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1. INTRODUCTION

A preliminary task of the project involved the continued evaluation of certain

*2 features of the model and the reporting of any additional theoretical developments.

Under other sponsorship, Professor Dafalias continued to study the predictive

capabilities of the model for cyclic soil behavior. Preliminary results (Dafalias et al

"* 1982) indicate the need for a mechanism to model the degradation of properties observed

under long-term cyclic loading conditions. A possible means for modeling this

phenomenon was developed and some preliminary testing was conducted. However, a

complete validation of this modeling mechanism, and the determination of its usefulness,

will require additional study.

Continued comparisons of model predictions and experimental results indicate

. the desirability of using a projection point other than the origin for the mapping rule.

Accordingly, this feature has been included in the current version of the model. The

interaction of this feature with other characteristics of the model is discussed in detail

by DeNatale (1982).

Numerical evaluations of the model made during the course of the current study

revealed some minor numerical problems associated with the first solution step away

from a pure hydrostatic stress state for a normally consolidated soil. Professor Dafalias

has proposed a slight modification of the model to remedy this problem. When this

suggested change has been fully evaluated, and assuming that it does rectify the

*. problem, it will be incorporated into the model.

The development of a computer aided, automated calibration scheme has been

completed and used to perform a very extensive study of the importance and roles of

the several material parameters which describe the model. A brief description of this

study is given in the following section, and volume 11 of this report contains a user's

manual and a listing for the calibration program. Before the end of the year, the
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complete results of the study will be available in DeNatale's thesis (l982, a copy will

be forwarded to NCEL at that time.

The main thrust of the current work has been the study of various schemes for

numerically implementing the model in finite element analyses and the study of the

numerical characteristics of the model. Particular attention was paid to the relative

ease of implementation, and the economy and robustness of the competing schemes.

In previous work (Herrmann et al 1931), the rate equations for the bounding surface

model were cast in incremental form, and a subroutine was prepared to evaluate them.

*-." In Section 3, a very brief review of this step will be given, prior to the reporting on

the main component of the research.

The final phase of the overall project will involve the verification of the

predictive capabilities of finite element analyses which utilize the model. With this

end in mind, a preliminary literature survey was conducted to determine the availability

of laboratory and field experimental results. The findings of this search are given in

Appendix A.

2. THE AUTOMATED CALIBRATION CODE

2.1 Purpose and Capabilities

In its most general form, the bounding surface model requires the determination

of 19 separate constitutive parameters, including 2 initial state properties, 5 traditional

material constants, whose values may be directly obtained from simple, easy to perform

laboratory experiments, and 12 model constants, which must be indirectly established

* through a trial and error curve fitting process using the results of undrained triaxial

tests. A general summary of the various properties is presented by Herrmann et al

(1980), and a more detailed description of both the qualitative and quantitative influence

*l of each parameter is provided by DeNatale (1982).

This breakdown of model constants is common to most, if not al, of the soil

model formulations introduced in recent years. Determination of the directly

* 3



measureable or "fixed" parameters is straightforward and readily accomplished.

Determination of the remaining "free" parameters, however, can make the calibration

. procedure prohibitively difficult. Rather than being measured directly from a particular

portion of a specific laboratory test, these so-called "free" parameters must be

determined by trial and error, with the objective being to obtain the best overall fit

to a given experimental relation or set of observed responses. As a result, the overall

accuracy and efficiency of the calibration process can be strongly dependent on both

the subjectivity of the user as well as his expertise with the particular material model.

In formulations such as the bounding surface model, which employ a small number

of material parameters whose roles in the constitutive formulation are each well

defined, the manual calibration process becomes systematic and straightforward.

However, reliance on user expertise is still high, since all manual curve fitting

procedures, by their very nature, require both judgement (in deciding just what

constitutes the "best" overall fit) and familarity (in deciding how much each parameter's

value must be changed to improve a given prediction).

In order to simplify the model calibration process, a computer aided calibration

procedure has been developed and tested. Since the calibration of a material model

involves minimizing the error, or residual, between the observed and predicted soil

response, the process can quite naturally be viewed as an optimization problem. Hence,

the computer code employs a quasi-Newton optimization strategy to locate that set

of parameter values which minimizes the discrepancy between the model predictions

and the experimental observations included in the calibration data base. The code

permits any number of tests, relations and/or individual observations to be included in

the calibration data base. Different weights may be assigned to specific components

of the data base it it is felt that certain tests, relations or observations are more

reliable or representative than others, or if it is necessary to have the final model

predictions fit some data more closely than others. Because this new computer aided



procedure greatly reduces the dependence of calibration success on user expertise, it

significantly increases the accessibility and usefulness of sophisticated material models

to the general engineering community. Although the code was developed specifically

for use with the bounding surface plasticity model, it can be readily adapted to otper

constitutive formulations.

In addition to providing a means for automatically calibrating the bounding

surface model, the code can also be used to generate a set of model predictions for

homogeneous test conditions. The code may thus be used in those applications where

the driving program EVAL and subroutine CLAY would formerly have been employed,

Herrmann et al (1980). A comprehensive discussion of the new code, including a

comparison of the effectiveness of the manual and automated calibration procedures,

is presented by DeNatale (1982).

2.2 The Calibraltion Data Base

The ultimate goal of the calibration process is to identify that set of parameter

values which enables the theoretical model to most closely simulate the observed

material response. This goal is ordinarily accomplished by fitting the model to a

representative set of experimentally observed stress-strain relations or "calibration data

base". Ideally, this calibration data base should be complete and diverse enough that

all important aspects of the material's response are included, and all necessary

constitutive parameters may be uniquely established.

In its most general form, the bounding surface formulation is a fully three-

* dimensional stress-strain model. With a single set of parameter values the model may

be applied to soil stress states at all overconsolidation ratios (OCR's), in either

compression or extension, under both drained and undrained conditions, and for both

*" monotonic and cyclic loading. Hence, to establish the optimal values of the necessary

constitutive parameters, the calibration data base should ideally contain observations

from the following seven standard laboratory tests:
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1) an isotropic (or Ko) consolidation or drained compression test with

both loading and unloading; and,

2-7) undrained triaxial compression and extension tests on specimens in

the normally (OCR = 1), lightly (I <OCR < 2.5) and heavily (OCR> 4)

overconsolidated ranges.

"K The results of the consolidation test are required to establish the slopes of the isotropic

consolidation and swell/recompression curves (In e - In p' space) X and r. These two

parameters are traditional soil properties and would normally be assigned values

immediately, prior to using the automated calibration procedure. The results of the

six undrained triaxial experiments are required to determine the 12 model constants

cited in section 2.1, and would thus provide the data needed to direct the automated

calibration procedure.

The triaxial test results should ideally be represented in terms of the observed

q vs p', q vs c1 and u vs e, relations. Naturally, If a less general form of the bounding

surface model is acceptable, the number of constitutive parameters involved and the

number of laboratory experiments required can be drastically reduced. For example,

if the model is only to be applied to normally consolidated soils loaded in compression,

the number of required constitutive parameters drops from 19 to 7, and only the

isotropic conaolidation and a single triaxial test are needed for model calibration.

Although the above data base Is recommended, the bounding surface model could

also be calibrated using other types of data. For example, drained rather than undrained

tests could be employed. However, undrained tests are preferable, since good initial

estimates of many of the model parameters can be made by examining the experimentally

observed undrained stress paths.

There is also some evidence that the calibration data base need not necessarily

Include data from all three overconsolidation regions (see DeNatale 1982). That Is, it

may be sufficient to include only tests from ie normal and heavy ranges, or perhaps

6



even the heavy range alone. The data which supports this poss:bility is not, however,

conclusive, and therefore testing at all three regions is still recommended.

In addition, the experimental observations need not necessarily include all three

relations q vs p', q vs el and u vs c1. Of the four undrained response parameters q,

p', u and e, only three are independent. In practice, p' is never actually measured,

but rather is computed from the relation:

"" 3 (03 - u) + q

3

Hence, any two of the three relations cited above will completely define the soil

response. The use of q vs p' or q vs r1 data only is insufficient, since each of these

relations is insensitive to certain of the constitutive parameters. There is some

evidence that the use of u vs e data alone may be sufficient (see DeNatale 1982).

However, the use of all three response relations appears to inrease the rapidity with

... which the optimization algorithm converges to the minimum. Presumably, the inclusion

.- of redundant data reinforces the correct search direction. Since the cost of an

" . automatic calibration run is only marginally affected by the numbers of response

.ations included in the calibration data base, it is recommended that all three of

the relations cited above be used.

Finally, it may be possible to use other than triaxial tests to acquire the

necessary experimental information. Although the conventional triaxial apparatus is

the most common and versatile laboratory device, the simple shear apparatus could

also, for example, be used. In general, the soils observed stress-strain characteristics

e will be to some extent dependent on the testing device which is used. Thus, in practial

problems, the laboratory device used to generate the calibration data base should

simulate, as closely as possible, the loading conditions for which the bounding surface

predictions will eventually be generated.

7



2.3 Practical Considerations

The goal of the calibratit. procedure is to identify that set of parameter values

;7-' which minimizes the error between the model predictions and the experimental

observations included in the calibration data base. The automated optimization code

thus seeks to locate the objective function's global minimum. Unfortunately, there is

no guarantee that the algorithm will always succeed. The quasi-Newton strategy

employed by the model calibration code, like most, if not all, practical optimization

algorithms, is designed only to locate local minima in the vicinity of the initial

estimates. Hence, the probability that the true global minimum will be found is

directly related to the degree of unimodality exhibited by the objective function and

the accuracy of the initial guess.

Preliminary research by DeNatale (1982) indicates that the use of the "absolute

- Euclidean" measure of error leads to a more unimodal, and thus desireable, objective

function. A procedure for acquiring improved starting estimates has also been developed

by DeNatale (1982). Through actual testing with a number of different soils, this

strategy has been found to produce starting estimates which enable the automated

calibration code to consistently locate the global minimum. In practice, however, the

only way to ensure that the global minimum has been found is to conduct the search

from a variety of different starting points. The solution which yields the lowest value

of the objective function may then be regarded as the global minimum.

A second practical consideration concerns the quality of the calibration data

base. The user should ensure that the experimental observations included in the

calibration data base are diverse enough to permit the optimal values of the required

unknown model parameters to be uniquely defined. For example, if the code is used

to identify those model parameters associated with heavily overconsolidated material

4! response, the calibration data base must include observations made on heavily

overconsolidated specimens. It the necessary experimental data is not included, the

9



program will continue to execute, but the final computed "optimal" values of the

undefined parameters will be very close to the initial estimates. The major consequence

of an inadequate or incomplete calibration data base is related to the cost of the

analysis. Certain computational costs increase in proportion to n2 (n = number of

parameters to be determined), and a single gradient evaluation requires either n or 2n

additional objective function evaluations (depending on whether forward or central

differencing formulae are used). Thus, to minimize the cost of a model calibration

run, the user should seek to identify only those parameters whose values can be defined,

given the particular data base. A comprehensive discussion of the influence of each

of the 19 model parameters is provided by DeNatale (1982), and may be referred to

if uncertainly exists.

2.4 Example

To verify the viability of the new computer aided calibration procedure, the

method was applied to a number of representative data bases, both artificial and real.

The outcome of these studies is discussed by DeNatale (1982). Among the real data

bases to which the automated process was applied are the experimental results on

Kaolin reported by 3afroudi (1982).

The Bounding Surface model was calibrated on the basis of conventional undrained

triaxial compression and extension tests on samples at overconsolidation ratios of

OCR = 1, 2 and 6. With the necessary constitutive parameters thus having been fixed

at their optimal values, predictions were then generated for a variety of additional

undrained, drained, hollow cylinder and cyclic tests.

The results obtained with the automated procedure are compared to those of

the manual solution, as reported by Jafroudi (1982) and Herrmann et al (1982), in

Table I and Figures I through 6. As may be observed in Table 1, the optimal values

of the model parameters as established through the automated and manual procedure

are, as a group, distinctly different. For the given set of options specified in Table

!1 9



1, the automated solution was better than the hand solution, in the sense of having a

lower objective function value. The relative merits of the two solutions may perhaps

most clearly be seen by comparing the associated calibration curves shown in Figures

I through 6. On the whole, the automated curves appear to more closely match the

experimental observations. A point by point comparison of the two solutions is

" essentially impossible, since in performing a manual calibration, different subjective

weights are implicity assigned to the various components of the data base which cannot

be precisely identified.

2.5 Cost

The automated calibration code has been written in FORTRAN and implemented

• . or both an LSI-11/23 minicomputer as well as a VAX-1I/780 super-minicomputer. The

cost of a given analysis is controlled primarily by the number of distinct experimental

tests included in the calibration data base and the number of constitutive parameters

whose optimal values are being sought. A typical computer calibration, such as the

11-dimensional problem reported herein for the data of 3afroudi (1982), requires from

400-600 objective function evaluations, or about 60-90 minutes of VAX CPU time, at

a cost of approximately $50.00-$75.00. This cost is relatively low when compared to

the cost of the experimental program needed to establish the calibration data base,

and in light of the resulting economy of finite element analyses based on the model.

Calibration, of course, need only be done once for a given soil, regardless of the

number and variety of subsequent finite element analyses which utilize the model.

3. NUMERICAL IMPLEMENTATION

3.1 Incrementalization Of Rate Eqamtions

Using tensor notation, the basic rate equations for the bounding surface piasticity

model can be written in the form (repeated indices are summed from 1 + 3 and free

indices take on values of 1, 2 or 3.)

10



i= D. j k (U1 )

The effective stress components are denoted by a and the strain components by ij"

In general, DiLjk is a function of both ai and eii and one or more internal variables

S"qi" The specific form of DijkL for the bounding surface model for cohesive soils is

given by Herrmann et al (1980).

For numerical analysis purposes, it is more convenient to express the relationship

in matrix form; i.e.,

• T
where ( T ] is the matrix transpose)

fl {jT: = Cx, Cyo °z, Txy, Txz, Ty-)
I{¢T= (E 9y' Cz' Yxy' Yxz' Yyz )  (3)

- {eT(,. 3

The tensor components of shear strain e are one-half of the engineering

components yij" The symmetric 6x6 [D matrix is expressed in terms of the components

of the 3x3x3x3 Dijkt tensor by using the following six sets of corresponding indices

(1;1,l) (2;2,2), (3;3,3), (4;1,2), (5;1,3) and (6;2,3) where the first number is the row

(column) number in the matrix and the second and third numbers are the first (last)

two indices for the tensor.

To be able to use eq. (2) in an incremental solution procedure, it must be

* expressed in an incremental form. Consider the nth step of an incremental analysis;

i.e., the solution has been found at n-1, and it is desired to calculate the incremental

change that will give the solution at n. Because of the nonlinear behavior, iteration

* is required to establish the incremental change. In the k-Ith iteration of this process,

the estimates of the stress and strain states at n are given by

{ln,k-I :{l n.1 •aOn,k.1 ()

{eln,k-I = {£}n-I + {hen,k-I (.5)i11
,.S



" . Even though rate independent behavior is being considered, it is convenient to

think in terms of the time histories of the quantities Involved. Integrating eq. (2)

from time tn I to t, and using the trapezoidal formula to approximate the right hand

side, gives

'- -' Aan,k I DN~kI{c (6)

[Dn,k-I = n]+ ],k-I (7)

When eq. (6) is used in a finite element analysis it is tacitly assumed that all

the stress and strain components at a particular point in the body, and from point to

point, change proportionally from their values at n-I to their values at n. Thus, in

order that the true solution history be accurately modeled, as required for an inelastic

material, the solution step size must be limited.

Eq. (6) is the desired incremental stress-strain equation for iteration k of

increment n. Because [D] is a function of the stress and strain states at n (due ton
the dependence of Dijkt on oij at cij), it is necessary to base its value on the estimates

of the previous iteration (eqs. (4) and (5)). The resulting value, denoted by [D] n,k-l,
is used in eq. (7). The fact that [D]n-I is also a function of the stress and strain

states at n is less obvious. This dependence arises because of the difference in material

response for loading and unloading conditions and the fact that whether loading or

unloading occurs during a given increment is influence by the values of jj n and {ln.

That is, [Dl is the tangent stiffness at the beginning of the increment, and thisn- I
stiffness differs for loading and unloading conditions, as determined by the values of

JJ Oand {An. The appropriate value of [D]n.1 is written as [D]nl,k1*

At the beginning of the iteration process, initial estimates are required. For

the first iteration ot the first increment, they are usually taken to be zero. For the

initial iterations of succeeding increments, they also can be started at zero; however,

12



it may be desirable to make use of information from the previous increment to obtain

better starting values. The simplest procedure b to use as the Initial estimate tNe

final values found in the previous increment. This practice Is based on the assumption

of relatively uniform behavior from increment to increment. Difficulties can arise

-" when the histories of the applied external agents acting on the structure cause a switch

from loading to unloading in an unstable material response regime, and these external

agents are loads not displacements. For example, consider the one-dimensional response

shown in Figure 7. Consider the case when the state of the soil is at point "A" at

the end of increment n-i. If during Increment n, Acn is specified, two final states

B and B ' are possible. One corresponds to Ac (negative) and the other to Ae' (positive).

Without any additional information, no choice can be made between B and B'. (it is

easily seen that for specified stress Increments In the stable region of behavior and

for specified strain incements anywhere, no such problem exists.) The suggested

solution to this impasse is to assume that the user would not attempt a stress controlled

specification for "loading" conditions (path A-B') in an unstable region and, hence, if

the stress increment is specified, unloading is the proper behavior (path A-B) . For

stress controlled conditions, the selection of the unloading path can be assured if the

starting estimate of strain Is of opposite sign to that calculated in the previous

increment. Thus, the following strategy is recommended. When considering a series

of increments for which the rates of the externally applied loads and displacements

do not change sign " , { ecl and A4 are used as starting estimates for increment
n-I n-I

at
This argument requires that the arrival at A must have been preceeded by strain

controlled steps.
t-t

It is assumed that this condition is sufficient to prevent a general switch from

loading to unloading within the soil mass.

- "13



n. However, as one such solution history segment is ended and a new one begins, the

conditions necessary for the non-uniqueness problem may occur. Hence, for the first

increment of each such series, it is suggested that the starting strain estimate be

'-'- ttaken as some small negative multiple (e.g. -. 01) of the value found in the previous

increment (the stress increment would be used unchanged). The reduction in absolute

magnitude is in deference to the greater stiffness encountered in unloading. Such an

initial estimate will force the solution to select path A * B if the necessary conditions

exist for the above mentioned non-uniqueness to occur. If non-uniqueness is not a

problem, the only effect of this procedure is to slightly slow the convergence process.

It is important to note that, in general, the estimates of the stress and strain

increments used in the calculation of [15ink_ do not in fact satisfy eq. (6). The

consequences of this inconsistency will be discussed later.

A FORTRAN subroutine CLAY for the calculation of the matrix [DinkI has

been written and is documented by Herrmann, et al (1981).

3.2 Calculation Of Pare later Presawe

The bounding surface plasticity theory is expressed in terms of effective stress,

whereas most soil related problems involve the application and calculation of total

stress. The total and effective stresses differ by the pore water pressure u. There

are three possibilities concerning the development of pore water pressure in soil: ideal

drained conditions (where the pore water pressure is identically zero), ideal undrained

conditions (where the soil is completely saturated, and no flow of water occurs), and

* "the more realistic situation where there is a global flow of water and/or the filling

of voids. In many analyses ideal drained or undrained conditions are assumed, even

though they may only be approximately true.

The total stress increment o0tij is the sum of the effective stress increment and

the pore water pressure increment:

. .14
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Li Ii I

tt
j .j 6ij

For drained conditions u=O and a =oij, and eq. (6) is the desired relationship

between the total stress and strain increments.

For undrained conditions there are several possible ways of proceeding. The

traditional approach has been to neglect the (slight) compressibility of the water and

the soil particles, and thus assume incompressible material behavior. However, the

finite element analysis of incompressible materials requires a special formulation

(Herrmann 1%5; Zienkiewicz 1977).

In order to avoid having to deal with separate formulations for drained and

undrained conditions, it is convenient to express them in a common form. This can

be accomplished if the slight compressibility of the soil particles and the pore water

is recognized, Sangrey, et al (1969). (An alternative interpretation is to consider the

undrained soil as incompressible, and to approximately specify the condition by means

of a "penalty functiof, Zienkiewicz, et al 1981, where the associated "penalty number"

corresponds to the bulk modulus r). Thus, the pore water pressure u is written in

terms of the combined bulk modulus r of the soil particles and the pore water, and

the resulting (very small) volume change Ekk i.e., u=r ekk. As r.- the soil becomes

incompressible. Drained conditions are obtained when F=O. For undrained conditions

the value of r is very large compared to the terms in 115] n,k-l" Thus, the soil behaves

as a "nearly incompressible solid" (Herrmann 1965) and care must be exercised to avoid

numerical round-off and excessive constraint problems. Two approaches are commonly

used to achieve this goal. One method is to use the special formulation given by

Herrmann (1%5) for incompressible and nearly incompressible solids, while the other

is to use "reduced" or "selective-reduced" integration (Zienkiewicz 1977) for the element

stiffness matrix; the importance of selecting a proper element type, in order to achieve

acceptable accuracy, is discussed by Nagtegaal, et al (1974) and Zienkiewicz, et al
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(1981). In the latter case, the above expression is used to eliminate u from eq. (8);

OO i.e.,

oi 5 (9)
11 I j 16 ij

Integration over increment n gives:

h =U + r 5.. (10)".- in Jn :kn

Eliminating Aoi. using eq. (6) and returning to matrix notation yields:
ii

nk-t1n,k = t n,k.l{ }n,k (11)

where

[Dtn,k-l = 5 n,k-I + [d) (12)

All components of [d] are zero, except d1 1=d22=d 3 3 = r.

