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Capability of Array Processing Algorithms
to Estimate Source Bearings

by

Stuart R. De Graaf*
Don H, Johnson

Department of Electrical Engineering
Rice University
Houston, Texas

; Abstract

The capabilities of classical, minimum energy, and linear predictive array processing
algorithms to estimate the bearings of two equal-emergy sources is examined. Signal
coherence is shown to affect adversely the resolution and detection capabilities, as well
as the bias characteristics, of all three algorithms, For linear arrays of equally-spaced
sensors, the superior resolution capability of the 1linear predictive algorithm is
demonstrated. The value of utilizing prediction elements in the center of the array to
resolve very closely-spaced source bearings is demonstrated. However, the linear
predictive algorithm is least capable of detecting highly coherent sources., A tradeoff is
established between resolving capability and sensitivity to fimite averaging, Conditions
are established which indicate which algorithm is best suited to anticipated levels of

" signal coherence and averaging, The estimates of source bearing produced by each

algorithm are shown to be asymptotically biased. The bias produced by the classical

_beamformer is most severe, while the minimum energy beamformer produces the least bias, <

\
1. oductio

The determination of the bearings of distant sources of acoustic emergy iua a mpoisy
ocean enviromment is a primary objective of a passive sonar system, A group of acoustic
sensors arranged in a known spatial pattern (am array) is deployed to record the acpustic
field, Classical or Bartlett beamforming, minimum energy (ME) adaptive beamforming™, and
linear predictive (LP) processing slgorithms are commonly employed to estimate source
bearings from array data [2). These processing procedures result in beampatterms, plots
of estimated incident emergy versus bearing-of-look (see figure 1).

Three criteria are used to evaluate the performance of a processing algorithm with
respect to source bearing estimation, The first is resolution. VWhen a single propagating
plane wave impinges on the array, a global maximum occurs omtarget, i.e., at the bearing
of incidence, When two plane waves are incident, their presence may or not be evident in
the beampatterns, If separated in bearing by a sufficient amount, their bearings will be
resolved, in which case the beam—patterns exhibit two distinct maxima as in figure 1, On
the other hand, the beam—patterns may fail to resolve the source bearings; in this case,
the beam—patterns display a single broad maximum located at some intermediate bearing,

" The beam-patterns corresponding to two unresolved sources can greatly resemble those

R T Ut TP S P U > 2 — i F U .

®This research was supported by Office of Naval Research Contract N00014-81-K-0565.

This beamforming algorithm, due to Capon [1], is often referred to as the maximum
likelihood method in the literature, Actually, the beam does not maximize a likelihood
function; thus the customary terminology is misleading.
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De Graaf and Johnson Bearing EBstimation

corresponding to a single source. Resolution analysis assesses the conditions under which
an array processing algorithm is cepable of resolving source bearings. A useful measure
of the resolution capability of anm array processing algorithm is the signal-to—noise ratio
it requires to resolve two closely—-spaced, equal-energy sources,

The beampatterns produced by the processing algorithms exhibit small local maxima
off-target (figure 1), These off-target ripples are referred to as sidelobes, The second
criterion is the degree to which the sidelobes are small, so that they are not confused
with peaks corresponding to incident energy., Thus, detection analysis assesses the
conditions under which the number of targets present in the acoustic field can be
determined accurately.

Finally, a processing algorithm cam both detect and resolve sources but yield
inaccurate estimates of the bearing of each target, Bias amalysis assesses how muck the
estimates of source bearing deviate from the true target bearings.,

Cox [3] analyzed the capability of the Bartlett and ME array processing algorithms to
resolve two equal-energy, temporally uncorrelated, sources. He demonstrated that the ME
algorithm can resolve closely-spaced source bearings at a lower signal-to-noise ratio than
can the Bartlett algorithm. Studying the single source case, Seligson [4] observed that
the performance of the ME algorithm is quite sensitive to deviations of the signal
wavefront from its assumed planar shape, For example, the superposition of temporally
correlated plane waves, which occurs in multipath enviromments, produces a net wavefront
which is not planar, As multipath propagation is prevalent in the ocean [5], there is a
need to understand how source correlation affects the resolving capabilities of array
processing algorithms, This paper pursues an analysis similar to that of Cox to study the
capabilities of Bartlett, ME, and LP algorithms to detect and resolve coherent (i.e,
correlated, narrowband) signals using linear arrays of equally-spaced sensors (LES
arrays). Furthemmore, bias of the bearing estimates produced by the three algorithms is
studied,

Our detection/resolution and bias analyses are based on the assumption that an
infinite amount of ergodic array data is available, thereby allowing the cross spectral
correlation matrix to be determined exactly by averaging over an infinite period of time,
Consequently, these results are not sufficient to assess the performance capability of an
algorithm used in practical situations., To provide some insight into the utitity of each
processing algorithm, guidelines are established which indicate the amount of averaging
necessary to suppress variability of the beam—patterns due to finite averaging.

