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Abstract

This dissertation addresses the problem of estimating a
vector —valued stochastic process X from observations of a
space-time point process which is dependent on X . The
observations are corrupted by statistically independent,
additive point process noise. The research is motivated by
a neutral particle beam estimation and control problem in
which it is desired to estimate the position of the bean
from detected photo-electron events. Dark current in the
detector and other photon sources comprise the noise
sources.

A multiple model adaptive estimator is developed in
which the separate models are hypothesis sequences. The
hypotheses define which observed events were due to the
signal process and which were due to the noise process. The
estimator provides the minimum mean squared error estimate
of the underlying process. The problem is modeled on a
Cross product of probability spaces, and regularity
conditions are defined which allow calculation of the
weighting factors for the multiple model estimator. This
modeling concept allows feedback from the observed events to

the model, thus providing a means for control of the

xii




B 2 Ah BN B g, L orieg s

-y

o~

TS O P P S

process. The multiple model adaptive estimator and the
cross product modeling concepts are valid for a general
point process signal in point process noise as long as the
regularity conditions are met, The number of elemental
filters in the estimator doubles as each new point process
event is observed.

For the particle beam application, the elemental
filters are Snyder-Fishman "firefly" filters, in which the
signal process 1is assumed Poisson conditioned on the
underlying process.

Simplifications to 4the full scale estimator are

proposed which result in a fixed number of elemental

filters. This 1is accomplished by considering only data
within a fixed window. The data windowing is applicable to
the general point process estimation problem.

Simplifications which reduce the complexity of the multipie
model weighting factor calculations are developed for the
particle beam application. The simplifications result in a
suboptimal estimator.

Monte Carlo simulations of the suboptimal estimator
demonstrate that it is extremely successful at rejecting
point process noise events in the measurement history, even
at signal to noise count ratios as low as 0.1 and very 1low

data rates.




MULTIPLE MODEL ADAPTIVE ESTIMATION

FOR SPACE-TIME POINT PROCESS OBSERVATIONS

I. Introduction

1.1 The Problem

)The problem addressed by this research is one of
esfiﬁating parameters of an underlying stochastic process
from observations of a point process where the point process
is dependent on the underlying process and the observations
are corrupted by point process noise. A second, closely
related problem is that of allow;ng feedback control for a
system in which observations of a point process signal are
corrupted by point process noige. This will provide a
method for investigating the optimal stochastic adaptive
controller for the system.

The major contribution of this research is a method for
developing an estimator for the above mentioned point
process signal in point process noise environment. The
method allows feedback to the model from the observations
thus providing a means for control. This method is used to
develop the estimator for the neutral particle beam pointing

and tracking problem which motivated this research.
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I.1.1 Problem Motivation. This research is motivated

in part by problems in neutral particle beam pointing and
tracking currently being investigated at the Balliistic
Missile Defense Advanced Technology Center, Huntsville,
Alabama and the Air Force Weapons Laboratory, Kirtland AFB,
New Mexico. Their goal is not only to estimate the position
and direction of the beam, but to use that information in an
optimal way to control the pointing of the beam.

A method for sensing the location of the neutral
particle beam has been proposed in which the beam is
illuminated by one or more lasers. At certain angles of
intersection and particle velocities, the particle electrons
absorb photons from the laser beam and attain a higher
energy state. The electrons spontaneously decay to their
ground energy states and radiate photons in an approximately
isotropic manner. By detecting this resonant scattered
light energy, the position of the beam can be inferred.

The signals resulting from detection of optical fields
can be modeled by conditional Poisson (CP) random processes
(Refs., 25,28,33,46). The statistics are conditioned on the
rate parameter of the Poisson process, which is proportional
to the intensity of the received optical envelope. Real
optical detectonrs typically have a noise mechanism which is
independent of the signal and can be modeled by another

conditional Poisson process. There is a non-zero




probability that electrons will be emitted from a
photodetector even in the absence of incident photons. The
resulting current is called dark current. In general, there
will also be noise induced by background light sources in
the field of view of the detector. If statistical
independence is assumed between the three processes, the
resulting process is also CP with a rate parameter which is
the sum of the three individual rate parameters. This is
shown in Chapter II.

The conditional Poisson process model is required when
the 1level of the received signal is so low that individual
photo-electron events must be counted. At higher signal
rates, the observed current might be adequately modeled by a
Gaussian process as 1is done in many communication and
control type problems, Only the point process signal in
point process noise case is considered in this research.

The problem then is to estimate the position of the
neutral particle beam from observations of a conditional
Poisson process. The observed CP process is composed of the
signal (scattered resonant photons from the illuminated
electrons) and noise sources, An associated problem to be
considered subsequently is control of the pointing of the
beam.

The observations considered here are of a space-time
point process which, conditioned on the rate parameter, is

Poisson. The rate parameter itself 1is a stochastic

PP G G Y




process and we desire to éstimate some function of the rate
parameter, In this dissertation, the term space-time point
process 1s used to denote a vector valued random process
which is a mapping from the cross product of a time interval
and a probability space into [t,,T) X R™ (time cross
real Euclidean m space). Each observation is of the form
(ti';i) where ty is the time of cccurrence for the ith
observation and ?i is the location in real Euclidean m
spacZ for the ith observation.

The observed conditionally Poisson (CP) space-time
process is composed of a CP process of interest (the signal)
plus a CP noise process. The noise and signal processes are
assumed to be statistically independent, resulting in the
observed CP process.

A second sensing mechanism which may be exploitable for
pointing and tracking in the neutral particle beam project
is induced gamma radiation. When the beam strikes a target,
gamma radiation is produced. This can be observed by an
estimator/controller and used to direct the beam. When the
signal rates are low so that point process statistics must
be used to model the system adequately, the results of this
research can be used for estimation and control.

Other possible applications for these techniques
include tracking of missiles or satellites where the

observed signal rate is low, necessitating the use of point
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process models. The results presented here are not
dependent on active illumination of the target so a passive
tracking system with low observed signal rates could also
fit the model,.

I1.1.2 Key Concepts. The key concepts in this research

are:
1. A space-time point process signal is observed in
space-time point process noise.
2. We are interested in estimating some vector which
parameterizes the signal process.
3. We want to allow feedback from the observations in

the model in order to provide a means of control.

For the neutral particle beam problem:

4, Both the signal and noise processes are modeled as
Poisson processes, conditioned on knowledge of the
respective (perhaps random) rate parameters.

5. The signal and noise processes are assumed

statistically independent.

1.2 Background Literature

The 1literature applicable to this research can be
divided into several overlapping categories. Each category
addresses a portion of the beam estimation and control

problem, The categories are: Poisson process estimation,




jump processes, space-time point process estimation and
control, and multiple model adaptive estimation and control
methods.

1.2.1 Poisson Process Estimation, References 13,25,

33,34, and 46 contain several examples of estimation for
processes modeled by Poisson statistics. Snyder (Ref. 46),
in particular, provides the requirements for modeling a
point process with Poisson statistics and presents many
useful probability densities and distributions for Poisson
processes,

Most of the examples in these references are oriented
towards communication type problems, In these examples, a
time sequence of point events is observed and the rate
parameter of the process is estimated. A second similar
problem 1is that of estimating the presence of an on-off
keyed signal in noise, These communication problems
typically do not include any spatial observations of the
process; however, the forms of the probability densities
are analogous to those developed in this research for space-
time Poisson process,

1.2.2 Jump Processes. One method of including the

spatial nature of the observed process is to model it as a
Jump process (Refs. 8,41,42,49,50). In general, a jump
process is one in which point events occur randomly in time

and there is a value or weight associated with each observed
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event. An example of a system which might be modeled by a
jump process 1is urban vehicle traffic in which sensors
measure time of arrival and the jump value might be speed or
direction. For the problem at hand, we might modei the

system as a jump process in which the value (or weight) of

T

the jump 1is the m dimensional spatial 1location of the

observation. Vaca and Tretter (Ref. 49) discuss optimal

-

estimation for the traffic example but no noise sources are
considered.

Segall and Kailath (Ref. 42) consider modeling of

randomly modulated jump processes. This model addresses our
goal of inferring information about the observed signal
point process; however, they approach noise as either an
(9 additive white Gaussian source or as an additive point
l source in a binary detection type of problem. Jump

process models address some portions of our point process
signal in point process noise problem, but the model does
not fit all aspects and jump processes are not considered

further in this research.

1.2.3 Space-Time Point Processes, The modeling of a

system as a space-time point process (Refs.
11,12,35,38,45,46,47) is very applicable to this problem.
In particular, the basic definitions and tools for
statistical inference for space-time point processes are

developed in Fishman (Ref., 11) and Fishman and Snyder (Ref.

12). Each observation of a space-time point process
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consists of a +time of even occurrence and a spatial
coordinate of the event. In this research, the spatial

coordinate 1is an e€lement of real Euclidean m space and the

ith measurement consists of the pair
(t;,T,)elt,,T) X B"
i’7i ’

where

ti is the time of occurrence

?i is the spatial vector of the event

[te,T) is the time interval of the observations

R™ is real Fuclidean m space.
If we let Nt be the number of observed point process
events in the interval [t,,T) , then the measurement

history can be defined as

N
A —_ —
Zt={(tl,r1)) e e ’(tN ,rN )}
t t

Snyder and Fishman (Ref. 47) present a conceptually
pleasing motivation for this model and develop the
associated estimator for the case when no noise is present
in the observations.. They pose the problem as one c¢f
tracking the centroid of a swarm of fireflies, The swarm is

assumed to have a Gaussian shaped density in real Euclidean




m space and its centroid is assumed to move in real
Euclidean m space as a linear function of the output of a
linear n dimensional dynamical system driven by a standard
Wiener process. The n dimensional output is Markov-1l, but
the motion of the centroid is not necessarily Markov-1l. The
observer is allowed to view the flashes of the fireflies and
the measurements consist of the flash occurrence times and
locations 1in m space. Given the centroid of the Gaussian
shaped swarm, the flashes are assumed to occur as a Poisson
process and the Gaussian shaped swarm corresponds to the
rate parameter of the space-time conditionally Poisson
process. They show that the estimate of the ceantroid is
Gaussian and the structure of the estimator is analogous to
a Kalman filter. There are propagation and update phases of
the estimator and there is a residual term in the estimator
structure similar to that of the Kalman filter. The updates
occur at the event times rather than at some a priori chosen
sample times. Although this model and estimator included no
noise sources, it forms a basis for this research.

Snyder, Rhodes, and Hoversten (Ref. 48) extended the
usefulness of this model and estimator with the
demonstration of a separation theorem. They showed that,
for the "firefly" tracking problem, the optimum stochastic
controller 1is decomposable into an independently designed
estimator and the linear deterministic optimal controller.

The estimator is the Snyder and Fishman filter (Ref. 47) and
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the linear control law isbthe deterministic result obtained
if the output of the n dimensional dynamical system were
known exactly.

This result is important since the goal of virtually
any estimator used for tracking is to control some system to
maintain track. The separation theorem provides the
synthesis method for attaining this control. Secondly, the
separation theorem provides a simple form for the optimal
controller and can provide insight into a possible
separation theorem for the case of point process signal
observed in poiﬁt process noise. If a separation theorem is
not possible, this result may still provide iins:ght for
using forced certainty equivalence (Ref, 27 vol. III:17) to
generate a controller,

Santiago (Ref. 38) investigated limitations of optical
trackers, including the effects of noise on the '"firefly"
estimator. He performed simulations on the estimator both
with and without unmodeled boint process noise corruption of
the data. As might be expected, the estimator's performance
degraded significantly when the noise was present, since the
noise was unmodeled. Santiago developed some ad hoc methods
to reduce the influence of the noise. One method, motivated
by residual monitoring techniques 1in Kalman filter
applications, was to ignore measurements which resulted in a
residual magnitude above some predetermined threshold.

Simulations showed a significant improvement in the

10




estimator's performance with these methods of dealing with
the noise, and his results suggest that a proper theoretical
development of an estimator with modeled noise could be
successful. Some form of disregarding or deweighting of
events suspected of being caused by noise might be a useful
course of action in developing an estimator for this signal-
in-noise environment.

I.2.4 Decision Theory and Multiple Model Estimators.

The two topics included in this literature category concern
methods for disregarding or deweighting measurements which
contain 1little or no iaformation about the process of
interest. Investigation of these topics is motivated by the
results of Santiago.

Binary decision theory methods are presented by
references 4,20,21,22,39, and 44, Lainiotis (Refs.
20,21,22) discusses algorithms for adaptive estimation cof
both the system's structure and parameters via decisions on
a binary hypothesis model as each measurement is taken.
Athans, Whiting, and Gruber (Refl 4) discuss the general
binary hypothesis decision theory for estimators, two
methods of incorporating the weighted data, and a specific
linear Gaussian model example.

In all six of these decision theory papers, Bayesian
statistics, a priori knowledge of the hypotheses, and the

measurement history are used to evaluate the validity of the

most recent measurement. Emphasis is placed on




incorporating or rejecting the latest measurement when
received and then considering it no further (except for the
implicit effect each measurement has on the estimate at
subsequent time). The goal 1is to obtain a recursive
algorithm for incorporation of the most recent measurcment
in order to minimize memory and calculation requirements.

This differs from the concept of multiple model
adaptive estimation (MMAE) and multiple model adaptive
control (MMAC) as presented in references 2,3,5,9,19,26,27
vols., II and 1II1,31,43,51, and 52. In MMAE, separate model
estimators are maintained throughout the observation time
interval. Magill (Ref. 26) and Athans and Chang (Ref. 2)
describe the basic MMAE method. As in most of the MMAE/MMAC
papers cited, the problems under study are modeled by linear
systems driven by Gaussian noises and the separate models
are chosen by selection of different parameter matrices for
the model. This selection of models can be made either by
knowledge that only a finite number of models can exist, or
more commonly py discretization of the range of the
parameter values. A set of estimators ("bank of filters"
which are Kalman filters in the linear Gaussian model case)
is designed, one matched to each distinct model. The
estimates from each filter are weighted and summed to obtain
the overall estimate, The weights are determined using

Bayesian statistics and any a priori statistical knowledge

12
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of the models in a manner similar to the binary decision
theory estimators.

Stability and convergerce of MMAE/MMAC algorithms are
discussed in references 6,14,15,16,17, and 29, Baram (Ref,
6) presents consistency and convergence results for a large
class of maximum a posteriori (MAP), maximum 1likelihood
(ML), 1least squares (LS), and Bayesian estimators through
the use of information metrics. Hawkes and Mcore (Ref. 15)
use similar methods to show that for a MMA estimator with a
finite number of models, the weighting coefficient converges
almost surely to one for the model closest to the true

parameter.

I.3 Research Approach

The approach taken in this research is to develop an
estimator for the space-time point process signal plus noise
system using multiple model adaptive estimation techniques.
For the particle beam application, Snyder and Fishman
"firefly'" filters are used for the individual filters in the
"bank" (Ref. 47), Each assumed model (or hypothesis) is a
distinct sequence specifying which observed events are noise
and which observed events are signal. Once a model is
specified by the hypothesis, only those measurements assumed
caused by the signal process are considered by the
individuzl filter. The overall estimate is a weighted sum

of the individual filters' estimates as in the 1linear

13




Gaussian MMAE examples. The estimator is developed to admit
feedback from the observations to the model. This will
allow for definition of an optimal Vcontroller for the
system. A covariance expression for the estimator is
developed and methods for reducing the computational

complexity are investigated.

I.4 Summary of Remaining Chapters

In Chapter II, the detailed signal-in-noise model for
the system 1is defined and conditions for wusing Poisson
statistics are specified. A brief description of MMAE is
presented and the structure of the MMAE for this point
process problem is developed. Weighting coefficients are
developed using a probability density approach. The
expressions for the coefficients are very difficult to
compute, thus motivating the cross product space modeling
concepts presented in Chapter III.

In Chapter 1III, a description of some of Fishman's
statistical inference results for doubly stochastic space-
time point processes 1is given, including a regularity
definition and the implications of regularity in a point
process., The beam problem is cast as a doubly stochastic
space-time point process and an analytic cross product space
model is developed for the problem, A regularity proof is
given for this model.

In Chapter IV, the cross product space model is used to

14
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develop the weighting 'factors for the multiple model
adaptive estimator. The complete equations for the MMA
estimator for the beam problem are presented and some
example cases are presented.

The full scale estimator requires an exponentially
growing amount of calculation and memory. Methods to
simplify the estimator are presented in Chapter V. These
methods result in suboptimal estimators.

In Chapter VI, results of Monte Carlo simulations are
presented. The simulations are based on the suboptimal
filter simplifications of Chapter V,

Conclusions and recommendations are presented in

Chapter VII,

15
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II. Multiple Model Adaptive Estimation

I1.1 Introduction

3
3 In this chapter, the basic models for the signal and

noise processes are presented and multiple model adaptive

estimation for sequence hypotheses is developed. In Section
I1.2, the basic models for signal and noise are presented.
The signal model (with no noise sources present) is the same
as used by Snyder and Fishman in their filter development
(Ref. 47) Their results are presented in Section I1I1.3. In
Section 1II.4, the concept of nultiple model adaptive
estimation (MMAE) is motivated in order to deal with the
noise, and the general MMAE structure is developed. The
MMAE concept is then applied to the general point process
problem by considering each model to be described by a
distinct hypothesis sequence that defines which observed
events are due to noise and which are due to signal,
Finally, the explicit MMAE filter for the particle beam
problem is presented in which the a posteriori statistics
are developed from a probability density point of view. In
general, these results are difficult to compute, thus

motivating Chapter III.

16
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I11.2 The Model

I11.2.1 Signal., In this research, the signal source is

the excited volume of neutral beam particles. The
spontaneous decay of electrons results in emission of
photons which may be observed by an array of photodetectors.
We wish to determine the position of the beam from the
observed photo-electron events.

As in Snyder and Fishman (Ref, 47), the signal is
modeled as a space-time point process on [to,») X R .
Each observation (photon detection) has associated with it a
time of occurrence te[ty,x) and spatial location Ter™ . A
physical detector array will result in a quantization of R™
into a finite number of possible poiats. This quantization
and any resulting effects are not addressed in this
research; the spatial measurements are allowed to assume
any value in R™ (or perhaps some properly defined subspace
of E").

Let T and A be Borel sets in [ty,») and R™
respectively and 1let N(T X A) be the number of observed

point events in T X A . The number of observed events up to

time t (regardless of spatial location) is defined as

A
N, = N([to,t) X r™) (1)

The measurement history over the interval [ty,t) consi:

17
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of a sequence of pairs

"

(t1,T1),(t2,T2) (ty sTo ) )
t1,T1), 2T2) 5000y , T
1,1 2,2 i _Nt N,c

where t; , i=1,2,...,N.  is the time of occurrence and T,

F‘ is the spatial location of the photo-electron event.

We assume that the density of the particles at time

te[to,=) and location TeR™ is
¢ e - —, 1T
* - A (t,T,x(1)) = A(t)exp{—%[r—}_l(t)yt)]
: (3)
tq ) o , : @_"(t)[?-_l;(t)%(t)]%
g
;E where the under tilde denotes a random process, A(t) is a
known amplitude of the density function, H(t) is a known m
by n projection matrix, R(t) is a known symmetric
positive definite matrix for all te[to,t.) , and the <(t)
E' ' indicates dependence on time. In Chapter III, a modeling

method is developed which allows these "known'" parameters to

be random; however, the rate parameter expression given in
equation (3) will be used for the motivating particle beam
problem. The vector X(t) is an n dimensional Gaussian

output of a linear stochastic differential equation

18




dx(t)

F(t)x(t)dt + G(t)du(t)

(4)
-— > :
Xo t - to

-~

g(to)

where F(t) is an n by n dimensional known matrix function
of time, G(t) is an n by k dimensional matrix function of
time, ?(t) is a standard k dimensional Wiener process of
unit diffusion, and go is a Gaussian racdom variable with
covariance Lo and mean Xo . This definition is expanded
in Section III.5 to include feedback control,

This form of x(t) is useful because it is
descriptive of a 1large class of estimation and control
problems, it is flexible, and it results in an estimator
(described in Section II1.3) which is analogous to a Kalman
filter in several ways. Neither the Gaussian shaped signal
rate parameter nor the linear dynamical form of g(t) are
required for the multiple model nature of the full scale
estimator. We could consider a more general form of the
signal rate parameter and, perhaps, a non-linear stochastic
equation to define x(t) . With the appropriate elemental
estimator for this more general model, we can still use
multiple model adaptive estimation concepts for the full
scale estimator.

