“AD-R124 ?58 EXPANSION OF THE ECLIPSE DIGITAL SIGNAL PROCESSING 173
SYSTEMCU) AIR FORCE INST OF TECH HRIGHT-PATTERSON AFB
OH SCHOOL OF ENGINEERING G R ALLEN DEC 82

UNCLASSIFIED RFIT/GE/EE/BZD -16 JF/G 972 . NL

v.) {,AE 1!,.;'#-,.......#,. . "...n .. .\\.....A- .ﬂ e e .
[.‘.‘rlf[.... e ke Ke

...w
o 9
.
4

}
)
)
)y
)
'
’

~

— v e - - .

W

D . R adn o

PRENITpS ISP

aa e oaa

*

off o~
ol o
=

HEEE
m—m—mw_uwr_._.m

L,
loO
m—————
————
——
————
T —

|

AL et S AN o -w o
. il

[V N SIS W S .f.fl..]-\{o..".b PR ».(

(&
™~

==

==

2

I

[l

 mm————
——
 ——
 ———
—

ll

AL
125

 —————
———
——

|
I

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS -1963-A

PSS

D . .

" TR T ' o s, N
S TN L S - .k e e J . J-,ﬁﬁ:. 7.
. L o ,..,m.&.."- e»..“mﬁm: e . wor
'
E

3
1
4
wfﬁ,,..“f“.-‘;"i‘_?... IR RTINS RS AN PR S SETVT. S oA]
\ . RS - .
}' EXPANSION OF THE ECLIPSE DIGITAL .]
] . X
= SIGNAL PROCESSING SYSTEM i
Lo THESIS . 1
B AFIT/GLE/EE/B2D-16 Gordon R. Allen
4 o B st Lt USAE .
,'. UNITED STATES AIR FORCE
‘E AIR UNIVERSITY
t ‘>:-_. AIR FORCE INSTITUTE OF TECHNOLOGY
3 Q Wright-Patterson Air Force Base,Ohio ‘
o 5> 1
|
ol
Lde
, ‘ - [y | 4
'. g "l'h!- doc rar i hour been n’ppmﬂ] 83 02 02 "~ 00(
t
b

i)

T~
[T

S~ CRUN f

7

T

e Zws e aam B

vy

EXPANSION OF THE ECLIPSE DIGITAL

STGNAL PROCESSING SYSTEM

THLESIS

AFIT/GE/LE/82D-16 Gordon R.
1st Lt

Allen
USAL

| A 2had anis JRall Stete denes 2o

TV T TYTY

L an S0 AR & 4

I hanss Tanme A M MR Shdt Dane 3 TR Ty e TR SR hd - P A

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INST!
jEPORT DOCUMENTATION PAGE BEFORE compggg;l;:g":onu
1. REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
AFIT/GE/EE/82D-16 p- MY 75 0O
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

EXPANSION OF THE ECLIPSE DIGITAL

SIGNAL PROCESSING SYSTEM MS Thesis

6. PERFORMING ORG. REPORT NUMBER

. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Gordon R. Allen

. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Air Force Institute of Technology(AFIT-EN) AREA & WORK UNIT NUMBERS

Wright-Patterson AFB, Ohio 45433

11. CONTROLLING OFFJCE NAME AND ADDRESS 12. REPORT DATE
Air Force Institute of Technology(AFIT-EN) December 1982
Wright-Patterson AFB, ohio 45433 13. NUMBER OF PAGES
247

14.

MONITORING AGENCY NAME & ADDRESS(if different from Controlling Ollice) 15. SECURITY CLASS. (of this report)

Unclassified

1Sa, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

a

. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

-
: '7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i! different from Report)

18. : 1
SUPPLEMENTARY NOTES Approved for Rubl%qﬂgglease; IAW AFR 190-17
Rppigeed [RS HENAER e AP 10617,

3 — a Y N i e
LYNN? it 4 « SO ‘7 Y
Dean for Research and Trefenziongl Development
Air Force Institute of Technology (AIC)
® LFB OH 45433
19. KEY WORDS (Continue on reverse side il necessary and identily by block number)
Eclipse Minicomputer
Fast Fourier Transform (FFT)
Digitizing Operations
Filter Design
20. ABSTRACT (Continue on reverse side i necessary and identify by block number)

