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1. lNTRQDUCﬂON

A preliminary task of the project involved the continued evaluation of certain
features of the model and the reporting of any additional theoretical developments.

Under other sponsorship, Professor Dafalias continued to study the predictive
capabilities of the model for cyclic soil behavior. Preliminary results (Dafalias et al
1982) indicate the need for a mechanism to model the degradation of properties observed
under long-term cyclic loading conditions. A possible means for modeling this
phenomenon was developed and some preliminary testing was conducted. However, a

complete validation of this modeling mechanism, and the determination of its usefuiness,

will require additional study.

Continued comparisons of mode! predictions and experimental results indicate
the desirability of using a projection point other than the origin for the mapping rule.
Accordingly, this feature has been included in the current version of the model. The
interaction of this feature with other characteristics of the model is discussed in detail
by DeNatale (1982).

Numerical evaluations of the model made during the course of the current study
revealed some minor numerical problems associated with the first solution step away
from a pure hydrostatic stresi state for a normally consolidated soil. Professor Dafalias
has proposed a slight modification of the model to remedy this problem. When this
suggested change has been fully evaluated, and assuming that it does rectify the
problem, it will be incorporated into the model.

The development of a computer aided, automated calibration scheme has been
completed and used to perform a very extensive study of the importance and roles of
the several material parameters which describe the model. A brief description of this
study is given in the following section, and volume II of this report contains a user's

manual and a listing for the calibration program. Before the end of the year, the




w e
LA A

2 Seh A A ey AR A i ey, Kt
et B PP e S ]

P e ‘7“-"7: ORI
S "A"". ‘.. - L. o,

shnd
A

complete results of the study will be available in DeNatale's thesis (1982); a copy will
be forwarded to NCEL at that time.

The main thrust of the current work has been the study of various schemes for
numerically implementing the model in finite element analyses and the study of the
numerical characteristics of the model. Particular attention was paid to the relative
ease of implementation, and the economy and robustness of the competing schemes.
In previous work (Herrmann et al 1981), the rate equations for the bounding surface
model were cast in incremental form, and a subroutine was prepared to evaluate them.
In Section 3, a very brief review of this step will be given, prior to the reporting on
the main component of the research.

The final phase of the overall project will involve the verification of the
predictive capabilities of finite element analyses which utilize the model. With this
end in mind, a preliminary literature survey was conducted to determine the availability
of laboratory and field experimental results. The findings of this search are given in

Appendix A.

2 THE AUTOMATED CALIBRATION CODE
2.1 Purpose and Capabilities

In its most general form, the bounding surface model requires the determination
of 19 separate constitutive parameters, including 2 initial state properties, 5 traditional
material constants, whose values may be directly obtained from simple, easy to perform
laboratory experiments, and 12 model constants, which must be indirectly established
through a trial and error curve fitting process using the results of undrained triaxial
tests. A general summary of the various properties is presented by Herrmann et al
(1980), and a more detailed description of both the qualitative and quantitative influence
of each parameter is provided by DeNatale (1982).

This breakdown of mode!l constants is common to most, if not all, of the soil

model formulations inmtroduced in recent years. Determination of the directly
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measureable or "fixed" parameters is straightforward and readily accomplished.
Determination of the remaining "free" parameters, however, can make the calibration
procedure prohibitively difficult. Rather than being measured directly from a particular
portion of a specific laboratory test, these so-called "free" parameters must be
determined by trial and error, with the objective being to obtain the best overall fit
to a given experimental relation or set of observed responses. As a result, the overall
accuracy and efficiency of the calibration process can be strongly dependent on both
the subjectivity of the user as well as his expertise with the particular material model.

In formulations such as the bounding surface model, which employ a small number
of material parameters whose roles in the constitutive formulation are each well
defined, the manual calibration process becomes systematic and straightforward.
However, reliance on user expertise is still high, since all manual curve f{itting
procedures, by their very nature, require both judgement (in deciding just what
constitutes the "best" overall fit) and familarity (in deciding how much each parameter's
value must be changed to improve a given prediction).

In order to simplify the model calibration process, a computer aided calibration
procedure has been developed and tested. Since the calibration of a material model
involves minimizing the error, or residual, between the observed and predicted soil
response, the process can quite naturally be viewed as an optimization problem. Hence,
the computer code employs a quasi-Newton optimization strategy to locate that set
of parameter values which minimizes the discrepancy between the model predictions
and the experimental observations included in the calibration data base. The code
permits any number of tests, relations and/or individual observations to be included in
the calibration data base. Different weights may be assigned to specific components
of the data base if it is felt that certain tests, relations or observations are more
reliable or representative than others, or if it is necessary to have the final model

predictions fit some data more closely than others. Because this new computer aided

i PO PSP AT WS YOI W SO NP G L. W JP. 10 - W . I LRI oo

PPNy . T




St A taeaoa Al al PR SURP S SO VL NN Ur S ‘an 4

procedure greatly reduces the dependence of calibration success on user expertise, it
significantly increases the accessibility and usefulness of sophisticated material models
to the general engineering community. Although the code was developed specifically
for use with the bounding surface plasticity model, it can be readily adapted to other
constitutive formulations.

In addition to providing a means for automatically calibrating the bounding
surface model, the code can also be used to generate a set of model predictions for
homogeneous test conditions. The code may thus be used in those applications where
the driving program EVAL and subroutine CLAY would formerly have been employed,
Herrmann et al (1980). A comprehensive discussion of the new code, including a
comparison of the effectiveness of the manual and automated calibration procedures,

is presented by DeNatale (1982).

2.2 The Calibration Data Base

The ultimate goal of the calibration process is to identify that set of parameter
values which enables the theoretical model to most closely simulate the observed
material response. This goal is ordinarily accomplished by fitting the model to a
representative set of experimentally observed stress-strain relations or "calibration data
base". Ideally, this calibration data base should be complete and diverse enough that
all important aspects of the material's response are included, and all necessary
constitutive parameters may be uniquely established.

In its most general form, the bounding surface formulation is a fully three-
dimensional stress-strain model. With a single set of parameter values the model may
be applied to soil stress states at all overconsolidation ratios (OCR's), in either
compression or extension, under both drained and undrained conditions, and for both
monotonic and cyclic loading. Hence, to establish the optimal values of the necessary
constitutive parameters, the calibration data base should ideally contain observations

from the following seven standard laboratory tests:




1) an isotropic (or Ko) consolidation or drained compression test with

! both loading and unloading; and,

5 2-7) undrained triaxial compression and extension tests on specimens in
the normally (OCR = 1), lightly (1 <OCR < 2.5) and heavily (OCR > )
overconsolidated ranges.

The results of the consolidation test are required to establish the slopes of the isotropic
consolidation and swell/recompression curves (in e - In p' space) A and x. These two
parameters are traditional soil properties and would normally be assigned values
immediately, prior to using the automated calibration procedure. The results of the
six undrained triaxial experiments are required t0 determine the 12 model constants
cited in section 2.1, and would thus provide the data needed to direct the automated
calibration procedure.

The triaxial test results should ideally be represented in terms of the observed
qvsp,qvs € and u vs € relations. Naturally, if a less general form of the bounding
surface model is acceptable, the number of constitutive parameters involved and the
number of laboratory experiments required can be drastically reduced. For example,
if the model is only to be applied to normally consolidated soils loaded in compression,
the number of required constitutive parameters drops from 19 to 7, and only the
isotropic consolidation and a single triaxial test are needed for model calibration.

Although the above data base is recommended, the bounding surface model could
also be calibrated using other types of data. For example, drained rather than undrained
tests could be employed. However, undrained tests are preferable, since good initial
estimates of many of the model parameters can be made by examining the experimentally
observed undrained stress paths.

There is also some evidence that the calibration data base need not necessarily
include data from all three overconsolidation regions (see DeNatale 1982). That is, it

may be sufficient to include only tests from ‘he normal and heavy ranges, or perhaps




.........

even the heavy range alone. The data which supports this poss:bility is not, however,
conclusive, and therefore testing at all three regions is still recommended.

In addition, the experimental observations need not necessarily include all three
relations q vs p', q vs € and u vs €. Of the four undrained response parameters q,
p', u and €} only three are independent. In practice, p' is never actually measured,

but rather is computed from the relation:

3(03-u)+q
3

p' =

Hence, any two of the three relations cited above will completely define the soil
response. The use of q vs p' or q vs € data only is insufficient, since each of these
relations is insensitive to certain of the constitutive parameters. There is some
evidence that the use of u vs €, data alone may be sufficient (see DeNatale 1982).
However, the use of all three response relations appears to increase the rapidity with
which the optimization algorithm converges to the minimum. Presumably, the inclusion
of redundant data reinforces the correct search direction. Since the cost of an
automatic calibration run is only marginally affected by the numbers of response
. .ations included in the calibration data base, it is recommended that all three of
the relations cited above be used.

Finally, it may be possible to use other than triaxial tests to acquire the
necessary experimental information. Although the conventional triaxial apparatus is
the most common and versatile laboratory device, the simple shear apparatus could
also, for example, be used. In general, the soils observed stress-strain characteristics
will be to some extent dependent on the testing device which is used. Thus, in practial
problems, the laboratory device used to generate the calibration data base should
simulate, as closely as possible, the loading conditions for which the bounding surface

predictions will eventually be generated.
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2.3 Practical Considerations

The goal of the calibratiun procedure is to identify that set of parameter values
which minimizes the error between the model predictions and the experimental
observations included in the calibration data base. The automated optimization code
thus seeks to locate the objective function's global minimum. Unfortunately, there is
no guarantee that the algorithm will always succeed. The quasi-Newton strategy
employed by the model calibration code, like most, if not all, practical optimization
algorithms, is designed only to locate local minima in the vicinity of the initial
estimates. Hence, the probability that the true global minimum will be found is
directly related to the degree of unimodality exhibited by the objective function and
the accuracy of the initial guess.

Preliminary research by DeNatale (1982) indicates that the use of the "absolute
- Euclidean" measure of error leads to a more unimodal, and thus desireable, objective
function. A procedure for acquiring improved starting estimates has also been developed
by DeNatale (1982). Through actual testing with a number of different soils, this
strategy has been found to produce starting estimates which enable the automated
calibration code to consistently locate the global minimum. In practice, however, the
only way to ensure that the global minimum has been found is to conduct the search
from a variety of different starting points. The solution which yields the lowest value
of the objective function may then be regarded as the global minimum.

A second practical consideration concerns the quality of the calibration data
base. The user should ensure that the experimental observations included in the
calibration data base are diverse enough to permit the optimal values of the required
unknown model parameters to be uniquely defined. For example, if the code is used
to identify those model parameters associated with heavily overconsolidated material
response, the calibration data base must include observations made on bheavily

overconsolidated specimens, I the necessary experimental data is not included, the
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program will continue to execute, but the final computed "optimal" values of the
undefined parameters will be very close to the initial estimates. The major consequence
of an inadequate or incomplete calibration data base is related to the cost of the
analysis. Certain computational costs increase in proportion to n2 (n = number of
parameters to be determined), and a single gradient evaluation requires either n or 2n
additional objective function evaluations (depending on whether forward or central
differencing formulae are used). Thus, to minimize the cost of a model calibration
run, the user should seek to identify only those parameters whose values can be defined,
given the particular data base, A comprehensive discussion of the influence of each
of the 19 model parameters is provided by DeNatale (1982), and may be referred to

if uncertainly exists.

2% Example

To verify the viability of the new computer aided calibration procedure, the
method was applied to a number of representative data bases, both artificial and real.
The outcome of these studies is discussed by DeNatale (1982). Among the real data
bases to which the automated process was applied are the experimental results on
Kaolin reported by Jafroudi (1982).

The Bounding Surface model was calibrated on the basis of conventional undrained
triaxial compression and extension tests on samples at overconsolidation ratios of
OCR = 1, 2 and 6. With the necessary constitutive parameters thus having been fixed
at their optimal values, predictions were then generated for a variety of additional
undrained, drained, hollow cylinder and cyclic tests.

The results obtained with the automated procedure are compared to those of
the manual solution, as reported by Jafroudi (1982) and Herrmann et al (1982), in
Table | and Figures 1 through 6. As may be observed in Table 1, the optimal values
of the model parameters as established through the automated and manual procedure

are, as a group, distinctly different. For the given set of options specified in Table
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1, the automated solution was better than the hand solution, in the sense of having a
lower objective function value. The relative merits of the two solutions may perhaps
most clearly be seen by comparing the associated calibration curves shown in Figures
1 through 6. On the whole, the automated curves appear to more closely match the
experimental observations. A point by point comparison of the two solutions is
essentially impossible, since in performing a manual calibration, different subjective
weights are implicity assigned to the various components of the data base which cannot

be precisely identified.

2.5 Cost

The automated calibration code has been written in FORTRAN and implemented
or both an LSI-11/23 minicomputer as well as a VAX-11/780 super-minicomputer. The
cost of a given analysis is controlled primarily by the number of distinct experimental
tests included in the calibration data base and the number of constitutive parameters
whose optimal values are being sought. A typical computer calibration, such as the
11-dimensional problem reported herein for the data of Jafroudi (1982), requires from
400-600 objective function evaluations, or about 60-90 minutes of VAX CPU time, at
a cost of approximately $50.00-875.00. This cost is relatively low when compared to
the cost of the experimental program needed to establish the calibration data base,
and in light of the resulting economy of finite element analyses based on the model.
Calibration, of course, need only be done once for a given soil, regardless of the

number and variety of subsequent finite element analyses which utilize the model.

3. NUMERICAL IMPLEMENTATION
3.1 Incrementalization Of Rate Equations

Using tensor notation, the basic rate equations for the bounding surface piasticity
mode! can be written in the form (repeated indices are summed from 1 + 3 and free

indices take on values of 1, 2 or 3.)
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%ij = Dijketus ()
The effective stress components are denoted by oii and the strain components by €55
In general, Diik!. is a function of both aii and € and one or more internal variables

q.o

A The specific form of Dijk!. for the bounding surface model for cohesive soils is

given by Herrmann et al (1980).
For numerijcal analysis purposes, it is more convenient to express the relationship

in matrix form; i.e.,

{0} = ) {¢} (2)
where ([ ]T is the matrix transpose)
T
{0} = (Ox, Oy, Oz, Txy, sz, Tyz)
T
le}" = (e €y €50 Yy Ypr V) (3

The tensor components of shear strain eii are one-half of the engineering
components Yij' The symmetric 6x6 [D] matrix is expressed in terms of the components
of the 3x3x3x3 Dijk!. tensor by using the following six sets of corresponding indices
(151,1) (2;2,2), (3;3,3), (4;1,2), (5;1,3) and (6;2,3) where the first number is the row
(column) number in the matrix and the second and third numbers are the first (last)
two indices for the tensor.

To be able to use eq. (2) in an incremental solution procedure, it must be

th step of an incremental analysis;

expressed in an incremental form. Consider the n
i.e., the solution has been found at n-1, and it is desired to calculate the incremental
change that will give the solution at n. Because of the nonlinear behavior, iteration
is required to establish the incremental change. In the k-lth iteration of this process,

the estimates of the stress and strain states at n are given by

{oy ey = by + fachy oy (%)
ledn kon = fely g+ {aehy iy (3)
1
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Even though rate independent behavior is being considered, it is convenient to

think in terms of the time histories of the quantities involved. Integrating eq. (2)

from time t oty and using the trapezoidal formula to approximate the right hand

side, gives
{Aa}n’k = [iS]n’k_l {ae} (6)
1
By =3 [Doy + O] (7)

When eq. (6) is used in a finite element analysis it is tacitly assumed that all
the stress and strain components at a particular point in the body, and from point to
point, change proportionally from their values at n-1 to their values at n. Thus, in
order that the true solution history be accurately modeled, as required for an inelastic
material, the solution step size must be limited.

Eq. (6) is the desired incremental stress-strain equation for iteration k of
increment n. Because [D]n is a function of the stress and strain states at n (due to
the dependence of Dijk!. on cJii at eii), it is necessary to base its value on the estimates
of the previous iteration (egs. (4) and (5)). The resulting value, denoted by [D] n k-1’
is used in eq. (7). The fact that [D]n_l is also a function of the stress and strain
states at n is less obvious. This dependence arises because of the difference in material
response for loading and unloading conditions and the fact that whether loading or
unloading occurs during a given increment is influence by the values of {dn and {e}n.
That is, [D] n-1 is the tangent stiffness at the beginning of the increment, and this
stiffness differs for loading and unloading conditions, as determined by the values of
{Adn and {Ae}n. The appropriate value of [D] __, is written as [D] n-l,k-1"

At the beginning of the iteration process, initial estimates are required. For
the first iteration ot the first increment, they are usually taken to be zero. For the

initial iterations of succeeding increments, they also can be started at zero; however,

12

ta A - e el Al mAatatias o wnle s al



&H it may be desirable to make use of information from the previous increment to obtain
better starting values. The simplest procedure is to use as the initial estimate tHe

fina) values found in the previous increment. This practice is based on the assumption

of relatively uniform behavior from increment to increment. Difficulties can arise
when the histories of the applied external agents acting on the structure cause a switch
from loading to unloading in an unstable material response regime, and these external
agents are loads not displacements. For example, consider the one-dimensional response
shown in Figure 7. Consider the case when the state of the soil is at point "A" at
the end of increment n-1. If during increment n, Aon is specified, two final states
B and B' are possible. One corresponds to Ac (negative) and the other to Ae' (positive).
Without any additional information, no choice can be made between B and B'. (It is
easily seen that for specified stress increments in the stable region of behavior and
for specified strain increments anywhere, no such problem exists.) The suggested
solution to this impasse is to assume that the user would not attempt a stress controlled
specification for "loading" conditions (path A-BY) in an unstable region and, hence, if
the stress increment is specified, unloading is the proper behavior (path A-B)!. For
stress controlled conditions, the selection of the unloading path can be assured if the

starting estimate of strain is of opposite sign to that calculated in the previous

increment. Thus, the following strategy is recommended. When considering a series

L - Sathih RSN
. AL T
Y AV

of increments for which the rates of the externally applied loads and displacements

do not change signﬂ, {ae}] and {Ad are used as starting estimates for increment

r"l

- n-1 n-1

i

E:ﬂ This argument requires that the arrival at A must have been preceeded by strain
=

o controlled steps.

-

E«. " It is assumed that this condition is sufficient to prevent a general switch from
T loading to unloading within the soil mass.

=
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n. However, as one such solution history segment is ended and a new one begins, the
conditions necessary for the non-uniqueness problem may occur. Hence, for the first
increment of each such series, it is suggested that the starting strain estimate be
taken as some small negative multiple (e.g. -.0l) of the value found in the previous
increment (the stress increment would be used unchanged). The reduction in absolute
magnitude is in deference to the greater stiffness encountered in unloading. Such an
initial estimate will force the solution to select path A + B if the necessary conditions
exist for the above mentioned non-uniqueness to occur. If non-uniqueness is not a
problem, the only effect of this procedure is to slightly slow the convergence process.

.lt is important to note that, in general, the estimates of the stress and strain
increments used in the calculation of [D] nk-1 do not in fact satisfy eq. (6). The
consequences of this inconsistency will be discussed later.

A FORTRAN subroutine CLAY for the calculation of the matrix (D], , has
been written and is documented by Herrmann, et al (1981).

3.2 Calculation Of Pore Water Pressure

The bounding surface plasticity theory is expressed in terms of effective stress,
whereas most soil related problems involve the application and calculation of total
stress. The total and effective stresses differ by the pore water pressure u. There
are three possibilities conceming the developmem of pore water pressure in soil: ideal
drained conditions (where the pore water pressure is identically zero), ideal undrained
conditions (where the soil is completely saturated, and no flow of water occurs), and
the more realistic situation where there is a global flow of water and/or the filling
of voids, In many analyses ideal drained or undrained conditions are asumed, even

though they may only be approximately true.
¢

The total stress increment ij is the sum of the effective stress increment and

the pore water pressure increment:
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;ﬂ & = 5y e 08, (8)
' For drained conditions u=0 and oiti=°ii’ and eq. (6) is the desired relationship
5 between the total stress and strain increments.

P For undrained conditions there are several possible ways of proceeding. The
1 traditional approach has been to neglect the (slight) compressibility of the water and
L the soil particles, and thus assume incompressible material behavior. However, the
‘ finite element analysis of incompressible materials requires a special formulation
(Herrmann 1965; Zienkiewicz 1977),

: In order to avoid having to deal with separate formulations for drained and
1‘! undrained conditions, it is convenient to express them in a common form. This can
be accomplished if the slight compressibility of the soil particles and the pore water
& is recognized, Sangrey, et al (1969). (An alternative interpretation is to consider the

undrained soil as incompressible, and to approximately specify the condition by means
of a "penalty function", Zienkiewicz, et al 1981, where the associated "penalty number"
corresponds to the bulk modulus TI). Thus, the pore water pressure u is written in
terms of the combined bulk modulus T of the soil particles and the pore water, and
the resulting (very small) volume change €k i€y U=T 4. As I+ the soil becomes
incompressible. Drained conditia\s are obtained when I'=0. For undrained conditions
the value of T is very large compared to the terms in (5] n,k-1° Thus, the soil behaves
as a "nearly incompressible solid" (Herrmann 1965) and care must be exercised to avoid
numerical round-off and excessive constraint problems. Two approaches are commonly
used to achieve this goal. One method is to use the special formulation given by
Herrmann (1965) for incompressible and nearly incompressible solids, while the other
is to use "reduced" or "selective-reduced" integration (Zienkiewicz 1977) for the element
stiffness matrix; the importance of selecting a proper element type, in order to achieve

acceptable accuracy, is discussed by Nagtegaal, et al (1974) and Zienkiewicz, et al
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(1981). In the latter case, the above expression is used to eliminate U from eq. (8);

i.e.,

ot - [ ] [
o = % * rckkcii (9)

Integration over increment n gives:

1t
o.. =00.. + TAh S . (10)
n i, kkn 1)

Eliminating Aqii using eq. (6) and returming to matrix notation yieldss

t =t
{a0 }n,k = D “’k_l{t\e}“’k (11)
where
=t
[D ]n,k-l = lﬁln,k-l + [d] (12)

All components of [d] are zero, except dl l=<!22=.-d33'=1‘.