Z' Sign!l Moggl
The acoustic field present in an ocean enviromment can be modelled as a fimite
superposition of P signal plane waves propagating with different bearings Lp and energies

th

added to a background noise field having zero mean., Assuming that the m sensor is

located at position By its ontput, sampled with period T, is

xﬂ(nT) = n-(ﬂT) + pilsp(n'r - -lc'_kp.jm) m = 0.1.2..-.."—1 (1‘)

M is the number of sensors in the array, ¢ is the speed of propagation, and k is a
dimensionless unit vector pointing along the bearing of propagation, We restrict our
attention to array geometries which exhibit symmetry through the origin, 1{.e.
Ay 1_g ™ “Ey 3 in figure 2, By definition, the signals seen at the origin of the array
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have zero delay., Such a model is said to be phase centered. Evaluating the discrete
Fourier transform of (la) yields

I = o (ON(E) + pgli'p(f)_sp(f). (1b)

where each component in the complex M-dimensional vectors corresponds to am array element,
co(f)g(f) is the vector of discrete Fourier transforms of the noise, §p(f) is the

directiom vector corresponding to source p with components Spn = exp(-j2n f ;p'jn). and
T;(f) is the discrete Fourier transform of sp(nT). o%(f) is the variance of the noise at

frequency f and N(f) is normalized so that E(y'ﬂ) = M,

The following simpie marrowband model is used to describe the signals:

-~  3(2nf aT + ¢ )
s (aT) =c_ e P P
) P

where ;p is a real deterministic amplitude constant, fp is the deterministic center
frequency, and ,p is a random phase variable, The signal DFTs, evaluated at the analysis
frequency f, are

j[pp + n(fp—f)T(N—l)]
7p(f) =o,¢
where

. sio(n(f -£)IN)
=g R . (2)
P P siu(n(fp—f)T)

Referring to figure 2, the componments of the source direction vectors can be written as
Sp- = exp(jap n)' Array geometry determines the parameters
L]

nr

= - 'f . -—'—! -
L 2n o xp By 22 cos(rn Op)-

where T and Ty are the polar coordinates of the mth sensor and Op is the bearing of the

pth source, A is the common wavelength of the narrowband signals,

Each processing algorithm involves the evaluation of a fnnctionnlz:

For notatiomal convenience, the dependence of the beam energies om frequency is

P - 2o N S SN L LA e % - PN TNy TP EP LI LD U ULl W S . 'xJ
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Ppapr'® = ¥ M (32)
o o111 3
Pp(k) 8¢ %) (3b)
! e I-l (3¢c)
. pLP Iy R != . c

R is the cross spectral correlation matrix [2]. ¥ is the directiomof-look vector witn

elemonts l‘ = oxp(ja') where L -j2xn '5 3‘1.- and k¥ is the bearing-of-look. _Uq is the

A
1 prediction elemenmt vector containing a one in the qtll element and zeros elsewhere., The
: usual value of q for a LES array is 0, i,e. the prediction element is at the end of the
array; here we consider the variation of using other prediction elemeants. Typically, a
#! power of -2 rather thanm -1 is used for the LP algorithm, Here, use of the -1 power
ensures that the units of (3a,b,c) agree and allows direct comparison of the resolving
E capabilities of the algorithms [2], An equivalent formula for the LP beam energy which is
more convenient for our analyses is

-1/2

|
pu,q(_;) = |§ nq !] (3d)

-1 -1 o 'o-1
h B =R R,
where a yqu

The foundation upon which this theoretical study rests is the assumed form of the
cross spectral correlation matrix,

e el

Using equation (1b), ome obtains

el Sliofon] - el 8 Bl

;J-g The cross correlations of the signal DFTs are

e

suppressed, We examine the resolution and detection capabilities at a single amalysi
frequency,
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jn(f ~f )T(N-1)
] p = .

g -9)
Elfl’.]-ca E[e p-]
pm pm

The signal coherence coefficients are defined to be the normalized cross correlations

.
Ei? ¥
[ P ‘} (4)
T .
mm apcm
and are analogous to correlation coefficients, It is easily shown that the magnitude of
L
each coherence coefficient 1lies between zero and ome, Furthermore, Cpm= Cmp. When

signals p and m differ by only a constant deterministic phase and amplitude, they are
perfectly coherent, i,e. lcml = 1, This situation can arise, for example, when multiple

propagation paths (with fixed differences in path length) exist between a single source
and the array.

We consider the case where the noise is spatially white, has zero mean, and is
independent of the signals. Subject to these assumptions, the cross spectral correlation
matrix can be written as

’
R= a§1+ scs (5)

where the PxP coherence matrix C is composed of elements cpm‘ S is an MxP matrix whose p':h
column is o'?§p. Using a well-known matrix inverse formula [6], the correlation matrix

inverse can be expressed as

1.1 L -4 3[1 + -g-;-s]-lcs'!. (6)
o, |. % [ % J J

Here, wo are interested in the two source case, For convenience, the signal

coherence C].2 is expressed as (212 = ¢ = lcle“. The array sigmsl-to-noise ratios (ASNR) of

{
|

|

-
the two sources are defimed to be Al = M(d:/cg) and A2 = H(c:/ag). respectively, The
geometric mean of the ASNRs is A12 = \I.A-I-A-;' In this case, the correlation matrix and its
inverse can be expressed, respectively, as B
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The similarity in form of the correlation matrix and its inverse is readily appareat from
il equations (7) and (8). The parameters Kl. 32 and ¢ are given by
;

[1 + Az(l-lclz)]Al

1+A1+A2+2Alzke[c‘cos(§1.§2)]+A1A2(l-lclz)[l-cosz(§1,§2)]

~

Al=

(9a)

[1 + A1(1—|c|2)]A2

1+A1+A2+2A12Re[c‘cos(§1.§2)]+A1A2(1-|c|2)[1-cosz(§1.§2)]

(9b)

5

¢ - A12(1-|c|2)cos(§1.§2)
¢ = ' 2 2 . (9¢)
\|(1 + A1(1-Icl (1 + Az(l-lcl »

21 aand Kz are the modified ASNRs of the two sources. The geometric mean of the modified

ASNRs is 312 = \iilxz. As with coherence, the magnitude of the modified coherence, e, lies

between zero and one., The modified coherence can be expressed in terms of its magnitude

=

and phase: o = lcled?. For equal-energy sources A = A; = A, = A, and A= Zl - 22 = 212.

had ol SAREEE T

Finally, for the two source case, the matrix B;l appearing in equation (3d) can be
written as

1
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Kl and Kz are the doubly-modified ASNRs of the two sources. The geometric meanm of the

~ o~ ~
-~ ~

I -~ ~ -~
doubly-modified ASNRs is A1z = \IAIAZ' For equal-energy sources A = Al = A2 =

._‘Pll

2.