Surfaces of constant particle density form ellipsoids

in R™® and the centroid of the ellipsoids is H(t)x(t) .

19
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The shape and size of the eliipsoids can change with time in
a deterministic manner and the centroid moves as a Gaussian
process.,

We assume that:

1im PrINClt,t+r) X c(?,a))=1|3t,x(o);ozto]

T,p¥0 Tpm

1im  PrINCIt,t+1) X (¥,0)21B,x(0);0%t0]
T 1,040 n (5)

TP

]

Ag(t,F, ()

where Bt is the sub sigma algebra of events up to time t,

and where c¢(r,p) = [rl,r1+p1)x...x[rm,rm+pm) is a

volume in RM, As a result, given the process g(t) , the
m

point events occur in (to,») X R as a conditional space-

time Poisson point process. The particle density

és(t,?,g(t)) defined in equation (3) is the rate parameter
of this conditional Poisson process.

Note that in the current description of the signal
model , R(t) , ACtY) and H(t) are time varying
deterministic quantities. The model is expanded to adnmit

randomness in each of these in Chapter III.
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I11.2.2 Noise. We let the noise be modeled by a space-

time point process on [t,,=) X ™ and assume that

lim PrIN([t,t+t) X c(?,B))=1|Bt]

T,pt0 | o™

(6)

= A (t,T)

so that noise induced photo-electron events occur as a
space-time Poisson process on [ty,=) X R with rate
parameter An(t,?) . If we allow the rate parameter to
depend on some random process 8§ , then ln(t’?) is a
randomm process and the noise events occur as a Poisson
space~-time point process conditioned on knowledge of 9 .
The noise process is assumedl to be statistically
independent of the signal process and additive. At this
point, there is no requirement to define ﬁn(t,?) further.
We can develop the MMAE concepts with the current general
description of }n(t,?) . In Chapter III, additional

restrictions will be placed on kn(t,?) that
E{} (t,T)} < =

21
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t
//An(T,Z)di‘drm
(7)
to Y

where Y is R™ or a subspace of R™ to which we restrict
the estimator. This constraint 1is aecessary for the

regularity proof in Chapter III and it is not physically

very restrictive. The coudition does imply that the
observation of a noise induced event is not
(probabilistically) certain. For example, the subspace Y

could correspond to a finite two dimensional array of
photodetectors and the noisc rate parameter could be a
constant.

The observed point process is composed of the sum of
the signal and the noise point processes, Since the signal
and noise processes are independent, the probability density
function of their sum is the convolution of the individual
probability density functions (Ref. 33:189), and the
characteristic function of the sum is the prcduct of the
individual characteristic functions (Ref., 33:159). The
characteristic function for the signal process (conditioned

on x(t)) is

22
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exp[A (t,F,%(t))(eI¥-1)]

and the characteristic function for +the noise process

(conditioned on knowledge of any uncertainties in An ) is

exp[r (t,F ) (e9%-1)]

where, for these two expressions only, j=v/-1 and w
is the frequency domain variable; this notation is used
here to be consistent with the notation of DPapoulis (Ref.
33). The product of these two conditional characteristic
functions 1is the characteristic function of the sum of the
processes., The form of the product is that oif a conditional

Poisson point process with rate parameter

ACE,T,%(t)) = A (t,T,%X(t)) + A (t,7) (8)

I1.3 Snyder and Fishman Filter

Snyder and Fishman (Ref. 47) present an estimator for

the vector g(t) (when no noise is present) as
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x(t) = E{x(t)|2 "}= jr E(t)pi(t)|ZNt (E(ty|z't)de (9)
RD
where p(EIZNt) is the conditional probability density

. - . A N
function of g(t) given the measurement history 2 t
The estimator is developed for the signal model defined in
the previous section when there is no noise: An(t) =0

The estimator is presented in differential form as

dx(t) = F(t)x(t)+ /g_(t)[?-g_(t)?%(t)]N(dt X dF) (10)
Rm
dI(t) = F(£)L(t)At+L(t)ET(t)dt+G(£)GT(t)dt
(11)
-!_}g(t)g(t)_ﬁ_(t)N(dt X dr)
m
K(t) = L(OHT(t)[H(E)I(EHT(£)+R(£)] ™ (12)
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x(to) = X

. (13)
IZ(ty)

H]
[
o

where J/:N(dt X dr) is a counting integral (Ref. 11). They
also demonstrate that the conditional density function
p(§(t)|ZNt) is Gaussian.

In the expanded model, whkich includes an independent
noise source, if we knew precisely which observed events
were due to the signal process and which were due to noise,
then we could, trivially, use Snyder and Fishman's filter
and only consider the signal obsefvations. We don't know
which observed events are noise, but we can use a noise
rejection idea througn multiple model adaptive estimation

techniqués.

I1.4 Multiple Model Adaptive Estimation

In this section, multiple model adaptive estimation is
presented in general terms and then the specific MMAE
eduations are developed for the point process signal plus
noise problem.

11.4.1 General MMAE. Let us suppose that we desire to

estimate the value of some quantity g(t) which is a random

process. If we use the minimum mean square error criterion
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of optimality, we can define the optimal estimate as the

- N
expected value of x(t) given the measurement history zt

x(t) = E{x(t)|2Vt} = /m)p('élth)dz (14)

where Z(t) is the dummy variable of integration for X(t)
and p(E(t)lZNt) is the conditional probability density
function of ?(t) given the measurement history ZNt
(Note that the subscripts on the probability density
function have been dropped for simplicity of notation. This
éonvention is used in the rest of this dissertation unless
the subscripts are needed for clarity.) We use tihe same
notation to describe the measurement history here as we did
for the point process model description in Section II.2 in
order to maintain continuity of notation. For this general
MMAE development, the measurement history th is whatever
measurement is appropriate to the physical problem and model
under consideraticn. There is no implication +that the
general MMAE method 1is restricted to space-time point
processes. The integration in equation (14) is over the

domain of E(t) and we assume that the probability density

function exists for the Riemann integral to have meaning,.
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Further suppose that we do not know how to model the
process g(t) exactly to obtain the expression for
p(f(t)]ZNt) but that we know that the correct model is one
of a finite set of possible models. (The restriction to a
finite set of possible models is not necessary for MMAE 1in
general. In this point process application, however, it
will be natural to accept this type of model restriction.
That course is taken in this development. Athans and Chang
(Ref.2) consider linear Gaussian models wnich are
discretized 1o a finite set from a possible continuum of
models.)

Let there be J+1 possible models to represent the
process g(t) , where each model is represented by h. ,

b
jeo0,1,2,3, ..., J. Let

(15)

where H is an appropriately defined space, In an example
where the different models, or hypotheses, are represented
by real matrices, the space H could be a sufficiently
dimensioned real Euclidean space,

From equation (14), our definition for the optimal

estimator is
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X(t) = fE(t)p(E(t)lth)dE (16)

Tne conditional probability density function also depends on
the model hj,so we can obtain the marginal density function
from the joint density function by

X(t) = /’é(t)fp@(t),hlth)dhdf a7

H

where 1 is the dummy variable for hjeH . By Bayes' rule

X(t) = [€<t>fp<'€<t>|h,th>p(h|th>dth (18)

H

Because we have limited the models to a finite s2t, the
probability density function p(hlZNt) is a di=crete

density of the form
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p(hIZNt) = EE Pr[h‘j is correctlZNt]G(h—hj) (19)
j=0

where 6§(+) is the Dirac delta function and Pr[+<] denotes
probability. We can substitute equation (19) into equation

(18) to get

X(t) = /E(tzfp(é(t)lh Zwt)zpr[h lth]a(h h YydhdE (20)

and by the sifting property of the delta function

J

X(t) =fz<t) > p(Et)|n,, 2N )prln, | 2N 1aT (21)
< J J
J_

The interchange of the integration and summation from
equation (20) to equation (21) is justified by the fact that

the sum is finite. By changing the order of the
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integration and summation again, we obtain

J
x(t) = Y Prlny|z't] E(t)p(z‘(t)lhj,ZNt)d'é (22)
=0 '
J
= zpr[hj|th]E{'g(t)|hj,th} (23)
3=0

2y Nt_a
Pr[thZ ij(t) (24)

Il
TP

In equation (24), §j(t) is the estimate of g(t)
conditioned on the measurement history and the specific
model. The various densities in the above development are
assumed to exist, although a parallel development can be
made using probability distribution or measure theory
notation. The overall structure of the estimator is shown

in Figure 1.

We also desire to find the covariance for the multiple
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model adaptive estimator. This is useful as a measure of
the estimator's performance, although it is not necessary to
calculate 1t for the online estimator, The covariance for

the full scale estimator is defined as
o A — Kl — 2 T, Nt
2(t) # E{(x(t) - X(£))(X(t) - x(t))" |2t} (25)

We define the covariance of the individual estimators in the

"bank" as

~

- — _ 2, Ny = _ iad T Nt
Z;(t) = BR(x(t) - X5(0))E (1) - X;(£)) 7 |hy,2 (26)

The covariance of the multiple model adaptive estimator, in

terms of the individual covariances and estimates, is (Ref.

2:30 and 7:420)

J

ity = Zopr[njlthJ[§j<t>+[§j<t>-§'<t)J[?zjm-if(t)]T]m)
J=

Examples of MMAE for linear systems driven by white
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Gaussian noise are given in references 2,7,26 and 27 vol.
II. For these models, +the individual estimators are Kalman
filters, each one tuned to match the associated model
hypothesis. The weighting terms, Pr[thZNt] , can be
calculated recursively (Ref. 2:33). Except for the fact
that J+1 Kalman filters must be operated simultaneously, the
filter structure is computationally reasonable via
distributed processing. The requirements for memory and
calculation do not expand as each measurement is made.

Note that +this development has assumed that only one
hypothesis is correct over the observation interval. If the
system is modeled such that it is allowed to switch from one
hypothesis to another betwecen measurement times, then we
must calculate the a posteriori yprobabilities based on
histories of hypotheses, This leads to an exponentially
expanding number of filters in the "bank" (Ref. 7). If the
switching is allowed to occur as a Markov-1l process, then
the number of filters expands as the square of the number of
possible states. The expanding number of hypotheses and the
resulting expanding requirements for memory and calculation
characterize multiple model adaptive estimation for the
point process problem under consideration.

11.4.2 MMAE for Point Process Signal in Noise. With

the signal and noise models described in the first section

of this chapter, the observed process is conditionally
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Poisson and the observations consist of a sequence of pairs,
time of occurrence and spatial location, as shown in
equation (2). Each observed point event ( (t,T) pair) is
either due +to the wunderlying signal process or to the
underlying noise process. We can use this concept of a
binary decision at each observed point event to construct
all of the possible sequences of noise/signal events which
could have produced the observed sequence.

For example, at time tg, Nt is zero; no events have
been observed. When the first point event is observed at
time t, and location ?1, we have a measurement sequence
consisting of one data point for the observation interval
[to,t),t <t . This observed event could have been caused
by either the signal process or the noise process, We can
represent the possible hypotheses with a trec diagram as in
Figure 2.

A hypothesis sequence 1is denoted as tht where the
subscript je{0,1, ... ,(2Nt)_1} denotes which particular
sequence 1s identified and the superscript Nt is the
number of data points observed up to the time when the
sequence hgt is defined. When an argument is present as in

n,Nt(i), i=1,2,3, ... N we refer to the valuc of the

J t ’
sequence at time ti . A hypothesis sequence can be written
as
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signal hi(1)=1

hlz one event due
to signal

ho: one event due
to noise
1
\ h,(1)=0
noise

I | -
| | t
to tl

Figure 2. Hypothesis Sequences for One Measurement

N N N N

t - t t t
hj {hj (1),hj (2), ... hj (N} (28)

The notation can be understood more easily in the following
examples.

In Figure 2, the hypothesis sequence h; is that the
event observed at t, was due to signal and hypothesis
sequence h; denotes that the event at t,; was due to noise.

The sequence hi is composed of the single entry

35




h! = (hl(1)} = (1) _ (29

-

1
where h,(1) is the value of the sequence h! at time

t; . Values are assigned as

tht(i) = 1 : event due to signal
(30)
0 : event due to noise
By the same method, the sequence h: is defined as
1 1
hy = {ho(1)} = {0} (31)

The upward branches on the tree denote data points which we

associate with the signal process and the downward branches

are for noise caused data points.

When a second data point is observed at t. , there are
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h2(2)=1 2
h3(1)=1
h3(2)=0 ,
h,={1,0}
hi(2)=1 ,
h1={0,1}
2
ho(2)=0 ,
ho={0,0}
| | . .
'ty 't "ta t

Figure 3. Hypothesis Sequences for Two Measurements

four possible sequences to describe the origination of the
two data pbints over the interval [t,,t), t2<t . These can
be shown as in Figure 3. |

From Figure 3, it can be seen that under hypothesis
hi , the first observed event (at time t; ) is assumed to
have Dbeen caused by the signal process (h3(1)=1) . The
second observed event is assumed to have been caused by the
noise brocess ( h§(2)=0 ). The entire sequence can be

explicitl, written as
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h? = {h2(1),h;(2)} = {1,0) (32)

In a similar manner, the other three possible

hypotheses are defined, for Nt=2 , as

h’ = {0,0}
h? = (0,1} (33)
h? = {1,1}

Figure 4 shows the tree diagram for the time interval
[ty,t), t,<t . For clarity, only the values of one
sequence are labeled.

From this example, it can be seen that for any time
interval [t ,t) there are exactly oNt possible
sequences. These sequences describe all of the possible
ways 1in which a signal process and a noise process could
have caused the observed measurement history. Thus, we need
only consider a finite (although growing) number of possible

models as described in the last section. The close analogy

to the time varying parameter case of reference 7 can now be

38




L k)
-
R

YT

LA s R APy S AACMSMA NG

: ! : : >t
4 * th L. kDY .

Figure 4. Hypothesis Sequences for Three Measurements

seen.,

g In order to use MMAE for the point process signal plus
' N

noise problem, we associate each hypothesis hJ.t with a
distinct model of the observed process and expand our

hypothesis definition of equation (15) to

h, Y e, jeo0,1,2, ... , 2¥t_1 (34)

For the time interval [t,,t) , the measurement history

is
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= {(tl’;l))(tZ,?Z)p * e p(tN ,-I-.Nt)} (35)

t

The number of events, N , is implicitly included in ZNt.

We can apply equation (24) to obtain the expression for the

optimal estimate of X(t)

(28ty-1
~ N N, -~
= = ty, tq= \
x(t) = :S PI‘[h:j 1 Z ]xj(t) (36)
j=0
where
A A - N, N .
x;(t) = E{(x(t)|ny %,z %) | (37)

Because of the assumption that the signal and noise are
independent, we can ignore all observed data points which,
based on the hypothesis sequence tht ,
noise; Equation (37) is the estimate of 'g(t) obtained by

are caused by

only considering those data observations for which
hJNt(i)=1 for ie 1’2’3""Nt . These individual filters

40
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are thus "tuned" to the respective hypothesis sequences.

The structure of the overall estimator is the same as
shown in Figure 1, however, now the form of the individual
estimators depeﬂds on the particular point process signal
under consideration. For the conditionally Poisson point
process signal model described in Section I1.2, the
individual estimators are the Snyder-Fishman filters
described in Section II.3.

A significant difference between sequence hypothesis
MMAE and the constant parameter linear Gaussian MMAE case
described previously is that, 1in the sequence case, the
number of filters doubles with each observed data point.
There 1is a close analogy between sequence hypothesis MMAE
for a point process model and the time varying parameter
multiple model adaptive estimator. The growing number of
filters places a serious computational burden on the
estimator. Methods of alleviating this burden are considered
in Chapter V.

I1.4.3 MMAE for the Particle Beam Problem. Equation

(36) defines the overall estimate of g(t) and Snyder and
Fishman's results (equations 10-13) provide the means for
evaluating the individual model estimates ﬁj(t). The only
remaining term to specify analytically is Pr[thtlth}, the
weighting factor.

To simplify notation, denote a single space-time

observation as
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Z(i) = (t,,7y) = |- - - (38)

and the measurement history over [t,,t] as

N

z t = {2(1),2(2),...,2(N)} (39)
Note that the sub-sigma field Bt includes all the
~ N
information in 7 t .

In terms of this notation, the goal is to evaluate

N, N
Prin, t1z 1]

N, N, _ _
= Pr[hj (1),...,hj (Nt)lz(l),...,z(Nt)] (40)

The probabilities of equation (40) can be combined into a
discrete probability density function, We can use Bayes'

rule to obtain (Ref. 33:176)

42




S

vy

Ny
2 “-1 X
z G(h-h.Nt)Pr[h.Ntlth] = _Rib_z_i)_ (41)
J J p(zt)
J=0 .

The denominator of equation (41) is a probability density
function evaluated at ZNt . It is the probability density
of obtaining the specific realization ZNt over the interval
[toe,t) , tNt<t<tNt+1 , Irom the spgce—time conditionally
Poisson process with rate parameter A(t,?,g(t)) defined by
equation (8). This density is termed the sample function
density (sfd). Snyder (Ref. 46) decvelops the sample
function density for a temporal (no spatial dependence)
Poisson process. The brief development of the sample
functior deﬁsity presented here for a space-time Poisscn
process follows Snyder's method.

Because the process in question is Poisson conditioned
on knowledge of g(t) and any uncertainties in ﬁn(°)' we
first consider the (trivial) case of g(t) and An(-) known
exactly. The random case will be discussed at the end of

this section. Two additional pieces of notation will be

useful for developing the sample function density. Let
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N, (Y) 2 N([to,t) X Y) (42)

where YSERm. Thus Nt(Y) is the number of space-time point

events observed on [to,t)X Y . Note, that if Y = rM

s

then N, (Y)=N_ as defined in equation (1). For toSv<t

4

let

A
N, (1) = Ny(¥) = N(¥) (43)

Since we have assumed a space-time Poisson nodel, N, (¥
’

is Poisson distributed with rate parameter A(t,T,x(t)).

We begin by writing the probability that the
N

realization z t of the process occurs within some small

N
space-time volume which includes 2 t

N N

t N
Priz “e[2

t oz thaz)]

Priti,elt1,t1+At1),...,14 [t t,, +At,. ),
3 b4 ? Nt Nt, Nt Nt

Ilec(-fl ’Bl),.‘.,INtEC(?Nt,BNt)] (44)
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where ¢ 7,7, and Zi are the dummy variables for Z t

i t.

! i
and ?i respectively, ie{1,2,3, ... Nt} , and the
observation interval is [to,t)XRm . The cubes in R™ are

defined as before except they are now indexed in time by i:

oo X[r, ,r. +p.)

+ .
P im’ " im "im

i1

Equation (44) can be equivalently written as

N N N

Pr(c te[Z t,Z t+AZ)] =

my _ = - = =
PrN, . (R) =0, Neo,tasat, (Treca) = LNy (Fagen)=0,

m — po —-— -
Yeyraty, £, (B 7 00 Ny poepe, (FaeCe) = LNy oy, (Tafe2)=0,

. (46)

my._
+AtNt,t(R )y=0]
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Because NV t(Y) is distributed as a Poisson process, we can
?
use the independent increment property to factor the right

hand side of equation (46) as

m,_ - - - -
Pr[Nto,tl(R )—O]Pr[Ntl,t1+At1(rlscl) l]pr[Ntl,t1+At1(r1¢c‘) 0]

(ry fey )=0]  (47)

£ Nt t t

m =
Pr[Nt1+At1,t2(R ) O]...Pr[Nt Lty +AL
Nt N

«Pr [Nt

Ng

my _

+Aty,
Ny

Each of these probability terms can be written in integral
form and the terms collected to arrive at
N N N

t t

Priz ‘e[z Y,z ¢

+82)]

= I / / A(T,n,x(1))dndt

i=1 . Tr.€c,
tl i®Ci

(48)

t
e exp —/ /)\(T,_,;(T))didt
m

to R

46
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With this expression, we can now develop the

probability density function. The sample function density

is defined as the limit of the probability (defined by

equation (48)) divided by the incremental space-time volume

as the space-time volume goes to zero (Ref. 46:58):

t
Adrdr exp

S f rdrdt

t oRn

t i
I
N t

N ti+At. r
i=1 ‘i FifCy g

(49)

N m

I
At~ Pij
i=ib 371

[
[}
=

where the arguments of A(t,T,X(t)) have been dropped for

simplicity, and pij is the jth element of o as in (45).