Retuming to the more realistic situation where water movement takes place,
two cases can be distinguished. The first occurs when there is no global movement
of water (either the time scale is too short for significant flow to occur, or the soil
is stressed homogeneously, thus producing no pressure gradients) in a partially saturated
soil. This condition can be modeled by using a variable T which is a function of the
current saturation state.

When there is actual giobal flow of water, it is necessary to perform a coupled
flow-stress analysis (Sandhu and Wilson 1969). The details of such an analysis are
beyond the scope of this study. It should be noted that the bounding surface plasticity
model is valid for such situations; however, the pore water pressure can not simply
be calculated from the expression Te,. Eq. (6) is, however, still valid for relating

the increments of effective stress and strain.
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3.3 General Discussion Of Finite Element Implementation Of Plasticity Models
The desired characteristics of any numerical scheme are ease of implementation,

computational efficiency and robustness of behavior. It is on the bases of these three

characteristics that the competing methods will be judged. There is of course a
considerable body of literature available on the analysis of elasto-plastic bodies. Only
those items which directly relate to this work will be discussed here; for a more
general discussion the reader is referred to Owen and Hinton (1980) and Nagtegaal
et al (1974).

In general, the response of an elasto-plastic body is highly nonlinear and path
dependent. Thus, a general numerical analysis procedure for elasto-plasticity problems
requires an incrementa. solution. Unless the increments are made excessively small,
iteration must be conducted in each increment to account for the nonlinear behavior.
The two most commonly employed classes of iterative methods are successive
approximation (substitution) and Newton like procedures. The method of successive

approximation can be cast in a variety of forms and thus is not a unique operation

(see Isaacson and Keller 1966). The alternative forms range from extremely simple,

but very slowly convergent, procedures, to more complicated methods. The Newton-

Raphson method and numerous approximations to it constitute the class of "Newton

like" methods. The many available solution methods obviously could not all be evaluated

" .
yrT e

in this study. The selection of the methods that are compared in this study is discussed

T
g

in the next section,

3.4  Selection Of Methods For Comparison

While the method of successive approximation is extremely easy to implement,
it often suffers from poor convergence characteristics. For nonlinear elasticity
problems, where the entire solution history can be accounted for in one step, there
appears to be little question, unless the nonlinearities are very weak, that a Newton

like method is to be preferred. However, for inelasticity problems where relatively
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small steps are required to account for the path dependence of the solution, the choice
is not so clear. The question is further clouded by the fact that, for a given solution
step, and at a given point in an elasto-plastic body, the stiffness may be discontinuous
due to the onset of yielding or to the progression from (local) loading to unloading
conditions. The latter case is of concern in highly statically indeterminate situations
where, at a given point in space and time, it is not known a priori whether or not
the material will experience loading or unloading. This stiffness discontinuity may
make convergence of Newton like method slower than for problems where the Jacobian
is strictly continuous.

In order to keep the scope of the study within practical bounds, certain
acceptability criteria are stated and used to limit the number of methods to be
compared. Two of the key reasons for the computational efficiency of the finite
element method, as applied to structural problems, are the symmetry and banded nature
of the simultaneous equations. Hence, for this study, it is required that the solution
methods preserve these characteristics.

It is on the basis of maintaining symmetry that Owen and Hinton (1980) rule
out the general form of the Newton-Raphson method, and instead advocate the use of
an approximate form; i.e. the "tangent stiffness” method.

Currently there is considerable interest in quasi-Newton methods for nonlinear
structural problems (see Geradin et al 1981). The central goal of quasi-Newton methods
is to avoid calculating the Jacobian every iteration. Instead, simple updating formulas
are used to approximate the Jacobian (or its inverse) in terms of the previous
approximation and simple vector quantities (the previous solution and current residual).
The updates can be made directly to the Jacobian or to its inverse; in the first case,
a set of simultaneous equations must be solved each iteration, while in the second,
only a matrix multiplication is required. In the former case, because of the continued

need of solving a set of simultaneous equations at each iteration, and because the cost
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of using the wpdating formula is as great as the cost of calculating the approximate
Jacobian for the other methods considered in this study, there would seem to be little
or no advantage offered by the method (although in optimization and nonlinear elasticity
problems, other important advantages make it a viable method). Thus, only those
quasi-Newton methods which update the inverse would appear to be of interest in
elasto-plasticity problems. Inverse updating methods, however, result in dealing with
a full matrix, thus destroying the advantages of the banded characteristic of finite
element equations. The ideal situation would be an updating formula which can be
applied directly to the reduced (upper triangular form) Jacobian and which would not
destroy its banded nature nor its original symmetry (a characteristic required for the
efficient reduction, each iteration, of the load vector). The available quasi-Newton
schemes of this type do not satisfy the ease of implementation requirement (see the
discussions by Geradin et al 1980, 1981, Mathies and Strang 1979 and Schubert (1970).
Thus, a simpler form is considered herein. Finally it should be noted that because of
the lack of a natural objective function, the line search criterion of the quasi-Newton
methods, as applied to optimization (see Fletcher 1930) and nonlinear elasticity, is lost
for inelasticity problems. While alternative criteria have been proposed for elasto-
plasticity problems, they appear to lack the simplicity and robustness of the minimization
of an objective function.

The chief appeal of inverse quasi-Newton methods is the elimination of the
necessity of reducing the Jacobian every iteration. This same objective can be achieved
by using a modified iteration method which only occasionally updates the Jacobian.
At other times the effects of the changes in the Jacobian are estimated and transferred
to the right-hand side of the equations. This procedure is highly recommended by
Owen and Hinton (1980) and is included in this evaluation.

Successive approximation methods are popular because of their simplicity of

implementation. Thus one form of successive approximation is studied. In order to
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demonstrate its relation to the Newton-Raphson method it is derived as an altermative
to the tangent stiffness method.

In order © improve the rate (and also to enlarge the domain) of convergence
of the iteration process, acceleration schemes are ofiten used. These schemes usually
employ some type of extrapolation in order to obtain a better solution estimate than
given directly by the iteration process (see Isaacson and Keller 1966). The extrapolation
can usually be epxressed in terms of an acceleration (iteration, relaxation) factor. The
simplest method employs a constant factor selected by the user on the basis of past
experience. Because, for inelasticity analyses, the optimum factor can vary widely
from problem to problem, and even from increment to increment, some type of strategy
for automatically selecting it is desirable. For one degree of freedom problems, the

Aitken's 72

method (see Isaacson and Keller 1966) is simple to apply and has proven
to be quite effective. Two methods for adapting it to multi-degree of freedom problems
are considered herein,

The final question that is addressed is how best to handle the inconsistency
(previously mentioned) between the estimates {Adn,k- ; and {Ae}n'k_ | Used to calculate

(D1, ,_, and eq. (6); three schemes are compared.

n,k-

3.3 Theory
3.5.1 Solution Methods

In the following discussion it will be assuned that the reader is familiar with
the standard steps involved in formulating a finite element analysis.

For a given solution increment eq. (6) is used in the formulation of element
stiffness matrices, which are in turn combined to form the system stiffness matrix
(R) n+ The incremental load vector is denoted by {AF}n. Equilibrium leads to the

following system of simultaneous equations for the incremental displacements {Au}n:
i {au}, = {oF}, (13)
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Because [K] , is a function of {Ac}n and {Ae}n the above equations are nonlinear

and require iteration to solve. The Newton-Raphson method gives for iteration k:

L AR L A m;fk-l ) S (14)
Where the residual vector is:
L0 SV . P T P ) (15)

The components of the Jacobian [J]n k-] are found by taking derivatives of eq. (15)
K-

with respect to the components of {Au}n, in index notation:

- _ 3(K“'AU£ - Fi)
i k-1 jAui

- in
=|K.. + xp= fu ]
n k-1 [ T ORI

or

ket = Ry + B9

Owen and Hinton (1980) state that in general [K]' is not symmetric. In addition, it
is relatively difficult and expensive to compute. Based on the classical graphical
interpretation of the Newton-Raphson method, Owen and Hinton (1980) suggest that,
instead of using eq. (17), the Jacobian be approximated by the tangent stiffness matrix
at "n". This requires using only the [D] n k-1 matrices (see paragraph following eq.
(7)) for the formation of the system tangent stiff ness matrix, call the result [K] nk-1°
The matrix [K) nk-1 15 still needed for the calculation of the residual vector eq. (15).

Thus the "tangent stiffness method" consists of iteration usirg egs. (14) and (15) with

[J]n,k-l > [K]n,k"l (18)
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As an alternative, eq. (17) can be approximated by neglecting the last term’, ie.
(k1 = Klp ke (19)

Substituting eqgs. (15) and (19) into eq. (14) gives:

{M}n,k = {Au}n,k-l - [K];’lk_l {[R]ﬂ,k-l {M}n,k—l - {AF}n}
or

(bl = R (oF) 20
or

(K]n,k-l {Au}n,k = {w}n (21)

Inspecting eq. (21) it is seen that this second approximation to the Newton-Raphson
method is one of the possible forms of the classical method of successive approximations,
and shall be referred to by that name in the remainder of the report. It can be
applied by either using eq. (21) directly or using egs. (14), (15), and (19). The use of
equations (14), (15) and (19) would be expected to be somewhat less susceptible to
round-off error; however, no significant differences were detected in the examples
analyzed in this study.

The calculation of the residual vector, eq. (15), requires some special attention.
One option is, at the element level, to use (D) nk-1 calculate an element stiffness
matrix, to then multiply this matrix by the k-1 estimate of the displacements for the
nodes defining the element, and to add it to the negative of the element load matrix
(i.e, a direct evaluation of eq. (15) at the element level). The resulting element
¥ When convergence occurs, eq. (13) is exactly satistied. Thus, neither this
approximation, nor the one leading to the tangent stiffness method, has any effect

on the final accuracy of the solution.
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L residual vectors are then combined in the usual way to give the system residual vector.

:n While this operation requires little additional computational effort for the method of
r : successive approximations, it does for the tangent stiffness method. The cause of this
- additional work is the need to calculate two element stiffness matrioes* based upon
p the two quantities [D] nk-1 and (D) nk-1° The first element stiffness matrix is needed
i';n in the calculation of the system tangent stiffness matrix, and the second in the

calculation of the residual vector. An alternative procedure for the calculation of the
_ residual vector avoids this additional effort; however, it places certain restrictions on
the order of the integration used in establishing the element matrices. In this second

approach, an initial stress vector is calculated:

(ool oy = O ey lael (22)

The following incremental stress-strain equation is then used in the calculation of the

element stiffness and load matrices:

{Ao}n’k = [mn’k.l {Ae}n’k + {Ao‘,}“,k_l (23)

h

|

h Assuming that all numerical integrations are done with the same accuracy, it

& is easy to show that the use of eq. (23) yields element matrices that, when combined
at the system level, give the desired tangent stiffness matrix and the residual force

IE'. vector. In this operation care must be taken to ensure that all numerical integrations

[ are of the same order. For example, for a four node element, if four point integration

is used in calculating the element matrices but the incremental properties (eq. (23))

Fé are calculated only at the element center (i.e., assumed constant over the element),

t Geometric quantities such as the shape function derivates need only be calculated

once.
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exists and convergence is drastically affected. Thus when using this
scheme the stresses, strains and properties must be evaluated at the integration points.
However, for a four node element it has been shown (see Herrmann 1972) that the
stress calculations are most accurate at the element center, not at the integration
points. For this reason, and because the four node element is poorly behaved for
undrained conditions, the use of an eight or nine node element with stresses and

properties calculated at each of the four quadrature points is recommended for future

work.

3.5.2. Reduction Of The Number Of Equation Triangularizations

The use of the "modified" Newton method (referred to as the “initial stiffness"
method by Owen and Hinton 1980) is the classical means for reducing the number of
triangularizations of the left-hand side of the simultaneous equations. In this procedure,
the stiffness matrix is updated only occasionally. Because of the drastic difference
in stiffness, in elasto-plasticity problems (which is encountered in a progression from
elastic behavior to yielding and from loading to unloading) it is desirable to update at
least once each increment. For this study, the stiffness matrix is updated in the
second iteration of each increment. The second iteration was chosen because it often
takes at least one iteration to establish the loading-unloading characteristics for the
increment. In addition, it is updated in the first iteration of the first increment of
each new loading segment (a loading segment generally consists of many increments).
This update is done because there is often a switch from loading to unloading at the
begiming of a new loading segment. Finally, the stiffness matrix is updated every
IRPET iteration, where IRPET is specified by the user. The use of the "modified
Newton" procedure in conjunction with the method of successive approximations,

t That is, the residual node point forces are not accurately made to be zero.
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implemented by means of eq. (21) instead of eq. (14), requires that the difference
between the present stiffness matrix and the last stiffness matrix to be triangularized,

be accounted for. With this end in mind, eq. (21) is written in the form:
R faal, = (08} - R - R ) Gl (20

Now if the quantity {Au} K O the right-hand side is estimated by means of {Au}n k-1
1 K-

(as convergence occurs no approximation is introduced):
Ry {au), o= {oF)y (25)

where

{AF}I:,k-l = {Ap}n - {[Rln'k_l - [K]IJ {Au}n,k-l (26)

the last term on the right-hand side of eq. (26) can be easily evaluated by forming a

pseudo initial stress vector:

lac ty ke = {[ﬁln,k-l - “3‘1} {aek, 1 (27)

This pseudo initial stress vector contributes to the element load matrix in the usual
way. Because this quantity approaches zero as convergence occurs, it is not necessary
to evaluate the stress-strain properties at the quadrature points as is the case in
calculating the residual vector for the tangent stiffness method (see previous
discusim).+ The inclusion of a similar term for the tangent stiffness method and for
successive approximations, evaluated by means of eq. (14), appears not to be standard
practice, and was not considered in this study.

' Although the evaluation of the properties at the quadrature points is not necessary
to assure convergence, it might improve the rate of convergence; this possibility

was not explored in the study.

25




Currently, one of the most popular means for reducing the number of
triangularizations is to use a quasi-Newton update of the triangularized or inverted
stiffness (approximate Jacobian) matrix. As noted previously, the only quasi-Newton
v methods considered in this study are those that directly update the triangularized form
y of the matrix and do not disturb its banded nature. In order to satisfy the requirement
of ease of implementation, a simpler quasi-Newton update formula than those available
in the literature was sought. Because it is generally agreed that the BFGS update
formula is the best available (see Fletcher 1980), a formula of similar form was desired.
Denoting the triangularized form of the tangent stiffness matrix as [K]#+, the update

for the "k" iteration expressed in index form is:

j
+a.A‘.’-bi I 8K

ST TR R T (28)
where
A
3 = — (29)
zfibﬂ”
I
b !fiKr"k-ls" (30)
i 1 m
it 5, K""W-ls"}
I = i + bandwidth (31)

The vector {A}* is the result of a block formulation of the residual vector {¥} ,

K-

and its reduction up to and including row "i". The results of the previous iteration

are denoted by {6} = {Au} | | - {Bu} | .. When eqgs. (29) and (30) are substituted
,k‘l n’k"z

into eq. (28) it is easily seen that the update formula has a form similar to the BFGS

formula (for the Jacobian not its inverse). It is also easy to verify that the update

formula satisfies the “"quasi-Newton condition" (see Geradin et al 1981). The
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implementation of eq. (28) is straightforward, with the updating of K* proceeding

simultaneously with the reduction of the current residual vector.

3.5.3 Convergence Acceleration
The acceleration of convergence and enlargement of the radius of convergence
of an iterative scheme by means of some type of extrapolation procedure can often
be very cost effective. The most convenient way of expressing such an acceleration
is in terms of a convergence (iteration, relaxation) factor; i.e., an improved estimate
of the solution vector {Aul¥, for iteration k, is expressed in terms of the estimate
obtained from the solution procedure {Au}k, the previous estimate {AU}k-l and a
convergence factor C. For component "i" this extrapolation is expressed in the form:
but = Au, + Ci [Aui - Au, ] (32)

k k-1 k k k-1

Written in this form, a value of C>] Jeads to "over-relaxation,” C<1 to "under-
relaxation" and C=1 to no extrapolation. The simplest approach is to use a constant

acceleration factor Ci = C_, for all iterations and all components of the solution

o’
k
vector, and to require the user to supply the value based on past experience. A more

successful approach is to use some rational criterion to calculate near optimum values

of the factor (see Isaacson and Keller, 1966). For single degree of freedom problems

2

(unknown x), the most popular procedure is the Aitken's V" method, which yields

extrapolated estimates for odd iterations begiming with the 3rd, i.e.,

2

(x, - x, ,)

% = __k k-1

X = X X, --gka_l * % o

k=3,5,7... (33)

When this equation is expressed in the form of eq. (32) it gives a value for the

convergence factor of:
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G = 4 k-1 7 k-2 k=3,5,7,... (34)
K2 * Dy - %

In order to avoid possible numerical problems when one is either far away from or
very near to the solution, it is desirable to place limits on the value calculated by

eq. (3%). For the purpose of this study, such limits are expressed in the form

é;:f_CgCL (35)

where C, > 1 and is user supplied.

Eq. (34) applies to a single variable; the question is how to extend it to a
multi-degree of freedom problem. Two schemes are proposed. In the first, for a
given iteration, a constant value of C, is used for all components of {Au}k. The
value of C, is calculated by using the norms (N, = fl Auikl) of the solution vector
in eq. (3). This procedure is based on the assumption that the convergence
characteristics of all the components of the vector are similar. In the second procedure,
eq. (34) is applied to each component of {Au} to give a different convergence factor

for each component, for each iteration.

3.5.8 Accounting For The Incomsistency In The Incremental Stress-Strain Relation

As previously noted, until convergence occurs, the estimates of {Ac)n,k-l and
{Adn,k-l used in the calculation of [D] nk-1 do not in fact satisfy eq. (6). Three
methods for handling this inconsistency are explored.

Because in fact the inconsistency disappears as global convergence occurs (i.e.,
as (D] k-1 = (5} n,k-z)’ the first alternative is to do nothing; i.e., to rely completely
on global iteration.

In the second approach, local iteration is introduced in the calculation of [D)

so as to remove the inconsistency (see Herrmann and Taylor 1974). Using {Ae}n kel
?
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and {Adn,k-l’ (D} nk-1 is calculated. The values of { A€} n k-1 and [D) nk-1 2€ then
used in conjunction with eq. (6) to calculate a new estimate of stress {Ad;,k_l which
is in tum used with {Ae}n,k-l to calculate a new estimate for the incremental properties
(D] T This process is contihued until convergence is achieved for {Ad;’k_l.
Because of the global iteration which also tends to remove the inconsistency, the
convergence limit on the local iteration is taken to be only 1/10 as restrictive as the
global requirement. The stress estimate is iteratively modified (instead of the strain
estimate) in order to maintain a compatible global displacement field as required by
the admissibility conditions of the finite element procedure.* The introduction of local
iteration (for all points where the incremental stress-strain properties are required) of
course substantially increases, in a given iteration, the number of calls to subroutine
CLAY, presumably with a corresponding reduction in the number of global iterations.

In the third approach, the inconsistency was expressed in terms of a pseudo-
residual stress vector, i.e. {oo}n,k-l = {dn,k-l - lﬁln,k-l {Ae}n,k-l’ which was then

incorporated into the system residual stress vector.

3.6 Finite Element Implementation

Following the instructions given in Herrmann et al (1981), subroutine CLAY was
installed in a standard two-dimensional, four node, nonlinear finite element program
(NTD). The program was extended beyond its original successive approximation
capability to include the several options outlined in Section 3.5. The program was
used for the numerical study described in the following section. After the completion
of the evaluation, in order to somewhat simplify the code, two of the less robust
features were removed (see discussion in next section). A listing and brief user's

manual for the code are given in Appendix B.

