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REDUCTION OF ALL-POLE PARAMETER ESTIMATOR BIAS
BY SUCCESSIVE AUTOCORRELATION

Darcy McCinn and Don H. Johnson

Abstract

Conventional all-pole parameter estimators applied to noise corrupted all-

pole sequences result in biased estimates. This paper describes a procedure by which

reduction of this bias is accomplished by applying pole-preserving, signal to noise ratio

improving functions to the sequence. Correlation like pole-preserving functions are

Investigated and pole dependent signal to noise ratio improvement is described. An

all-pole parameter estimator using successive application of a pole-preserving function

(successive autocorrelation) is given. Comparison is made with the least squares com-

bination of the higher order Yule-Walker equations, an approach to bias reduction

reported by Cadzow. Successive autocorrelation is found to result in improved perfor-
mance, with estimates of higher Q poles being most effectively enhanced.

Introduction

Goldberger [1] and others have shown that when the classic least squares esti-

mator of all-pole parameters (Yule-Walker equations) is applied to noise corrupted all-

pole sequences, the estimates are biased. To avoid biased estimators, Chan [2] applied

* the method of Instrumental variables to all-pole spectrum estimation. The use of

lagged data as the instrumental variables results in the higher order Yule-Walker equa-

tions (HOYWE) investigated by Kay [3] and Gingras [4]. Kay noted that the large vari-

ance of estimators based on the HOYWE was a serious drawback to the approach. This

problem was addressed by Cadzow [5] by forming a least squares combination of the

overdetermined system of HOYWE. The elements of the final normal equations contain
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fourth powers of the data, and can be thought of as correlations of the correlation esti-

mates. Insight into these approaches, and a generalization of the algorithms used may

be attained by viewing the elements of the HOYWE as a data sequence, and the auto-

correlation estimator an a pole-preserving. signal to noise ratio improving function.

Problem Definition

Let S be a pth order all-pole sequence given by the difference equation

St adjsg...+ G6t (1)o-1

The noise corrupted sequence is given by

Zgt = S + t =0,...,N- 1 (2)

where Ct is .- identically distributed zero mean noise sequence with variance o2. The

all-pole sequence jSg I is deterministic and represents the Impulse response of an all-

pole digital s.em. This model is often used in impulse response analysis, speech pro-

cessing and -e analysis of transients.

Pole-Preserwiag Functins

A function of an al-pole sequence Is pole-preserving If the result of applying

o the function to an all-pole sequence is a sequence with the same poles as the original.

*' For example, the autocorrelatlon of ISt I is a pole-preserving function. This becomes

- evident by expanding the N-transform of the autocorrelation for lags 2 0. The S -

transform S(z) of a pth order all-pole sequence Is given by

, . b .. . . ..
Sz) = ....... = -(3)
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The 2 -transform of the autocorrelation of 1Sg I is given by

Zj.nj= s(r)s'(z- ')
"F =G Gc

j.1 1-atz 1  J=1 1-az

The Ct are complicated functions of the bi and the at. The terms in z - 1 represent the

sequence JR, (n)I for -. 0. The Z -transform of this right sided sequence is given by

ZIR +(n)= G2f C (4)
• tat= 1-0ix - 1

Comparing (4) with (3) one notes that IR *(n) has the same poles as Ist J, but the

modes have different relative amplitudes. Stated another way. IR +(n)j has a z-

transform having both poles and zeroes; the zeroes are due to the modified values of

*the modes. For lags of p or greater. R +(n) obeys the same difference equati:n as the

original sequence.

Anita Length P.1w-Preserving 7unationu

All practical pole-preserving funcUons will operate with finite data lengths.

One function often used to form the Yule-Walker equations is the biased aut.correla-

tion estimate given by

JR -(n ) = t s +,. n=OI,...,N-1 (5)~t"0

Application to a noiseless all-pole sequence (1) results In

R. R(n) = aczR, (n -i)- C14 a +sSt S 4- -t+ S 0 C46-t--.ta +UN-

* The function has preserved the poles, but the second term represents an equation

error which produces parameter estimator errors even In the noiseless case.
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Another common choice of correlation estimator Is the "covarlance" type.

K(n)= Estst,, n=o,1,...,N-M (6)
t-o

where M Is the number of terms In the averaging computation. Application to (1)

results in

K.(n) = f K,(n-i) + s0.46

(-1

Equation (6) is pole-preserving, and the sequenoe K,(n) I obeys the lame difference

equation as I I for p g nN -M. Using the elements of JK, (n) I In the Yule-Walker

equations would add no error to the parameter estimates.

