time for a Y firer type to kill an X
XY target type (a r.v.).

This paradigm has been hypothesized to apply when the Y force

uses "aimed" fire against X targets and the time to acquire

an X target is constant, independent of the X force level.

Other sets of operational circumstances may be hypothesized, but

they are not germane for our investigation here (see Taylor (50,

pp. 23-28] for further details). In the simplest case in which

19



the time for a Y firer to acquire an X target is negligible,

the Lanchester attrition-rate coefficient a may be taken to

-. be given by

a v y PSSK (4.3)
xy

where v denotes the firing rate of a "typical" Y firer and

SSSK denotes the single-shot kill probability for a Y firer

engaging an X target.

For addressing any real operational problem of military OR

the above simple model is woefully inadequate, since many signi-

ficant operational factors have been omitted in abstracting the

basic paradigm from the complex real-world details of modern com-

bat. We can enrich this basic paradigm by considering additional

operational factors such as (1) range-dependent weapon-system

capabilities, (2) other temporal variations in fire effectiveness,

(3) unit breakpoints, (4) the diversity of weapon-system types,

(5) command, control, and communications, (6) suppressive effects

of weapon systems, (7) the target-acquisition process, (8) the

line-of-sight process, etc. In the tutorial at hand, however, we

will focus on the last two operational factors: namely,

(Fl) target-acquisition process,

and (F2) line-of-sight process.
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5. Determination of Attrition-Rate Coefficients for
Homogeneous-Force Combat.

Let us return to the consideration of the basic paradigm of

:. Lanchester-type combat between two homogeneous forces (see Fig. 1

again)

= - ay with x(O) =x 0

(5.1)

dt bx with y(O) = Y0.

For present purposes it is not essential that we be explicit

about the functional dependence of, for example, a. Thus, a

may stand for a, a(t), a(t,x), or even a(t,x,y). In any

case, the fundamental relation for determining a numerical value

for a Lanchester attrition-rate coefficient is given by, for

example,

a = E[TxyI, (5.2)

where

E[I denotes mathematical expectation and

T the time for a Y firer type to kill an.Y X target type (a r.v.).

Thus, a Lanchester attrition-rate coefficient may be taken as

the reciprocal of the expected time to kill a target, and thus

determination of the expected time to kill a target E[T] is a

fundamental calculation required for the building of any operational

Lanchester-type combat model.
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Bonder and Farrell [11] have developed general methodology

K.i for determining the expected time to kill a target for a wide

spectrum of weapon-system types. To facilitate analysis of the

time to kill a target they have developed the taxonomy shown in

Table IV for classifying the engagement of a particular target

type by a specific weapon-system type. According to this taxonomy,

weapon-system types are first classified according to the mechan-

ism by which they kill particular target types (i.e. their lethality

characteristics) as being either impact-to-kill systems or area-

lethality systems. Within each of these two categories, Bonder

and Farrell have further classified weapon-system types according

to how they use firing information to control the system's aim

point and their delivery characteristics, i.e. the firing doc-

trine employed. Expressions have been developed by Bonder and

Farrell (11] for Lanchester attrition-rate coefficients corres-

"' ponding to all the weapon-system-type classifications tagged with

an * in Table IV.

Moreover, research since the mid-1960's (dating from the ap-

pearance of Bonder's Ph.D. thesis [6]) has led to the development

of several methods for computing the expected time to kill a

target E[T] (see the author's treatise [51] for further details).

For present purposes, it is convenient to focus on the following

two methods for computing E[T]:

(MI) method based on sum of component event times,

and

, '(M2) method based on first-passage time in semi-Markov

process.
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TABLE IV. Classification of Weapon-System Types for
the Development of Lanchester Attrition-
Rate Coefficients for the Model (5.1)
(From Bonder and Farrell [11]).

Lethality Mechanism

(1) Impact

(2) Area

*Firing Doctrine

(1) Repeated Single Shot

(a) Without Feedback Control of Aim Point

(b) With Feedback on Immediately Preceding Round

(Markov-Dependent Fire)

(c) With Complex Feedback

(2) Burst Fire
I *

(a) Without Aim Change or Drift in or Between

Bursts

. (b) With Aim Drift in Bursts, Aim Refixed to

Original Aim Point for Each Burst

(c) With Aim Drift, Re-aim Between Bursts

(3) Multiple Tube Firing: Feedback Situations (la),

(lb), (1c)

(a) Salvo or Volley

(4) Mixed-Mode Firing

(a) Adjustment Followed by Multiple Tube Fire

(b) Adjustment Followed by Burst Fire

*Indicates that analysis of this category has been performed

by Bonder and Farrell [11].
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In simple cases the first method (Ml) provides by far the most

transparent model of the attrition process of a particular target

type, while the second method (M2) is the basis for the manuever-

unit attrition processes in VECTOR-2 and command-and-control

processes in TFECS. Additionally, the first method (Ml) may be

used to determine rates of attrition for acquired targets (such

rates are required in the calculation of attrition-rate coeffi-

cients in VECTOR-2). Finally, the first method (Ml) provides a

basis for better understanding the realm of applicability of

attrition-rate coefficients calculated by the second method (M2).

* We will now compare these two basic methods for a special case

of tactical interest: namely, the case of Markov-dependent fire.

For the case of Markov-dependent fire and an impact-to-kill

lethality mechanism, Bonder [6-8] has shown that

(t h + t f)E[T] = t + t th + P f)

a 1 h P(KIH)

' b' - . ~ ~( t m + i f I -tl )
+ m{fi1 -hh(h'L. + P (hh - p, (5.3)

where all symbols are defined in Table V. This expression for

E[T] holds for the following assumptions:

(Al) Markov-dependent fire with parameters pl, P(hIh),

and P(hm),

(A2) geometric distribution for the number of hits re-

quired for a kill with parameter P(KIH).
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TABLE V. Variables Contained in Expression for
Lanchester Attrition-Rate Coefficient
for Single-Shot Markov-Dependent-Fire
Weapon Systems with a Geometric
Distribution for the Number of Hits
Required for a Kill.

Time to acquire a target, t
a

Time to fire first round after target acquired, t1

Time to fire a round following a hit, th

Time to fire a round following a miss, tm
pm

Time of flight of the projectile, tf
bf

Probability of a hit on first round, p,

Probability of a hit on a round following a hit, P(hh)

Probability of a hit on a round following a miss, P(him)

Probability of destroying a target given it is hit, P(KIH)
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For simplicity we have assumed that all the event times t

tI , th, tm , and tf are deterministic quantities, although

under the appropriate rather mild assumptions (5.3) still holds

when they are random variables, with expected values replacing

the deterministic quantities, e.g. E[T a ] replacing ta (see

[51, Chapter 5] for further details). We will now investigate

how (5.3) may be developed by each of the two methods (Ml) and.

(M2) mentioned above. These developments should help further

elucidate the general remarks made above about them.

We will first consider the development of (5.3) by method (Ml).

Accordingly, we consider the process by which a single firer

engages and kills a single passive enemey. target and conceptualize

this process as consisting of the sequence of events from target

acquisition to destruction shown in Table VI. It follows that

the time to obtain z hits Tz is given by

Tz = ta + (tl+tf) + (th+tf) (z-l) + (tm+tf)'(N-z),

(5.4)

time to time to total time total time
acquire impact of to impact to impact of
target first round of total of total of

after (z-l) hits (N z-Z) misses
acquisition

where Nz  (a random variable) denotes the number of rounds to

obtain z hits and z is a parameter (realization of the

random variable Z, the number of hits required to kill the

target). Let us rearrange this expression to read

Tz = a t 1 th + (th-tm)Z + (t m+t f)Nz, (5.5

26
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TABLE VI. Sequence of Events from Target Acquisition
to Destruction Which is Conceptual Basis
of Model for Expected Time to Kill a
Target with Markov-Dependent Fire.

(El) The sequence begins with target acquisition which

takes t minutes to occur.a

(E2) The first round is then fired and arrives in the

target area (tI + tf) minutes later.

(E3) If the first round misses, the next round will

arrive tm + tf) minutes after the first.

* (E4) If the first round hits the target and more than

one hit is required (i.e. z > 1), the next round

will arrive (th + tf) minutes later.

(E5) The above sequence of firing after hits and misses

is continued until the final hit, which destroys

the target, is obtained.
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:, which is the basic model for the time to obtain z hits.

Taking the expected value of (5.5), we obtain

E[T z] = t - th + (th-tm)Z + (tm+tf)E[Nz], (5.6)

which is more convenient to write in terms of conditional

expectations as

E[TIZ=z] =t + t - th + (thtm)z + (tm+tf )E[NIZ=z]. (5.7)

Unconditioning (i.e. multiplying both sides by pZ(z) P[Z= z]

and summing from z = 1 to z = e, where Pz(z) denotes the

probability mass function for the discrete-valued random varia-

ble Z, the number of hits necessary to kill the target), we

obtain

E[T] = ta + t1 - th + (th-tm)E[Z] + (tm+tf)E[N], (5.8)

where it has been assumed that the hitting process is indepen-

dent of the killing-with-hits process (i.e. the random varia-

bles N and Z are independent). Here Z (a r.v.) denotes

the number of hits to kill the target, and N (a r.v.) denotes

the total number of rounds expended to kill it (see [51, Chap-

ter 5] for further details). Under the assumption (Al) of

Markov-dependent fire, we have [51, Chapter 51

i- lPl 1- ~l) zl)- E[NIZ- z] =z + Pl- m +  •Z1) (5.9)

PhmT P(him)
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while under the assumption (A2) that the number of hits required

to kill obeys a geometric probability law with parameter P(KIH),

N. we have

E[Z] P(KIH (5.10)

Unconditioning (5.9) and using (5.10), we find that

S[N] 1 + 1 [1- P(h h)] + Plhjh) p,
= P(KIH) P(hlm) P(KIH) - . (5.11)

Substitution of (5.10) and (5.11) into (5.8) then yields our

desired result (5.3). Thus, we have shown how the method (Ml)

based on the appropriately weighted sum of component event times

leads to the expression for the expected time to kill a target

with Markov-dependent fire (5.3) via the basic model for the

time to obtain z hits (5.5). This development is by far the

more transparent of the two considered here and shows that (5.3)

holds exactly and not in any limiting sense (see below).

We now turn to the development of (5.3) by method (M2) which

is based on the first-passage time in a semi-Markov process.

We will see that this second method is not nearly as transparent

as the first, although it has been used to develop more general

results that are used for engagement-outcome assessment in the

VECTOR-2 and TFECS models. Loosely speaking, a semi-Markov

4process (SMP) is a continuous-time Markov chain (MC) with general

distributions for the times between transitions (i.e. not neces-

sarily exponentially distributed). The SMP is completely des-

cribed by a matrix of transition probabilities for an imbedded

29
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MC and a matrix of distribution functions for the "wait" in a

state before going to another state. No specific assumptions

are made about these distribution functions for the "wait" in

a state (except that they are indeed distribution functions).

The basic idea behind this second method (M2) is to model the

attrition process with a SMP in such a way that the expected

time to kill a target is equivalent to the mean recurrence time

for a given state (i.e. the mean time between successive visits

to that state). This method (M2) uses the following important

result by Barlow [4] that shows that the mean recurrence time

for a state may be simply computed from the unconditional mean

wait in each state and the stationary distribution for the

imbedded Markov chain.

THEOREM 5.1 (Barlow 141, 1962). Consider a semi-Markov process

* (with J states S I , S2 , ... , Sj) in which all states communicate.

The mean recurrence time for state Si, denoted as £ii' is then

given by

= i j Pj, (5.12)

where p. denotes the unconditional mean wait in state S. and

71. is an element (corresponding to state S.) of the stationary

distribution for the imbedded Markov chain. It follows that

J
= ij' (5.13)
' i Pij
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* and

k~l ~j 1 'jk(5.14)

where p i is the transition probability that the, system goes

from state S. to state S. when such a change does occur, and

P denotes the mean time that the system remains in state S.

before it transitions to state S k*

It should be noted that no assumption at all is made here about

the distribution of waiting time in state S. before the system

transitions to state Sk

We will now show how Barlow's theorem may be used to develop

(5.3). Considering a single firer trying to engage and kill a

single passive type of target, we see that a particular target

can be categorized as

(1) undetected,

(2) hit,

(3) missed,

or (4) killed.

5When one target has been killed ,search immediately begins for

a new target. We now seek to define system states for this attri-

tion process in such a way that the conditions requisite for in-

* yoking Barlow's theorem are met (in particular, given any start-

ing state, after sufficient lapse of time, the system can be in

any state). Consequently, the "killed" state cannot be absorbing.
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S.ll To accomplish such a defining of system states, we observe that

- the following two situations are mathematically equivalent:

(I) a new target immediately appearing upon the destruction of

the currently engaged target, and (II) the same target being

repeatedly killed. Thus, we will define the following three

system states:

S1  killed state (which lasts from the destruction of

the previous target until the first round has been

fired at a new target),

S = hit state (in which the target has been hit but

not killed by the last round fired),

and S3 = missed state (in which the target has been missed

and not killed by the last round fired).

These states and the corresponding transition probabilities for

changes in system states are shown in Fig. 3. The transition

probabilities for the imbedded Markov chain are given by

Pl = PlP(KIH), P21 = P(hlh) P(KIH), P3 1 = P(hlm) P(KIH),

rP2 = P{lI-P(KIH)}, P22  = P(hlh){1-P(KIH)1, P32  = P(hlm){l-P(KIH)

1 P 3 = 1-p1 , P2 3 = l-P(hlh), P3 3 = l-P(hlm),

(5.15)

Furthermore, the expected wait in each state is independent of
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: p P(KlH)

KILLED
(Look for New Target)

NPhlh) {I-P(KIH)) Plrlh) P(mlm) :1 P(hlm)

HIT II MISSED
(but Not Killed) 1-P(hlh) (and Not Killed)

Figure 3. System states and transition probabilities

used in the second method (M2) for the

derivation of the expected time to kill a

target by invoking Barlow's [4] result for

the mean recurrence time of a semi-Markov

process with an imbedded ergodic Markov

chain.
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the next state visited and given by

= tI + tf,

P.12 = th + tf, (5.16)

and U3 = tm + tf.

With the above definitions, all states communicate, and the ex-

pected time to kill a target is just the expected time between

* visits to state SI, i.e. the mean recurrence time X11 for

state SI. Hence, the expected time to kill a target E[T] is

* given by

3E[T] = 2ii = I ~
11T Xl 7T (5.17)

11 l=1

. where the stationary probabilities are given by the system of

equations

3
"w .' = it. for j = 1,2,3. (5.18)i=l P ij

From (5.17) we see that what we need for computing the mean

recurrence time for a target being killed Li is not thefr 11

stationary probabilities fj for j = 1,2,3 themselves but

the ratios f /1 for j = 2,3. Accordingly, let us define

r. = for j = 2,3. (5.19)
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We may then write

E[T] = i 1i = + + r3i 3 ' (5.20)

where r2 and r3 are determined by the linear system of

6equations

(P22 - 1)r2 + p3 2 r3  -P(2'I 15.21)

P232+ (P3 3 - 1)r3 = -P1 3.

The reader should note here that only two of the three equations

(5.18) are linearly independent7, since 3 Pij = 1. The

equations (5.21) are simply obtained from the last two of equa-

tions (5.18) by dividing both sides of each of them by -1 > 0

and using (5.19). Solving (5.21), we find that

= P1 2 (1-P3 3) + PI3P32
:r

2o (l-P22) (l-P33 ) -P23P32

and (5.22)

P1 3 (l-P22) + P12P23
= (l-P22 ) (l-P3 3 ) - "

Substituting (5.15) into (5.22), we find that

{1 - P(KIH)}r - P(KIH)

and (5.23)
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r____ - P(h h) + P(hlh) - P( (5.23)

3 P hjm PKH

whence follows (5.3) from substitution of (5.16) and (5.23)

into (5.20). Thus, we have developed an expression for the

expected time for an individual firer to kill a target with

Markov-dependent fire (5.3) by considering the first-passage

time in the firer's target-destruction process modelled appro-

priately as a semi-Markov process. However, this approach may

be used to develop an expression for E[T] in much more compli-

cated situations (see Appendix B for further details).

As we have already mentioned above, although the first method

(Ml) is more transparent, the second method (M2) is the one that

has been used to determine attrition-rate coefficients for maneuver-

unit combat in VECTOR-2 and rates of observations by information-

collection resources in TFECS (i.e. C31 capabilities). Thus,

the reader who desires to understand the modelling of attrition

in VECTOR-2 and command and control in TFECS must thoroughly

understand the above simple derivation based on the first-passage

time for a semi-Markov process.

It is also useful to have two such different perspectives on

the determination of values for Lanchester attrition-rate coeffi-

cients. In particular, it is quite helpful to see two different

derivations of the same expression for a single-weapon-system-

type kill rate in order to better understand the modelling assump-

tions involved in its derivation. For example, the derivation

of (5.3) by the first method (Ml) clearly shows that this
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expression for the attrition-rate coefficient holds for all

time (in particular, for the early stages of an engagement).

Furthermore, no assumption has been made about the attrition

process being in a steady state. Thus, although the second

method (M2) does use the Markov-chain steady-state frequencies

j, no assumption has been made (either implicitly or explicitly)

by the use of this method concerning the modelled attrition

process being in a steady state (cf. the statement made in the

VECTOR-2 documentation [19, p. 56] about the "limiting value"

. of the attrition-rate coefficient).

In the next couple of sections we will examine how the addi-

tional operational factors (Fl) and (F2) of Section 4 may be

incorporated into Lanchester attrition-rate coefficients in

homogeneous-force combat.
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6. Target-Acquisition Process.