Returning to the more realistic situation where water movement takes place,

two cases can be distinguished. The first occurs when there is no global movement

of water (either the time scale is too short for significant flow to occur, or the soil

is stressed homogeneously, thus producing no pressure gradients) in a partially saturated

soil. This condition can be modeled by using a variable r which is a function of the

current saturation state.

When there is actual global flow of water, It is necessary to perform a coupled

flow-stress analysis (Sandhu and Wilson 1969). The details of such an analysis are

beyond the scope of this study. It should be noted that the bounding surface plasticity

* model is valid for such situations; however, the pore water pressure can not simply

be calculated from the expression rekk. Eq. (6) is, however, still valid for relating

the increments of effective stress and strain.
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3.3 General Discussion Of Finite Element Implementation Of Plasticity Models

The desired characteristics of any numerical scheme are ease of implementation,

computational efficiency and robustness of behavior. It is on the bases of these three

characteristics that the competing methods will be judged. There is of course a

considerable body of literature available on the analysis of elasto-plastic bodies. Only

those items which directly relate to this work will be discussed here; for a more

-general discussion the reader is referred to Owen and Hinton (1980) and Nagtegaal

et al (1974).

In general, the response of an elasto-plastic body is highly nonlinear and path

- .dependent. Thus, a general numerical analysis procedure for elasto-plasticity problems

requires an incrementa: solution. Unless the increments are made excessively small,

iteration must be conducted in each increment to account for the nonlinear behavior.

The two most commonly employed classes of iterative methods are successive

approximation (substitution) and Newton like procedures. The method of successive

-" approximation can be cast in a variety of forms and thus is not a unique operation

(see lsaacson and Keller 1966). The alternative forms range from extremely simple,

but very slowly convergent, procedures, to more complicated methods. The Newton-

Raphson method and numerous approximations to it constitute the class of "Newton

like" methods. The many available solution methods obviously could not all be evaluated

in this study. The selection of the methods that are compared in this study is discussed

in the next section.

3.4 Selection Of Methods For Comparison

While the method of successive approximation is extremely easy to implement,

it often suffers from poor convergence characteristics. For nonlinear elasticity

problems, where the entire solution history can be accounted for in one step, there

* appears to be little question, unless the nonlinearities are very weak, that a Newton

. like method is to be preferred. However, for inelasticity problems where relatively

*17
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* small steps are required to account for the path dependence of the solution, the choice

is not so clear. The question is further clouded by the fact that, for a given solution

step, and at a given point in an elasto-plastic body, the stiffness may be discontinuous

due to the onset of yielding or to the progression from (local) loading to unloading

conditions. The latter case is of concern in highly statically indeterminate situations

where, at a given point in space and time, It is not known a priori whether or not

the material will experience loading or unloading. This stiffness discontinuity may

make convergence of Newton like method slower than for problems where the 3acobian

is strictly continuous.

In order to keep the scope of the study within practical bounds, certain

acceptability criteria are stated and used to limit the number of methods to be

compared. Two of the key reasons for the computational efficiency of the finite

element method, as applied to structural problems, are the symmetry and banded nature

of the simultaneous equations. Hence, for this study, it is required that the solution

methods preserve these characteristics.

It is on the basis of maintaining symmetry that Owen and Hinton (1980) rule

out the general form of the Newton-Raphson method, and instead advocate the use of

an approximate form; i.e. the "tangent stiffness" method.

Currently there is considerable interest in quasi-Newton methods for nonlinear

4structural problems (see Geradin et al 1981). The central goal of quasi-Newton methods

is to avoid calculating the 3acobian every iteration. Instead, simple updating formulas

are used to approximate the 3acobian (or its inverse) in terms of the previous

* approximation and simple vector quantities (the previous solution and current residual).

The updates can be made directly to the 3acobian or to its inverse; in the first case,

a set of simultaneous equations must be solved each Iteration, while in the second,

* only a matrix multiplication is required. In the former case, because of the continued

need of solving a set of simultaneous equations at each Iteration, and because the cost1i18
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of using the pdating formula is as great as the cost of calculating the approximate
3acobian for the other methods considered in this study, there would seem to be little

or no advantage offered by the method (although In optimizatlon and nonlinear elasticity

problems, other important advantages make it a viable method). Thus, only those

quasi-Newton methods which update the inverse would appear to be of interest in

elasto-plasticity problems. Inverse updating methods, however, result in dealing with

a full matrix, thus destroying the advantages of the banded characteristic of finite

element equations. The ideal situation would be an updating formula which can be

applied directly to the reduced (upper triangular form) Jacobian and which would not

destroy its banded nature nor its original symmetry (a characteristic required for the

efficient reduction, each iteration, of the load vector). The available quasi-Newton

schemes of this type do not satisfy the ease of implementation requirement (see the

discussions by Geradin et al 1980, 1981, Mathies and Strang 1979 and Schubert (1970).

Thus, a simpler form is considered herein. Finally it should be noted that because of

the lack of a natural objective function, the line search criterion of the quasi-Newton

methods, as applied to optimization (see Fletcher 1980) and nonlinear elasticity, is lost

for inelasticity problems. While alternative criteria have been proposed for elasto-

plasticity problems, they appear to lack the simplicity and robustness of the minimization

of an objective function.

The chief appeal of inverse quasi-Newton methods is the elimination of the

necessity of reducing the 3acobian every iteration. This same objective can be achieved

by using a modified iteration method which only occasionally updates the 3acobian.

At other times the effects of the changes in the Jacobian are estimated and transferred

to the right-hand side of the equations. This procedure is highly recommended by

Owen and Hinton (1980) and is Included in this evaluation.

Successive approximation methods are popular because of their simplicity of

Implementation. Thus one form of successive approximation is studied. In order to
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demonstrate its relation to the Newton-Raphson method It is derived as an alternative

to the tangent stiffness method.

In order to Improve the rate (and also to enlarge the domain) of convergence

of the iteration process, acceleration schemes are often used. These schemes usually

employ some type of extrapolation in order to obtain a better solution estimate than

given directly by the iteration process (see Isaacson and Keller 1966). The extrapolation

.can usually be epxressed in terms of an acceleration (iteration, relaxation) factor. The

simplest method employs a constant factor selected by the user on the basis of past

experience. Because, for inelasticity analyses, the optimum factor can vary widely

from problem to problem, and even from Increment to increment, some type of strategy

for automatically selecting it is desirable. For one degree of freedom problems, the

Aitken's V2 method (see lsaacson and Keller 1%6) is simple to apply and has proven

to be quite effective. Two methods for adapting it to multi-degree of freedom problems

are considered herein.

The final question that is addressed is how best to handle the inconsistency

(previously mentioned) between the estimates { a in,k-l and I a 1 n,k-l used to calculate

[Dn k- I and eq. (6); three schemes are compared.

3.5 Theory

3.5.1 Solution Methods

In the following discussion it will be assumed that the reader is familiar with

the standard steps involved in formulating a finite element analysis.

For a given solution increment eq. (6) is used in the formulation of element

stiffness matrices, which are in turn combined to form the system stiffness matrix

The incremental load vector is denoted by {AF)n . Equilibrium leads to the

following system of simultaneous equations for the incremental displacements { AU)n

""-1 X-n1Au~n = }n (13)
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Because [lJn is a function of JA j n and I 1l. the above equations are nonlinear

and require iteration to solve. The Newton-Raphson method gives for iteration k:

{AtUln,k = {&Uln,k 1  
31- n,k-1 1't4Ink-I (14)

Where the residual vector is:

n,k-1= 19n,k-l {&Un,k-l - n(1)

The components of the Jacobian [3 n,k-1 are found by taking derivatives of eq. (15)

with respect to the components of f Au}n, in index notation:

SOt -F"" ' Auj " +6 (16)

3n,k-1 n-k- I nk-1(6

or

1j. []n,k_1  tn,k.- I [1 n,k-I

Owen and Hinton (1980) state that in general 1K' is not symmetric. In addition, it

is relatively difficult and expensive to compute. Based on the classical graphical

interpretation of the Newton-Raphson method, Owen and Hinton (1980) suggest that,

instead of using eq. (17), the Jacobian be approximated by the tangent stiffness matrix

at "n". This requires using only the [D]n,k.I matrices (see paragraph following eq.

(7)) for the formation of the system tangent stiffness matrix, call the result [KIn,k.1I

The matrix [K]n,k-I is still needed for the calculation of the residual vector eq. (15).

Thus the "tangent stiffness method" consists of iteration usirg eqs. (14) and (15) with

[.n,k- Q,k (18)
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As an alternative, eq. (17) can be approximated by neglecting the last term, i.e.

>o, Substituting eqs. (15) and (19) into eq. (14) gives:

n,k= {Uin,k-I " 1 n,k- I {ln,k-1 {AUn,k-1 " {hF1n)
or

{biUn,k = glnk-I / F1 n (20)

or

ln,k-1 {'Uln,k = n 21)

Inspecting eq. (21) it is seen that this second approximation to the Newton-Raphson

method is one of the possible forms of the classical method of successive approximations,

and shall be referred to by that name in the remainder of the report. It can be

applied by either using eq. (21) directly or using eqs. (14), (15), and (19). The use of

equations (14), (15) and (19) would be expected to be somewhat less susceptible to

round-off error; however, no significant differences were detected in the examples

analyzed in this study.

The calculation of the residual vector, eq. (15), requires some special attention.

One option is, at the element level, to use [16n,k1 to calculate an element stiffness

4 . matrix, to then multiply this matrix by the k-I estimate of the displacements for the

nodes defining the element, and to add it to the negative of the element load matrix

(i.e., a direct evaluation of eq. (15) at the element level). The resulting element

When convergence occurs, eq. (13) is exactly satisfied. Thus, neither this

approximation, nor the one leading to the tangent stiffness method, has any effect

on the final accuracy of the solution.

22
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residual vectors are then combined in the usual way to give the system residual vector.

While this operation requires little additional computational effort for the method of

successive approximations, it does for the tangent stiffness method. The cause of this

additional work is the need to calculate two element stiffness matricest based upon

the two quantities ID]n,k- and [11n,kl The first element stiffness matrix is needed

in the calculation of the system tangent stiffness matrix, and the second in the

calculation of the residual vector. An alternative procedure for the calculation of the

residual vector avoids this additional effort; however, it places certain restrictions on

the order of the integration used in establishing the element matrices. In this second

approach, an initial stress vector is calculated:

{Aooln,k-l = Dln,k-I {0n,k-l (22)

The following incremental stress-strain equation is then used in the calculation of the

element stiffness and load matrices:

I&O n, k = [Dln,k-l {AI}n,k + {'Co n,k-l (23)

Assuming that all nurerical integrations are done with the same accuracy, it

is easy to show that the use of eq. (23) yields element matrices that, when combined

at the system level, give the desired tangent stiffness matrix and the residual force

vector. In this operation care must be taken to ensure that all numerical integrations

are of the same order. For example, for a four node element, if four point integration

is used in calculating the element matrices but the incremental properties (eq. (23))

are calculated only at the element center (i.e., assuned constant over the element),

Geometric quantities such as the shape function derivates need only be calculated

ontce.
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an inconsistencyt exists and convergence is drastically affected. Thus when using this

scheme the stresses, strains and properties must be evaluated at the Integration points.

However, for a four node element it has been shown (see Herrmann 1972) that the

stress calculations are most accurate at the element center, not at the integration

points. For this reason, and because the four node element is poorly behaved for

undrained conditions, the use of an eight or nine node element with stresses and

properties calculated at each of the four quadrature points is recommended for future

work.

3.5.2. Reduction Of The Number Of Equation Triangularizations

The use of the "modified ' Newton method (referred to as the "initial stiffness"

method by Owen and Hinton 1980) is the classical means for reducing the number of

triangularizations of the left-hand side of the simultaneous equations. In this procedure,

the stiffness matrix is updated only occasionally. Because of the drastic difference

in stiffness, in elasto-plasticity problems (which is encountered in a progression from

elastic behavior to yielding and from loading to unloading) it is desirable to update at

least once each increment. For this study, the stiffness matrix is updated in the

second iteration of each increment. The second iteration was chosen because it often

takes at least one iteration to establish the loading-unloading characteristics for the

increment. In addition, it is updated in the first iteration of the first increment of

each new loading segment (a loading segment generally consists of many increments).

This update is done because there is often a switch from loading to unloading at the

beginning of a new loading segment. Finally, the stiffness matrix is updated every

IRPET iteration, where IRPET is specified by the user. The use of the "modified

Newton" procedure in conjunction with the method of successive approximations,

t That is, the residual node point forces are not accurately made to be zero.
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implemented by means of eq. (21) instead of eq. (14), requires that the difference

between the present stiffness matrix and the last stiffness matrix to be triangularized,

be accounited for. With this end in mind, eq. (21) is written in the form:

19R06l{Ink = I~hPn - V nk-1 - 190L) &U1 n,k (24)

Now if the quantity { &Uln,k on the right-hand side is estimated by means of I AUn,k-l

(as convergence occurs no approximation is introduced):

[RIL{&Ujn,k = { nF},k-i (25)

where

"-= { n - 1[Kfnn,k-l " ! K13 I&iUnk- (26)

the last term on the right-hand side of eq. (26) can be easily evaluated by forming a

pseudo initial stress vector:

n-= [Dn,k-. - [DILl {&1 n,k-! (27)

This pseudo initial stress vector contributes to the element load matrix in the usual

way. Because this quantity approaches zero as convergence occurs, it is not necessary

to evaluate the stress-strain properties at the quadrature points as is the case in
.41

calculating the residual vector for the tangent stiffness method (see previous

discussion). t The inclusion of a similar term for the tangent stiffness method and for

successive approximations, evaluated by means of eq. (14), appears not to be standard

practice, and was not considered in this study.

Although the evaluation of the properties at the quadrature points is not necessary

to assure convergence, it might improve the rate of convergence; this possibility

was not explored in the study.
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Currently, one of the most popular means for reducing the number of

triangularizations is to use a quasi-Newton update of the triangularized or Inverted

stiffness (approximate 3acobian) matrix. As noted previously, the only quasi-Newton

methods considered in this study are those that directly update the triangularized form

of the matrix and do not disturb its banded nature. In order to satisfy the requirement

of ease of implementation, a simpler quasi-Newton update formula than those available

in the literature was sought. Because it is generaly agreed that the BFGS update

formula is the best available (see Fletcher 190), a formula of similar form was desired.

Denoting the triangularized form of the tangent stiffness matrix as IKI *, the update

for the "' iteration expressed in index form is:

j
K. =KIP + ai  - bi  E K*.

" '1 k I1 k-l I L- (28)

wihere

a- 1= (29)

It= (30)
E f6 it

FM~ mLi L-

I = I + bandwidth (31)
The vector { A}* is the result of a block formulation of the residual vector [41nIk-!

and its reduction up to and including row "i". The results of the previous iteration

are denoted by {6} = {A un,k.l - fAu}n,k-2" When eqs. (29) and (30) are substituted

into eq. (28) it is easily seen that the update formula has a form similar to the BFGS

formula (for the 3acobian not its inverse). It is also easy to verify that the update

formula satisfies the "quasi-Newton condition" (see Geradin et al 1981). The
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implementation of eq. (28) is straightforward, with the updating of K* proceeding

simultaneously with the reduction of the current residual vector.

3.5.3 Convergence Acceleration

The acceleration of convergence and enlargement of the radius of convergence

of an iterative scheme by means of some type of extrapolation procedure can often

be very cost effective. The most convenient way of expressing such an acceleration

is in terms of a convergence (iteration, relaxation) factor; i.e., an improved estimate

of the solution vector I Aul*, for iteration k, is expressed in terms of the estimate

obtained from the solution procedure f Au}k, the previous estimate { AU}k and a

convergence factor C. For component "i" this extrapolation is expressed in the form:

h. = + C. [Au. - Au. ] (32)A k  i k- I k  i k  ik- 1

Written in this form, a value of C>l leads to "over-relaxation," C<1 to "under-

relaxation" and C=I to no extrapolation. The simplest approach is to use a constant

acceleration factor C. = C0 , for all iterations and all components of the solution

vector, and to require the user to supply the value based on past experience. A more

* successful approach is to use some rational criterion to calculate near optimum values

of the factor (see Isaacson and Keller, 1%6). For single degree of freedom problems

(unknown x), the most popular procedure is the Aitken's V2 method, which yields

extrapolated estimates for odd iterations beginning with the 3rd, i.e.,

( k Xk-1 1= 9 p . .( 3x; xk  x k - l +xl - (33)

When this equation is expressed in the form of eq. (32) it gives a value for the

convergence factor of:
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1.0 k=1,2,4,6...

{k 'UI 'k-2 k=37,... (34)
" k "-2  2 , k '  k

in order to avoid possible numerical problems when one is either far away from or

very near to the solution, it Is desirable to place limits on the value calculated by

eq. (34). For the purpose of this study, such limits are expressed in the form

where CL> I and is user supplied.

Eq. (34) applies to a single variable; the question is how to extend it to a

multi-degree of freedom problem. Two schemes are proposed. In the first, for a

given iteration, a constant value of Ck is used for all components of { Aulk. T

value of CK is calculated by using the norms (Nk = k AU1kI) of the solution vector
i" k

in eq. (34). This procedure is based on the assumption that the convergence

characteristics of all the components of the vector are similar. In the second procedure,

eq. (34) is applied to each component of { Au} to give a different convergence factor

for each component, for each iteration.

3.5.4 Accounting For The inmistency In The Increnental Stress-Strain Relation

As previously noted, until convergence occurs, the estimates of {Ac~n,k) 1 and

fa { n,k_ used in the calculation of [51n,k-1 do not in fact satisfy eq. (6). Three

methods for handling this inconsistency are explored.

Because in fact the inconsistency disappears as global convergence occurs (i.e.,

as ]n,kl 1n,k 2 the first alternative is to do nothing; i.e., to rely completely

an global iteration.

In the second approach, local iteration is introduced in the calculation of 161

so as to remove the inconsistency (see Herrmann and Taylor 1974). Using &ln,k-l
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and [f I n,k_ is calculated. The values of { AC) n,k- and (1Dln,k. 1 are then

used in conjunction with eq. (6) to calculate a new estimate of stress hi* whichn,k- 1
is in turn used with f Ac) to calculate a new estimate for the incremental propertiesn,k-lI

This process is conttnued until convergence is achieved for { n,k.

Because of the global iteration which also tends to remove the inconsistency, the

* convergence limit on the local iteration is taken to be only 1/10 as restrictive as the

global requirement. The stress estimate is iteratively modified (instead of the strain

estimate) in order to maintain a compatible global displacement field as required by

the admissibility conditions of the finite element procedure. The introduction of local

iteration (for all points where the incremental stress-strain properties are required) of

course substantially increases, in a given iteration, the number of calls to subroutine

CLAY, presumably with a corresponding reduction in the number of global iterations.

In the third approach, the inconsistency was expressed in terms of a pseudo-

residual stress vector, i'e. {°°n'k'l = {%n'k-1 - [ln'k'1 {ACln'k'l which was then

incorporated into the system residual stress vector.

3.6 Finite Element Implementation

Following the instructions given in Herrmann et al (1981), subroutine CLAY was

installed in a standard two-dimensional, four node, nonlinear finite element program

(NTD). The program was extended beyond its original successive approximation

caDability to include the several options outlined in Section 3.5. The program was

used for the numerical study described in the following section. After the completion

of the evaluation, in order to somewhat simplify the code, two of the less robust

features were removed (see discussion in next section). A listing and brief user's

manual for the code are given in Appendix R.

t The actual consequences of modifying the strain estimate were not studied.
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The original NTD code was relatively efficient, uncluttered and well documented.

However, once the several options described above were included, these caracteristics

were lost. The problem is that the features described in Section 3., when taken in

all possible combinations, lead to a total of 72 different solution strategies; hence,

the flow through the program has become rather complex. Thus, while the code given

in the Appendix should be of considerable value in possible future extensions of the

numerical study, it is not recommended for extensive production applications. Rather,

it is recommended that, in a future project, a production code with far fewer options

be developed.