A number of observations about (6): 1) The number of elements in IK(n)I is

less tt-zn -r equal to the original sequence, 2) The property of satsfying (1) for all n

relies .. :.y on the constant summation limits, 3)The St in (6) may be replaced by any

length M sequence 1 t I which In not orthogonal to ISt I without affecting the pole-

prese- -=S property. A more general form for covarlance like pole-preserving func-

tions a

K,.. = E =o s,,...,N-M (7)

SIgnl to Noise Rato hmupsouaent

The application of (6) to 1X' I gives

M-i
K. (n)s Xt~ X9 +

St M St + 2 ctR+ C 294.R+ C C.t
too too tm --. l110"
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K.(,a) = K'.I.)+Z(n) n=0,1,...,N-M (8)

IZ (n)I for n >0 is a zero mean correlated noise sequence. For n >0 the varlance of

Z (t) approaches 0 as M- o. The averaging of £t in Z (n) provides a mechanism for

signal to noise ratio improvement. It has been shown by McGinn [6] that the signal to

noise ratio improvement obtained by applying (6) to (2) is given approximately by

Nj Vff2()

SNRI = NR. n-1 1 (9).. SNR5  (NM)Ma2[1+ tzCL]
t=1

For a lit order sequence this improvement is proportional to SNR,. With M =N/2,

a=.9, N =500 and SNR5 =1O, SNR1=9.4SNR.. SNR1 increases for increasing Q

of the pole, for example, as I a -. 1, SNRf-+ SNRZ. For complex pole pairs,

analysis has shown that the improvement Is dependent not only on C. as in the first

order case, but also on the angle of the pole. The improvement decreases as the pole

approaches the imaginary axis. For higher order sequences then, .he modes with

highest Q and closest proximity to the real axis are the most strongly e•:hanced.

Since JKx (n)I is an all-pole sequence corrupted by noise, Lhe same form as

(2), the signal to n6ise ratio may be improved further by sucoessive application of (6)

(successive autocorrelation). Limitations of this approach include: the increasingly

correlated nature of the noise term, the increasing suppression of some of the modes

by the zeroes and the smaller number of elements in the sequence. An example of suc-

cessive autocorrelation applied to a sinusoid in noise with SNR_ of 1/10 is shown in

figure 1.
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All-Pole Parameter Estimation

The above ideas can be applied to all-pole parameter estimation in the follow-

* ing algorithm 1) Apply (6) to the noise corrupted sequence J times to obtain signal to

noise ratio Improvement, 2) Use the standard covariance method to estimate the

parameters from the high signal to noise ratio sequence. Stopping criteria for step 1

are based on the limitations mentioned above and are discussed in [6].

The successive autocorrelation concept was tested by applying the above

algorithm to a noise corrupted all-pole sequence with J 0. 1 and 2 with M-N/2.

The least squares combination of the HOYWE was applied to the original noise cor-

rupted sequences for comparative purposes. The sequences were generated from a

sixth order all-pole model with zero mean independent Gaussian noise added. Twenty

five realizations of length N=300 and SNR 5 were processed by both algorithms.

The results were reduced to percentage rms error in frequency and radius for each

pole pair as shown In table I. The pole plots are shown In figures 2 and 3.

Table 1: Variance of Pole Estimates

*Processing RMS Error S
Method* freqi radlI freq2 rad2

AO 182.15 14.49 17.04 10.80
Al .48 .11 .72 1.35
A2 .57 .10 .28 .57
B .98 .33 .70 11. 30

AN Application of (6) N times, B = Least Squares combination of HOYWE

AD is the standard covariance estimator. Al is similar to B in that the normal equa-

tions contain fourth moments of the data. The normal equations in A2 contain eighth

moments of the dsta sequence.

I -8-
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,. The pole-location bias in AO is evident in figure 3a. This bias is significantly

reduced in the rest of the methods. None of the methods adequately estimated the

lowest Q pole. The performance of Al and B was comparable, as expected. From table

I it is clear that procedure A2 reduced the variance in the second pole-pair estimate

and outperformed the HOYWE approach. As a rule, the higher Q systems benefit more

from repeated correlations. The estimation of sinusoids in noise is. therefore, ideally

suited to this technique.

Conclusions

Successive application of pole-preserving functions to noise corrupted all-pole

sequences can increase the signal to noise ratio dramatically. Conventional all-pole

parameter estimators applied to these autocorrelated sequences show a significant

reduction in noise induced bias. Successive autocorrelatior, selectively improves the

parameter estimates for poles with highest Q and closest proximity to the real axis.

Sequences with these characteristics (such as sinusoids) are -. ost effectively enhanced

by the successive autocorrelation method. Since the least squares combination of the

HOYWE can be interpreted as a successive autocorrelation p rocedure, this same data

dependent performance applies. Estimates better than the least squares combination

of the HOYWE can result by allowing for two or more correlations, especially for low sig-

nal to noise ratio.
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figure 2A: Covariance Mvethod (AO) figure 2C: 2 Correlations +CovarianceI
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figure 2B: 1 Correlation + Covariance (Al) figure 3: Least Squares Comb. of HOYW
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