In this section we will investigate how the target-acquisi-

tion process may be represented in the attrition-rate coeffi-

cients in homogeneous-force Lanchester-type combat models.

Although the target-acquisition and line-of-sight processes

[i.e. the two factors (Fl) and (F2) selected in Section 4 for

further consideration] are certainly not independent of each

other, for simplicity in this section we will assume that line

of sight always exists between every firer-target pair (i.e.

combat on so-called "billard-table" terrain) in order to focus

on the target-acquisition process. Thus, we will emphasize

here the modelling of the target-acquisition process in the

special case in which line of sight always exists in order to most

easily introduce to the reader the germane modelling concepts.

In the next section we will extend these ideas to include the

effects of the line-of-sight process on the target-acquisition

process.

Although given within the context of homogeneous-force combat,

the basic ideas presented here for modelling the target-acquisi-

tion process do extend to heterogeneous-force combat (in which

4they become quite complicated and tedious to follow). It is the

author's intention to present the general principles for repre-

senting target acquisition in Lanchester-type combat models in

* as simple a setting as possible in order to make them accessible

to the widest possible audience. Hence, we have suppressed here

the added complexities of the line-of-sight process and hetero-

geneous forces (i.e. target priorities). Finally, the material
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presented in this section is basic for understanding the modelling

of the target-acquisition process for maneuver units in VECTOR-2

and also for building more complicated target-acquisition models

through the process of model enrichment (see Section 2 above).

An important distinction made in VRI's Lanchester-type combat

models is whether the target-acquisition process of a single

"typical" firer type is a serial process or a parallel process.

In other words, a basic assumption about the target-acquisition

process for developing expressions for Lanchester attrition-rate

coefficients concerns the model according to which an observer

acquires targets: whether the target-acquisition process is con-

sidered to be done in series or parallel with the target-engagement

(i.e. destruction) process. The two modes for the target-acquisi-

tion process considered by VRI's models (including VECTOR-2) are

then as follows:

(Ml) serial acquisition,

and (M2) parallel acquisition.

The following conceptualizations are made about these two

modes of target acquisition in VECTOR-2. Weapon-system types

that employ parallel acquisition search continuously for targets,

even while engaging other targets. When such a weapon-system

type kills an enemy target, it can immediately shift its fire to

a new target, provided that such a target was acquired during or

before the engagement of the previous target just killed. On the othe

hand, a weapon-system type employing serial acquisition does not

acquire targets while engaging another target. When such a
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* serial acquirer ceases to engage a target (due to either killing

the target or losing line of sight), he must acquire a new tar-

get. It is assumed that a serial acquirer does not remember any

acquisitions made prior to engaging the target whose engagement

has just terminated, and consequently he must begin the acquisi-

tion process all over again from scratch. Once a target has been

acquired, though, it is actively engaged until killed, with only

a kill or loss of line of sight terminating the engagement. For

both modes of target acquisition, the VRI models assume that a

firer can always correctly distinguish between effective and

killed enemy weapon systems and never engages a killed system.

We will now examine how each of these conceptual models of target

acquisition may be analytically represented in homogeneous-force

Lanchester-type models.

Let us therefore again consider the simplest Lanchester-type

paradigm of combat between two homogeneous forces (see Fig. 1).

An observer in the serial mode of target acquisition selects a

new target whenever the previous target has been killed (or line

of sight to the previous target has been lost). The analytical

* .'.model of this acquisition-attrition process (shown for the Y

force engaging the X-force target types with Markov-dependent

fire) is given in Table VII. At the expense of being a little

redundant, we will now explicitly spell out in the main text

these results for serial acquisition in order for them to be

* available for ready reference and comparison with those for

parallel acquisition. Thus, it should be noted that the total-

force kill rate has been assumed to be just the single-weapon-

system-type kill rate times the number of firers, e.g.
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TABLE VII. Summary of Results Comprising Analytical Model
of Acquisition-Attrition Process (shown for the
Y. Force Engaging the X-Force Target Types).

SERIAL ACQUISITION

* dx
=-ay

1

T =Y time for a Y firer type to kill an X

target type

Markov-Dependent Fire:

E[T] =ta + tJ - th + h ~)

t tm+ tf E1 -P(h h)J
PT~fiiiY P (K I H)***-* + P(hjh) -pj
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xy (6.1)

since each serial acquirer on a side operates independently and

line of sight always exists between every firer-target pair.

Furthermore, the single-weapon-system-type kill rate for a

system using serial acquisition and Markov-dependent fire is

given by (for example)

a = E [Txy] (6.2)

where

T the time (a r.v.) for a Y firer type to

kill an X target type,

and

;:.(t h  + t f)
E[T] = ta + t I - th+ (H )

a 1 h P(KIH)

(ti + tf [-Phh))
+ P(h) PIKH + P(hlh) - Pl ' (6.3)

since in order to cause attrition to enemy targets a firer vust

acquire a new target from scratch after the previous one has been

killed (i.e. the expected time between kills includes the time

to acquire the target). Thus, the results for serial acquisition

are just the ones given previously in Section 3 (where the distinc-)

tion between serial and parallel acquisition was not made).
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On the other hand, an observer in the parallel mode of target

acquisition continues to acquire new targets, even while he is

engaging a given target. Once an enemy target has been killed,

such a parallel-acquisition system can immediately shift fire

to a new target provided that one was acquired while some previ-

ous target was being engaged and line of sight still exists.

The analytical model of this acquisition-attrition process (again

shown for a homogeneous Y force engaging homogeneous X-force

target types with Markov-dependent fire) is given in Table VIII.

In this case, the total-force kill rate is given by the product

of the kill rate of a single weapon system against acquired

targets and the expected number of firers who have already ac-

quired one or more targets, e.g.

-(-- = f y y (6.4)

where

= - exp {x I xy(S)ds (6.5)
0

E at random point in time Y weapon- 1
f = Prob system type employing parallel acqui- ,
.Y sition is firing at an X target type]

Sxy(t) denotes the rate at which a Y firer (i.e. observer)

acquires X targets at time t when there is a single target

present and it is continuously visible, and a denotes his kill

*rate against acquired targets. In the case of homogeneous forces
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TABLE VIII. Summary of Results Comprising Analytical
Model of Acquisition-Attrition Process
(Shown for the Y Force Engaging the
X-Force Target Types).

PARALLEL ACQUISITION (First Cut)

dx -- -~a XY y

at random point in time Y weapon- 1
f = Prob system type empolying parallel acqui-

Xsition is firing at X target type J

SXY= 1 -exp x 0  xxy(S)ds

°.° 1

= E[Tjy]

T'y = time for a Y firer type to kill an
acquired X target type (conditional

kill time)

Markov-Dependent Fire:

(th + tf)
E[T'] = tI  th-- P(IH)

+ Plhtm) PIKH)
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considered here, we could have equally well denoted the proba-

bility fXY as the probability that a Y firer (who is a

parallel acquirer) has available one or more acquired targets

at which to fire px, i.e.
A XY

PA(t) = f (t), (6.6)

where

ra typical Y firer (parallel acquirer)1
p"t) = Prob has available one or more acquired X .Axy [targets at which to fire at time t

However, we have chosen to use the notation f here, sincexy
it provides a bridge to the heterogeneous-force developments of

Section 10. Moreover, it is frequently useful to consider the

probability that a firer using the parallel mode of target ac-

quisition has available one or more acquired targets of a par-

ticular type at which to fire, and thus we have also introduced

PAx here. It should also be noted that fxyy then represents
xy

the expected number of Y firers who have already acquired one

or more X targets. Furthermore, the single-weapon-system-type

kill rate against acquired targets with Markov-dependent fire

is given by (for example)

.

S 1 (6.7)

where
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TA = the time (a r.v.) for a Y firer typeto kill an acquired X target type.

Here T' does not include the time to acquire a target, and

hence

.'-(t h  + tf)

ELT'] = 1- th + P(KIH)

+ + P(hlh) - (6.8)Z2} P (hjm) P (KjH)

Understanding the above simple model is essential for understand-

ing maneuver-unit attrition processes in VECTOR-2, which uses

a ij 's (i.e. heterogeneous-force single-weapon-system-type kill

rates against acquired targets). A derivation of (6.4) is pro-

vided for the interested reader in Appendix C.

It is worthwhile to note that originally the VRI models

(e.g. BONDER/IUA, AIR CAV, AMSWAG, etc.) considered both

(I) nonfiring acquisition (due to stimuli of nonfiring

targets),

and (II) firing acquisition (due to pinpointing the flashes

of the enemy's firing targets),

in the parallel-acquisition mode. When both processes are

present, the X-force attrition rate is given by

-~XAxy t)

(- 1 = {I - e }ay, (6.9)
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where a and EET'] are still given by (6.7) and (6.8), and

it
SMxy f (Xxy(s)-{In(l-Ppp (s)}vx(s) ds. (6.10)'.Y 0 X

Here

xy(t) = the rate at which a Y firer (i.e.
observer) acquires X targets by
nonfiring acquisition-at time t
when there is a s1ingle target present
and it is continuously visible,

ppx(t) = the probability that a Y observer
XY pinpoints an X weapon system when it

fires one round,

and Vx(t) = the rate of fire of a single X
weapon system.

This latter firing rate may be computed as (see [19, pp. 71-72]

for further details)

where ~~Y M1eYy tv x(t) e {-eYYXt) V*XF (6.11)

where {1 - e denotes the probability that at a random

point in time an X firer will be firing, and

.x(t) = the firing rate of an X weapon system

when it is firing at enemy targets.
4i .

From (6.10) we see that (6.11) does not yield an explic.'.t

expression for v(t). one app s.ximation v that one could

-4use is
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( r t
Vx(t) = l-exp -y f X YX V {lfl1P (s)) ) ds V X

(6.12)

The distinction made in VRI's Lanchester-type combat models

is important because quite different total-force-kill-rate ex-

pressions arise, depending on whether targets are acquired in

series or in parallel with the firing-at-acquired-targets proc-

ess. The reader can see this difference in total-force-kill-rate

expressions by contrasting the results shown in Table VII with

those in Table VIII. Thus, an important decision in developing

(i.e. applying) any operational Lanchester-type combat model is

whether to model a particular weapon-system type as a serial or

parallel acquirer. Unfortunately, no information concerning how

to decide the appropriate type of target-acquisition process

for a particular weapon-system type (i.e. whether the weapon-

system tyre is a series or parallel acquirer) has been given in

the literature. We have shown the reader the importance of

this distinction in the simplest context here, and in the next

section we will extend these ideas to include the effects of

the line-of-sight (LOS) process on the target-acquisition process.
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7. Line-of-Sight Process.

In this section we will investigate how the line-of-sight

K; (i.e. intervisibility) process is represented in the attrition-

rate coefficients in homogeneous-force Lanchester-type combat

models. Representing the line-of-sight (LOS) process allows one

to model terrain effects that limit the firing activity due to

loss of acquisition capability. The target-acquisition results

of the previous section should be thought of as holding when

continuous LOS exists between each and every firer-target pair.

In the current section we will add a model of the LOS process

to that of the acquisition-attrition process in order to investi-

gate the interaction and combined influence of the LOS and target-

acquisition processes on the attrition process. Our developments

here will build rather heavily on those of the previous section.

The two general methods that have been used in VRI models

for representing the effects of terrain on the line-of-sight

process may be described as follows:

(TMI) mathematical simulation of actual terrain

(actual terrain simulated as if it were a topo-

graphic map with three-dimensional relief and

LOS determined between two points on this map

as needed),

and (TM2) stochastic modelling of LOS process (actual

terrain not simulated but its effects on LOS

in a statistical sense represented as a

stochastic process).
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Furthermore, the exact form of the corresponding attrition-rate

coefficients for homogeneous-force Lanchester-type combat will

also depend on whether target acquisition is modelled as a

serial or a parallel process (i.e. whether weapon systems employ

serial acquisition or parallel acquisition as described in

Section 6 above). Thus, there are actually four cases to be

considered for investigating the modelling of the single-system

kill rate of a particular weapon-system type against enemy targets:

(Cl) mathematical simulation of actual terrain and

serial acquisition of targets by weapon-system

type,

(C2) mathematical simulation of actual terrain and

parallel acquisition of targets by weapon-system

type,

(C3) stochastic model of LOS process and serial acquisi-

tion of targets by weapon-system type,

(C4) stochastic model of LOS process and parallel acqui-

sition of targets by weapon-system type.

For our purpose here, it will again suffice to consider combat

I:. between two homogeneous forces (see Fig. 1 again) and focus on

the attrition process of the X force being engaged with Markov-

dependent fire because (as already discussed above) the concep-

tualization of heterogeneous-force combat is developed from this

* homogeneous-force construct. Before presenting results for each
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of the four cases (Cl) through (C4) above, it seems appropriate

to discuss in general terms the two general methods (TMI) and

(TM2) for modelling the line-of-sight process.

According to the first terrain-modelling method (TM), the

mathematical simulation of actual terrain, the terrain is repre-

sented in the computer by a topographic map (with three-dimensional

relief) of the region in which the engagement takes place and

LOS determined between two points on this map as required. For

such a computer-based model, there are several approaches for

simulating the topographic map on the digital computer (e.g.

see [28, 49]). For not only LOS determination but also determina-

tion of all other parameter values for such a (homogeneous-force)

Lanchester-type model, the location of each force is represented

by a single point on the topographic map. Consequently, such a

Lanchester-type model is sometimes called a lumped-parameter

(as opposed to distributed-parameter) model, since all parameter

values are determined by the engagement-attribute values at the

two reference points, i.e. spatial variations in engagement

attributes are ignored and lumped into a single (vector) value

for the engagement at time t. Let us denote these two points

as P and Py, where PX denotes the location of the X forceIX

on the topographic map and P that of the Y force. The[Y

model then determines whether LOS exists between these two points

(e.g. see [28]). It is convenient for us to introduce the

following notation concerning existence of LOS:
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1 if LOS exists between P and Py,

I LOS (PXPY) (7.1)

0 if LOS does not exist between PX

and P

where the reader should bear in mind that P and Py are func-

tions of time to reflect the movement of the two opposing forces

over time, i.e. PX = Px(t) and P = P (t). Consequently, for

convenience let us denote ILOs(PX(t),PY(t)) simply as the

intervisibility function I(t), i.e.

I(t) = ILOS (Px(t),Py(t)). (7.2)

It should be noted that on physical grounds the LOS indicator

function ILOS (PXP Y  is symmetric in its arguments, i.e.

I= ILos(PYPx In other words, existence of LOS

between two points does not depend on whether an observer is at

- X and looking towards P or at P and looking towards PX"

We will see below how the LOS function I(t) is used to turn on

*: and turn off force-on-force attrition in our Lanchester-type

model.

According to the second terrain-modelling method (TM2),

the stochastic modelling of LOS process, the location of each

of the two forces is again represented by a single point (again

denoted as P for the X force and P for the Y force) on

a conceptual topographic map, but the topographic features of

terrain are not directly used to determine whether intervisibility
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(i.e. LOS) actually exists between the two points PX and Py

on this conceptual topographic map. Rather the LOS process is

represented by periods of time during which the target at, for

example, PX is visible from Py being sandwiched between

periods of time during which the target is not visible. The

length of such a time period of target visibility or invisibility

is taken to be a random variable, influenced not only by the

physical LOS process between PX and P y but also by the motion

and changes in posture of both the observer and the target. It

has been empirically determined [19, p. 531 that it is not an

unreasonable assumption to take that the lengths of these time

intervals are exponentially distributed random va: Lables. Thus,

we may conceptualize this stochastic LOS process in the following

manner: periods of target invisibility alternate with periods

of target visibility; the length of time that the target is in-

visible during a period of target invisibility is an exponentially-

distributed random variable (with parameter n), and the length

of time that the target is visible during a period of target

visibility is also an exponentially-distributed random variable

(with parameter U). Furthermore, we will assume that these

random variables are all mutually independent.

Thus, the intervisibility process may be represented by two

* sequences of mutually independent random variables {T , T2, ...

and {T , T2, ... }, exponentially distributed with parameters

ni and V. The target can be in either of two states (either

invisible or visible), and Ti denotes the length of time that

the target spends in the invisible state the ith time that it
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enters this state (with TY being similarly defined for the
=...

visible state). The random variables T ... are inde-
1 2'

pendent and identically distributed (i.i.d.) random variables

(with common distribution exponential TI), and the random
V V

variables TV , T ... are similarly i.i.d. random variables
2'

(with common exponential distribution TV). Thus, 1/n is the

expected time that the target spends in the invisible state each

time that it enters this state, i.e.

- = ET], (7.3)
I

and 1/p is the expected time that the target spends in the

visible state each time that it enters this state, i.e.