As written, the limit in equation (49) is

indeterminate; however, by repeated use of 1'Hospital's

rule and Leibnitz's rule, the limit can be evaluated as
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t
I A(ti,ri,x(ti))

t
exp -f_f A(T,1,x(1))drdr (50)
t m

for t. St<t
Nt Nt+1

Note that ;(f) is assumed known in equation (50). For

subsequent use, we note that equation (50) can be factored

into the recursion

t
N, o _ N, -1
p(z ") = A(ty, ,ry ,x(ty ))cexp]| - fldfthp(Z )
N, ’'N N
t 't t : o
N -1
(51)

<
for t -t < tNt+1

N,-1
where p(2Z t ) is evaluated at time ty -1
.
We now turn to evaluation of the numerator in equation

N¢

(41) for values of h=hj . By the use of Bayes' rule, we

can write
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explanation,

The sequence hj

point, the Jj' notation

Ne

N, -1 N
,{hj,t ,oi if h. S(N

is defined

]

- N, N, N, N, _ _
o p(hy "2 7) = p(hy "(Ng),...,h, "(1),2(Ng), ... ,2(2))  (52)
: N _ N N, _ _
f! = p(hy “(N),Z(N) by “(Ne-1),...,hy (1), BN -1), ..., E(1))-
3 N .
E - -
¢ P(hy “(N=1),...,hy (1), E(N-1), ..., 2(1))
(53)
k( v 1
N N.-1 N_-1 N,-1 N_-1
_ t = t t t7T 0t
= p(h; (Nt)’Z(Nt),hj‘ »Z Jpchy.” 2 ) (54)

requires some

as

(55)
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The variable Jj is an index for keeping track of the
sequences, As each new data point is observed, the number
of possible sequences doubles and the numbering (indexing)
of nearly every seguence changes as shown in Figures 2,3
and 4. The only sequence which does not change index value
is the "all noise" sequence. Therefore, the value of j is
almost never equal to the value of j' in equation (54).

This complicated notation 1is necessary due to the
expanding number of sequences. The concept can be stated

clearly in words as:

Nt—l Nt—l
hj‘ is the sequence (out of 2 possible

sequences) which is concatenated with the sequence
N, N
value hj 1’(N,C) to obtain the sequence hjt .

The actual values of the indices j and j' are not important
to the MMAE problem; it is only necessary that the correct
sequence be identified. Obviously, the value of the indices
is important to the implementation of the estimator.

We can now comhine equations (54) and (51) to show that
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N, N, p(hgt.ZNt)

Pr[h:j |z "] = 5
p(z2™t)
N N,-1 N, -1 N.,-1 N_,-1
t — t t h E 7 t
- t
e _ N -1
Aty ,Ty ,X(t, )exp|- J[ fodndr p(Z ) (56)
N N N
t t t t R
Nt—l

where the upper limit of integration on the time integral
has been changed from t to tNt to reflect the fact that we
are interested in evaluating Pr[thtIZNt] immediately
after having observed the point event at tNt .
From Bayes' rule in the form of equation (41) it can be

seen that equation (56) is recursive

N, N
Prin, tiz ¥] =

N N,-1 N,-1
t - t t
p(hy (Nt),z<Nt)|hja 2t

T (57)

t
Aty ,T,, ,%X(t, ))exp -f fxd,‘{dr
N’ TN, N,

N.-1 N_-1
. Pr[hj,t |z ¢
The one remaining term to specify for completion of

51
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this MMAE example is the numerator

N, _ N-1 N.-1
p(h, (Nt)’z(Nt)!hj’ ,Z ) (58)

The method for evaluating this mixed (discrete and
continuous) density is similar to that used to develop the

sample function density. There are two possible values for
N N
hjt(Nt) , 0 or 1. Consider hjt(Nt) = 0 first:

Ny — N, -1 Nt—l]
Pr[hj (Ny) =o,z(Nt)s[tNt,tNt+At)xCNtIhj, ,Z

= Pr | no signal event in [t ,t. ) and only
Nt_l Nt

. . +
one noise event in [tNt_l,tNt At)

N,-1 N1
at [t, ,t, +At)Xc, |h.. N/
NNy N, J

(59)

In equation (59), the conditioning is on a specific
N,-1
value of hj,t and an observed realization of the
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measurement history ZNt"1 . Since these are both values

(or realizations as opposed to functional forms dependent on

As or An ), and since the signal and noise processes are

independent, we can factor equation (59) as

A N,-1 Nt—l
Pr[+] = Pr | no signal event in [t ,te Dlh.. ,Z
Nt-l Nt J

-Pr[%nly one noise event in [t +4t)
t

Ng-1°EN

N, -1 Nt-l]

t
at ’ ..

t t

+At)Xe

(60)

(If we were not given values, the Jjoint conditional
probability deasity is not, in general, factorable.) By the
independent increment property of the signal and noise

Poisson processes, the conditioning can be dropped resulting

in

P . = r i i
rl-] p [no signal event in [tNt_l,tN )]

-Pr[énly one noise event in [t +At)

Nt—l’tNt

- at [t ,t
Nt N

+At)Xc
oot |

(61)
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where the arguments of >‘s and xn have been dropped for
simplicity. We can obtain the density for equation (58)
when hj t(Nt)=0 (as we did for the sample function density

development) by a limiting method :

N N,-1 N,-1
t - t
p(hj (N()=0,Z(N)|h,. ,z ¢ )=

t t,.. +At t
Nt Nt Nt
expl| - / /mxsdnclr / Andndfexp - / /ml ndnd'c

t R t T, €c t R
Nt-l Nt Nt Nt Nt—l

lim

m

At->0

_ At T p

pN +0 th

t j=1 (63)
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By repeated use of 1'Hospital's rule and Leibnitz's rule,

this reduces to

N, _ N-1 N,-1
p(hj (N.) = o,z(Nt)Ihj, ,Z )

t
Nt
= )‘n(tN ’?N ) expj- f fkd'ffdr (64)
t t
t m
Nt -1 R

where

A= M, T,X(E)) = A (B, T, R(E)) + A (¢,T) (65)

By the same argument, it can be shown that
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N, _ Nt-l Nt-l
t
Nt
= = X3 - dx (66)
As(tNt,rNt,X(tNt))exp J/’ T!:A dt
t (%
N -1

We now have all the pieces necessary to calculate the
weighting factors in equation (36). By substituting
equation (64) or (66) as appropriate into equation (57), it

can be seen that

(ty »Ty )
A N Ty N,-1 N, -1
Aty ,ry L X(ty ))
N, TN F N
N
if hy () =0
N, N
Pr(h, tiz 1 =
ag o TN X (B D) N,-1 N -1
— » Prlhy- | Z ]
A(ty ,ry ,Xx(ty )
N N7 Ny
(67)
N




PPy rﬂ-.—. TV

Y
[

3 K

— A M i i S S e N
R DR - LN e o .. .

where the denominator is given in equation (65).
Thus, equation (36) defines our multiple model adaptive
estimator, where the weighting factors are defined by

equation (67) and §j(t) is the Snyder and Fishman filter

estimate of g(t) given +the jth hypothesis, This
development is for the case of a known x(t) , as assumed
just prior to equation (42). The
s or n (68)
Pri.] = - Pr{-]
As + An

form provides insight into the nature of the weighting
process and a similar form will be seen in the estimator
developed in Chapter 1V,

It is trivial, however, to estimate X(t) when we have
assumed that it is a known deterministic function. We could
correct this by allowing g(t) to be random and proceed as
before to solve for the weighting factors in equation (41).
The denominator of equation (41), the sample function
density of equation (50), is actually p(ZNtlg(t)=E(t)) in

this case and we can write
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N, N, _ _ _ B
p(Zz °) = J{.p(z |x(t) = £(t))p(E(t))dE (69)
R
where £(t) is the dummy variable for x(t) . Decause g(t)

is defined as the output of a 1linear Gaussian system,
p(§(t)) exists and the integration in equation (69) can,
in principle, be performed although it is complicated and a
closed form solution might not be possible.

Similarly, the numerator of equation (41) nmust be
developed given g(t) as random and then averaging over the
statistics of the ?(t) process,

A furcher complication arises when we add feedback to
achieve some sort of optimal control for the system. One

form of the feedback could Lte as a control input

N
ci(t,Z t) to the equation
_ -~ — - Ny (70
dX(t) = F(t)X(t) dt+G(t)dT(t) + T°(t,Z °) 70)
where c“(t,Z ) is an n dimensional control vector

generated in some optimal manner from the observed process,
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The presence of ¢’ (t,Z t) will affect the form of the

density p(x(t)) and may make the integrations even more
complicated, if not intractable.

The serious computational problems which arise with
random g(t) and feedback control motivate us to consider
modeling concepts other than the probability density

approach taken in this chapter.

I1.5 Summary

In this chapter, the physical model of the observed
process 1is presented in which a space-time point process
signal 1is observed, corrupted by space-time point process
noise, The processes are assumed to be conditionally
Poisson and statistically independent of each other.
General MMAE techniques are discussed and the equations for
MMAE on this point process problem are developed for non
random rate parameters As and An . The development 1is
based on probability density functions, The form of this
estimator will provide insight in later chapters. The
difficulties associated with using a probability density
function approach for random rate parameters are discussed
and motivation for the measure theory approach of Chapter

III is presented.
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In Chapter III, the observed physical process described
EE in this chapter is modeled as a doubly stochastic space-time
: Poisson point process. This '"cross product space'" model and
;7 a measure theory approach to the statistics will allow us to
E! overcomc both the complex integration and feedback problems

encountered in this chapter.
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JII. Cross Product Space Model

III.1 Introduction

The difficulties encountered in Chapter II in obtaining
useful evaluations of the equations for multiple model
adaptive estimation stem from the basic approach taken. The
uncertainties were modeled in terms of probability density
functions of random processes. This results in expressions
which are very difficult to evaluate (equation (69) for
example) except for trivial cases such as a known, non-
random x(t) . The addition of feedback control further
complicates evaluation of the estimator equations.

In this chapter, a fundamentally different modeling
approach is taken, but one which coincides well with the
physical problem under consideration and which will allow us
to make use of the MMAE development in Chapter II. The
observed process 1is modeled as a doubly stochastic space-
time point process on [to,t)XRm . The statistics are
defined wusing measure theory concepts on a cross product of
two probability spaces and feedback control is included in
the basic model. Some necessary results from Fishman,
Reference 11, are presented in Sections III.2 and 1III.3,

including a definition of regularity for a doubly stochastic
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space-time point process. The implications of regularity
are discussed in Section I11II.4 This section presents the
tools necessary for overcoming the difficulties encountered
in Chapter 1II in deriving the weighting factors for the
multiple model adaptive estimator. The main result is
Theorem II11.6, the representation theorem, which provides a
method for calculating a posteriori probabilities of the
form needed for the weighting factors.

In Section III1.4, an analytic description of the beam
point process estimation problem is given in terms of the
cross product space model and a regularity proof is given

for this analytical form.

I1I1.2 Doubly Stochastic Space-Time Point P-ocess

In general terms, a doubly stochastic space-time point

process is a space-time point process in which some

parameter of the process is itself random. Our physical
model for the beam problem fits this description: we
observe a space-time point process on [to,t)XRm and we

wish to estimate the state of the Markov process which
determines the 1location of the centroid of the observed
process. We have additicaally assumed that, given X(t) and
An(-), the process 1is Poisson., This assumption 1is not
necessary, however, for the results presented in this
section. As defined in equation (4), x(t) is random and we

wish to allow other terms in xs(-) to be random. A randon
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noise rate parameter is also desired and can be used to
model uncertainties in external noise sources or in the
detector. Thus, the particle beam problem can be descrited
readily in terms of a doubly stochastic point process.,
We begin a more thorough description by defining a
probability space (QS,AS,PS) where Qs is a nonempty set,
is a Borel field (sigma field) of subsets of Qs and Ps is
a probability measure on Ag . This probability space
corresponds to events we cannot observe directly. For all
w ety  let there be a probability space (Q,B,P(-;ws))where
the probability measure P(';ws) is dependent on the event
in Qs , B is a Borel field of subsets of Q and P(-;ws)
is a probability measure on B8 . If for every BeB ,
P(B;*) is measurable on (95,A,) then it can be shown (Ref,
32) that a unique joint probability measure P' exists on

(R xQ,A xB) (where A XB denotes the product algebra

‘of Ag and B (Ref. 32:71)) such that

P°(AXB) = }rP(B;ws) Ps(dws) (71)
A

A e B

B e B
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and a unique probability measure P exists on (R,B)

P(B) =P (QSXB) = /P(B;ws)Ps(dws) (72)
Qs
B e B
In addition, if W(ws;w) is a random variable on

(QSXQ,AS@B) then

Wdp~ = / /W(ms;w)P(dw;ws) P (dwy) (73)
2 X2 e - a
Let U and V be mappings from [ty,~) X @ to [to,=) X r™
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U:[to,=) X @ » [to,») X R

(74)

Vilte,») X 2 » [to,») X R"

in which an event BeB is mapped into a set of space time

points in [ty,«) X rR™. The underlying probability space
for the process U is (Q,B,P(o;ws)) . The wunderlying
probability space for the process V is (Q,B,P) . Note

that U and V have identical pre-image and image spaces. The
distinction between the two processes is that we explicitly
show the dependence on Wy for process U .

This definition of a doubly stochastic space-time point
process as a mapping from a cross product of probability
spaces gives us a convenient framework for describing the
particle beam problem, We observe point events, z(i)

iel,2,...,N which are generated by a conditionally Poisson

t
process, The rate parameter, )(e¢), of the Poisson process
is defined by equation (8) and is itself a function of the
random process g(t) and An(-) . If we 1let the
probability space (Qs’As’Ps) specify the random nature of
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g(t) and (the potentially random) An(-) , then given

W the process U is Poisson. Furthermore, the doubly
stochastic space-time point process V 1is defined for this
application. Figure 5 summarizes this modeling concept.

III1.3 Regularity

Several important results can be obtained if the doubly
stochastic space-time point process (modeled as a mapping
from a cross product of probability spaces) is regular, We
first consider the definition of regularity and then some
useful implications of regularity. Some prelininary
definitions and notation are necessary prior to defining

regularity.

Definition IJI-1. Let t be an element of [t,,T) and

let Nt be defined as before, Let Bt denote the

subsigma field of B generated by the random variables

{Nt;(tl;;‘ln), v :(tNt:?N )}
t

This can be interpreted as the sigma field generated by the

sample paths of the point process up to time t.
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(@ ,A_,P.)

- w_ influences the events
in Q@ .

- w_ is not directly
observable

(2,8,P(+;0))

(2,8,P)

-~ We observe the random
process V

~ We desire to estimate
based on observations
of V

Figure 5. The Spaces
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Definition III-2, A space-time point process is called

conditionally orderly if for each point (t,?)s[to,T)X Y

lim
. PriN([t,t+At)Xe(T,0))22]B ] (w)
At>0 — =0 (75)
- PriN([t,t+at)Xe(T,9))21]|B, J(w)
p~>0
w.p.1
whenever the denominator does not vanish. B

Conditional orderliness essentially guarantees that the
observed events are distinct; the probability of two or
more point events occurring at the same time and spatial

location is zero.

Definition III-3, Let =Z(i)e[to,t) X Y , ie

1,2,3, ... ’Nt’ be defined as in equation (38) and let
z(i) denote a random variable for the observaticn at

time ty and spatial location ?i
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(76)

The jth order distribution function is defined for j
2 1 by
Fo(z)) = Fj(2(1),2(2), ... ,Z(3))
= Prlz(1)%z(1), ... ,§(j)5§(j)}
z(i)e[to,t) X Y (77)
i=12, ...,3
where the vector inequality is taken as an inequality
on each corresponding element of the two vectors. [ ]
We can now define the conditions a space-time point

process must satisfy in order to be regular.
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Definition I1I-4, A space-time point process

maps into [t,,t)XY is regular if the followin
conditions are satisfied:

(a) Each distribution function

FJ.(ZJ) 4 Fy (E(D, ... Z))

is absolutely continuous on

g(m+1)J

(b)

Pr[(tj+1,rj+1)e(tj,t)XY[Btj]<l

w.p.1

for all finite t , j=0,1,2,

(c) The point process is conditionally orderly.

70

which

g four

(79)

(80)

(81)




PriN([to,t)XY)<=] = 1 (82)

for all finite ¢t (Ref. 11:79) %]

Condition (b) requires that the conditional probability of a
new point occurring anywhere in Y , for finite t , is less
than one; that is, there are no guaranteed points.
Condition (d) requires that the number of points in Y is

finite, for finite t .

Our processes will be modeled as doubly stochastic

point processes. Regularity for this case is defined as
follows.
Definition III-5, A regular doubly stochastic space-

time point process Vi[ty,T)XQ>[t,,T)XY is a doubly
stochastic point process such that U (equation 74)
is a regular space-time point process for each wseQS

(Ref. 11:105). ]
Definition III-5 provides the conditions under which
the doubly stochastic space-time point process A is

regular. In order to use the results of the next section,
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we require that V be a regular space-time point process

(versus a regular doubly stochastic space-time point

process), The distinction is that for a regular doubly
stochastic space~time point process, V , we must specify
wg to insure the regularity of V , If V is a regular

space-time point process, we do not need to specify we to
use the results of regularity (even though V is dependent
on wg ). The necessary conditions for this are provided by
Theorem II1I-1.

The d(+) functions in the following theorem are
termed hazard functions and they specify the infinitesimal
properties of regular space-time point processes. A hazard

function is the conditional instantaneous rate of occurrence

of new events per space-time volume, The hazard function,
¢(e) , for the general regular space-time point process
corresponds exactly to the rate parameter, () , for a
Poisson space-time point process, The existence and

usefulness of hazard functions are discussed 1in Section
III1.4.1. For a proof of Theorem III.1, see reference 11

pages 10G6-116.

Theorem III-1. Let V be a regular doubly stochastic

space-time point process such that
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(a) If BeB and telto,T) then P(Bju {B,)(w) is

measurable with respect to the product sigma field

- (83)
ASQB

(b) For each point (t,T)e[t,,T) X Y

¢o(t,T) = E{o(t,Tiu5u )}

(84)
r band P
= '/ ¢(t,r;w;ws)P (dedws)<w
QXQ
s
(c) $(t,T;w;w ) is measurable with respect to
s
(85)
[t,,t) X R" X B X A_
Then V 1is a regular space-time point process.
|
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Er. \ I1I.4 Implications of Regularity

When a space-time point process satisfies the

i conditions for regularity, it can be shown that the

*! associated hazard function for the process exists (Ref,

11:83-89). A sample function density can be written in

terms of the hazard function in several illustrative forms.
{' 0Of direct importance to the estimation and control problem

for a point process signal in point process noise is that

the hazard function for the doubly stochastic space-time
point process V is dependent on ws and w . The w
dependence allows for feedback control of the system from
the observations in [to,T)XRm . Regularity also provides
a means of calculating PS(A|Bt) the probability of an event
AeAS given the sub-sigma algebra generated by the
measurements, Bt . If we model, in Qg the uncertainty
of whether +the noise process or signal process caused an
observed point event, then we can use Ps(AlBt) to derive
the probability that a particular hypothesis sequence
(represented by A) occurred, given Bt . This is the key
result necessary to develop the individual filter weights
for the multiple model adaptive estimator.