4. NUMERICAL STUDY

4.1 Scope Of Study

The purposes of the project were to compare the effectiveness of various

numerical strategies for implementing, in finite element analyses, the bounding surface

plasticity model for cohesive soils, and to investigate the numerical characteristics of

the model While theoretical considerations can lead to general statements concerning

convergence, etc., many subtle differences can only be determined by numerical

• .experimentation. The theoretical foundations of the methods being investigated are

for the most part well established, and thus this study concentrated on numerical

*experimentation. Three representative problems were selected for study and analyzed

by the several different solution strategies described in the previous section. Results

of the several analyses were compared on the bases of reliability and computation

efficiency.

4.2 Selection Of Representative Problems

The criteria for selecting the problems were that they a) be related to actual

"| geotechnical engineering problems, b) be numerically challenging and c) be simple

*enough that the overall cost of the study would not exceed the available resources.
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The soil properties (model parameters) used in the study were found by applying the

calibration procedure of DeNatale (1982) to the test results reported by Jafroudi (1982)

(see also Herrmann et al 1981); the properties are given in Table 1. The degree of

initial overconsoldation (as a function of depth in the soil mass) was varied among

the several analyses. Convergence of the solution was determined by requiring that:

EIl l u - Au i I
i k k-I < MW (36)

i k

A value of ERLMT = .001 was found to be adequate for most cases.

The first problem, studied in Figure 8, was a simple triaxial test requiring only

one element for modeling. Several hundred analyses were performed. All solution

strategies were used, a number of different loading histories were evaluated and several

different initial overconsolidation ratios were considered. Because of the simplicity

of the problem, only limited conclusions could be drawn from a comparison of the

results.

The second problem consisted of the vertical loading of a strip footing resting

on a clay deposit. The grid used in the analysis is shown in Figure 9. The extent

of the clay deposit was limited in size in order to keep the computer cost of an

individual analysis small. t Analyses were performed for normally, moderately and

. highly overconsolldated soils. For normally and moderately overconsolidated soils, the

model is numerically so well behaved that little distinction could be made between

the several solution strategies. Thus, the bulk of the analyses (18 in number) were

for a highly overconsolidated soil. However, even under these conditions, the problem

An analysis of a footing on a highly overconsolidated soil in which the load-deformation

6- curve was taken beyond the maximum load required from 10-15 increments and cost

on the order of $5-$10.
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was not sufficiently challenging to reveal major differences among the several solution

schemes (with one exception which is discussed In the following section).

The third problem consisted of a highly overconsolidated clay deposit supported

- by a rigid retaining wall that experienced rotation about its base (see Figure 8), thus

leading to a significant reduction in confining pressure adjacent to the wall. This

*problem was found to be more challenging and served to distinguish among the several

solution strategies. A total of 33 different analyses were performed on the problem.

The grid used for the majority of these analyses is shown in Figure 9. The selection

of the grid, the convergence criterion and the solution increment size, required to

achieve accurate results involved performing analyses with both coarser and finer grids,

larger and smaller solution steps and different convergence criteria.

The conclusions drawn from a comparison of the results of the several analyses

of the three representative problems are discussed in the next section.

4.3 Conmrison Of Results

The only definite conclusion that could be drawn from problem #1 was that the

proposal to treat the inconsistency in the incremental stress-strain law by calculation

* of a pseudo-residual stress was entirely unsatisfactory (convergence could not be

*. achieved), and was thus abandoned for the remainder of the study. A postmortem

*, investigation of the proposed method revealed no theoretical justification for its use,

and thus its failure is not surprising.

While the second problem revealed some differences among the several solution

-strategies, on the whole, convergence occurred so quickly that, with one exception, no

* definitive conclusions could be drawn. The one conclusion from the second problem

. In addition, a significant number of incorrect runs were made prior to the detection

of the numerical integration problem for the residual vector described in a previous

section.
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was that the quasi-Newton scheme is not nearly as robust as the modified Newtonr' -

procedure, and at that point in the study it was dropped from further consideration.

* At this stage in the development of quasi-Newton methods, it is concluded that the

several advantages claimed for optimization and nonlinear elasticity problems do not

carry over to plasticity problems, at least as far as the bounding surface model and

the scope of this study are concerned. Other trends noted in the second problem were

more clearly evident in the third example and are discussed in conjunction with that

study.

Among the analyses performed on the third problem, 24 used the same grid

(Figure 8), solution increment size and convergence criterion and thus can be directly

compared. These 24 solutions do not completely exhaust the 32 solution strategies

remaining within the scope of the study after eliminating the two components discussed

in the previous paragraphs (the quasi-Newton scheme and the pseudo-residual stress

representation of the inconsistency in the incremental stress-strain law). it is felt,

however, that these 24 cases sufficiently span the strategy space to be representative

and permit definitive conclusions to be drawn. The characteristics of these analyses

are described in Table 2. In the last column of the table a measure of the cost of

each analysis is given. In the calculation of this measure, the actual cost of the

analysis was slightly modified to account for anticipated future savings due to improved

efficiencies of the equation solver and of subroutine CLAY, and, in addition, the

pre-and post-processing costs are not included. Because of differences in coding

practices, in relative costs of computation and storage for various computers, etc.,

l these figures contain a degree of uncertainty, and thus differences of less than 25%-50%

If consideration is given to the considerable latitude that exists in assigning values

* to CL (eq. (35)), IREPT (eq. (25)), the step size and the ratio of the local to global

convergence criteria it is seen that the actual number of possibilities is really far

greater than 32.
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probably are not significant. The lack of convergence, noted in the table, for several

of the analyses was due in some cases (those with a high computational cost measure)

to the limit set on the maximum number of iterations in a given increment and in

others (those with an indicate low cost measure) to the satisfaction of the convergence

criterion, eq. (36), even though convergence had not occurred. In either case, a lack

of robustness is indicated. In the following paragraphs the conclusions drawn from

comparing the results of the several analyses performed in this study are discussed.

One proposal often made for nonlinear inelasticity problems is to use small

increment sizes to avoid excessive (all) iteration. The results of this study do not

support this suggestion. In Figure 10 the relative costs required to reach a certain

point in the solution history is plotted versus the ratio of the number of steps used,

to the minimum number required to accurately reach the point. This plot clearly

suggests, from a computational efficiency standpoint, that one should use the largest

step size that will give acceptable accuracy. (If the step size is made too large, the

numerical integration error in eq. (6) becomes unacceptable.)

The methods of successive approximations and tangent stiffness exhibit very

similar characteristics with no clear cut difference between them; this conclusion runs

contrary to the suggestion of Owen and Hinton (1980) of the superiority of the tangent

stiffness method. Both methods, if properly supplemented with other components of

the solution strategy, are quite robust, economical and are sufficiently accurate for

solving bounding surface elasto-plasticity problems in geotechnical engineerng. The

method of successive approximations has some slight, but not major advantages, in

ease of implementation.

The use of local iteration considerably improves the reliability of the convergence

criterion and in most cases improves the efficiency of the analysis.
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The consequences of using the modified-Newton scheme and/or an acceleration

factor are somewhat interrelated and hard to separate.t When the modified Newton

scheme is not employed, the use of a variable acceleration factor Is of major benefit

for the method of successive approximations and of lesser value for the tangent stiffness

method. When used in conjunction with the modified Newton scheme, a variable

acceleration factor has some value for the tangent stiffness method, but appears to

offer little advantage for successive approximations. Of the two schemes tested for

*. calculating a variable acceleration factor, the one that differs from component to

component is preferable. The modified Newton method and the calculation of a variable

convergence factor are both very simple operations to implement.

For the grids used in this study, the percentage of the total solution cost spent

in evaluating subroutine CLAY ranged from about 20% to 60%. For the larger grids

needed for production problems, it is anticipated that the costs would be of the order

of 10%-20%.

.. CONCLUSIONS

Based on the comparisons made in this study several conclusions are drawn. To

what extent these conclusions are generally applicable to very different geotechnical

problems and to other plasticity models is unknown.

The bounding surface model for cohesive soils is simple to implement in a

standard, nonlinear finite element analysis using either successive approximations or

This interrelationship is apparently due to the fact that only occasionally updating

the stiffness matrix has somewhat of a disruptive effect on the extrapolation scheme

used in the acceleration of convergence. This suggests that results obtained from

iterations involving updating and those not involving updating should not be used

together in eq. (34).
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the tangent stiffness method. It is numerically well behaved and does not lead to

prohibitive computational costs.

Both the methods of successive approximations and tangent stiffness can be

viewed as approximations to the Newton-Raphson method, and there is little to choose

between them. Either method would appear suitable for a production finite element

program for geotechnical problems. Successive approximations is somewhat easier to

implement and somewhat more efficient; however, it is slightly less robust than the

tangent stiffness method.

The introduction of local iteration in the calculation of the incremental stress-

strain properties is desirable, and will in the future be incorporated into subroutine

CLAY so as not to clutter the logic of the parent finite element program.

Finally, it is recommended that a production program incorporate provisions for

a modified Newton analysis and for a variable convergence factor based on the use

of Aitken's V2 method applied to each component of the solution vector. Both of

these procedures are simple to implement.

It is concluded that the effective use of a quasi-Newton method for elasto-

*plasticity problems will need to await the development of simple but robust updating

formulas for the banded upper triangularized form of the stiffness matrix.

6. RECOMMENDED FUTURE WORK

Two major components of the overall project remain; i.e, the development of

one or more production finite element programs for geotechnical engineering problems,

and a verification study for actual field structures and/or large centrifuge models.

- The first of the remaining components is further discussed in the following paragraphs.

Prior to any production program development, subroutine CLAY should be recoded

in order to improve its efficiency and portability. It is then recommended that two

production programs for geotechnical engineering problems be developed. The first
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would be two-dimensional and applicable to either drained or undrained conditions. It

would contain simple pre-processing routines for grid generation and the description

c.f initial stress and saturation states. The program would be an outgrowth of the

program used in the present study. The grid generation scheme and the equation solver

would be replaced by recently developed optimized versions. The type of element

would be carefully selected, in light of accuracy requirements for undrained conditions.

The second program would be three-dimensional and, in addition to being

applicable to ideal drained and undrained conditions, would consider the effects of

partial saturation and the movement of pore water under saturated and nonhomogeneous

stress state conditions. Initially, a frontal equation solver would be used; time permitting

the new iteration scheme being developed by Professor Taylor at UCB would be

considered as an alternative.

As time permits, special features such as bending elements, incremental

excavation and construction options, more elaborate pre and post-processing schemes

and complete dynamic dimensioning (as opposed to the partial dynamic dimensioning

used in the current two-dimensional program) would be included in the programs.

Carefully documented user manuals would be prepared for both programs.
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:. iTable 1: Results of the Manual and Computer Aided
Model Calibration Procedures as Aptlied to
the Experimental Data of Uafroudi (982).

'Parameter So£lution 2 Solution3

0.130 0.130
*

K 0.018 0.018

M 1.18 1.18
C

M 0.87 0.87
e

v,G 0.30 5900

Pt 100 100

R 2.40 2.509C

Re 2.25 2.246

Ac  0.04 0.031

A 0.04 0.034
e

T 0.10 0.046

c 0.71 0.453

s 1.00 1.000

h 2.00 0.621
c

h eh4.00 0.855

. 0.20 0.200
C

me 0.20 0.200e

4 a * indicates that this parameter was assigned a fixed
value prior to using the computer aided solution

2 following discovery of an error in the reduction of
the laboratory results, the model was recalibrated
manually, and reported earlier by Herrmam et a!
1981 b.

3 the objective function was created with the options
set at PUM TUM 0.20. All data was weighted
equally.
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APPENDIX A

NON-HOMOGENEOUS MODEL AND IN SITU TEST RESULTS

* .- To date, the bounding surface model has been used primarily to predict the

behavior of soils under homogeneous states of stress and strain. In these applications

the model has been shown to be accurate and versatile. However, in order to fully

verify its predictive capabilities and practical usefulness, it is necessary to incorporate

the material model into a nonlinear finite element code and study its characteristics

when applied to nonhomogeneous laboratory or in situ boundary-value problems.

The degree to which this final step in the model verification process can be

completed is limited by the rather sparse amount of published experimental data.

Ideally, homogeneous test results should be provided to permit the bounding surface

model to be fully calibrated. Model test or field measurements must also be presented

to serve as a measure of the formulation's predictive capabilities for non-homogeneous

stress-strain conditions. Few published studies meet both requirements, although it is

often possible to acquire all necessary data by consulting several articles by the same

research group. Some of the reported experimental data that may be used in this

final stage of the veriication process is briefly discussed in the following paragraphs.

Ajaz and Parry (1976) describe the response of a compacted natural clay beam

subjected to a series of laboratory bending tests. The testing apparatus was designed

to permit a study to be made of the material's tensile strength and stress-strain

response in uniform bending. The laboratory results are presented in the form of a

moment-deflection curve for the center section, and by a series of strain contours

corresponding to different applied bending moments. By assuming a particular set of

equilibrium and strain-displacement relations, the authors are able to portray their

results in terms of the soil's stress-strain response. Plane strain conditions are assumed.

Unfortunately, none of the necessary soil properties are provided, and there is not
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.* sufficient information to calibrate the bounding surface model. Additional aspects of

the authors's research are presented in other published articles, and it may be possible

to acquire the required calibration information by consulting these sources.

Baasubramian, Sivandran and Ho (1979) describe the results of three separate

full-scale in situ slope stability tests involving Bangkok clay. One of these embankments

(specifically, their "Embankment I") could be analyzed with a nonlinear, two-dimensional,

plane-strain finite element program. The experimental results are presented in the

form of force-deformation and force-pore water pressure histories for various locations

at the test site. Although not all of the necessary material constants are provided,

Bangkok clay has been extensively tested in the laboratory, and therefore a full

complement of material properties could be readily acquired by consulting additional

cited references.

Hanzawa (1979) describes a combined laboratory and in situ testing program

conducted with a natural clay. The study is concerned strictly with ultimate strength,

and an attempt is made to identify the effects of such quantities as consolidation

history, strain rate and aging on shear strength. No complete stress-strain response

is provided, and no field or model tests are reported.

Desai et al (1991) describe the results of a series of homogeneous and model

tests on an artificial soil made of oil, sand and clay. Conventional triaxial compression

*0 and extension test results are provided, together with values of the traditional critical

state parameters X, K and M; the bounding surface model could be readily calibrated

for normally consolidated conditions. Two separate bearing capacity tests were

* conducted with scale models, and the results are report in the form of force-displacement

curves. Both tests could be analyzed with a nonlinear, two-dimensional, plane-strain

finite element program. Additional experimental results may also be available in other

published and referenced articles.
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Andersen and Stenhamar (1982) reported the results of three in situ static plate

loading tests on heavily overconsolidated Haga clay. The OCR profile of the natural

deposit is given and the experimental results are presented in the form of force-

displacement and force - pore water pressure histories. Either plane strain or

axisymmetric conditions are assumed, and the tests could be analyzed with a nonlinear,

two-dimensional finite element code. The values of the critical state parameters X,

iK and M are not provided, but could be obtained by consulting other references.

Otherwise, there is enough homogeneous laboratory data to enable the Bounding Surface

model to be calibrated for the heavily overconsolidated range and compressive stress

states.

Radhakrishnan and Reese (1969) report the results of a laboratory model study

in which they studied the response of homogeneous and two-layered clay masses beneath

a loaded strip footing. The experimental observations are presented in the form of

force-deformation histories at various locations beneath the loaded footing. No

consolidation or drained compression data is provided, and the initial state of the

material (eo, p o is not specified. The index properties of the two natural clays

are tabulated, and deviator stress-axial strain relations from unconsolidated, undrained,

(UU) triaxial compression tests at three different confining pressures are presented

from which some of the necessary model parameters could perhaps be found. Both

*i model tests could be analyzed with a nonlinear, two-dimensional, plane-strain finite

element formulation. Additional material properties may possibly be found in cited

references.
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The required input data is entered by means of the following sequence of cards:

Al. Title Card (ISA).

Any information that is to be printed as the title of the problem.

A2. Control Card (215).

The following card is required to define the desired analytical options:

Columns

0 - plane stress analysis
5 MTYPE = I - plane strain analysis

2 - axisymmetric analysis

10 IHISBF = History function number (corresponding to the
history function specifications of section BI)
for the body for,- terms

A3. Nonlinear Analysis Control Card (515, 2E10.3): The following card is required
to specify the desired iteration
options:

Columns

I - 5 NONLIN = I- successive approximations
12 tangent stiffness (Newton's method)

6 - 10 ITMAX = Maximum number of iterations permitted in any
single solution increment

11 - 15 NVAY = - no local iteration
{ - with local iteration

16 - 20 IRPET = O- reform every iteration
K- reform every K-th iteration

21- 25 ITFAC =0 - no acceleration
I - constant acceleration factor = RELAX

74 [2 - variable norm acceleration
3- variable component acceleration

26- 35 for ITFAC 0
{RELAX. I

C L t2,3

36 -5 ERMAX = Convergence criterion for the displacement
vector (by default, ERMAX = 0.01)
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B I. A card with a 1 punched in colunn I followed by:

History Function Deucriptm The following cards are required for each distinct
function:

1st Card (IX, 1 lSh

Columns

2- IH = Function number

6 - 10 M = Number of points needed to define
the function

2nd Card~s) (SEIO.3).

As many cards as needed to specify the M pairs of values (F t_) The
initial card should contain the values F , tl, F,t,.. F, . S quent
cards, if required (M > 4), should conin the vilues i, t5,..., FM, tM.

I
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B2. A card with a 2 punched in column 1, followed by.

Material Properties Arra,: The following information must be supplied for each
distinct material:

1st Card (IX, i, 13, 2EI0.3).

Columns

2 - 5 MNAT = Material number

1 - isotropic linear-elastic

10 ITYP = 2 - anisotropic linear-elastic
3 - bounding surface plasticity model for

cohesive soil
11 - 20 Fx(r) magnitudes of the body force components

21 - 30 Fy(z)

2nd Card (EIO.3):

Columns ITYP I ITYP 2 ITYP = 3

1 - 10 E DI I

11 - 20 v DI2 C

21 - 30 D13 Mc

31 - 40 DI4 Rc

41-50 D22 Ac

51 - 60 023 T

61 - 70 D2 P

71 -80 33 P

3rd Card (SE10.3) - required only if ITYP > I:

Columns ITYP I ITYP = 2 ITYP = 3

1- 10 D 3 m c

11 - 20 h

21 - 30 %

31 - 40 G or v

41 - 50 r

51 - 60 Pa

61 - 70 ' % Mc

71- 80P hlhC

.8 



4th Card 05E10.)- required only if ITYP =3:

Columns ITYP =I ITYP =2 ITYP =3

1 -10 5

11 -20 Ir= RI/R

21 -30 a =A e AC

31 -40 t =mc/mc

'41- 50 c
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B3. A card v : a 3 punched in column 1, followed by.

Initial Stress Information: The following information must be supplied for each
initial stress state:

1st Card (MX 4,i 6ElO.3)

Columns

2 5 ISNO = Stress state number

6 15 a vertical stress distribution, in the
16-25 2 a2 = form av = a + a2 Y

26 - 35 b1  horizontal stress distribution,t in the
36-45 b2  form oh = b+b 2 Y

36 -5 b'Ih 1 2
46 - 55 C = pore water stress distribution, t in the form

56-65 2 Uc 1  + c2y

2nd Card(s) (SE10.3)

As many cards as needed to specify the M pairs of values (tmn F_). The
initial card should contain the values t , Fl, t , F , . . .,"ot , F
Subsequent cards, if required (M > 4) sh~uld contin Ahe values t

. tM , FM.

:4

"I

Assuming plane conditions. For axisymmetry, the vertical coordinate direction is

represented by z instead of y, and the distributions are then of the form ov= aI + a2 z,
etc.
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5. A card with a 4 punched in column 1, followed by:

Node Point Array (IX, I1, 2EI0.3, 15, 3EI0.3). As many cards as are necessary
to specify the locations of all
nodes in the system:

Columns

2 - 5 N = Node point number

6-1 XN =x-coordinate t
16 - 25 YN = y - coordinate

26 - 30 INC = Numbering increment quantities
associated

31 - 40 D = Spacing ratio with the
straight and

41 - 50 XCI Coordinates of a curved line
= point along the generation

51 - 60 YC interior of the options
circular arc t

t Assuming plane conditions. For axisymmetry, x r and y z.
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B5. A card with a 5 punched in colunm 1, followed by=

a Element Array (IX, I4, 15): As many cards as are necessary to specify all
elements in the system:t

Columns

2 - 5 The numbers of the four node
6 - = points which describe the quadrilateral

11 - or triangulartt element (reading counter-
16 -20clockwise around the element)

21 - 25 MN = Material number (corresponding to the
material descriptions of section B2)

26 - 30 ISNO = Initial stress state number (corresponding
to the stress state descriptions of section
B3)

31 - 35 NMIS Number of additional')
elements in the layer

36 - 40 INC Numbering increment quantities
for elements within associated
the layer with the

element
41 - 45 NMISP = Number of additional generation

layers option

46 - 50 INCP = Numbering increment
for layers

-__,

The order of these element cards need bear no relation to the actual location of

the elements within the body.

if For a triangular element the forth node number is set equal to the first.
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B6. A card with a 6 punched in colunn 1, followed by:

Node Point Specification Array (IX, 14, 2 (13, 12, E10.3). EI0., 215. 2EI0.3)= As
many cards as are necessary to specify the applied nodal displacements
and loads:

Columns

2 - 5 N = Node Point number

6 - 8 NH1  = History function number (corresponding
to the history function specifications of
section Bl) for the 1-coordinate direction.