VE[Tv .  (7.4)

If, for example, the target starts out by being invisible (i.e.

in the invisible state), there will be a transition to the visi-

ble state at time T1 , a transition back to the invisible state

Vafter a further time T, and so on (see Fig. 4). As a conse-

quence of the assumptions made above (i.e. each of the sequences

IV V{Ti, T ... and {TI, T2, ...} is composed of i.i.d. exponen-

tial random variables and the two sequences themselves are inde-

pendent), this two-state LOS model is a continuous-parameter

(i.e. continuous-time) Markov chain (see Fig. 5). It is a

straightforward matter to write down the forward-Kolmogorov

* equations which govern this Markov chain's probabilistic evolution:
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* TARGET H ~ I- T2 k
VISIBLE

TARGET II

T , ]TIME

Figure 4. Two-state stochastic model of intervisibility

process (technically called alternating-renewal

process or alternating-Poisson process). As

explained in the text, the model parameters n
ad V are defined by l/E[T I and
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V

VISIBLE INVISIBLE

Figure 5. State space and transition structure for two-

state continuous-time Markov-chain model of
LOS process. Here n denotes the rate at
which an invisible target becomes visible, i.e.
Prob[target transitions to visible state in At] =
SnAt, and U denotes the rate at which a visible

target becomes invisible.
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let pi(t) denote the probability that the target is invisible

at time t, and let pv(t) denote the probability that the

target is visible at time t; it follows that

.t dP
." = - n p1 + i pi

(7.5)
dpv

S n PI P p,

which readily yields

pv"= n + Pv(O) - e(n+P) (7.6)' "Pv t in + u n + 1 "

The equilibrium (or steady-state) probability of the target

being visible pv(-) is easily seen to be given by

pV = T (7.7)

The VECTOR-2 model uses what is equivalent to this steady-state

probability, but the exact details differ depending on whether

target acquisition is done in the series or parallel mode.

We will now present attrition-rate results for each of the

* -four cases (Cl) through (C4) above. As discussed above, we will

consider combat between two homogeneous forces (cf. Fig. 1) and

will focus on the attrition process of the X force taking

casualties inflicted by the Y force. We first consider the

mathematical simulation of actual terrain (TM1). For both serial

and parallel acquisition of targets, the basic idea is simply to
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"turn off" the attrition process when LOS is broken (i.e. the

targets are all not visible).

Case (Cl): Actual terrain and serial acquisition. In this case,

(6.1) basically applies, but no attrition can occur when LOS does

not exist between the two opposing forces. Additionally, there

* .will be a delay in the starting of the attrition process after

an interval of continuous LOS begins, since a target must be

acquired, the first round fired, and the round must impact in

the target area before any attrition can occur. For illustrative

purposes (and also simplicity) let us assume that uninterrupted

LOS exists between the two opposing forces in the time interval

[0,T]. The corresponding attrition for this situation may be

modelled by adding the intervisibility function I (t), defined

by (7.1) and (7.2), to the model (6.1) and also introducing the

"unit step function" H(x), defined by

0 for <O0,

H()= (7.8)

.1 for >0,

i.e.

- = I(t)H(t - td) a y, (7.9)

where 0 < t < T, td =t a + t + tf, and a is again given by

(6.2) and (6.3). Here the product I(t)H(t-td) "turns on" the

° X-force attrition when LOS between the two opposing forces exists

after a time delay of magnitude td (during which time LOS is
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assumed to continuously exist), and it "turns off" the attrition

whenever LOS is lost. Furthermore, the attrition of enemy

targets (which occurs in series with the acquisition process) may

be thought of as being an "interval" process in the sense that

the total-force attrition rate is governed (at least in the

simple example considered here) by the length of the time inter-

val during which uninterrupted LOS has existed through the "switch"

I(t)H(t-td). It is therefore necessary not only to determine

whether LOS currently exists but also to keep track of time inter-

vals during which uninterrupted LOS exists.

Case (C2): Actual terrain and parallel acquisition. In this

case, (6.4) basically applies, but not only can no attrition

occur when LOS does not exist between the two opposing forces but

also acquisition of new targets cannot occur. Furthermore, the

killing of acquired targets may be thought of as being a "point"

process in the sense that whether or not it is "turned on" and

operating depends on only whether or not LOS exists at the given

instant of time, but the acquisition of enemy targets (which

occurs in parallel with the attrition process) may be thought of

as being an "interval" process in the sense that the fraction of

the firing force that has acquired targets available to engage

depends on the acquisition probability accumulated over an inter-

val of time (during which it is assumed that uninterrupted LOS

has existed). It is therefore necessary not only to determine

whether or not LOS currently exists but also to keep track of

those intervals of time during which uninterrupted LOS has existed

59
a.. . .



and make assumptions about the ability of an observer to remem-

ber a target's last-known location when LOS is temporarily

broken 8 For illustrative purposes let us assume that uninter-

rupted LOS exists between the two opposing forces in the time

interval [0,T]. It follows from the results of Section 6 that

the attrition rate of the X force is given by

dx tdx) I~tctl - exp[-x f1 A ~(s)ds]}y, (7.10)
0

where 0 < t < T and a~ is given by (5.4) and (6.6). When LOS

exists only intermittently, additional assumptions concerning the

ability of an observer to remember last-known locations of enemy

targets are required in model building.

We now turn our attention to the method of stochastic modelling

of the LOS process (TM2). We recall that this method represents

the effects of terrain on the LOS process in terms of the dura-

tions of alternating periods of target invisibility and visibility

to a single observer. The lengths of these time intervals are

assumed to be exponentially-distributed random variables with

parameters n and V~ [see (7.3) and (7.4) above]. In the

parlance of stochastic processes, such a process is technically

called an alternating Poisson process (also called an alternatingq

a Markov process [ 19, p. 53]). Let us further assume now that the

LOS process is stochastically independent and identical for all

observer-target pairs, and that acquisition also occurs inde-

pendently. As far as the attrition process is concerned, a firer
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can kill an enemy target only during one of its periods of visi-

bility to him. In other words, the firer must kill an acquired

enemy target before LOS is lost. Thus, the stochastic LOS proc-

ess influences the attrition process both by limiting the availa-

bility of targets to be acquired and also by sometimes terminating

an engagement before the target has been killed. However, we

must now (as usual) treat serial and parallel acquisition

separately.

Case (C3): Stochastic LOS and serial acquisition. in serial

acquisition a firer must kill an acquired target before he can

acquire a new one, and such a kill must occur before LOS is lost.

Thus, the stochastic LOS process both limits the availability of

targets to be acquired and also sometimes causes an engagement

(always assumed to be one-on-one) to be terminated before the

target has been killed. For modelling the total-force attrition

rate of the X force, we will focus on a single (typical) Y

firer and will ask ourselves what is the expected time required

for this Y firer to kill an X target E[Txy]. The single-

weapon-system-type kill rate is simply the reciprocal of this

time (see Section 5), and consequently the kill rate of the en-

tire Y force against the X force is given by this single-

weapon-type kill rate times the number of Y firers (cf. Section

6 above), i.e.

= a(t,x) y, (7.11)

61



where (as always)

a(t,x) 1 (7.12)

and

T = the time (a r.v.) required for a YXY !firer to kill an X target.

Here we have denoted the single-weapon-system-type kill rate for

a Y firer as a(t,x), since the expected time for a Y firer

to kill an X target will turn out to depend on the number of

targets present as well as possibly changing over time.

- Let us now observe that an engagement may be terminated either

by the target being killed or by LOS being lost. Considering a

single firer trying to engage and kill a single passive target,

we see that a particular such engagement can be categorized as

(1) an engagement that ends with the target being

killed,

or (2) an engagement that ends with LOS to the target

being lost.

When one target has been killed, a new target is immediately

engaged, with such a new engagement beginning with search for

the new target. One can now define system states for the thusly

described attrition process in such a way that the conditions

- .requisite for invoking Barlow's theorem are met. Thus, we will

*define the following two system states:
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Si target-engaged-until-killed state (which lasts

from the end of the engagement of the previous

target until the present target is killed before

LOS to it is lost),

and S2  target-engaged-until-LOS-lost state (which lasts

from the end of the engagement of the previous

target until LOS to the present target is lost

without it being killed).

Let us observe that the system will transition to state S1

(irrespective of where it is now) if the next engagement ends

with the target being killed before LOS is lost. If we let p

denote the probability that a target is killed before LOS is

lost, i.e.

p = Prob[target killed before LOS lost], (7.13)

then the transition probabilities for the imbedded Markov chain

will be given by

Pll = P21 = P and P12 = P2 2 = 1-p. (7.14)

The above states and the corresponding transition probabili-

ties for changes in system states are shown in Fig. 6. Let us

further assume that the time to kill an acquired target (for

which uninterrupted LOS exists) is an exponentially distributed

random variable with parameter a. In this case, we know that
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I-p
Engagement ending Engagement ending
with target being with LOS being

KILLED LOST

Figure 6. System states and transition probabilities

used to derive expression for the expected

time to kill a target by invoking Barlow's

theorem for a serial acquirer and stochastic

LOS. Here p denotes the probability that

a target is killed before LOS to it is lost,

i.e. p = Prob(target killed before LOS lost].

-
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l = E [Tkx (7.15)

where

J Ta = the time (a r.v.) for a Y firer toka, kill an acquired X target (given

that the target is continuously visible).

One can now invoke Barlow's theorem (see Appendix D for details)

and show that

°1

E[T] = ET + E[T (7.16)

where

T = the time (a r.v.) required to acquire
a a target,

and Tea = the time (a r.v.) to engage an acquired
target until either the target is killed
or LOS lost.

For a Y firer engaging an X target (again, see Appendix D

for details), it may be shown that p = c/(c +i) and

E[Te] = l/(a+v), and hence

eaa
c )l+ XY

a = 1 (7.17)
{E [ + 1a X a+ XY

where T denotes the time required for a Y firer to acquire

an X target and pXY denotes the reciprocal of the expected

time that an X target is visible to a Y firer. If we assume
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that the target-acquisition process is Markovian with rate param-

eter X and that there are N enemy targets present within the

acquisition range of the firer and the targets all behave inde-

pendently, then (see Appendix E for derivation)

E[Ta] = (7.18)

where A denotes the rate of acquiring a particular type of

target when there is a single type of target present and it is

continuously visible. When all the X targets are within the

acquisition range of the Y firers, (7.17) and (7.18) yield

a + 1x
a = + P (7.19)

{nxy + 1
nxY AxY x a + PxY

where n denotes the reciprocal of the expected time that an

X target is invisible to a Y firer and denotes the rateAXY

-. at which a Y firer acquires X targets when there is a single

target present and it is continuously visible. Two limiting

- -cases of the above Lanchester attrition-rate coefficient are

particularly noteworthy: (I) when E[Tx ] = 0, then a = a;

and (II) when the X targets are continuously visible to the

Y firers (i.e. =XY 0), then a = i/{(l/(xXyX)) + (l/a)}. To

summarize: for stochastic LOS and serial acquisition, the X-

force attrition rate is given by (7.11) with a(t,x) given by

*I (7.19).
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Case (C4): Stochastic LOS and parallel acquisition. In parallel

K acquisition an observer continues to acquire new targets while

engaging a given target. Once an engagement has been terminated

(either by the target being killed or by LOS being lost), such

a parallel-acquisition system can immediately shift fire to a

new target provided that one was acquired while some previous

target was being engaged and LOS still exists. In this case,

by the usual "scaling-up" assumption [i.e. (All) of Section 3],

the total-force kill rate is given by the product of the kill

rate of a single weapon system against acquired targets and the

expected number of firers who have acquired one or more targets,

e.g.

dx = A ~ y,(7.20)
UP A ) (t) Y

where

ia typical Y firer (parallel acquirer)1
p Mt Prob Ihas available one or more acquiredXIAXy [targets at which to fire at timet

which is exactly the same as (6.4) above. The availability of

acquired targets, however, is different for the two different

models of the LOS process. For the case in which LOS is

modelled by the stochastic process described above, pAy(t is

given by

PA (t) = { VA (t)} ,(721
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since we have assumed that the acquisition process is stochas-

tically independent for all observer-target pairs. Here

[ X target visible and Y firer
PVAxy(t) = Prob has acquired this given X

[target at time t

Let us now limit our discussion to only nonfiring acquisition

(see Section 6 above).

We will further assume that the length of time required to

acquire a visible target is stochastically independent of the

LOS process with parameter X, i.e. 1/X is the expected time

to acquire a visible target. Combining these assumptions with

those for the alternating-Poisson-process for LOS, we may deter-

mine the probability that a given target is visible and acquired

PvA(t) from a three-state continuous-time Markov-chain model

(see Fig. 7) with the following forward-Kolmogorov equations

dp1I - nP I + PpVNA + PvA'

tA = npI - (7.22)

%VA = APVNA -PvA'

where Pi(t) denotes the probability that the target is invisi-

ble at time t, pVNA(t) denotes the probability that the target

is visible but not acquired at time t, and pvA(t) denotes the

probability that the target is visible and has been acquired at

time t. It follows that
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VISIBLE AND
ACQUIRED

VNA

VISIBLE AND I NVISI BLE
NOT ACQUIRED

Figure 7. State space and transition structure for three-

state continuous-time Markov-chain model of

target-acquisition process imbedded in line-of-

sight (LOS) process. Here n denotes the rate

at which an invisible target becomes visible,

i.e. Prob[target transitions to visible state

in At] = nAt, X denotes the rate at which a

visible target is acquired, and V denotes the

rate at which a visible target enters the

invisible state.

-6
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PVA(t) (n+p) (X+) + PVA ( 0 ) (+- ) ( )e-+t

+ lpVNA1 0 ) - n (l-e-)e

+ (")( e-t' (7.23)

whence the equilibrium (or steady-state) probability of the tar-

get being visible and acquired pVA (  is given by

nX (7.24)PVA = (n+PM) ( *+7.

VECTOR-2 currently uses this steady-state probability in ground-

force-maneuver-unit-attrition calculations, but use of (7.23)

with the appropriate initial conditions would seem to be more

appropriate. Returning now to (7.23), we will assume that no

targets are initially acquired, i.e. pVA(0)= 0. However,

targets are distributed between the invisible state and the visi-

ble state (with all visible targets being unacquired). We will

further assume that when the engagement begins at t = 0, the

equilibrium distribution between the invisible and visible states

has already been reached, i.e. pI(0) = ip/(n+') and

=VO n/(n+i) PVA=) It follows that

.'.. - e (X+ pl t

.-PVA-(t) = (e+-) 11- e. (7.25)
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Using this result for the calculation of the target-availability

probability (7.21), we will find it convenient to write

X - ( xY+Xy)t
PA(t) (xY+11xY + 1 -e (7.26)-i PV~xy( XY+ XY ) XY+ x Y ) "

To summarize: for stochastic LOS and parallel acquisition, the

X-force attrition rate is given by (7.20) with a given by (6.5)

and (6.6), pxA (t) given by (7.21), and pVAx y (t) given by
xy

(7.26).

We will now close this section by briefly discussing certain

aspects concerning the implementation of these ideas in various

VRI models. It will also be convenient to touch upon "valida-

tion" of such model results against those from a high-resolution

Monte-Carlo combat simulation in this context. Consequently,

Table IX contrasts the conceptual implementation of these ideas

in the BONDER/IUA model with that in VECTOR-2. The reader should

bear in mind that the BONDER/IUA model is (in some sense) the

conceptual ancestor of VECTOR-2 and is approximately ten years

older than it. Thus, this table in some sense depicts the evo-

lution of modelling ideas at VRI (and it has been substantial

and virtually unknown beyond a very small circle) and shows their

current status in VECTOR-2. Although both models base a ground-

force attrition algorithm on parallel acquisition, in many signi-

ficant ways the details are quite different in the two models,

*| with (for example) firing acquisition apparently not considered

in VECTOR-2. Finally, it should be noted that results from
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TABLE IX. Some Differences in the Implementation

of Selected Modelling Ideas in VI
Models.

BONDER/IUA VECTOR-2

LOS Process

Deterministic Simulation X

of Actual Terrain

Stochastic Model X

of LOS

Target-Acquisition Process

Serial X

Parallel X X

Comparison Against High- X

Resolution-Simulation Results
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BONDER/IUA have been compared with those obtained from a high-

resolution Monte-Carlo combat simulation [11-12] but that such

a comparison apparently has not been carried out for VECTOR-2.

Thus, the stochastic LOS model and allied aspects of the attri-

tion algorithms for maneuver units in VECTOR-2 apparently have

not been compared with such detailed-simulation results.

7
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8. Attrition-Rate Coefficients for Different Weapon-System Types.

As we have seen above, the time for a single firer to kill an

i acquired target (equivalently, the rate at which a single fire --

kills acquired targets of a particular type) may be considered

to be a fundamental quantity in any Lanchester-type model for

assessing combat attrition. It depends on the following factors:

(Fl) firer type,

(F2) target type,

(F3) range between firer and target,

(F4) engagement conditions.

Although we are discussing here attrition-rate coefficients

within the context of homogeneous-force combat, it does seem

appropriate to show some important connections with current

operational models which are all heterogeneous-force models. In

particular, VECTOR-2 requires as part of its input data base

single-weapon-system-type kill rates against acquired targets

(also known as conditional single-weapon-system-type kill rates),

.thdenoted here as aij for the j weapon-system type of Y

firing at the ith weapon-system type of X. These conditional

v.. single-weapon-system-type kill rates (i.e. the a. 's) are exter-

nally computed (in a manner consistent with the internal dynamics

4 of VECTOR-2) according to formulae that consider only measurable

(i.e. observable) weapon-system characteristics. They are taken

to be range dependent (but apparently constant within a given

0 range band). However, the important-point to note is that the

only essential difference between our discussion here concerning
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homogeneous-force conditional single-weapon-system-type kill

rates and the handling of heterogeneous-force conditional single-

weapon-system-type kill rates is merely a notational one (i.e.

the adding of double subscripts to identify firer-type/target-

type pairs, e.g. aij instead of merely a).

It seems appropriate for us to say here a few words about

the distinction between the "inherent" single-weapon-system-type

kill rate a (the rate at which one Y firer kills X targets

when he is engaging only them) and the conditional single-weapon-

system-type kill rate a (the rate at which one Y firer kills

acquired X targets). We saw above that

a (8.1)
1[T Y

where

E[T] = the expected time for a single firer
to kill a target,

and thus

a = (8.2)K
where

E[T'] = the expecued time for a single firer
to kill an acquired target.