As a result of regularity, we can also develop a direct
estimator (as opposed to a multiple model adaptive
estimator) for the process g(t) when the observations are

corrupted by point process noise. The direct estimator is
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developed in Appendix A. The multiple model adaptive
estimator approach results in much simpler individual
expressions to evaluate than does the direct estimator. The
tradeoff 1is the growing requirement for calculation and
memory necessary for the MMAE approach.

The specific implications of regularity are presented
in the rest of this section. They are due to Fishman (Ref.
11) and are presented without proof as background for the
multiple model adaptive estimation filter development in
Chapter 1V,

III1.4.1 Hazard Functions. We let W be a space-time

point process, W:[to,T)XQ+[to,t)XRm . If this 'space-~
time point process 1is regular, that is, it satisfies
definition YII-4, then the hazard function, $(t,T;w),weR
exists (Ref., 11:83-89). The infinitesimal properties of the
regular space-time point process are described in the

following theorem.

Theorem III-2, The following limit holds (w.p.l) for

almost all (t,r)elto,T)XY
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lim
At+0  (8t5) T PrN([t,t+At)Xe(T,5))21(B, 1(w)

p~>0

lim

-1
= At+0 (AtD) Pr[N([t,t+At)Xe(T,p)) = 1|B
(Atp) PrN([ YXe(¥,9)) |8, 1(w) (86)
-0

¢(t,T;w)

Proof: (Ref 11:89)
3]

If a doubly stochastic space-time point process V is
regular (Definition III-5), then each process U is
regular for a given wSEQS . A hazard function exists for
each doubly stochastic regular space-~-time point process A
and is of the form (t,T;0;0.) | weR,w Q- . The
dependence on wg is due to the requirement that U is
regular given wg.
If the doubly stochastic regular space-time point

process V satisfies Theorem III-1, then V is a regular
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space-time point procesé (note, the '"doubly stochastic"
qualifier has been dropped). Because the space-time point
process V is regular, a hazard function exists in the
form &¢(t,T;w) , The evaluation of ¢(t,T;w) is presented

in the following theorem.

Theorem 11I-3, Let V be a doubly stochastic space-

time point process satisfying Theorem III-1, Then
(w.p.1) the following equation is valid for almost all

(t,;)e[tO)T) XY

¢(t,r;w) = ;(t,F;w) 8 Eg{o(t,Tiu50) 4008, ) (87)

where AogAS is the set {Q,QS} , and @ is

the empty set,

Proof: (Ref. 11:117)
3 |

The conditioning on the sub-sigma field A°°Bt is
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equivalent to conditioning on the '"measurement history" B

t
and no further information about Qs .

Sample function densities for regular space-time point
processes can be written in terms of hazard functions, as

shown in the following theorem.

Theorem 11I1-4. Let V be a regular space-time point

process which maps into [to,,T) X Y Let telt,,T)
and denote the sample function density on [to,t) X Y

as L,(w) . Then (w.p.l)

t
a.s. - —
Lt(w) = exp|- ¢(t,n;w)drdt (88)
to Y
for Nt =0
N¢ t :
a.s. _ - —
Lt(w) = it ¢(ti,r1;w)exp - ¢(1,n;w)drdr
i=1 to Y
(89)
2
Nt 1
Proof: (Ref 11:92)
[
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Equation (89) can be written alternately as

N¢

t
Lt(m) = exp —/ /¢(T,71.';w)didr+ z 1n¢)(1:i,'1_'i
Y

to i=1

or

t

;W)

(90)

t
L (®) = exp -f ¢(r,’»Z;w)azdnfflncp(r,Z;w)N(drxa'i) (91)

to Y toY

where the 1last integral 1in equation (91)

stochastic counting integral and is defined by

2

t t
/"[lncb(T,-lf;w)N(dTXdI) 4 Z Ing(t,,T, ;)
to Y i=1

79
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We can similarly define the sample function density of

the doubly stochastic regular space-time pcint process v

as

Ny

t
Lt(w;ws) = 1 ¢(ti,ri;w;ws)exp -ff¢(1‘,m;w;ws)dndr (93)
' i=1 ty Y

>
Nt 1

and the Nt=0 case is exactly analogous to equation (88).
Furthermore, we can write the sample function density
of the regular space-time point process v in terms of

¢(e) (recall the definition in equation (87)).

Theorem III-5, Let the doubly stochastic reguler

space-time point process V satisfy Theorem III-1 (V

is regular). Then .
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t

_/fQ(T,Z;w)dZdr (94)

to Y
= / Lt(w;ms)Ps(dws)
Qs
= ES{Lt(w;wS)}
Proof: (Ref, 11:118-119)

B
With these preliminaries, we can now write the
representation theorem, This gives us the means of

evaluating the probability of an event AEAS (which is not

directly observable) given Bt’

Theorem III-6, Representation Theoremn. Let a doubly
stochastic space-time point process, V satisfy the
conditions of Theorem III-1 on [te,T)XY . Then

81




L (w;0 )P (dwy)

_"A (95)
PS(A|Bt) =
/ Lt(w;ws)PS(dws)
g
E_{L _(w;w_)|w_cA}P_(A)
~ .St S S s (96)
Es{Lt(w;ws)}
AeAs
Proof: (Ref. 11:127)
B
As mentioned previously, it is the representation
N
theorem which will allow us to evaluate the Pr[hj t s
correct lBt] terms in the multiple model adaptive

estimator posed in Chapter II.
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With the tools of this section, the next steps are to:
(a) Develop an analytical description of the particle
beam problem which fits the cross product space

modeling concept.

(b) Prove that the process U specified by the

analytical model is regular (Definition III-4),

(c) Prove that the space-time point process \'s

specified by the analytical model is regular (Theorem

This is accomplished in the next section.

11I.5 Analytical Cross Product Space Model

The conceptual cross product space model has been
presented already in Figure 5. In this section, we develop
an analytical description for the particle beam problem
which fits the cross product. space concept. The analytical
description 1is necessary for evaluating the mulitiple model
adaptive estimator in Chapter 1IV.

111.5.1 The Observed Space, © . Let U be a random

point process U:[to,T)X>[t0,T)XR" ., We assume that the

process is Poisson, conditioned on w eQS , where Q is

s
described in Section III.5.2. We let the rate parameter for

S
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the conditional Poisson process be A(t,?;w;ws) where wef ,
wssﬂs . Note that A(+) is random; however, the under
tilde notation has been dropped because the dependence on
w and wg is shown explicitly.

The basic assumption made here is that the process is
Poisson, conditioned on Wy - This assumption 1is made
because a conditionally Poisson process models the photo-
electron events adequately (Ref, 13:49-55), As will Dbe

shown later in this section, if we restrict i(+) so that

t
//A(T,I;w;ws)didr < ® (97)
Y _

to

for all t < =

then U is a doubly stochastic regular space-time point

precess, the hazard function
o(t,Tiw50 ) = AMt,Tiw;uy) (98)

exists, and the dependence of )(+) on both  and we is

Jjustified.
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111.5.2 The Unobserved Space 0. . Let (QS,AS,PS) be

a probability space in which mser . Further, let it be a

cross product of three distinct probability spaces

(99)

(2g ,Ag ,Pg )
3 3 3

S

(which correspond to the randomness in the signal, noise,
and hypothesis sequences, respectively) such that the non-

empty set g is defined as

a 8q xa xa (100)

and the sigma field As is defined as
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The sigma field As,1 is composed of subsets of Qs;’ and PS

is a probability measure on AS . The terms Asz , A

1
Ps2 , and P33 are similarly defined for the corresponding

S3 ?

probability spaces, Thus, Wy is specified completely by
wsleﬂsl s wszeﬂsz , and wsseﬂs3 .
Let the rate parameter for the observed conditionally

Poisson process be

Toy- = =. Soy- (102)
A(t,r,w,ws) al(t,r,wSB)As(t,r,w,wsl)

+a°(t,r;m83)xn(t,r;w;ws2)

The signal rate parameter, Ag{t,T;w;wg ) | is defined as
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= A(t)exp {-é[r—}j(t)X(t;wsl)+0(t;w)] R (t)
{
F‘ -[?—g(t)§(t;wsl)+3(t;w)]} (103)
pe
z
where §(t;wsl) is an n dimensional random variable with

domain in the probability space (Qsl’Asl’Psl) ,

is a (possible) feedback control, and all other +terms in

c(t;n)

equation (103) are the same as in equation (3). The process

x(t;wS ) , is defined as the solution to
1

dx(t;05) = E(OX(t;ug Jat+G(H)du(t;ug )+e (rju) (10

-}-{.(to;w

)

S ~

]
%
)

| A
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where c”(t;w) is a (possible) control input.
The difference Dbetween equations (3) and (4) and
equations (103) and (104) is that in the latter we now

specify the randomness in As(t,?;w;w ) (other than a

S,

possible control feedback) via the probability space

(g, ,Ag. Pg )

s1' s

There are two significant points to be noted for future

expansion of the model. First, by using this cross product
space model, we could let other components of
As(t,?;w;wsl) be dependent on ws1 . For example, we

could model an uncertain rate parameter '"amplitude" as

A(t;wsl) in equation (103) where the probability space
(Qsl’Asl'psl) is expanded appropriately to specify both
A(t;wsl) and E(t;wsl) . Second, because
A(t,?;w;wsl) is allowed to be a function of w, we can

include feedback control in this model, One method of doing
this could be to include an additive control of the form
c(t;w) as is shown in equation (103). In a beam tracking
application, in which we are limited to a finite sized array
of photodetectors, the control c(t;w) might be used to
adjust the pointing of the detector to keep the current
estimate of the projected position (estimate of the terms
E(t);(t;wsl)) ~ in the center of the array. If this were
not done, the I'signal'" (maximum intensity point of the
Gaussian shaped intensity profile) could conceivably '"walk"

off the detector array and no further useful information
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would be observed from the signal process.

An alternate (or additional) method of control is
provided by the term c’(t;w) in equation (104). In a
beam pointing application, we can model the physical
influence on the beam posifion as a control input cl(t;w)
to the process d§(t;wsl) where X is a relative rather
than an absolute position. |

The noise rate parameter is defined as a scalar random
variable |

_An(t,F;w;w )y = A (t, 70w, ) (105)

with domain specified by the probability space

(Qs AL LP_ ). Note that dependence on (feedback
2 S8, _

control) is allowed in this model. As noted before, the

regularity proof requires that:

t
//An(r,z;w;wsz)dZdr < @ (106)
to Y : "

E{An(t,r,w;wsz)}<w
t<=

Y C R™
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The probability space (QSS,A ) and the

P
S3’ s3

coefficients oao(t,r;w_ ) and o, (1,T;w allow us to

S3 S3)

describe analytically the conditioning in expressions of the

form (for example)

. I (107)
ES{( )IA}PS(A) f( )Ps(dws)
A

where (+*) is an event of interest and AEAq is the event
N - N
associated with one of the 2 t possible sequences hj t .

Evaluation of equations of the form shown above -* are
necessary in Chapter IV to derive the multiple model
adaptive estimator equations.

Let (@ be a discrete probability space

s3,AS3’PS3)

where each w535983 is associated with one of the
N
t
hypothesis sequences. Note that at time t, there are 2
N N
t

. t .
possible sequences, hj , Jel1,2, ... 2 7, and that the

number of possible events in Qs3 doubles as each

new measurement is observed.
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and

o coefficients are defined as

) = (0 At measurement times and
3 locations when it is given (or
assumed) that the event at time
< t was due to signal.

ao(t,r,ws

(108)

1 Otherwise,

o (t,r;0_ )=, 0At measurement times  and

Ss locations when it is given (or
assumed) that the event at time
t was due to noise.

(109)

\ 1 Otherwise.

IA
ct

to

<. = =. = 110)
aO(t’r’wS3) al(t:r:wsa) 1 (

If there is no assumption (or
given information) concerning
which process (noise or signal)
caused the observed events.
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An example will help clarify the notation. For
observation on [t ,t)XY , let Nt = 3 , and 73 =
{(tl,Fl),(tz,;z),(ta,-f)},to<t1<tz<t3<t . We desire to
evaluate an equation of the same form as equation (107),

The assumed hypothesis sequence associated with the event A

is, for example,

=3
w
|

{h 3(1),nh *(2),h 3(3)}
6 6 6

{1,1,0} (111)

{signal at t,, signal at t,, noise at ts}

lecall that the superscript on the hypothesis sequence is
the number of space-time events that have been observed and
the subscript is the index of sequence under consideration,
out of a possible 2 t possible sequences. The associated
space-time history of the & coefficients is as shown in
Figure 6. Because ao(t,?;w83) =0 at (t1,r1) and

(t2,r2) , the observed events at those times could only have

[ 4
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az(t,?;wsa)
Y
7
} : JI —3= tXR™
to (ti,T)) (t2,T2) (ts,T3)
%o (t, T ug )
A
(i }
[ [ | o tXR™
| | 1
to (ti1,T1) (tz,r2) (ti,T3)
6
Azh; , N_=3
Figure 6. The a Coefficients




been caused by the signal process, Similarly, the event

observed at (t;,rs) could only have been caused by the
noise process. The o coefficients are specified as having
a value of "1" between measurement times because, even
though no point event occurred in these intervals for the
observed realization, Na point event could have occurred.
The conditioning on hj t specifies only what can or can not
occur at the obscrved event times.

We now have an analytical method for modeling
conditioning on some particular hypothesis sequence. In
order to use Fishman's results, we must first prove that the
space-time point process specified on the probability space
(2,B,P(*;w.) , and described analytically as above, is
regular, conditioned on w

S.

Theorem I11-7, Let (Q,B,P(-;ws)) be a probability

space and for each wg let U be a random point
process U :[te,T)X0>[to,T)XY , Wwhich is Poisson
conditioned on knowledge of wSEQS . Let the rate
parameter of the conditionally Poisson process be
A(t,?;w;ms) as in equation (102) and let
(Rg,A59PY) be a probability space which is defined

as a cross product of three probability spaces as

described by equations (99), (100), and (101). If




t .
f[kn(t,?;w;w33)dzdr < w , (112)

then the space-time point process U 1is regular given
£3

Proof. To prove Theorem II1-7, we must show that the
four conditions of Definition III-4 are satisfied for the
analytical description given of (Rg,B.,Py) . Note that
this theorem states that the point procéss U is regular

given w €y, therefore in this proof, Wy s Wg and wg

1 2 3
are all known events in the analytical model of

A(t,?;w;ws) .

(a) To show that: Fj(zj) is absolutely continuous
on R(m+1)j:

By equation (77), the distribution function is defined as

95




P S RPN T W S

w rdy - - < = — <, .
Fi(z°) = Prlz(1) 2 2(1), ... ,7(3)32()] (113)

.th
Ve can write this in terms of a J order joint density
function. The representation is formal in that we do not

know if the density exists.

Z(3) Z(1)
Fj(zj) - ff £(Z(1),...,2(3))dZ(1). . .d7(3) (1i4)

where the integrals are interpreted as

z(1) ty M1, M

«dz(i) = ff/ sdry ...dr dr, (115)
f lm 1, 1
-0 to - -00

if: Y =R

i=1,2,...,3
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and the integral signs and differentials are nested from the
innermost pair outward. If Y(IRm, the elemental integrals

in equation (115) are over the regions

(oY) 00n; =2, (1)) (116)

k= 1,2,...,m

The density in equation (114) is the probability of
{E(l),--.,g(J)} falling within some infinitesimal volume
about z) . This is precisely the sample function density

given in equation (50) and repeated here:

J t
Jy o = - i B - (117)
p(ZY) I1 A(ti,ri,w,ws)exp —./:/}(T,&fu,ms)dde
i=1 to Y

Since wg is given in the conditions for this theorem, the
process U is conditionally Poisson and this expression for
f(Zj) is valid. The sample function density exists. By the
Radon-Nikodym Theorem (Ref. 54:34), if the density f(Zj)
exists, then Fj(Zj) is absolutely continuous with respect
g(m*+1)J

to and the condition is satisfied.
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- : (b) To show that: Pr[(ti+1,?i+1)e(ti,t)XY|Bt.] <1
' 1
w.p.1, 1i=20,1,....

3 pr[(ti+1,?i+1)e(ti,t)XYlBti]

(118)

1~Pr[(ti+1,?i+1)¢(ti,t)XY[Bti]

1-prlN(lt ,t)Xy)= oIBt.]
i

1—Pr[N([ti,t)XY) = 0]

where the 1last step is due to the independent increment
property of the Poisson distributed process. Also, from the

Poisson statistics
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t
Pr[N([ti,t)XY) = 0] = exp —jf}\(r,i';w;ws)dT‘L—dT
t. Y

t
= exp -ffa1(T,I;wsa)xs('r,z;m;wsl)d}fdr (119)
t. Y

t
- ffao(r,F;w53)An(r,'ff;w;wsz)dZdr
t. Y

In order to prove this condition, it is necessary to show
PriN(lt;,t)XY) = 0]>0. Equation (119) can only equal zero if
the exponent is infinite. Because the rate parameter for

the signal process, As(t,?;w;w )

s, , 1s Gauscsian shaped

99




P T R m= e e e LT e T R

fal(tﬁ;w53)>\s(t,7t';w;wsl )d'f'fs/ SRR LT
Y R™

(120)

8

! = A(t)(zn)z’:[g(t);% < o

Note +that the Gaussian shaped intensity profile for the
signal rate parameter yields a convenient evaluation of
equation (120) and allows us to use the Snyder-Fishman
filter results for the elemental estimators of the MMAE,
The Gaussian shape itself, however, is not necessary, as
long as the conditions of this theorem are satisfied and we
use an appropriate elemental estimator. We now need the

previously mentioned condition

t
/ /ao(t,'f?;wss))\n(t,f‘f;w;wsz)dT[dT<°° (121)
to Y




A e AR AL

) each have a maximum

) and a,(t,?;w83

Since ao(t,T;w
S3

value of one, the entire exponent is finite for finite t.

Therefore

]

t
priN({t;,t)XY = 0] = exp -‘/:/;(T,Z;w;ws)didr > o (122)
t; ¥

Substitution of equation (122) into equation (118) results

in
Pr[(ti+1,?i+1)e(ti,t)XY|Bti] <1 (123)
w.p. 1
(c) To show that: The point process is conditionally
orderly:

To simplify notation, let
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N(4t,p) 8 N([t,t+At)Xe(T,D)) (124)

With this notation, we can write the expression to be

evaluated (from equation (75)) as

lim — >
Pr[N(At,p)—ZIBt]
At>0

_ Pr{N(At,?)21]|8,]
00

(125)
lim

1—Pr[N(At,3)=O|Bt]—Pr[N(At,3)=1]Bt]
= At-+0

_ 1-Pr[N(At,3)=0|Bt]
p+0
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lim _ _
1-Pr[N(At,p) = O]-Pr[N(at,p) = 1)

- = At+0 — (126)
i 1-Pr[N(At,p) = 0]
; E—)O
i
3

where the 1last step is due to the independent increment
4 property of the Poisson point process. Since the point
i process is Poisson,
lu—‘,
g
3
i
: lim
i -
] At+0 Pr[N(At,p) = 1]
; 520
o lim  t+At

L

= At-0 / f )\(T,I;w;ws)dzd'r (127)
p*0  t c(T,p)

t+i4t

« exp| - J[
t c(r

103

AT, 0w )dndr = 0

,0)




and

lim

At»0  Pr[N(At,P) = 0]

P-0
128
lim t+At ( )
= At->0 exp| - f f )\(T,'Z;w;ws)dZdT =1
>0 t  c(r,o)

therefore, when we attempt to take the limit of equation

(126), the result is indeterminate

(129)

In order to evaluate equation (126), we must use

L'Hospitals rule and Leibnitz's rule, with respect to P1
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P .