10 IF1  indicates that an appliedisplceent

is specified in the 1-coordinate direction

11-20 V1  = Value of the f c ent

applied in the 1-coordinate direction

21 - 23 IH2  = History function number (corresponding
to the history function specifications of
section BI) for the 2-coordinate direction

25 IF = indicates that an applied force
2 1) displacement

is specified in the 2-coordinate direction

_- force
26- 35 V2  = Value of the [displacement

applied in the 2-coordinate direction

36 - 45 6 Angle (in degrees) between the xl-axis
and x(r)-axis

W 46 -50 N" = Final node point in the
sequence

quantities
51 - 55 INC = Numbering increment associated

for node points within with the
the sequence boundary

* condition
56 - 65 PN Values of the pressures generation

- applied at points N and option
5- 7' PN N respectively
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B7. A card with a 7 punched in column 1, followed by:

Solution History Sezment Information (IX, 14. 2El0.3). One card for each
history segment into
which the incremental
analysis is to be sub-
divided:t

Columns

2 - 5 NMIS = Number of solution (or time) increments into
which the history segment is to be subdivided

6 - 15 TIME = Solution time at the end of the history segment

16 - 25 D = Incrementing ratio defining the time-
step lengths within the history segment (by
default, D = 1.0)

B8. End Card (1): A card with an 8 punched in column 1 to denote the end of
the input data for given problem.

Cl. The above sequence of cards Al should be repeated if additional analyses
are desired.

:4

t note that the analysis begins at time to = 0)
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PART 1H: EXPLANATORY NOTES REGARDING THE INPUT

Nonlinear Analysis Strategy (section A3):

The choice among the available solution strategies is selected by the specifications

on this card. The reader is referred to Section 3.5 of the main body of the report

for a description of the available options.

History Function Descriptions (section BI)

The histories of the body forces and applied node point displacements and loads

are specified by means of "history functions". These history functions must belong to

one of the following three classes:

i) IH < 0: specifies identical incremental values which are equal to the

specified force/displacement. The incremental values are taken
to be equal regardless of the relative lengths of the time history

steps specified in section B7.

ii) IH = 0: specifies a step-function history at time tI=0; that is, the

specified force/displacement is applied entirely during the first

solution increment, and no additional load/displacement is applied

during the remaining solution increments.

iii) IH > 0: specifies the particular history function IH defined in section

BI. The form of these functions is illustrated in Figure IA and

discussed below.

Consider the case of IH > 0. At time t =0 the function F(t1 ) = F1 need not

necessarily be zero. For a step function load (at t1 =0 or at any other time t m), the

history segment must be described as a very steep ramp (that is, tm-tm-l = small but

; 0) in section BI. The solution segment must be similarly defined in section B7.

Within a particular history segment, linear interpolation is used to identify the AF

which corresponds to the given time increment Ait. For solution times beyond the

last specified point tM, the final history segment is extended indefinitely. If a value

V and a history function number IH > I is specified in Section B6 for some given

external agent, then in the solution interval At an incremental value of the quantity

equal to VAF is applied, where AF (Figure IB) corresponds to history function IH.
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Material Properties Array (Section B2).

For general linear, anisotropic, elastic material behavior the stress-strain relation

is of the form:

[a] = [D [c)
I"

For plane stress or plane strain conditions, the stress and strain vectors are defined

by:
[qT T aaa '

x  y z xy

T T
K [c (c££ y
F.[] [ x Cy CzYxyI

while for axisymmetry (with respect to the z-axis), the vectors become:

To T

[a]T [a~ a a e I
r  z e rz

TT
[cT = [ r  Cz e Yrz]T

The 21 material properties required to define clay type materials (ITYP 3) are defined

in Herrmann et al (1980)

Initial Stress Information (Section B3):

In specifying the initial stress profiles, it is assumed that the coordinate system

is aligned in the following as shown in Figure 2B.

I'

tHerrmann, L. R., Dafalias, Y.F. and DeNatale, IS. (1990), "Bounding Surface Plasticity

for Soil Modelling," Department of Civil Engineering, University of California, Davis,
Final Report to the Naval Construction Battalion Center, Port Hueneme, CA.

66



Node Point Array (Section B4)-

The program incorporates two data generation routines to assist the user in

defining the locations of the system's node points. The use of these options can, for

example, enable one to describe the nodal geometry of an arbitrarily large grid with

as few as five cards. Note that not all numbers between 1 and the maximum node

number need correspond to actual nodes in the body. For example, the numbering

scheme shown in Figure 3B is permissible, and the coordinates of the non-existent

nodes 15 and 21 may or may not be specified. This feature facilitates the use of the

node point and element generation options defined.

The straight line or circular arc coordinate generation option may be used

whenever several sequential node points lie along a single straight line or circular arc.

If such a situation exists, it is necessary only to enter the coordinates of the initial

and final points of the sequence (denoted by N and N, respectively), and the values

of INC and D. The constant INC represents the difference between any two successive

node numbers in the sequence, and D defines the ratio of the distances between any

two adjacent pairs of points.

If, for a node N, INC J 0, intermediate node points are generated along a

straight line (XC = YC = 0) or a circular arc (XC 1 0 and/or YC 1 0) between node

N and the point described on the preceeding node specification card N. That is, the

coordinates of the points N + INC, N + 2*INC, . .. , N - INC are each automatically

found. A circular arc is assumed to pass through the end points of the sequence N

and N, and some additional intermediate point having coordinates (XC, YC). This

intermediate point need not necessarily be a node.

The end points of the sequence may be entered in either order. For example,

the segments illustrated in Figure 4B could be defined by specifying the nodes in either

the order 7 -4 22 (INC = 5) or the order 22 * 7 (INC = -5). The spacing of the

intermediate points (nodes 12 and 17 in Figure 4B) is controlled by the spacing ratio

D. The segments shown in Figure 4B could be generated by specifying either the

order 7 - 22 and D = 2.0 or the order 22 4 7 and D 0.5. A value of D 1.0 would

result in equally spaced nodes.
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The interior node point generation option locates all interior nodes whose

coordinates have not been established through the options cited above (that is, all

. points still left undefined after the section B4 input has been completed). The locations

of these undefined interior nodes are computed by means of the "Laplacian -

Isoparametric" grid generation scheme developed by Herrmann (1 9 7 6 ).t In this scheme,

the coordinates of an interior node are selected so as to represent a weighted average

of the coordinates of the neighboring nodes.

Figure 5B illustrates two grids that have been prepared with the aid of the

Laplacian - Isoparametric grid generation scherr. Grid I was developed by using the

straight line generation routine to specify only the exterior (or boundary) nodes (and

thus, only five cards were needed in section B4). Grid 2 was developed in an identical

manner, except that the straight line generation option was also used to define the

nodes lying along the line 3 - 21. Note that the exterior (or boundary) nodes must

always be directly or indirectly specified in section B4.

Element Array (Section B5):

If the body can be divided into layers of elements, and if the material number

MN and the initial stress state number ISNO is the same for several elements within

a layer (or, perhaps, for several layers), the node numbers of these elements can be

established by means of the element data generation option. To generate a sequence

of elements within a single layer, node points are specified for the first element only,

together with appropriate values of NMIS and INC (see section B).

For example, the bottom row of elements in the grid of Figure 6A could be

established by entering either the node numbers of element "A" and the values NMIS 6

dJ, and INC = 4 or the node numbers of element "B" and the values NMIS = 6 and INC = -4.

Similarly, the left-most column of elements could be established by entering the node

a numbers of element "A" and the values NMIS = 2 and INC = 1. Note, again, that the

generated elements must be of the same material as the specified one.

4 t Hermann, L.R. (1976), "Laplacian - Isoparametric Grid Generatior Scheme." 3ournal
of the Engineering Mechanics Division ASCE, v. 102, no. EM5.
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If several layers of elements are of the same material, it becomes possible to

carry this option one step further. For example, the bottom two layers of elements

in the grid of Figure 6B could be established by entering the node numbers of element

* •"A" and the values:

NMIS = 6

INC = 4

NMISP = I
INCP = I

or, alternatively,

NMIS I

INC =

NMISP 6

INCP =

Furthermore, if Grid I in Figure 5B represented a homogeneous body, the entire

element array could be established by means of a single card containin& for example,

the node numbers of element "A"l and the values:

NMIS 3

INC = I

NMISP = 4
INCP 5

Hence, under "ideal" conditions, the element array for a homogeneous body could be

defined with only a single card in section B5.

Node Point Specification Array (Section B6).

Boundary or interior node point displacement and load specifications may be

given in terms of either the x-y coordinate system (when e 0 in section B6) or a

local X coordinate system (when e k 0), as shown in Figure 7B. If e = 0, the

subscripts I and 2 in section B6 refer to x(r) and y(z) (and thus IF1  IF, etc.) and

if e *0 they represent xI and x2 (and thus IF 1 = IFxl etc.).
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For each of the two coordinate directions, one may specify either a displacement

(IF = 1) or a load (IF = 0) by setting V equal to the applied quantity. Specified

displacements and loads are considered to be positive when they have the same sense

as the positive coordinate directions. If a node is neither constrained nor subject to

an applied load it need not - and, for economy, should not - be included in the node

point specification array (section B6).

A uniform or linearly varying pressure may be specified along a straight or

curved boundary (or an interior line) by means of the node point specification generation

option. To use this option, the quantities IF,, IF2 , VI, V2 and 0 in section B6 are

set to zero (or left blank), and the appropriate values of N, N', PN and PN " are

entered. For example, to specify the boundary loading shown in Figure 7, the user

would enter, on a single input card, the values:

N 2

INC -3

PN 100.0

PN *50.0

Note that the points N and N'* must be specified in a counter-clockwise order if they

lie on an exterior boundary and in a clockwise order if they lie along an interior

boundary (or "hole"). Note also that the pressure specification cards must preceed all

other node point specifications in section B6.

General Comments:

1. It is the responsibility of the user to maintain consistent units. The units used

to describe the material properties (section B2) must be consistent with those

used to describe the initial states of stress (section B3), the geometry of the

4 -body (section B4), and the applied loading (section B6). The solution will be

expressed in terms of units which are consistent with those of the input

specifications.

F 2. Because the bandwidth of the simultaneous equations is determined by the

numbering of the nodes, an optimal node numbering scheme is required to

minimize the computational costs of a given finite element analysis. The

bandwidth resulting from a given numbering scheme may be computed in the
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) denote the bandwidth span for any two nodes of a given triangular

(three node) or quadrilateral (four node) element as Ni, where Ni
is equal to 2 plus twice the absolute difference in node numbers.

ii) denote the maximum value of Ni for a given element j as NE.

iii) considering all elements in the system, denote the maximum value

of NE. as NEmax

Since NEmax represents the bandwidth of the simultaneous equations, in

numbering the nodes it is this quantity that should be minimized.

3. As the program is now dimensioned, the value of NE must not exceed 64,max
the maximum node number (NPT) must not exceed 900, the number of elements

(NELEM) must not exceed 841, the number of node point specifications (NBPTC)

must not exceed 120, and the number of different materials (MNAT) must not

exceed 5. When changing the dimensions of the program three separate areas

must be considered:

i) the COMMON blocks;

ii) the values of KK = N1 + I and LONG at the beginning of the

code; and,

iii) the dimension checks at the end of subroutine PREP.

The arrays used in the program which must be adjusted to accommodate larger

analyses are related to problem size in the following manner:

i) X(N 1 ), Y(N ) NQ(N 1+1), DISPLT(2NI), SL(2NI), SLP(2N 1 ), SLPP(2N 1 )

ii) NOD(N 2 ,4), MNO(N 2 )

iii) NODB(N 3), BIV(N 3, 3)

iv) Q7(LONG)

v) PROP(N 4 , 21), FXA(N 4 ), FYA(N4 ), ITYPA(N)
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-- - - ' - ~ . ,

where:

NI maximum node number

N2  = maximum number of elements
N = maximum number of node point specifications

3
N4  = NE

N, = maximum number of different materials

4. The size of the constant LONG (and the dimension of the Q7 array) must be
large enough to satisfy the inequality:

LONG > f*(NE max)2

wh.-re NEmax represents the bandwidth of the simultaneous equations. Although-max

the value of LONG must satisfy the above relation for f = 1.0, it is recommended

to specify LONG on the basis of f > 2.0.

4 72



F(t)

AF

P ;3

2 _

It 2  3 t

Figure Ilk. Typical History Function

z (vertical) y (vertica!.

r x

z

AxisymmetrY Plane Strain

Figwe .2. Coordinate Aligruient

73



37 138 39 1O 43 42

r3 1 32 333I3 3--4 - -H m- -m+ --

25 26 23 30

I--- - i- -

20 22 123

---3T - "'T-13'

,a '- l+ 1-

13 1 10 II 12

S10 1
I 12 13 11

Figure 3" Example of A Grid with Missing Node Numnbers

74



(22)

Nmaber

Figure Oa.n Node Points Lying On A Circular Arc

(2(7)

Figure 4Bb: Node Points Lying on A Straight Line

6 75



31100 123 lu

-- +3 Is 2
I 1i

2 I7 112 117 122 27

.-- ,- jm- r -- ,-_

a
6 1 16 121 26

Grid 0i

29

iT
- 34

II I I \
/2 I -' - - -x"Z, _iS .i , - .I. __

19 121

aI~ m - 26 32

131

Grid 02 3

Figure 35B: Grids Prepared With The Aid Of The Generation Options

76



C4 N

/-l.... --- --- -

f I

I'dLI JS - I -I

O - - .----I~ 4 -- _

I I I
II I
-. 1 - 1 - -

I I//.
I ,, I I -

0 -- 0---- , -

4 %D

I I77



2/ X2

5 x

Figure 7Bt pressuized Boundary

* 78



LISTING

MRSET FREE
FILE 1 (KJND-DISC, MAXRECSIZE=8200, BLOCKSIZE=1000, AREAS=20, AREASIZE=1)
FILE 2(KINhD:-DIS, 14AXRECSIZE;150, BLOCESIZE=150, AREAS=21C, AREASIZE11)
FILE 5 (KINJDLREADER, FILETYPE=7)
FILE 6 (KflZDr PRINJTER)
C
C TWO-DI!IENSIO1IAL MIHLIflEAR FINJITE ELEM~ENT ANALYSIS
C

CO12VON Q7(8200)
CO?V0N/BLKO/ NPT,NELEM,NBPTCI TYPE, IHISBF, IT'AX, RELAX, ERVAX,

6 VITFAC,?IODflEW, ITFAC,NOUILIII,NIWAY, IBEPET, ITIJO, NSTP
* ,ITIM,T1111F,TTr,XKP,XXX

CO?21*O/BLK2/ X(900),Y(900),IIQ(9O1),DISPLT(1800)

CO!21!!/BLK~4/ tIOD(12),BIV(12O,3)
CO17:OIN/B.FP5/ SL(1801,SLP(100',SLPP(1800O
CO210l/DLF.6/ ROA(4',SCA(4,',ETA(4)
CO2:ON!c'NT/ ICNT1, ICNT2, ICNT3
DATA FOA,SCA,ETA /1.0,-1.0, 1.0,-1.0, 1.0,-1.0,-1.0, 1.0,

* 1.0, 1.O,-1.0,-1.o/
C
C FOEI*AT STATEIIEJTS

90C FORMAT(1X,13, lX, TTFRATIO'1S WERE PERFORM!ED AT TltnE',F6.3,
92y, 'THlE ERROR AT THE E!!D OF THE PROCESS WAS' ,F7.4)

901 FOJPhAT(/v1, lx, f THE BANDWIDTHI OF',T7,
f ZXIS TOO LARGE O7, THE DI1lENSION OF --LONJG-- ~)

902- FOR!IAT(lX, '*rt?!COJVERGEINCE DID NOT OCCURO*cg-'
90-'. FORT.AT(1I!0)

C
r THE SIZE OF THE EQUATION BLOCK~ IS SET
C

LOlJG=82OO
XXX: 1.0E+20
KY-232

C
0 C INIPUT DATA IS READ

C
DO 90 1:. , K1'

9 C !'Q (1); 0
C1 ir(NcfCOTEY~t*~':T*Kf cffc

ICNT1:C
!rNT2: 0
:IT3 : 0

SLIMR: 1 0. 0
100 iX-i

WRITE(6,900OO)I!T , IC!1T2-,ICINT3
9000 FOR:A7(OX, 'NO TOTAL SOL= 1 13, IX, 'NO PARTIAL S0Lz.',13, IX.'11 CAILL

1 CLAY=',I1O)
CALL. PFEP(IX,07 (1))

ICNT1zO
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ICNT2z0
ICNT3=O
IF(IX -EQ. 1) GO TO 110

1053 READ(5,,804)NSEC
IF(NSEC .INE. O)GO TO 100
GO TO 105

C
C THE EQUATION POSITIOVING MATRIX FOR THE SYSTE2.1 MATRIX IS FORMED

110 N=2
DO 160 I=1,NPT

160 IIQ(I-I1)=0
DO 198 ?4=1,!ELCTI

DO 198 J=1,4I
IT=OD!W, J), 1

196 NQ(I)LN
NQ (1)= 1
DO 200 I~1,NPT

C
C THE BANDWIDTH -NCOL- IS COZIPUTED
C

NCOL=0
DO 218 I=1,NELEH
DO 202 J=1,4I
JJ=!OD(I,J)
DO 20? K-1,4
KTlJfOD(I,K) - 1
1V.PQ(YY) - 1.'Q(jj)
IF (NCOL .LT. IV) flCOL=IV

202 CON~TINUE
218 CONITNUE

C
r COM~PUTE IIATP.IX SPECIFICATIONS
C

!ROW=NQ(NPT +' 1) 1
L2: !COL- 1
1- :(LOING - L2'COL)/NCOL

4 IF(L1 .GT. 0') GO TO 220
WRITE(6,901) NCOL
Go To lor

e'20 IDTSF'= (NPOW- 1 ) /L 1+ 1
IF(NRPOW .GT. LOflGC/ICOL' GO TO 222
IDIS"ZO
L 1: NROW
L27~0

222 LT-Ll L2U
C
C INIT~IALIZATION

DO 225 I=1,11ROW
DISPL.T(I )- 0.0
SLP(I)-0. 0

225 SL(I-0.0

so



ITI!1=0
TIlMF- 0. 0

KC MARCHING TIME
C

24J0 READ(5l,8C4) NSEC,Nl-11S, TI4F,,D
IF(NSrC .!Ir. 0)- GO TO 100
IF(D -EQ. 0.0) D=1.0

DIJ11. 0/DU'
IF(D .EQ. 1.0) GO TO 244
DU1h(1.0 -D)/(1.0 - D*'Nj!TS)

24J4 DTz(TIMFS -TI14,F)ODUl

DO 760 NSTPS=1,N4IS
NSTP=?NSTPS
WRITE (6, 903)

C
C CIIAIGE DISPLACEMENT ESTIFATE AT BEGINING OF NEW SOLUTION
C SEG!*E.1T Il: CASE OF UNSTABLE BEHAVIOR
C

1F(NSTPS -GT. 1)GO TO 255
DO 250 I:1,NROW

25-0 SL(I)=-.01'SL(l)
255 IT11W-ITI' 1

DT-DTI-D
C
C ITERATION
C

ITNIz-
260 IT!;O=IT!1O + 1

C
C DLCIDE IF SHOULD UPDATE STIFFNESS OR NOT
C

I1OD!:ElW: 1
I: (IT!40-1 )/IREPET
IFC!'STPS .EQ. 1 .AND. IT10 .EQ. 0)MODflEW=0
l F(ITTNO -EQ. lirIREPET 1)!',ODf'EW 0

C
C 1IITIALIZE SYSTFI! EATRIX
C

DO 270 Iz1,17RCflI
SLPP(I)-SLP(l)

4 SLP(I)="'L(I)

1F8:~m: EQ. 1) GO TO 300
LL: NCOLrLT
DO 280 I:1,LL

4300 CONTINUE

IF1Or.NF~: .EQ. 0)ICI!Tl=ICNT1- 1
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CALL SOLVE (LlL2,LT,NROW,NCOL,IDISK,Q7,Q7)
c
C BOUNDARY POINTS TRANSFORMED TO X-Y COORDINATE SYSTEII
C