I

From the definitions of E[T] and E[T'I, it follows that

E[T] = t + E[T'], (8.3)
a
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where t denotes the expected time to acquire a target. We
a

may also write (8.3) as

E[T] = t +-. (8.4)

which shows that a may be considered to be the basic descrip-

tor of "raw" weapon-system kill capability. In the rest of this

section we will focus on giving expressions for E[T'] (equiva-

lently, a) for different weapon-system types.

Experience has shown that the conditional single-weapon-system-

type kill rate is given by quite different expressions for differ-

ent types of weapon systems. Bonder and Farrell [11] developed

their taxonomy for different weapon-system types (see Table IV

above) to help structure the general modelling requirements for

attrition-rate coefficients. We will now summarize various basic

attrition-rate-coefficient results that have been developed for

different weapon-system types. These results are the basic ones

that are apparently used by the preprocessor to VECTOR-2 for

computing values for the conditional single-weapon-system-type

kill rates (i.e. aij 's). Such results have been developed for

weapon-system types operating under the following conditions:

(Cl) Markov-dependent fire and impact-lethality

mechanism,

(C2) Markov-dependent fire and lethality mechanism

by which a target can be killed not only by a

hit but also by a miss,
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(C3) burst fire and impact-lethality mechanism,

(C4) multivolley fire and area-lethality mechanism.

We will merely summarize results for E[T'] or a here, with

the reader being directed to [51, Chapter 5] for a more thorough

discussion of the assumptions upon which each expression is based,

a derivation of each, and a citation of the original-source

literature.

For the case of Markov-dependent fire and an impact-lethality

mechanism, the expected time for a single firer to kill an ac-

quired target E[T'] is given by

(t hI'" +t f ) (Em f) 1l-P(h h)]
E[T'] t E1 -h P(KIH) P(hlm) P(KIH)

+ P(hlh) - Pl} ' (8.5)

where all symbols are as explained in Table V, with the exception

that t denotes average time (e.g. t1  denotes the average time

to fire the first round after the target has been acquired).

For the case of Markov-dependent fire and a lethality

mechanism by which a target can be killed not only by_ a hit but

also by a miss, the expected time for a single firer to kill an

acquired target E[T'] is given by

E. {1 (h+Pf) {-P(KIH) {1 -P(KIM) ][P(hIm)-PlI+Pl}

t+tf 'P(hlm)P(KIH) {1-P(KIM) }+P(KIM) {l-P(hFh) [1-P(KIH)]}

S(t+tf) {1-P(KIM) }{1-P(h h)+[P(h h)-pl]P(KIH)}[ ; +(8.6)
+ P(hlm)P(KIH) {l-P(KIM) }+P(KIM) {l-P(hlh) [1-P(KIH) I (.
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where P(KjM) denotes the probability that a miss kills the

target and all other symbols are as defined before.

For the case of burst fire and an impact-lethality mechanism,

there are two modes of fire to be considered:

(Ml) repeated-burst fire [multiple (short) bursts

independently fired],

and (M2) mixed-mode fire [repeated-single-shot-Markov-

dependent fire until first hit after which there

is an immediate switch to burst fire (one long

burst)].

For repeated-burst fire, i.e. multiple (short) bursts independently

fired, the expected time for a single firer to kill an acquired

target EIT'] is given by

E!T'] = t + , (8.7)Bl SBKs

where

tBl denotes the average time to fire the first
burst after the decision to engage the
target has been made,

t denote the average time between the
Bs firings of any two successive bursts,

!- d

-SBK denotes the probability of killing the
1 target with the first burst,

and P denotes the probability of killing the
-S target with any subsequent burst.
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The simplest model for PSBK is to assume that all rounds within

the burst have stochastically independent effects, and then

nPSBK =1 - (1 -P ,where n denotes the number of rounds

in the burst and P denotes the single-shot hit probability

for any round in the burst.

For mixed-mode fire, i.e. repeated-single-shot-Markov-dependent

fire until first hit after which there is an immediate switch to

burst fire (one long burst), the expected time for a single firer

to kill an acquired target E[T'] is given by

E[T' = Ei + tf +(m+tf){P(hl)

+ 1 -P(KIH) I'Eh + "Ef + P SB(8.8)

where

tl~tf, ,tmPl, and P(KIH) are all as previously

defined above,

P(hllm) denotes the conditional probability of a
hit following a miss before the first
hit has been obtained,
denotes the average time between the firings

|.b of any two successive rounds in the

burst-f ire model,

and PSSKB = SSHB P ( K IH ) denotes the probability of

killing the target with any one round in
the burst-firing mode and P denotes
the corresponding hit probabifliy.

Finally, for the case of multivolley fire and an area-lethality

mechanism, the conditional single-weapon-system-type kill rate a
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is (approximately) given by

a= Vy{ln(l - AS 1 ) }x, (8.9)

where v denotes the constant firing rate of the Y weapon

system, X denotes the conditional kill probability for the

circular-cookie-cutter damage function with damage radius of

Rp, Rt denotes the radius of the circular area target,

1 Rt

S f P(R r)rdr,S1  pS 0

- R
-- 2 /2f _2 /2

P(R, r) e - 2/2 -d

= 0I 0 (r

and I ( ) denotes the modified Bessel function of the first
0

kind of zero order. Here the function P(R pr) is called the

circular coverage function.

For the reader's convenience, the various conditions under

which different expressions have been developed for the condi-

tional single-weapon-system-type kill rate (equivalently, the

expected time for a single firer to kill an acquired target) are

summarized in Table X. The equation number(s) of the corres-

ponding formula(e) to each set of conditions is (are) also cited

in this table. These formulae allow one to compute all the re-

9
* quired conditional-kill-rate inputs to VECTOR-2 and are used

for this purpose by the model's preprocessor.
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.X. ummar Une .Which

TABLE X. Summary of Various Conditions Under Which
Different Expressions Have Been Developed
for the Conditional Single-Weapon-System-
Type Kill Rate, With Equation Number of
Each Expression Given.

(Cl) Markov-dependent fire and impact-lethality

mechanism: Eq. (8.5)

(C2) Markov-dependent fire and lethality mechanism

by which a target can be killed not only by a

hit but also by a miss: Eq. (8.6)

(C3) Burst fire and impact-lethality mechanism:

repeated-burst-fire mode--Eq. (8.7)

mixed-fire mode--Eq. (8.8)

(C4) Multivolley fire and area-lethality mechanism:

Eq. (8.9)

81



9. Model-Validation Considerations.

It seems appropriate to briefly discuss the extent to which

the Lanchester-type combat models and submodels discussed in

this report have been verified (or validated 0) against empirical

combat data. Such historical validation of Lanchester-type models

is reviewed in some detail in the author's treatise [51, Section

* 7.22]. Basically, since essentially only aggregated data for

large-scale operations is available, only very simple aggregated

Lanchester-type models (i.e. homogeneous-force models that do not

consider variation of weapon-system-fire-effectiveness capabili-

ties with range) have been investigated for their scientific

* validity. Results have been somewhat mixed, with the general

consensus being that such simple aggregated models do not have a

particularly bad correlation with the available historical data

but that there is too much stochastic variability in the param-

* eters estimated from the historical data for the resultant models

to have any predictive value.

The detailed models for Lanchester attrition-rate coefficients

discussed above compute their numerical values for these coeffi-

cients from input values for measurable weapon-system character-

istics and may have a high degree of prima facie (or face)

validity, but they have never been validated against historical

" combat data. The primary reason for this lack of empirical

K verification is that the detailed combat data that is required

for such verification [e.g. positions of all combatants (and

hence firer-target ranges) as a function of time, firing rate as

a function of time, etc.] simply does not exist and the prospects
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for obtaining it in the future are not at all bright (see [30]

for further details). Additionally, even though all weapon-

system-type-subsystem inputs (e.g. target-acquisition time,

lethality, etc.) can be measured under simulated combat condi-

tions, it does not follow that the overall system in actual

combat will (in some conceptual sense) behave as the sum of these

parts modelled with simulated combat data. Thus, although the

detailed models for Lanchester attrition-rate coefficients have

been very logically developed from very plausible assumptions,

there is still some uncertainty in the scientific validity of their

functional form, and their predictive capability in any absolute

sense should not be uncritically accepted. On the other hand,

they are at least consistent with the state of the art for combat

models, and no other type of combat model (e.g. high-resolution

Monte-Carlo combat simulation, firepower-score model, etc.) has

been any more scientifically validated against real combat data.

Additionally, the VRI methodology is quite explicit, provides

transparent so-called audit trails, and does not rely on any

unspecified external inputs or "tuning parameters." There is

much to be said for Bonder's [6-7] (see also [19]) methodological

approach of determining numerical values for Lanchester attrition-

rate coefficients only based on measurable weapon-system-

performance characteristics, and this same philosophy has appar-

ently been used in developing the TFECS model, which quantifies

the contributions of command and control, intelligence, communi-

cations and electronic warfare to the ability of a theater force

to attain its objectives [17-18].
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*. 10. Determination of Attrition-Rate Coefficients for

Heterogeneous-Force Combat.

The modern battlefield contains many different weapon-system

types that operate together with complementary capabilities as

"combined-arms teams." For example, there might be both mounted

and dismounted infantry, infantry with rifles, infantry with

machine guns, tanks, different types of anti-tank weapon systems,

artillery, mortars, other types of fire-support systems, etc.

*Since each of these various different weapon-system types would

generally inflict and sustain casualties at different rates,

when one wants to model the attrition process for combat between

such combined-arms teams, one is obliged to keep track of the

number of each type of casualty and consider combat between

* heterogeneous forces.

For such heterogeneous-force combat, the natural generali-

zation of the simple homogeneous-force Lanchester-type paradigm

(3.1) [in which the casualty rate of a homogeneous force is

equal to the product of the single-weapon-system-type kill rate

and the number of opposing homogeneous enemy firers] is given

by (3.5). Let us therefore consider the following Lanchester-

type paradigm for combat between two heterogeneous forces (see

Fig. 2 again)

dx. n

|...

id - [ A.jY j  with x (0) =

j=l 1
(10.1)

dy. in 0
I  dt =- [ B.jix i  with yj(O) = y.,

d i=l j''
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* where xM(t) (for i = 1,2,...,m) denotes the number of the
! ith

i thweapon-system type of the X force at time t, B..

denotes the rate11 at which one Xi firer kills Y. targets,

and the quantities yj(t) (for j = 1,2,...,n) and A.. are

similarly defined for the Y force. Here (as above in Section

3) we will always let the subscript i refer to the X force

(and take on the integer values 1 through m) and the sub-

script refer to the Y force (and take on the integer values

1 through n). The interested reader can find a discussion

of the basic assumptions behind the above fundamental heterogeneous-

force Lanchester-type paradigm in Section 3 above (see also [50,

Section 6.6; 51, Section 7.7]). For present purposes it is not

essential that we be explicit about the functional dependence of,

for example, Aij. Thus, Aij may stand for a constant A

a function of time A. (t), a function of time and the numbers

of targets Aj (tx), or even A.. (t, , .

As we have seen above, a nonnegative quantity such as, for

example, Ai is called a heterogeneous-force Lanchester

attrition-rate coefficient. It represents the fire effectiveness

of one Yj firer against Xi targets and denotes the rate at

which a typical Yj firer kills Xi targets in the opposing

heterogeneous enemy force (see Fig. 2 again). Bonder and Farrell

[11] (see also Section 3 above) have argued that one should take

such a heterogeneous-force Lanchester attrition-rate coefficient

to be given, for example, by

A ij = 1 (10.2)
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where E[TxY] denotes the expected time for a single Y.

firer to kill an Xi target. All the VRI models (including

VECTOR-2) have been based on this fundamental premise and the

concept of building detailed submodels (based on only measur-

able inputs) of all required Lanchester attrition-rate coeffi-

*' cients. The development of credible metholology for computing

numerical values for such Lanchester attrition-rate coefficients

has made possible the use of Lanchester-type combat models as

defense-planning tools.

Heterogeneous-force attrition-rate coefficients such as Aij

and Bji in the model (10.1) reflect a much greater complexity

in the attrition process than do homogeneous-force attrition-rate

coefficients such as a and b in the model (5.1): besides

being complex functions of weapon-system-type capabilities and

target-type characteristics, the attrition-rate coefficients

A.. and Bji also depend on additional operational factors

such as the distribution of target types, relative rates of

target-type acquisition for the various different types of firer-

target pairs, procedures and priorities for assigning weapon-

system types to target types, etc. In other words, not only

must one consider how a given weapon-system type causes attrition

to a particular engaged-enemy-weapon-system type (as one does in

modelling homogeneous-force-on-force combat attrition), but also

one must account for different such pairings occurring at differ-

ent times and places on the battlefield and also possible changes

in these pairings over time. Thus, attrition-rate coefficients

.  for heterogeneous-force combat must reflect much greater
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complexities of the attrition process than those for homogeneous-

force combat. It is of fundamental importance, though, that all

-*: approaches known to this author for modelling heterogeneous-force

attrition-rate coefficients take homogeneous-force results [e.g.

(8.5) through (8.9)] as key "building blocks" for constructing

their heterogeneous-force results. In particular, the VRI models

use the same conceptual approach (i.e. an individual firer engaging

a single passive enemy target) that was used in Section 5 above

,. to develop homogeneous-force-attrition-rate-coefficient results

(but now set in the combined-arms-team environment). Furthermore,

they take as their basic input the appropriate conditional single-

.. weapon-system-type kill rates that have been computed for firer-

type--target-type pairs in essentially a homogeneous-foiz.e envir-

onment. Moreover, it should be noted here that the use of such

values for single-weapon-system-type kill rates, each of which

* has been computed under conditions independent from the other

weapon-system types in the combined-arms operation, implicitly

assumes that there are no synergistic effects between different

.. weapon-system types. Thus, although there will occasionally be

some minor modifications, we will use (in the appropriate way)

all the above homogeneous-force-attrition-rate-coefficient results

* for developing heterogeneous-force attrition-rate coefficients.

In our discussion here about determining numerical values

for heterogeneous-force Lanchester attrition-rate coefficients,

we will focus on methodology developed by VRI, since two of the

purposes of this tutorial are (1) to foster a greater understand-

ing of the conceptual bases of the assessment of maneuver-unit
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*force-on-force attrition in VECTOR-2 and (2) to be a primer for

studying VECTOR-2 and the TFECS model. The interested reader

can find corresponding details for other operational Lanchester-

type combat models (e.g. IDAGAM, COMANEW, etc.) in the author's

treatise on Lanchester-type models [51, Section 5.16]. The

principals at VRI (e.g. see [11, pp. 15-16] or [16, pp. 6-71 have

found it convenient for modelling attrition-rate coefficients to

reflect such complexities of heterogeneous-force combat as dis-

cussed above by partitioning the attrition process into four

distinct subprocesses:

(SPi) the fire effectiveness of weapon-system types

firing at live targets,

(SP2) the allocation process of assigning weapon-

system types to target types,

(SP3) the inefficiency of fire when weapon-system

types engage other than live targets,

and (SP4) the effects of terrain on limiting firing activi-

14 ties of weapon-system types and on the mobility

of the systems.

Exactly now these effects are included in Lanchester attrition-

rate coefficients depends in an essential way on how the target-

* acquisition process is conceptualized: whether one considers

so-called serial acquisition of targets or parallel acquisition.

Here serial acquisition means that a weapon system is assumed

. not to acquire targets while engaging other targets. On the
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other hand, parallel acquisition means that the weapon system

is assumed to search continuously for targets, even while engag-

ing other targets (see Section 6 for further details about the

distinction between serial and parallel acquisition).

Although they are not strictly mutually exclusive, it will

be convenient for future purposes to consider two general ways

in which the effects of the above four subprocesses (SPl) through

(SP4) have been included in Lanchester attrition-rate coeffi-

cients in each of two periods of model development. Moreover,

throughout the rest of this section we will always focus on A

with Bji being symmetrically determined. Thus, focusing on

A.., we present these four ways as follows:

(PI) Before Development of VECTOR-0

(Wl) A.. = ij fij a.j' (10.3)

| y
or (W2) A.. = ij gij a.., (10.4)

and

(PII) During Evolution of VECTOR Series (Currently VECTOR-2)

Y all other variables describing
(W3) A.. = Fi ,the acquisition and engagementj, (10.5)

L of targets 1

4 (W4) Ai - *ij ij, (10.6)
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where

i denotes the allocation factor (the fraction
of Y. assigned to engage Xi),

aj denotes the "inherent" single-firer weaeon-ij system serial kill rate (the rate at which
one Y. firer type kills X. target types
when ii is engaging only thel in an
engagement process in which periods of
acquiring and firing at a target alternate,
with acquisition not going on during firing),

fi. denotes a factor aggregating the effects of
1) all other variables that are not included

in either the allocation factor qi. or
the "inherent" single-firer weapon-iystem
serial kill rate a.. and modifying the
effectiveness of an individual Y. firer
type against Xi target types, 3

OL ij denotes the conditional single-firer weapon-
' system kill rate (the rate at which one Y.

firer type kills acquired X. target type;
when it is engaging only thel),

Y
gij denotes a factor aggregating the effects of
gij all other variables that are not included in

either the allocation factor . or the
conditional single-firer weapon-iystem kill
rate a. and modifying the effectiveness
of an ifIdvidual Y. firer against Xi
target types,

and F. denotes a function that yields the attrition-
1rate coefficient for a Yj firer type engaging

X. target types (with arguments as indicated).

Ways (Wl) and (W3) are for serial acquisition, while ways (W2) and

(W4) are for parallel acquisition. The reader should note (see

also Sections 6 and 8 above) the distinction between the "inherent"

IN single-firer serial kill rate aij (the rate at which one Yj

'* firer type kills Xi target type when it is engaging only them

in an engagement' process in which periods of acquiring and firing

at a target alternate, with acquisition not going on during firing)

90



*other hand, parallel acquisition means that the weapon system

is assumed to search continuously for targets, even while engag-

ing other targets (see Section 6 for further details about the

distinction between serial and parallel acquisition).