(the rirst component of 7 ) first:

lim _
Pr[N(At,p)-2{Bt]
At~0 —
_ PrN(At,p)=1]B,]
p~>0
Lim 13 ) (130)
MO - o5 PrINGat,B)=0]- £ PrN(at,F)=1]
= At>0 0,0
3 =y -
0,20 - 3p7 PrIN(at,p) = 0]
pm+0
lim lim
e’?p+6e“?p-e—qy
= At+0 p;-0 o (131)
e "y
p2-0
(gl
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———— -~ — -

{' lim lim
3 —9
i = at>0 pv0 22U (132)
- ]
3
'_. p2-0
E .
b .

. p -0
#1 m
1

where
t+At
g 4 f f AT, %5050 ) dRdr (133)

1 t c(-lt)-f;)

,

f

Y

]

1 106
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? and

t+at T2TP2 Tt P
b = f f f AMT,ri+p1,12,13,
t T2 rm
(134)
...,’Lm;w;ws)d/l_m...d/l.zd'[
From equation (133), it can oe seen that
lim
6 = 0 (135)
p1-0

and the limit of equation (132) can be taken with respect tc

o; and we have the desired result,.
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lim

pr[N(At,E)Zzlst]
At+0 — = 0 (136)
Pr[N(At,p)zllBt]

p~0

The process is conditionally orderly.

(d) To show that: Pr[N([t,,t)XY)<=] 1 for finite t

PriN([to,t)XY)<o] = 1-Pr[N([t,,t)XY)

i
8
—

(137)

For the analytical model description under consideration
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PriN([t,,t)XY) = n]

t n t
ffk(r,z;w;ws)d_id‘r exp —ffk(r,z;w;ws)d-fde
_Lto ¥ to ¥ - (138)
n!

therefore, for finite t , and by equations (120) and (121)
lim Pr{N([to,t)XY)=n]=Pr[N([t,,t)XY)= =]= 0 (139)
n->o
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and
PrIN([to,t)XY)<=] = 1 -0 = 1 (140)
The proof is complete. %)
We have shown that U 1is regular given wSEQS . The

following theorem shows that, for the analytical cross
product space model given above, the space-time point
process V is regular. With this condition satisfied, we
know that a hazard function exists for V and it can Dbe

evaluated as in equation (87).

Theorem I1I1-8. Let the probability spaces (Qg,Aq,P.)

and (Q,B,P(*;w_)) satisfy Theorem III-6. If
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E{Xn(t,r;w;wsz)}=An(t,r)= d/.kn(t,r;w;wsz)P (dedwsz)@o

QXQS
(141)
and
(b) A(t,?;w;ws) is measurable with respect to
[to,t) X B™ X 2 X Qg
then the space-time point process V 1is regular,
B

Proof. To prove Theorem III-8, we must show that the
analytical description of the cross product spaces satisfies

Theorem II1I-1 (equations (83), (84), and (85)).

(a) To show that: If BeB and tel[t,,T) then
P(B;wslBt)(w) is measurable with respect to the product
sigma field AS@B

Consider the function (mapping):
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P:QXQS+[0,1]ER1

where

A
P = P(B;wSIBt)(w)

is a set function which maps from the cross product space
QXQS into a <closed interval on the real 1line, The
function P is measurable with respect to As®B if the

set

{BXmS:P(B;wSIBt)(w)>a}

is measurable for all «e[0,1] (Ref. 36:65). Since it
is given that Beb and, by definition of tie probability
space, wseQS (and therefore W eAs), BXms is measurable
with respect to ASQB (Ref. 32:71). Thus

P(B;wSIBt)(w) is measurable with respect to A_®B .




. 4 m e e oa_a

(b) To show that: For each point (t,T)elt,,T)XY

$(t, TI=E{0(t,T w50 ))= f¢(t,?;m;ws)p'(dw du_y<o (142)

QXQS

The hazard function ¢(t,?;w;ws) is measurable with respect

to each of its arguments. By the Fubini Theorem

26,7 = [ fo0t,F0300)P, (du HP(dw) (143)
f QS

113

—a - o a_a




- ff al(t;wss)fXs(t,?;m;wsl)Psl(dwsl) (144)

U R

+ao(t;wsa)./.xn(t,r;w;wsz)Psz(dwsz) Psa(dwss)P(dw)

f

S,

If A (t,T;w

S ) is Gaussian shaped as previously

s W
’ S,

described, then

./.As(t,r;w;wsl)PSI(dwsl) = As(t,r;w) < @ (145)
Q
s

1

) and

It is given that An(t,?) < ® Since oo (tjug
3

a;(t;w53) have a maximum value of one, we can bound ¢(t,T)

by
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$(t,T) i./;s(t,?;w)P(dm)+xn(t’?) < o (146)
1)

The condition is satisfied.

(c) To show that: ¢(t,?;w;ws) is measurable with

respect to [to,t) X R X B X AS .

This condition is given 1in the statement of the

theoremn.
The proof is complete. B

Condition (c¢) for this proof was given in the statement
of the theorem. This was done to keep the form of
A(t,?;w;ws) as general as possible to admit a large class
of functional forms, In order for this theorem to be of
practical value, hovw ~->r, some discussion on this point is
in order. A rate .rameter function A(t,?;w;ws) is
measurable on [to,t X R™ X B X AS if it 1is measurable
individually with respect to each of its arguments when the

other three arguments take on any allowable value.
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Therefore, we can conéider the arguments individually
providing the value of one argument does not affect the
measurability of the function with respect to another
argument. From measure theory (Ref. 18:284-287, for
example) we know that continuous functions, the sum of two
measurable functions, the product of two measurable
functions, and 1limits of measurable functions are all
measurable functions. By using these results, we can
construct a large class of useful measurable A(t,?;w;ws)

functions from elementary functions,

I11.6 Summary

In this chapter, the basic physical model described in
Chapter 1II is recast in terms of a doubly stochastic space-
time point process defined on a cross product of two
probability spaces. Several analytical tools are presented
which allow inference of wuseful information from the
observed doubly stochastic space-time point process. In
particular, if the observed process is regular (Definition
I1I-5), then its hazard function exists and the existence of
the sample function density is guaranteed. Also, a
representation theorem is presented which gives us the means
of calculating the a posteriori probability of an event in
the unobserved (QS,AS,PS) probability space given

observation of events in (Q,B,P) . Finally, an analytical
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description of the particle beam estimation problem is
given 1in terms of a cross product model. The resulting
process V is shown to be regular.

Chapter II provided the basic form of the multiple
model adaptive estimator suitable for this point process
problem; however, the filter weights were difficult to
calculate from a probability density function approach. The
methods and results of Chapter III provide a means of
calculating the individual filter weights when the
analytical model meets the regularity conditions necessary
for Theorems III-7 and III-8, In Chapter IV, an analytical
model appropriate to the particle beam problem is presented,
the individual filter weighting factor expression is
evaluated, and the multiple model adaptive estimator

equations are presented.
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b IV. The Estimator

{ IV.1 Introduction

In this chapter, the full scale multiple model adaptive

estimator for the particle beam problem is developed. The
first section develops the a posteriori Ifilter weights.
Tl:e general form of the multiple model adaptive estimator is
shown in Chapter II, equation (24): an estimate is
generated as the probabilistically weighted sum of outputs
of individual estimators, each based on a specific
assumption about uncertain parameters. The same form in
notation suitable for the point process problem is given 1in
equation (36). To derive the a posteriori individual filter
weights, Pr[tht]Bt] , j=0,1,2, ... N.-1 , the
representation theorem from Chapter IIT is used. Section
IV.3 presents the equations for the general multiple model
adaptive estimator for the particle beam problem in cross

product space terms, In this section, the estimator

development 1is consolidated in one location for reference.
Finally, Section 1IV.4 presents examples of t! - estimator
equations under several simplifying assumptions, We begin

by deriving the weighting factors of equation (36).
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IV.2 The Multiple Model Weighting Factors

The purpose of this section is to evaluate the
N

weighting factors, Pr[hj tIBt] , for the multiple model
adaptive estimator described in equation (36). In words, a
weighting factor is the conditional probability that the
th N, N, '
J hypothesis hj , out of a possible 2 possible
hypotheses, is the correct one, given the sub-sigma field of

events up to time t, The representation theorem, Theorem

I1I-6, gives us the means of calculating the probability of

an event AgAs given Bt . If we let the event Ai be
. Nt
the event associated with the hypothesis sequence hjlt ,
then from equation (95) we have
J[Lt(w;wS)Ps(dws)
N A. (147)
Prlh, t]3t3= J
. D
JfL%(w,ws)xs(dws)
Qs

where L%(w;ws) is defined by equation (93).

Since we are using a cross product of three probability
spaces to model the observed event, Lt(w;ws) is actually
dependent on the events in all three probability spaces:

Lt(w;wsl;wsz;ws3) . The hazard functions are assumed to

be of the form
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o(t,T5u50.) = o (t,Tug o (t,Tw50 )
3 S,

(148)

tao(t,T;w, )é (t,T;wiw_ )
S3 n S2

Note that this form is very similar to that shown in
equation (102); however, for ihe development of the
weighting factors, we do not nced to assume that the
observed process 1is Poisson nor do we need to assume the

Gaussian shaped intensity profile for

b (t,Ti050

Sl)

We only require that the process V be regular (that is, it

satisfies Theorem I1I11-8).

N
The events Aj’ Jj=1, ..., 2 t are, by construction,

mutually exclusive and exhaustive, thus
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'/.I%(w;wsl;wsz;ws3)Psa(dwss)Psz(dwsz)Psl(QwS )

L, (w)

A/
QS

Because of this, we can expand i.'t(w)

Lt(w;ws)Ps(de)

121

as

(149)

1




°P33(dws3)Psz(dwsz)ps

N

2

D

In equation (1

integration over

i=
(%4

53

t

J[ Lt(m;wS)PS(de)
1 A,
J

1

(dws

), the Aj notation is used to

' . , therefore
QSIYQSZXAJ

N
2 t
25 Lt(w;ws)PS(de)
Lt(w)
122

i

(152)

(153)

indicate

(154)

L.




ey,
i

It aan S S Awed

~

=
~

€
~

=
-+
7~
€
et

as expected.

By equation (94), the denominator of equation (147) is

/ L (w50 )P (dw ) = Et(w)

o

(156)

t
= I ¢(ti,'1—'i;w)exp -ffcb(r,i-;w)didr
to Y

123




o .rv_.j

t
[ogCt;, Fysw)to,(t;,T;50)] (157)

= =z

i=1

t

* exp -ff;(r,'f?;w)didr

to Y

where the last step is due to the fact that there 1is no

conditioning on A therefore

J

) = a;(t,T;u_ ) =1 (158)
S3

We must next evaluate the numerator of equation (147)

to obtain the weighting factors, The numerator can be

- expanded as
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/ Lt(w ;wS)PS(du)s)

A,
J

where I.(w

= J/. ‘/. Ij(ug DLy (wiug jug jug.) (159)
Q. Q

* Py, (dwg P (dug IP (dwg )

is an indicator function defined by

I (. ) = (160)

0 otherwise

We can rewrite the integrand as
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Ij(ws3)Lt(w;ws) = Lt(w;ws) A

J

=1 ¢s(tk’rk;w;wsl)n ¢n(t2’rl;w;w52)
S. N.

J J
t
* exp *J{J/;(T,Z;w;ws)dzdr (1861)
to Y
where the vertical bar is read as '"restricted to Aj ", the

set of signal indices is defined as

N

S, = {k:h, “(k)=1}={k,,k,, ...

i j » k_} (162)

q

and the set of noise indices is defined as
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N

- . t =0}= a
Ny = {2:hy "(0)=0}={L ,&_,...,ip} (1623)

and q+p=N, . Note that the value of the exponential

term in equation (161) is not a function of . This is

3
because the o terms in ¢(t,F;m;ws) only have values of
zero at points (sets of measure zero). We can therefore

substitute equation (161) intec equation (159) to obtain

f Ly (05 0)P_(dug)

A,
J

N

= f / Il ¢s(tk’rk;w;wsl)n q)n\tﬂ,’rl;w;wsz)
S. :
Qsl Qs2 J J

t

_ _ (164)
c exp | - //(b(r,&;w;msl;wsz)dnd‘r Psz(dwsz)Psl(dwsl)
to Y
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In order to evaluate equation (164), consider the process

. __) o ‘m
VJ.QSIXQSZXstx[tO,t) [to,t)XR

where there 1is only one possibie hypothesis sequence of

signal/noise observed events; that is

= 165
p83(Aj) 1 ( )

W\
The sequence hj t s guaranteed to occur. The process Vj
is regular because it is a special case of the process V.
which is regular. Since Vj is regular, by Theorem I1II-3 2

hazard function exists which is an expected value:

¢J(t,?;w)=¢j(t,?;w)=ES{¢(t,?;w;ws)lea.st} (166)

in which the j subscripts indicate association with the

128




special case process V‘:i . By Theorem III-5, equation (94),
Nt t .
—-— _ A - . _ - _ (167
Lt.(w) i ¢j(ti,ri,w)exp /f¢j(T,n,w)dndT )
J i=1
to Y

(168)
= [Ltj(w;ws)PS(dws)
9}
s

where Ltj(w;ws)
defined by equation (53):

is the sample function density for Vi as

L, (w;w_ ) =
t. 'Ts
J
Ny t
= e _ T 3 (169)
it ¢j(ti,ri,w,ws)exp /tbj('r,n,w,ws)dndr
i=1 to Y

The sure event A, determines the value of the coefficients
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Qo(t,;;wss) and O‘l(ta?;w )

; therefore
S3

Ly (@i0) = T o (t),Tpjujog Mo (T, Toi050, )
J S. N,
J J
t
exp —f[rbj(T,Z;w;ws)dZdr (170)
to Y
We can

substitute equation (170) into equation (168) to

obtain

ftj(w) = /Ltj(w;ws)PS(dws) (171)

s
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s, Vs, J J
t
eexp| - _/;(T’Z;w;wsl;wsz)dZdT
toY
OPSZ(deZ)Psl(deI) (172)

where we have used the property that the integral term in
the exponential of equation (172) is independent of w53
because the oo coefficients of ¢(*) only have a value
of zero at points. Equation (172) is exactly the expression

we need to evaluate in equation (164). By equation (168),

we know that
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t
= 1 ¢s(tk,?k,m)n ¢n(t£,?2;w)exp -//¢(T,Z';w)d'idr
o Y

. N t
SJ J

(173)

We can substitute equation (173) into equation (164) to
arrive at the numerator:
th(w;ws)Ps(dws)
A,
J
t
=TI ¢ (ty,r ;) ¢ (t, 1) 0)exp -f/(b(r,ft;w)dndr
S. N, to Y
j b °

(174)

Substitution of equations (174) and (157) into equation

(147) results in the desired weighting factor
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¢S(tk’?k;w)n ¢n(t2’?£;w)
i N
t,.
n [cbs(ti,ri;w)+¢n(ti,ri;w)]
i=1

I
N, S
pr[hj 8,1 = 5 (175)

From this expression for the weighting factors, it can be

seen that

N
176
z Prih, tlst] =1 (176)

as discussed in the text preceding equation (155).

Furthermore, the weighting factors are recursive:
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vy

N N

t ~ - t N _
N h, (N ty Ty jw)t{1-h . F(N ¢ ,
Prin, 18] = - AL T P {1-n vt ey Ty 50)

6 (ty ,Ty ;0o (t ,Ty ;w)
S Nt Nt n Nt Nt

Nt—l
« Pr hj’ Bt

<t= 177
for tNt t tNt+1 ( )

where the Jj' notation denotes the '"old" sequence which is

N
concatenated with the new sequence value, hj t(Nt) , to

N
obtain the "new" sequence hj t . This is the same notation

discussed in more detail in the text following equation
(51).
Nt
We now have the weighting coefficients Pr[hj IBt]

for wuse in the multiple model adaptive estimator equation
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(36). The evaluation of the coefficients is general because
we did not need to specify the exact form of the hazard
function. It was only necessary that the observed process
satisfy Theorem 1I1I1-8,. In the next section, all the
equations for the multiple model adaptive estimator for the

particle beam problem are consolidated and presented.

IV.3 Estimator Equations

In this section, the results of the previous section
and chapters are ccnsolidated and the multiple model
adaptive estimator equations for the particle beam problem
are presented. Only the results are 1listed here;
references to earlier chapters and sections are provided for
detailed descriptions and derivations.

IV.3.1 Assumptions. A conditionally Poisson space-

. . . o m
time point process is observed on [to,t)X .  The observed
process consists of point process events from a

conditionally Poisson signal process with rate parameter

As(t,?;w;wsl) and a conditionally Poisson noise process
with rate parameter An(t,?;w;wsz) . The signal and noise
processes are assumed independent, therefore the rate

parameter for the observed process is

135




- - - 178
l(t,r;w;ws)=ks(t,r;w;wsl)+kn(t,r;w;msz) ( )

The signal rate parameter is assumed to have a Gaussian

shape as defined by equation (103) and the noise rate

parameter is defined by equation (1G65). We further assume
that
t B .
/f )\n(T,Z;w;ws Ydrdt <
t “p™ 2 - {(179)

E{An(t,r;w;wsz)} < ®

and that

dx(t) = F(t)x(t)dt + G(t)du(t) (180)

as in Chapter II.
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I1V.3.2 The Multiple MModel Adaptive Estimator. The

multiple model adaptive estimate of §(t;wsl) is given by

2 "-1

~

~ N
X(tug ) = D, Xj(t)Prlhy 8] e

J=0

where Nt is the number of observed events in [to,t)XR™

The development of the MMAE form is presented in Chapter II.

The individual hypothesis estimates, §j(t), are defined as

x.(t) & E{X(t;0_ )|B n Tty (182
j X( :wsl t) J )

where Bt is the sub-sigma field of events up to time t
N
and hj t is a hypothesis sequence which defines the jth
N
entry out of a list of 2 t possible hypothesis sequences

at time t. The hypothesis sequence notation is defined in
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detail following equation (28).

The process g(t) is modeled as the output of a linear
system driven by unit-strength white Gaussian noise, Ve
observe a conditionally Poisson point process which has a
Gaussian shaped rate parameter. As a result of this model,
we can use the Snyder-Fishman filter to calculate the
individual estimates.

The generzl form of the Snyder-Fishman filter equations
uscd to calculate the i& terms is given by equations (10-
13). Since the hypothesis sequence tht is given (in

~

equation (182)), the estimate for EJ. is calculated by

considering only those observed events which are causcd
N

(according to hjt) by the underlying signal process. Thus,

N
for each of the 2 ¢ models, we calculate

d';_cj(t) = g(t)ij(t)du/g{j(t)[‘f-g(t)ij(t)]N(thdI) (183)
Rll'l

; + ¢”(t) if control is included%

as in equation (104)
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dia'(t) = E(t>§j<t>dt+§j(t)£T(t>dt+_G_(t)g(t)T(t)dt

(184)

i/%ﬁt)ﬁ(tlgj(t)N(dtde)
RmJ

where the counting integrals in equations (183) and (184)
only have nonzero value at the measurements (t,T) which
are specified Dby hj t to have been caused by the signal
process,

Equations (183) and (184) can also be written in
propagate-update form, as is commonly done for Kalman filter
realizations, Let t~ denote a time immediately prior to
an observed point process event and let t+ denote a time
Jjust after an observed point process event and its
incorporation into the estimate. The estimate of X(t) is

propagated by
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d§j(t) - F(1)X(t)at {+ &7 if used)

for: tv . St ° t] (185)

i=1’2,...’ Nt

Updates, due to observed point process events, are

accomplished by

(18€)

®i>
”~~
ot
o’
I

(D) = X DR ED (F-HEDF;(E]))

i=1,2, ..., N

The propagate form for the individual covariances is
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4L, (t) = P(O)Z (£)at+Zr (£)de+G(e)G (£)at

and the update expression is

206 = I DK EDIEDE (6]

where
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A T a2 T -1
K(t) = Z(t ] 189)
,j( ) _j< )H (t)[g(t)%(t)!_i (t)+R(t)] (

Note that we could use another (perhaps nonlinear)
model for x(t) and an arbitrary rate parameter for <the
conditionally Poisson signal process, The general form of
the MMA estimator (equation (181)) is wunchanged; however,
the individual estimates of x(t) would have to be
rederived for the new model. The Gauss-Markov nature of
X(t) and the Gaussian shaped rate parameter allow us to use
the convenient Snyder-Fishman filter.