DO 570 KL1,NBPTC
KK=IAES(!1ODB (K)
NODB(K'dzKK
ATIG-BIV (K, 3)
IMANG .EQ. 0.0) GO TO 570
Kl=KK/1000000
JJ:NQ(KI)
IF(JJ .EQ. NQ(Kl141)) GO TO 570
CT: COS (AlJG)
SA=SIN (ANG)
Dl=.cL(JJ)
D21-SL(JJ- 1)
SL(JJ):Dl1CT-D2*SA
SL(JJ 1 )=Dl1'SAD2*CT

570 CONTINUE
C
C NEED FOR ADDITIONAL ITERATION IS CHECKED
C

Er.'R-!. 0. 0
SOLIJRMF0.0
ITSTOP:-0
DO 580 I=1,11llO'

ERIJR!-ABS(SL(I - SLP(I)) + ERNRV:
SOLNR:SOLN!Ft -. ABS(SL (I))

580 CONTINUE

IF(ITFAC I:E. 2)GO TO 814
RELAX= 1. 0
IF(ITNO .EQ. 0 -OR. (ITNO/2)#2 .UE. ITNO)G0 TO 582
CALL ACCEL (SLIJRV2, SLNR1 1,SOLNRI, RELAX, VITFAC)

582 SLNRM2--SLflR~1
SLflR?',l=SOLN~fl'

584 IF(SOLNl~f LE. 0.0) SOLIIRII:1.OE-20
ERNRM=EFRJ/SOL?,R11
IF(ITl!O .LT. ITTIAX) GO TO 590
WRITE(6,902)
GO TC 600

590 IF(ERNRII .GT. ERVAY.) GO TO 650
600 WnRrE(6,900) IT?lO,TlIIF,ER?:RM

ITSTOP~ 1
GO TO 700

650 DO 670 I,lROW

IFITFAC .?:E. 3)GO TO 670
RELAX- 1.0
IF(ITJO .EQ. 0 .OR. (ITNO/2)12 HNE. ITNO)GO To 670
DUtSL (I)
DU1=SLP(I)
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DU2=SLPP (I)
CALL ACCEL(DU2,DUI,DU,RELAX,VITFAC)

670 SL(IhSLP(I 4 RELAXI(S(I - SLPI)
C
C STRESS AID STRAINS COMlPUTED
C

700 CALL STRESS (ITSTOP',
IF(ITSTOP -EQ. 0) GO TO 260

760 CONTINUE
GO TO 240
END

C *.. f~~~e06(
SUB.ROUTINE PREP (IX,SL)

C
C THIS SUDROUTINE SETS UP THE DESCRIPTIOM OF THE PROELE:
C

C012ON/BL(0/ N4PT,NELE?1,NBPTC,HTYPE ,IHISEF, IThAX,RELAX,ERMAX,
VITFACIOPNIW,ITFAC,NONLIN,NWAY,IREPET,ITN;O,NSTP

ITIM, TIl:F, TI1B, XKP, XXX
COH?21ON/BLY2/ X(900),Y(900),NlQ(901),DISPLT(1800)

COM~ON /BLK4 / f:0DB(120N,BIV(12O,3)
COICTON/BLK7/ FUNI(1O,3),FUNT(10,3),NPTS(3,3)
DIVENSION ANI (12),AN(3i),TITLE(20),NODS(I),IS(8),HN(2),
* ITFLG(2),BIVD(2),IHI(2),SCOEF(8,6),SL(1),SCOEFS(6)

C
C FORMT STAT-IVENTS
C

800 FOR!*AT(I5,2E10.3)
801 FOR!NAT (CE 10.3)

803t FOR!1AT(I1,1J4,6E10.3)
WO FOfRNAT (2CA4)
806 FORIN'AT(I1,I4,2(I3,I2,ElO. 3),E1O. 3,2I5,2El0. 3)
808 FOFN.AT (1, 14, E10.3,I5,3E10.3)
90C FORMIAT (OHO 6X 20A41II
901 FORMAT(?OX, 'PLAllE STRFSS AI!ALYSIS',///)

1 iX, ELEMENT' ,9X, 'ELE?7EN:T' ,15X, 1ELE!1'*Tel
2 12X, '?ATERIAL' .5X, 'INITIAL STRESS STATE' ,/,
3 1X,'N)UPBER',10X,'CCIITER',13Y.,'NIODE POIIITS',11X,
4i 'iIUllrER',4X, 'SIG-V', 6X,'SIG-ll',8X,'U')

90' FO!RNAT(30X, PLANE STRATF A1~lYSs//
904 FORIIAT(2X, 'SUCESSIVE SUBSTITUTION USED FOR NONLINEAR ANALYSIS')
905 FOP!!AT(2X, 'TAt 'GETT STIFF METHIOD USED FOP NONLINEAR ANALYIS'i
906 FOR!*AT(17,6X,2c(A6, 1PE1O.2,A6,I3,8X),3XA6,OP~lO.3,/)
9C7 FORIAT (3CX, 'AXISYIITTRIC ArALYSIS I,///)
906 FORIAT(lHO,9X, Vth6*GCT?ETRYIyC',/,'0N0DAL POINT',6x,

# X-Y OR R-Z COOPDINATES',/)
909 FCRJAT(11,5X,1P2E1O.2)
910 FORI:AT(//,15X,'HISTOlY FUNCTION NO.',13,/,17X,'VALUE',12X,'TIAE')
911 FORM:AT (II, 1X,'ERROn-TOO M2ANY MATERIALS')
912 FORtIAT (II, 1, 'ERROR-TOO MANY ELEIIFMTS')
9131 FORMIAT (II, 1X,'FRROR-TOO MANY NODE POINTS')
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9114 FORMAT(//, IX, 'ERROR-TOO IIANY NODE POINT SPECIFICATIONS')
915 FORMAT(1HO,//////, lOX, '0**N1ODE POINT SPECIFICATIONS*"",///,

0 4X,'NODE',/)
916 FORMAT(2X, 'THE ITERATION PROCESS HAS A LIMIT OF',13,31,

0 'ITERATIONS PER INCREHENT',
* /,2X'IAND A CONVERGENCE REQUIREMENT OF',F8.4)

917 FORM-AT(15,5X,1P2EI0.3,1115,112,0P3E12.3)
918 FORNAT(2,'0* DATA ERROR -- TOO MUCH HISTORY FUNCTION DATA',

919 FORMAT(12X, 1PE12.3,5X,E12.3)
920 FORMAT(//,' ERROR-DATA ERROR IN ELEMENT',15)
922 FORIIAT(2X, 'LOCAL ITERATION USED TO MODIFYTHE STRESS INCREH1ENT'

DATA A14I,AN(3),HN /4HU-X=, 4HP-X=, LHU-Y=, 4HP-Y=,
* ~~4HU-R: * iHP-R= , 4HU-Z=, 4HP-Z=,
* ~4HU-1=, IIHP-1:, 4HU-2z, J8HP-2=,
* IIHANG=, 4HIH1=, 4HIH2z

923 FOPIIAT( X, STIFFNESS MATRIX UPDATED EVERY',.12,liX, 'ITERATIONS',
1 'BEGINNING WITH SECOND')

9241 FORMAT( X, A CONSTANT ACCELERATION FACTOR=' ,F5. 1, lX,'IS USED')
925 FORIIAT(1X,'A VARIABLE ACCELERATION FACTOR BASED ON THE'

7 SOLUTION NORM? AND WITH LIf!1TS OF' ,F5.2, 1X,'AND',F5.2,
*1X,'IS USED')

926 FORM4AT (lX,'A VARIABLE ACCELERATIOP FACTOR BASED ON THE'
* INDIVIDUAL SOLUTION COVPONENTS AND WITH LIMITS OF'#
* F5.2,1X,'AKD',FS_.2, 1X,IIS USED')

DATA IS /1,2,3,14,1,2,3,14/
DX =0.0
DY- .0
PNF=0. 0
tN?IAT-=O
NPT .0

C INPUT DATA IS READ
c

READ(5,805,ENT)=700) TITLE
WRITE (6,900) TITLE
READ(5,800) MTYPE,IHISBF
READ (5,80oo)!JONILIN, ITMAX , NAY, IREPET,*ITFAC, VITFAC, ERMIAX
IF(!4TYPE .EQ. 0) WRITE(6,901)
IF(F.TYPF .EQ. 1) WRITE(6,903)
IF(!TYPE .EQ. 2) WRITE(6,907)
XKP=0. 0
I F(!TY PE EQ. 0) XKZP=1.0
IF(ITTIAX .LE. 0) I711AXl,
T %F(L,!:AX .LE. 0.0) ERMAX-:0.01
IF(RELAX .LE. 0.0) RELAX=1.0
IF(NIIJ EQ. 1 )VIRITE(6,90L4)
IF(IONLIN .EQ. 2)WRITE(6,905)
IF(NhIAY .EQ. I)WRITE(6,922)
IF(IREPET KE. O)IREPET;-l

* WRITE(6, 323)IREPET
1'RITE6, 916) 17T?:AX,ERtlAX
IF(VITFAC .EQ. O.0)VITFACL1.0
JF(ITFAC .EQ.0 -OR. VITFAC -EQ. 1.0)GO TO 8
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IF(ITFAC .GT. 1)00 TO 5
RELAX=VITFAC
WRITE(6,92M )RELAX
GO TO 8

5 DU=1.0/VITFAC
IF(ITFAC .EQ. 2)WRITE(6,925)VITFAC,DU
IF(ITFAC .EQ. 3)WRITE(6,926)VITFAC,DU

8 READ(5,802") NSEC
C
C INPUT CONTROL UNIT
C

10 GO TO (20,60,75,85,112,175,195),NSEC
C
C TIM~E FUNCTIONS
C

20 READ(5,802) NSEC,I,N
IF(NSEC .NE. 0) GO TO 10
IF(I .LT. '4 -AND. N .LT. 11) GO TO 22
WRITE(6,91C)
GO TO 7O0

22 NPTS(I,1)=O
N PTS (I ,2)=1
1.PTS(I,3)zN-1

WRITE(6,910) I
WRITE(6,919) C (FUN(J,I),FUVT(J,I)).J~1,N)
GO TO 20

C
C MATERIAL PROPERTIES
C

60 IN-1
CALL PROPTY(IN,tZ,NtIAT,IISEC)
GO TO 10

C
C INITIAL STRESS SPECIFICATIONS
C

75 READ(5,803) NSEC,I,(SCOEFS(J),J=1,6)
IF(NSEC .NIE. 0) GO TO 10
DO 77 J=1,6

77 SCOrF(I,J)-SCOFFS(J)
GO TO 75

C
C NODE POINT COORDINATES

485 READ(5,806) NSEC,N,XP, YP,INICR,D,XC,YC

IF(NSEC .NE- 0) GO TO 10
X(h')XP

Y(N)=YP
1 Q(N )=-2
IF(INCR.EQ.C) GO TO 111

4 IF(D.EQ.O.0) D=1.0
NV.- (N -NS )/INCR
flMIS=I ABS (!;
IJCRINCRNT/?UIS
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DU2:t#!IS
DUb 1.0/DU2
IF(D.EQ.1.O) O TO 87

87 IF(XC .EQ. 0.0 -AND. YC -EQ. 0.0) GO TO 95
C
C GENERATE POINTS ON ARC
C

Cll=2. O'(XC-XS)
C12=2.O'(YC-YS)
C21:2.0O9(XC-XP)
C22=2. 0'(YC-YP)
DUm1.O/(C110 C22-Cl2*C21)
B 1 XCOXC-XS#XS+YCGYC-YSOYS
B2=XCOXC-XP*XP+YCOYC-YPOYP
XOz (C22'B1-C12'B2)*DU
Y0 (Cl 1'B2-C21*B1 )*DU
RC=SQRT( (XC-XO)*02+(YC-YO)**2)
THO=ATAN2( (YS-YO), (XS-XO))
IF(THO .LT. O.O)THO=6.2831853+THO
DY=- (XP-XO)'SIN(THO)+(YP-YO)*COS(THO)
DXz (XP-XO)'COS(THO). (YP-YO)'sIN (THO)
DTH= ATA112(DY,DX)
ZC: (XC-XS)' (YP-YS1- (XP-XS ) (YC-YS)
IF(C .GT. 0.0 -AND. DTH .LT. O.O)DTH=6.2831853.DTH
IF(ZC .LT. 0.0 -AND. DTH .GT. 0.0)DTH=-6.2831853+DTH
DTH .-DTH*DU 1
DO 90 I=2,N1*IS
THO=THO+DTH
NS=NS+INCR

X(NS)=XO+RC'COS(THO)
Y(NS)=YO+RCOSIN(THO)

90 DTH=DTH*D
GO TO 111

C
C GENERATE POINTS ON STRAIGHT LINE
C

9 5 DX=(XP -XS)*DU1
DY=(YP -YS)%DUl
DO 110 Iz2,NMIS
NS=NS+INCR
XS :XS.DX
YS=YS.DY
?4Q(NS )=-2
X(NS)=XS
Y (NS ) YS
DX:DXOD

110 DY=DYfD
111 XSmXP

NS-N
IF(NPT .LT. NS) NPT=NS
GO TO 85
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67

C
C ELEMENT INFORMATION
C

112 N~l
113 READ(5,802) NSEC, (NODS(I),I=1,l4),KIOR,ISIGN,NMISP,INCRP,NMIS,INCR

IF(NSEC .NE. 0) GO TO 132
DO 116 I=1,4

116 NOD(N,I)=!IODS(I)

INCRS=O
INCRZ=INCR
NMISZ=NMISP
MNO(N)=mIjORf100 +- ISIGH

120 DO 125 M=1,4~
125 NOD(Ni,!)NOD(NS ,M)+INCRS

1f!O (N) =MJ0(NS)
N=N~1
INCRS= INCRS+INCRP
Nl!,ISP=NMlSP- I
IF(MISP .GE. O)GO TO 120
ftJISPPIMISZ
INCRSlINCRZ
INCRZ INCRZ.+INTCR
NMIS:NX!IS- 1
IF(lAIS .GE. O)GO TO 120
GO TO 113

C
C GENERATE COORDINATES FOR UNSPECIFIED INTERIOR NODES

132 NELEM =N-1
FACIT=1.3

C
C DETERJIINE WHICH ELEMENT SURROUND EACH NODE AND HOW MANY NODES
C NEED TO BE GENERATED AND MAKE STARTING ESTIMIATE FOR THEIR COORDINATES
C

P'lIIsz
LOC~ 1
DO 139 K=1,NPT
IF(NQ(K) .LT. 0) GO TO 139
NOC=O
DO 1-7 I=1,NELF?!1
DO 13r5 J=1,4

135 IF(K -EQ. NOD(I,J))GO TO 136
4 GO TO 137

136 1N-1O'I+JJ
SL (LOC) FLOA T (1
LOC=LOC* 1
NOC=NOC. 1

137 CONTINUE
* IF(NOC .GT. O)GO TO 138

GO TO 139
136 N= (LOC-I)OC)91O00 ?:OC
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imis8 atis+6
NQ (K) =N
IF(K.LT.3) GO TO 139
X(K)=O.59(X(K-2)+X(K-1))
Y (K ) 0. 50(Y (K-2 ).Y(K-1) )

139 CONTINUE
IF(NMIS.EQ.0) GO TO 157
WTL=0.0

C
C ITERATE TO LOCATE UNISPECIFIED NODES
C AS A WEIGHTED AVERAGE OF NEIGHBORS
C

DO 155 NN=1,NMIS
10T=O
DO 150 J=1,NPT
N=NQ(J)
IF(N .LT. 0) GO TO 150
LOC=N/ 100
NOC=MOD (N, 100)
WT=0.O
XS=0.O
YS=0.0
DO 1i40 JJJ=1,NOC
N=IFIX(SL(LOC)4 0. 1)
LOC=LOC4 1
IE=N/1O)
JJ=tMOD (N, 10)
I=IS(JJ43)
I=NOD(IE,I)
K=IS(J 91)
K=KOD(IE.K)
L=IS(JJ+2)
L=NOD(IE,L)'
Xs=XS +X(I) .eX(K) 4X(L)RWTL
I SYS +Y(I) +Y (K) .Y(L)'WITL

140 WT=WT+2.0+WTL
Dl1X(J)
D2=Y(J)
X(J )=(1.O-FACIT)vD1.FACITfXS/WT
Y(J)=( 1.O-FACIT)*D2+FACIT*YS/WT
D1:AIS((X(J)-Dl)/(ABS(D1 )+1.OE-20))
D2=ABS( (Y(J)-D2)/(ABS(D2)+1.OE-20))
IF(D14D2 .GT. .0OO1)IOT~l

150 CONTINUE
* IF(IOT .EQ. 0) GO TC 157

WTL: -1.
155 CONTINUE

C
C PR.INT NOD", AND ELEIENT DATA
C

157 WRITE(6,908)
WRITE(6,909) (N,X(N),Y(N),N:1,NPT)
WRITE(6,902)
Do 168 N~1,NELEN
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M11ORS =t~O (N) 1/00
ISIGN =MOD (MNO (N ), 100)
MJO (N) =MNORS

C
C CHECK FOR NEGATIVE ELEMENT AREA, INITIALIZE STRESSES AND STRAINS,
C PRINT INFORMIATION, FORM ISOPARA1!ETRIC TRANSFORMATION AND STORE
C

N1:UOD(N, 1)

N2=f1OD(N,2)
N3=NOD (N, 3)
N14=NOD (N,4)

IF(A1+A2 .GT. 0.0) Go TO 166
Ix=0
WRITE(6,920) N
GO TO 167

166 CALL GEOI(N,tf NORS ,ISIGN,SCOEF,SIGH ,SIGV,U,XC,YC)
167 WRITE(6,917) N,XC,YC,N1,N2,N3,N4,I1tNORS,SIGV,SIGH,U
168 CONTINUE

GO TO 10
C
C NODE POINT SPECIFICATIONS
C

175 WRITE (6,915)
I~ 1

180 READ(5,8O6)0 NSEC,KK, (IH(N),IIFLG(N),BIVD(N),N:1,2),TH,KKP,INCE.,
B PJ,PKc

IF(NSEC NE. 0) GO TO 10
IADD=0
IF(ITYPE .EQ. 2) IADD=iI
IF(TH N!E. 0.0) IADD%8

Nl'z 1
IF(KI:P .EQ. 0) GO TO 185
INICH .EQ. 0) INCR~l
N (KKP-JK ) /INCRt

tft2S =I ABS (1111)
INCR: INCRFNI.'/NMIS
NlF'.: 1 4 N I
DP=PK-PJ
M=K
XL%-.0

C
C GETIEPATE SPECIFICATIONS FOR INTERM2EDIATE NODES
C

DO 183 L =1, NNIS
tfP H
M=MHiINCH

183 XL=SQRT((X(;)-X(tHP) )**2+(Y(V.)-YO:*P) )*0 2)+XL
4 DP=DP/XL

NJ=1. 0
IF(MTYPE .EQ. 2) RJzX(KK)

185 PXBL0
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PYB=O. 0
DO 190 L=1,Ntl
PNB=0. 0
IF(L .EQ. NM) GO To 186
DX=X(KK + INCR) - X(KK)
DYzY(KK + INCR) - Y(KK)
PKzPJ +DP*(SQRT(DXODX +DY*DY))
R1C 1.0
IF(HTYPE .EQ. 2) RK=X(KK + INCR)
PtJB=(3.OfPJ*RJ + PJ*RK + PK*RJ + PKORK)/12.0
PNF=(PJGRJ + PJORK +. PK*RJ + 3.OOPKGRK)/12.O

C
C CALCULATE EQUIVALENT NODAL FORCES DUE TO SPECIFIED PRESSURE
C

186 BIY(I,1)=BIVD(1) + PXB - DY*PNB
EIV(I,2)=BIVD(2) + PYB + DX*PNB
PXB:-DYOPNF
PYB= DX*PNF
P4 =PK
RJ -.RK
BIV(I, 3)=TH
NODE(I)=KK*0 000O + IS(1)10000 + IH(2)*10O
4 IIFLG(1)*10 + IIFLG(2)

DO 187 J=1,2
K=2*J-1*IADD
ANl(J)=All (K+ 1)
IF(IIFLG(J) .EQ. 0) GO TO 187
AII(J )=ANI (K)

187 CONJTINUE
WRITE(6,906) KK,(AN(J),BIV(I,J),H(J),IH(J),J:1,2),AN(3),BIV(I,3)
KK =KK.IfCR
BIV(I, 3)=THWO. 01714533
NBPTC:I

190 1:1+1
GO TO 180

C
C THE SIZE OF THE PROBLEM IS CHECKED TO SEE IF IT IS TOO LARGE
C AND DATA ERRORS ARE SOUGHT
C

195 IF(NELEM .LT. 8142) GO TO 206
WRITE (6,912)
IX=z

206 IF(NPT .LT. 901) GO TO 207
WRITE (6,913)
IX:O

207 IF(NBPTC .LT. 121) GO TO 208
WRITE (6,91J4)
Ix=0

208 IFNNNAT .LT. 4) GO TO 210
WRITE (6,911)
Ix=0

210 RETURN
700 STOP

END
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SUBROUTINE PROPTY(IN,FIN,NMAT,NSEC)
C
C THIS IS THE MASTER SUBROUTINE FOR SUPPLYING MATERIAL PROPERTIES
C