¥ The actual consequences of modifying the strain estimate were not studied.
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The original NTD code was relatively efficient, uncluttered and well documented.
However, once the several options described above were included, these characteristics
were lost. The problem is that the features described in Section 3.5, when taken in
all possible combinations, lead to a total of 72 different solution strategies; hence,
the flow through the program has become rather complex. Thus, while the code given
in the Appendix should be of considerable value in possible future extensions of the
numerical study, it is not recommended for extensive production applications. Rather,
it is recommended that, in a future project, a production code with far fewer options

be developed.

s, NUMERICAL STUDY
8.1  Scope Of Study

The purposes of the project were to compare the effectiveness of various
numerical strategies for implementing, in finite element analyses, the bounding surface
plasticity model for cohesive soils, and to investigate the numerical characteristics of
the model While theoretical considerations can lead to general statements concemning
convergence, etc.,, many subtle differences can only be determined by numerical
experimentation. The theoretical foundations of the methods being investigated are
for the most part well established, and thus this study concentrated on numerical
experimentation. Three representative problems were selected for study and analyzed
by the several different solution strategies described in the previous section. Results
of the several analyses were compared on the bases of reliability and computation

efficiency.

4.2  Selection Of Representative Problems
The criteria for selecting the problems were that they a) be related to actual
geotechnical engineering problems, b) be numerically chalienging and c) be simple

enough that the overall cost of the study would not exceed the available resources.
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The soil properties (model parameters) used in the study were found by applying the
calibration procedure of DeNatale (1982) to the test results reported by Jafroudi (1982)
(see also Herrmann et al 1981); the properties are given in Table 1. The degree of
initial overconsolidation (as a function of depth in the soil mass) was varied among

the several analyses. Convergence of the solution was determined by requiring that:

}IlAui - du,

i k k-1 < ERIMT (36)
Z]Au, |
‘ i
i k

A value of ERLMT = .00l was found to be adequate for most cases.

The first problem, studied in Figure 8, was a simple triaxial test requiring only
ocne element for modeling. Several hundred analyses were performed. All solution
strategies were used, a number of different loading histories were evaluated and several
different initial overconsolidation ratios were considered. Because of the simplicity
of the problem, only limited conclusions could be drawn from a comparison of the
results,

The second problem consisted of the vertical loading of a strip footing resting
on a clay deposit. The grid used in the analysis is shown in Figure 9. The extent
of the clay deposit was limited in size in order to keep the computer cost of an
individua! analysis small.+ Analyses were performed for normally, moderately and
highly overconsolidated soils. For normally and moderately overconsolidated soils, the
mode! is numerically so well behaved that little distinction could be made between
the several solution strategies. Thus, the bulk of the analyses (18 in number) were

for a highly overconsolidated soil. However, even under these conditions, the problem

1 An analysis of a footing on a highly overconsolidated soil in which the load-deformation
curve was taken beyond the maximum load required from 10-15 increments and cost

on the order of $5-$10.
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was not sufficiently challenging to reveal major differences among the several solution
schemes (with one exception which is discussed in the following section).

The third problem consisted of a highly overconsolidated clay deposit supported
by a rigid retaining wall that experienced rotation about its base (see Figure 8), thus
leading to a significant reduction in confining pressure adjacent to the wall. This
problem was found to be more challenging and served to distinguish among the several
solution strategies. A total of 33 different analyses were performed on the pmblem.+
The grid used for the majority of these analyses is shown in Figure 9. The selection
of the grid, the convergence criterion and the solution increment size, required to
achieve accurate results involved performing analyses with both coarser and finer grids,
larger and smaller solution steps and different convergence criteria.

The conclusions drawn from a comparison of the results of the several analyses

of the three representative problems are discussed in the next section.

4.3 Comparison Of Results

The only definite conclusion that could be drawn from problem #1 was that the
proposal to treat the inconsistency in the incremental stress-strain law by calculation
of a pseudo-residual stress was entirely unsatisfactory (convergence oould not be
achieved), and was thus abandoned for the remainder of the study. A postmortem
investigation of the proposed method revealed no theoretical justification for its use,
and thus its failure is not surprising.

While the second problem revealed some differences among the several solution
strategies, on the whole, convergence occurred so quickly that, with one exception, no
definitive conclusions could be drawn. The one conclusion from the second problem
¥ In addition, a significant number of incorrect runs were made prior to the detection
of the numerical integration problem for the residual vector described in a previous

section.
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was that the quasi-Newton scheme is not nearly as robust as the modified Newton
procedure, and at that point in the study it was dropped from further consideration.
At this stage in the development of quasi-Newton methods, it is concluded that the
several advantages claimed for optimization and nonlinear elasticity problems do not
carry over to plasticity problems, at least as far as the bounding surface mode! and
the scope of this study are concerned. Other trends noted in the second problem were
more clearly evident in the third example and are discussed in conjunction with that
study.

Among the analyses performed on the third problem, 24 used the same grid
(Figure 8), solution increment size and convergence criterion and thus can be directly
compared. These 24 solutions do not completely exhaust the 32 solution strategies
remaining within the scope of the study after eliminating the two components discussed
in the previous paragraphs (the quasi-Newton scheme and the pseudo-residual stress
representation of the inconsistency in the incremental stress-strain law).* It is feit,
however, that these 24 cases sufficiently span the strategy space to be representative
and permit definitive conclusions to be drawn. The characteristics of these analyses
are described in Table 2. In the last column of the table a measure of the cost of
each analysis is given. In the calculation of this measure, the actual cost of the
analysis was slightly modified to account for anticipated future savings due to improved
efficiencies of the equation solver and of subroutine CLAY, and, in addition, the
pre-and post-processing costs are not included. Because of differences in coding
practices, in relative costs of computation and storage for various computers, etc.,

these figures contain a degree of uncertainty, and thus differences of less than 25%-50%

If consideration is given to the considerable latitude that exists in assigning values
to C; (eq. (35)), IREPT (eq. (25)), the step size and the ratio of the local to global
convergence criteria it is seen that the actual number of possibilities is really far

greater than 32,
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probably are not significant. The lack of convergence, noted in the table, for several
of the analyses was due in some cases (those with a high computational cost measure)
to the limit set on the maximum number of iterations in a given increment and in
others (those with an indicate low cost measure) to the satisfaction 6f the convergence
criterion, eq. (36), even though convergence had not occurred. In either case, a lack
of robustness is indicated. In the following paragraphs the conclusions drawn from
comparing the results of the several analyses performed in this study are discussed.

One proposal often made for nonlinear inelasticity problems is to use small
increment sizes to avoid excessive (all) iteration. The results of this study do not
support this suggestion. In Figure 10 the relative costs required to reach a certain
point in the solution history is plotted versus the ratio of the number of steps used,
to the minimum number required to accurately reach the point. This plot clearly
suggests, from a computational efficiency standpoint, that one should use the largest
step size that will give acceptable accuracy. (If the step size is made too large, the
numerical integration error in eq. (6) becomes unacceptable.)

The methods of successive approximations and tangent stiffness exhibit very
similar characteristics with no clear cut difference between them; this conclusion runs
contrary to the suggestion of Owen and Hinton (1980) of the superiority of the tangent
stiffness method. Both methods, if properly supplemented with other components of
the solution strategy, are quite robust, economical and are sufficiently accurate for
solving bounding surface elasto-plasticity problems in geotechnical engineerng. The
method of successive approximations has some slight, but not major advantages, in
ease of implementation,

The use of local iteration considerably improves the reliability of the convergence

criterion and in most cases improves the efficiency of the analysis.
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The consequences of using the modified-Newton scheme and/or an acceleration
facwor are somewhat interrelated and hard to separate.* When the modified Newton
scheme is not employed, the use of a variable acceleration factor is of major benefit
for the method of successive approximations and of lesser value for the tangent stiffness
method. When used in conjunction with the modified Newton scheme, a variable
acceleration factor has some value for the tangent stiffness method, but appears to
offer little advantage for successive approximations. Of the two schemes tested for
calculating a variable acceleration factor, the one that differs from component to
component is preferable. The modified Newton method and the calculation of a variable
convergence factor are both very simple operations to implement.

For the grids used in this study, the percentage of the total solution cost spent
in evaluating subroutine CLAY ranged from about 20% to 60%. For the larger grids

needed for production problems, it is anticipated that the costs would be of the order
of 10%-20%.

5. CONCLUSIONS

Based on the comparisons made in this study several conclusions are drawn. To
what extent these conclusions are generally applicable to very different geotechnical
problems and to other plasticity models is unknown.

The bounding surface model for cohesive soils is simple to implement in a
standard, nonlinear finite element analysis using either successive approximations or
t This interrelationship is apparently due to the fact that only occasionally updating

the stiffness matrix has somewhat of a disruptive effect on the extrapolation scheme
used in the acceleration of convergence. This suggests that results obtained from
iterations involving updating and those not involving updating should not be used

together in eq. (34).
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the tangent stiffness method. It is numerically well behaved and does not lead to
prohibitive computational costs.

Both the methods of successive approximations and tangent stiffness can be
viewed as approximations to the Newton-Raphson method, and there is little to choose
between them. Either method would appear suitable for a production finite element
program for geotechnical problems. Sucoessive appmafimatims is somewhat easier to
implement and somewhat more efficient; however, it is slightly less robust than the
tangent stiffness method. _

The introduction of local iteration in the calculation of the incremental stress-
strain properties is desirable, and will in the future be incorporated into subroutine
CLAY s0 as not to clutter the logic of the parent finite element program.

Finally, it is recommended that a production program incorporate provisions for
a modified Newton analysis and for a variable convergence factor based on the use

of Aitken's \72

method applied to each component of the solution vector. Both of
these procedures are simple to implement.

It is concluded that the effective use of a quasi-Newton method for elasto-
plasticity problems will need to await the development of simple but robust updating

‘formulas for the banded upper triangularized form of the stiffness matrix.

6. RECOMMENDED FUTURE WORK
Two major components of the overall project remain; i.e., the development of
one or more production finite element programs for geotechnical engineering problems,
and a verification study for actual field structures and/or large centrifuge models.
The first of the remaining components is further discussed in the following paragraphs.
Prior to any production program development, subroutine CLAY should be recoded
in order to improve its efficiency and portability., It is then recommended that two

production programs for geotechnical engineering problems be developed. The first
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would be two-dimensional and applicable to either drained or undrained conditions. It
would contain simple pre-processing routines for grid generation and the description
cf initial stress and saturation states. The program would be an outgrowth of the
program used in the present study. The grid generation scheme and the equation solver
would be replaced by recently developed optimized versions. The type of element
would be carefully selected, in light of accuracy requirements for undrained conditions.

The second program would be three-dimensional and, in addition to being
applicable to ideal drained and undrained conditions, would consider the effects of
partial saturation and the movement of pore water under saturated and nonhomogeneous
stress state conditions. Initially, a frontal equation solver would be used; time permitting
the new iteration scheme being developed by Professor Taylor at UCB would be
considered as an alternative.

As time permits, special features such as bending elements, incremental
excavation and construction options, more elaborate pre and post-processing schemes
and complete dynamic dimensioning (as opposed to the partial dynamic dimensioning
used in the current two-dimensional program) would be included in the programs.

Carefully documented user manuals would be prepared for both programs.
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Table 1: Results of the Manual and Computer Aided

Model Calibration Procedures as Applied to
the Experimental Data of Jafroudi (1982).

Manual Automated
I’arameterl !‘mlmion2 Solutiun3

*
A 0.130 0.130
Kk 0.018 0.018

%
. 1.18 1.18
*

M, 0.87 0.87
VG 0.30 5900
Py, 100 100
R, 2.40 2.509
R, 2.25 2.246
A, 0.04 0.031
A, 0.04 0.034
T 0.10 0.046
¢ 0.71 0.453
s 1.00 1.000
h, 2.00 0.621
h 4.00 0.855
m c' 0.20 0.200
me’ 0.20 0.200

1

a * indicates that this parameter was assigned a fixed
value prior to using the computer aided solution

following discovery of an error in the reduction of
the laboratory results, the model was recalibrated
manually, and reported earlier by Herrmamn et a!
1981b.

the objective function was created with the options
set at PLIM = TLIM = 0.20. All data was weighted
equally,
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APPENDIX A
NON-HOMOGENEOUS MODEL AND IN SITU TEST RESULTS

To date, the bounding surface model has been used primarily to predict the
behavior of soils under homogeneous states of stress and strain. In these applications
the model has been shown to be accurate and versatile. However, in order to fully
verify its predictive capabilities and practical usefulness, it is necessary to incorporate
the material mode] into a nonlinear finite element code and study its characteristics
when applied to nonhomogeneous laboratory or in situ boundary-value problems.

The degree to which this final step in the model verification process can be
completed is limited by the rather sparse amount of published experimental data.
Ideally, homogeneous test results should be provided to permit the bounding surface
model to be fully calibrated. Model test or field measurements must also be presented
to serve as a measure of the formulation's predictive capabilities for non-homogeneous
stress-strain conditions. Few published studies meet both requirements, although it is
often possible to acquire all necessary data by consulting several articies by the same
research group. Some of the reported experimental data that may be used in this
final stage of the veri’ication process is briefly discussed in the following paragraphs.

Ajaz and Parry (1976) describe the response of a compacted natural clay beam
subjected to a series of laboratory bending tests. The testing apparatus was designed
to permit a study to be made of the material's tensile strength and stress-strain
response in uniform bending. The laboratory results are presented in the form of a
moment-deflection curve for the center section, and by a series of strain contours
corresponding to different applied bending moments. By assuming a particular set of
equilibrium and strain-displacement relations, the authors are able to portray their
results in terms of the soil's stress-strain response. Plane strain conditions are assumed.

Unfortunately, none of the necessary soil properties are provided, and there is not
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sufficient information to calibrate the bounding surface model. Additional aspects of
the authors's research are presented in other published articies, and it may be possible
to acquire the required calibration information by consulting these sources.

Baasubramian, Sivandran and Ho (1979) describe the results of three separate
full-scale in situ slope stability tests involving Bangkok clay. One of these embankments
(specifically, their "Embankment I') could be analyzed with a nonlinear, two-dimensional,
plane-strain finite element program. The experimental results are presented in the
form of force-deformation and force-pore water pressure histories for various locations
at the test site. Although not all of the necessary material constants are provided,
Bangkok clay has been extensively tested in the laboratory, and therefore a full
complement of material properties could be readily acquired by consulting additional
cited references.

Hanzawa (1979) describes a combined laboratory and in situ testing program
conducted with a natural clay. The study is concerned strictly with ultimate strength,
and an attempt is made to identify the effects of such quantities as consolidation
history, strain rate and aging on shear strength. No complete stress-strain response
is provided, and no field or model tests are reported.

Desai et al (1981) describe the results of a series of homogeneous and model
tests on an artificial soil made of oil, sand and clay. Conventional triaxial compression
and extension test results are provided, together with values of the traditional critical
state parameters )\, k and M; the bounding surface model could be readily calibrated
for normally consolidated conditions. Two separate bearing capacity tests were
conducted with scale models, and the results are report in the form of force-displacement
curves. Both tests could be analyzed with a nonlinear, two-dimensional, plane-strain
finite element program. Additional experimental results may also be available in other

published and referenced articles.
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Andersen and Stenhamar (1982) reported the results of three in situ static plate
loading tests on heavily overconsolidated Haga clay. The OCR profile of the natural
deposit is given and the experimental results are presented in the form of force-
displacement and force - pore water pressure histories, Either plane strain or
axisymmetric conditions are assumed, and the tests could be analyzed with a nonlinear,
two-dimensional finite element code. The values of the critical state parameters ),
k and M are not provided, but could be obtained by consulting other references.
Otherwise, there is enough homogeneous laboratory data to enable the Bounding Surface
mode] to be calibrated for the heavily overconsolidated range and compressive stress
states.

Radhakrishnan and Reese (1969) report the results of a laboratory mode! study
in which they studied the response of homogeneous and two-layered clay masses beneath
a loaded strip footing. The experimental observations are presented in the form of
force-deformation histories at various locations beneath the loaded footing. No
consolidation or drained compression data is provided, and the initial state of the
material (eo, R go) is not specified. The index properties of the two natural clays
are tabulated, and deviator stress-axial strain relations from unconsolidated, undrained,
(UU) triaxial compression tests at three different confining pressures are presented
from which some of the necessary model parameters could perhaps be found. Both
model tests could be analyzed with a nonlinear, two-dimensional, plane-strain finite
element formulation. Additional material properties may possibly be found in cited

references.
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PART I: INPUT:

A ll N

The required input data is entered by means of the following sequence of cards:

Al. Title Card (18A8):

Any information that is to be printed as the title of the problem.

A2. Control Card (215):

The following card is required to define the desired analytical options:

Columns

5

10

MTYPE

THISBF

0 - plane stress analysis
1 - plane strain analysis
2 - axisymmetric analysis

History function number (corresponding to the
history function specifications of section Bl)

for the body for~> terms

A3. Nonlinear Analysis Control Card (515, 2E10.3:: The following card is required

Columns
1 5
6 - 10
11 - 15
16 - 20
21 - 25
26 - 35
36 - 45

NONLIN

ITMAX

NWAY

IRPET

ITFAC

ERMAX

"

{

(
|
{
|

to specify the desired iteration

options:

1 - successive approximations
2 - tangent stiffness (Newton's method)

Maximum number of iterations permitted in any

single solution increment

0 - no local iteration
1 - with local iteration

0 - reform every iteration
K - reform every K-th iteration

0 - no acceleration

1 - constant acceleration factor = RELAX
2 - variable norm acceleration

3 - variable component acceleration

- for ITFAC =| 0

RELAX l

CL 2,3

Convergence criterion for the displacement

vector (by default, ERMAX = 0.0})
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A card with a 1 punched in column 1| followed by:
History Function Descriptons: The following cards are required for each distinct

function:

1st Card (1X, I, I5)

Columns
2-5 IH = Function number
6 - 10 M = Number of points needed to define

the function
2nd Card(s) (8E10.3):

As many cards as needed to specify the M panrs of values (F m?
initial card should contain the values F,, t 1 Foaytogeees l-h ? Sug'sequent
55

cards, if required (M > &), should con m vilues gooey FM, tye
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B2. A card with a 2 punched in column 1, followed by:

Material Properties Array: The following information must be supplied for each
distinct material:

Ist Card (1X, 18, 15, 2E10.3):

Columns
2- 5 MNAT = Material number
[ . 1 - isotropic linear-elastic
' 10 ITYP = 42 - anisotropic linear-elastic
¥ 3 - bounding surface plasticity mode! for
g cohesive soil
} magnitudes of the body force components
3 21 - 30 F y(2) =
g! 2nd Card (3E10.3):
) Columns ITYP = 1 ITYP = 2 ITYP = 3
i- 11 - 20 v D,, 3
2 21 - 30 l)13 Mc
- 31 - 40 Dl# R c
) 51 - 60 023 T
P::: 7 - D
- 1 - 8 33 Py
& 3rd Card (8E10.3) — required only if ITYP > |:
-
- Columns myp =1 ITYP = 2 myp =3
1 -10 D3~ m,
11 - 20 D“ hc
21 - 30 L
31 - 40 Gorv
41 - 50 r
51 - 60 Py
6l - 70 n-= Meiuc
71 - 80 M= h.lhc
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&th Card (5E10.3) — required only if ITYP = 3:

Columns ITYP = 1 ITYP = 2 ITYP = 3
2 1-10 s
- 11 - 20 r=RJR
5 21 - 30 a=AJA
F 31 - 40 t= mc/mc
¢ 41 - 50 c
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A card w. )% a 3 punched in column ], followed by:

Initial Stress Information: The following information must be supplied for each
initial stress state:

Ist Card (1X, I8, 6E10.3)

Columns

2- 5 ISNO = Stress state number

6-15 3y _ vertical stress distribution,* in the

16 - 25 2 form o, =a; + ayy

2 - 35 I’l . horizontal stress distribution,+ in the

36 - 45 b2 form Op = bl + bzy

46 - 35 | _ Ppore water stress distribution,* in the form
5 - 65 ¢ us=cprcy

2nd_Card(s) (8E10.3)

As many cards as needed to specify the M pairs of values (t m’ F ) The
initial card should contain the values t,, Fl’ t,, Fo . .,mtn, F,‘.
Subsequent cards, if required (M > &) sh&uld confain &e values t,, FS’

o oy tM, FM.

1 Assuming plane conditions. For axisymmetry, the vertical coordinate direction is
represented by z instead of y, and the distributions are then of the form o, =3, + a5

3 hra e e N T S A e
T -t RS
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Columns
2- 5 N = Node point number
6 -15 XN = x - coordinate ¥
16 -25 YN = y- coordinate |
- 26 - 30 INC = Numbering increment
i 31 - 40 D = Spacing ratio
L

= point along the
interior of the
circular arc +

4] - 50 XC} Coordinates of a
51 - 60 YC

RS2 L3 AR Al Al e 0y

- ‘ Coa el

R RO P
W L

vy

L

Mol e o Ln a

i

*

P
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B&. A card with a & punched in column 1, followed by:

Node Point Array (1X, I8, 2E10.3, 15, 3E10.3): As many cards as are necessary
to specify the locations of all
nodes in the system:

quantities
associated
with the
straight and
curved line
generation
options

Assuming plane conditions. For axisymmetry, x + r and y + z.