Although they are not strictly mutually exclusive, it will

be convenient for future purposes to consider two general ways

in which the effects of the above four subprocesses (SP) through

(SP4) have been included in Lanchester attrition-rate coeffi-

cients in each of two periods of model development. Moreover,

throughout the rest of this section we will always focus on Aij,

with Bji being symmetrically determined. Thus, focusing on

Aiji we present these four ways as follows:

(PI) Before Development of VECTOR-0

(Wl) A - f a( 10.3)

or W2) Aij " *ij g- a( 10.4)
ijj ij'

and

I(Pi) During Evolution of VECTOR Series (Currently VECTOR-2)

a all other variables describing\

(W) A )iiadenaemn) (10.5)Ai Fi0j,the acquisition and engagement
:i(W) Aj " jljof targets 9

(W4) Ai " *j aij' (10.6)

,i.
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and the single-firer kill rate against acquired targets aij

(the rate at which one Y. firer type kills acquired Xi  target

types when it is engaging only them). In other words, a =

when the time to acquire a target is equal to zero (see Section

8 for further details).

As we have discussed in Section 8, conditional single-

weapon-system-type kill rates (e.g. the a. Is) are required

L inputs into the VRI models. Thus, we may consider an aij to

be the fundamental descriptor of inherent weapon-system fire

effectiveness which is then modified by the circumstances (i.e.

acquisition process, terrain effects, target priorities, etc.)

of the engagement. Values for these conditional kill rates are

computed external to the model according to the formulas given

in Section 8 (see Table X). Although these formulas were given

in Section 8 for attrition-rate coefficients in homogeneous-force

combat, they are immediately extendable to heterogeneous-force

combat simply by adding double subscripts to denote the firer-

type--target-type pair to which the conditional single-firer kill

rate corresponds (e.g. a.. denotes the conditional kill rate

of a single Y firer against acquired Xi  targets). For exam-

ple, the conditional single-firer kill rate for a weapon-system

type using Markov-dependent fire and an impact-lethality mechanism

is given by

1~~~ h+tf t+tf 'l- *"
iJ t + P(KIH) m [1-P (h Ih) +P(hh) -Pl,' (10.7)-Eh PT T+Phm(K H)

where we have suppressed on the right-hand side of (10.7) the

double subscripts denoting dependence on the firer-target pair
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and all symbols are as defined in Sections 5 and 8. Thus, a

value for the conditional single-weapon-system-type kill rate

!for each particular firer-type--target-type pair that is

played in the model can be calculated under the engagement con-

ditions of interest by using data for this pair together with

the appropriate attrition-rate-coefficient formula given above.

In the VRI models, these coefficient values are pre-calculated

for all engagement conditions (e.g. firer moving and target sta-

tionary, etc.) likely to be encountered when the model is run.

Since firer-target range is a continuous-valued variable, a

conditional attrition-rate coefficient is computed at a discrete

number of ranges and linear interpolation used to generate

values for other ranges as needed.

Before providing some detailed results on the modelling of

heterogeneous-force-attrition-rate coefficients A. in two
J

general forms in each of two periods of model development, we

will present a brief overview (see Table XI). As we saw in

Section 6, depending on whether target acquisition is modelled

as a process that is in series or in parallel with the firing

process, a fundamentally different mathematical expression is

,'.' obtained for a Lanchester attrition-rate coefficient. This same

basic dichotomy between results for serial and parallel acquisi-

tion is reflected in Table XI: ways (Wl) and (W3) are for serial

acquisition, while ways (W2) and (W4) are for parallel acquisi-

tion. We will now provide some detailed heterogeneous-force-

attrition-rate-coefficient results for VRI models in the two

periods of model developments
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TABLE XI. General Ways in which Attrition-Rate
*I Coefficients have been Represented in

VRI Lanchester-Type Combat Models in
Two Stages of Model Evolution: (I)

+.1 before VECTOR-0 and (II) in VECTOR-2.
Here Ways (WI) and (W3) are for

- Serial Acquisition, and Ways (W2) and
2- (W4) are for Parallel Acquisition.

(I). Pre-VECTOR-O

(Wi) A ij fij aij

Y
(W2) Aij *ij gij ij

.9 (11). VECTOR-2

all other variables des-
(W3) A -j F ji mcribing the acquisition and

Ai 2j -Jengagement of targets

9,

(W4) Aij = ij ij
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(P1) before development of VECTOR-O,

and (Pll) during evolution of VECTOR series (currently

VECTOR-2).

During the first period (P1), allocation factors (e.g. *ij's)

were more explicitly used, while during the second period (PII),

target priorities have been more explicitly modelled in the

dynamics of the engagement process.

Period (PI): Before Development of VECTOR-0.

The basic concept upon which casualty assessment for direct-

fire weapon-system types is based in BONDER/IUA [12] and its

many derivatives such as AIRCAV [57], BLDM [2], AMSWAG [29], and

FAST [131 is to represent the effects of the above first three

subprocesses (SP1) through (SP3) in an attrition-rate coefficient

such as Aij with the following functional form (see also (51,

Section 7.7] where the basic heterogeneous-force Lanchester-type

paradigm with Aij = *ijaij is developed):

Au I~ aj (10.8)Aij = ij ijaj'10)

where ij and aij are as defined after equations (10.3)

through (10.6), and I Y denotes the intelligence factor (the

fraotion of those Y allocated against Xi who are actually

engaging live Xi  target types). This intelligence factor,

however, has apparently not been considered in any applications

(at least through 1975 [16, p. 7]). In other words, I Y has
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been taken to be equal to 1.0 for all i and j, and in this

case (29.8) reduces to

Ai - aj. (10.9)

We could consider (10.9) to apply to both serial and parallel

acquisition (with the time to acquire a target being set equal

to zero for parallel acquisition), but for better understanding

subsequent developments in the VECTOR series of models it is more

convenient (as we have done above) to have aij refer to only

the single-weapon-system-type kill rate for serial acquisition

and to introduce a to refer to the single-weapon-system-type

kill rate against acquired targets (see Section 8). Again, we

bring to the reader's attention that ai ij when the time

to acquire a target is taken to be equal to zero. Thus, although

apparently never actually played in BONDER/IUA and its deriva-

tives, equation (10.9) would be used for serial acquisition.

The corresponding heterogeneous-force attrition-rate coefficient

would be given by

Aij 'ij 0ij (10.10)

for parallel acquisition. Again, equation (10.10) is the only

way in which values for heterogeneous-force attrition-rate coeffi-

cients were actually determined in the BONDER/IUA and its

derivatives.

*In these models, the Lanchester-type equations that are used

for maneuver-unit casualty assessment in direct-fire engagements
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are numerically integrated in a stepwise fashion (see [51,

Appendix E). In other words, one considers the force levels

*. to evolve (i.e. casualties to occur) in an engagement according

* to a system of so-called difference equations at discrete points

in time instead of the differential equations (10.1) which des-

cribe the battle dynamics continuously over time. Thus, battle

time is divided into discrete increments called time steps and

a complete calculation cycle (see Fig. 8) performed at each time

step. In slightly more detail, this calculation cycle is com-

posed of the following steps:

(1) update clock (time),

(S2) update the position of each group of weapon

systems played on the model's battlefield,

(S3) determine whether or not line of sight exists
C.

between each pair of such opposing groups,

(84) determine the attribute values for each engage-

ment between such opposing groups,

(S) compute the values of the attrition-rate

coefficients (e.g. Aij's),

(S6) assess casualties in time step for each such

Uengagement between opposing groups.

in sao sense Fig. 8 also holds in the VECTOR models, although

VZCTOR-2 has eight different clocks to control the sequence of

events in a much more complicated fashion (see [19] for further
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CONPUTE ffTRMaN-RAT

M5GM CASUALTIES N TIME SlEP

Figure 8. Schematic of basic calculation cycle in

typical operational differential combat

.4 - model. For such calculations, however, the

combat dynamics are taken to be represented

by a system of difference equations.
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details). In BONDER/IUA and its derivatives, the line-of-sight

(LOS) process is modelled through the mathematical simulation

of actual terrain as discussed in Section 7 above. Thus, the

S.. .position of each modelled group of combatant forces is repre-

sented by a single point on the simulated topographic map. More

importantly, the positions of each pair of groups of opposing

firers (or potential firers) are represented by a pair of points

located on this simulated topographic map, and the existence or

nonexistence of LOS between each such pair is determined at each

time step. A submodel based on target-acquisition considerations

is then used to determine numerical values for the allocation

factors *ij at each such time step through which the model

sequentially moves. The computational procedure used in the
.5.

original version of the BONDZR/IUA was similar to that used in

S AIW~which12MSWG, which is discussed in more detail below1 . In all these

models these allocation factors were calculated based on the

assumption of parallel acquisition of targets and a target-

priority list, with the AIRCAV and BLDM models using a target-

priority list in which more than one type of target was allowed

to be tied at the same level of priority to a firing weapon-

system type. In actual computation, an algorithm based on a

simplifying approximation was used to compute numerical values

for such allocation factors (see [57, pp. 29-32) or [2, pp. III-

6 through 111-81). Attrition of weapon-system types in direct-

fire engagements is then assessed using a finite-difference

approximation to the basic Lanchester-type ptradigm (10.1) with

the attrition-rate coefficients (f..- . am , Au 's) computed
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according to (10.10) in the BONDER/IUA. However, various

enrichments have subsequently been added during the evolution

of derivative models such as BLDM, AMSWAG, and FAST, which com-

pute a value for an Aij according to a formula like (10.4).

We will now focus on the calculation of values for heterogeneous-

force attrition-rate coefficients (e.g. Aij 's) in AMSWAG.

In the AMSWAG [29] model, attrition-rate coefficients are

modelled as

A ij = ij U01 ij, (10.11)

where U. denotes the fraction of the firer-type Y that are

unsuppressed. Submodels are used for

(a) the suppression factor U. [29, pp. 15-171,

and (b) thp fire-allocation factor [ij [29, pp. 18-21].

We will now discuss in detail the fire-allocation submodel used

in AMSWAG.

The following factors influence which target types will be

engaged by a particular firer type in AMSWAG and what allocation

of fire they will receive
13

(Fl) target-type priority,

(F2) range to target,

(F3) intervisibility,

(F4) round choice,

and (F5) target-type acquisition.
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* In AMSWAG each firing weapon-system type has its own target

priority scheme which allows different target types to have the

hiaghest priority at various ranges. An example of one such

firer-type target-priority scheme is shown in Fig. 9. It is

assumed that a firer type will attempt to allocate its f ire-

power against the enemy target type currently having the higher

priority, with the closest target not necessarily having the

highest priority (see Fig. 9). However, if two potential tar-

gets are of the same type, the one at the shortest range always

has the higher priority. Besides being an important factor in

target priority, the range (distance) between firer and target

also determines firing feasibility, i.e. no firing event can take

place beyond the specified maximum effective range of the firing

weapon-system type. Moreover, no target (regardless of priority

or proximity) can receive any fire allocation if line of sight

from the firer to that particular target (i.e. intervisibility)

does not exist. However, if line of sight does exist, the fact

that a target is seen either partially exposed or fully exposed

does not affect either the target's priority or its allocation.

The availability of ammunition of the appropriate type also

influences the allocation of fire in AMSWAG: a proper round

choice must exist before a firer type can allocate its fire against

a particular target type. Round choice is modelled for each

firer-type--target-type combination by a table of first and second

choices of rounds at both short and long ranges, plus a threshold

range used to determine whether the current firer-target range

will be classified as either short or long (see Table XII). If
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Figure 9. Typical target-type priorities used in

AMSWAG for a BMP firer in Europe with

Blue on the attack (from [291).

101



. . to .0

00

to029 0 0 40 0 In

4J 4J

VA .1I 0r~ 014
E-4 ) Q 3:

e'4 S3 04 1
A 0 4) r,

to 0
0. 130

00 V4 2c

0aa
0).

W0rl4
.4

00

0J 

E-4

4001
0 0 U

10

tit . . . . . . . .



I

for some reason the first choice of round type cannot be fired,

the model tries to carry out the firing event with the second-

. choice round type. If neither round type can be fired, the

target type receives no allocation of fire during this time inter-

val. [Here the term time interval refers to the fact that the

battle has been segmented into a large number of small time steps

(i.e. intervals) for computational reasons as per the numerical

integration of the Lanchester-type attrition equations (see [51,

Appendix El, especially, Figure E.1).] Currently in ASWAG, there

are two reasons why a particular round type might not be used:

(1) the particular firer type does not have available that type

of round, and (2) the firer is moving and that type of round

cannot be fired from a moving platform. Thus, a target type will

receive an allocation of fire only when all the following condi-

tions have been met:

(C1) the firer type has not allocated more than

ninety-eight percent of its firepower;

(U2) the target type is the highest priority target

type that has not already received an allocation;

(U3) the target type is within the maximum effective

range of the firer type;

S(C4) line of sight exists;

and (U5) a proper choice of round type exists.
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Finally, target-acquisition probabilities determine in the

following way exactly what the allocation by a firer type against

a particular target type will be when all the above conditions

have been met. The cumulative detection probability for each

firer type (say the ith) against each target type (say the jth)

*- is computed at each time step since the existence of intervisi-

bility. If we let pi. denote this cumulative detection proba-

bility, then in such an "expected-value" model as AMSWAG Pij

is interpreted as representing the fraction of the ith  firer

type that has detected the Jth target type. Then the fraction

of fire allocated by the ith  firer type against the j th target

type cannot exceed Pij times the unallocated portion of the

firer type's fire. A firer'type continues to allocate its fire

until it runs out of target types or has allocated more than

*ninety-eight percent of its firepower [see [29, p. 211 for further

details).

Period (PII): During Evolution of VECTOR Series (Currently VECTOR-2).

VECTOR-2 [19, 381 also considers a conditional single-firer

kill rate (e.g. an ai) to be the fundamental descriptor of aii
*weapon-system type's inherent fire effectiveness and uses differ-

"" ent formulas to compute numerical values for the attrition-rate

coefficients Aij according to whether the target-acquisition

process is done in series with or in parallel with the killing of

14
acquired targets The two major factors determining the

numerical value of an attrition-rate coefficient in VECTOR-2 are

(Fl) the acquisition and selection of targets,
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and (F2) the conditional single-firer kill rate against

acquired target types, aij
p.j

The acquisition and selection of targets in VECTOR-2 is concep-

tualized as consisting of the following three processes:

(P1) the line-of-sight process, which determines whether

a given target type is visible or not to a particu-

lar firer type,

(P2) the target-acquisition process, which determines the

time for a firer type to acquire a particular

target type,

and (P3) the target-selection process, which represents how a

particular target type is selected for engagement

from among those acquired.

The interaction of these three processes depends on whether tar-

get acquisition is done in series or in parallel. In both cases

each firer type orders all opposing enemy target types into a

priority list, which the model uses to determine which target

types are to be engaged first. Terrain effects are played sto-

chastically through the LOS process in essentially the same way

as discussed above in Section 7, only here within the setting of

heterogeneous forces. Thus, LOS effects on force-on-force attri-

tion were considered within the context of homogeneous forces in

Section 7, but we are considering combat between heterogeneous

forces in the section at hand. However, in such heterogeneous-force
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combat all firers and targets are assumed to operate indepen-

Idently and identically, and consequently the b asic LOS-modelling
ideas of Section I1 essentially carry over directly to the hetero-

geneous-force case considered here. Moreover, because of the

diversity of weapon-system types, additional factors such as

target-type priorities have been incorporated into the attrition-

rate coefficient models of a single firer engaging an enemy target.

in serial acquisition in VECTOR-2 (cf. the discussions of the

target-acquisition and LOS processes in Sections 6 and 7 above)

the acquired target type of highest priority is engaged by a

particular firer type until it has been destroyed or until line

of sight has been lost. At this time the serial acquirer must

acquire a new target. Moreover, past acquisitions are not remem-

bored by the serial acquirer. Also, in searching for a new tar-

get, the timeliness of acquisition is given consideration through

a series of search-cutoff times. When there are m target

typos, the selection of the next target type involves a sequence

of (m-1) search-cutoff times. Prior to the k th cutoff time

(where k < in), the observer looks for only target types of

* priorities 1 through k and ignores any lower priority tar-

gets. if the observer has not acquired a target by the (m-1)t

cutoff time, he will then engage the first target acquired (re-

gardless of its priority). once a target is acquired in serial

acquisition, it cannot be preempted by a higher priority target,

and only its destruction or loss of line of sight can cause fire

to be shifted away from it. In parallel acquisition search for

now targets continues even during the engagement of acquired
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F.

targets. When the target has been destroyed, a higher priority

rij target type has been acquired, or line of sight has been lost;

fire is instantaneously shifted to the highest priority acquired

enemy target type. A parallel acquirer does remember all past

target-type acquisitions. It should be noted here that these

two different conceptual models of target acquisition lead to

two completely different expressions for the Lanchester attrition-

* rate coefficient: the attrition-rate coefficient for serial acqui-

*i sition may be developed using the mean-first-passage-time result

given in Section 5 for a continuous-time-semi-Markov process (cf.