3. Detection apd Regolution of Source Bearing

To study the effect of source bearing, signal-to~noise ratio, and source coherence on
the detection and resolution capabilities of the various array processing algorithms, we
restrict our attention to the case where two equal-energy signals impinge on the array.
For convenience, we define the complex cosine between two complex vectors to be

P39 4
cos(X,}) = Ixinngli:

_i De Graaf and Johason Bearing Estimation
-
i [, 11[ L L q] L[ dey o v -iey o J]
{! :.Uq!q -5 le qu_sl + 5,0 | - 52e DS, + o 5,0 :
l I
g I & [ jo - ja jo -ja [
-1 1 2| ~" 2,q ' ~ 2,q ! ~ 71, ! ~® 1, !
B == | -=%lce ‘U S. + ce S.0 + ce q_[_! +ce q§_ﬂ | (10)
_ a a; [ 1 1¥q 2 2% |
il ali
| i SRR VL SE T SRS P AN e T I
l At l’ 55, +e §2—S1_| + 12§2§2 J
where the parameters Xl. 32 and ; are given by
2 - Ix 1,9 . 7 =~ 2,q 11
Y :Ale + K ,Ge { (11a)
~ l —ja —ja '2
o~ - o~ 2,‘1 ~ o~ l'q 11b
K= e T Kpee (aze)
~ ~ "ja w o —ia I',_ ja - e Jo
g = anglel[Ale La, Ance 2,q] lAze 2.9, Alzc.e l'q]}. (11¢)
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3.1. Resolutjon

When the sources are resolved, the beam energy evaluated at either target bearing
must be larger than the beam energy evaluated between the target bearings. The between—
targets directiom-of-look vector, !0 . is defined to have elements

Yom = exp[j (al.m+a2.n)/2]' For a8 LES array, when the source bearings are symmetric about

array broadside, the between-targets bearing-of-look lies halfway between the target
bearings, i.e. at broadside. The criterion used for resolution of the sources is that the

ratio of on-target to between—target beam energies exceed a threshold value of n2/8. This
quantity, koown as the Rayleigh resolution limit, is the ratio obtsinmed by the Bartlett
algorithm using a LES array composed of many elements when the signal-to-noise ratio is
large and the source bearing separationm is equal to one beam—-width, A beam—width is the
bearing separation between the center of the main lobe and the first null of a classical
beam-pattern,

The following formulae exactly express the dependence of the on-to-betweentarget
beam energy ratios on ASNR, coherence, and bearing separation,

1+ A"l + cos (§1 ) + 2|c|cos(¢)cos(sl ,8 )]

Pgyppion) 2] (12)
B (between) 1 + 2Acos (_!0.§1)[1 + |c|cos(p)]
Pm(on) 1 - 2Acos (-0"1) [1 + |c|cos(¢)]
(13)

PME(I;;—tween) = - 2 - -
1 - A[l + cos (_Sl.,sz) + 2|c|cos(¢)co:(§1._82)]

|, ]1/2

| ! 1 + 2401 + cos(;))cosz(lo._sl) .! |

] -

| —a, 1]

: | - 4A|-|c=|cos["‘z"q'—L"'q - ] + cos 'Z"Lz—l"gjll :

P, (on) | l [ JJ |
LPL; | (14)

= | l

LP (between) || ~ ]l

I 1 + Al1 + cos (51._§2) + 2cos(¢)cos(81._2) il

:' '=

l -~ ~ -~ ~ '
il, - ZA[Icl(cos(az'q-al.q-p)‘l'cos(v)) +1 + cos(az'q—al.q)cos(§1.§z)h=
|

These expressions are valid for all phase-centered arrays which exhibit symmetry through
the origin, Fr- such ge vetries, the complex cosines between the source and direction-
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of-look vectors are real valued, The effects of array geometry, number of sensors, and
source bearing separation are contained entirely in these cosine terms,

The complexity of expressions (12, 13, and 14) prevents a clear understanding of the
effects of ASNR, coherence, and bearing separation on resolving capability. To gain such
an understanding, numerical solutions were obtained for the resolvemt array signal-to—
noise ratio, the minimum ASNR which results in resolved sources, A LES array was assumed,
and the sources were assumed to be located symmetrically about array broadside. The
resolvent ASNR is a function of the magnitude and phase of the coherence as well as source
bearing separation.