COIQOUI/BLKO/ NPT,NELE?1,NBPTCdITYPE, IHISBF, ITMAX, RELAX, ERMIAX,
* VITFAC,MODNEW, ITFAC,NONLIN,NWAY, IREPET, ITUIO,NSTP

ITIM,TIMF,TIMB,XKP,XXX
COffOl/BLK1/ PROP(3,21),FXA(3),FYA(3),ITYPA(3)
COM12,Of/BLK8/ C(4,4),SO(4 ),XPV(5),YPV(5),XJCOB(5,),Cl(8,8),ZY(8),

* FV(5,14),GV(5,4),XNV(5,Z4),SIGT(iI),DSIG(4),EPT(4),DEP(4),
* STOR(6),PWPT,DPWP,CSC4,4)

COtMlON/CNT/ ICNT1 ,ICNT2, ICNT3
DIITIEJSIOII SIG3D(6),DSIG3D(6) ,EP3D(6),DEP34D(6),C3D(6,6),CB3DC6,6)

801 FORMAT(810.3)

807 FORMAT(Il,IJ,15,'4E10.3)
904 FORMAT(//,lX,'M-ATERIAL',I3,2X,'IS ISOTROPIC WITH FX(R)=',El0.3,4X,

1'FY(Z)=',E1O.3,'4X,'E =',ElO.3,4X,'AND POISSONS RATIO =',F5.2,/)
905 FORI-AT(//,lX,'MATERIAL',I3,2X,'IS ANISOTROPIC WITH FX(R)=',lPE10.3

* 5X,'C12=',0PE10.3,5X,'Cl3=',OPEIC.3,5X,'C14=,,0PE10.3,/,
* 24X,'C22=',1PE10.3,5X,'C23=',OPE10.3,5X,'C24=,,0PE10.3,/,
* I3X,lC33:',lPE1O.3,5X,'C3aI:',OPE10).3,/,
* 62X,'C44=',lPElO.3)

C
GO TO (100,300),IN

C
C **I*IEREAD MATERIALS PROPERTIES"""Of
C

100 READ(5,807) NSEC,I,ITYP,FX,FY
IF(NSEC .NE. 0) RETURN
IF(MAT .LT. I) NtIAT=I
FXA (I)=FX
FYA(I)=FY
ITYPA(I )=ITYP
GO TO (150, 160,200),ITYP

C
C ISOTROPIC ELASTIC

* C
150 READ(5l,801)E,GNU

V'RITE(6,904) I,FX,FY,E,GIIU
DU=E/((1.0+GNU) *(1.0-2.0*GtIU))
Cl1=DU*(1.0-GIIU)
Cl 2=DU*GIU
C 13 =C 12
C22=C1 1
C23=Cl2
C33=C1 1
C1 4:E*. 5/(l. 0+GtIU)
C14-0.0
C214=0.0
C34:-0.0
GO TO 165

C
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C ANISTROPIC ELASTIC

160 READ(5,8O1)Cll,Cl2,Cl3,Cl',C22,C23,C24,C33,C3,C'a4
WRITE(6,905) I,X,F,C1,C2,C3,C,C22,C23,C2,C33,C3,C8

165 PROP(I,1)=C11
PROP(I,21*C12
PRtOP(I,3)=C13
PROP(I,4I)=Cl4
PROP(I,5)=C22
PROP(I,6)=C23
PROP(I,7)=C24

PROP(I, 8)=C33
PRP(I9)C3a

GO TO 100

C BOUN~DING SURFACE PLASTICITY FOR COHESIVE SOIL
C

200 CALL RPROP(PROP(I,1))
GO TO 100

C
C *******CALCULATE INCREM~ENTAL PROPERTIES"***#*****
C

300 ITYP=ITYPA(MN)
GO TO (250,250,iI0O),ITYP

C
C LINEAR ELASTICITY
C
250 IP(ITIM4+ITNO .GT. 2)RETURN

C(1, 1)=PROP(IIN, 1)
C(l, 2)PROP(tfN,2)
C(1, 3)=PROP(MfJ, 3)

C1,4le) :PROP (M1,4)
C(2,2)=PROP(OIN,5)
C(2, 3)z=PPOP(N,6)
C (2,4)=PROP (MJ, 7)
C (3, 3) =PROP (11,,8)
C(3,M )zPROP(ljN,9)

4 C('I,4)=PROP(MN, 10)
SO(1)0.0
SO (2)=0.0
soc 3)=0-*0
SO(4 ):0. 0
DO 280 J=1,4
DO 280 K:1,J

280 C(J,K)=C(Tr,J)
RETURN

C
C BOUNDING SURFACE YODEL FOR COHESIVE SOIL
C

*400 RT1:1.0
RT2= 1.0

C
C CHANGE SIGN OF STRAIN ESTIVATE AT BEGINING OF NEW SOLUTION

* 92



D-14866 NUMERICAL IMPLEMENTATION OF THE COHESIVE SOIL BOUNDING 2/2 \
SURFACE PLASTIC ITY.. (U) CALIFORNIA UNIV DAVIS DEPT OF
CIVIL ENGINEERING L R HERRMANN ET AL. FEB 83

UCASIFIED NCEL-CR- 3.BiB N62474-82-C-8276 F/G 8/013

1 11 1lfl N I D..



4

162' 12.

Ja m

11111.I
IIIII j 1.8

MICROCOPY RE;OLUTION TEST CHART

NATIONAL B3UREAU OF STANDARDS 1963-A

. . .. . .-.



C ANISTROPIC ELASTIC

160 READ(5,801 )Cll,C12,C13,Cl~,C22,C23,C24,C33,C34,CI4
WRITE(6,905) I,X,FY,C1.C2,C3,C,C22,C23,C2,C33,C3ICJ4

165 PROP(I.1)=C11
PROP(I,2)=C12
PROP(I, 3)=C13

PROP(I,5)zC22

PROP(I,6)=C23
PROP(I,7)=C24
PROP(I,8)=C33
PROP(I,9)=C34
PROP(I, 10)=C4
GO TO 100

C
C BOUNDING SURFACE PLASTICITY FOR COHESIVE SOIL
C

200 CALL RPROP(PROP(I.1))
GO TO 100

C
C "'0*4**CALCULATE INCREMENTAL PROPERTIES**#**#***
C

300 ITYP=ITYPA(MI)
GO TO (250,250.lIO0),ITYP

C
C LINEAR ELASTICITY
C

250 IF(ITIM+ITNO .GT. 2)RETURN
C (1, 1 )=PROP 0N, 1
C (I ,2) =PROP(MN, 2)

C( 1, 4 )zPROP (MIN, 4)
C(2,2)=PROP(tlN,5)
C(2, 3)=PROP(KN,6)
C (2,14)=PROP (IN, 7)
C(3, 3)zPRop(t.2:,8)

C3,4I) :PROP (MN,9)
C(I,4)=PROP(MN, 10)
SO(1WO.0
SO(2):0O.0
SO(3)=0.0
SO (4):0. 0
DO 280 J=1,4I
DO 280 K=1,J

280 C(J,K):C(Y,J)
RETURN

C
C BOUNDING SURFACE MODEL FOR COHESIVE SOIL
C
400 RT1:1.0

RT2:1.0
C
C CHANGE SIGN OF STRAIN ESTIHATE AT BEGINING OF NEW SOLUTION
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C SEGMENT IN CASE OF UNSTABLE BEHAVIOR AT END OF PREVIOUS ONE

IF(NSTP+ITNO .GT. 1)G0 TO 405
RT1:. 01
RT2:-. 01

405 DO 4110 I1141
SIG3D (I)=-SIGT (I)
DSIG3D(I )=-DSIG(I )RTI
DSIG(I )=DSIG(I )ORT1

DEP3D(I )=-DEP(I )*RT2
410 DEP(I)=DEP(I)*RT2

DPWPT=DPWPTORT 1
DO 415 I=5,6
DSIG3D(I )=O. 0
SIG3D(I )O. 0
EP3D(I )=. 0

415 DEP3D(I)=0.O
ITNOP=ITNO
LITlO: 0

420 LITNO=LITNO+l
ITNOP=IT?OP+ I

COEO66If*O*OTE**9 610000NOTES*SE
ICNT3:ICNT3+1
CALL CLAY(3, ITIA, ITNOP, PROP(MUl,l1),STOR,SIG3D,EP3D,DSIG3D,DEP3D,

1 C3D,CB3D,.~,lPT,DPWPT,CAM, 1.0)
Rl=.5
IF(NONLIN .EQ.2)Rlzl.0
R2=1. 0-Ri
IF(NLIN .EQ-1 .AND. KODNEW .EQ. 1)00 To 460
DO 450 I=1,14
SO(I)=0.O
DO 450 J=1,14
CSC(I,J)=O.59(C3D(I,J)+CE3D(I,J))

450 C(I,J)=C3D(I,J)Rl+CB3D(I,J)OR2
460 IF(NWAY .LT. 1)00 TO 625

DO 560 I=1,4
DU:DSIG (I)
DO 550 J=1,4

550 DU=DU-0.5C(C3D(I,J)+CB3D(I,J))ODEP(J)
560 SO(I)=DU

ER=0. 0
XNRM:0=. 0
DO 600 I=1,14

V ER:ER+ABS(SO(I))
XIJRM=XI-RM+ABS (DSIG (I))
DSlG(I )=DSlG(I )-SO(I)

600 DSIG3D(I)=-DSIG(I)
IF(XKR14 EQ. 0.0 )GO TO 625
IF(LITNO -EQ. ITTIAX)GO To 620

V IF(ER/XNRM GCT. 10.*ERMAX)GO TO 4120
620 DU:ER/XflRM
625 IF(MODNEW .EQ. 0 .OR. NONLIN .EQ. 2)00 To 629

Do 628 1=1,14
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SO(I)=O.0
DO 628 J=1,11

628 SO(I)cSO(I )+(0. 5EC3D(I,J).0.5*CB3D(I,J)-C(IJ) )GDP(J)
RETURN

C**VI*OIIO*NOTE***ffSf**SOE
629 R1=0.5

Do 630 I=1,4I
SO(I)=0O
DO 630 J=1,1I

630 SO(I)=SO(I)+(R1-0.5)'(C3D(I,J)+CB3D(I.J))'DEP(J)
RETURN
END

C *~es~e~emesusemssess~eeooow*hbeos*os
SUBROUTINE STRESS (ITSTOP)

C THIS SUBROUTINE CALCULATES AND PRINTS ELEMENT STRESSES AND STRAINS
C

COIQlON/BLK0/ NPT,NELE4, NBPTC ,MTYPE, IHISEF, ITHAX, RELAX. ERMAX,
VITFAC,MODNEW, ITFAC,NONLIN,NWAY, IREPET, ITIONSTP
ITIM,TIMF,TIMB,XKPXXX

COf!MOfN/BLK2/ X(900),Y(900).NQ(901),DISPLT(1CO0)
COfION/BLK3/ MNO(811),NOD(811,iI)
COttHON/BLKrS/ SL(1800),SLP(1800),SLPP(1800)
COC:ON/BLK8/ C(11,41),so(4),XPV(5),YPV(5),XJCOB(5),Cl (8,8),ZY(8),

O FV(511 ),GV(5,1a),XV(5,l),SIGT(4),DSIC(II),EPT(4),DEP(4),
* STOR(6),PWPT,DPWP,CSC(,I)

DIMENSION U(2),UX(2),UY(2)
C
C FORMAT STATEMENTS
C

920 FORMAT(8,3X,1P9E12.3)
922 FORMAT(//,5X,7HELEflENT,115X,

I 28HELEFIENT STRAINS AND STRESSES, /o6X, 3HNO.,5X,
2 9HEPSILON-X, 31, 9HEPSILON-Y, 3X, 9HEPSILON-Z
3 ,3X, 8HGA~ilA-XY,4x1,T7HSIGtIA-X, 5X,THSIOHtA-Y, 5X, THSIGMA-Z.
41 5X,6HTAU-XY,1OX,'Ul)

923 FORMAT(//,5X, 'ELEMENT' ,15X,
I 'ELEMENT STRAINS AND STRESSES',/,6X,'NO.0,5X,
2 'EPSILON-R' .31.'EPSILON-Z' ,3X, 'EPS-THETA'
3 ,3X,'GAI1A-RZ',1X,SIGA-R',5X,'SlIOMA-Z',4X,'SI0-THETA',

4 4X, 'TAU-RZI,101, 'Ut )
9241 FORNAT(lH,IX,11HNODE, 7X, 13HDISPLACEMENTS, /6X, 311110. , x

I 1HU, 1OZ, lHV)
C
C FOR EACH ELEIIENT FIND STRAINS AND STRESSES
C

IF(ITSTOP .EQ. 0) 00 TO 110
IF(H4TYPE .LT. 2) WRITE(6,922)
IF(KTYPE .EQ. 2) WRITE(6,923)

110 DO 760 IX:1,NELEM

NOD(IX, 1)=IABS(HOD(IX, 1))
C
C RECALL ELEMENT INFORM'ATION FROII DISK
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READ(2=IX)((SO(J), (C(I,J),CSC(I,J),11,I),J1,I), (XPV(K),YPV(K),
XJCOB(K), (FV(K,L),GV(K,L),XNV(K,L),L1,1),K:1,5), (SIGTCH),

9.... *DSIG(K),EPT(M).DEP(M),?=1,4),PWPT,DPWP, (STOR(N),N1,6))
C
C CALCULATE THE STRESS AND STRAIN AT THE ELEMIENT CENTER
C

DO 157 J=1,2
DU 1:0.0
DU2=0.0
DU 3=0.0
DO 155 I=1,4
NN=NOD (IX,1)
II :NQ(Ntl )+J- 1

C 00*#*OONOTEO@BI9OSTE#WWOONOTE
UN=SL (II)
DU1=DUl + XNV (5,I1) 'Uf
DU2zDU2 + FV(5,I)VUN

155 DU3=DU3 + GV(531)OUN
U (J )=DU 1
UX(J )=DU2

157 UY(J)=DU3
RO=0. 0
IF(MTYPE .EQ. 2) RO=1.0/XPV(5)
DEP(1)=UX(l)
DEP(2)=UY(2)
DEP(4)=UX(2) + UY(1)
DEP(3 )=ROIU(1)-XICPO(CSC(1,3)UDEP(1),CSC(2,3)IDEP(2)
1 + CSC(3,'I)*DEP(4). SO(3))/CSC(3,3)
DO 400 I=1,4
DU=SO(I)

Cag**oB***OafWNOTEsee6*ugt0EE*NOTEOBI*6
IF(NONLIN .EQ. 2)DUO0.0
DO 380 J=:1,4

380 DU=DU + CSC(I,J)#DEP(J)
400 DSIG(I)=DU

DSIG(3):DSIG(3)9(1.0 - XKP)
DPWP=0. 0
IF(ITSTOP .EQ. 0) GO TO 750

C
C IF COTIVERGENCE HAS OCCURRED, SUMl ELEMENT STRESSES AND STRAINS
C AND PRINT RESULTS
C

DO 740 J=:1,4
EPT(J)=EPT(J) + DEP(J

740 SIGT(J)=SIGT(J) + DSIG(J)
PWPT=PWPT + DPWP
WRITE(6,920) IX,(EPT(J),J=1,4),(SIGT(J),J1,4),PWPT

750 CONTINUE
WRITE(2:IX)((SO(J), (C(I,J),CSC(I,J),Iz,4),J1,I), (XPV(K),YPV(K),

1XJCOB(K), (FV(K,L),CV(K,L),XNV(K,L),L1,4),K=1,5), (SIG;T(M),
* * DSIG(t),EPT(M),DEP(V.),M=1,4),PWPT,DPWP, (STOR(N),N:1,6))

760 CONTINUE
IF(ITSTOP .EQ. 0) RETURN



C
C DISPLACEMENTS SUMM4ED AND PRINTEDI C

WRITE (6, 92i1)
DO 785 Ivl,NPT
JJ:NQ (I)
IF(JJ .EQ. NQ( I+1))GO TO 185
DISPLT(JJ)=DISPLT(JJ) + SL(JJ)N DISPLT(JJ-1)=DISPLT(JJ.1) + SL(JJ.I)
WRITE(6,920) IDISPLT(JJ),DISPLT(JJ+1)

785 CONTINUE
RETURN
END

C*...o...e.so.eess.o.owseeeouuoeoe.o.e
SUBROUTINE STIFNS (IX, LSTND,LTNCOLS)

C
C THIS SUBROUTINE FORMS THE ELEMENT MATRIX FOR A QUADRILATERAL
C ELEMENT
C

C012,O1/BLKO/ NPT,NELEM,NBPTC,MTYPE, IHISBF, ITTAX,RELAX.ERMAX,
VITFACMODNIEW, ITFAC,NONLINNWAY, IREPET, ITNo,NSTP

* ,ITIM,TIMF,TIMB,XKCP,XXX
- COHMN/BLKI/ PROP(3,21),FXA(3),FYA(3),ITYPA(3)

COflMOOl/BLK2/ X(900),Y(900),NQ(901),DISPLT(1800)
COMMON/BLK3/ MNOC841 ),HOD(84I ,4)
COI*?.OIl/BLK4I/ NODB(120),BIV(120,3)
COMM~ON/BLK5/ SL(1800),SLP(l800),SLPP(l800)
COtt?,O/BLK8/ C(4,J4),sO(),XPV(5),YPV(5),XJCOB(5),C1(8,8),ZY(8),

FV(5, 1 I),GV(5,'I),XNV(5,'4),SIGT('4).DSIG(4),EPT(4),DEP(JI),
* STOR(6),PWPT,DPWPCSC(I,4I)

DIMENSION IIFLG(2),BIVD(2),S(LT,NCOL),C2(8,8)
C
C RECALL ELEMENT INFORMATIONI FROM DISK
C

* XJCOB(K), (FV(K,L),GV(K,L),XNV(K,L),L=1,U),K=1,5),(SIGT(M),
* DSIG(M),EPT(M),DEP(M),M=1,II),PWPT,DPWP,(STOR(N),N:1,6))

C
C CALCULATE INCREMENTAL PROPERTIES
C

W1=14NO (Ix)
IN=2
CALL PROPTY(IN,MN,NZ,NZ)

C12=C( 1,2)
C13=C( 1, 3)

C22=C( 2,2)
C23=C(2, 3)

4 C33=C(3,3)
C3IzC( 3,4I)

C11X=CSC(1, 1)
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C12X:CSC(1,2)
C13X=CSC(1,3)

C22X:CSC(2, 2)
C23XzCSC(2, 3)
C2*IX:CSC(2, 4)
C33XzCSC(3, 3)
C34X=CSC(3,1I)
C4i4X=CSC (11,4)
SI zSO (1)
S2=SO(2)
33=30(3)
SJ4=30(4)

C
C INITIALIZE ELEMENT MATRICES
C

DO 60 J=1,8
DO 50 K=1,8
C2(J,K)=O. 0

50 C1(J,IC):0.0
60 ZY(J)=0.0

C
C SET PARAIIETERS FOR TYPE OF 2-D ANALYSIS TO BE PERFORMED
C

R:1.O
RO:0. 0

C
C PLANE STRESS TERMS
C

Dl 1=XKPOC13OC13/C33
D12=XKPOC13*C23/C33
D14:XKP*C1 3C34/C33
D22=XJCP*C23fC23/C33
D24 XKP*C23OC34 /C33
D11 4 XKPIC34O C34I/C33
CALL INTP(IHISBF,TIMB,TIKF,ITIM,DF)
MN=?IlO(IX)
FX:FXA(tMN)IDF
FY=FYA (MN )ODF

17 C
C NUM~ERICAL INTEGRATION LOOP
C

DO 2140 N=1,14
IF(MTYPE .LT. 2) GO TO 152

4 R=XPV (N)
RO: 1. /R

C CALCULATE ELE!IENT MATRICES
C

152 DUzXJCOI(N)*R
14 DO 220 I=1,14

Ii :20I- 1
12:1 1.1
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OIMGV(N,I)
X11:1KV (N, I)

C ELEMENT LOAD MATRIX
C

ZY(I1)=ZY(I1) + DU#(DI(FX-ROOS3) -FIG(S1-XKP*C13/C33OS3)

I 010(Si4 - XKP'C34/C33fS3))
ZY(12)=ZY(12) + DU*(I*FY - FI*(S11-1KP0C311/C3303S3)

I - GI*(S2 - IIPOC23/C33053))
IF(MODNEW .EQ. 1) 00 TO 220
DO 210 J:1.4

J2=J1.1
FJ=FV(NJ)
GJ=GV(N,J)
XNJ=XNV(N,J)