* the use of Barlow's theorem in Section 7 for homogeneous-force

combat), while that for parallel acquisition may be developed by

straightforward probability arguments.

The following is a summary of the assumptions made in VECTOR-

.. 2 concerning target-type acquisition and selection in maneuver-

unit combat [19, pp. 53-541:

(Al) the time to acquire a target, given that it is

continuously visible, is an exponentially distributed

random variable with parameter X ij' where i is

an index denoting the weapon-system type of the

target and j is an index denoting the weapon-

7system type of the firer;

: (A2) the line-of-sight process between a pair of opposing

weapon-system types in an alternating Markov process

with two states--visible and invisible;

107

a. . ... ." - -" -4 . "- ".' . "- "-.-- * "- - - - "- .. - - ., . . .-



(A3) the line-of-sight process for an observer-target

pair is independent of that for all other pairs;

(A4) there are two modes of acquiring targets; an observer

using the parallel mode acquires targets continuously,

even while engaging other targets; an observer using

serial acquisition can acquire only between engagements

of targets;

(AS) when an observer in the parallel mode acquires a

target of higher priority than the one being engaged,

he shifts his fire instantaneously to the target of

higher priority;

and (A6) an observer in the serial mode selects a new target

whenever he loses line of sight to the previous tar-

get or the previous target is killed (the model

assumes that the firer can perfectly distinguish be-

tween active and killed weapon systems and never

engages killed systems); there is a sequence of

*cutoff times to limit the time spent searching for

certain target types, such that prior to the nth

cutoff time only weapon-system types of priorities 1

through n are eligible as targets.

Thus, the target-acquisition-and-selection process transforms"i jth)
a Y weapon-system type's (say the j kill rates against

acquired X target types (mij for i - 1,2,...,m) into an

* achieved kill rate against a particular enemy target type (say
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the ith) Ai that accounts for target priorities and the

various competing activities in which a single firer may be

engaged over time. Moreover, the amount of attrition actually

assessed against a force is limited by a tactically acceptable

maximum attrition rate (see [19, pp. 54-55] for further details).

We will now give attrition-rate-coefficient results for the two

cases

(CAl) serial acquisition of targets,

and (CA2) parallel acquis.tion of targets.

For the former case (CAl), it is additionally assumed for the

derivation of an expression for Ai that the time to kill an

acquired target is exponentially distributed (with parameter

a.., where i is an index denoting the weapon-system type of

the target (here Xi) and j is an index denoting the weapon-

system type of the firer (here YJ. Also, in VECTOR-2 the

maximum number of weapon-system types in a maneuver element is

currently 11, i.e. with a homogeneous portion of the battle-

field m = n = 11 where m and n are X- and Y-force integer

index limits appearing in (for example) summations below.

For serial acquisition of targets in VECTOR-2, the hetero-

geneous-force LANCHESTER attrition-rate coefficient Aij is

taken to be given by

A hijPiJ (10.12)
Z ET kj I +
kI 1 kj + "kj + A kj
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where

a group-i target (here Xi) being firedr upon a acquired by a group-j firer (here
h.. = Prob I Y.) will be destroyed by that firer

j-' before either line of sight is lost or
L the target is destroyed by another
firer

. a group-j weapon which employs serial
P.. Prob acquisition acquires and selects a 1
ij group-i target type when it selects

La target I
as

E[Tj] = expected time on a given acquisition that a

group-j weapon spends acquiring and selecting

a group-i target [here Tas = if the
1

acquisition is of a non-group-i target; also
as > frasif Ti > 0 for some i, then T.. = 0 for

all other i],

= expected time that a group-j weapon firing at
.ij a group-i target requires to achieve a kill,

i.e. the single-firer weapon-system kill rate
against an acquire target [it should be re-
called that the corresponding time to achieve
a kill (a r.v.) has been assumed to be exponen-
tially distributed with parameter ai -.]

1- = expected time that a weapon system in group i
Uij spends in the visible state (for a weapon in

a group j) each time that it enters that
-'' state [it is assumed that the corresponding

time (a r.v.) is exponentially distributed
with parameter Vij ] ,

~1

- corresponding value for the invisible state,

and i expected time for any firer other than the
A11  single group-j firer in question to kill a

particular target in group i.

',1
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In somewhat simpler words, P..j denotes the selection probability

i.)

of an X -type target by a Y.-type firer, and h. denotes the

corresponding destruction probability. Similar to the homogene-

* ous-force case considered in Section 7 (see Appendix D for de-

tails), the above expression (10.12) was developed by taking

the Lanchester attrition-rate coefficient to be the reciprocal

of the expected time to kill a target [i.e. (10.2)] and then by

invoking Barlow's [4] mean-first-passage-time result for a

continuous-time semi-Markov process (see Theorem 5.1) to deter-

mine this expected time, Consequently, in VECTOR-2 the target-

destruction process has been conceptualized in such a way that

this latter result could be invoked (see [19, pp. 55-67] for

further details). Because of the complexity of (10.12), we will

not derive this expression here. It should be emphasized, how-

ever, that except for some differences in modelling details due

to "heterogeneous-force effects" (e.g. target-type priorities)

the conceptual basis of (10.12) is essentially the same as that

for the Lanchester-attrition-rate-coefficient expression for

homogeneous-force combat (7.17). The reader will therefore find

it instructive to compare (10.12) with (7.17).

We will now give expressions for all the remaining computed

quantities in (10.12) (again, see [19] for further details).

Accordingly, we have

h. - %j (10.13)
ai + jjij + Aj

and

L11
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"2where

where observer in group J (here Y.)

D W Prob has a target in group I (heri
Xi) under surveillance at timeIt after initial of search

Di(t) = i- Di(t),

tij = cut-off time for an observer in group J
searching for targets to exclusively engage
acquired targets of priority classes 1
through I (i.e. a target of priority
class 1+1 will not be engaged in acquired

before tCO < tCO j) (see Table XIII;o I+l
also Karr [31, pp. 32-331),

= expected number of currently surviving
group-I targets within range of a group-
J firer,

RlJ + (1.15)

-1
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TABLE XIII. Rules for Target Selection by
Serial Acquirer in VECTOR-2.

Priorities of Targets Priorities of Targets
to be Engaged to be Engaged if
Immediately Upon Previously Acquired

Time Acquisition and Still Visible

co1
[0,tlj 1

tlj

CO CO

S(t t2j) 1, 2
,....

I CO 3
t2j

,'. CO CO1,2

(t2J' 3j) 1, 2, 3

. -tCO t c O  ) 1,2, ... , m-l(tin-2 J'm-lJ1

,;l~

,'; .. (t m-l, ,+ 1, 2, . . -i, m
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143.

= expected time for a weapon in group J
IJ (here Yj) to detect a visible target in

group I (here XI ) [it should be recalled
that the corresponding time to detect (a r.v.)
has been taken by assumption (Al) to be
exponentially distributed with parameter

and

z RkN kJ- (10.16)
k=l

Here the two conventions have been followed that (1) a summation

over an empty index set is always taken to be equal to zero, and

(2) a product taken over an empty index set is always taken to

be equal to one, e.g. 1k= Tk 0 and R1= T = 1. Also, the

complement of a cumulative distribution function like (for exam-

* ple) Dij(t) has been denoted as Dij(t), and we then (of course)

have Dij(t) = 1 - DIj(t). Let us observe that 0 < NIj < xI.

* The target types have been indexed in such a way that X denotes

the highest priority target, X2 denotes the next highest, etc.

It remains for us to give an expression for Dij(t) in order

that P as given by (10.14) may be compated: the following

expression has been developed for Dij(t) (see [19, pp. 62-63]

* for further details)

D M (t Rj {exp (-Rj (t)
+A -R

• 1IJ JJ

exp[-(plj + A (10.17)
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Returning now to the computation of the Lanchester attrition-

rate coefficient Aij by (10.12), we see that it remains for

us to give expressions for the expected time to acquire and
as

select a target E[T j] and the single-firer kill rate of Xi-

type targets by other than Yj-type firers Aij. The following
expression has been developed for as, (seeexp ess on as ee de elo ed or E [T1 j ] (s e 19, pp. 65-66]

for further details)

as CO CO 1 CO
E[T Ij t I-i'j D~j i l-l'J)i ( i- i-l'J)

m-1C
-exp{ R CO

+ R IJNJ I_ {f D kli( J
t=I-1 k=l k+l,J kJ
9. CO

*exp{ Rk+,jN t

k=0 k+1,J kJ

1 CO C

x 1 {(Z t j + l)exp(-Z tCO

co +1 1)

- (ZtCO + )exp(-Z t£+lj }. (10.18)
XZ9 j1+i JtCOzl

Finally, the following approximation has been developed for

Ai and is used in VECTOR-2

n

Aj(t + At) = Ai (t) , (10.19)

X~j

where
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n
f(t)- y(t)/{ I Yk(t)} = fraction of total y weapons

k=1 exclusive of group j that
kpj Y weapons of group I

comprise.

Here, the fact that the differential-equation force-on-force

attrition model is numerically integrated by discretizing time
..

into time steps (see [51, Appendix E] has been used to develop

this approximation, with the right-hand side of (10.19) being

evaluated at the old time step and the left-hand side being taken

at the new one. In way of summary, the computation of Ai. for

weapons that employ serial acquisition requires the following

inputs: a U, T1 A, N., yj, and J?.;' : a~ij' ij' ij' j n

The interested reader can find the derivation of tie above

serial-acquisition attrition-rate-coefficient results sketched

in [19, pp. 55-68] (see also Karr [31, pp. 38-44]). It will be

instructive, however, for us to briefly consider the development

of the expression (10.14) for PIJ' the probability of selecting

a target from target-type group I. This probability is given by

cocCO iCoP = DIj I-iJ ) 1 [F o (tIl _tO-- O (t
i=l T.

•J ° t-ttCO

{mIi t+-'J (t-CO CO
I-O a kJ k+l,(tkJ a kJ

k+lJ

X U - CO k=CT+

a)d (t- (10.20)
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where

Ta - the time (a r.v.) for an observer in group i
- 2 to acquire a target in group j, with cumu-

lative distribution function

F a (t) = Prob[T j t].

iJ

The first term on the right-hand side of (10.20) represents the

probability that a target in group I (here XI) is under sur-

veillance at time tO and that no higher priority target

COwas ever under surveillance at a time before tilJ at which

time it would have been engaged, while the second term represents

the probability that a target in group I was acquired at some

time t after tCO  and that neither a higher priority tar-~I-i,J

get nor a lower priority one was ever under surveillance at a

time before t at which time it would have been engaged. It

follows from assumptions (Al) through (A3) above that

FTa (t) = 1 - exp(-Rij N ijt), (10.21)

ii

whence substitution of (10.21) into (10.20) yields (10.14). The
~as

expression (10.18) for E[T1 jJ may be developed in a similar

fashion. Finally, it is worthwhile to observe here that

S ij/(nij + 1ij) gives the probability that a target of type i

is visible. Recalling that Ai. denotes the rate of acquisition

of a group-i target by a group-j observer, we then immediately

see the justification of (10.21). Finally, the reader should

note the great similarity between (10.21) and the corresponding

homogeneous-force result (E.7) given in Appendix E. The fact
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that these two expressions are (except for the obvious differ-

once in notation) identical stems from the assumption made that

all observers and firers may be considered to behave independently

on VECTOR-2's heterogeneous-force battlefield.

For parallel acquisition of targets in VECTOR-2, the hetero-

geneous-force Lanchester attrition-rate coefficient A.. is

taken to be given by

Aij= fxiY ai (10.22)

where

at random point in time any Y)
f" =weapon-system type employing
xrob [parallel acquisition is firing at
"! [an Xi  target type

We further have that this probability that a Y. weapon-system

type is firing at an Xi  target type fxiYj is given by

PA for i = l,

"IJ (10.23)

PAX • (i- p ) for i = 2,...• , Yj k--- kY

where

a typical Y. firer (parallel 1
Prob acquirer) hai available one or

P more acquired Xi target types.? iYJat which to fire

ili
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and this target-type-availability probability p is given

I by i

pi~i (10.24)

A X - 1 - + Pij) (Aij + ij) ].

Here (as above) Nij denotes the expected number of currently

surviving Xi targets that are within acquisition and firing

range of a Yj observer/firer. The reader should note the simi-

larity between the previously given homogeneous-force results

for stochastic LOS and parallel acquisition [i.e. the combination

of (7.20) and (7.21) with pVA(t) given by (7.24)] and the above

heterogeneous-force results. Their similarity again stems from

the assumption made that all observers and firers may be con-

sidered to behave independently on VECTOR-2's heterogeneous-force

battlefield.

We may consider the above probability that at a random point

, in time a Y weapon-system type is firing at an X1  target

type f to be an allocation factor *ij" Furthermore, the
i i

expression for f has been derived from a model of the LOS,
i j

target-acquisition, and target-selection (i.e. target priorities)

processes, and this model combines all these factors into the

probability that a Y. weapon system is firing at an Xi target.

It is worthwhile to note that the expression for the heterogeneous-

force Lanchester attrition-rate coefficient for parallel acqui-

sition in VECTOR-2, i.e. Aij as given by (10.22), is of the

same form as that used in the BONDER/IUA model, i.e. Aij as
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given by either (10.6) or (equivalently) (10.10). Moreover, the

expressions for these allocation factors are different in the

K' •two models, since (for example) target acquisition is considered

to be time-homogeneous in VECTOR-2 and firing acquisition (see

Section 6) is considered in BONDER/IUA.

The above attrition-rate-coefficient results for stochastic

LOS and parallel acquisition of targets in heterogeneous-force

combat may be developed in exactly the same manner as we developed

the homogeneous-force ones, i.e. (7.20) and (7.21), since all

* firers and targets are assumed to behave stochastically indepen-

dently in both cases. The expression for fxiYj (10.23) may be

obtained by observing that the probability that a Y. weapon-

system type is firing at an Xi target type is simply given by

the product of the probability that an Xi target type is avail-

able and the probability that no higher priority target type is

available (i.e. any Xk target type for 1 < k < i-1). The

expression for p (10.24) may be developed in exactly the

AXx~y.

• :i! same way as (7.21) 4iih pV~yt W Vxy and PVA(-) given

-:: by (7.25). Thus, the expression for PA (10.24) has embedded
~X.Y.

in it the assumption that the target-acquisition/LOS process

*-i (see Fig. 7) has reached its steady state15

Finally, let us give a brief overview of the data-base

requirements for computation of attrition-rate coefficients in

. VECTOR-2. Current values of the following parameters are re-

quired for the calculation of attrition-rate coefficients at each

*time step:
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(P1) number of survivors in each weapon-system-type

group;

(P2) conditional single-firer kill rate, a.i or

-ji ;

(P3) acquisition rate for each weapon-system type in each

observing and observed group16  0 XY or XT

(P4) rates for the alternating-MARKOV-renewal line-of-

sight process, Uij and nij;

(P5) fraction of targets within range for every pair of

firer type and target type;

and (P6) rate of fire for each weapon-system type.

The parameters (P1) are obtained from other parts of VECTOR-2,

while (P6) is an external-user input. Parameters (P2) through

(P5) are internally computed in the model. These computations

involve more detailed input data from the following four classes

(see [19, pp. 70-711 for further details):

(DCl) scenario data expressing differences in force

employment (e.g. between armored, mechanized, and

dismounted infantry units); such data reflect the

initial geometry and maneuver patterns of forces

and the making of such tactical decisions as, for

example, when to mount and dismount infantry into

APCs,
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(DC2) movement data consisting of the speed of each

3weapon-system type (indexed on terrain
trafficability),

o.

(DC3) line-of-sight data consisting of the rates of

entering and leaving the visible state in each

of the terrain visibility classes,

(DC4) weapon-system-performance data (including the firing

rate for each weapon-system type) used to compute

the conditional single-firer kill rate, acquisition

rate, and the fraction of the target group within

range for each firer-type/target-type pair.

From the above brief sketch, the reader undoubtedly senses that

the data-base requirements for VECTOR-2 are rather demanding.

in fact, upwards of 350,000 pieces of input data are required

for its running (see Bonder [9, p. 36]), and many man-months of

effort are involved in the use of this much data in such a com-

plex operational model, e.g. the time required to acquire the

input data, the time required to structure this data into the

model's input format, the time required to run the model, and the

time required to analyze and evaluate the model's results (see

[5] for further details).
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11. Final Remarks.

The goal of this tutorial has been to review the most salient

points concerning the conceptual and operational bases for assess-

ing casualties with Lanchester-type combat models [particularly

complex operational models such as BONDER/IUA and VECTOR-2 de-

veloped by Vector Research, Inc. (VRI) or other models that have

evolved from these]. This tutorial has focused on the currently

existing methodology for the calculation of numerical values for

single-weapon-system-type kill rates (or Lanchester attrition-

rate coefficients), whose numerical determination stands at the

heart of casualty assessment in such models. The reader is

reminded, however, that casualty assessment is only one of many

important, interrelated combat processes (e.g. movement; command,

control, communications, and intelligence; etc.) that are repre-

sented in a force-on-force combat model. Furthermore, such

'-"' attrition-rate-coefficient methodology is important for the

following three reasons. Firstly, Lanchester-type models are

currently more widely used in various U.S. Army and DoD planning

activities than ever before, and such current acceptance points

to even more increased use in the future. Secondly, a single-

weapon-system-type kill rate is a basic element of any Lanchester-

type conventional-ground-combat model, and besides the inherent

firepower of a weapon-system type such a Lanchester-type attrition-

rate coefficient reflects (at least in the methodology presented

here) line of sight, acquisition of targets, and selection of

targets, which are processes deemed to be of great significance

by military tacticians for the effective application of firepower.
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Thirdly, significant new developments have occurred (many pro-

duced by VRI) in methodology for developing more tactically

realistic Lanchester attrition-rate coefficients, and these

important results have not been accessible to a very wide audience.