The weighting factors in equation (181) are generated

as

MAg(ty, T w) ol An(tl,?z;w)
S N,

N )
Prih, fls,1 = J (190)

Ne
n [xs(ti,?i;w) + An(ti,?i;w)
i=1
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where

2 6Ty b . (191)
(8,00 = Bg 1ag(t,Froiug )8,

and

~ — A —_
. = % . a9
)\n(t,r,w) Esz )\n(t,r,w,wsz)IBt (192)

These weighting factors are developed in Section IV.2.

From equation (27), the covariance of the estimator is

(193)
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where the individual covariances are given by the solution

to equation (184) for j = 0,1, ... ,2 "=1 .

,

The equations in this section specify the multiple
model adaptive estimator for the (very general) form of
An(t,?;w;wsz) given. The following section describes
several examples of the estimator's equations for various

assumed forms of As and kn .

IV.4 Examples

The following examples provide insight into the
structure of the estimator and a sample description of the
model to match a simple particle beam tracking application.

IV.4.1 Example a: Structure Insight. In this

example, we see that the weighting factors defined by
equation (190) reduce to -equation (67) when the same
assumptions are'made.

For the development of equation (67), it is assumned

that both the signal and noise rate parameters are

nonrandoms

J\S(t,?,'}?(t;wsl);w) = As(t,‘r‘,'i(t)) (194)
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where Xx(t) is known, and

~
]

An(t,?) (195)

—— Y Y Y
. ﬁl . o~
=]
)]
N

We can substitute these values into equations (191) and

(192) to obtain

A(t,T5w) = A (t,T) (196)

and

An(t,?;w) An(t,?) (197)

We can substitute equations (196) and (197) 1into

equation (190) to obtain




o Al L aa RN aal bl g

A ;'T—'—rv'Y"T Yyte ow e
f . ' R

Ii As(tk,rkﬂx(tk)) Il An(tl,rz)

N S. N.
pr[h, t|B,] = -3 J (198)
J t N
p. t
{ q %"s(ti'ri’x(ti))”n(ti’ri)}
. i=1
b
[
Equation (198) is the same as equation (67). Thus, for the
trivial case of known A (t,T,x(t))  and An(t’;%

the full scale estimator reduces to the same form as in our
initial multiple model adaptive estimator development.

Iv.4.2 Example b: Tracking Model, In this example,

we present parameters for the model which are suitable for a
simple tracking application. The problem is to estimate the
position of a circularly symmetric Gaussian intensity
profile on a two dimensional detector array based on the
observation of space-time point process events., There is no

feedback control in this example.
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Let the point process be observed on [to,t)XR? where

n=2 dimension of X(t)
m= 2 dimension of observed

spatial vectors.

s s, .
H(t) =H=1 constant

I = identity matrix
A(t) = A constant
R(t) = R = v°L
Y scalar constant
F(t) = -1
G(t) = gl
g scalar constant
u(t) = two dimensional Weiner process ¢{ unit
~ aiffusion
An(t,?;w;wsz)=kn(?)= A Tey C R’

0 elsewhere (199)

where Y represents a
two dimensional photo-
detector array as in
Figure 7,

x(0) =0 initial conditions

2(0) = g,

The vector E(t;wsl) is a two dimensional vector output

of the linear system
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Figure 7. The Detector Model
d%(t) = - + g (200)
x2(t)dt du.(t)
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The signal rate parameter is

T
A(t,Tiw_ ) = Aexp{-2[F-X(t)] = I[F-X(t)]} (201)
5 Si ~ v: " ~

Thus, the point of maximum intensity on the detector array
is g(t) and our goal is to estimate g(t) given a sequence
of point process cbservations of the form (t,r) which are
corrupted by point process noise.

The noise rate parameter is selected to model noise
from dark current c¢lectron emissions in a physical
photodetectonr, Because of the finite nature of Y, An is
integrable on R? (as required in Chapter III) and there
will Dbe no dark current induced noise events outside of the
limits of Y .

Although this description of An(t ,T) models the
finite size of a physical detector, notice that As(t,?;wsl)
is defined for all TreR™ throughout the development of the
estimator. If we simulate this tracking problem (on a
computer for example) we must consider this fact. One
method for dealing with this is to make the size of Y very
large with respect to the '"spot size" of the signal

controlled by R . When this is done, we can insure that
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there will be an acceptably small probability of observing a
signal event where there is no detector array. Note +that
this modeling concern does not change the estimator's
equation; it only affects how accurately simulation results
can be applied to a real world system and how closely any
calculated error statistics maich the real world system
performance. A second method is not to allow any "signal"
point process observed events outside of the subspace Y.
This would involve a modification of the individual
estimators to include the edge effects from the disallowed
regions,

The expression for the estimator is given by equation

A

(181) and the individual hypothesis estimates, ij , are
given in differential form for j=0,1,2, ... ’Nt_l by
d’ij(t) = -§J.(t)dt +fg<_j(t)[?-§j]N(dtxaI) (202)
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d_z_j(t) = -2§j(t)dt+g2_1_dt-f§j(t)_g_j(t)N(thdI) (203)

RZ

Ej(t) = 2(0)[25(t)+y?1] 7 (204)

The weighting factors are given by equation (190) where

A (t;,r.) = /A (t.,r.,E)f (Z|8,)dE (205)
s* 1’71 s*7i’"i S(tiﬂBt I t

When the first point process event is observed at

(tx’?x) , we have
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An(tl )Fl)

Pr[h’[Bt] = = - —
0 As(tl,r1)+Kn(t1,r1)

A_(t,T)
Pr[h’lBt] = x S_ —
1 As(tI,rz)+An(t1,rx)

Note that

1 1 =
Pr[h°|8t] + Pr[h]|Bt] 1
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(208)




This is expected since there are only two possible
hypothesis sequences at time t1 and one or the other must

be correct.

At this point, it is useful to introduce a superscript

~

for x which is similar to that used for the hypothesis
~ N
=t s
sequence notation. We 1let Xj (ti,') be the individual
N
estimate of X at time ti’ assuming that h, t is the

correct sequence., The superscript specifies that this value

A

for X is evaluated after incorporation of the observation

numbered Nt . Note that J can take on values in the set

0,1,2, ... ,2 ‘-1 and that iZNt. The same superscript

can be assigned to the individual covariance values:
~ N

£, ¢

—J

growing number of hypothesis sequences ccuses the subscript

(t). This additional notation is necessary because the

indices to change as each new data point is observed. This
can be seen in the rest of this example.

With this notation, the individual estimates for io
and %i (in differential form) are given by

di;(t) = - i;(t)dt (209)

to £t S tY
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2l 2l
dxl(t) = '—X1(1t

(210)
to =t St
21 4 21 S
x1(ty) = xl(tl)"'_l_\_l(tl)[rl‘xl(il)] (211)
Al Al
dZ,(t) = -2I,(t)dt+g?Idt (212)
to St S t]
Al 4 Al e 213
Zi(ty) = L, (t1)-Ki(t1)E1(ty) ( )
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K;(t) = _E_i(t>[_§_I<t)+Yz_I_]-‘ (214)

A1l
Note that we did not need to calculate dZ,(t) explicitly
for the estimate of 3?(-), although it is necessary for
calculation of the overall covariance of the estimator.

When the second point process event 1is observed at

(t2,T2) , the weighting factors are
A (ti1, DA (t2,T2)
pr[hZIB ] - _n n (215)
o't A
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An(tx,?l) %s(tz,?z)

2
Pr[hllBt] = (216)
A
2 A (t1,T1) A_(t2,T2)
Pr(h,|B ] = = n (217)
t
A
2 ; (tl,;l)x (t2,r2)
Pr[h,;|B,] = -2 S (218)
t
A
where
2
A 3 = = 219
A= T [As(ti,ri)ﬂ\n(ti,ri)] (219)
i=1
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Note, again, that the weighting factors sum to one.
This example displays how the MMAE algorithm progresses
as each new space-time point process event is observed. In
+

general, to advance from time t; to time ti+1 tie

estimator must:

i
(a) For j =2"-1 down to

2 . +
(1) Propagate Xth(ti ) to

%h

25 (tiyq )

(2) Propagate Eth(t.+) to I .Nt(t

i 23 i+l )

i+1_

(b) For j =2 1 down to O:

If Jj 1is even, then (it was a noise event)

(1 tet xNecel, ) = XM,
(2) Let ith(t;+1) = ith(t;+1)

Else (it was a signal event)
(3) Let §5Nt(t;+1) = §j—1Nt(t;+1)
(4) Update ith(t;+1) to §th(t;+1)
(5) Let ijN"ﬁLl) = ij-th“Ll)
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to E N

Nt =
6 Update I, t.

+
i+1) t(ti+1)

(Note the changing subscripts and the doubling of the number

of active filters)

1

i+
(c) For j =0 to 2 -1:

i+1|

Calculate Pr[hj Bt]

(d) Calculate E(ti+1)

Figures 8 and 9 depict the storage requirements and
data movements of the x vector for one iteration of the
above algorithm. Figure 8 shows the doubling of the memory
required as the state of each elemencal filter is propagated
to the next event time in step (a). In Figuve 9, the update
phase, step (b), is shown. The elemental covariance
matrices are propagated and updated in exactly the same
manner,

The complexity of the expressions and the expanding
number of individual filters strongly motivate the

simplifications to the estimator discussed in Chapter V.,




;( Before step (2) After step (a)

: ¥2(21-1)
[~
©
o
®
¥oi 1 ¢
©
-
) — Propagation ™
(]

/ Xo
X

1
*0 > X,
+ -
t=t; t=tin

Figure 8. X storage before and ufter algorithm step (a).
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Before step (b)

©

e

]
Xg Update —-
/

X4 -
X3 — Update ——t

5 | .
Xy ~ Update —™

Xg f >

t=t;+1 t=t;+1

After step (b)

Figure 9.

X storage before and after algorithm step (b).
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IV.5 Summary

In this chapter, we have developed the weighting
factors, Pr[thtIBt] , for the multiple model adaptive
estimator presented in Chapter II. The development is
possible because of +the cross product space modeling
concepts and results of Chapter 1III, particularly the
representation theorem. The multiple model adaptive
estimator equations are consolidated in this chapter and
several examples are given to provide insight into the
estimator's structure and calculations, Simplifications to

the estimator are discussed in the next chapter.
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V. Filter Simplifications

V.1 Introduction

The multiple model adaptive estimator developed in the
previous chapters provides the minimum mean square error
estimate of a vector X (which is not directly observable)
from observations of a point process signal in additive,
independent point process noise, The estimator consists of

elemental filters, the number of which grows exponentially

with each new observed space-time event, In addition, the
calculation of the XS and kn terms of the weighting

probabilitins (equation (175)) is, in general, complex.
These two factors motivate the simplifications developed
here,

In this chapter, we develop simplifications to the
multiple model adaptive estimator which require less
computation than the methods of the full scale estimator,
The simplified filter does not have a growing requirement
for either memory or computation as additional space-time
events are observed. The simplifications result in a
suboptimal filter, however, they are Dbased on an
understanding of the structure of the full scale estimator

and a brief discussion is given of the conditions under
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which these simplifications are appropriate.

Two areas are considered: calculation of the
probability weighting factors, and limitation of the
exponential growth of the number of elemental filters. We

begin by considering calculation of the weighting factors.

V.2 Weighting ¥Factor Simplification

The form of the general weighting factors as, shown in
equation (175), is very straightforward. The key to the

complexity (or simplicity) of <calculation is in the

evaluation of the terms ¢s and ¢n‘
The term ¢s is defined as

¢S(t,?;w) = Es{¢s(t,?;w;ws)i8t} (220)

~

and o is defined in a similar manner. The difficulty in
calculating these two terms is highly dependent on the modeil
of fhe underlying physical process, At one extreme, if we
make the assumption that observed process is Poisson with

known signal rate parameter

b (t,Tiwsu) & A (L, F,%(E)) (221)

and if X(t) is known, then
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$(t,Fsu) = A_(t,T,%(t)) (222)

because ¢S is not dependent on Wy At the other

extreme, we could, conceivably, formulate a model for which
there is no closed form solution for ¢s and ¢n .

A more useful case is that of the particle beam problem

where AS is defined by equation (3) and An is a

deterministic function of t and T. (A random noise rate
parameter 1is allowed and useful for the beam problem. We

are given the form of As and there are significant

difficulties in computing As . Because we have considerable

freedom in the form of An , only simplifications to the

~

XS calculation are considered here.)

Additionally, let there be no feedback for this

example. Since An is not random

N

An(t,?) = An(t,?) (223)

i

and we must evaluate

- N
Ag(t,T) = [As(t.?.f)f(flz ©yaE (224)

where € is the dummy variable for x(t) and f(ElZNt)

is the probability density function of x(t) given the
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measurement history. We can use Bayes' rule to obtain

Ny _
ty . 1(Z IIqi)f(i) (225)
£(Z27°t)

_ N
(€2

N
in which f(Z t) is the sample function density of the

observed process and f(%) is the probability density
function of X(t) ©propagated from time t,
From the definition of a sample function density, we

can write

Nt _ t
f(Z lig) .
N = €exp -ijﬂNT,n,é )-d(Tt,n)drdT
t g
£(Z ) Ty

(226)

t
[ ¢CT,%,E )
+ [ 1n l_—A——————g—] N(dt X dX%)
)

where ¢ 4 As(t,;,g) + An(t,?) and Eg is the given value
of X(t) 1in the numerator probability density function in
equation (225).

We now make the assumption that yv=R™ . To satisfy the
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regularity conditions, Xn(t,?) must now be integrable
over R™. This assumption, that y=R" , is not too
restrictive, however, because we can usually redefine
An(t,?) to be integrable over some region of interest and
zero elsewhere.

As a result of this assumption, we can simplify

equation (226) further. Consider the term

t t
f f(«b-«?)didr 4 ffdp(rﬁ,’a'g)-&r,i')didr
t, r™ t, R®

(227)

—_— —_— Nf -—
T,&,Eg)—Es{¢(T,&,£)IZ “}dxdt

~—
o

We can integrate the terms separately and interchange the

order of integration and expectation by the Fubini theorem

to obtain
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to R
t
R o Ny
= J/;(T’n’gg)dn—Es 0/:b(r,«i,g)dn[z dr
to Lr™ R™
(228)
Because the assumed Gaussian shape of As(t,F,E) results

in a tractable integration, we can evaluate the integral

Rm
= a1 (t;eg ) As(t,_,?:')d75+ao(t;w83) A, R)dx (229)
Rm Rm
m
= A(t)(2n)7|g(t)|’2‘+'fxn(t,2)d2 (230)
Rm

where the last step follows from equation (120) and the fact

that no conditioning on a particular hypothesis sequence is

given, therefore
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ao(t;w53) = al(t;w53) =1 (231)

m
Note that A(t)(21r)2|1_1_(t)|é is not a function of w or

w even 1if feedback control is included in the manner

S,

previously described. For the assumed An

N
- — =it
fkn(t,n)d& = Es{f A (t,dx ]z ©) (232)
r™ r™
therefore
t
// $-¢ dr dT = O (233)
to Rm

and equation (226) reduces to

f(-z——-l—l = exp // 1n [“’(T Sl n,Eg) )] N(dt X dR)
n)

£(zNt) $(1,n

(234)
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*‘i From the definition of a counting integral, we can write

equation (234) as

N N - =
(U 1 WA UL LT 2559
N¢ i - 35
£(2°8) oy 6(t;,T,)
where the index, i , corresponds to the observed point

process events {z(1), z(2), ... ,z(i), ... E(Nt)} .
By substituting equation (235) into equation (225) and

equation (224), we have

N¢
Ag(E,T) T o(t,,T))
i=1
(236)
Nt
= J A, T,E) T o(ty,T;,D)E(E)dx
g™ i=1
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Equation (236) is,

in principle, solvable, however it

2
.
»‘ requires an increasing amount of calculation as more point
X process events are observed. The order of the polynomial in

A

As (which must be solved at each event time) is Nt+1 and

the product of ¢ terms in the integral increases by one at
each observation time. Ir addition, f(g) is the Gaussian
probability density function for E(t). The covariance of
this density increases substantially as the density is
propagated forward in time. This will eventually lead to
numerical problems in an implementation of the estimator.

A

Due to these difficulties in evaluating As for +this

example, consider the following simplification:

To evaluate xs(ti’?i) take the estimate, f(ti_l)
of g(ti_l) and propagate it forward in time to ti.
Use this propagated estimate, §(t;) to evaluate

A

equation (3) to obtain a value for ks .

Two points should be noted. Firs., since equation (3)
is not linear in g(t) in general E{Xs'g(t))} will not
be exactly equal to AS(E{E(t)}) , and it is the latter form
we are using in this simplification. Second, since we are
propagating an old estimate of g(ti-l) to use at time
ti » 1t 1is important that we use an accurate propagation

model, If the assumed model of the underlying process

(equation (4)) has characteristics different than those of
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the actual physical process, then we would expect this
simplification to result in poor performance due to the
inaccurate propagation. We have assumed perfect knowledge
of the dynamics of the underlying physical process
throughout this research. Thus, this simplification is

reasonable.

V.3 Limitation to a Fixed Number of Elemental Filters

In this section, we consider a method of limiting the
exponential growth of the full scale multiple model adaptive
estimator so that (after the startup of the filter) there is
always a fixed number of elemental filters. The overall
method 1is to consider only observations from a finite data
window.

Let D be the '"depth" of the aigorithm where the depth
is the number of the most recent point process observed
events which are explicitly included in the calculation of
the elemental filter estimates. If D events are
considered, then there are 2D elemental filters and the
number of filters is constant. As each new point process
event is observed, we must eliminate the "oldest" observed
event and incorporate the new event,. Three methods for

accomplishing this are discussed in thc following sections.
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V.3.1 Method One: Re-initialization. The first
method, called re-initialization, restarts the entire
multiple model adaptive estimator each time a new point

process

event is observed, which would result in more than

D
2 elemental filters. The new event is added to the set of

observations considered in the algorithm and the oldest

observed
observed
The

follows,

event is discarded so that there is a maximum of D
events explicitly present in the MMAE calculation.
algorithm for the re-initialization method is as

Recall that Nt is the number of point process

events in the interval [to,t) .

(a)

(b)

For N <p
Y

Operate as a full scale MMAE filter as described

in Section IV.3.

For N >D
ty

(1) Re-initialize the filter by letting
E(ti-D) be the new initial condition at

time t i-D

(2) Propagate and update the elemental filters

from time ti-Da to time ti .
(3) Calculate §(ti) as a weighted sum as

described in Section IV.3.
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Even though only the most recent D observations are
explicitly included in the calculation, the older observed
events influence the value of %(ti_D) . Thus we fix the
number of elemental filters by a data window concept but the
entire measurement history is still considered in the
calculation of i(ti) .

A major disadvantage of this method is that the entire
set of 2D elemental filters must be propagated over D
inter-event intervals and the updates due to D events must

be incorporated for each newly observed point process event.

V.3.2 Method Two: Strict Window,. The second method,

termed "strict window'", completely disregards all observed
events except the most recent D events., This is
accomplished by assuming that all events prior to the most
recent D events were caused by noise, The algoritiim for

the strict window method is as follows:

(a) For Nt Sp
i
Operate as a full scale MMAE filter as described

in Section IV.3,

(b) For N, > D
i

(1) Retain only the (2D)/2 elemental filters
irom the 1lower half of the hypothesis

sequence tree at time t; , .
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noise Nt

-1

O o

Figure 10. Strict Window Method

(2) Propagate the (2”)/2  filters to time t,
1

)
and update them to obtain 21 elemental

filters.

(3) Calculate §(ti) as in Section IV.3.