L

e mm e a4 al Lt a Al m M o mlm e s oam e e AN amd e M Ak A A e e ot e e e



A
BS. A card with a 5 punched in column 1, followed by:
iu' Element Array (IX, 18, 815 As many cards as are necessary to specify all
» elements in the system:t
Columns
2- 5 The numbers of the four node
S 6 - 10 = points which describe the quadrilateral
! 11 - 15 or triangulartt element (reading counter-
, 16 - 20 clockwise around the element)
. 21 - 25 MN = Material number (corresponding to the
material descriptions of section B2)
! 26 - 30 ISNO = Initial stress state number (corresponding
- to the stress state descriptions of section
B3)

- 31 -3 NMIS = Number of additional
b elements in the layer
36 - 40 INC = Numbering increment quantities
= for elements within ) associated
the layer with the
element

41 - 45 NMISP = Number of additional generation

layers option
46 - 50 INCP = Numbering increment )

for layers

&
&
-
-4
.
-
%
bj'.
r
B t
5 The order of these element cards need bear no relation to the actual location of
the elements within the body.
++ For a triangular element the forth node number is set equal to the first.
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.B6. A card with a 6 punched in column 1, followed by:

Node Point Specification Array (1X, 18, 2 (13, 12, E10.3), E10.3, 215, 2E10.3): As

many cards as are necessary to specify the applied nodal displacements

and loads:
Columns
2- 5
| 6 - 8

10

11 - 20

21 - 23

25

26 - 35

46 - 50

56 - 65
66 - 75

N
IH

IF

H

IF.

N‘

INC

Node Point number

History function number (corresponding
to the history function specifications of
section Bl) for the l-coordinate direction.

o) . . . force
1} indicates that an appl"’d{diS|)lac¢:ment

is specified in the l-coordinate direction

force
Value of the {displacement

applied in the l-coordinate direction

History function number (corresponding
to the history function specifications of
section Bl) for the 2-coordinate direction

0) . . . force
l} indicates that an 3PPhed{displacemmt

is specified in the 2-coordinate direction

force
Value of the{displaa.-ment

applied in the 2-coordinate direction

Angle (in degrees) between the x -axis
and x(r)-axis

Final node point in the

sequence
quantities
Numbering increment associated
for node points within with the
the sequence boundary
condition
Values of the pressures generation

applied at points N and/ option
N“ respectively
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B7. A card with a 7 punched in column 1, followed by:
Solution History Segment Information (1X, 1§, 2E10.3k One card for each

e Shands ik Wi gt At

Columns

2- 5 NMIS

6 -15 TIME
16 - 25 D

B8. End Card (I11): A card with an 8 punched in column | to denote the end of
the input data for given problem.

Cl. The above sequence of cards Al + B8 should be repeated if additional analyses

are desired.

+

note that the analysis begins at time t = 0)

history segment into
which the incremental
analysis is to be sub-
divided:

Number of solution (or time) increments into
which the history segment is to be subdivided

Solution time at the end of the history segment
Incrementing ratio defining the time-

step lengths within the history segment (by
&fatﬂt, D = 1.0)
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PART II: EXPLANATORY NOTES REGARDING THE INPUT

Nonlinear Analysis Strategy (section A3):

The choice among the available solution strategies is selected by the specifications
on this card. The reader is referred to Section 3.5 of the main body of the report
for a description of the available options.

History Function Descriptions (section Bl):

The histories of the body forces and applied node point displacements and loads
are specified by means of "history functions". These history functions must belong to
one of the following three classes:

i) IH < 0: specifies identical incremental values which are equal to the
specified force/displacement. The incremental values are taken
to be equal regardless of the relative lengths of the time history
steps specified in section B7.

ii) IH = 0: specifies a step-function history at time tl=0; that is, the
specified force/displacement is applied entirely during the first
solution increment, and no additional load/displacement is applied

during the remaining solution increments.

iii) TH > 0: specifies the particular history function IH defined in section
Bl. The form of these functions is illustrated in Figure 1A and
discussed below.

Consider the case of IH > 0. At time t =0 the function F(tl) = F,

necessarily be zero. For a step function load (at tl=0 or at any other time tm), the

need not

history segment must be described as a very steep ramp (that is, totmel © small but
£ 0) in section Bl. The solution segment must be similarly defined in section B7.
Within a particular history segment, linear interpolation is used to identify the AF
which corresponds to the given time increment At. For solution times beyond the
last specified point ta the final history segment is extended indefinitely. If a value
V and a history function number IH > 1 is specified in Section B6é for some given
external agent, then in the solution interval At an incremental value of the quantity
equal to VAF is applied, where AF (Figure 1B) corresponds to history function IH.
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Material Properties Array (Section B2):

For general linear, anisotropic, elastic material behavior the stress-strain relation
is of the form:
{o] = [D) (e)

For plane stress or plane strain conditions, the stress and strain vectors are defined

by:

T T

[0

[ox o oz Txy]

y

tel”

T
[ex €y €, ny]

while for axisymmetry (with respect to the z-axis), the vectors become:

T T

[o]

[or °z °e Trz]

T T
(€] [er ez ‘e er]

The 21 material properties required to define clay type materials (ITYP = 3) are defined
in Herrmann et al (l980)f.

Initial Stress Information (Section B3)

In specifying the initial stress profiles, it is assumed that the coordinate system
is aligned in the following as shown in Figure 28B.

+Herrmann, L. R,, Dafalias, Y.F. and DeNatale, 1.S. (1980), "Bounding Surface Plasticity
for Soil Modelling," Department of Civil Engineering, University of California, Davis,
Final Report to the Naval Construction Battalion Center, Port Hueneme, CA.
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Node Point Array (Section B4):

The program incorporates two data generation routines to assist the user in
defining the locations of the system's node points. The use of these options can, for
example, enable one to describe the nodal geometry of an arbitrarily large grid with
as few as five cards. Note that not aill numbers between 1 and the maximum node
number need correspond to actual nodes in the body. For example, the numbering
scheme shown in Figure 3B is permissible, and the coordinates of the non-existent
nodes 15 and 21 may or may not be specified. This feature facilitates the use of the
node point and element generation options defined.

The straight line or circular arc coordinate generation option may be used
whenever several sequential node points lie along a single straight line or circular arc.
If such a situation exists, it is necessary only to enter the coordinates of the initial
and final points of the sequence (denoted by N“ and N, respectively), and the values
of INC and D. The constant INC represents the difference between any two successive
node numbers in the sequence, and D defines the ratio of the distances between any
two adjacent pairs of points.

If, for a node N, INC # 0, intermediate node points are generated along a
straight line (XC = YC = 0) or a circular arc (XC ¢ 0 and/or YC # 0) between node
N and the point described on the preceeding node specification card N*. That is, the
coordinates of the points N° + INC, N° + 2*INC, . . ,, N - INC are each automatically
found. A circular arc is assumed to pass through the end points of the sequence N*
and N, and some additional intermediate point having coordinates (XC, YC). This

intermediate point need not necessarily be a node.

The end points of the sequence may be entered in either order. For example,
the segments illustrated in Figure 4B could be defined by specifying the nodes in either
the order 7 + 22 (INC = 5) or the order 22 + 7 (INC = -5). The spacing of the
intermediate points (nodes 12 and 17 in Figure 4B) is controlled by the spacing ratio
D. The segments shown in Figure 4B could be generated by specifying either the
order 7 + 22 and D = 2.0 or the order 22 + 7 and D = 0.5. A value of D = 1.0 would
result in equally spaced nodes.
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The interior node point generation option locates all interior nodes whose
coordinates have not been established through the options cited above (that is, all
points still left undefined after the section B4 input has been completed). The locations
of these undefined interior nodes are computed by means of the "Laplacian -
Isoparametric” grid generation scheme developed by Herrmann (1976).1' In this scheme,
the coordinates of an interior node are selected so as to represent a weighted average
of the coordinates of the neighboring nodes.

Figure 5B illustrates two grids that have been prepared with the aid of the
Laplacian - Isoparametric grid generation schem.e. Grid 1 was developed by using the
straight line generation routine to specify only the exterior (or boundary) nodes (and
thus, only five cards were needed in section B4). Grid 2 was developed in an identical
manner, except that the straight line generation option was also used to define the
nodes lying along the line 3 + 21. Note that the exterior (or boundary) nodes must
always be directly or indirectly specified in section B4.

Element Array (Section B5):

If the body can be divided into layers of elements, and if the material number
MN and the initial stress state number ISNO is the same for several elements within
a layer (or, perhaps, for several layers), the node numbers of these elements can be
established by means of the element data generation option. To generate a sequence
of elements within a single layer, node points are specified for the first element only,
together with appropriate values of NMIS and INC (see section BS5).

For example, the bottom row of elements in the grid of Figure 6A could be
established by entering either the node numbers of element "A" and the values NMIS = 6
and INC = &4 or the node numbers of element "B" and the values NMIS = 6 and INC = -4.
Similarly, the left-most column of elements could be established by entering the node
numbers of element "A" and the values NMIS = 2 and INC = 1. Note, again, that the
generated elements must be of the same material as the specified one.

+ Hermann, L.R. (1976), "Laplacian - Isoparametric Grid Generatior Scheme." Journal
of the Engineering Mechanics Division ASCE, v. 102, no. EMJ.
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If several layers of elements are of the same material, it becomes possible to
carry this option one step further. For example, the bottom two layers of elements
in the grid of Figure 6B could be established by entering the node numbers of element
"A" and the values:

NMIS
INC =
NMISP
INCP

—— O\

or, alternatively,
NMIS -
INC =
NMISP
INCP

L}
— [« Y e e

Furthermore, if Grid | in Figure 5B represented a homogeneous body, the entire
element array could be established by means of a single card containing, for example,
the node numbers of element "A" and the values:

NMIS = 3
INC = 1
NMISP = &
INCP = 5

Hence, under "ideal" conditions, the element array for a homogeneous body could be
defined with only a single card in section B5,

Node Point Specification Array (Section Bé):

Boundary or interior node point displacement and load specifications may be
given in terms of either the x-y coordinate system (when 6 = 0 in section B6) or a
Jocal X=Xy coordinate system (when @ £ 0), as shown in Figure 7B. If 6 = 0, the
subscripts | and 2 in section Bé refer to x(r) and y(z) (and thus IF, = IF, etc.) and

if 8 £0 they represent x, and x, (and thus lFl =IF , etc.).
1
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For each of the two coordinate directions, one may specify either a displacement
(F = 1) or a load (IF = 0) by setting V equal to the applied quantity. Specified
displacements and joads are considered to be positive when they have the same sense
as the positive coordinate directions. If a node is neither constrained nor subject to
an applied load it need not — and, for economy, should not — be included in the node
point specification array (section B6).

A uniform or linearly varying pressure may be specified along a straight or
curved boundary (or an interior line) by means of the node point specification generation
option. To use this option, the quantities lFl, le, Vl, V2 and @ in section B6 are
set to zero (or left blank), and the appropriate values of N, N, Py and P . are
entered. For example, to specify the boundary loading shown in Figure 7, the user

would enter, on a single input card, the values:

N* = 11
N = 2
INC = -3
PN = 100.0
P - = 5000

Note that the peints N and N” must be specified in a counter-clockwise order if they
lie on an extericr boundary and in a clockwise order if they lie along an interior
boundary (or "hole").
other node point specifications in section B6.

Note also that the pressure specification cards must preceed all

General Comments:

The units used
to describe the material properties (section B2) must be consistent with those
used to describe the initial states of stress (section B3), the geometry of the
body (section B4), and the applied loading (section B6). The solution will be
expressed in terms of units which are consistent with those of the input

1. It is the responsibility of the user to maintain consistent units.

specifications.
2. Because the bandwidth of the simultaneous equations is determined by the
numbering of the nodes, an optimal node numbering scheme is required to
The
bandwidth resulting from a given numbering scheme may be computed in the

minimize the computational costs of a given finite element analysis.

followi manner:
‘ng 70
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i) denote the bandwidth span for any two nodes of a given triangular
(three node) or quadrilateral (four node) element as Ni’ where Ni
is equal to 2 plus twice the absolute difference in node numbers.

ii) denote the maximum value of N; for a given element j as NEj.

iii) considering all elements in the system, denote the maximum value

of NEj as NEmax'

Since NEmax represents the bandwidth of the simultaneous equations, in
numbering the nodes it is this quantity that should be minimized.

As the program is now dimensioned, the value of NE ax Must not exceed 64,
the maximum node number (NPT) must not exceed 900, the number of elements
(NELEM) must not exceed 841, the number of node point specifications (NBPTC)
must not exceed 120, and the number of different materials (MNAT) must not
exceed 5. When changing the dimensions of the program three separate areas
must be considered:

i) the COMMON blocks;

ii) the values of KK = N, + 1 and LONG at the beginning of the

code; and,
iii)  the dimension checks at the end of subroutine PREP.

The arrays used in the program which must be adjusted to accommodate larger
analyses are related to problem size in the following manner:

i) X(Nl)’ Y(Nl) NQ(NI+1), DISPLT(ZNI), SL(ZNl), SLP(ZNl), SLPP(ZNI)
ii) NOD(NZ,Q), MNO(NZ)

iii) NODB(N3), BlV(NJ, 3)

iv) Q7(LONG)

v) PROP(NQ, 21), FXA(N,‘), FYA(N,‘), lTYPA(N“)
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where:
= maximum node number

N
1
N2 =  maximum number of elements
N3 =  maximum number of node point specifications
Na = NEM
N5 = maximum number of different materials

4. The size of the constant LONG (and the dimension of the Q7 array) must be
large enough to satisfy the inequality:

2
LONG > f*(NE__ )

whare NEmax represents the bandwidth of the simultaneous equations. Although
B the value of LONG must satisfy the above relation for f = 1.0, it is recommended
'ﬁ to specify LONG on the basis of f > 2.0.

)
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Figure IB: Typical History Function
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Figure 5B: Grids Prepared With The Aid Of The Generation Options
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LISTING

¢RESET FREE
FILE 1(KIND-DISK, MAXRECSIZE=8200, BLOCKSIZE=1000, AREAS:=20, AREASIZE=1)
FILE 2(KIND-DIS¥, MAXRECSIZE: 150, BLOCKSIZE=150, AREAS=21C, AREASIZE:1)
FILE S(KIND=READER,FILETYPE=7)
FILE 6(KIND:-PRINTECR)
c
c TWO-DIVENSIONAL NCYULINEAR FINITE ELEMENT ANALYSIS
C
corz:o0n Q7(8200)
CO!1:0N/BLKO/ NPT,NELEM,NBPTC,MTYPE,IHISBF, ITVAX,RELAX,ERNAX,
' VITFAC,MODNEW, ITFAC,NONLIN,NWAY,IREPET, ITNO,NSTP
* » ITIM, TINF, TILE, XKP, X¥X
COrr'oMN/BLK2/ ¥(900),Y(900),HQ(201),DISPLT(1800)
COM'ON/BLK3/ MNO(E41),N0D(841,4)
CO!MON/BLEY/ MODE(120),BIV(120,3)
COIT'OR/BL.X.5/ SL(1800,SLP(1800},SLPP(1800;
COIMON/EL¥.6/ ROA(Y),SCA(U},ETA(H)
corr:on/CNT/ ICHNT1,ICRT2,ICNT3
DATA ROA,SCA,ETA /1.0,-1.0,1.0,-1.0,1.0,-1.0,-1.0,1.0,
® 1.0,1.0,-1.0,-1.0/

FORMAT STATE!NENTS

oMo Ne!

804 FORMAT(I1,IH,2E1C.3)
90C FORMAT(1X,I13,1X, ITERATIONS WERE PERFORMED AT TIME',F6.3,
£ <Y, 'THC ERROE AT THE CND OF THE PROCESS WAS',FT7.4)
901 FORMAT(/,1X, ®$&¥& THE PANDWIDTH OF',IT7,
. £X, 1S TO0 LARCE FOR THE DIMENSION OF --LONG-- S&&&:)
90" FORMAT(1X,'#¥fZ¥CONVERGENCE DID NOT OCCUR®¥:k . )
90 FORLAT(110)

c
c THE SIZE OF THE EQUATION BLOCK IS SET
c
LONG=8200
XXX=1.0E+20
K¥.- 232 !
c
c INPUT DATA IS READ
c
DO 90 I:1,KI’
6C nC(I):0
CECfi%!lbeoTE.l!Glf!xoTFGKCK.{!EC!‘lG
ICNT1:0
ICNT2:0
TCLT3:0
SLMRE1.C. 0
100 IX-1

CG!II!!!!!I!NOTF!ﬁ&'!lﬁl!!lll"oTEl!!!!
WRITE(6,9000)ICI'T1,ICNT2,ICKTS

9000 FORMAT(1X, 'NO TOTAL SQOL=',IZ,1X,'NO PARTIAL SOL=',13,1X,'HNO CALL
1 CLAY=',110)
CALL PREP(IX,Q7(1))

CREEERESCEOTENRERRASNOTERRENERELENFE S

ICNT1=0

79




-l

-

———

P

WPy

e NeNe]

e NeNe]

110

160

198

200

20z
218

220

22z

225

ICNT2:0

ICNT3=0

IF(IX .EQ. 1) GO TO 110
READ (5, 504 )NSEC

IF(NSEC .NE. 0)GO TO 100
GO TO 105

THE EQUATION POSITIONING MATRIX FOR THE SYSTEM MATRIX IS FORMED

N:2

DO 160 I=1,NPT
NQ(I+«<1):0

DO 198 M=1,NELEM

DO 198 J=1,4
T=N0oD(t,d )1

NQ(I)=N

NQ(1)=1

DO 200 I=1,NPT
NG(I+1)=NQ(I)-NQ(I~+1)

THE BANDWIDTH -NCOL- IS CONMPUTED

HCOL=0

DO 218 I=1,NELEM

DO 202 J=1,4

JJ=Nop(1,J)

DO 202 K=1,4

KI=NOD(I,K) - 1

IV:-NIQ(KE) - NQ(JJ)

IF (NCOL .LT. IV) NCOL=1V
CONTINUE

CONTINUE

COMPUTE NATRIX SPECIFICATIONS

NROW=NQ(NPT + 1) -~ 1
L2:NCOoL-1

L1=- (LONG - L2%NCOL)/NCOL
IF(L1 .GT. 0} GO TO 220
WRITE(E,901) NCOL

GO 70 10%5
IDYSKE=(NPOU-~-1)/L1+1
IF(NROW .GT. LONG/NZOL) GO TO 222
IDISY=0

L1:NROV

L2=0

LT - L1 - L&

INITIALIZATION
DO 22% I=1,NROW
DISPLT(I)-0.0

SLP(1)-0.0
SL(1)-0.0
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ITIN=C
TINF:-C.0

MARCHING TIME

o NeNe]

L
?
L
ﬁg 240 READ(S,8C4) NSEC,NMIS,TIMFS,D
. IF(NSEC .NT. 0} GO TO 100
b IF(D .EQ. 0.0) D=1.0
DU2-M'IS
DU1=1.0/DU2
. IF(D .EQ. 1.0} GO TO 244
.- DU1=(1.0 - D)/(1.0 - DEENMIS)
L 244 DT=(TIMFS - TINKF)®DU1
DO 760 NSTPS=1,NMIS
NETP=NSTPS
WRITE(6,903)

SEGNINT Il CASE OF UNSTAELE BEHAVIOR

s NeNeNe]

IF(NSTPS .GT. 1)GO TO 259
PO 250 I:1,NROW
250 SL(I)=-.01%3L(I)
255 ITIM-ITIM - 1
TIVB=TILF
TINF-TINIF s DT
DT-BTFD

ITERATION

o Mo Ny

ITRO=-1
2€0 ITVNO=ITNO + 1

DECICE IF SHOULD UPDATE STIFFNESS OR NOT

e Ny Nel

HODNEW =1

I:-(ITHO-1}/IREPET

IF(NSTPS .EQ. 1 .AND. ITHLO .EQ. O)MODNEW=0
IF(ITHO .EC. I¥IREPET. 1)NODNEV.O

INITIALTZE SYSTE! MATRIX

(>N e Ne]

DO 270 I=1,!IROU
SLPP(I)=SLP(I)
SLP(I)=SL(I)
SL'I}:0.0
IF (1ODKEW .EQ. 1) GO TO 300
LL:-ICOL&LT
Do 280 1I=1,LL
<80 Q7 1):-0.C
300 CONTINUE
CH7 T eI CECTRue)OTERCRERICATTPNOTERY SERER Y
IFNODNFY JEC. O)ICHTI=ICNT 1.1
IF(I'ODNEV .EQ. 1)ICHTCZ-ICNTZ+1

ny
-
o
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57C

580

582
584

590
600

650

: oAt .~ - PR ¥ A

CALL SOLVE (L1,L2,LT,NROW,NCOL,IDISK,Q7,Q7)
BOUNDARY POINTS TRANSFORMED TO X-Y COORDINATE SYSTE

DO 570 K:1,NBPTC

KK=IAES (NODB(K);

NODB(K }=KK

ANG-BIV(K,3)

IF(ANG .EQ. 0.0) GO TO 570
K1=KK/1000000

JJ=NQ(K1)

IF(JJ .EQ. NQ(K1+1)) GO TO 570
CT:COS(ANG)

SA=SIN(ANG)

D1=SL(JJ)

D2=SL(JJ- 1)
SL(JJ):D1£CT-D24SA
SL{JJ+1)=D1%5A.D2#CT
CONTINUE

NEED FOR ADDITIONAL ITERATION IS CHECKED

ERNRM: 0.0
SOLNRM-0.0
ITSTCP-0

DO 580 1=1,NROV

CErTsRERRRNOTEREFREREREENOTER RIS FECRICOORES

IF(NONLIN .EQ. 2)SL{I)-SL(I)-SLP(I)
ERNRMN-ABS(SL(I) - SLP(I)) + ERNRM
SOLNR!M=SOLNRY - ABS(SL(I))

CONTINUE

CRErECETRRURT)OTEREFRUSRRRUENOTERERV RS

IF{(ITFAC .NE. 2)GO TO S84

RELAY:=1.0

IF(ITNO .EQ. O .OR. (ITNO/2)®2 .NE. ITNO)GO TO 582
CALL ACCEL(SLNRI‘2,SLNR!1,SOLMR!,RELAX,VITFAC)
SLNRMZ2=SLNRM1

SLNRM1=SOLNRY

IF(SOLNRI" .LE. 0.0} SOLNRt:1,0E-20
ERNRM=ERNR!'/SOLKRM

IF(ITNO .LT. ITHAX) GO TO 590

WRITE(E,902)

GO TC 600

IF(ERKRIY .GT. ERMAY.) GO TO 650

WRITE(6,900) ITHO,TINF,ERNRM

ITSTOP=1

GO TO 700

DO 670 I-1,NROW

CoRrReTaNREIRENOTER I EERRXCIPROTERECRORRPLART

IF(ITFAC .NE. 3)GO TO 67C

RELAX: 1.0

IF(ITNO .EQ. 0 .OR. (ITNO/2)®*2 .NE. ITNO)GO TO 670
DU-=SL(I)

DU1=SLP(I)
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DU2=SLPP(I)
CALL ACCEL(DUZ2,DU1,DU,RELAX,VITFAC)
670 SL(I)=SLP(I) + RELAX®(SL(I) - SLP(I))

STRESS AND STRAINS COMPUTED

700 CALL STRESS (ITSTOP)
IF(ITSTOP .EQ. 0) GO TO 260
7€0 CONTINUE
GO TO 2L0
END
RN P RSN R R F LR C NPT R PR R ARG R RPN R RGRRCLER DR RO RRET RS

SURROUTINE PREP (IX,SL)
THIS SUBROUTINE SETS UP THE DESCRIPTION OF THE PROELE!!