Operational Lanchester-type models of ground combat (e.g.

FOURCE or VECTOR-2) are very complicated to say the very least,

,' but (as we have emphasized in Section 2) they may be viewed as

having been developed from a simple basic Lanchester-type para-

digm through the process of model enrichment. Thus, in the

process of model building, one starts with a simple basic idea

and enriches it in details in an evolutionary fashion. It is

the author's basic hypothesis in writing this tutorial that in

order to explain the conceptual bases of such a complex opera-

tional model (especially one whose development is based on

significant new methodology that is essentially unknown to the

military OR community at large) one should return to the basic

paradigms from which the model has evolved and try to capture

the fundamental modelling philosophy that has guided the model-

enrichment process. The basic philosophy behind the determina-

tion of Lanchester attrition-rate coefficients in VRI's models

is to consider how a single typical firer of a particular type

engages and kills a single enemy target of a particular type.

This process is analyzed in detail and a model constructed out

of only measurable quantities. Thus, we have not sought to

recreate here the VECTOR-2 model itself but have tried to cap-

ture in a simple setting the basic ideas of the methodology for

determining single-weapon-system-type kill rates and the modelling
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philosophy that has guided the enrichment of these ideas in an

evolutionary fashion. This philosophy of explaining the basic

methodology (out of which a complicated model has been built)

in simple terms that nevertheless capture the essence of the

basic ideas may also be useful for model evaluation and espe-

cially model documentation.

The author has been particularly impressed by VRI's philosophy

(going back to Bonder's Ph.D. thesis [6]) of building process

models (not only for attrition but also for other combat proc-

esses such as commnand, control, commnunications, and intelligence)

that contain only measurable quantities (i.e. inputs). This

model-building approach is truly scientific (within the episte-

mological limitations inherent in such combat analysis) and in

this respect is unique among the modelling philosophies formally

articulated by the builders of such models. Although the result-

ing combat model takes only input data that can be generated by

some type of military field test, there are two epistemological

dangers present here (especially for the unwary): (1) such data

can only 'be obtained from simulated combat and not real combat,

and (2) although all the subsystem inputs have an empirical ori-

gin, the basic paradigm that combines them all together does

not. With regard to this last point, the basic problem is that

real (i.e. historical) combat data is at a much more aggre-

gated level than is the basic paradigm on which the determination

of a Lanchester attrition-rate coefficient is based. Such detailed

combat data simply does not exist (see McQuie (37] for further

details). Moreover, such criticism applies to all detailed combat
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models, irrespective of the modelling methodology upon which

their development has been based, and creates a severe episte-

mological dilemma which is far beyond the scope of our current

discussion.

Some people have criticized the VRI models because of their

requirement for a huge data base of a very detailed nature. This

situation is certainly true, but it is undoubtedly the price that

one must pay for the explicit (as opposed to implicit) treatment

of factors such as line of sight or target acquisition. Some

models (e.g. IDAGAM or TACWAR) claim to have such factors implicit

in their data base (with apparently no well-defined methodology

for regulating the dosage of such implicit factors into the

input data, or even documented and examinable), but cause-and-

effect relations between changes in. militarily-relevant weapon-

system characteristics, doctrine, and weapon-system deployment

and model are simply not present in them. Thus, such a model's

internal dynamics are more static than dynamic (see Farrell [21]

for an excellent discussion of implicit versus explicit treatment

of such factors in combat models). Since any combat model used

repeatedly in U.S. Army analyses will be required to examine a

* multitude of questions about interactions of weapon-system

* capabilities, the combat environment, tactics, and doctrine

* under a wide spectrum of circumstances, such a model must be

general purpose and fairly rich in internal dynamics, not a

highly specialized (or limited) model calibrated for a single

set of circumstances. Thus, it appears that fairly general models

that in some sense duplicate many of the real world's micro-combat
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interactions are required by U.S. Army analyses. I-f one wants

to duplicate on the computer the complexity of'modern large-

scale conventional air-ground combat, then one is going to have

a very complicated model with a very large required data base.

A basic problem in the documentation of such a model is that the

visibility (i.e. explicit representation) of model logic pro-

duces clutter [21, pp. 93-94], and a lot of clutter when every-

thing is explicit. Nevertheless, the author believes that a

complicated model can be documented in a hierarchical fashion to

retain transparency and capability for so-called "audit-trail

analysis" [e.g. see [45; 48]), provided that the reader of such

documentation is familiar with the methodologies used to build

its various pieces.

Thus, since recent developments in attrition-rate-coefficient

methodology apparently are not very widely known, this tutorial

* has attempted to popularize the basic ideas that are involved in

order that the users of these models may better understand them.

The author feels that the acceptability of such models (both by

the decision maker and also by the analyst) will dramatically

increase as their basic paradigms become better known.
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.
FOOTNOTES

iHere we mean a Lanchester-type (i.e. rate-of-change-based)

model that represents enough of the complexities of actual combat

operations to be used to address planning/operational problems.

Because of the size and scope of such combat operations, all

such operational Lanchester-type models require a modern large-

scale digital computer for their implementation and approximate

the differential equations (which conceptually represent the

rates of change of things on the battlefield) with difference

equations (which are numerically solved in a step-by-step fashion).

For the reader's convenience and ready reference, we will collect

here references to the documentation of all the models considered

in this tutorial, and we will generally omit further reference

to such documentation (unless it is to give a page citation to

substantiate some point) in order to enhance the tutorial's reada-

bility by reducing clutter. We should warn the reader that (as

emphasized by Shubik and Brewer [441; see also [15]) even when it

does exist, documentation of an operational combat model is gener-

ally weak, poor, uneven, incomplete, inadequate, and all too fre-

quently unavailable. However, the following documentation and

information is exceptionally good for this field. General infor-

mation about contemporary combat models (and primarily focusing

.K on conventional ground combat) in the United States is available

in [5; 50-52; 55]. Information about the BONDER/IUA may be

found in [11-12] (see also [13]), but for the many important
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subsequent developments one should consult documentation on its

various derivative models: BONDER AIRCAV (or IHA) [57], BLDM

[2] (see also [5]), AMSWAG [29], and FAST [13]. Documentation

of DIVOPS is given by [59], while that of FOURCE by [54] (see

also [53]). VECTOR-2 is documented in [38] and [19] (see also

[10]), but the reader may still want to consult documentation on

VECTOR-0 [58] and VECTOR-1 [60] (see also [5; 20]) out of which

it has evolved. TFECS is documented in [17-18]. IDAGAM is docu-

mented in [1] (see also [45]), while TACWAR is in [32; 34] (see

also [5; 33]). For the reader's convenience, we summarize here

(according to level-of-combat represented) all the above opera-

tional Lanchester-type combat models:

battalion-level combat: BONDER/IUA and its many derivatives

such as BONDER AIRCAV (or IHA), BLDM,

AMSWAG, FAST,

division-level combat: DIVOPS, FOURCE,

theater-level combat: VECTOR-0, VECTOR-l, VECTOR-2, IDAGAM,

TACWAR, TFECS (C 3I processes only).

2For general (fairly comprehensive) background on large-scale

general-purpose-force combat models (especially concerning prob-

lems related to documenting and evaluating them), the reader

should consult the recent GAO report [55]. Various aspects of

the problems of documenting and evaluating complex models are

discussed in the articles by Brewer and Hall [14], Strauch [47],

Hall [27], Gass [25], and Gass and Thompson [26].
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3The basic references here are Bonder [6; 8] and Barfoot [3]

, (see [51, Section 5.3 and Footnotes for Chapter 5] for a review

of historical developments in the evolution of this important

methodology).

4Our discussion here more or less follows that of Barlow [41

(see [51, Section 5.9] for further background and a brief guide

to the literature about semi-Markov processes).

the 5To be precise, we should say that the firer believes that

the target has been killed. However, for simplicity (and follow-

ing developments in the field) we will assume that the firer

possesses perfect perception of the target's state. Basic scien-

tific research on the behavior and perceptions of firers is re-

quired before more realistic values of such kill rates can be

estimated.

6From the theory of nonnegative matrices (e.g. see Gantmacher

[24]) via (5.18), it follows that any r2 and r3 satisfying

(5.21) must be nonnegative. More precisely, since the stationary

probabilities n. for j = 1,2,3 defined by (5.18) always exist

" [24, p. 98], we know that the ratios r. = which may be

considered to be defined by (5.21), are also guaranteed to be

rnonnegative.

7We additionally have the condition that

3
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which has not been used to obtain (5.21) from (5.18) via (5.19).

Although the above condition must be used to determine the sta-

tionary probabilities wj for j = 1,2,3, it is not needed to

determine r2 and r3.

8Strictly speaking, when the Markov assumption (i.e. the

future is independent of the past and only dependent on the pre-

sent) is made concerning target acquisition (as it is here), an

observer loses all acquired targets when LOS is lost. This

assumption is currently employed in the BONDER/IUA and all its

* derivatives (e.g. the AMSWAG model [29]) which directly simulate

actual terrain [i.e. use method (TM1)], but it has been questioned

by combat-experienced military OR analysts as to whether an ob-

server ever really loses all knowledge about the last-known enemy

target locations when LOS is temporarily broken (see J. Smoler

[46, pp. 30-31] for further details). More research is clearly

needed on the modelling of target acquisition when LOS is tem-

porarily broken.

9The mixed-mode version of burst fire (8.8) is currently not

considered by VECTOR-2.

10We are using here the words "verification" and "validation"

interchangeably. Many authors distinguish between the terms "the

verification of a model" and "the validation of a model," but

there is apparently no consistent use of these terms in the

literature (see, for example, Morris [39], Bonder [6, pp. 30-31],

Fishman and Kiviat [23], Van Horn [56], and Naylor and Finger
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[411). For our present purposes, however, such a distinction

does not seem to be warranted, especially since there is no con-

sistent use of these terms in the literature.

lIt is not assumed here that B.. is constant. In fact,
ji

for present purposes one need not make any assumption about the

variables upon which Bji depends, i.e. no particular functional

dependence is assumed here.

:-. 12Sor
Smoler [46, pp. 10-11] has pointed out that both the detec-

tion and fire-allocation submodels in AMSWAG contain several fea-

tures that are at variance with military experience and judgment.

He has consequently proposed an alternative fire-allocation pro-

cedure [46, pp. 31-36]. See also Footnote 8 above.

o13 ur discussion here is drawn from Hawkins [29]. Also,

see Footnotes 8 and 12 above.

14See Karr [31, pp. 31-47] for a critique of the determination

of the expressions for the attrition-rate coefficients in VECTOR-2,

which in this respect is essentially the same as that in VECTOR-0

and VECTOR-I.

15From the quite similar homogeneous-force developments given

in Section 7, i.e. (7.23) and its special case (7.25), the reader

can see that there are other results for pA , analogous to

those used for PVA t) in (7.21), that are based on more opera-
xy

tionally realistic assumptions (i.e. other than assuming that the

steady state has been reached) that could be used for developing

132



and expression for p . In particular, this availabilityAX y.
probability could be taiei to be time dependent, i.e.

p p
AXy AXy

i ij

1 6Here XF denotes the acquisition rate of a Yj-type obser-

ver against Xi-type targets, while A denotes that of an X.-

type observer against Y i-type targets. In our previous discussion

of heterogeneous-force Lanchester attrition-rate coefficients

above, e.g. see (10.12), it was not considered necessary to be

absolutely precise, and for simplicity's sake we used the sym-

Co
bols X ij Rij tij' etc. without superscripts.
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APPENDIX A: Justification for Taking the Lanchester Attrition-
Rate Coefficient as the Reciprocal of the

* Expected Time to Kill a Target.

The Lanchester attrition-rate coefficient is the rate at

which a single firer kills a particular enemy target type in

Lanchester-type combat. Such a single-weapon-system-type kill

rate is a fundamental part of any Lanchester-type combat model,

and the development of technically-sound and scientifically-valid

methodology for determining numerical values for Lanchester

.7. attrition-rate coefficients is an essential prerequisite for

building militarily credible Lanchester-type combat models to be

used in the study of U.S. Army problems. Within the context of

the basic deterministic homogeneous-force Lanchester-type paradigm

for modern warfare

t - ay with x(O) = x 0 ,
~(A.I1)

bx with y(O) = YO'

a and b are Lanchester attrition-rate coefficients, and (for

example) a denotes the rate at which a single Y firer des-

troys X target types.

The basic construct of the Bonder/Barfoot methodology is to

take a Lanchester attrition-rate coefficient as the reciprocal of

the expected time for an individual firer to kill an enemy target.

Within the context of the above homogeneous-force Lanchester-type

paradigm (A.1), this basic construct would read, for example,
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a = (A. 2)
E[Txy]

where TXy denotes a random variable (abbreviated r.v.) repre-

senting the time for an individual Y firer to kill an X target

and E[T] denotes the expected value of T. It is the purpose

* of this appendix to provide justification for taking the Lanches-

ter attrition-rate coefficient as the reciprocal of the expected

" time to kill a target, e.g. to justify (A.2). It suffices to do

so within the context of homogeneous forces, since all known (at

least to this author) heterogeneous-force Lanchester-type para-

*digms assume that all firer types and target types essentially

behave independently of one another (except that they are tied

together with the Lanchester-type casualty-assessment equations

and other combat-process models). Thus, justification of this

basic principle immediately extends to heterogeneous-force

* Lanchester-type paradigms and will be briefly discussed in the

• heterogeneous-force context below. Bonder and Farrell [11]

(see also [19; 57; 59]) have based their approach for determining

attrition-rate coefficients for a wide spectrum of weapon-system

"" types on this definition (A.2), and it forms the basic construct

for predicting attrition-rate coefficients (and hence assessing

casualties) for direct-fire maneuver-unit engagements in the

Vector Research, Inc. (VRI) models. It is therefore of con-

siderable interest to inquire as to what justification exists for

j basing the calculation of Lanchester attrition-rate coefficients

on this basic principle, e.g. on (A.2). We will first consider

a heuristic justification of (A.2), and then we will consider
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several more rigorous justifications (see [51, Section 5.3] for

further details).

All justifications of (A.2) known to this author are ulti-

mately based on the following basic hypothesis:

BASIC HYPOTHESIS (BH). Combat is a complex random process, but

it contains enough regularity that the appropriate Lanchester-

type equations are a good approximation to the mean course of

combat.

We will begin with a few heuristics in a more general case

for motivating justification of (A.2). Consider combat between

two homogeneous forces and assume that each force's loss rate

depends on only the number of opposing combatants and not time

explicitly (see Fig. A.1). We may model the force-on-force

attrition process with the following deterministic Lanchester-

type equations

= - A(x,y) with x() =x 0 ,

(A. 3)

t B(x,y) with y(O) Y0.dt

Here the number of (for example) X combatants, which is actually

a nonnegative integer, is represented by the real number x(t),

since we must take the force levels to be contint"usly-varying

quantities in order to model their changes over time with differ-

ential equations. We will assume that there are no replacements
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A(x,y)

.o

-. t B(x,y) yt)

Figure A.l. Diagram of force interactions considered

in heuristic justification (in more

* general case) of taking Lanchester

attrition-rate coeft.yent as recipro-

cal of expected time between casualties.
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and withdrawals, and then A and B are simply the attrition

rates of the X and Y forces, respectively.

Our basic hypothesis (BH) says that we may consider the

Lanchester-type equations (A.3) to approximately represent the

mean course of the complex random process of combat between the

X and Y forces. It implies an underlying stochastic combat

process. We will consider the simplest model of this stochastic

attrition process: a continuous-parameter Markov chain in which

time varies continuously and casualties occur discretely (see

[51, Chapter 4] for a more detailed discussion of such a model

and its relationship to the corresponding deterministic Lanches-

ter-type equations). This model is equivalent to assuming that

the times between casualties are exponentially distributed random

variables with force-level-dependent parameters (or rates).

Letting M(t), a random variable, denote the integral number of

X combatants alive at time t (with corresponding realization

denoted as m) and N(t) similarly for the Y force (see Fig.