The strict window method is depicted in Figure 10 for

the sample case of D=2, The bottom hypothesis sequence,
hy, is that which assumes all observed events are due to
noise. Because of this, we do not need to re-initialize,

D

repropagate, or re-update all 27 elemental filters as each

new event is observed; the calculations have already been
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performed.

A major disadvantage of the strict window method is
that the "old" observed point process events which are
outside the strict window are completely ignored. They have
no effect on the value of §(ti) and thus we are not
gaining information about §(ti) from the measurement

history from time t to time t A. second

0 i-D *
disadvantage of the Jtrict Window method is that it relies
completely on the filter's internal model of the dynamics of
the underlying process for the time interval prior to the
data window. This could cause serious errors if the

filter's model were not correct,

V.3.3 Method Three: Best Half, The third method,

termed best half, fixes the number of elemental filters,
uses information about §(ti) from the entire measurement
history as 1in method one, and retains the efficiency of
calculation as in method two. The best half algorithm is as

follows:

A

(a) For N D

ty

Operate as a full scale MMAE filter as described

in Section IV.3.
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- - .
(b) For Nt >D
i
i! ' (1) Calculate:
: 2P
. . - Nt
i! Pr[upper half] = 21 Pr[hj iIBt]
p D
: 2
:.' J='2_'
S R " and
2
2 . Ne,
Pr[lower half] = ES Pr[hj 1IBt]
Jj=0

(2) 1f: Prlupper half] > [Pr lower half]

Propagate the upper half of the hypofhesis
sequences to time ‘ti and update them with

the observation at time ti .

Otherwise:

Propagate and update the lower half.

The best half algorithm is shown in Figure 11 for the
case of D=2, The solid lines depict the propagation and

update paths when the upper half is the most prctuble set of

hypotheses. The dashed lines depict the _ropagation and

update paths when the lower half is the most probable set of
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Figure 11. Best Half Method
hypotheses, Note that if the lower half is chosen as most

probable, then the propagation and update steps for that
observation are identical to those of the strict window
method. In essence, the best half algorithmvmakes a final
decision at time ti as to whether the event at time ti—D
was caused by éignal Oor noise, Because the algorithm c¢an

select from either half of the set of hypotheses, the entire

‘measurement history influences §(ti). In addition, since

the algorithm selectively retains half of the possible
hypotheses, it is not necessary to re-initialize,

repropagate, or re-update all 2D elemental filter over D
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inter-event intervals each time a new event is observed.

Due to its efficiency of calculation and consideration
of the entire measurement history, the best half method is
recommended as the best means (for the three methods
considered) of limiting the estimator to a fixed number

of elemental filters.

V.4 Summary

Two major areas of simplification for the MMAE
algorithm are addressed 1in this chapter. First, the
complexity of evaluating the weighting Tactors is reduced,
in Section V.2, by approximating AS with an estimate of
XS based on the previous observed point process events.
This simplification is reasonable due to the assumed Poisson
statistics of the signal process and the assumed perfect
knowledge of the dynamics of the wunderlying process.
Second, the exponential growth in memory and calculation
required 1is avoided by using data window concepts to keep
the number of elemental filters fixed. Three possible
methods of achieving a fixed number of filter are discussed
and the "best half" algorithm (Section V.3.3) is recommended
due to its relative efficiency of calculation and
incorporation of the entire measurement history.

Results of Monte Carlo simulations of a multiple model
adaptive estimator using these simplifications are presented

in Chapter VI,
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VI. Simulation Results

VI. Introduction

The results of a Monte Carlo simulation of the
simplified multiple model adaptive estimator are presented
in this chapter. All of the results are from an estimator
implemented using the approximation for calculation of
(Section V.2) and the Best Half method for 1limiting the
estimator to a fixed number of elemental filters (Section
V.3.3). These simplifications were made to ease the large
computation and storage requirements of the full-scale
estimator, as discussed in Chapter V.

The goal of these simulations is to determine the
trends in the error of the estimator as several of the major
parameters are varied and alsoc to investigate the
sensitivity to these parameters. Although the actual values
used for the parameters are appropriate for a tracking type
application, they are not taken from an actual tracking
problem. Therefore, the error performance results are
useful as a relative measure of performance as various
parameters are changed rather than as an absolute measure of
the estimator's performance for a particular application.

In Section VI.2, the specific model wused in this
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simulation is described. Section VI.3 contains some
preliminary results including sample track plots and thke
sensitivity of the estimator to the number of runs in the
Monte Carlo simulation. In Section VI.4.1 through VI.4.6,

the sensitivity of the estimator to six major parameters is

:
.
\
o
o
h
E!

shown, Section vVi.4.,7 contains results of several
simulations to test the ability of the estimator to acquire
the true value given poor initial conditions, An initial
lower and upper bound on the performance of the estimator
are given displayed in Section VI.4.8, Some other
simulation considerations are discussed in Section VI.5
including the effects of mismatched models and two suggested

methods of dealing with the mismatch,

VI.2 The Simulation Model

The model described here is of a one dimensional

tracking application in which there is no feedback control.

E! Let As be defined as in equation (3) where

:i m=1

; A(t) =1

E (237)
§ H(t) = 1

§ =2

£ R(t) = R (scalar)

r

3

L

; Let the process g(t) be defined in differential form by
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equation (4) where

X(t) = x(t)eR"

n=1
G(t) = g (scalar) (238)
F(t) = - ¢

and where g(t) is a one dimensional Wiener Process of unit
diffusion.

Let the photo-electron event detector be modeled as a
10 centimeter (cm) interval on the real line centered about
Zero. Thus r and x have dimensions of centimeters and
the dimension of R 1is centimeters squared.

We define the noise rate parameter as

An(t,?;ws) =r\, -5cm < r < 5cm

(239)

0 elsewhere

This form is selected to model point process noise events
caused by a uniform dark current mechanism in a continuous
detector over the interval -5cm<r<5cm. A simple random A

~n
case is considered in Section VI.4.1,
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All of the simulations are made over a 100 second time
interval. For this one dimensional case, the expected
number of signal events is proportional to the area under
the Gaussian shaped XS function and the expected number of
noise events 1is proportional to the area under the ln

function defined by equation (239). In the simulation data

that follows, the signal to noise ration is defined as

AV27R (240)

SNR = T

where L is the length of the detector. The numerator of
equation (240) is the expected number of signal point
process events per unit time interval and the denominator is
the expected number of noise point process events per unit
time interval, Thus, the SNR for this point process model
is the ratio of the expected number of signal events to the

expected number of noise events.

VI.3 General Results

Figure 12 shows the true value of x and the output of
the multiple model adaptive estimator for one 100 second
simulation of the filter. The true value of X is

displayed by the so0lid line and the broken 1line is the
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filter's estimate of X . The values of the various
parameters are 1listed on the figure, In all of thesz
figures, the expected number of signal point process events
is 100 unless noted otherwise (as in Section VI1.4.2). This
sample run was made by passing to the filter the true

~

initial conditions, x°=5¢m. The smoothness of x with
respect to x 1is inherent because ; is a weighted sum of
up to eight elemental filter estimates, and because the
filter is given the exact dynamical model for x .

Figure 13 shows the ensemble averages over 50

~
~

simulation runs of X and X for the same sel orf
parameters and initial conditions displayed in Figure 12,
The ensemble averages of the error statistics, for this 50
run example, are shown in Figure 14, The solid line in
Figure 14 is the ensemble average of the error, where the
error is defined as x-; The two irregular broken lines
are the ensemble averages of the error plus or minus the
standard deviation of the error, The two relatively smooth
dashed 1lines are plus and minus the square root of the
filter wvariance, The filter variance is the filter's
estimate of how well it is performing. Of importance here
is the fact that the filter's estimate of its error is

similar to its actual performance and the filter variance

neither diverges nor goes to zero.
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The smoothing of the data, as more simulation runs are
made, 1is typical of Monte Carlo simulations, A pertinent
question is, how many runs are sufficient to give accurate
performance data without expending an excessive amount of
computation time. One method of addressing this question is
to vary the number of simulation runs for a fixed se¢t of
input parameters and observe the error statistics. As more
runs are made, the error statistics should converge to a
final value. The results of this analysis are shown in
Figure 15, In this figure, +the number of runs is varied
from two to 100 and the root mean squared (RMS) error at
time t=50 seconds is plotted,. The RMS error is chosen as
the measure of performance in this (and subsequent
sensitivity tests) because it gives 2 measure of the error
from the true value regar:.ess of sign. If we used the
absolute error, a positive error on one run could canccl a
negative error on another run, resulting in an incorrectly
low ensemble average. The time for sampling the error (t=50
seconds) 1is chosen to minimize the effect of the filter
startup on the performance results. In Figure 15, we are
not interested in the actual value of the RMS error.
Instead, we are looking for a point beyond which there is
little change in the error. The value of the error is
erratic for numbers of runs less tnan 20. For 20 or more

runs, there is little change in the final RMS error. Based

187




*suny OTJIe) B83UO[] JO JocwnN 03 LAITATITSUSS

*GT @an3tg

suny OIJae) 931UOi{ IO Jaquny

S v g 2 0legcs s v ¢ Z 01
Nt J L ) U DR U SR N | ] b

§'0 =4

g0 =3

02 = UNS

¢ =1

€ =4

G6°0 S¢'0 000

SL°g

‘WO UT Joxxd SHY

18

=1

Spuoods Qg

188




T R T e T e — —

on this, the plotted results in all subsequent sections are
for Monte Carlo simulations with ensemble averaging over 50

runs,

V1.4 Parameter Sensitivity Results

In the following sections, the sensitivity of the
estimator to changes in several of its major parameters is
investigated. The general method is to vary one parameter
while keeping the rest constant. The performance measure
for evaluation of the sensitivity is the RMS error at time

t=50 seconds. (The acquisition results are measured at

t=16 seconds as discussed in Section VI,.4.7.) In all cases,
the number of Monte Carlo runs is 50. We begin by looking
at the effect of the noise strength.

Vi.4.1 Sensitivity to g. The parameter g is the

square root of the strength of the white Gaussian noise

driving the dynamics of the unobserved process X . The
lower curve in Figure 16 shows the performance of the
estimator as g 1is varied from 0.01 to 1.0 cm. The trend
is as expected; as the dynamics of X increase, the
ability of the estimator to track the changes diminishes and
the RMS error increases.

The wupper curve in Figure 16 shows the effect on the
error of a random 5n' The value of A in equation (239)

n
is calculated from the SNR and the expected number of signal
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point process events. For the random A case, we let Xn

~N

be a uniform random variable on [0,2An] and a single

realization of An’ is used for generaticn of the noise

point process events for a single run of the random ln

simulation, Note that the realization is used for the
entire run and a new value is selected for the next run.

The estimator uses the value A\ for calculation of A

n n’

This procedure is chosen as a worst case condition; very

little knowledge 1is assumed by the filter about the én

process and no actual estimation of én is performed.

As can be seen from Figure 16, the RMS error increased
for the random noise rate parameter case, but the increase
is wvery small compared to the actual value cf the error.
For this set of parameters, the estimator is relatively
insensitive to uncertainties in A,

VI.4.2 Sensitivity to Expected Number of Signal

Events. In Figure 17, the RMS error is plotted versus the

expected number of point process signal events. As might be
expected, as more information is available to the estimator
from the signal process, the RMS error goes down. The trend
is actually rather mild from signal counts ranging from one
to 500. If the estimator only receives one signal-caused

event in 100 seconds, then it must rely heavily on its
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internal model for the dynamics of the X process. As
described before, we have assumed perfect knowledge of the
model. It 1is expected that the RMS error would be much
larger at the low count rates if the dynamical models of the
true process and the filter were mismatched.

VIi.4.3 Sensitivity to T. The sensitivity of the RMS

error to T is depicted in Figure 18. As can be seen,
there 1is a strong trend toward increased RMS error as T
becomes larger. When T 1is large, the dynamics of X
depend proportionately more on the driving noise source and
there is less restoring action due to the E(t)i(t)dt term
in equation (4). This allows errors between x and ; to
persist for 1longer periods between signal induced point
process cobservation. When 71 1is small, any errors caused
by the driving noise in equation (4) are rapidly reduced as

the output decays to the steady state value,.

Vi.4.4 Sensitivity to SNR. Several SNR sensitivity

tests were made for parameter sets similar to those shown in
Figures 16 through 18. 1In all cases, there was virtually no
effect on the RMS error, even for SNR values as low as 0.01,

The SNR sensitivity results shown in Figure 19 were
obtained by setting T and R to relatively large values
(thus tending to raise the overall RMS error, see Figures 18
and 21) and by giving the multiple model adaptive estimator

poor initial conditions. The trend displayed in Figure 19
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is as expected; the RMS error is lower for larger values of
( SNR. Of particular interest is the fact that the worst RMS
error is only 0.75 cm for an expected signal to noise count
ratio of 0.1 . That is, one signal event is expected for
F! every 10 noise events. Jt is expected that the RMS error
would increase more rapidly at low SNRBR values if the true

and filter models were mismatched.

F| VI.4.5 Sensitivity to D. The sensitivity to depth,
g_ D , 1is shown in Figure 20. Note that the error axis scale
[ on this plot is expanded and the variation in RMS error over
¢i a depth range of one to eight is very small. This suggests
{ that if the model of the underlying process is well known
then it may be possible to consider only the most recent
t‘ Q) observed event and obtain acceptable performance.

VI.4.6 Sensitivity to R, The sensitivity to R (the

dispersion of the Gaussian shaped As function) is

displayed in Figure 21, The performance indicates that
there are specific tuning considerations for R for a given
set of parameter values, As R becomes very small, it
appears that valid signal events are deweighted too heavily
due to the narrow shape of As' At the other extreme, when
R 1is large, noise induced events near the signal source are
not deweighted strongly enough. This characteristic curve,

as R 1is varied, can also be seen in Figure 24.
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VI.4.7 Acquisition. A final set of parameters was

selected to test the ability of the estimator to acquire the
true x value given inaccurate initial conditions. In all
of the following cases, x°=5 and ;o=0 .

Figure 22 shows the ensemble average of x and x for
the relatively small values of R =0.,2 and E = 0,1
The performance is very poor until the true x value decays
to a region close to ;. The acquisition can be greatly
improved by setting R=2 and §°=10. These results are
shown in Figure 23. Under the new conditions, the estimator
quickly acquires the true x value and tracks it.

The RMS error performance versus R for +these two

A

values of Z, is displayed in Figure 24. Note that the
values plotted are for t=16 seconds to insure that error in
the acquisition region is being measured. Both curves show
the characteristic tuning sensitivity to R as in Figure
21. The wupper curve is the performance when the multiple
model adaptive estimator has a high confidence in its
initial conditions. The lower curve is the verformance for

the low confidence case,

V1.4.8 Performance Bounds. The estimator's REMS error

versus square root of noise strength is plotted in Figure 25
along with an upper and lower bound on the RMS error.
The lower bound on pe:.formance was obtained by

operating the estimator with only signal observed events,
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corresponding to the case in which the adaptive estimator
perfectly deciphers which events are due to signal and which
are due to noise. This was accomplished by setting the
SNR = 10° in the input parameters to the simulation.

Thus, there was almost never a noise event and the RMS error

~displayed in the lower curve is the best possikle for the

simulation paramecter set shown,

An upper bound on performance was obtained by operating
a single Snyder-Fishman filter against the same noisy input
data for the same filter parameter set. Recall that the
Snyder-Fishman filter accepts each observation as having
been caused by the signal process.

As can be seen in Figure 25, the RMS error of the
multiple model adaptive estimator (with the simplifications
described in Chapter V) matches the lower bound on the error
for values of g<0.1 (square root of noise strength).
Above this value, the RMS error of the simplified estimator
is greater than the lower bound, but in all cases it 1is
better than the performance of the Snyder-Fishman filter. A
figure of merit which takes into consideration F(t), G(t),
and Q(t) is the square root of the steady state covariance
(SS/RMS) of x(t). For this one dimensional sinmulation
example, the RMS wvalue of the steady state variance |is
g7 /2 . In terms of the SS/BMS, the RMS error of the
multiple model adaptive estimator matches the lower bound

for SS/RMS < 0.3162, and the error is greater than the

lower bound for larger values of SS/RMS . For the parameter
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set shown in Figure 25, SS/RMS = 0.3162 for g = 0.1 and
SS/RMS = 0.6324 for g = 0.2 ., The significance of this is
that as the SS/RMS value becomes larger than the '"disper-
sion", R, of the signal rate parameter, the multiple model

adaptive estimator's error is greater than the lower bound.

For values of SS/RMS less than R , the estimator essential-
ly makes perfect decisions as to which events were caused by
:' signal and which were caused by noise,

Note that in the MMAE curve and the Snyder-Fishman

curve, the expected signal to noise count ratio (SNR) is

a

one; there 1is one expected noise event for each signal
event.

V.5 Other Simulation Considerations

P TRTTTTYTYTYTY
-

As mentioned before, all of the simulation results
shown in this chapter are based on knowledge of the true
dynamical model of g(t) Although the performance levels

will change, 1in general, with mismatched models, the trends

"in A

displayed in these simulations should still be evident.

A model mismatch could easily arise for several rea-

Y

¢ sons. For example, we may not know exactly how to model the
dynamics of g(t) or we may wish to approximate a known

E model with a simpler model to reduce the computational load

t‘ of the elemental filters.

[ One method to compensate for a mismatch is to add
pseudonoise to the elemental filter models (Ref. 27 vol.

1:224). This is a common technique in Kalman filter tuning

and has the effect of reducing the filter's confidence in




its own model. A second technique which may be useful is to
impose an artificial lower bound on the elemental weighting
factors (Refs. 2,27 vol.Z2). This would have the effect of
putting more confidence in the less likely hypotheses; the
overall estimate would be more heavily influenced by the
elemental filter outputs associated with these less 1likely
hypotheses, In general, this will tend to increase the
error over that obtained when the model is known exactly;
however, it may prevent a catastrophic failure in which the
estimator '"locks" onto a completely incorrect hypothesis

model.

Vi.o Summary

In this chapter, a one dimensional model is specified
for a tracking application in which there is no feedback
contrcl. Simulation results are presented based on the MMAL
simplifications of Chapter V. The RMS error performance
sensitivities to the major parameters of the estimator are
presented and discussed.

The results are indicative of the overall RMS error
rerformance of the multiple model adaptive estimator and of
the performance trends as various parameters are varied,
This simplified filter implementation shows excellent acqui-
sition and tracking properties when the various filter pa-
rameters are tuned to the underlying process of interest,
This 1is particularly notable considering the low data rate
of the signal and the low expected signal to noise count

ratios expected,
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VII. Conclusions and Recommendations

Y}I.l Conclusions

The goal of this research was to develop an estimator
structure for the particle beam problem which is optimum,
according to some appropriate criterion, and which is
insensitive to point process noise corruption in the
measurements, The multiple model adaptive estimator,
presented in Chapter~II, provides the minimum mean squared
error estimate of the underlying process of interest. When
the models are defined as separate sequence hypotheses, the
estimator can reduce the effect of noise on the estimate.
The development is valid for any point process signal in
point process noise; it does not rely on the assumed
conditionally Poisson statistics of the particle beam
application which motivated this research. The full scale
estimator does require an exponentially growing number of
individual hypothesis filters,

The cross product space modeling concepts of Chapter
III provide a means of calculating the individual filter
weighting factors,. This development is also valid for a
general point process signal in point process noise

application as 1long as the regularity conditions are met.
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The specific analytical model for the particle beam
application meets the regularity conditions. The cross
product space modeling concepts allow feedback from the
observations to the model, thus providing a way to define
control inputs.

The specific expressions for the estimator suitable for
the particle beam problem are developed in Chapter IV, The
examples presented provide insight into the structure of the
full scale estimator.

The simplifications to the full scale estimator
presented 1in Chapter V result in a suboptimal filter which
has greatly reduced requirements for calculation and
storage. The approximation for the signal rate parameter
estimate 1is appropriate for the particle beam problem when
the model of the underlying process is known. The use c¢f
data windowing to stop the growth in the number of elemental
hypothesis filters 1is applicable to the general point
process multiple model adaptive estimator, Three methods
are proposed to implement the data window concept. The
"Best Half" method is recommended because it 1limits the
growth, it implicitly includes information from the entire
measurement history, and it is relatively simple to
implement.