Figure 3a compares the minimum ASNR necessary for a ten element array to resolve the
bearings of incoherent sources using the Bartlett, ME, and LPo processing algorithms, Of
the three, the LPb algorithm requires the least ASNR to resolve source bearings. The ME

and LPb algorithms are both capable of resolving arbitrarily closely-spaced source

bearings if the ASNR is high emough. In contrast, the Bartlett algorithm is incapable of
resolving bearings spaced more closely than one beamwidth regardless of the ASNR,

Figures 1la, b, and ¢ illustrate Bartlett, ME, and LP0 beam—patterns, respectively, which

just resolve the indicated incoherent sources, In each case the ASNR is 10dB and the
bearing separation is the smallest resolvable (from figure 3a). A sensidble way to compare
the capabilities of the algorithms to resolve coherent sources is to select the coherence
phase which maximizes the resolvent ASNR for each source bearing separation, Thus the
worst—-case resolvent ASNR is sufficient to guarantee bearing resolution regardless of
coherence phase; sources with particular coherence phases can usually be resolved at a
somewhat lower ASNR, Figures 3b and ¢ compare the worst—-case resolvent ASNR for the three
algorithms when the coherence magnitude is .7 and .99, respectively. As the magnitude of

the coherence increases, the resolvent ASNR for the ME and LPO algorithms increases, The

‘LPb algorithm retains its advantage over ME and Bartlett processing with regard to bearing

resolution, The LPo algorithm comsistently requires roughly 15dB less ASNR thean the ME

algorithm to resolve closely-spaced source bearings. The Bartlett algorithm again
exhibits a minimum separation below which source bearings cannot necessarily be resolved;
this 1limit increases as the magnitude of the coherence increases,

As discussed by Johnson [2], the limear predictive algorithm offers flexibility in
the choice of prediction element q. Figure 4 compares the minimum ASNR necessary for a
ten element array to resolve the bearings of incoberent sources using the 1linear
predictive algorithm with prediction elements 0 to 4, As a function of prediction element
q, the resolvent ASNR is symmetric about the center of the array, For closely-spaced

source bearings (9540) the center prediction elements (g=4,5) require the least ASNR to
resolve the source bearings, Figures 5a and b show the LP4 and LPO beampatterns,
respectively, which result when incoherenmt sources separated by 2° impinge on a ten

element array; the ASNR is 21 dB, As expected (figure 4), the LP‘ algorithm resolves the

source bearings whereas the LPo algorithm does not, More widely-separated bearings
(4°<9$22°) are most easily resolved by prediction elements at the ends of the array
(q=0,9), The sharp peaks in the plots for prediction elements 3-6 correspond to
situations in which these LP algorithms produce spurious peaks in their beam-patterms at
bearings between the actnal target bearings, Figure 6 illustrates this phenomenon when
q=3. VWhile the source bearings are visibly resolved, peak bias and the spurious
intermediate peak combine to confound the resolution criterion, For all prediction

-9-
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elements, as source coherence increases in magnitude from zero to omne, the resolvent ASNR
rises quite uniformly as a function of bearing separation, For 2 ten elemeunt array, the
resolvent ASNR for sources having .7 c¢oherence magnitude is 6dB greater than for
incoherent souw-ces; the resolvent ASNR for sources having ,99 coherence magnitude is 15dB
greater,

3.2. De on

In addition to resolving source bearings, it is necessary for a processing algorithm
to detect the presence of sources by exhibiting peaks in the beam—pattern which stand out
against off-target ripple. The criterion used for detection of the sources is that the
ratio of on—target to highest—sidelobe beam energy exceed a threshold value of two. This
ratio is established in two stages, First, the ratio of on—taerget beam energy to noise
beam emergy is established, By definition, the noise beam energy is evaluated when no
sources are present, i.e. A1 = A2 = 0, Second, a relationship is established between the

highest—sidelobe and noise beam energies, Together, these relationships are used to
assess each algorithm’s detection capability.

The following formulae exactly express the dependence of the on-target-to~noise beam
energy ratios on ASNR, coherence, and bearing separation,

P (omn)
P BA%I =1+ A[l + cosz(§ »8,) + 2lclcos(g)cos(S, .S )] (15)
BART noi se) L 1’=2 1°527
Pug(on) - 1
P, _(noise) - - o (16)
ME 1 - A[I + cosz(§1.§2) + 2|c|cos(¢)cos(§1.§2)]
P . (on) 1/2
LPg:_ - [» 1 ]
Pp (noise) |[ ~ 2 ~ 4]|
q | 1+ All + cos ' (8,,8,) + 2cos(p)cos(S.,8,)
I 12 1'%2 1
[ [ran
:' sz|~|< -a, -p ] )]'i
l{ - i c r:os(a.z‘q %.q ¢)+cos(g)) + 1 + cos(az.q—al’q)cos(§1.§2 JJI
|

These expressions are valid for all phase—centered arrays which exhibit symmetry through
the origin, The effects of array geometry, number of sensors, and source bearing
separation are contained entirely in the cosine terms.

For LES arrays it is straightforward to show that the worst—case (largest) ratios of
highest-sidelobe~to-noise beam energy are:
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P high idelobe)
B!BT( ghest sidelobe S1e 164 (18)
PBART(noise) 9"2

PuE(highest sidelobe) . 1
PuE(noise) L - ;§§ (19)
9n2
Pp (highest sidelobe)
g - 1
PLP (noise) [ ~] (20)
! 1-2 [K+A
3n l Snj

Equations (15, 16, and 17) in conjunction with (18, 19, and 20) establish lower bounds on
the on-target-to-highest—sidelobe beam energy ratios for LES arrays. Using these bounds,
numerical solutions were obtained for the detectable array signal-to-noise ratio, the
minimum ASNR which causes the ratio of oo—target to highest-sidelobe beam energies to
exceed the threshold value of two. As with the resolvent ASNR, the detectable ASNR is a
function of the coherence magnitude and phase as well as source bearing separation. The
detectable ASNR of the Bartlett algorithm is virtually unaffected by inmcreasing source
coherence, The LP algorithm requires the least ASNR to detect incoherent sources, while
the Bartlett algorithm requires the highest, For coherent sources, the worst-case
coherence phase maximizes the detectable ASNR, Thus the worst-case detectable ASNR is
sufficient to guaramtee source detection regardless of coherence phase; sources with
particular coherence phases can usually be detected at a somewhat lower ASNR, As source
coherence increases, the worst-case detectable ASNR for the ME and LP algorithms
increases, For highly coherent sources, the LP algorithm requires the highest ASNR to
guarantee source detection, and the Bartlett algorithm the least. All of the algorithms
require a higher SNR to detect widely—separated sources tham to resolve them, Conversely,
all of the algorithms require a higher SNR to resolve closely-spaced sources than to
detect them, Figures 7a, b, and ¢ show the minimum ASNR required by the Bartlett, ME, and
LPb processing algorithms to guarantee both detection and resolution of equal-energy