A.2), we find that the following forward Kolmogorov equations des-

cribe the probabilistic evolution of the force levels for

0 < ~ m m and 0 < np < n < no
OMBP < m<mO an ~ BP <n 0

ddtP(t,m,n) = P(t,m+l,n)A(m+l,n) + P(tmn+l)B(mn+l)

- {A(m,n) + B(m,n)}P(t,m,n), (A.4)

where P(t,m,n) = P[M(t)=m,N(t) =nIM(O)=m0 ,N(O) =no], mBp

denotes the breakpoint (see [51, Chapter 3]) of the X force,

nBP denotes the breakpoint of the Y force, and for convenience
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A(m,n)

M(t), a random N~t), a rndom
variable with x g varoable with

realization FORCE FORCE realization

m

B(m,n)

Figure A.2. Diagram of force interactions for stochastic

combat model corresponding to the determin-

istic one depicted in Fig. A.l. Iere M(t),

a random variable, denotes the integer number

of X combatants alive at time t, and m

denotes a realization of this random

variable.
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we have adopted the convention that, for example, A(m,n) = 0

for m > m0 or n > n 0 -

. From the above simple stochastic model in which the times

between casualties are exponentially distributed random variables

with force-level-dependent rates, it holds that (see [51, Chap-

ter 41 for further details)

f 1E[T ] = A(m,n)' (A.5)

where Ty a r.v., denotes the time required for the Y force

to kill an X combatant. For the case of equal total-force

casualty rates that are independent of the numbers of combatants,

i.e. A(m,n) = B(m,n) = A = CONSTANT, (A.5) becomes the well-

known result for casualties occurring as a Poisson stream

E[T] = ,

or

1 (A.6)

t

where T denotes the time between the occurrences of any two

4i consecutive casualties and t = E[T]. Thus, we see in this gen-

eral case that the casualty rate is equal to the reciprocal of

the expected time for a force to inflict a casualty on the enemy

when one has assumed that the times between casualties are exponen-

tially distributed.
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We continue on now to heuristically justify (A.2) by

specializing the more general model (A.3) into (A.1). Thus,

the basic deterministic homogeneous-force Lanchester-type para-

digm for modern warfare (A.1) is simply the special case of (A.3)

in which A(x,y) = ay and B(x,y) - bx. Consequently, for the

continuous-time-Markov-chain analogue of the basic paradigm given

by constant-coefficient Lanchester-type equations of modern war-

fare, we have that (A.5) holds with A(m,n) - an, whence follows

(A.2). In other words, (A.2) holds exactly for the basic paradigm

for exponentially-distributed times between casualties. It is

also true (see [51, Section 4.12]) that as long as there is

"negligible" probability that either side reaches its breakpoint

[a particular (but extreme) case being that a force is annihilated],

then the mean course of combat (for any distributions of times

between casualties) may be taken to be given by

di -- - an with m(O) -m 0 ,

-.. (A.6)

dtt" b F with R(0) noO

where i(t) denotes the average X force level at time t

(i.e. m(t) = E[M(t)]), and (t) denotes the average Y force

level at time t.

We now pass to discussion of the case in which the times

between casualties in the stochastic process underlying (A.1)

are no longer necessarily exponentially distributed. Both Bonder

[7] and Barfoot [3] have essentially based their justifications
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of (A.2) on considering such a general stochastic attrition

process corresponding to (A.1) and taking the mean course of

combat to be given by

di

m -a n with m(0) =m 0

(A.7)

At a M with n(O) n o

where a denotes the expected value of the rate at which a

* single Y firer kills X targets and similarly for 8. Com-

parison of (A.6) and (A.7) suggests defining the Lanchester

attrition-rate coefficient as the expected rate at which a single

firer kills enemy targets, e.g.

' a a = E[rate at which a tarsingle Y firer kills], (A.8)

and (as stressed by Bonder [7-8]) implies an underlying distribu-

tion for the attrition-rate coefficient. Bonder [6-7] originally

took the Lanchester attrition-rate coefficient to be given by,

for example, a = a = E[l/TxY], which is the arithmetic mean for

a set of attrition rates and (unfortunately) does not lead to an

explicit result for a. Barfoot [3] later argued that the harmonic

mean a = l/E[T x] is more appropriate, since Bonder's [6-71

probability-distribution function for a represented the fraction

of targets killed for which each rate is used, and the harmonic

mean of these rates is the appropriate measure of average attri-

tion. It should be noted that Barfoot's justification of (A.2)
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, - does not involve any assumption about the distributions of the

times between casualties.

In the spirit of Bonder and Farrell [11], we will now give

a more rigorous justification of (A.2) that is not based on

assuming that the times between casualties are exponentially

distributed. We again consider combat in which the initial

numbers of X and Y combatants, denoted as m0 and n0, are

sufficiently large to insure that there is a "negligible" proba-

bility that the battle is terminated (i.e. one side or the other

first reaches its breakpoint) during our examination of the

battlefield. Let us now focus on a single Y weapon system.

We will make no specific assumption about the distribution of

times between kills, but we will assume that each individual Y

weapon system kills enemy targets according to an attrition

process in which the times between kills are independent and

identically distributed random variables (so-called i.i.d. random

variables). In the parlance of the theory of stochastic proc-

* iesses, such an attrition process is called a renewal process

X
* [43, Chapter 5]. Let N (t) be a r.v. denoting the number of

X casualties produced by a single Y weapon system in [0,t],

and let nX(t) denote its expected value, i.e. nX(t) = E[NX(t)]C .-

denotes the expected number of X casualties produced by a

single Y firer in the time interval [0,t]. Let us now intro-

duce A (At,t) defined by
c

e 1The reader should be cautioned that this justification is

not universally accepted and is apparently somewhat controversial
(see [50, p. 471 for further details). However, the author is
aware of no more widely accepted such justification.
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An x (At,t) (t +At) - x(t), (A.9)

which is the expected number of X casualties produced by a

single Y weapon system in the time interval (t,t+At]. For

exponentially distributed times between kills, it follows that

(e.g. see [43, p. 1771)

An X(At,t) At (A.10)
C-T.

where p denotes the average time for a single Y firer to

kill an X target, i.e. = E[Txy]. For any other distribu-

tion for the times between kills, (A.10) holds only asymptotically

in the sense that

lim An (At,t) = At (A.11)
t '+CD T

which is usually known as Blackwell's theorem (e.g. see [43,

p. 183]). If we assume now that each Y firer acts independently

and identically, it follows that for the entire Y force

umber of kills by the n At(A.12)2.eKntire Y force in (t t+At] VT

which holds exactly for exponentially distributed times between

kills and only asymptotically in the sense of (A.11) for any

other distribution. Consideration of the basic Lanchester-type

paradigm for modern warfare (A.1) with "large enough" numbers
li of combatants suggests that [cf. (A.6)]
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:n-mtner of kills by the

-Am etire Y force in (t,t+AtU = a n At. (A.13)

r Comparison of (A.12) and (A.13) suggests taking the Lanchester

attrition-rate coefficient to be the reciprocal of the average

time for an individual firer to kill an enemy target, i.e. (A.2)

has been justified.

More generally, Bonder and Farrell [111 take an attrition-

rate coefficient for a specific range r between firers and

.' targets in heterogeneous-force combat to be given by, for example,

A. (A.14)

where ELT xiYj Ir] denotes the expected time for a single Y

firer of type j to kill an enemy target of type i, given that

the range between firers and targets is r. (A.14) is the basic

construct for predicting numerical values for attrition-rate

coefficients for direct-fire engagements between maneuver units

in the VRI models. It may be justified by the same basic type

of renewal-theoretic argument just given above, since all firer

types and target types are essentially assumed to behave inde-

pendently in the heterogeneous-force version of the basic para-

digm (A.1).
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APPENDIX B: Particulars in General Case for Use of Barlow's
Theorem to Develop an Expression for the

• ' Expected Time to Kill a Target E[T] as First-
Passage Time in Semi-Markov Process.

In this appendix we will indicate how in general Barlow's

[4] theorem (i.e. Theorem 5.1 in the main text above) on the mean

state-recurrence time in a continuous-time semi-Markov process

may be used to develop an expression for the expected time to

kill a target E[T]. This material is essential for understand-

ing how the expressions for attrition-rate coefficients for

maneuver-unit combat in VECTOR-2 and rates of observations by

information-collection resources in TFECS (i.e. C31 capabili-

ties) are developed.

In general, this approach based on Barlow's theorem may be

used to develop an expression for the expected time to kill a

' target E[T] in any firing process with a set of J distin-

guishable states S1 , S2 , .,. , Sj as long as the following

assumptions hold:

(Al) the process makes transitions at distinct points

in time,

(A2) given that one is in state Si , the probability of

transition to state S. does not depend on any

history of the process; we let Pij denote the

probability of transition to state S. from

* state Si, i.e.
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i

P[5 system in state system in stateiPij S after transitionS i ,before transi

(A3) given that one is in state Si , the mean wait before

a transition to state S. depends on only the

specification of these two states; we let vij
denote the mean wait in state Si before a

transition to state S.,

(A4) no matter where the system starts, every state

has some probability of eventually occurring,

and (A5) the states are so defined that the expected time

interval between successive entries into state

sl1 corresponds to the expected time between

casualties.

In essence, this approach may be applied to any target-

destruction process that can be modelled as a semi-Markov

p*process . Let us now introduce the ratio r. defined by

r. = _a for j = 2,3,...,J. (B.l)

The expected time to kill a target E[T] is then simply the

:* expected time between the occurrences of two successive casualties

it1 and is given by

So far our discussion has more or less paralleled that given
by Farrell [11, pp. 136-137]. We now will depart from Farrell's

development by expressing results in terms of the ratios of sta-
tionary probabilities rj = 'j/7l for j = 2,3,...,J.
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E [T] = + r (B. 2)

where r2  r3  ... ,j are determined by the linear system of

equations

S(p. -. .)r. f (B.3)

and 6 j denotes the Kroneclcer delta defined by

= oro.

. ~ j=

Here we should note that the assumption (M4) guarantees that we

can always solve the linear system of equations (B.3) (e.g. see

Feller [22, pp. 356-362] or Parzen [42, p. 265]). If the Uj

are not directly available, they may be obtained from the i

by using (5.14), i.e.

U k-l jkijk for j 2,, (B.4)
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, .APPENDIX C: Derivation of Expression for Total-Force Kill
Rate in Case of Parallel Acquirer and
"Billard-Table" Terrain.

In this appendix we will show how equation (6.4) of the main

text may be derived. This equation should be taken to model the

" force-on-force attrition of the X force under the followinq

conditions:

(Ccl) each member of the Y force uses "aimed fire"

against enemy targets,

(CC2) line of sight (LOS) exists continuously between

all pairs of opposing combatants,

(CC3) parallel acquisition of X targets by Y observers,

(CC4) all firers and targets behave stochastically

independently of one another,

and (CC5) the process by which each Y firer acquires X

targets may be modelled as a nonhomogeneous two-

state continuous-time Markov chain.

Our terminology for stating (CC5) is that of Parzen [431. We

will now show how the above model (6.4) arises from these condi-

• tions (CCl) through (CC5).

To develop the above acquisition-attrition-process model

* (6.4), we assume that (CCl) holds and start with the following

basic Lanchester-type paradigm for such aimed fire (cf. Section

3)
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: dx(Cl
.x- = a (t,x)y, (C.l)

where a(t,x) denotes the single-weapon-system-type kill rate

for a typical Y firer against X targets. Assuming (CC3),

i.e. parallel acquisition of targets, we have that

rate at which (probability that Y firer) rt t hc

one Y firer = has an acquired X target (one Y firer kills )
k (.kills X tagt) available at which to fire acureXtags

(C. 2)

or, in mathematical terms,

P
a(tx) = A (t,x) a(t), (C.3)

where pA (t,x) denotes the probability that a Y firer (who

is also a parallel acquirer of targets) has available one or more

acquired X targets at which to fire. It will now be shown that

p t
p P (t,x) = 1 - exp{-x f xy(S)ds}' (C.4)

whence follows (6.4) from combining (C.1), (C.3), and (C.4) and

letting f = PA To develop (C.4), we assume (CC5) and

observe that

I probability that Y
p (t,x) = firer has acquired = 1 - { (t)}x, (C.5)

one or more X targets)
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where PNxy(t) denotes the probability that a Y firer has

not detected an X target by time t when there is a single X

target present and [by (CC2)] it is continuously visible.

Assuming (CC2) and (CC5), i.e. independence of acquisition in

short time intervals and other standard Markovian assumptions

*(e.g. see Parzen [43] or Kleinrock [35]), we have

t
PNx(t) = exp{- O Axy(S)ds}' (C.6)

whence follows (C.4).

4
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APPENDIX D: Derivation of Expression for Expected Time to Kill
a Target E[T] by Use of Barlow's Theorem for a
Serial Acquirer and Stochastic LOS.

In this appendix we will show how equation (7.16) of the

main text may be derived. We will also derive the results that

were used to obtain (7.17) from (7.16).

We recall (see Fig. 6 of the main text) that the following

two system states have been defined:

S1  target-engaged-until-killed state (which lasts from

the end of the engagement of the previous target

until the present target is killed before LOS to

it is lost),

and S = target-engaged-until-LOS-lost state (which lasts

from the end of the engagement of the previous

target until LOS to the present target is lost

without it being killed),

with the transition probabilities for the imbedded Markov chain

being given by

P11  = P2 1 = P and P12 = P2 2 = l-p, (D.l)

where

p = Prob[target killed before LOS lost]. (D.2)
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Furthermore, the expected wait in each state is independent of the

next state visited and is given by

P 2 = . = E[T] + E[Te], (D.3)

a] ea"

where

T a the time (a r.v.) required to acquire
a target,

and Tea = the time (a r.v.) to engage an acquired
target until either the target is killed
or LOS lost.

We will now calculate the stationary probabilities ir and 72

which are determined by the system of equations

" ' I = . I~l +  2P21 '

" (D.4)

T2 = 2P12 + r2 P 2 2 "

It follows from (D.4) that

= P and 2 =1 p. (D.5)

We are now ready to derive (7.16). Invoking Barlow's

theorem (Theorem 5.1 of the main text) for the two-state semi-

Markov process described above, we find that

1E[T]-(7 Ul+ 7111ET] = 11 2 2

15



or

E[TI = (D.6)~pg

which may also be written as

. 1E
E[T] = -I{E[T] + E[Tea]. (D.7)

p a ea

Equation (D.7) appears in the main text as (7.16).

It remains to show that

P= a+ (D.8)

and

E[Teal = 1 (D.9)

To develop (D.8), we observe that (D.2) may be written as

p = Prob[Tka < TVA], (D.10)

where

.
Tka = the time (a r.v.) for a firer to kill

an acquired target (given that the
target is continuously visible),

TA = the length of time (a r.v.) that a targetaremains in the state of being visible and
acquired (see Fig. 7 of the main text).
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Both the random variables Tka and TVA are assumed to be

N exponentially distributed, and hence for a Y firer engaging

an X target

FT  (t) = 1(- , (D.11)

and

FT = 1-e t, (D.12)
TVA

where FT(t) denotes the distribution function of the random

variable T, and Tka denotes the time (a r.v.) for a Y
xy

firer to kill an acquired X target (given that the target is

continuously visible). From (D.10), it follows that (see 151,

* Appendix B)

p - J FT (t)dF t), (D.13)
O V A Tka

or

p f e-lit ae-tdt,

whence follows (D.8).

1 To derive (D.9), it suffices to consider the conditional

expectation E[Teal], which is the expected time to engage a

160



target given that the engagement ends with the target being

killed. Now

i11": --. g I (target sti t t
Prbbe--mtPrbU~~ Provsi1 IPr~b illed

a tdt b t by t J [in dtj

or

Prb[engagement ndI1'

I Pob between t Se-ate-ptadt,

and t+dt

or

engagement ends ( , )
Prob between t S,] = ae tdt. (D.14)

L and t+dt

Normalizing this probability (D.14) to obtain a probability

density function (p.d.f.), we find that

f t (0+08- (+0)t, (D.15)
T eal 1S

where fT(t) denotes the p.d.f. of the random variable T.

. Equation (D.9) follows from (D.15), since fTea  (t) = f Tea(t).

Finally, it should be noted that (D.8) and (D.9) are used to

obtain (7.17) from (7.16).
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APPENDIX E: Derivation of Expression for Expected Time to
Acquire a Target for Stochastic LOS When Acqui-
sition of a Single Target Is a Markov Process
and All Targets Behave Independently.

In this appendix we will show how equation (7.18) of the

* main text may be derived. To this end, we make the following

*i assumptions:

-. (AEl) the LOS process may be modelled as a time-

homogeneous two-state continuous-time Markov

chain as depicted in Fig. 5 of the main text

with parameters n and v,

(AE2) the process by which each firer acquires enemy

targets may be modelled as a time-homogeneous

two-state continuous-time Markov chain with

parameter A,

(AE3) there are N targets within the acquisition

range of any observer and all these targets

behave stochastically independently of one

another,

(AE4) the LOS process is stochastically independent for

all observer-target pairs,

(AE5) the LOS process has been operating much longer than

the time that the observer has been looking for

any target.
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We let A denote the rate at which an observer acquires a

particular type of target when there is a single target present

and it is continuously visible. Also, n denotes the rate at

which an invisible target becomes visible, i.e. 1/n is the

expected time that the target spends in the invisible state

each time that it enters this state, and Pa denotes the rate

at which a visible target becomes invisible. We will now show

that

p.

L -: ELTa] = (E +
,.. n-"[T (E. 1)

a iTi I

where

T = the time (a r.v.) required to acquireaa target.

Equation (E.1) may be derived as follows. Consider a

single target and let FT (t) denote the distribution function
a

for the time to acquire a target T. Then

rfirst acquire 1 rTa

(t) dt = Prob target between -- dt. (E.2)
a Lt and t+dt j

Now by assumptions (AEI), (AE2), and (AE4)

first aoquire 1are noti [1target1
Rrc ---- '-e -em P acquired '*PrCi *~ejPrcib Iacquired

Lt an tI by t in [dlJ

oor
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• .. dFT": F~T
a dt = {l - (t)pvtdt, (E.3)

where Pv(t) denotes the probability that the target is visible

at time t. By assumption (AE5), i.e. the LOS process has been

operating much longer than the time that the observer has been

looking for the target, it follows that we may take PV(t) to

be given by the equilibrium (or steady-state) probability of

the target being visible pV(-) = n/(n+U), which was developed

in Section 7 of the main text, i.e.

PV(t) = PV() = n (E.4)

Substituting (E.4) into (E.3), we obtain

a - M-{l (t)J, (E. 5)
_Ft + T - ~a

with initial condition

FT (0) = 0.
a

Thus, for a single target

FTa = 1- exp - + t . (E.6)

Finally, by assumption (AE3), it follows that for N targets
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FT a(t) --- 1- ex,{ (n X -)t (E.7)

whence follows (E.1), which appears in the main text as (7.18).
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