C
C ELEMENT STIFFNESS MATRIX
C

C2(11,Jl)=C2(I1,J1) + DUO((C11X)OFIGFJ + C33X#ROOROOXNIOXNJ
I + (C4111)*GI*GJ + C13X*RO#(FI#XNJ + FJfXNI)
2 + (C111X)O(GI*FJ + GJ'FI) + C31 *1ROG(XNIGGJ.XNJOGI))
C2(I1,J2)=C2(I1,J2) + DUI((C44X)'GIf)J + (C12X)*Fl9OJ
I + (Cl4X)GFIOFJ +C23X*ROO*IXGJ + (C24X)OGI'0J
2 + C3IIX*ROOXIIPJ)
C2(12Jl)=C2(12,J1) + DUi((C441X)OFIeCJ + (C12X)'FJ*Gl

1~ (C11X)'*FJ + C23X*ROOGI*DIJ + (C211X)*GIOGJ
2 + C311X'ROfXNJ*FI)
C2(I2,J2)zC2(12,J2) + DUO((C221)*1 60J + (C441I)fFIOFJ
I + (C2111)O(FIOGJ + FJOGI))
C1(I1,J1):Cl(I1,J1) + DU*((C11-Dll)GFIGFJ + C33*ROOROOXNIGXNJ
1 + (C441-D441)0X*OJ + C130ROO(FIGXNJ + F.7'XNI)
2 +(C14-D111)*(GIOFJ + * 67) + C311'ROO(XNIUOJ.XNJOCI))
C1(I1,J2)=C1(I1,J2) +. DUI((C441-D411 )*GI'FJ + (C12-DI2)'fr*GJ
I1 (C11-D14)F'*FJ + C23*ROOXNIO'03 (C21-D2'I)GGIOGJ
2 +C311'ROOXNIOFJ)

Cl (12,Jl)=C1 (I2,J1) +DUI((C44'-D411)#IOCJ +(Cl2-D12)GFJfOI
1 (CIII-D1I)FIOFJ +C23'ROGGIOXNJ + (C2JI-D2I)*IGJ
2 + C3 11'ROOXNJOFI)

210 Cl(12,J2)=Cl(12.J2) + DU((C22-D22)*'OGJ +(C441-D441)FIIF3
1 + (C2 3 -D2l)(FIOJ +F301I))

220 CONTINUE
2410 CONTINUE

DO 24I5 J=1,8
DO 2415 1=1,8
C2C1,J)=C2(JI)

2415 Cl (I,J)rCl (3,1)
IF(NONLIN -EQ. 1)00 TO 270
DO 260 Ic1,e
DUzuO

DO 250 33:1,11
DO 250 N=1,2
L=NOD(IX,JJ)
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J:J+1
250 DU=DU+C2(IJ)OSLP(L)
260 ZY(I)=-DU
270 CONTINUE

C
C THE NODE POINT SPECIFICATIONS ARE CONSIDERED
C

NU :2
DO 3341 J=1,41
NRQ=NOD(IX,J)
KL:NBPTC + 1
DO 331 K=1,ICL
NR=NU*(J-1)
IF(K .LT. KL) GO TO 300

C
C APPLY BOUNDARY CONDITION WHEN R=0
C

IF(RTYPE .LT. 2 .OR. X(NRQ) .NE. 0.0) GO TO 331
IIFLG(1)=1
II FLO(2) :0
BIVD(1)=0
BIVD(2)=O
GO TO 320

300 KK:=IABS(NODB(K))
K 1 KK/ 1000000
IF (NRQ .NE. K1) GO TO 331
XX: 1.*0
IF (NODB(K) .LT. 0) XX=0.O
NODE (K ):-KK
IIFLG(1 ):MOD(K., 100)/10
IIFLG(2)=MOD(KK, 10)
IH1=MOD(KK, 1000000)/i0000
CALL INTP(IHl,TIMB,TItF,ITI1,DF)
BI'JD(1 )=BIV(K, 1 )DF
1H2:HIOD(KK, 10000)1100
CALL INTP(1H2,TIFIB,TIMF, ITIM,DF)
BIVD(2):BIV(K,2)ODF
ANZ.:BIV(K, 3)
IF(ANG .EQ. 0.0) GO TO 320

C
C TRANSFORMATION TO LOCAL COORDINATE AXES
C

CA=COS (ANG)
* SA=SIN (APIG)

D2=ZY(NR*2)
ZY(NR.1 ):D1OCA+D2#SA
ZY(NR+2)=-Dl*SA+D2*CA
DO 315 33:1,8

e D1:C1(UR+1,JJ)
D2:C 1(NR.2, 33)
Cl (IRe1,JJ)D1#CAD2SA

315 C1(NR+2,JJ)-DOSAD2*CA
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DO 318 11=1,8

DIzC1(II,NR+1)
D2:C1 (II,NR+2)
Cl (II.NR.1 )zD1'CA+D2*SA

318 Cl(II,NR+2)=-D1@SA+D2*CA
320 DO 330 N=1,2

DUI:BIVD(N)
NR=NR+l

C LOADS ADDED IN
* C

ZY(NR)=ZY(NR)e.XXDUI
IF(IIFLC (N) -EQ. 0) 00 TO 330

C
C DISPLACEMENTS SPECIFIED
C

IF(NONLIN .EQ. 1)00 TO 325
NRM=NQ(NRQ )-l.N
DU 1:DUI-SLP(NRM)

325 ZY(NR)=DUl 0 XX 9 I

C1(NR,NR)=XXX *Xx
330 CONTINUE

*331 CONTINUE
*3314 COfNTINUE

C
C THE ELEMENT MATRIX IS NOW ADDED INTO THE SYSTEM MATRIX
C

* NRCC :0
DO 355 K=1,41
KK:NOD(IX, K)
NR:NQ(KK )-1
DO 350 Ma1,NU
NRCC :NRCC+ 1
NR=NR +- 1
IF(MODNEW .EQ. 1) GO TO 350
NRM:NR - LSTND

NCCC0o
DO 3415 L=1,41
JJ=NOD(IX,L)
NCN=NQ(JJ) - MR
DO 3145 N=1,NU
NCCNCCC+1
NCN=NCN+ 1
IF (NCN.LT. 1) GO TO 3441
S(NRH,NCN)=S(NRM,NCN) + CI(NRCC.NCCC)

3414 CONTINUE
3115 CONTINUE
350 SL(NR)rSL(NR) + ZY(NRCC)
355 CONTINUE

WRITE(2:IX)((SO(J),(C(I,J),CSC(I,J),I,1),J1,1), (XP(K),YPV(K),
* XJCOB(K), (FV(I,L),GV(K,L),XNV(K,L),L=1,i),K.1,5), (SIOT(H),

* DSIG(H),EPT(M),DEP(Ii),M=1,11),PWPT,DPWP,(STOR(N),N',6))
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- -..

RETURN
END

SUBROUTINE SOL VE (LI, L2, LT, NROW, NCOL, IDISK, Q7,S )

C THIS SUBROUTINE FORMS AND SOLVES THE SIMULTANEOUS EQUATIONS.
C VARIABLE DIMENSIONING IS USED TO MAXIMIZE THE LENGTH OF THE MAIN
C BLOCK. DISK STORAGE IS USED WHEN MORE THAN ONE BLOCK IS REQUIRED.
C WHEN MODNEW-I, ONLY REDUCTION OF THE RIGHTHAND SIDE AND BACK
C SUBSTITUTION TAKES PLACE.
C

CO)'ION/BLK0/ NPT, NELEM, NBPTC,MTYPE, IHISBF, ITAX,RELAX, ERVAX,
VITFAC, MODNEW, ITFAC,NONLIN,NWAY, IREPET, ITIO,NSTP

* , ITIM,TIMF,TIMB,XKP,XXX
COWflON/BLK2/ X(900),Y(9O0),NQ(901),DISPLT( 800)
CO1,MIOI/BLK3/ MNOC(84I ),NOD (8 1,'4)
COM11ON/BLK5/ SL(1800),SLP(1800),SLPP(1800)
DIM'ENSION S(LT,NCOL),Q7( 1)

C
C THE STIFFNESS MATRIX IS GENERATED IN BLOCKS AND STORED ON DISK
C

ID=O
288 ID=ID + 1

LSTND= (ID-I )§LI
"WND=LSTND + Li

C
C EACH ELEMENT IS EX 11NED TO DETERMINE IF IT CONTRIBUTES
C TO THE BLOCK
C

DO 355 I=t,NELEf
IX=I

-
. .IF(NOD(Il) .LT. 0) GO TO 355

DO 300 L-1,4
KK-NOD(I,L)
K1=UQ(KK)
IF ( Kl .LE. NWND) GO TO 305

300 CONTINUE
GO TO 355

C
C CALCULATE THAT PORTION OF THE STIFFNESS MATRIX GIVEN BY A
C CONSIDERATIONI OF ELEMENT I
C

305 CALL STIFNS (IX,LSTND,LT,NCOL,Q7)
-OD (I, I )=-NOD(I, 1)

. 355 CONTINUE
C
C THE BLOCK OF EQUATIONS IS REDUCED AND PUT ON DISK IF REQUIRED
C

IF(MODNEW .EQ. 0 ) GO TO 400:"I': IF(IDISK .NE. 0) READ(l=ID) ((S(N,M),H=I,NCOL),Nal,Li)
C G TO 505

C '" JCE£ ,HE LEFTHAND SIDE
C
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4100 DO 500 Nzt.Ll
DIAG=S (N, 1)
IF(DIAG .EQ. 0.0) 00 TO 500
IMN
DO 1175 L:2,NCOL
C=S(N,L)/DIAG
1:1I+1
IF(C .EQ. 0.0) 00 TO 4175
J:0
DO 4150 K=L,NCOL
JzJ,1

4150 S(IJ)=S(I,J) - C*S(N,K)
1175 CONTINUE
500 CONTINUE

C"""PO*FR LINEAR SYSTEMS INCLUDE FOLLOWING STATEMENT
C IF(ID .GE. IDISK)GO TO 505

IF(IDISK .GT. 0) WRITE(1:ID) ((S(NH),M=1,NCOL),N=t,Ll)
C
C REDUCE THE RIGHTHAND SIDE

505 DO 520 N=1,Ll
DIAG=S (N, 1)
IF(DIAG .EQ. 0.0) 00 TO 520
NR=N + LSTND
D:SL (N ) /DIAG
I :NR
DO 510 L=2,NCOL
I=1+1

C*499#0IF CANNOT OVER FLOW SL IN CO*@'.ON, INCLUDE NEXT STATEMENT
IF(I .GT. NROW)GO TO 520

510 SL(I)=SL(I) - S(N,L)-§D
520 CONTINUE

IF(ID GCE. IDISK -OR. MODNEW .EQ. 1) 00 TO 600
C
C THE NUMBER TWO BLOCK OF EQUATIONS IS SHIFTED INTO THE
C NUM.PBER ONE POSITION
C

N=L 1
DO 530 Iml,L2
N=N+1
DO 530 J=I,NCOL
S(I,J):S(N,J)

530 S(N,J)=0.0
IF(L2 .GE. Li) 00 TO 600
LL=L2 +e 1
DO 5410 I=LL,Ll
DO 5410 J:1,NCOL

5110 S(I,J)z0.0
600 IF(ID .LT. IDISK) GO TO 288

C
C BACK SUBSTITUTION
C

IDsIDISK + I
NRzIDISKOL 1,1
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IF(IDISK .EQ. 0)NRNROWJ4.
610 ID=ID - 1

MFID .LT. IDISK) READ(1=ID) ((S(N,M),H=1,NCOL),N:1,Li)
NzLl 1
DO 750 M=1,Ll
NR=NR - 1
N=N -1
IF(NR .CT. NROW)OO TO 750
DU1=SL(NR)
IF(S(N,1) -EQ. 0.0) GO TO 750
L=NR
DO 725 K=2,NCOL
L=L + 1

C*00 19* 0 1IF CANNOT OVER FLOW SL IN COWtON, INCLUDE NEXT STATEMENT
IF(L .GT. NROW)GO TO 727

725 DU1:DUl-S(N,K)OSL(L)
727 SL(NR):DIJ1/S(N,1)
750 CONTINUE

IF(ID .GT. 1) GO TO 610
RETURN
END

* . ~~~~C 6**O@I6 eeeeo6eeo bbgggeoggpgg
SUBROUTINE INTP (I,T2,T1 ,ITIM,DF)

C
* .C SUBROUTINE TO INTERPOLATE HISTORY FUNCTION

C
COYY.Ot/BLK7/ PU)1(10,3),PUNT(10,3),NPTS(3,3)
DIMENSION TT(2),F(2)
DF=1.0
IF(I .LT. 0) RETURN
IP(I .GT. 0) GO TO 20
IF(ITIV .GT. 1) DF=0.0
RETURN

20 DF=FUIIT(1,I)
IP(ITIM .EQ. NPTS(I,1)) RETURN
NPTS (I,1 )=ITIM
TT(2)=T2
TT(1)=T1
NP=NPTS(I,2)
N=NPTS(I,3)
FUT(1,I)=0.O
IF(TT(2) .LT. FUNT(NP,I)) NPm1
DO 300 LL=1,2
L=3-LL

U T=TT (L)
DO 100 J=NP,N
K:J
IF(T .LE. FUI;T(K.1,I)) GO TO 200

100 CONTINUE
200 F(L)=FUN(K,I) + (FUN(K+1,! )-.FUN(K,I ))'(T-'UNT(K,I))/

* (FUNT(K.1,I) -FUNT(K,I))

300 CONTINUE
NPTS(I,2):K
DFrF(1) -F(2)
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FUNT(1,I)zDF
RETURN
END
SUBROUTINE GEOM(IXMN, ISIGNSCOEF,SIGH,SIOVU,CIYC)

C
* .C THIS SUBROUTINE INITIALIZES THE STRESS AND PROPERTY ARRAYS AND

C CALCULATES THE ISOPARAMLETRIC TRANSFORMATION AND STORES ON DISK
C

COtO?/BLK2/ X(gO0),Y(g00),NQ(g01),DISPLT(1800)
COMMO4N/BLK3/ 1010(84I1),NOD(841,i)
COWIION/BLK6/ ROA(I),SCA(4),ETA(4)
COIHON/BLK8/ C(4,1)SO(OXPV(5),YPV(5),XJCOB(5),C1(8,8),ZY(8),

* FV(5,Il),GV(5,1I),XNV(5,II),SIGT(1),DSIG(4I),EPT(1I),DEP(1),
* STOR(6),PWPT,DPWP,CSC(4,1)

DIMENSION SCOEF(8,6),RQ11),zQ(4)
C
C THE AND NODE POINT COORDINATES ARE FOUND
C

DO 100 J=1,4I
K:NOD(IX, J)
RQ(J):X(C)

100 ZQ(J)=Y(K)
C
C ISOPARAMETRIC TRANSFORMATION FACTORS

AI:ZQ(1 ).ZQ(2)-ZQ(3)-ZQ(4)
A2=ZQ( 1)-ZQ(2)-ZQ(3)+ZQ(4)
B= ZQ(1)-.ZQ(2)+ZQ(3)-ZQ(l)
ClP=RQ( 1)-RQ(2)-RQ(3),RQ(I)
C2=RQ( 1 )RQ(2)-RQ(3)-RQ(I)
D: RQ(1)-RQ(2)+RQ(3)-RQ(1)

C QUADRATURE POINT LOOP
C

DO 155 N=1,5
IN(N *LT. 5) GO TO Ill
SC: 0 *0
ET=0.O
GO TO 1141

Ill DU=1.O/SQRT(3.O)
SC=DU*SCA(N)
ET=DUOETA(N)

* 114 D1=C1PDOET
D2=A1,BOSC
D3=C2+DOSC
D4mA2+BOET
DU=1. 0/(D1'D2-D3D)

C
C CALCULATION OF SHAPE FUNCTION DERIVATIVES
C

XC:-O.0
YC20. 0
DO 150 I=1,41
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D5=ROA (I)
D6 :SCA (I)
D7:ETA(I)
FV(N,I)=DUO(D2*(D6 * D5#ET) - D1I'(DT + D563)
GV(N,I):DUO(DI3 (D7 + D51SC) - D3'(D6 + D5#ET))
D8=0.25901.0 + D6§SC)'(1.0 + D7fET)

* XNV(NI)=DB
XC:IC + RQ(I)9D8

150 YC=YC +ZQ(I)*D8
XPV(N):IC
YPV(N)=YC
XJCOB(N)=0. 0625/DL'

155 CONTINUE
C
C INITIALIZE STRESSES AND STRAINS
C

11=0.0
SIGH=O. 0
SIGV:0.O
DPWP=O.O
Do 160 1=1,4i
DSIG(I ):O.O
DEP(I)=O.O

160 EPT(I)=0.O
IF(ISIGN .EQ. 0) GO TO 162
SIGV=SCOEF(ISIGN, 1) + SCOEF(ISIGN, 2)*YC
SIGH=SCOEF(ISIGII, 3) + SCOEF(lSIGI),4 IY
U:SCOEF(ISIGN, 5) +SCOEF(ISIGN,6 )'YC

162 SIGTC1)zSIGH
SIGT(2)=SIGV
SIGT(3):SIGH
PWPT=U
SIGT(' s. 0

C
C STORE INFORMATION ON DISK
C

WRITE(2=IX)((S(J),(C(I,J),CSC(I,J),I1,I),z1,I),(XPV(K),YPV(K),
* XJCOB(K), (FV(K,L),GV(K,L),XNV(K,L),L1,I),K:1,5), (SIGT(M),

O DSIG(M).EPT(M),DEP(M),M-.,'),PWPTDPWP,(STR(N),K:1,6))
RETURN
ENlD

SUBROUTINE RPROP(PROP)
C
C THIS SUB3ROUTINE READS IN AND SCALES THE PROPERTIES REQUIRED
C BY THE BOUNDING SURFACE PLASTICITY MODEL FOR COHESIVE SOILS.
C

DI1VENSION PROP(21)
READ(5,801) (PROP(I),I:1,3),(PROP(I),I:9,11),PROP(7),
1 PROP(21),PROP(17),PROP(16),PROP(20),PROP(5),
2 PROP(6).PROP(8),PROP(iI),PROP(18),PROP(15),
3 PROP(12),PROP(13),PROP(19),PROP(14)

801 FORMAT(8E10.3)
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901 FORMAT(5X, 'CLAY PROPERTIES'//151, 'LAISDA z'.EIO.3/151,
I 'KAPPA z',E1O.3/15X,'MC u',E1O.3/15X,
2 'ME/MC : ,El0.3)

WRITE(6,902) PROP(9),PROP(12),MRP(10),PROP(13),
I PROP(Il),PUOP(7),MP~(21),PROP(1T),

I PROP(19).PROP(16),PROP(18),

I PROP(14i), PROP(20)
-902 FOJIKAT(15X,'RC =t,EIO.3,15X,'RE/UC z',El0.3/

1 15X,'AC 't,E1O.3,151.'AE/AC zt,ElO.3/
2 15X,'T q,ElO.3915X,lPL stEIO.3/
3 15X,'PO COElO.3/15XHARDENING PARAM4ETERS:'/
4j 19X,'514C =q,El0.3,l0X,'SME/SMC a',E1O.3/
5 19X,'HC zv,ElO.3,1OX'lHE/RC z',ElO.3/
6 15X,'PROJECTION POINT 1/C :c ,E10.3/
7 15X,'INITIAL VOID RATIO z',E1O.3)
IF(PROP(5).LT.0.5) WRITE(6,903) PROM()
IF(PROP(5).GE.O.5) WRITE(6,901) PROM()

903 FORIAT(15X,'POISSONOS RATIO :',E1O.3)
904i FORHAT(15X,'SHEAR MODULUS zf,E10.3)

WRITE(6,905) PROP(S)
905 FORMAT(15X, 'AThOSPHERIC PRESSURE mtElO.3)

WRITE(6,9O6) PROP(15)
906 FORMAT(15X,'SIZE OF ELASTIC ZONE =',EIO.3//)

IF(PROP(6).EQ.O.O) WRITE(6,907)
907 FORMAT(51*0""" DRAINED CONDITIONS 609901M

IF(PROP(6).NE.0) WRITE(6,908) PROP(6)
908 IFORMAT(5X, '**** UNDRAINED CONDITIONS --- THE COMBINED 't

1 'SKELETON AND WATER BULK MODULUS :t ,El 0.3/I)
PROP(3 ) PROP(3 )/( 3. 0*SQRT( 3.0) )
PROP(7)=PROP(7)03.0
PROP(21 ):PROP(21 )03.O
RETURN
END

SUBROUTINE CLAY(IDIM, INC. ITNO, PROP,STOR,SIOBH,EPM,
1 DSIGN.DEP?-1,C.CB,UB,DLTAUGAMKIND,LARGE)

C
C SUBROUTINE TO EVALUATE YANNIS DAFALIAS' BOUNDING
C SURFACE PLASTICITY MODEL FOR CLAY SOILS. PREPARED BY
C L.R. HERR14ANN AT THE UNIVERSITY OF CALIFORNIA, DAVIS CAMPUS.
C