sources with varying degrees of coherence,

4. Pesk Biss

Even when targets can be detected and resolved in a background of white noise, the
corresponding peaks in the beampatterns may not occur at precisely the true source
bearings (i.e., they may be biased). As passive sonar systems are often used to localize
targets at great ranges, small errors in bearing estimates can lead to large errors in
position estimates, In addition, non-zero bias would cause the resolvent and detectable
ASNR of section 3 to be somewhat higher than necessary for visible peak resolution and/or
detection, When a single source is present, all three algorithms yield an unbiased
estimate of the source bearing when the correlation matrix is known; when multiple sources
are present, the estimates are generally biased, In this section, formulae are presenmted
which approximately describe the bias induced in onme target peak by a second target for
the Bartlett, ME, and LP beam-patterns, We emphasize that the bias results are based on
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the assumption that the cross spectral correlation matrix is known exactly., Thus the
formulae indicate the asymptotic (with respect to averaging) bias ioherent in each
processing algorithm,

We restrict our study of bias to LES arrays. The components of the directiom-of-look
vector are Wm = exp(-j(M-1-2m)a/2), and the components of the source directiom vectors are

sln = exp(-j(M—l-Zm)a1/2) and S2m = exp(-j(u—l—Zm)aZIZ). The tramsform bearimg-of—-look, a,
is related to the angular bearing-of-look, 8, by

a =1 275 sin®,

where d is the seunsor separation and A is the signal wavelength, The source transform and
angular bearings are similarly related.

The transform bias of the peak corresponding to source 1 is defined to be
Aa1 = 31 - a5, where 31 is the estimate of the transform bearing of source 1, i.,e. the
location of the actual beam—pattern peak, The following notation will be used throughout
the discussion:
sin(M(a-al)/Z)
sin((a-al)IZ)

gl(a) = Mcos[!,§1]

sin(M(a-az)IZ)
8,(a) = Meos[¥.5,] = sin((a=c,)/2)

Using equations (7) and (8), the Bartlett and ME beampatterns can be expressed as
functions of transform bearing as follows:

ArT® = ! B = o [ fl 2(a) + 2"'|c|cos(¢)31(a)sz(a) + 22 (a)] (21)

~ ~

A

A
M- gi(a) - 2—i3|c|coa(¢)sl(a)gz(a) - ]%g;(c)J (22)

B
2

= | >

[r'm(c:):|'1 - K ly= 2

When the bias is small compared to a beam-width, 2n/M, Taylor series expansions of 80 8y

:f. ag. and 8,8, to second order about e, will be accurate in the neighborhood of the

maximum, Substitution of these expansions into (21) and (22) and setting the derivatives
with respect to a equal to zero at the maximum yields

-12-
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[A12|c|c08(¢)l + Azgz(cl)];z(c )
Bartlett

A1"'1(“1) + Az[;z ) + '2(“1)'2(“ )]

B
|
|
l

i (23)
|
|
I
J

+ Aizlclcos(,)[lgz(al) + ;2(a1)31(¢ )]

[312|:|cos(;)l + 1232(01)]3 (a))

A Ngl(al) + Az[gz (a ) + sz(al)gz(a )] (24)

T
I
|
l

I—_-———-——l

+ lelclcos(p)[ngz(al) + gz(al)zl(a )]

Taylor series analysis analogous to that already described is applied to the
quadratic form (3d) to obtain the LP bias expression, For notational convenience, define
~C&(¢) = cos(Q(a-az)) and Sz(a) = sin(Q(a-az)). where Q = (M-1-2q)/2.




LNLNS gam 20

B 20 S e P i Al Sl JRndl et} AR A A At R i Pt A A Akl B Attt Shaai St it Dl P vt Mistatiae. 4 Aaa

De Graaf aad Johason Bearing Estimatioa

[xlzcos(;)u+xzzz(c1)]gz(a )

|
|
2[02(0.1)zz(al)-(lsz(al)gz(a )] :
|
|
|
|

12 Iel sin(;) [mcz(al)-sz(al)]J

I
I
I
| -
i
|
E ~12|:|cos(;)[32(a1)-msz(a ]
&
A

l(gl(cl) + A ‘-32(11.1)32((11)4-32 (a )]
- (25)
+ Klzcos(¢)[u;z(a1)+.1(a1>gz(a )]
llA L (a )- m]
1 J

~ ” [ 2
IIA2 [Cz (al)gz(al)-zasz(al)gz(al)-(l C2 (al)zz(a )]

I
I
|
I
I
|
!
I
I
!
I
I
| .
: - IIA |c|cos(p)[C2(a1)sl(a )-Ma? C,(a )+32(a1)-Q zz(al)]
I

Il

e St S— — — — — — —— — — — — —— —— — f———

12IZ|sin(;)[s2(a );l(al) w? s, (a,)- 2Q32(a )]