COMION/BLKO/ NPT,NELEM,NBPTC,MTYPE, IHISEF, ITMAY,RELAX,ERMAX,
] VITFAC,MODNEW, ITFAC,MONLIN,NWAY, IREPET, ITNO,NSTP
. ,ITIM, TIVF, TIVB, XKP, XXX

COMMON /BLEK2/ X(900),Y(900),NQ(901),DISPLT(1800)

COM:ON/BLF3/ MNO(E41),NCD(841,4)

COMMON /ELKY4/ 1ODB(120},BIV(120,3)

COMI:ON/BLKT/ FUN(10,2),FUNT(10,3),NPTS(3,3)

DIMENSION ANI(12),AN(3),TITLE(20),NODS(4),IS(8),HN(2),

. ITFLG(2),BIVD(2),IH(2),SCOEF(8,6),SL(1),SCOEFS(6)

FORNAT STATCMENTS

800 FORMAT(SIS,2E10.2)
801 FORMAT(LE10.3)
80C FORMAT(I?,I4,91I5)
803 FORMAT(I1,I4,6E10.3)
£0* FORLAT (20AY)
806 FORMAT(I1,I4,2(13,12,E10.3),E10.3,2I5,2E10.3)
£08 FORMAT(I1,I4,2E10.3,I5,3E10.3)
90C FORUAT (1HO BX 20A4 ///)
901 FORMAT(20X, 'PLANE STRFSS ANALYSIS',///)
902 FORI'AT(1HO,//////,35X, '®#r&te ELEMENT INFORNATION &e&edr ///,
1 1¥, "ELEMENT', 9%, 'ELEMENT', 15X, 'ELEMENT',
2 12X, '"MATERTAL',5X, 'INITIAL STRESS STATE',/,
3 1%, "NUI'BER', 10X, 'CENTER', 13Y, 'NODE POINTS', 11X,
y "HUMBER',4X, 'SIG-V', 6X,'SIG-H',8X,'U')
902 FORNAT(30X, PLANE STRAIN AKALYSIS®,///)
904 FORMAT(2X, 'SUCESSIVE SUBSTITUTTON USED FOR NONLINEAR ANALYSIS')
905 FOPMATI(ZX,'TAMGENT STIFF METHOD USED FOR MONLINEAR ANALYSIS')
906 FORMAT(I7,6X%,2(A6,1PR10.2,A6,13,8X),3X,A6,0PE10.3,/)
GCT FORMAT(30X, 'AXTSYMMETRIC ANALYSIS',///)
90& FORMAT(1HO,OX, "®t##&GCOMETRYE®F®E#' / tONODAL POINT',6X,
* X-Y OR R-Z COORDINATCS',/)
909 FCRI‘AT(I11,5Y,1P2E10.2)
910 FORYVAT(//, 15X, '"HISTORY FUNCTION NO.',13,/,17X,'VALUE', 12X, '"TIME')

911 FORMAT (//,1X%, 'ERROR-TOO MANY MATERIALS')
912 FORMAT (//,1X, 'ERROR-TOO MANY ELEMENTS')
91> FORMAT (//,1%, 'ERROR-TOO MANY NODE POINTS')
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914 FORMAT(//, 1X, 'ERROR-TOO MAKY NODE POINT SPECIFICATIONS')

915 FORMAT(1K0,//////,10X, ' #a##)ODE POINT SPECIFICATIONSWe®®®® ///
*  &4X,'NODE',/)

916 PORMAT(2X, 'THE ITERATION PROCESS HAS A LIMIT OF',I3,3X,
. "ITERATIONS PER INCREMENT',
* /,2X,'AND A CONVERGENCE REQUIREMENT OF',F8.4)

917 FORMAT(IS,5X, 1P2E10.3,415,112,0P3E12.3)

918 FORMAT(2X, '®###® DATA ERROR -- TOO MUCH HISTORY FUNCTION DATA',
» " sRaRE //)

919 FORMAT (12X, 1PE12.32,5X,E12. 3)

920 FORMAT(//,' ERROR-DATA ERROR IN ELEMENT',I5)

922 FORMAT(2X, 'LOCAL ITERATION USED TO MODIFYTHE STRESS INCREMENT')
DATA ANI,AN(3),HN /8HU-X=, 4HP-X=, LHU-Y=, UHP-Y=,

. 4HU-R=,4HP-R=,4HU-Z=, 4HP-2=,
» JHU-1=, 4HP-1=, 4HU-2=, 4HP-2=,
] YHANG=, 4HIH1=, UHIH2= /
923 FORMAT(1X, STIFFNESS MATRIX UPDATED EVERY',12, 1X,'ITERATIONS',
1 ' BEGINNING WITH SECOND')

924 FORMAT(1X,'A CONSTANT ACCELERATION FACTOR=',F5.1,1X,'IS USED')
925 FORMAT(1X,'A VARIABLE ACCELERATION FACTOR BASED ON THE'

. ' SOLUTION NORM AMD WITH LINITS OF',FS.2,1X,'AND',FS.2,
' 1X, 'IS USED')
926 FORMAT(1X,'A VARIABLE ACCELERATION FACTOR BASED ON THE'
L INDIVIDUAL SOLUTION COMPONENTS AND WITH LIMITS OF',
. FS.2,1X,'AND',F5.2, 1X,'IS USED')
DATA IS /1,2,3,4,1,2,3,4/
DX=0.0
DY: 0.0
PNF=0.0
NMAT=0
NPT=0

INPUT DATA IS READ

READ (5,805 ,END=700) TITLE

VRITE (6,900) TITLE

READ(5,800) MTYPE, IHISBF

READ(S, 800 )NONLIN, ITMAX,NWAY, IREPET, ITFAC,VITFAC, ERMAX
IF(MTYPE .EQ. 0) VWRITE(6,901)

IF(MTYPF .EQ. 1) WRITE(6,903)

IF(ITYPE .EQ. 2) WRITE(6,907)

YKP=0.0

IF(MTYPE .EQ. 0) XKP=1.0

IF(ITHAX .LE. 0) ITUAX=1

IF(ERVAX .LE. 0.0) ERMAX-0.01

IF(RELAX .LE. 0.0) RELAX=1.0

IF(NONLIN .TQ. 1)WRITE(6,904)

IF(MONLIN .EQ. 2)WRITE(6,905)

IF(NVAY .FQ. 1)WRITE(6,922)

IF(IREPET .EC. O)IREPET:=1

WRITE(E,323)IREPET

WRITE’6,916) ITMAX,ERMAX

IF(VITFAC .EQ. 0.0)VITFAC-1.0

IF(ITFAC .E2.0 .OR. VITFAC .EQ. 1.0)GO TO 8
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- IF(ITFAC .GT. 1)GO TO 5
; RELAX=VITFAC
WRITE(6,924 )RELAX
GO TO 8
5 DU=1.0/VITFAC
IF(ITFAC .EQ. 2)WRITE(6,925)VITFAC,DU
IF(ITFAC .EQ. 3)WRITE(6,926)VITFAC,DU
8 READ(5,802) NSEC

c
c INPUT COMTROL UNIT
c
10 Go TO (20,60,75,85,112,175,195),NSEC
c
c TINE FUNCTIONS
c
20 READ(S,802) NSEC,I,N
IF(NSEC .NE. 0) GO TO 10
IF(I .LT. 4 .AND. N .LT. 11) GO TO 22
WRITE(6,918)
GO TO 700
22 NPTS(1,1)=0
NPTS(1,2)=1
NPTS(I,3):N-1
READ(5,8C1) ((FUN(J,I),FUNT(J,I)),J=1,N)
WRITE(6,910) I
WRITE(6€,919) ((FUN(J,I),FUNT(J,I)),J=1,N)
GO TO 20
Cc
c MATERIAL PROPERTIES
c
60 IN:=1
CALL PROPTY(IN,NZ,NMAT,NSEC)
GO TO 10
c
c INTTIAL STRESS SPECIFICATIONS
c
75 READ(%,803) NSEC,I, (SCOEFS(J),J=1,6)
IF(NSEC .NE. 0) GO TO 10
DO 77 J=1,6
77 SCOEF(I,J)-SCOEFS(J)
GO TO 75
c
c NODE POINT COORDINATES
c

85 READ(:,806) NSEC,N,XP,YP,INCR,D,XC,YC
IF(NSEC .NE. 0) GO TO 10
X(KN)=XP
Y(N)=YP
KQ(N)==2
IF(INCR.EQ.C) GO TO 111
IF(D.EQ.0.0) D=1.0
NM= (N -NS)/INCR
NMIS=IABS(NI;)
INCR=INCREN} LIS
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DU2=NMIS

pU1=1.0/DU2

IF{D.EQ.1.0) GO TO 87
DU1=(1.0-D)/(1.0-D*&NNKIS)

IF(XC .EQ. 0.0 .AND. YC .EQ. 0.0) GO TO 95

GENERATE POINTS ON ARC

C11=2.0%(XC-XS)

C12:=2.0%(YC-YS)

C21=2.0%(XC~XP)

C22=2.0%(YC-YP)
DU=1.0/(C11#C22-C12%C21)
B1=XC#XC-XS®*XS+YC®YC-YS®*YS
B2:=XC®XC-XP*XP+YC®*YC-YP*YP
X0=(C22¢B1-C12*B2)%DU
Y0=(C11®B2-C21%B1)%DU

RC=SQRT( (XC-X0)®#2+(YC-YO)e#2)
THO=ATAN2((YS-Y0), (XS-X0))

IF(THO .LT. 0.0)THO=6.2831853+THO
DY=-(XP-XO)®SIN(THO)+(YP-YO)®*COS(THO)
DX= (XP-XO)®COS(THO)+(YP-YO)®SIN(THO)
DTH= ATANZ2(DY,DX)

ZC=(XC-XS)®* (YP-YS)-(XP-XS)*(YC-¥S)
IF(ZC .CT. 0.0 .AND. DTH .LT. 0.0)DTH=6.2831853+DTH
IF(ZC .LT. 0.0 .AND. DTH .GT. 0.0)DTH=-6.2831653+DTH
DTH=DTH*DU1

DO 90 I=2,NMIS

THO=THO+DTH

NS=NS+INCR

NQ(NS)=-2

X (NS )=X0+RC*COS (THO)
Y(NS)=YO+RC®*SIN(THO)

DTH=DTH*D

GO TO 111

GENERATE POINTS ON STRAIGHT LINE

DX=(XP -XS)%DU1
DY=(YP -YS)%DU1
DO 110 I=2,NMIS
NS=NS+INCR
XS=XS+DX
YS=YS-+DY
NQ(NS)==2
X(NS)=XS
Y(NS)=YS
DX=DX*®*D

DY=DY*D

XS:=Yp

YS=YP

NS=N

IF(NPT .LT. NS) NPT=NS
GO TO 85
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ELEMENT INFORMATION

112 N=1
113 READ(5,802) NSEC, (NODS(I),I=1,4),MNOR, ISIGN,NMISP, INCRP,NMIS, INCR
IF(NSEC .NE. 0) GO TO 132
DO 116 I=1,4
116 NOD(N,I)=NODS(I)
NS=N
INCRS=0
INCRZ=INCR
NMISZ=-NMISP
MNO (N )=MNOR®100 + ISIGH
120 DO 125 M=1,4
125 NOD(K,!)= NOD(NS ,M)+INCRS
MO (M) =MNO(NS)
N=N+1
INCRS=INCRS+INCRP
NMISP=MMISP-1
IF(NMISP .GE. 0)GO TO 120
NMISP=MMISZ
INCRS=INCRZ
INCRZ=INCRZ+INCR
NMIS=KMIS-1
IF(NMIS .GE. 0)GO TO 120
GO TO 113

GENERATE COORDINATES FOR UNSPECIFIED INTERIOR NODES

132 NELEM =N-1

FACIT=1.3
DETERMINE WHICH ELEMENT SURROUND EACH NODE AND HOW MANY NODES
NCED TO BE GEMERATED AND MAKE STARTING ESTIMATE FOR THEIR COORDINATES
KMIS=0
LOC=1
DO 139 K=1,NPT
IF(NQ(K) .LT. 0) GO TO 139
NOC=0
DO 137 I=1,NELEM
DO 135 J=1,4
JJ=J
135 IF(K .EQ. NOD(I,J))GO TO 136
GO TO 137

136 N=10%I+JJ
SL(LOC)=FLOAT(N)
LOC=LOC+1
NOC=NOC+1

137 CONTINUE
IF(NOC .GT. 0)GO TO 138
NQ(K)==1
GO TO 139

138 N=(LOC-110C)®100-1,0C
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MMIS=NMIS+6

NQ(K)=N

IF(K.LT.3) GO TO 139
X(K)=0.5%(X(K~2)+X(K-1))
Y(K)=0.5%(Y(K-2)+Y(K-1))
CONTINUE

IF (NMIS.EQ.0) GO TO 157
WTL=0.0

ITERATE TO LOCATE UNSPECIFIED NODES
AS A WEIGHTED AVERAGE OF NEIGHBORS

DO 155 NN=1,NMIS

I0T=0

Do 150 J=1,NPT

N=NQ(J)

IF(N .LT. 0) GO TO 150

LOC=N/100

NOC=MOD(N, 100)

WT=0.0

XS=0.0

YS:-0.0

DO 140 JJJ=1,NOC
N=IFIX(SL(LOC)+0.1)

LOC=LOC+1

IE=N/10

JJ=MoD(N, 10)

1=1S(JJ+3)

I=NOD(1E,I)

K=IS(JJ+1)

K=NOD(IE,K)

L=IS(JJ+2)

L=NOD(IE,L)

XS=XS +X(1) +X(K) +X(L)SWTL
13=YS +Y(I) +Y(K) +Y(L)®TL
WT=WT+2.0+WTL

p1=x(J)

p2=Y(J)
X(J)={(1.0-FACIT)SD1+FACIT*XS/WT
Y(J)=(1.0-FACIT)®D2+FACITSYS/WT
D1=ABS{(X(J)-D1)/(ABS(D1)+1.0E-20))
D2=ABS((Y(J)-D2)/(ABS(D2)+1.0E-20))
IF(D1+D2 .GT. .0001)I10T=1

CONTINUE

IF(I0T .EQ. 0) GO TC 157

WTL=-1.

CONTINUE

PRINT NODT AND ELEMENT DATA
WRITE(6,906)
WRITE(6,909) (N,X(N),Y(N),N=1,NPT)

WRITE(6,902)
DO 168 N=1,NELEM
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MNORS=MNO(N)/100
ISIGN=MOD(MNO(N), 100)
MHNO (N ) =MNORS

CHECK FOR NEGATIVE ELEMENT AREA, INITIALIZE STRESSES AND STRAINS,
PRINT INFORMATION, FORM ISOPARAMETRIC TRANSFORMATION AND STORE

N1=NOD(N, 1)
N2:=NOD(N,2)
N3=NOD(N, 3)
N4=NOD(N,4)
A1=X (N1 (Y (N2)-Y(NB))+X(N2)®(Y(NU)-Y(N1))+X(NL)E(Y(N1)-Y(N2))
A2=X (N2)% (Y (N3)-Y(NE))+X(N3)®(Y(NU)-Y(N2))+X(NU)*(Y(N2)-Y(N3))
IF(A1+A2 .GT. 0.0) GO TO 166
1X=0
WRITE(6,920) N
GO TO 167
166 CALL GEO!(N,MNORS,ISIGMN,SCOEF,SIGH,SIGV,U,XC,YC)
167 WRITE(6,917) N,XC,YC,N1,N2,83,N4 HNORS,SIGYV,SIGH,U
168 CONTINUE
GO TO 10

NODE POINT SPECIFICATIONS

175 WRITE (6,915)
I=1

160 READ(S,806) NSEC,K¥,(IH(N),IIFLG(N),BIVD(N),N=1,2),TH,KKP,INCE,
& PJ,PK
IF(NSEC .NE. 0) GO TO 10
IADD=0
IF(ITYPE .EQ. 2) IADD=4
IF(TH .NE. 0.0) IADD=8B
NMIS=0
Nl=1
IF(XEP .EQ. 0) GO TO 185
IF(INCR .EQ. 0) INCR=1
NM= (KKP-KK ) /INCR
M:IS=IABS ()
INCR=INCR®N}M/NMIS
NM= 1 4+ NMIS
DP=PK~PJ
M=KK
XL=0.0

GENERATE SPECIFICATIONS FOR INTERMEDIATE NODES

DO 183 L=1,NMIS
MP=M
M=M~INCR
183 XL=SQRT((X(1)~X(MP) )®*2+(Y(M)-Y(IP) )®#¥2)+XL
DP=DP/XL
RJ=1.0
IF(MTYPE .EQ. 2) RJ=X(KK)
185 PXB=0.0
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190
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206

207

208

210
700

PYB=0.0

DO 190 L=1,NHM

PNB=0.0

IF(L .EQ. NM) GO TO 186

DX=X(KK + INCR) - X(KK)

DY=Y(KK + INCR) - Y(KK)

PK=PJ + DP#(SQRT(DX¥DX + DY*DY))

RK=1.0

IF(MTYPE .EQ. 2) RK=X(KK + INCR)
PNB=(3.0%PJ®RJ + PJ*RK + PK*RJ + PK®RK)/12.0
PNF=(PJ®RJ + PJ®RK + PK®RJ + 3.0%PK®RK)/12.0

CALCULATE EQUIVALENT NODAL FORCES DUE TO SPECIFIED PRESSURE

BIV(I,1)=BIVD(1) + PXB - DY¥PNB

BIV(I,2)=BIVD(2) + PYB + DX"PNB

PXB=-DY®PXF

PYB= DX®PNF

PJ=PK

RJ=RK

BIV(I,3)=TH

NODE(I)=KK*1000000 + IE(1)#10000 + IH(2)®100
+ TIFLG(1)%10 + IIFLG(2)

DO 187 J=1,2

K=28J=1+IADD

AN{(J)=ANI(K+1)

IF(IIFLG(J) .FQ. 0) GO TO 187

AN(J)=ANI(K)

CONTINUE

WRITE(6,906) KK, (AN(J),BIV(I,J),HN(J),IH(J),J=1,2),AN(3),BIV(I,3)

KK=KK+INCR

BIV(I,3)=TH®*0.0174533

NBPTC:=I

I=1I+1

GO TC 180

THE SIZE OF THE PROBLEM IS CHECKED TO SEE IF IT IS TOO LARGE
AND DATA ERRORS ARE SOUGHT

IF(NELEM .LT. B42) GO TO 206
WRITE (6,912)

IX=0

IF(NPT .LT. 901) GO TO 207
WRITE (6,913)

IX=0

IF(NBPTC .LT. 121) GO TO 2086
WRITE (6,914)

IX=0

IF(NMAT .LT. 4) GO TO 210
VRITE (6,911)