DIF.ENSION PROP(21),STOR(6),SIGB(6),DSIG(6),DEP(6),C(6,6),
I SB(3,3),SF(3,3),II(6),DLTA(393),DEP,(6),
2 SIGWt,(6),DSIGM(6),DEPT(393),EPMi(6),EPB(6),CB(6,6)
DATA 11/11,22,33,12,13,23/, DLTA/1.0,300.0,1.0,36000.1.0/
ALFUN(CV,RT,SINV)=2.O0'RT'CV/(1.0.RT-(1.0-RT)'SINV)
SMALL=0. 0001*PROP(8)
DO 40 Irl,6

DSIG(I ):DSIGM(I)

4DEP(I)=DEPM(I)
IF(ITNO.GT.1) 00 TO 100
IF(INC .OT.1) 00 TO 50
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C
C INITIALIZE HISTORY

* C
STOR(1 )tPjOP(2I)
STOR(2)=STOR(1)
STOR(3)=0.51(SIGB(1 )+SIGB(2))
STOR(4I)=0.01'pRop(8)
STOR (5)m0.0

0O TO 100

C UPDATE HISTORY
C

50 STOR(1)=STOR(2)
sTOR(3)=STOR(3)+STOR(I)

STOR (5)=sT0R (5 )+STOR(6)

C CONVERT FROM PLANE STRAIN TO 3-D
C

100 IF(IDIh'.EQ.3) GO TO 200
SIGB(4)=SIGB(3)
SIGB(3):STOR(3)
DSIG(4 )=DSIG(3)
DSIG (3 )=STOR (4)
DEP('4)=DEP(3)
DEP(3)=0. 0
EPB(4I)=EPB(3)
EPB (3) 0D 0
DO 110 I=5,6
SIGB( )=O. 0
DSIG(I )=0.0
EPB(I)=0.o

110 DEP(I)=0.O
C
C DETERMINE 3-D INCREMENTAL PROPERTIES
C

200 GAti:PROP(6)
C

* -C CALCULATE EFFECTIVE STRESS INVARIANTS AND DISTORTIONAL STRESS
C AND CHANGE MATRIX COMPONENTS TO TENSOR COMPONENTS.
C

XIB:0.0
XIFv0. 0
DDIL:O. 0
DILB=0. 0

* DO 205 1%1,3
DDIL=DDIL+DEP (I)
DILB=DILB+EPE(I)
XIB:XIB+SIGE (I)

205 XIFzXIF+SIGB(I )+DSIG(I)
VOIDB 1. 0.PROP (20)
VOIDFzVOIDS
IF(LARGE.EQ.O) 00 TO 210
VOIDB=VOIDBGEXP (-DILD)
VOIDP:VOI&DFOEXP (-DILB-DDIL)
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210 DO 215 gzl,6
1:11(N)/1O
J =MOD (II (N ), 10)
SB(I,J ):SICB(N)-XIBGDLTA(I,J)/3. 0

DET(IJ ):DEP(N)0(1.0.DLTA(I,J))O0.5
DEPT(J, I)=DEPT(I,J)

* SF(I,J)sSIGB(N).DSIG(N)-DLTA (I,J)'IIF/3.0
215 SF(J,I)=SF(I,J)

GAIHP=0.0
IF(IND .EQ. 0)GO TO 217
OAIIPzGAM
UB=STOR(5)
DLTAUwGAMfDDIL

217 XIB=XIB-UB*3. 0
XIF=XIF- (UB+DLTAU )93. 0
STOR(6 ):DLTAU
SRTJB:0. 0
SRTJF:0. 0
DO 220 1=1,3
DO 220 J=1,3
SRTJB=SRTJB.SB(I,J )GSB(I,J)

220 SRTJF:SRTJF+SF(I ,J )'SF(X,J)
SRTJB=SQRT (0. 5SRTJB)
IF(SRTJB'1000. .LT. XXD)SRTJB=O.O
SRTJFzSQRT (0. 5SRTJF)
UF(SYJF*1000. .LT. flF)BStTJF=0.0
SCUB:0. 0
SCUF=0.0
DO 225 I=1,3
DO 225 J=1,3
DO 225 K=1,3
SCUB:SCUB+SB(I,J)@SB(J,K)OSB(l,I)

225 SCUF:SCUF+SF(I,J)'SF(J,K)'SF(K,I)
SCUB=SCUB/3. 0
SCUF:SCUF/3. 0
SN3AB=0.0
IF(SRTJB.GT.SKALL) SN3AB:1. 50SQRT(3. 0)@SCUB/SRTJBS'3
IF(SN3AE.GT. 1.0) SN3ABm 1.0
IF(SN3AB.LT.-1.0) SN3ABr:-1.0
SN3AF:0.0
IF(SRTJF.CT.SMiALL) SN3AF:1. 5'SQRT(3. 0)'SCUF/SRTJF'03
IF(SN3AF.GT. 1.0) SN3AP: 1.0
IF(SN3AF.LT.-1.0) SN13AF:-1.0

4 CS3AB:SQRT(1.0-SJ3AB602)
CS3AF=SQRT (1.0-SN3AF*02)

C
C AVOID ZERO MEAN PRESSURE
C

IF(ABS(XIB).GT.SHALL) G0 TO 227
DUzXIB
XIBmSMALL
IF(DU.LT.0) XIBz-3MALL

227 IF(ABS(XIF).OT.S4ALL) 00 TO 230
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DU=XIF
XIF:SJ4ALL
IF(DU.LT.Q.O) XIF=-SMALL

230 CONTINUE
C
C CALCULATE ELASTIC PROPERTIES
C

DU 1=VOIDB/3. 0/PROP(2)

DU=XIB
IF(DU.LT.PROP(7)) DU=PROP(7)

* . B:D~l'DU
GB=DU2*B3
IF(PROP(5).GT.O.5) GB=PROP(5)
DU 1:VOIDF/3.O/PRO 2)
DIU=XIF
IF(DU.LT.PROP(7)) DU=PROP(7)
BF=DU1'DU
GF:DU2*BF
IF(PROP(5).GT.O.5) GF=GB
DO 235 M=1,6

J =?OD (II (M), 10)
DO 235 N=M,6

L=MOD(II (N), 10)
D'U1=DLTA(K,1)'DLTA(L,J)+DLTA(K,J)'DLTA(I,L)
C(M4,N)=GF'DU1.o(BF+GAP-2.O*GF/3.0)'DLTA(I,J)*DLTA(K,L)
CB(M-',N)=GB'DUI+(BD..GAP-2.0GB/3.0)uNDLTA(I,J)ODLTA(K,L)
CP(N,M):CB(M,N)

235 C(N,M)=C(F,,N)
C
C CALCULATE SIZE OF BOUNDING SURFACE
C

XIOE=STOR (1)
XIOF=STOR(2)
XIL=PROP(7)
DU10=1.0/(PROP(1 )-PROP(2))
IF(XIOB.GE.XIL.AND.XIOF.GE.XIL) GO TO 2410
XIOBS=XIOB
IF(XIOB.LT.XIL) X10D5SXIL
XIOFS=XIOF
IF(XTOF.LT.XIL) XIOFS=XIL
XIOF=XIOB+DU 1000. 50((XIOFS0VOIDF+XIOBS'VOIDB)'DDIL-

41 (XIOBS'VOIDB/DB+XIOPS'VOIDF/BF)'(XIF-XIB)/3.O)
GO TO 245

2410 XIOF:XIODOEXP(DU1000.50((VOIDB+VOIDF)@DDIL-
I (VOIDB/BB+tVOIDF/BF)'(XIF-XIB)/3.0))

2415 STOR(2)=XIOF
IF(INC.ITflO.EQ.2) GO To 4110

4 C
C CALCULATE BOUNDING SURFACE PROPERTIES
C

CALL BOUIID(PROPSRTJB,SN3AB, XSB, XIOBXIB,GAI4B,DFIB,
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DFJB,XKSB,DFALBDFJJB,BSBVOIDB)
CALL BOUND( PRO P,SRTJF,SN3AFXSF,XIOFXFGAIF,DPIP.

DFJF. XKSF, DFALF, DFJJF, DST. VOIDF)
DB=BSB-1 .0
IF(DB .LT. 0.0) DB=O.0
DF=BSF-1 .0
IF(DF.LT.0.0) DFr0.0

46 C
C CALCULATE PLASTIC 14ODULUS
C CHECK FOR ELASTIC ZONE AND UNLOADING

* . C

XMS=ALFUN(PROP(17),PROP( 19),SN3AD)
DU7=0.000100(1.O/XMS)
LB=O
DDD: 1.0.DD*0(. 0-PROP( 15) )
IF(DDD.LE.0.0) GO TO 352
LB: 1
R:ALFUN(PROP(16),PROP(18),SN3AB)
DU:ABS(XSB)
IF(DU.LT.DU7) DU=DU7
DU8=9. 0'DFIB"*2+DFJBO*2/3. 0
DU9zXIOB
IF(XIOB.LT.XIL) DU9mXIL
XKB:XKSBH*DB/DDDS (1.0.1. O/DUIXHS )'DU8'DU9'DU1O'VOIDB
DU 1 =3. O1BB*DFIB
DU2zGB*DFJJB
DU2P=SQHT( 3. O)*GD'DFALB
DU3=XKB+9. O'B'DFIB"*2.GD'DFJB@02.GB'(DFALBOCs3AJD)"2
SUM=0.O
T1=0.0
IFiSRTJB*02 .EQ.0.0) 0O TO 350
DO 3410 I=1,3
DO 3410 J=1,3
DUZO.0
DO 330 K=1,3

330 DU=DU.SB(I,K)ISB(KJ)
T1:Tl+(DU-1. 5'SCUB*SB(I,J )/SRTJB"*2)'DEPT(I,J)/SRTJB"O2

340 SUN:SUM+SB(I,J)ODEPT(I,J)
T1:TI-2. 0fDDIL/3. 0

350 DUz (U DDILeDU2'SUH+DU2P'T1 )/DU3
IF(DU.LT.O.O) 1.8:0

352 LF=0
DDD1I.0.DF#( 1. 0-MP(15))
IF(DDD.LE.0.0) 00 TO 358
LF: 1
H:ALFUN(PROP( 16),PROP(l8),SN3AF)
DU=AES(XSF)
IF(DU.LT.DU7) DUzDU7
DU8=9. 04DFIF*§2+DFJF'*2/3. 0
XD.SuALFUN(PROP( 17),PRP( 19),SN3AF)
DU9mlIOF
IF(XIOF. LT. XIL) DU9=XIL
XKF:XKSF+H'DF/DDDS( 1. 0,1.0/DU'XP.S)ODU8DU9DU10'VOIDF
DU4=.3. OBFDFIF
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DU5=CF'DFJJF
DU6=XKF+9. O'BF#DFXF"*2eGFDFJF'*2.GF' (DFALFGCS3AF)'0 2
DU5P=GFODFALFOSQRT( 3.0)
SUN:0. 0
T1:0.O
IF(SRTJFO#2 .EQ.0.0) GO TO 357
DO 356 1=1,3
DO 356 J=1,3
DU=O.0
DO 355 K=1.3

355 DU=DUeSF(I,K)OSF(K,J)
Tl:Tl+(DU-1. 5SCUF'SF(I,J )/SRTJF'02)'DEPT(I,J)/SRTJF'*2

356 SUI4:SUtl+SF(I,J )*DEPT(I,J)
Tl=T1-2. ODDIL/3.0

357 DO: (DU4DDIL+DU50SUHI+DU5P'T1 )/DU6
IF(DU.LT.O.0) LF=O

C
C CALCULATE PLASTIC PORTION OF INCREMENTAL PROPERTIES
C

358 IF(LF+LB.EQ.O) GO To 410
DO 400 M=:1,6

J=4OD(II (1), 10)
DO 400 N=M,6
K=II(N)/10
L=MOD(II (N), 10)
DO :0.*0
IF(LE.EQ.0) GO TO 373
T2:O.O
T1:O.O
IF(SRTJB#04 .EQ.0.0) GO TO 370
DO 360 LL=1,3
T2:T2+SB(K,LL )OSB(LL,L)

360 T1:TI.SB(I,LL)*SB(LL,J)
T1:DU2PO(T1/SRTJB'02-1. 5SCUB*SB(I,J )/SRTJB"Z4-2. ODLTA(I,J )13.O)
T2=DU2P@ (T2/SRTJB#92-1 .5'SCUB'SE(K,L)/SRTJBGii..2. ODLTA(KL)/3. 0)

370 DUB:-(DU1ODLTA(I,J),D02SB(I,J)T)(DU1ODLTA(KL).
1 DU2*SB(K,L)+T2)/DU3
IF(LF.EQ.O) GO TO 396

373 T2=0.0
T1=0.0
IF(SRTJF*04 .EQ.0.0) GO TO 390
DO 380 LL=1,3
T2=T2+SF(K,LL)O$F(LL,L)

380 T1:T1.SF(I,LL)*SF(LL,J)
Tl:DU5PI(TI/SRTJFOI2-1.5§SCUF6SF(I,J)/SRTJF#14-2.OODLTA(I,J)/3.0)
T2:DU5Pg(T2/SRTJF'O2-1.5'SCUF'SF(K,L)/SRTJF*04-2.0ODLTA(K,L)/3.O)

390 DU.-(DU4'DLTA(IJ)+DU5SF(I,J)Tl)(DU4'DLTA(K,L)+
* 1 D050SF(K,L)+T2)/DU6

396 C(MN)=DU+C(M,N)
CB(MpN)uDUBiCD(M,N)
CE (N , I) :CE (1,N )

400 C (N, H)=C (14,N)
410 CONTINUE



IF(IDIM.EQ.3) RETURN
C
C CONVERT 3-D PRO PER TIES TO PLANE STRAIN
C

DUzO.O
DO 4120 1=1,11
DU=C(3oI)ODEP(I )+DU

4120 C(1.)=0.O
DO 4130 I.1,3
C(I,3)zC(I114)

4130 C(I,11)rO.O
STOR(lI)zDU
RETURN
END

SUJBROUTINE BOUND(PROP,SRTJ.SN3A,X,XIOXIGAH,DFIDFJ,
I IKS,DFAL,DFJJ,SPVOID)

C
C SUBROUTINE TO EVALUATE RELATIONSHIP OF STRESS STATE
C TO BOUNDING SURFACE
C

DIVENSIOIN PROP(21),FSS(3)
ALFUN(CV,RT,SINV):2.O'RTOCV/(1.O.RT-(1.O-RT)OSINV)
DFUN(FUN,RT,FUNC):FUNR*2'( 1.0-RT)/(2.O*RT'FUNIC)
XN:ALFUN(PROP(3),PROP(1),SN3A)
DNAL=DFUN(XN,PROPQI ),PROP(3))
R=ALF Ufl(PROP(9 ),PROP( 12),SN3A)
DRAL:DFUN(R,PROP(12),PROP(9))
A=ALFUR(PROP( 1O),PROP( 13),SN3A)
DAAL=DFUN(A,PROP( 13),PROP(10))
YS=R*A/XN
CC=PROP(14i)

C
C SHIFT PROJECTION POINT
C

DlaII-XIO*CC
IF(ABS(DI).LT.O001) DlxO.001
D2xCC-1.O/R
D3=D1OD2
D5=CC' (CC-2. 0/fl)
Q =SRTJ/Dl
QCCIN/( 1.O-ROCC)
QO=1.OE.20
IF(CC.NE. 0.0) QO=XI(SQRT(1. 0+YS*YS)-( 1.0.3) )/U/CC
IF(SRTJ.NE.O.0) 00 TO 3
IF(D1.O.0) GO TO 10
00 TO 30

3 IF(CC.LT.1.O/R) 0O TO 5
IF(Q .GE.0O) 00 TO 10
IF(Q .LE. QC) 00 TO 10
IF(Q GOE. Q0) 00 TO 30
00 TO 20

5 IFCQ GOE. QC) GO TO 20
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IF(Q .GE.O.O) GO TO 10
IF(Q .LE. Q0) GO TO 20
G0 TO 30

C PROJECTION ON ELLIPSE I
C

10 DII=Dl*D+((R-1.0)'SRTJ/CN)9*2
BS=XIO'(-D3+SQRT(D3gD3-rD' (D5.(2.0-R)/R)) )/DI
LOSTzt
0O TO 100

C
C PROJECTION ON~ HYPERBOLA
C

20 D6=SRTJD( 1.OIR.AIZN)/XN
D7=D3.D6
D8=Dl§Dl-(SRTJ/IN)002
RS=-O. 551105(D5-2. O'A/R/DZ)/D7
IF(D8.EQ.C.O) CO TO 100
DS=XIO'(-D7.SQRT(DTOD7-b8U(D5-2. 0§A/R/XN) ))/Dg
LOSTz2
CO TO 100

C
C PROJECTION ON ELLIPSE 2
C

30 T=PROP(11)
POPzXN/SQRT(1. O+YSI*2)
XJO:A (1. O.YS-SQPT(1. O'YS92) )ITS
BTzT*(XJO-TIFOP)/(XJO-2. OOT'FOP)
10= (BT-T )/FOP/XJO
PSI=1..0/(RO(T-))
D9 :T-BT.CC
D1OuDl*D9
Dli :DIID1,ROOSRTJ#SRTJ
BS=XIO' (-DIO..SQRT(D105D1O-D1 1'(D9@D9-BT'BT)) )/D1 1
LOST: 3

100 XIBARzBSO(XI-XIOOCC)+XIOOCC
IF(XIBAR.EQ.0.0) XIBARz1.OE-20
TH=BSRSRTJ /XIBAR
X:-TH/XN
DU=XIO
IF(XIO.LT.PROP(7)) DU:PROP(7)
DUS=12. 0'VOID/(PROP( 1)-MRP(2) )'XIO@'20D
CO TO (110e200,300),LOST

C
C NORMAL CONlSOLIDATION ZONE
C

110 PSI:YS/(R-1.0)002
DUvR#( 1.0e1XXR*(R-2.O)9X*X)

DFl:2. OOXIOI(CAN4-I *0/3 )GPSI
DFJJs2. 0'XIOOAH'( (R-I. 0)/XN)"42'PSX'DS/XIDAR
DFJ :DFJJ 'SRTJ
IJCSuDUS'(GAti-1. 0/1 )'CAN+R-2.0)'P3IXQSI/R
DFALzPSI'6.00(R-1.0)@TH@GAM'XIO'(((R-1.0)/(R'S20
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1 (2.0/i-Gh1;1.O)),1.O)ODRAL-(R-1.O)iDNAL/KN)/XNO2
RETURN

C
C OVERCONSOLIDATED ZONE
C

200 DU=1.O-I'(t.Oe.TS)
GAN=-(DU+SQRT((X-YS-1.O)0*2e(X'X-1.O)'YS'TS))/(RO(X@Z-1.0))

0 DFIz2. 0*XIO (CAN- 1.0/i)
DPJ:2.0'ZIO'( C .O.TS)/R-XCAI)IXN
X1KS:DUS# (GAN-I 1.0/ )* (DUCGAH+2. O'A/XN)/i
DPJJ=DFJ/SRTJ
DFALs6.OIXIOI(DNAL'(TH'CAH/XN-1. O/R+A/(R*TH'GAM)-2.O*A/XN)/
1 XR*'2+DRAL'( 1.0/TH-I. 0/XN.A/(XN'TH*AN) )/R"12.DAAL'C
2 1.O/XN-1.0/(THfAM*R))/ZN)
RETURN

C
C TENSION ZONE
C

300 GAF'i(TBTSQRT(TBTROTHTHT(T-2. O'BT)) )/( 1. 0RO@TET)
DPI=2. OQSI*XIO' (CAK+T-BT)
DFJJ:2. O'PSIOXIOGAMORO§BS/ZBAR
DFJzDFJJOSRTJ
XISDUSIPSI*PSI (CM:.+T-BT).(GAMi (DT-T).T'(2. O'BT-T))
DYSAL=YS' (DRAL/R.DAAL/A-DNAL/XN)
DFOPALzFOP'(DNAL/XN-YS'DYSAL/( 1. 0YS'YS))
DJOALzXJO' (DAAL/A-DYSAL/YS )+A' (1. /YS-FOP/XN )*DYSAL
DBTALZ C(T-BT )'DJOAL-(T-2.OBT)'T'DFOPAL)/(XJO-2. O*T'FOP)
DROAL:DBTAL/FOP/XJO-ROS (DFOPAL/FOP.DJOAL/XJO)
DFAL:3. 0'PSIXIOTHGAMt(DROAL.2. O'RO'DBTAL/(T.CAN-2. 0'BT))
RETURN
END

SUBROUTINE ACCEL(X2,X1,X,CXL)
C
C THIS SUBROUTINE CALCULATES THE AITKENS CONVERGENCE FACTOR
C

C=1.O
DU:-X2+2.0O*X1-!
IF(DU .EQ. O.0)RETURtN
C=(XI-X2)/DU
IF(C GCT. XL)CzXL

RETURN
END

..~ ~~ ... 1...
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