Bquations (23, 24, and 25) approximate the effects of source bearing separation,
coherence, signal-to-noise ratio, relative source strength, and number of array elements
on peak bias, While the expressions are complicated, several important observations can
be made pertaining to each algorithm, For the Bartlett algorithm, bias does not depend on
SNR, VWhen the sources are incoherent, the bias of peak 1 increases as the strength of
source 2 increases., The direction, positive or negative, of the bias depends onm the
source separation, While there are some bearing separations for which the bias is zero,
generally it is non-zero. The behavior of ME peak bias as a function of relative source
strength and coherence is clearly more complicated than is the Bartlett bias behavior
(refer to eqs. (9) and (11)). However, the similarity of the ME and Bartlett bias

expressions is obvious, For equal energy sources Xl = Kz. and the only difference between
equations (23) and (24) is the substitution of ¢ for c. The modified coheremce (c) of

sources which are not perfectly coherent tends asymptotically toward
-cos(}l.ﬁz) = -;2(01)/H as ASNR increases, Consequently the ME bias for equal-energy

sources tends to zero as ASNR increases, However, for finite ASNR the ME bias is

-14-
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generally non—zero, Similarly, it can be shown that the LP bias for equal-energy sources
tends to zero as ASNR increases; for finite ASNR the LP bias is generally non-zero.

The complexity of the bias expressions necessitates computer evaluation, Figure 8a
compares the Bartlett, ME, and LPo bias of two incoherent, equal—-energy sources using a

ten element array; the ASNR is 10dB., The approximately linear region of each piot for
small source separations reflects the inability of the algorithms to resolve the sources,
At larger source separations, the bias exhibits oscillatory behavior., The ME algorithm

has the smallest amplitude of oscillation, followed by the LPo and Bartlett aslgorithms,

In figure 8b, the ASNR has been raised to 30 dB. The bias of both the ME and LPo

algorithms has decressed for all source seflrations; more closely-spaced sources are

resolved than before, For widely—spaced sources, the ME bias remains smaller than the LPO

bias, The Bartlett bias is unchanged by the increase inm ASNR., Figures 9a, b, and ¢

compare the Bartlett, ME, and LPb bias when the coherence magnitude is .7 and the ASNR is

10 dB, Each plot corresponds to a different coherence phase. Clearly coherence phase as
well as source separation determine the direction and magnitude of the peak bias, For
widely—-separated sources, the Bartlett algorithm continues to exhibit the largest bias,
and the ME algorithm the smallest,

Figure 10 compares the LPq bias of incoherent source bearing produced by prediction

elements 0-4 using a ten element array; the ASNR is 10dB. Note that the plot for the
center predictinon element (g=4) departs from linearity at a smaller source separation than
the others, reflecting its superior resolution capability. However, the center prediction
element can produce larger bias than the others for more widely-spaced sources,

When the sources are separated by at least an amount corresponding to the first zeros
of (23, 7. and 25), the biases predicted by these expressions are very accurate, However
expressiouz (23, 24, and 25) do not predict the biases of more closely-spaced sources
accurately, The bias for unresolved sources can be a significant fraction of one beam
width, Consequently the validity of the bias expressions for closely-spaced sources is
suspect because they are based on Taylor expansions of the beam—patterns to second order,
Expansion of the beam-patterns to third order produces significantly more complicated bias
expressions which do not provide a correspondingly great improvement in acocuracy.

3. Effects of Finite Averaging

Results presented in sections 3 and 4 were based on use of the true correlation
matrix, The effect of empirical computation of the correlation matrix by averaging the
available sensor output data must also be considered. Assume that T=NK samples of the
sensor outputs are available, The data is broken into K consecutive nom-overlapping

segments each of length N, The kth

(x)

data segment is transformed yielding a vector of

Fourier transforms Y  (f), Following common practice [7,8], the correlation matrix

estimate is given by:
K-1 .
=23 1Mz
k=0

The statistics of this random matrix have been studied by Goodman(7]. It is importanmt to
note that R will not be positive definite or iinvertible if K ( M because it will have MK
eigenvalues equal to zero.

i
)
)
}
b
b
X
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Consider the following narrowband signal model:
—  j(2nf oT + ¢ (nT))
s (aT) = o_ ¢ P P
P P

where fp is the center frequency of source p and pp(t) is a slowly varying random phase.

It is assumed that pp(t) varies slowly enough that it can be considered essentially {
constant over a length N DFT. ]
|

3.1. Coherence
Evaluating the DFT of the kth signal segment at the anmalysis frequency f yields ‘
+ k2nf TN + n(f -£f)T(N-1
j[,Puk g P n( )4 T )]

(k) -
l'p (f) op e

where pp " pp(kNT) and L is as defined in equation (2)., The coherence coefticient

between sources p and m is defined to be

KE-1
1 (k)g(K)®
201; v

Ky (26)
cpm: c o *
pm

As ?;k) and ‘l'n(’k) are random variables, so are the coherence coefficients. Comparing

equations (26) and (4), it is apparent that the expectation operator has been replaced by
a time average of the sample functions.