IX=0

RETURN

STOP

EKD
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SUBROUTINE PROPTY(IN,MN,NMAT,NSEC)

c
c THIS IS THE MASTER SUBROUTINE FOR SUPPLYING MATERIAL PROPERTIES
c

COM:on/BLKO/ NPT,NELEM,NBPTC,MTYPE, IHISBF, ITMAX,RELAX, ERMAX,

. VITFAC,MODNEW, ITFAC,NONLIN,NWAY,IREPET,ITHO,NSTP

. » ITIM, TIMF, TIMB, XKP, XXX

COMON/BLK1/ PROP(3,21),FXA(3),FYA(3),ITYPA(3)
COMON/BLKS/ C(4,8),S0(4),XPV(5),YPV(5),XJCOB(5),C1(8,8),2Y(8),
4 FV(5,4),GV(5,4),XNV(5,4),SIGT(Y4),DSIG(4),EPT(4),DEP(Y),
. STOR(6), PWPT,DPWP,CSC(4,4)
COMMON/CNT/ ICNT1,ICNT2,ICNT3
DIMENSIOM SIG3D(6),DSIG3D(6),EP3D(6),DEP2D(6),C3D(6,6),CB3D(6,6)
801 FORMAT(8E10.3)
807 FORMAT(I1,I4,I15,4E10.3)
904 FORMAT(//,1X, 'MATERIAL',I3,2X,'IS ISOTROPIC WITH FX(R)=',E10.3,4X,
* 'FY(Z)=',E10.3,4X,'E =',E10.3,4X, 'AND POISSONS RATIO =',F5.2,/)
905 FORMAT(//,1X,'MATERIAL',I3,2X,'IS ANISOTROPIC WITH FX(R)=', 1PE10.2
, 4x, 'FY(Z)=',1PE10.3,4X, *AND',/,5X,'C11=", 1PE10. 3,
5X,'C12=',0PE10.3,5X,'C13=",0PE1C. 2,5X, 'C14=",0PE10.3,/,
2ux,'c22=',1PE10. 3,5X, 'C23="',0PE10. 3,5X, 'C24="',0PE10. 3, /,
43x,'c33=', 1PE10.3,5X%, 'C34="',0PE10.3,/,
62X, 'C4l4z=", 1PE10.3)

L I I B B

C
GO TC (100,300)},IN

C

c #EeRsusaB8% RCAD MATERIALS PROPERTIESH#e#ERessass«

C

100 READ(5,807) NSEC,I,ITYP,FX,FY

IF(NSEC .NE. 0) RETURN
IF(NMAT .LT. I) NMAT:=I
FXA(I)=FX
FYA(I)=FY
ITYPA(I)=ITYP
GO TO (150,160,200),ITYP

c ISOTROPIC ELASTIC

150 READ(S,801)E,GNU
WRITE(6,904) I,FX,FY,E,GNU
DU=E/((1.0+GNU) * (1.0-2.0%GNU))
C11=DU¥(1.0-GHU)
C12=pus*Gliy
C13=C12
c22=C11
c23=C12
C33=Cc11
CUU=-E%C.5/(1.0+GNU)
c14:=0.0
C24=0.0
€34-0.0
GO TN 165
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s NeNe]

aamaon

160

165

200

300

250

280

400

ANISTROPIC ELASTIC

READ(5,801)C11,C12,C13,C14,C22,C23,C24,C33,C34,Ch%
WRITE(6,905) I,FX,FY,C11,C12,C13,C14,C22,C23,C24,C33,C34,Cl4
PROP(I,1)=C1Y

PROP(I,2)=C12

PROP(1,3)=C13

PROP(I,4)=C14

PROP(I,5)=C22

PROP(I|6)=C23

PROP(I,7)=C24

PROP(1,8)=C33

PROP(I,9)=C34

PROP(I, 10)=Cl44

GO TO 100

BOUNDING SURFACE PLASTICITY FOR COHESIVE SOIL

CALL RPROP(PROP(I, 1))
GO TO 100

sesseeseessCALCULATE INCREMENTAL PROPERTIESS®ssscnssacs

ITYP=ITYPA(MN)
GO TO (250,250,400),ITYP

LINEAR ELASTICITY

IF(ITIM+ITNO .GT. 2)RETURN
C(1,1)=PROP(MN, 1)
c(1,2)=PROP(MY,2)
C(1,3)=PROP(MN,3)
C(1,4)=PROP(MN,4)
C(2,2)=PROP(I'N,S5)
€(2,3)=PROP(IN, 6)
C(2,4)=PROP(MN,T)
€(3,3)=PROP(MN,8)
C(3,4)=PROP(MN,9)
C(4,4)=PROP(MN, 10)
S0(1)=0.0

S0(2)=0.0

S0(3)=0.0

SO(4)-0.
DO 280 J
DO 280 X
C(J,K)=C
RETURN

0
21,4
=1,J
(r,J)

BOUNDING SURFACE MODEL FOR COHESIVE SOIL

RT1=1.0
RT2:=1.0
CHANGE SIGN OF STRAIN ESTIMATE AT BEGINING OF NEW SOLUTION
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c ANISTROPIC ELASTIC

; c
! 160 READ(S,801)Cc11,C12,C13,C14,C22,C23,C24,C33,C34,CaN
: WRITE(6,905) I,FX,FY,C11,C12,C13,C18,C22,C23,C24,C33,C34,CaN
165 PROP(I,1)=C1?
PROP(I,2)=C12
PROP(I,3)=C13
. PROP(I,4)=C14
PROP(I,5)=C22
PROP(1,6)=C23
PROP(I,7)=C24
PROP(I1,8)=C33
PROP(I,9)=C34
PROP (I, 10)=Cli4
GO TO 100

[ TSt
PP AN

Ny
"
»
N
»
»
»

BOUNDING SURFACE PLASTICITY FOR COHESIVE SOIL

s NeNe]

200 CALL RPROP(PROP(I,1))
GO TO 100

c #2890880008CALCULATE INCREMENTAL PROPERTIES®#sessasnass

300 ITYP=ITYPA(MN)
GO TO (250,250,400),ITYP

c LINEAR ELASTICITY

250 IF(ITIM+ITNO .GT. 2)RETURN
C(1,1)=PROP(MN, 1)
c(1,2)=PROP(MN, 2)
Cc(1,3)=PROP(?M,3)
C(1,4)=PROP(MN,4)
C(2,2)=PROP(MN,5)
€(2,3)=PROP(VN,6)
Cc(2,4)=PROP(MN,T)
C(3,3)=PROP(IN,8)
C(4,4)=PROP(MN, 10)
S0(1)=0.0
S0(2)=0.0

o Fr M A I

280 C(J,K)=
RETURN

BOUNDING SURFACE MODEL FOR COHESIVE SOIL

[ X2 Ne]

400 RT1=1.0
RT2:=1.0

c CHANGE SIGN OF STRAIN ESTIMATE AT BEGINING OF NEW SOLUTION
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c SEGMENT IN CASE OF UNSTABLE BEHAVIOR AT END OF PREVIOUS ONE

IF(NSTP+ITNO .GT. 1)GO TO 405
RT1=.01
RT2:z-.01
405 DO 410 I=1,4
SIG3D(I)=-SIGT(I)
DSIG3D(I)=-DSIG(I )*RT1
DSIG(I )=DSIG(I)®RTI
EP3D(I)=-EPT(I)
DEP3D(I)=-DEP(I)®RT2
410 DEP(I)=DEP(I)®*RT2
DPWPT=DPWPT#RT 1
DO 2‘ 15 I=5’ 6
DSIG3D(I)=0.0
SIG3D(I)=0.0
EP3D(1)=0.0
415 DEP3D(1)=0.0
ITNOP=ITNO
LITNO=0
420 LITNO=LITNO+1
ITNOP=ITHOP+1
Cll!C!!!IQG!!NOTE!!IOQIIQQOONOTEGGCI
ICNT3=ICNT3+1
CALL CLAY(3,ITIM,ITNOP,PROP(MN,1),STOR,SIG3D,EP3D,DSIG3D,DEP3D,
1 c3D,CB3D, .:WPT,DPWPT,GAM, 1,0)
R1=.5
IF(NONLIN .EQ.2)R1=1.0
R2=1.0-R1
IF(NONLIN .EQ.1 .AND. MODNEW .EQ. 1)GO TO 460
DO 450 I=1,4
S0(1)=0.0
DO 450 J=1,4
€sc(1,J)=0.5%(C3p(1,J)+CE3D(I,J))
450 C(I,J)=C3D(1,J)*R1+CB3D(I,J)#R2
460 IF(NWAY .LT. 1)GO TO 625
DO 560 I=1,4
pU=DSIG(I)
DO 550 J=1,4
550 PU=DU-0.5®(C3D(I,J )+CB3D(I,J))*DEP(J)
560 SO(I1)=DU
ER=0.0
XNRM=0.0
DO 600 I=1,4
ER=ER+ABS(S0(I1))
XNRM=XNRM+ABS (DSIG(I))
DSIG(I)=DSIG(I)-SO(I)
600 DSIG3D(I)=-DSIG(I)
IF(XNRM .EG. 0.0 )GO TO 625
IF(LITNO .EQ. ITMAX)GO TO 620
IF(ER/XNRM .GT. 10.®ERMAX)GO TO 420
620 DU=ER/XMRM
625 IF(MODNEW .EQ. 0 .OR. NOMLIN .EQ. 2)GO TO 629
DO 628 1=1,4
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S0(1)=0.0
DO 628 J=1,4
628 SO(I)=S0(I)+(0.5%C3D(1,J)+0.5%CB3D(1,J)-C(I,J))*DEP(J)
RETURN
C'.l...'..’uorgl..!.'....No‘rg
629 R1=0.5
DO 630 I=1,4
- S0(1)=0.0
DO 630 J=1,4
630 S0(1)=S0(1)+(R1-0.5)®%(C3D(X,J)+CB3D(I,J))*DEP(J)
RETURN
END
Cc SESETRRSFRRVBERZCURERRAT AT ARERACRCOOAGEVREERRERAREER GG ERANGEERGREE

SUBROUTINE STRESS(ITSTOP)
c
c THIS SUBROUTINE CALCULATES AND PRINTS ELEMENT STRESSES AND STRAINS
c

COMMON/BLKO/ NPT,NELEM,NBPTC,MTYPE, IHISBF, ITMAX, RELAX,ERMAX,

. VITFAC,MODNEW, ITFAC,NONLIN,NWAY, IREPET, ITNO,NSTP

. , ITIM, TIMF, TIMB, XKP, XXX

COMMON /BLK2/ X(900),¥(900),NQ(901),DISPLT(1£00)

COMMON /BLK3/ MNO(841),NOD(841,4)

COMMON/BLKS/ SL(1800),SLP(1800),SLPP(1800)

coM:oN/BLKB/ C(4,4),S0(4),XPV(5),YPV(5),XJCOB(5),C1(8,8),2Y(8),
L FV(5,4),GV(5,4),XNV(5,4),SIGT(4),DSIC(4),EPT(4),DEP(4),

L STOR(6 ), PWPT,DPWP,CSC(4,4)

DIMENSION U(2),UX(2),0¥(2)

.. c FORMAT STATEMENTS

- 920 FORMAT (IS, 3X,1P9E12.3)
h 922 FORMAT(//,5X, THELEMENT, 85X,
28HELEMENT STRAINS AND STRESSES, 7, 6X, 3HNO.,5X,
9HEPSILON-X, 3X, 9HEPSILON-Y, 3X, 9HEPSILON-Z
, 3X, BHGAMIA~XY, 8X, THSIGHA=X, 5X, THSIGMA-Y, 5X, THSIGMA-Z,
5X, 6HTAU-XY, 10X, 'U")
923 PORMAT(//,5X, 'ELEMENT', 45X,

ZWn -

1 'ELEMENT STRAINS AND STRESSES',/,6X, 'NO.*,5X,
2 *EPSILON-R', 3X, 'EPSILON-Z', 3X, 'EPS-THETA'
3 +3X, 'GAIMA-RZ' 44X, *SIGMA-R",5X, 'SIGMA-Z ', 4X, 'SIG-THETA",
4 4x, *TAU-RZ*, 10X,'U")
924 FORMAT (1HO,4X,4HNODE, T7X, 13HDISPLACEMENTS, / 6X, 3HNO. , 8X,

1 1HU, 10X, 1HV)

c

c FOR EACH ELEMENT FIND STRAINS AND STRESSES

c

IF(ITSTOP .EQ. 0) GO TO 110

IF(MTYPE .LT. 2) WRITE(6,922)

IF(MTYPE .EQ. 2) WRITE(6,923)
110 DO 760 IX=1,NELEM

MN=MNO(IX)

NOD(1X,1)=IABS(NOD(IX,1))

Y RECALL ELEMENT INFORVATION FROM DISK

9%
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READ(2=IX)((s0(J), (c(1,J),CSC(1,J),1=1,4),d=1,8), (XPV(K),YPV(K),

s XJCcOB(K), (FV(K,L),GV(K,L),XNV(K,L),L=1,8),K=1,5), (SIGT(M),
» DSIG(M),EPT(M),DEP(M),M=1,4), PUPT,DPWP, (STOR(N),N=1,6))
c
C CALCULATE THE STRESS AND STRAIN AT THE ELEMENT CENTER
o
DO 157 J=1,2
pU1=0.0
DU2=0.0
DU3=0.0
DO 155 I=1,4
NN=NOD(IX,I)
II=NQ(NN)+J-1
c SEERERRRSRNOTES SRS RNOTE R RSRNOTE

UN=SL(II)
DU1=DU1 + XNV(5,I)%UN
DU2=DU2 + FV(5,I)%UN

155 DU3=DU3 + GV(5,I)*UN
U(J)=DU1
UX(J)=DpU2

157 UY(J)=DU3
RO=0.0
IF(NTYPE .EQ. 2) RO=1.0/XPV(5)
DEP(1)=UX(1)
DEP(2)=UY(2)
DEP(4)=UX(2) + UY(1)
DEP(3)=RO®U(1)-XKP#(CSC(1,3)*DEP(1)+CSC(2,3)*DEP(2)
1 + CSC(3,4)*DEP(4)+ S0(3))/CSC(3,3)
DO 400 I=1,4
DU=SO(I)

CQlililllIlOlIIQNOTE!lll!l&l!!ll“orgl.l!l

IF(NONLIN .EQ. 2)DU=0.0
DO 380 J=1,4

380 DU=DU + CSC(I,J)®*DEP(J)

400 DSIG(I)=DU
DSIG(3)=DSIG(3)®#(1.0 - XKP)
DPWP=0.0
IF(ITSTOP .EQ. 0) GO TO 750

IF CONVERGENCE HAS OCCURRED, SUM ELEMENT STRESSES AND STRAINS
AND PRINT RESULTS

OO0

DO 740 J=1,4
EPT(J)=EPT(J) + DEP(J)
740 SIGT(J)=SIGT(J) + DSIG(J)
PWPT=PWPT + DPWP
WRITE(6,920) IX, (EPT(J),J=1,4),(SIGT(J),J=1,4),PWPT
750 CONTINUE
WRITE(2=1X)((S0(J), (C(1,J),CSC(1,J),I=1,4),d=1,4), (XPV(K),YPV(K),
. XJCOB(K), (FV(K,L),GV(K,L),XNV(K,L),L=1,8),K=1,5), (SIGT(M),
¢ DSIG(M),EPT(M),DEP(M),M=1,4), PWPT,DPWP, (STOR(N),N=1,6))
760 CONTINUE
IF(ITSTOP .EQ. O) RETURN
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c
c DISPLACEMENTS SUMMED AND PRINTED
c
g VRITE(6,924)
;i DO 785 I=1,NPT
m JJ=NQ(I)
}. IF(JJ .EQ. NQ( I+1))GO TO 785
S DISPLT(JJ)=DISPLT(JJ) + SL(JJ)
[ DISPLT(JJ+1)=DISPLT(JJ+1) + SL(JJ+1)

WRITE(6,920) I,DISPLT(JJ),DISPLT(JJ+1)
i 785 CONTINUE
N RETURN
= END
C GRECENORENNOSRNERRGRERRNRNRSEREERRRRGNRARNERERRGORANNNEANRNORNERANIRGNRGE

SUBROUTINE STIFNS(IX,LSTND,LT,NCOL,S)

THIS SUBROUTINE FORMS THE ELEMENT MATRIX FOR A QUADRILATERAL
ELEMENT

OO0 0

COMiON /BLKO/ NPT,NELEM,NBPTC,MTYPE, IHISBF, ITMAX,RELAX, ERMAX,
. VITFAC,MODNEW, ITFAC,NONLIN,NWAY, IREPET, ITNO,NSTP
# » ITIM, TIMF, TIMB, XKP, XXX

COMMON/BLK1/ PROP(3,21),FXA(3),FYA(3),ITYPA(3)

coMMoN/BLK2/ X(900),Y(900),NQ(901),DISPLT(1800)

COMMON /BLK3/ MNO(8%1),NOD(841,4)

com’on /ELKY/ NODB(120),BIV(120,3)

COMMON /BLK5/ SL(1800),SLP(1800),SLPP(1800)

CoMMOM /BLK8/ C(4,4),80(4),XPV(5),YPV(5),XJCOB(5),C1(8,8),2Y(8),
. FV(5,4),0V(5,4),XNV(5,4),SIGT(%),DSIG(4),EPT(4),DEP(4),
. STOR(6), PWPT,DPWP,CSC(4,4)

DIMENSION IIFLG(2),BIVD(2),S(LT,NCOL),C2(8,8)

c RECALL ELEMENT INFORMATION FROM DISK
READ(2=IX)((S0(J),(C(1,J),CSC(I,J),I=1,4),0=1,4), (XPV(K),YPV(K),
s XJCOE(K), (FV(KX,L),GV(K,L),XNV(K,L),L=1,8),K=1,5), (SIGT(M),
. DSIG(M),EPT(M),DEP(M),M=1,4),PWPT,DPWP, (STOR(N),N=1,6))

CALCULATE INCREMENTAL PROPERTIES

OO0

MM=MNO(IX)
IN=2

CALL PROPTY(IN,MN,NZ,NZ)
c11=C(1,1)
c12=C(1,2)
C13=C(1;3)
C14=C(1,4)
c22=C(2,2)
€23=C(2,3)
c24=C(2,4)
C33=C(3.3)
C34=C(3,4)
Chu=C(l,4)
C11X=CSC(1,1)

9%
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.........................................