The simulation results of Chapter VI show that the
suboptimal filter (using the simplifications developed in

Chapter V) is extremely good at reducing the error caused by
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point process noise. Performance trends are demonstrated as
several of the parameters of the filter are varied. The
performance degrades slowly, even at very low signal count
rates and very low signal to noise count ratios, It is
expected that the performance would degrade more rapidly if
the estimator had inaccurate knowledge of the dynamics of

the underlying process.

VIi.2 Recommendations

There are several related areas cf research which could
provide immediately useful resuits, First, it is
recommended that a msthod of predicting the error of the
multiple model adaptive estimator be developed. Equation
(193) provides the means of calculating the covariance ¢f
the full-scale multiple model adaptive estimator; however,
the filter covariances of the elemental Snyder-Fishman
filters depend on the space-time observations, as do the
calculations of the weighting factors. Both of these 2are
required for calculation of the overall covariance of the
multiple model adaptive estimater. Currently, only
simulation techniques provide a means of determining
performance.

The second area of recommended research is in the
convergence of the estimator. The key question to be
determined here is whether the full scale estimator

converges to the correct hypothesis sequence, and how rapid
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the convergence is, The information theoretic ideas of
Baram (Ref. 6), and Hawkes and Moore (Refs. 15,16) appear to
provide promising avenues of research,

Another area which could provide immediately useful
results 1is 1in the definition of the stochastic optimal
controller for this point process problemn. The cross
product space modeling ideas allow the necessary feedback
control; however, the specific optimum form of the control
is not addressed in this dissertation. A natural follow-on
topic 1is the investigation of a separatior theorem for the
optimum controller, or perhaps the effects of {forced
certainty equivalence (Ref. 27 vol. I1I:17).

The final research suggested is to explore the effects
of imperfect knowledge of the dynamics of the underlying
process (model mismatch), As described in Chapter V1, the
estinator simulations were 1implemented with perfect
knowledge of the dynamical model. A mismatch would
certainly degrade the performance of the estimator. The
extent of the degradation is of great importance in cases
where a simplified model is desired due to the complexity of
the true model, or where there is a 1lack of accurate

knowledge about the true model.

210




NP P e SSLAEEASE SN MBS g

- '

Bibliography

Aoki, M. Optimization of Stochastic Systiems. New
York: Academic Press, 1967,

Athans, M. and C, B. Chang. '"Adaptive Estimation and
Parameter Identification Using Multiple Model
Estimation Algorithm.," Technical HNote. M.ILT. 1976--

28, 23 Jun 1976, AD-A0Z28510,.

Athans, M., D, Castanon, K. Dunn, C. Greene, W. Lee, N,
Sandell, and A, Willsky. "The Stochastic Control of
the F-8C Aircraft Using the Multiple Model Adaptive
Control (MMAC) Method-1: Equilibrium Flight," IEEE
Trans., AC: 768-780 (Oct 77).

Athans, M., R. H. Whiting, and M. Gruber. A
Suboptimal Estimatioa Algorithm with Probabilistic
Editing for False Measurements with Applications to
Target Tracking with Wake Phenomena," IEEE Trans. AC
22-3: 372-384 (Jun 1977).

Athans, M. and D, Willner. "A Practical Scheme for
Adaptive Aircraft Flight Control Systems." NASA-TN-D-
7647, p. 315-336. MIT, 1973, AD 760790.

Baram, Y. Information, Consistent Estimation and
Dynamic System Identification. Dissertation. Massa-
chusetts Institute of Technology, Cambridge, Mass. Nov
1976.

Chang, C. B., and M. Athans. "State Estimation for
Discrete Systems With Switching Parameters," IEEE
Trans. AES, AES-14, No. 3: 418-424 (May 1978).

Chang, C. B,, and K. P, Dunn. "On GLR Detection and
Estimation of Unexpecied Inputs in Linear Discrete
Systems,” IEEE Trans. AC 24-3: 499-501 (Jun 1979).

Deshpande, J. G., T. N. Upadhyay, and D, G. Lainiotis.
"Adaptive Control of Linear Stochastic Systems,"
Automatica, 9: 107-115 (1973).

211

- e NP Y




10.

11.

12,

13.

14.

15.

16.

17.

i8.

19.

20,

21,

Egardt, B. "Stochastic Convergence Analysis of Model
Reference Adaptive Controller," IFEE Conference on
Decision and Control (1980): 1128-1130, Albuquerque,

NM, (1980).

Fishman, P. M. Statistical Inference for Space-Time
Point Processes. Dissertation. Washington University,
St. Louis, Missouri. 1974,

Fishman, P, M. and D. L. Snyder. "The Statistical
Analysis of Space-Time Point Processes,'" IEEE Trans,
IT 22-3: 257-274 (May 19276).

Gagliardi, R., and S. Karp. Optical Communications.
New York: Wiley, 1976,

Greene ,C. S. and A. S. Willsky. '"An Analysis of the
Multiple Model Adaptive Control Algorithm," IEEE
Conference on Decision and Control (1980): 1142-1T457;
Albuquerque, NM, (1980).

Hawkes, R. M, and J. B. Moore. '"Performance Bounds for
Adaptive Estimation," Proceedings of the IEEE, 64, No.
8: 1143-1150 (Aug 1976).

----- . "Performance of Bayesian Parameter Estimators
for Linear Signal Models," I1EEE Trans, AC: 523-527
(Aug 1976).

Kazakos, D. '"The Bhattacharyya Distance and Detection
Between Markov Chains," IEEE Trans. IT, 24-6: 747-
754 (Nov 1978).

Kolmogorov, A, N.,, and S, V. Fomin, Introductory Real
Analysis, edited and translated by R. A, Silverman.
New York: Dover, 1975.

Lainiotis, D. G. "Optimal Adaptive Estimation:
Structure and Parameter Adaptation," IEEE Trans. AC-
16: 160-170 Apr 1971.

————— . "Joint Detection, Estimation and System
Identification," Information and Control 19: 75-92
(1971).

----- . "Sequential Structure and Parameter-Adaptive
Pattern Recognition - Part I: Supervised Learning,"

IEEE Trans, IT, 16-5: 548-556 (Sep 1970).

212




23.

24,

25.

27,

30.

31.

33.

—————— . "Supervised Learning Sequential Structure and
Parameter Adaptive Pattern Recognition: Discrete Data
Case," IEEE Trans, IT: 106-110 (Jan 1971).

Liporace, L. A, '"Variance of Bayes Estimates,'" -I1EEE
Trans., I7, 17-86: 665-669 (Nov 1971).

Ljung, L. "Analysis of Recursive Stochastic
Algorithms," TIEEE Trans. AC, 22-4: 951-575 (Aug
1977).

Macchi, ©O., and B, C, Picinbono. "Estimation and

Detection of Weak Optical Signals," IEEE Trans. IT 18-
5: 562-573 (Sep 1972).

Magill, D. T. '"Optimal Adaptive Estimation of Sampled
Stochastic Processes." IEKE Trans. AC 10-4: 434-439
(Oct 1965H)

Maybeck, pP. Stochastic Models, Estimation, and
Contrcl. New York: Academic Press, 1979 (vol. 1), 1982
(vols. I1 and III).

McGarty, T. Stochastic Systems and State Estimation.
New York: Wiley, 1974.

Moore, J. B, and R. M. Hawkes. '"Decision Methods in
Dynamic System Identification.' IEEE Conference on
Decision and Control (1975): 645~-650, louston, TX,
(1975).

Morgan, A. P. "A Method of Estimating the Rate of
Convergence of an Adaptive Observer," IEEL
Conference on Decision and Control (1980): 1146-1151,
Albuquerque, NM, (1980).

Murphy, D. J. "Batch Estimation of a Jump in the State
of a Stochastic Linear System.'" IEEE Trans, AC: 275-
276 (Apr 1977).

Neveu, J. Mathematical Foundations of +the Calculus

of Probability. San lrancisco: Holden-" vy, Inc.,
1965.
Papoulis, A. Probability, Random Variables, and

Stochastic Processes, New York: McGraw-Hill, 1963.

213




34.

39.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45,

Reiffen, B. and H. Sherman. "An Optimum Demodulator
for DPoisson Processes: Photon Source Detectors,"
Proceedings of the IEEE: 1316-1320 (Oct 19G3).

Rhodes, I. B., and D. L, Snyder. "Estimation and
Control Performance for Space-Time Point Processes,"
TEEE Trans. AC 22-3: 338-346 (Jun 1977).

Royden, N. L, Real Analysis, Second edition. New
York: Macmillan Company, 1968.

Rohrs, C., L. Valavani, and M. Athans, "Convergence
Studies of Adaptive Control Algorithms," IEEE
Conference on Decision and Control (1980): 1138-1141,
Albuquerque, NM, (1980).

Santiago, J. "Fundamental Limitations of Optical
Trackers," Master's Thesis, AFIT, Wright-Patterson

AFB, Ohio, 1978.

Sanyal P., and C. N. Shen, "Bayes' Decision Rule for
Rapid Detection and Adaptive Estimation with Space
Applications,”" IEEE Trans. AC: 228-231 (Jun 1974).

Sawaragi, Y., Sunahara, Y., and Nakamizo, T. Statis-

tical Decision Theory in Adantive Control System, New
York: Academic Press, 1967,

Segall, A, "Optimal Control of Noisy Finite-State
Markov Processes,” IEEE Trans. AC 22-2: 179-186 (Apr
1977).

Segall, A,, and T. Kailath. "The Modeling of Randomly
Modulated Jump Processes," IEEE Trans. IT 21-2: 135-
143 (Mar 1975).

Sims, F. L. and D. G. Lainiotis. '"Recursive Algorithm
for the Calculation of the Adaptive Kalman Filter
Weighting Coefficients." IEEE Trans, AC: 215-218
(April 1969).

Smith P., and G. Buechler., "A Branching Algorithm for
Discriminating and Tracking Multipie Objects," IEEE
Trans. AC: 101-104 (Feb 1975).

Snyder, D, L, "Filtering and Detection for Doubly
Stochastic Poisson Processes,' IEEE Trans. IT 18-1:

91-102 (Jan 1972).

214




—- . s

46,

47.

48.

49,

50.

51.

(%]
N

53.

A A s A S 4

————— . Random Point Processes., New York: John Wiley
and Sons, Inc., 1975,

Snyder, D, L. and P, M. Fishman., "How to Track a Swarm
of Fireflies by Observing their Flashes," IEEE Trans,
IT: 692-695 (Nov 1975).

Snyder, D. L., I. B. Rhodes, and E. V. Hoversten. "A
Separation Theorem for Stochastic Control Problems with
Point-Process Observations," Automatica 13: 83-87
(1977).

Vaca, M. V., and S. A, Tretter. '"Optimal Estimation
for Discrete Time Jump Processes,'" IEEE Trans, IT 24-
3: 289-296 (May 1978).

Varaiya, P. "The Martingale Theory of Jump Processes,"
IEEE Trans. AC 20-1: 34-42 (Feb 1975).

Wenk, C. J. and Y. Bar-Shalom. "A Multiple Model
Adaptive Control Algorithm for Stochastic Systems with
Unknown Parameters." IEEE Conference on Decision and

Control Proc.: 723-730, Fort Lauderdale, FL, (1879),

WWillsky, A. S. "A Survey of Design Methods for Failure
Detection in Dynamic Systems.! Automatica, 12: 601-611
(1976).

Willsky, A. S., and H. L. Jones, "A Generalized
Likelihood Ratio Approach to the Detection and Estima-
tion of Jumps in Linear Systems," IEEE Trans, AC:

108--112 (Feb 19760,

Zacks, S. The Theory of Statistical Inferzsnce. New
York: John Wiley and Sons, Inc,, 1971.

215




v
i

Appendix A
In Chapter 1IIT, a cross product space model is

developed and regularity results from Fishman (Ref. 11) are
used to provide the means of calculating the weighting
factors for the multiple model adaptive estimator. As
described previously, this approach results in calculation
of the elemental estimates through the use of the Snyder-
Fishman filter and a simple weighted sum to calculate the
overall estimate. The penalty of this method is the
exponential growth of memory and calculation time
requirements for the full-scale estimator.

The regularity results of Chapter III, along with an
It diffusion differential rule, allow direct estimation
of the process g(t). By "direct estimate," we mean an
expression for ﬁ(t) (perhaps in differential form) which
does not use nmultiple model adaptive methods. The advantage
of this is that there is no exponential growth in memory or
calculation time requirements due to an expanding number of
hypotheses, as in the multiple model estimator. The
disadvantage to the direct method is that it requires
evaluation of integrals which (depending on the specific

system model) can be much more complicated than those
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required by the multiple model method.

We begin the development by letting V be a regular

space-time point process

Vilto,t)Xe>[to,t)XR™

which satisfies Theorem III-1. Let (Q,B,P(-;ws)) be a
probability space as defined in Chapter III and 1let
(QS’A°’PS) be a probability space defined as the cross

product of two individual probability spaces

where fg, is as defined in Chapter III (equation €9) and
models the randomness of the noise process and Qsl models
the randomness of the signal process. Let Ast be the
subsigma field of events generated for telto,t)

For the beam pointing and tracking problem, we are
interested in estimating the process §(t;w;ws1) given

observations of the point process V, that is, in generating
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i(t) 4 E{E(t;w;wsl)lBt} (A-1)

where the signal rate parameter is dependent on x(t) as

in equation 3.

We model the process of interest as the It6 diffusion

process

dx(t;w;wsl)=a(t;w;wsl)dt+g(t;w;wsl)du(t;wsl) (A-2)
where u is a K dimensional Wiener process and
&,b, and u are Ast@Bt measurable processes. This is a

more general model than that given in equation 4, and we
assume that a unique solution to equation A-2 exists.
For this It6 model, Fishman (Ref. 11) has shown the

following differential rule. For a proof, see reference

11:170-174.
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Theorem A-1, Generalized Ito Differential rule. Let

d;(t;m;ws) = a(t;w;ws)dt+g(t;w;ws)du(t;ws)

t/%(t,Z;w;ws)N(thdi;w;ms) (A-3)
Y
ycr?

where @,b, and U are as in equation A-2, and Y is an m
dimensional Ast@Bt — measurable process which is left
continuous in t and continuous in T ., If ¥(t,E(t)) has
a continuous derivative in t and continuous partial
derivatives of second order in the components &1,%2, +...§

m
of E for tel[to,T),ZeR™ then (w.p.1l)
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dy(t, (1) = 3¢ dt + < 2L, 5ty > at

) 3T

2 T -
+ 3 trace | bb® Z¥at + |2 | bau(t) (A-4)
bb" = b

The angle

product.’

In order
estimate

defined as

oC

'J[w(t, T(E)+Y(t,1))-y(t, E(t))]N(thdZ)
Y

brackets in equation A-4 denote the vector inner

&1

to use this differential rule to obtain the
%(t) of the process ;(t), let X(t) be

in equation A-2 and let
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t
n(t;wsu,) 8 -ﬂh(r,I;w;ws)-¢T(T,'E;w)]d7€dr
to Y
t —
¢ (T, 505w ) —
+ In | = — : N(dtXdn) (A-3)
¢ (T, 25w )
to Y
where ¢(t,?;w;ws) is the hazard function for the regular
space-time point process V and ¢TQE{¢]BT} . We define

zZ(t) in the differential rule as
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! : (4-6)
X .
.
; _ A x(t) x (t)
L A NI P SR . Rt
! n(t) i n(t)
q With this definition for TZ(t) we can now write equation
A-3 as
[ | dC(t;w;ws) = a (t;w;ws)dt + b (t;w;ws)du(t;ws)
(A-7)
+f7’(t,-)f;w;ws)N(th d)_[;w;ws)
Y
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— . 2h el o 2 v "
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i~ DEIDOEDE ~ gy

2 (tses0 ) & | emomen (A-8)

(A-9)

———y

7’(t,?;w;ws) N (A-10)
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(V
.. and where the arguments on the hazard functions have been
dropped for ease of notation,

! For i =1,2, ... ,n we define
b
. n(t)

- A -11
b Vi (T & x (e (A-1D)
3
Fe
‘ and apply the differential rule, equation A-4, to obtain
b
{
¢ 9
p N
C _ n(t) n(t) -
F dp, (t 5(t)) = a,(t)e dt-x,(t)e j{k¢-¢)da dt
;— Y
! k

n(t)
. (A-12)
X + b..(t du.(t
- Y bygtre duy(e)
: 3=1
' o
i
n(t) N -
+ xi(t)e (¢-9)¢ N(dtXdnr)

Y

From Fishman (Ref. 11:160) it can be shown that
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A n(t)
x;(t) = E{x,(t)[B, } = E_{x,(t)e }

(A-13)

By, (t,T(t)))

We can apply the ¥Fubini Theorem to equation A-13 to obtain

~ - - (A-14)
ax; (t) = Eg{dv;(t,T(t))}

therefore, we can take the expectation of both sides cof

equation A-12 to arrive at

d;i(t) = ;i(t)dt— J/}§;f§7$ -;i(t)$$dz dt
Y

+/3®‘;i(t)$ 67 IN(dtXdR) (A-15)
Y
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In vector form, the differential representation of X(t) is

dX(t) = a(t)dt- .1}f?;?$—§(t)$zdi dt
g |

./rgx(t)¢ x(t)¢i¢ N(dtXdx) (A-16)

X(to) = E{R(to)}

The conditional error covariance matrix
A
z

. A T
¢ 4 E%[?(t)—i(t)][i(t)-i(t)] 18t§

(A-17)

= x(t)§T(t) - ﬁ(t)ﬁT(t)

can be expressed in differential form (Ref. 11:178) as
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=
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+
log
lqa
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ot

+ fEI<§-§><§-’£>T<¢-$)lstz&lN(dt X d)
Y

-/Egci—ﬁ)w—&)lstf
Y

. E?(i"—';_()Tw—q))}Bt};-zN(dt X dn) (A-18)

Equations A-16 and A-18 give the differential
representation of the quantity to be estimated (directly)
and the error covariance, respectively. We can now cast the
particle beam model in terms of equation A-2 to obtain the
direct estimator equations for this application.

As in Chapter III, the model for the process g(t) is

given by
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dx(t;wsuy ) = F(E)x(t w50 )dt + G(t)du(t;u,)

5 (A-19)
.

and the hazard function for the observed point process is

O(t,Tu50.) = AL(E,Trwju) + A (8, Tiw;0,) (A-20)

where the signal rate parameter is given by equation 103.

D e aan S A

The noise rate parameter is left general in form; we only
F! require that the observed point process satisfy Theorem II1I-
1 (it is regular),

By comparing our particle beam problem model (eguation

| Slan 0 Sumae I e am ares 4

¢
: A-19) and the general It model (equation A-2), we can
{ express the Itd model terms as

|

L]
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E(t;w;ws) E(t)?(t;w;ws )

1

b(t;usuy) = G(t)

(A-21)

(A-22)

We can substitute equations A-21 and A-22 into equation

A-16 to obtain the differential expression

~

for the direct

estimate of X(t) (for the particle beam model presented):

A A
dx(t) = F(t)x(t)dt

”@ - §(t)$§d‘£ at
v
Y

./.,x(t)¢ - x(t)¢§¢ N(dt X dr)
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where

2 A -
t) = E t w; B A-24
x(t) X(t;050g )B, (A-24)
3 A E;As(t,'r';w;wsl) At ?;m;msz)wtf (A-25)
8 2lzis.n. =S (A-26)
x(t)¢ = E x(t,w,wsl)¢(t,r,w,ws) IBt}

Conditional expected values of the form of equations
(A-23) through (A-26) are difficult to solve. One approach
is to assume a density for the quantity in question and then
solve for the moments (or a partial set of the moments)
(Ref. 27 Vol.1I). The complexity of solving for ‘
either directly or through the use of an assumed density
motivates the multiple model adaptive estimator approach

taken in Chapter 11I.
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