One important mechanism which results in source coherence is multipath propagation,
To see how the coherence due to multipath depends on the time-bandwidth product, K,
consider the two source case, The effect of multipath propagation is modelled by writing

1. 2Pt %

where p is a constant random phase shift due to the average differenmce in path lengths,
and ¢k is & zero mean random phase variable which accounts for a time varying difference

ina path lengths due to platform motion, source motion, or motion of the scattering surface

DA S A aus

i (see figure 11), For mathematical convenience, assume that ’i and ’k are statistically

- independent when i # k, and that the probability demsity of pk is uniform over the

¥ interval [-un,pn]. The conditional expected value of the coherence given p is

[

1 sn(n(t,-£,)mE) I[# * 1) TNK-D ]

¢ E(C,,l¢) = T —y e (27)
12 un K:ln(n(fl-fz)'m)
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De Graaf aand Johnson Bearing Estimation

The magnitude of the conditionmal expected value of C12 is always less than or equal to

one, It tends toward zero, but not monotonically, as the time-bandwidth product and/or
the inter—-signal frequency differenmce and/or the randomness of the inter-signal phase
increases (up—->1). The coherence between sources which have nearly the same center
frequencies or phases is reduced by increasing the amount of averaging K. Jf the signals
share the same center frequencies and have a constant phase relationship then the
coherence magnitude will be one regardless of the amount of averaging performed, Even
when the inter—signal phase sequence is completely ranmdom (p = 1) the variance of the
magnitude of the coherence is 1/K, not zero. Thus sources which are incoherent in the
expected value sense of equation (4) may not be incoherent in the time average sense of
equation (26),

5.2. Randomness of Beam—Patterns

Capon and Goodman[8] have studied the statistics of the Bartlett and ME beam—patterns
when finite averaging is performed to obtain the correlation matrix estimate, and
Baggeroer[9] has studied the statistics of the LP spectral estimator for time series data,
These analyses are rigorous mathematically, but fail to provide a simple guide to the
amount of averaging required to reduce beam—-pattern randommess to acceptable levels, By
analyzing the variability of ontarget and noise beam energies with respect to the non—
zero signal-noise cross terms in the single source case [10], the following guidelines can
be established which dictate the amount of averaging necessary for each algorithm to
produce beam—patterns with a small random compopent, These results are valid for LES
arrays.

Bartlett: K » M 2 (28)
S [+
I , 2l
% %
ME: E>»N (29)
2
%
K>> Mand K 3 u2—5 (30)
%

Figures 12a, b, and ¢ show several Bartlett beampatterns for a ten element array
when K=10, 100, and 1000, respectively; the SNR is ome, The variability of the Bartlett
beampatterns decreases as K increases, In all three cases the amount of averaging is
such that the criterion K>>,1 is satisfied, For K=10 the degree of variability is greater
than might be expected; with such small time-bandwidth products the assumptions leading to
condition (28) are not entirely valid; nevertheless the variability for E=10 is not so
severe as to obscure the target, The variability of both the K=100 and K=1000 beam
patterns is small, Figures 13a, b, and ¢ show the ME beam-patterns for the same data,
The variability of the ME beampatterns decreases as K increases., The K=10 case does not
satisfy comdition (29), and the variability is so great as to obscure the broadside
target.

Figures 14a, b, and ¢ show several LPO beam-patterns for a ten element array when

K=10, 100, and 1000, respectively; the SNR is one, The variability of the patterans
decreases as the time-bandwidth product increases., It has been shown [10] that finite
averaging can also produce spurious noise induced peaks off-target in LP beam—patteras;
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such peaks are appareant for the K=10 case. Only the K=1000 beampattern has small

variability, as expected, since M2=100. The second condition of (30) indicates that as the
SNR increases, more averaging must be performed to maintain a constant level of noise

induced variability in the beam energies. Figure 15 shows several LPo beam—-patterns for a

ten element array when K=1000; the array SNR is 20dB. Comparison of figures l4c and 15
confirms that the variability of the on-target beam energy increases as the SNR increases.
For large arrays, the second condition (30) is dominant becaunse of its proportionality to

w2,
6. Conclugiong

The bearing estimation capabilities of the beamforming and linear predictive array
processing algorithms discussed here are adversely affected by source coherence and by
limited averaging in the computation of the correlation matrix, Furthermore, the
performance of each algorithm is affected to a different degree by these conditions, For
LES arrays, no ome algorithm is superior to the others in all situatioms. Consequently,
the coherence and amount of averaging possible inm particular applications greatly
influence the choice of an "optimal’” array processing algorithm,

The incremental effect of a change in coherence magnitude on the detection and
resolution capabilities and bias of the ME and LP algorithms is greatest whea the
coherence magnitude is large (near ome); for the Bartlett algorithm, the incremental
effect is greatest when the coherence magnitude is small, Thus, the adaptive algorithms
(ME and LP) are less sensitive to low levels of signal coherence tham is corventional
beamforming, As the magnitude of the coherence increases from zero to one, the resolving
capability of all of the algorithms diminishes. Except for perfectly ccherent sources,
the LP processing algorithm is uniformly the most capable of resolving closely-spaced
sources, followed by ME and Bartlett processing. The superior resolution capability of
the LP algorithm, compared with the ME algorithm, is somewhat offset by the greater bias
of its bearing estimates, In terms of statistical averaging, the Bartlett, ME, and LP
slgoritims do not yield asymptotically uabiased estimates of source bearimg. Therefore,
Cramer-Rao lower bounds on the variance of these bearing estimates are suspect as they
ususlly assume that the estimates are asymptotically unbiased. The version of this bound
that pertains to biased estimators contains an additional factor of one plus the
derivative of the bias with respect to the parameter being estimated [11], Even for small
biases, the magnitude of this derivative canm be large with respect to one because of the
oscillatory nature of the bias, For LES arrays the maximum magnitude of this slope
appears to be independent of the number of array elements when the ASNR remains constant,
The ME algorithm produces the least bias in its bearing estimates, and that bias decreases
as SNR increases., LP bias is greater than ME bias, but also diminishes with increasing
SNR., Bartlett bias is the most severe and is independent of SNR, The bias produced by
all three algorithms becomes more severe as source coherence increases, The LP algorithm
has a slightly greater capability to detect incoherent sources than the ME and Bartlett
algorithms, Coherence has negligible effect onm the detection capability of Bartlett
processing., In contrast, as source coherence increases, the detection capability of ME
processing decreases, as Seligson [5] observed. As source coherence increases, the LP
algorithm becomes the least capable of detecting sources, and the Bartlett algorithm most
capable, Thus a tradeoff exists between the resolution and detection of highly coherent
sources,