S €12x=CSC(1,2)
. €13x=CSC(1,3)
C14x=CSC(1,4)
€22x=CSC(2,2)
c23x=Csc(2,3)
c24x=CSC(2,4)
€33x=CSC(3,3)
C34X=CSC(3,4)
ch4x=CSC(4,4)
S$1=50(1)
$2:=80(2)
83=50(3)
S4=S0(4)

INITIALIZE ELEMENT MATRICES

OO0

DO 50 K
c2(J,K
50 C1(J,K
60 2Y(J)=

O s e

SET PARAMETERS FOR TYPE OF 2-D ANALYSIS TO BE PERFORMED

[ Ne Ny

8 R=1.0
'77: RO:O. 0

c
hf c PLANE STRESS TERMS

. D11=XKP*C13%C13/C33

D12=XKP#C 13#C23/C33

- D14=XKP*C13%C34/C33

i D22:=XKP#C23%C23/C33
D24=XKP®#C23%C34/C33
DYU=XKP#C34#C34/C33

CALL INTP(IHISBF,TIMB,TIMF,ITIM,DF)
MN=MNO(IX)

FX=FXA(MN)®DF

FY=FYA (MN)®DF

c NUMERICAL INTEGRATIOR LOOP

~ DO 240 N=1,4
0 IF(MTYPE .LT. 2) GO TO 152
i R=YPV(N)

RO=1.0/R

CALCULATE ELEMENT MATRICES

(s NeNel

X 152 DU=XJCOE (N )%R

i DO 220 I=1,4
11=201-1
I2=I1+1
FI=FV(N,1)




GI=GV(N,I)

XNI=XNV(N,I)
c
c ELEMENT LOAD MATRIX
c
ZY(I1)=ZY(I1) + DUS(XINI®*(FX-RO®S3) - FI®(S1-XKP®C13/C33%S3)
1 - CI®(Sh - XKP®C34/C33%S3))
ZY(12)=2Y(I2) + DU*(XNI®FY - FI®(S4-XXP®C3U4/C33%S3)
1 - GI®(S2 - XKP#C23/C33%S3))
IF(MODNEW .EQ. 1) GO TO 220
DO 210 J=I1.4
J1=28J-1
J2=J 1+1
FJ=FV(“.J)
GJ=GV(N,J)
XNJ=XNV(N,J)
c
c ELEMENT STIFFNESS MATRIX
c
€2(11,J1)=C2(X1,J1) + DUR((C11X)*FI®FJ + C33XSROTRO®XNI®XNJ
1 + (CUNX)®GI®GJ + CI3X®RO*(FI®XNJ + FJ®XNI)
2 + (CIUX)®(GI®FJ + GJ®FI) + C34X®RO®(XNISGJ+XNJ®GI))
€2(11,J2)=C2(I1,J2) + DUR((CAUX)SGI®PJ + (C12X)®FI¥GJ
1 + (CI¥X)®FI®FJ + C23X®RO®INI®GJ + (C2MX)SGI®GJ
2 + C34X®RO®XNI®FJ)
C2(12,J1)=C2(12,J1) « DU®((CUUX)SFI®G] + (C12X)®FJeGI
) + (CUIX)*FI*FJ + C23XPRO®GI®XNJ + (C28X)®*GI®GJ
2 + C3UX®ROSXNJ®*FI)
€2(12,J2)=C2(12,J2) + DU*((C22X)"GI®GJ + (CA4X)SFI®FJ
1 + (C2UX)®(FI®GJ + FJ%GI))
C1(11,J1)=C1(I1,J1) + DU*((C11-D11)®FI®FJ + C33%ROYRO®XNI®XNJ
1 + (CUN-DUY )®GI®GI + C13%RO*(FI®XNJ + FJ®XNI)
2 + (C14-D13)®(GI®FJ « GJ®FI) + C38®RO®(XNISGJ+XNJ®*GI))
C1(11,J2)=C1(I1,J2) « DU*((CUB-D4L)OGI®FJ + (C12-D12)¥FI®CJ
1 + (CIA=D1N)FISFJ + C23%ROTXNI®GJ + (C24-D24)®GI%GJ
2 + C34®ROXNI®FJ)
C1(12,J1)=C1(I2,J1) + DU®((CUL-DUL)*PISGI + (C12-D12)%PJeGI
1 + (C14-DI4)®FI®FJ + C23¢RO®CI®XNJ + (C24-D24 )#GI®*GJ
2 + C34®RO®XNJ®FI)
210 C1(12,J2)=C1(12,J2) + DU*((C22-D22)%GI®GJ + (CH4-DUX)®FISFJ
1 + (C28-D24)®(FI1%GJ + FJ*GI))
220 CONTINUE
240 CONTINUE
po 245 J=1,8
DO 245 1=1,8
IF(NONLIN .BQ. 1)GO TO 270
DO 260 1=1,8
DU=0.0
J=0
DO 250 JJ=1,4
DO 250 N=1,2

L=NOD(IX,JJ)
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250
260
270

300

315

L=NQ(L)+N-1

J=d+1

DU=DU+C2(1,J )8SLP(L)
2Y(1)=-DU

CONTINUE

THE NODE POINT SPECIFICATIONS ARE CONSIDERED

NRQ=NOD(IX,J)

KL=NBPTC + 1

DO 331 K=1,KL
NR=NU#(J-1)

IF(K .LT. KL) GO TO 300

APPLY BOUNDARY CONDITION WHEN R=0

IF(MTYPE .LT. 2 .OR. X(NRQ) .NE. 0.0) GO TO 331
IIFLG(1)=1

IIFLG(2)=0

BIVD(1)=0

BIVD(2)=0

GO TO 320

KK=IABS(NODB(K))

K1=zKK/1000000

IF (NRQ .NE. K1) GO TO 331
XX=1.0

IF (NODB(K) .LT. 0) XXx=0.0
NODB(K)=-KK
IIFLG(1)=MOD(KFK,100)/10
IIFLG(2)=MOD (KK, 10)
IH1=MOD (KK, 1000000)/10000

CALL INTP(IH?!,TIMB,TIMF,ITIM,DF)
BIVD(1)=BIV(K,1)%DF
IH2=MOD (KK, 10000)/100

CALL INTP(IH2,TIMB,TIMF,ITIM,DF)
BIVD(2)=RIV(K,2)“DF

AN :BIV(K,3)

IF(ANG .EQ. 0.0) GO TO 320

TRANSFORMATION TO LOCAL COORDINATE AXES

CA=COS{ANG)

SA=SIN(ANG)

D1=2ZY(NR+1)

D2=2ZY(NR+2)
ZY(NR+1)=D1#CA+D2%SA
ZY(NR+2)=-D18SA+D2%CA
DO 315 JJ=1,8
D1=C1(HR+1,JJ)
D2=C1(NR+2,JJ)
C1(NR+1,JJ)=D18CA+D2%SA
C1(NR+2,JJ)=-D18SA+D28CA
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DO 318 11=1,8

D1=C1(1I,NR+1)

D2=C1(II,NR+2)

C1(II,NR+1)=D1%CA+D2%SA
318 C1(II,NR+2)=-D18SA+D28CA
320 DO 330 N=1,2

DU1=BIVD(N)

NR=NR«+1

LOADS ADDED IN

QOO0

ZY(NR)=ZY(NR)+XX®DU1
IF(IIFLG(N) .EQ. 0) GO TO 330

DISPLACEMENTS SPECIFIED

QOO0

FERERRESEERESRUSENOTESSRERSRREBEEREENOTE

IF(NONLIN .EQ. 1)GO TO 325
NRM=NQ(NRQ)-1+N
DU 1=DU1-SLP(NRM)

325 ZY(NR)=DU1 ® XX & XXX
C1(NR,NR)=XXX # XX

330 CONTINUE

331 CONTINUE

334 CONTINUE

c
c THE ELEMENT MATRIX IS NOW ADDED INTO THE SYSTEM MATRIX
c

NRCC=0

DO 355 K=1,4

KK=NOD(IX,K)

NR=NQ(KK )-1

DO 350 M=1,NU

NRCC=NRCC+1

NR=NR + 1

IF(MODNEW .EQ. 1) GO T0 350
NRM=NR - LSTND

NCCC=0
DO 345 L=1,4
JJ=NOD(IX,L)
NCN=NQ(JJ) - NR
DO 345 N=1,NU
NCCC=NCCC+1
NCN=NCN+1
IF (NCN.LT. 1) GO TO 344
S(NRM,NCN)=S(NRM,NCN) + C1(NRCC,NCCC)
344 CONTINUE
345 CONTINUE
350 SL(NR)=SL(NR) + ZY(NRCC)
355 CONTINUE
WRITE(2=-1X)((s0(J),(c(1,J),CSC(1,J),1I=1,4),J=1,04), (XPV(K),YPV(K),
. XJCOB(X), (FV(X,L),GV(K,L),XNV(K,L),L=1,4),K=1,5), (SICT (M),




RETURN
END
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SUBROUTINE SOLVE (L1,L2,LT,NROW,NCOL,IDISK,Q7,S)

QOO0 O0

COMHON/BLKO/ NPT,NELEM,NBPTC,MTYPE, IHISBF, ITMAX,RELAX, ERMAX,

COMMON/BLK2/ X(900),Y(900),NQ(901),DISPLT(16800)
COMMON/BLK3/ MNO(841),NOD(841,4)

COMMON/BLKS/ SL(1800),SLP(1800),SLPP(1800)
DIMENSION S(LT,NCOL),Q7(1)

OO0

ID=0

288 ID=ID + 1
LSTND=(ID-1)%L1
MWND=LSTND + L1

e e Ne Nl

DO 355 I=1,NELEM

IX=1

IF(NOD(I,1) .LT. 0) GO TO 355

DO 300 L=1,4

K1=NQ(KK)

IF ( K1 .LE. NWND) GO TO 305
300 CONTINUE

GO TO 355

e NeNeNy]

305 CALL STIFNS (1X,LSTND,LT,NCOL,Q7)
non(x, 1)=-NOD(1,1)
355 CONTINUE

THIS SUBROUTINE FORMS AND SOLVES THE SIMULTANEOUS EQUATIONS.
VARIABLE DIMENSIONING IS USED TO MAXIMIZE THE LENGTH OF THE MAIN
BLOCK. DISK STORAGE IS USED WHEN MORE THAN ONE BLOCK IS REQUIRED.
WHEN MODNEW=1, ONLY REDUCTION OF THE RIGHTHAND SIDE AND BACK
SUBSTITUTION TAKES PLACE.

VITFAC,MODNEW, ITFAC,NONLIN,NWAY, IREPET, ITNO,NSTP
» ITIN, TIMF, TIMB, XKP, XXX

THE STIFFNESS MATRIX IS GENERATED IN BLOCKS AND STORED ON DISK

EACH ELEMENT 1S EXAMINED TO DETERMINE IF IT CONTRIBUTES
TO THE BLOCK

CALCULATE THAT PORTION OF THE STIFFNESS MATRIX GIVEN BY A
CONSIDERATION OF ELEMENT I

THE BLOCK OF EQUATIONS IS REDUCED AND PUT ON DISK IF REQUIRED f

IF(MODNEW .EQ. O ) GO TO 400
IF(IDISK .NE. 0) READ(1=ID) ((S(N,M),M=1,NCOL),N=1,L1)
G TO 505

aQaan

P®" JCE .HE LEFTHAND SIDE
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400 DO 500 N=1,L1
DIAG=S(N, 1)
IF(DIAG .EQ. 0.0) GO TO 500
I=N
DO 75 L=2,NCOL
C=S(N,L)/DIAG
I=I+1
IF(C .EQ. 0.0) GO TO 475
J=0
DO 450 K=L,NCOL
J=J+1
450 S(1,J)=8(1,J) - C*S{N,K)
475 CONTINUE
500 CONTINUE
chusaseOR LINEAR SYSTEMS INCLUDE FOLLOWING STATEMENT
C IF(ID .GE. IDISK)GO TO 505
IF(IDISK .GT. 0) WRITE(1=ID) ((S(N,M),M=1,NCOL),N=1,L1)

c
c REDUCE THE RIGHTHAND SIDE
C

505 DO 520 N=1,L1
DIAG=S(N,1)
IF(DIAG .EQ. 0.0) GO TO 520
NR=N «+ LSTND
D=SL(NR)/DIAG
I=NR
DO 510 L=2,NCOL
I=I+1%

CEessteneIF CANNOT OVER FLOW SL IN COMMON, INCLUDE NEXT STATEMENT

IF(I .GT. NROW)GO TO 520

510 SL(I)=SL(I) -~ S(N,L)®D

520 CONTINUE
IF(ID .GE. IDISK .OR. MODNEW .EQ. 1) GO TO 600

THE NUMBER TWO BLOCK OF EQUATIONS IS SHIFTED INTO THE
NUMBER ONE POSITION

aAO0OO0

N=L1
DO 530 I=1,L2
N=N+1
DO 530 J=1,NCOL
S(I’J)=S(N9J)
530 S(N,J)=0.0
IF(L2 .GE. L1) GO TO 600
LL=L2 + 1
DO 540 I=LL,L1
DO 540 J=1,NCOL
540 $(1,J)=0.0
600 IF(ID .LT. IDISK) GO TO 288

BACK SUBSTITUTION

an0o0n

ID=IDISK + 1
NR=IDISK®L 141
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...........

IF(IDISK .EQ. O)NR=NROW+1
610 ID=ID - 1
IF(ID .LT. IDISK) READ(1=ID) ((S(N,M),M=1,NCOL),N=1,L1)
N:=L1 + 1
DO 750 M=1,L1
NR=NR - 1
N=N -1
IF(NR .GT. NROW)GO TO 750
DU1=SL (NR)
IF(S(N,1) .EQ. 0.0) GO TO 750
L=NR
DO 725 K=2,NCOL
L=L + 1

CReERERS2TF CANNOT OVER FLOW SL IN COMMOM, INCLUDE NEXT STATEMENT

c

c
c
c

2

IF(L .GT. NROW)GO TO 727

725 DU1=pU1-S(N,K)*SL(L)

727 SL(NR)=DU1/S(N,1)

750 CONTINUE
IF(ID .GT. 1) GO TO 610
RETURN
END

Y Yy Ty Ty Ty Y Y Y T T Y Y Y Y YT I

SUBROUTINE INTP (I,T2,T1,ITIM,DF)
SUBROUTINE TO INTERPOLATE HISTORY FUNCTION

coM¥on/BLKT7/ FUN(10,3),FUNT(10,3),NPTS(3,3)
DIMENSION TT(2),F(2)
DF=1.0
IF(I .LT. 0) RETURN
IF(I .GT. 0) GO TO 20
IF(ITIM .GT. 1) DF=0.0
RETURN
20 DF=FUNT(1,1)
IF(ITIM .EQ. NPTS(I,1)) RETURN
NPTS(I, 1)=ITIM
TT(2)=T2
TT(1)=T1 !
NP=NPTS(I,2)
N=NPTS(I,3)
FUNT(1,1)=0.0
IF(TT(2) .LT. FUNT(NP,I)) NP=1
DO 300 LL=1,2
L=3-LL
T=TT(L)
DO 100 J=NP,N
K=J
IF(T .LE. FUNT(X+1,I)) GO TO 200
100 CONTINUE
200 F(L)=FUN(K,I) + (FUM(K+1,T)-FUN(K,I))®(T-FUNT(K,I))/
s (FUNT(K+1,I) - FUNT(K,I))
300 CONTINUE
NPTS(I,2)=K
DF:F(1) - F(2)
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FUNT(1,I)=DF
RETURN
END

SUBROUTINE GEOM(IX,MN,ISIGN,SCOEF,SIGH,SIGV,U,XC,YC)
CoSNuENEcuIRRRaRREcRenEnauitosRaiusiceanaRatuEneunaeeeasenecnenes

THIS SUBROUTINE INITIALIZES THE STRESS AND PROPERTY ARRAYS AND
CALCULATES THE ISOPARAMETRIC TRANSFORMATION AND STORES ON DISK

s Mo Ne Nyl

COMMON /BLK2/ X(900),Y(900),NQ(901),DISPLT(1800)

COMMON /BLK3/ MNO(Bu1),BOD(841,4)

COMMON/BLK6/ ROA(4),SCA(4),ETA(N)

COMMON/BLK8/ C(4,4),80(4),XPV(5),YPV(5),XJCOB(5),C1(8,8),2Y(8),
. FV(5,8),GV(5,4),XNV(5,4),SIGT(4),DSIG(4),EPT(4),DEP(Y),

. STOR(6), PWPT,DPWP,CSC(4,4)

DIMENSION SCOEF(8,6),RQ(4),2Q(4)

C THE AND NODE POINT COORDINATES ARE FOUND
DO 100 J=1,4
K=NOD(1X,J)
RQ(J)=X(K)
100 2Q(J)=Y(K)

ISOPARAMETRIC TRANSFORMATION FACTORS

anon

A1=2Q(1)+2Q(2)-2Q(3)-2Q(4)
A2:2Q(1)-2Q(2)-2Q(3)+2Q(4)
B= 2Q(1)-2Q(2)+2Q(3)-2Q(4)
C1P=RQ(1)-RQ(2)-RQ(3)+RQ(H)
C2=RQ(1)+RQ(2)~RQ(3)-RQ(H)
D= RQ(1)-RQ(2)+RQ(3)-RQ(4)

c QUADRATURE POINT LOOP

DO 155 N:=1,5

IF(N .LT. 5) GO TO 131
$C=0.0

ET=0.0

GO TO 114

111 DU=1.0/SQRT(3.0)
SC=DU®SCA(N)
ET=DU®ETA(N)

114 D1=C1P+D*ET
D2=A1+B#5C
D3=C2+D®SC
DA=A2+B*ET
DU=1.0/(D1%D2-D3*DA)

CALCULATION OF SHAPE FUNCTION DERIVATIVES

aon

XC=0.0
YC=0.0
DO 150 I=1,%
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N DS=ROA(I)
> D6=SCA(I)
[« { D7=ETA(I)

e FV(N,I)=DU®(D2%(D6 + DSYET) - D4®(DT + DS®SC))
e GV(N,I)=DU®(D1#(D7 + D5%SC) - D3%(D6 + DS®ET))
- D8=0.25%(1.0 + D6#SC)®(1.0 + DT¥ET)
R XNV(N,I)=D8

XC=XC + RQ(I)*D8
150 YC=YC « 2Q(I)*D8

XPV(N)=XC

YPV(N)=YC

XJCOB(N)=0. 0625 /DU
155 CONTINUE

c INITIALIZE STRESSES AND STRAINS

U=0.0
SIGH=0.0
S1GV=0.0
DPWP=0.0
DO 160 I=1,4
DSIG(1)=0.0
DEP(I)=0.0
160 EPT(1)=0.0
IF(ISIGN .EQ. 0) GO TO 162
SIGV=SCOEF(ISIGN, 1) + SCOEF(ISIGN,2)%YC
SIGH=SCOEF(ISIGN,3) + SCOEF(ISIGH,4)%YC
U=SCOEF(ISIGN,5) + SCOEF(ISIGN,6)%*YC
162 SIGT(1)=SIGH
SIGT(2)=SIGV
SIGT(3)=SIGH
PWPT=U
SIGT(4)=0.0

c

c STORE INFORMATION ON DISK

c
WRITE(2=IX)((S0(J),(C(1,J),CS8C(1,J),I=1,4),J=1,4), (XPV(K), YPV(K),
. XJCOB(K), (FV(K,L),GV(K,L),XNV(K,L),L=1,4),K=1,5), (SIGT(M),
. DSIG(M),EPT(M),DEP(M),M=1,4), PUPT,DPWP, (STOR(N),N=1,6))
RETURN
END

COGl!llli.!ll!ll.lllllilll!!ll!!!I!l!!l!!!!l!l.!!l.llllll!!llill.ill'(
SUBROUTINE RPROP(PROP)

THIS SUBROUTINE READS IN AND SCALES THE PROPERTIES REQUIRED
BY THE BOUNDING SURFACE PLASTICITY MODEL FOR COHESIVE SOILS.

OoO0O0NO0

DIMENSION PROP(21)
READ(5,801) (PROP(I),I=1,3),(PROP(I),I=9,11),PROP(7),
1 PROP(21),PROP(17),PROP(16),PROP(20),PROP(S),
2 PROP(6),PROP(8),PROP(4),PROP(18),PROP(15),
3 PROP(12),PROP(13),PROP(19),PROP(14)
801 FORMAT(8E10.3)
WRITE(6,901) (PROP(I),I=1,3),PROP(4)
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901 FORMAT(SX, 'CLAY PROPERTIES'//15X, 'LAMBDA =',E10.3/15X,
1 'KAPPA  =',E10.3/15X, 'MC =',E10.3/15X,
2 IME/MMC =',E10.3)
WRITE(6,902) PROP(9),PROP(12),PROP(10),PROP(13),
1 PROP(11),PROP(7),PROP(21),PROP(17),
1 PROP(19),PROP(16), PROP(18),

PROP( 14), PROP(20)

902 PORMAT (15X, 'RC =*,E10.3, 15X, ‘RE/RC  «=',E10.3/
15X, 'AC =',E10.3,15X,'AE/AC  =',E10.3/
15X, 'T =',E10.3, 15X, 'PL =',E10.3/
15X, 'PO =',E10.3/15X, *"BARDENING PARAMETERS:'/
19X, *SMC =',B10.3, 10X, *SME/SMC =',E10.3/
19X, 'HC =',B10.3,10X, 'HE/RC  =',E10.3/
15X, ' PROJECTION POINT 1/C =',E10.3/
15X, 'INITIAL VOID RATIO =',E10.3)

IF(PROP(5).LT.0.5) WRITE(6,903) PROP(5)

IF(PROP(5).GE.0.5) WRITE(6,904) PROP(S5)

903 FORMAT( 15X, ' POISSON®S RATIO £*,E10.3)

904 FORMAT(15X, 'SHEAR MODULUS =',E10.3)
WRITE(6,905) PROP(8)

905 FORMAT( 15X, 'ATMOSPHERIC PRESSURE =',E10.3)
WRITE(6,906) PROP(15)

906 FORMAT(15X,'SIZE OF ELASTIC Z0NE =',E10.3//)
IF(PROP(6).EQ.0.0) WRITE(6,907)

907 FORMAT(SX,'®#eass DRAINED CONDITIONS ®amesr//)
IF(PROP(6).NE.0.0) WRITE(6,906) PROP(6)

908 FORMAT(SX, *®##8&& UNDRAINED CONDITIONS --- THE COMBINED °,
1 'SKELETON AND WATER BULK MODULUS =',E10.3//)
PROP(3)=PROP(3)/(3.0¢SQRT(3.0))
PROP(7)=PROP(7)%3.0
PROP(21)=PROP(21)%3,0
RETURN
END

CIQl!l'l!Il.!llll!l!ll.'lli!.l!!ll!lllC!l!l!!ill.ll!!llll.ll

SUBROUTINE CLAY(IDIM,INC,ITNO,PROP,STOR,SIGBM,EPM,
1 DSIGM,DEP!,C,CB,UB,DLTAU,GAM,KIND,LARGE)

-

SOV EWN =

SUBROUTINE TO EVALUATE YANNIS DAFALIAS' BOUNDING
SURFACE PLASTICITY MODEL FOR CLAY SOILS. PREPARED BY
L.R. HERRMANN AT THE UNIVERSITY OF CALIFORNIA, DAVIS CAMPUS.

s NoNes NoNe]

DIMENSION PROP(21),STOR(6),SIGB(6),DSIG(6),DEP(6),C(6,6),

1 SB(3,3),SF(3,3),11(6),DLTA(3,3),DEPN(6),

2 S1GBM(6),DSIGM(6),DEPT(3,3),EPM(6),EPB(6),CB(6,6)
DATA 1I/1%1,22,33,12,13,23/, DLTA/1.0,3%0.0,1.0,3%0.0,1,0/
ALFUN(CV,RT,SINV)=2.0®RT#CV/(1.0+RT=(1.0-RT)®SINV)
SMALL=0.0001#PROP(8)

DO 40 I=1,6
SIGB(I)=SIGBM(I)
DSIG(I)=DSIGM(I)
EPE(I)=EPVN(I)

40 DEP(I)=DEPM(I)
IF(ITNO.GT.1) GO TO 100
IF(INC .GT.1) GO TO 50
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c
c INITIALIZE HISTORY
STOR(1)zPROP(21)
STOR(2)=STOR(1)
o STOR(3)=0.5#(SIGB(1)+SIGB(2))
-2 STOR(4)=0.01#PROP(8)
- STOR(5)=0.0
| GO TO 100
'*.'. c
c UPDATE HISTORY
c

50 STOR(1)=STOR(2)
STOR(3)=STOR(3)+STOR(4)
STOR(5)=STOR(5)+STOR(6)

CONVERT FROM PLANE STRAIN TO 3-D

Q00

100 IF(IDIM.EQ.3) GO TO 200
SIGB(4)=SIGB(3)
SIGB(3)=STOR(3)
DSTIG(4)=DSIG(3)
DSIG(3)=STOR(4)
DEP(4)=DEP(3)

. DEP(3)=0.0

: EPB(4)=EPB(3)

h EPBE(3)=0.0

PO 110 I=5,6

SIGB(I)=0.0
DSIG(I)=0.0
EPB(I)=0.0
110 DEP(1)=0.0

DETERMINE 3-D INCREMENTAL PROPERTIES

s Neo Mo

200 GAM=PROP(6)

CALCULATE EFFECTIVE STRESS INVARIANTS AND DISTORTIONAL STRESS
AND CHANGE MATRIX COMPONENTS TO TENSOR COMPONENTS.