The variation to the LP algorithm of utilizing different prediction elements proves
to be of some value, Moving the prediction element from the end to the center of a LES
erray enhances the capability of the linear predictive algorithm to resolve extremely
closely-spaced source bearings., However, the beam—patterns produced by the center

-18-




T T s TR Ty TR T T OO FmEATATY oY OO TR AR TR R/SFmEAORFEORASEOSAS) 7 T T 5 7 e T

De Graaf and Johnson Bearing Estimation

prediction elements are more likely to exhibit spurious peaks when the sources are less
closely spaced, In addition, bias of the bearing estimates can be greatest when the
center prediction elements are utilized. Choice of prediction element has no effect on

the capability of the LP algorithm to detect widely-separated sources. The eftect of
increasing source coherence is the same for all prediction elements,

In section § constraints on the time-bandwidth product were presented which ensure
minimal sensitivity of the beampatterns to imperfc:tions in the correlation matrix that
result from finite averaging, The Bartlett beam—pattern is least sensitive to finite
averaging while LP beampatterns are most sensitive, The sensitivity of the ME beam
pattern to finite averaging lies between these extremes. Thus, a tradeoff exists between
resolving capability and semsitivity to finite averaging.

The LP algorithms are most capable of resolving closely-spaced sources; however,
their high sensitivity to finite averaging restricts their application to environments
where large amounts of averaging are possible., The Bartlett algorithm is least sensitive
to finite averaging and requires the least SNR to detect widely-separated sources;
however, its resolving capability is very poor. The ME algorithm lies between the LP and
Bartlett algorithms in terms of resolution and detection capabilities as well as
sensitivity to finite averaging, In addition, the ME algorithm produces the least biased
estimates of source bearing, Thus the ME algorithm seems best suited to applications
where the amount of averaging possible is small and the capability to resolve closely-
spaced source bearings is requisite. The LP algorithms are of little value in these
situations because of their extreme sensitivity to noise. The Bartlett algorithm is slso
of little value here because of its extremely poor resolving capability. Table 1 crudely
suggests which array processing algorithm is best suited to each of four combinations of
source separation and amount of averaging possible when a LES array is used.

Time-bandwidth Bearing separation of sources

| | |
} product : Closely spaced | Widely separated :
1
| | | §
Small ME for all | Bartlett for
I | coherences | all coherences I
% ] 4 I
| | ' |
LPend for all | Bartlett for
: l | all coherences =
|
I : coherences | LP or ME for :
| Large | p for | small coherences |
| | center | |
| | ' |
all coherences |
| | when signals are | |
' I very close | I

Table 1,
Suggested processing algorithms for LES arrays,
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EFigyre Captions
Figure 1: Bartlett (a), ME (b), and LP0 (c) beam—patterns generated using a ten

element LES array with half-wavelength sensor spacing. The ASNR is 10dB, and the
indicated sources are just resolved,

Figure 2: Array geometry which is symmetric through the origin,

Figure 3: Worst—case resolvent ASNR for the ten element LES array when the coherence
magnitude is 0 (a), .7 (b), and .99 (¢c).

Figure 4: Dependence of linear predictive resolvent ASNR on prediction element using
the ten element LES array, The sources are incoherent.

Figure 5: Lp, (a) and LP, (b) beam—patterns that result when incoherent plane waves

separated by 2° impinge on the ten element LES array. The ASNR is 21 dB.
Figure 6: LP3 beam—pattern that results when incoherent plane waves separated by

14,023° impinge on the ten element LES array. The ASNR is 30 dB. The peak at 0° is
spurious.

Figure 7: Worst-case resolvent and detectable ASNR for the ten element LES array when
the coherence magnitude is 0 (a), .7 (b), and .99 (c).

Figure 8: Bias of incoherent source bearing estimates using the ten element LES array
when the ASNR is 10dB (a) and 30dB (b)

Figure 9: Bartlett (a), ME (b), and LPo (c) bearing estimate biases for sources with
coherence magnitude ,7 using the ten element LES array., Each plot corresponds to a
different coherence phase. The ASNR is 10 dB.

Figure 10: Dependence of 1linear predictive bearing estimate bias on prediction
element using the ten element LES array. The sources are incoherent, and the ASNR is 10
dB.

Figure 11: Multipath propagation in the ocean due to specular reflection, The
difference in path lengths varies as a function of time because of the dynamic ocean
surface.

Figure 12: Variability of Bartlett beam-patterns induced by finite averaging, FEach
plot shows four beampatterns corresponding to distinct estimates of the correlation
matrix using the ten element LES array. The time-bandwidth product is 10 (a), 100 (b),
and 1000 (c), The ASNR is 10 4B,

Figure 13: Variability of ME beam—patterns induced by finmite averaging. Each plot
shows four beampatterns corresponding to distinct estimates of the correlation matrix
using the ten element LES array. The time-bandwidth product is 10 (a), 100 (b), and 1000
(c). The ASNR is 10 dB.

Figure 14: Variability of LPo beam-patterns induced by finite averaging, Each plot
shows four beam—patterns corresponding to distinct estimates of the correlation matrix
using the ten element LES array, The time-bandwidth product is 10 (a), 100 (b), and 1000
(c). The ASNR is 10 4B,

Figure 15: Variability of LPO beam~patterns when the time—bandwidth product is 1000
and the ASNR is 20 dB. The variability of the on-target beam energy increases as the SNR
increases,
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