(s NeNoNe]

XIB=0.0

XIF=0.0
DDIL=0.0
DILB=0.0

DO 205 I=1,3
DDIL=DDIL+DEP(I)
DILB=DILB+EPE(I)
XIB=XIB+SIGE(I)

205 XIF:=XIF+SIGB(I)+DSIG(I)
VOIDB=1.0+PROP(20)
VOIDF=VOIDB
IF(LARCE.EQ.0) GO TO 210
VOIDB=VOIDB®*EXP(~DILB)
VOIDF=VOIDF#EXP(-DILB-DDIL)
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210 DO 215 N=1,6

215

217

220

225

227

I=zII(N)/10

J=MOD(II(N), 10)
SB(I,J)=SIGB(N)~XIB®DLTA(I,J)/3.0
SB(JoI )’SB(IoJ)
DEPT(1,J)=DEP(N)®(1.0+DLTA(I,J))%0.5
DEPT(J,I)=DEPT(I,J)
SF(1,J)=SIGB(N)+DSIG(N)-DLTA(I,J)®*XIF/3.0
SF(J,X)=SF(1,J)

CAMP=0.0

IF(KIND .EQ. 0)GO TO 217

GAMP=GAM

UB=STOR(5)

DLTAU=GAM®DDIL

XIB=XIB-UB#3.0
XIF=XIF-(UB+DLTAU)*3.0
STOR(6)=DLTAU

SRTJB=0.0

SRTJF:=0.0

DO 220 1=1,3

DO 220 J=1,3
SRTJB=SRTJB+SB(I,J)®SB(I,J)
SRTJF=SRTJF+SF(1,J)®SF(1,J)
SRTJB=SQRT(0.5*SRTJB)
IF(SRTJB#1000. .LT. XIB)SRTJB=0.0
SRTJF=SQRT(0.S®SRTJF)
IF(SRTJF#1000. .LT. XIF)SRTJF=0.0
SCUB=0.0

SCUF=0.0

Do 225 1=1,3

DO 225 J=1,3

DO 225 K=1,3
SCUB=SCUB+SB(I,J)*SB(J,K)#SB(K,I)
SCUF=SCUF+SF(1,J)®*SF(J,K)%SF(K,I)
SCUB=SCUB/3.0

SCUF=SCUF/3.0

SN3AB=0.0

IF(SRTJB.GT.SMALL) SN3AB=1.5%SQRT(3.0)®SCUB/SRTJB*#3
IF(SN3AE.GT. 1.0) SN3AB= 1.0
IF(SN3AB.LT.-1.0) SN3AB==1.0
SN3AF=0.0

IF(SRTJF.CT.SMALL) SN3AF=1.5%SQRT(3.0)8SCUF/SRTJF##3
IF(SN3AF.GT. 1.0) SN3AF= 1.0
IF(SN3AF.LT.-1.0) SN3AF:-1.0
CS3AB=SQRT(1.0-SN3AB®##2)
CS3AF=SQRT(1.0-SN3AF®#2)

AVOID ZERO MEAN PRESSURE

IF(ABS(XIB).GT.SMALL) GO TO 227
DU=XIB

XIB=SMALL

IF(DU.LT.0.0) XIB=~SMALL
IF(ABS(XIF).GT.SMALL) GO TO 230
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DU=XIF

XIF=SMALL

IF(DU.LT.0.0) XIF=-SMALL
230 CONTINUE

c CALCULATE ELASTIC PROPERTIES

DU1=VOIDB/3.0/PROP(2)
DU2=1.5%(1.0-2.0%PROP(5))/(1.0+PROP(5))
DU=XIB
IF(DU.LT.PROP(7)) DU=PROP(7)
BE=DU 1#DU
GB=DU2%BB
IF(PROP(5).CGT.0.5) GB=PROP(5)
DU1=VOIDF/3.C/PRO™(2)
DU=XIF
IF(DU.LT.PROP(7)) DU=PROP(7)
BF=DU1%DU
GF=DU2%BF
IF(PROP(5).GT.0.5) GF=GB
DO 235 M=1,6
I=1I(M)/10
J=MOD(II(M), 10)
DO 235 N=M|6
K=II(N)/10
L=MOD(II(N),10)
DUI=DLTA(X,I)®*DLTA(L,J)+DLTA(K,J)*DLTA(I,L)
C(M,N)=CF®*DU 1+ (BF+GAMP-2.0®*GF/2.0)*DLTA(I,J)*DLTA(K,L)
CB(M,N)=GREDU 1+ (BE+GANP~2.0%GB/3.0)2DLTA(I,J )*DLTA(K,L)
CB(N,M)=CB(M,N)

235 C(N,M)=C(M,N)

c CALCULATE SIZE OF BOUNDING SURFACE

XIOE=STOR( 1)
XIOF=STOR(2)
XIL=PROP(T)
DU10=1.0/(PROP(1)-PROP(2))
IF(XIOB.GF.XIL.AND.XIOF.GE.XIL) GO TO 240
XIOBS=XIOB
IF(XIOB.LT.XIL) XIOBS=XIL
XIOFS=XIOF
IF(XIOF.LT.XIL) XIOFS=XIL
XIOF=XIOB+DU10%0.5%((XINFS*VOIDF+XIOBS*VOIDB )*DDIL~
1 (XIOBS*VOIDB/BB+XIOFS*VOIDF/BF)#(XIF~XIB)/3.0)
GO TO 245

240 XIOF=XIOB®EXP(DU10%0.5%*((VOIDB+VOIDF )*DDIL-
1 (VOIDB/BB+VOIDF/BF)®*(XIF-XIB)/3.0))

245 STOR(2)=XIOF
IF(INC+ITNO.EQ.2) GO TO %10

CALCULATE BOUNDING SURFACE PROPERTIES

OO0

CALL BOUND(PROP,SRTJB,SN3AB, XSB,X10B,XIB,GAMB,DFIB,
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1 DFJB,XKSB, DFALB,DFJJB,BSB,VOIDB)

CALL BOUND (PROP,SRTJF,SN3AF,XSF,XIOF,XIF,GAMF,DFIPF,
1 DFJF, XKSF,DFALF,DFJJF, BSF, VOIDF)
DB=BSB-1.0

IF(DB .LT. 0.0) DB=0.0

DF=BSF-1.0

IF(DF.LT.0.0) DF=0.0

CALCULATE PLASTIC MODULUS
CHECK FOR ELASTIC ZONE AND UNLOADING

¢+ NeNe Ny

XMS=ALFUN(PROP(17),PROP(19),SN3AB)
DU7=0.0001%®(1,.0/XMS)
LB=0
DDD=1.0+DD®* (1, 0-PROP(15))
IF(DDD.LE.0.0) GO TO 352
LB=1
R=ALFUN (PROP(16),PROP(18),SN3AB)
=ABS(XSB)
IF(DU.LT.DUT) DU=DUT7
DU8=9.0*DFIB##2,DFJB#82/3,0
DU9=XIOB
IF(XI0B.LT.XIL) DU9=XIL
XKB=XKSB+H®DB/DDD#*( 1, 0+ 1, 0/DU®8XMS ) *DUS*DUI*DU 10#VOIDB
DU1=3. 0*BB*DFIB
DU2=GB*DFJJB
DU2P=SQRT(3.0)®GB*DFALB
DU3=XKB+9.0®BBO®DFIRE#2,.GBEDFJB*#2+.GB®* (DFALBSCS3AB)®*82
SUM=0.0
T1=0,0
IF(SRTJB®*®#2 ,EQ.0.0) GO TO 350
DO 340 I=1,3
DO 340 J=1,3
DU=0.0
DO 330 K=1,3
330 DU=DU+SB(I,K)*SB(K,J)
T1=T1+(DU~1.5%SCUB#SB(I,J)/SRTJB¥#2)*DEPT(1,J)/SRTIJB®E2
340 SUM=SUM+SB(1,J)*DEPT(1,J)
T1=T1-2.0*DDIL/3.0
350 DU=(DU12DDIL+DU2%#SUM+DU2P®T1)/DU3
IF(DU.LT.0.0) LB=0O
352 LF=0
DDD=1.0+DF#(1.0-PROP(15))
IF(DDD.LE.C.0) GO TO 358
LF=1
H=ALFUN (PROP(16 ), PROP(18), SN3AF)
DU=ABS (XSF)
IF(DU.LT.DU7) DU=DU7
DU8=z9.0%DFIF®*®2,.DFJF#82/3,0
XVS=ALFUN(PROP(17),PROP(19),SN3AF)
DU9=XIOF
IF(XIOF.LT.XIL) DU9=XIL
XKF=XXSF+H®DF/DDD#( 1.0+ 1. 0/DU##XVS ) #DUB®DUG*DV 102VOIDF
DUU4=3.0®BFEDFIF
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DUS=CF#DFJJF
DU6=XKF+9.0#BF#DFIF®#2+GF*DFJF##2+GF® (DFALFECS3AF)#82
DUSP=GF®*DFALF®SQRT(3.0)
SUM=0.0
71=0.0
IF(SRTJF®#2 _EQ.0.0) GO TO 357
DO 356 1=1,3
Do 356 J=1,3
DU=0.0
DO 355 K=1,3
355 DU=DU+SF(I,K)®SF(K,J)
T1=T1+(DU-1.5"SCUF#SF(I,J)/SRTJF*#2)8DEPT(I,J)/SRTIF##2
356 SUM=SUM+SF(I,J)®DEPT(I,J)
T1=T1-2.0%DDIL/3.0
357 DU=(DU4®DDIL+DUS®SUM+DUSP#T1)/DU6
IF(DU.LT.0.0) LF=0

CALCULATE PLASTIC PORTION OF INCREMENTAL PROPERTIES

358 IF(LF+LB.EQ.0) GO TO k10
DO 400 M=1,6
I=I1(M4)/10
J=MOD(II(M), 10)

DO 400 N=M,6

K=II(N)/10

L=MOD(II(N),10)

DU=0.0

IF(LE.EQ.0) GO TO 373

T2=0.0

T1=0.0

IF(SRTJB*®#4 _EQ.0.0) GO TO 370
DO 360 LL=1,3
T2=T2+SB(K,LL)®*SB(LL,L)

360 T1=T1+SB(I,LL)®*SB(LL,J)
T1=DU2P#(T1/SRTJB*#2-.1,58SCUB*SB(1,J)/SRTJB##4.2, O*DLTA(I,J)/3.0)
T2=DU2P*(T2/SRTJB##2-1,58SCUB*SE(K,L)/SRTJB®*®4.2, O*DLTA(K,L)/3.0)

370 DUB=-(DUT*DLTA(I,J)+DU2%SB(I,J)+T1)®(DUT*DLTA(K,L)+
1 DU2¢SB(K,L)+T2)/DU3
IF(LF.EQ.0) GO TO 396

373 T2:=0.0
T1=0.0
IF(SRTJF*®4 .FQ.0.0) GO TO 390
DO 380 LL=1,3
T2=T2+SF(K,LL)®*SF(LL,L)

380 T1=T1+SF(I,LL)®SF(LL,J)
T1=DUSP#(T1/SRTJF##2-1,58SCUF®SF(I,J)/SRTJF#84-2, 0%DLTA(X,J)/3.0)
T2=DUSP* (T2/SRTJF##2-1,58SCUF®*SF(K,L)/SRTJF*®#4.2, O®DLTA(K,L)/3.0)

390 DU=z-(DUU®DLTA(I,J)+DUS®SF(I,J)+T1)%(DU4®DLTA(K,L)+
1 DUS®*SF(K,L )+T2)/DUb

396 C(¥,N)=DU+C(M,N)

CB(M,N)=DUB+CB(M,N)
CB(N,M)=CB(VM,N)
800 C(N,M)=C(M,N)
410 CONTINUE
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IF(IDIM.EQ.3) RETURN
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CONVERT 3-D PROPERTIES TO PLANE STRAIN

QOO0

DU=0.0
DO 820 I=1,4
DU=C(3,1)®DEP(I)+DU
- C(3,I)=C('I,I)

K20 C(4,1)=0.0
DO 430 I=1,3
C(I1,3)=C(I,N)

430 Cc(1,4)=0.0
STOR(4 )=DU
RETURN
END

CRENECRERGRERRECHSIRERORERSORNCEARRSERARESRALEERERRRAARRNRNEERE

SUBROUTINE BOUND(PROP,SRTJ,SN3A,X,XI0,XI,GAM,DFI,DFJ,
1 XKS,DFAL,DFJJ,BS,V0ID)

SUBROUTINE TO EVALUATE RELATIONSHIP OF STRESS STATE
TO BOUNDING SURFACE

s NeNesNel

DIVENSION PROP(21),FSS(3)
ALFUN(CV,RT,SINV)=2.0®RT#CV/(1.0+RT-(1.0-RT)*SINV)
DFUN (FUN, RT, FUNC ) =FUN##2#%(1,0-RT)/(2.0®RT®FUNC)
XN=ALFUN (PROP(3),PROP(4),SN3A)
DNAL=DFUN (XN, PROP(4 ), PROP(3))

R=ALFUN (PROP(9), PROP(12),SN3A)
DRAL=DFUN (R, PROP(12), PROP(9))
AzALFUN(PROP(10),PROP(13),SN3A)
DAAL=DFUN (A, PROP(13),PROP(10))

YS=R®A/XN

CC=PROP(14)

c SHIFT PROJECTION POINT

D1=XI-XIO®CC
IF(ABS(D1).LT.0.001) D1=0.001
D2=zCC-1.0/R
D3=D1%D2
D5=CC*(CC-2.0/R)
Q =SRTJ/D1
QC=XN/(1.0-R%CC)
Q0=1.0E+20
IF(CC.NE.0.0) QO=XN®*(SQRT(1.0+YS®#¥S)-(1.0+YS))/R/CC
IF(SRTJ.NE.0.0) GO TO 3
IF(D1.GT.0.0) GO TO 10
GO TO 30
3 IF(CC.LT.1.0/R) GO TO 5
IF(Q .GE.0.0) GO TO 10
IF(Q .LE. QC) GO TO 10
IF(Q .GE. Q0) GO TO 30
GO TO 20
5 IF(Q .GE. QC) GO TO 20
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10

20

30

100

110

IF(Q .GE.0.0) GO TO 10
IF(Q .LE. Q0) GO TO 20
GO TO 30

PROJECTION ON ELLIPSE 1

D4=D1®D1+((R-1.0)*SRTJ/XN ) 202
BS=XIO*(-D3+SQRT(D3*D3-D4*®(D5+(2.0-R)/R))) /DA
LOST=1

GO TO 100

PROJECTION ON HYPERBOLA

D6=SRTJ®#{1.0/R+A/XN)/XN

D7=D3+D6

D8=zD1#D1-(SRTJ /XN )82
BS=-0,.5%X10%(DS-2. O®A/R/XN )/D7

IF(D8.EQ.C.0) GO TO 100
BS=XI0%(-D7+SQRT(D7eD7-D8%®(D5-2. 0%A/R/XN)))/D8
LOST=2

GO TO 100

PROJECTION ON ELLIPSE 2

T=PROP(11)

FOP=XN/SQRT(1.0+YS##2)
XJO=A®(1.0+YS-SQRT(1.0+YS##2))/YS
BT=T#*(XJO-T®*FOP)/(XJO-2. 0*TSFOP)
RO=(BT-T)/FOP/XJO

PSI=1.0/(R®*(ET-T))

D9=T-BT+CC

D10=D1#D9

D11=D18D1+RO®SRTJESRTJ
BS=XI0®*(-D10+SQRT(D10#D10-D11#(D9*D9-BT*BT))) /D11
LOST=3

XIBAR=BS#(XI-XIO®CC )+XI0®CC
IF(XIBAR.EQ.0.0) XIBAR=1,0E-20
TH=BS#SRTJ/XIBAR

X=TH/XN

DU=XI0

IF(XIO.LT.PROP(7)) DU=PROP(7)

DUS=12. 0#VOID/(PROP(1)-PROP(2) )#XI0®828Dy
G0 TO (110,200,300),LOST

NORMAL CONSOLIDATION ZONE

PSI=YS/(R-1.0)8%2

DU=R®(1.0+X*X+R*(R-2.0)0X%X)
GAN=(1.0+(R-1.0)®SQRT (1, O+R*(R-2,0)9X#X))/DU
DF1=2.0%X10% (GAM~1.0/R)®pPSI

DFJJ=2. 0#XIO®GAM® ((R-1.0)/XN ) ®#20PSI®BS/XIBAR
DFJ=DFJJ¥SRTJ
XKS=zDUS®(GAM~-1.0/R)*(GAM+R-2.0)*PSI¢PSI/R
DFAL=PSI®6.0%(R~1.0)®THeGAM®XIO®(((R-1.0)/(R¥®20
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1 {2.0/R-GAN-1.0))+1,0)®DRAL-(R-1.0)SDNAL/XN ) /XNE#2

RETURN
c
c OVERCONSOLIDATED ZONE
c

200 DU=1.0-X%(1.0+YS)
GAM=~(DU+SQRT( (X~YS~1.0)##24 (X8X~-1,0)%YS®*YS) )/(R®*(X8X-1.0))
DFI=2.0%XI0® (GAM-1.0/R)
DFJ=2.0%XI0®( (1.0+YS)/R-X%GAM) /XN
XKS=DUS* (GAM-1.0/R)® (DU®GAM+2. 0®A/XN) /R

S DFJJ=DFJ/SRTJ
- DFAL=6.0%XIO® (DNAL® (TH®GAM/XN-1.0/R+A/ (R®TH®GAM )-2. O¥A/XN) /
- 1 XN®824DRAL®(1.0/TH-1.0/XN+A/{XNO®THYGAM))/R®#2+DAAL®
@. 2 1.0/XN-1.0/(TH*GAM®R) ) /XN)

RETURN

c
c TENSION ZORE
c

300 GAM=(-T+BT-SQRT (BT#*BT-RO*THSTH®T#(T-2,0%BT)))/(1.0+RO%THETH)
DFI=2.0%PSI®XIO®(GAM+T-BT)
DFJJ=2.0%PSI®XTO®GAMPRO®BS /XIBAR
DFJ=DFJJ®SRTJ
XKS=DUS®PSI®*PSI®(GAM+T-BT)*(GAM® (BT-T)+T%(2.0*BT-T))
DYSAL=YS® (DRAL /R+DAAL/A=DNAL/XN)
DFOPAL=FOP*® (DNAL/XN-YS#DYSAL/(1.0+YS#YS))
DJOAL=XJO® (DAAL/A~DYSAL/YS)+A®(1.0/YS~FOP/XN )®DYSAL
DBTAL=((T~BT )®DJOAL-(T~2. 0¢BT ) #T#DFOPAL )/ (XJO-2. O*T#FOP)
DROAL=DBTAL/FOP/XJO~RO® (DFOPAL /FOP+DJOAL/XJO )
DFAL=3.0®PSI®XIO®TH®GAM® (DROAL+2. 0*RO®DBTAL/ (T+GAM-2. 0%*BT))
RETURN
END

C" SRGGCRBEERACSGRGEACGRUGEGEAGAREANRERRANCGANTRSABRREARRANRGN00L

SUBROUTINE ACCEL(X2,X1,X,C,XL)

c
c THIS SUBROUTINE CALCULATES THE AITKENS CONVERGENCE FACTOR
c

-_'_. c=,oo
L& DU=-X2+2.08X1-X

kR C=(X1-X2)/DU
IF(C .GT. XL)C=XL
b IF(C .LT. 1.0/XL)C=1.0/XL
- RETURN
}i v END

IORAEARAAERT
‘..... PERCIR
et LN

._

.
&

-

. TV
vl P P W
AP

L 1

e

1y

114

-

LR
)

Ry b St el g oy T T T, - L ™ g




FILMED
3-83

DTIC