A signal processing software package was generated for a Data
General Eclipse S$/250 minicomputer. The model 4331 A/D/A con-
verter was utilized to perform general purpose A/D/A operations
and to collect, edit, and play back speech data files. The
model 130 array processor was used to perform high-speed con-
volution and Fourier Transform related operations. The
Parks-McClellan algorithm was implemented to allow design of

DD ,% 55", 1473 =oimion oF 1 NOV 65 15 OBSOLETE
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Nd

g e

3
ol

v.- - 'n:-'

taa k

I DRI

]

PR

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

. linear phase, finite impulse response filters. Self-explanatory
interactive programs for data collection and filter design,
together with single line commands for signal processing func-
tions, make this a simple to operate, versatile package for
digital signal processing.

Tal: '

»‘
o

. ' . . N
A PL NP UL U S PRSP

o SECURI.TY CLAS&‘FICAT,W 0OF Tw PAGF’Khen ')q'“'.n'ﬂ-nd\'. v .

T Ty T Wy e TSI —y e v W o ey

K AFIT/GE/LE/82D-16

(| EXPANSION OF THE
ECLIPSE
DIGITAL SIGNAL PROCESSING

N SYSTEM
THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University

in Partial Fulfillment of the

O ss AR S L S SLI

(D’ Reguirements for the Degree of

Master of Science

I*Aocnﬂcicn ¥rr

yem -

RrIC

CopPYy
INSPECTYED
2

by !
Gordon R. Allen, B.S.
1st Lt USA}F

o
Graduate Electrical kEngineering [I‘\ i }

December 1982

b Approved for public release; distribution unlimited.,

.

o o, e

e ik Bt et]

W

T

Preface

The data base at the Air Force Institute of Technology
(AFIT) signal processiﬁg laboratory has not been able to keep
pace with recent hardware expansion. An array processor has
been installed that has only seen limited application. Its
computational speed could greatly increase the speed of many
algorithms used in the laboratory. The digitizer that has
been added can be controlled by software to a larger degree
and can operate on larger data files than the current model.
Howvever, it has never been interfaced with other laboratory
equipment. The time required to become familiar with these
devices 1s prohibitive to thesis students and other personnel
who would benefit most from their use.

This cffort resulted from a suggestion by Major Larry

Kizer, Assistant Professor of Electrical Engineering at AFIT.

Ma jor Kizcr teaches the scﬂool's digital signal processing
course and is primarily responsible for the laboratory's growth.
lie felt it would be useful to have a software package that
integrated these hardware additions into the system. Also,

this should be done in such a way as to allow easy operation.
With this initial objective, the final result was a software
packaqge capable of performing sophisticated signal processing

functions, yet very simple to operate.

Gordon R. Allen

ii

P R f NP S — e O B s B e B e

b
[]
b
kf Contents
h

Page
L\
; Preface. v v ¢« ¢ ¢ o« o o o o o ¢ o o o o o o o o o o @ ii
;: L.I.St ()f }."igures. . Y - . - . - Y L] Vv
b

List Of TAbleS ¢ v ¢ o o « o s o o o o o o o o s o o« o wii

ADbSEtract . o ¢ ¢« ¢ ¢ ¢ o o o 4 o o o s o o o o e o o o Viii

I. Introduction . . o v o ¢« 4 e 4 e e b0 e e .. . 1
Background. . « « ¢ ¢ ¢ 4 o + s s s e o u e 1
Summary of Current System ¢« « ¢« ¢ o . 2
ObJeCtiVeS. v v v &+ 4 ¢ o o o o o o o o o o 3
II. A/D/A Operations ¢ o v ¢« o o o o o o o o o o o 5
The Eclipse A/D/A Devices . .« v ¢ « ¢ « o« o & 5
Memory Management Techniques. « « « + « o « & 7
A P’rogram for Speech Application. 14
A Program for General Purpose
Application . ¢« ¢ ¢ 4 ¢ 4 e v e 4 e e e e e 18
III. Signal Processing Functions. . « « « + + o« o« . . 21
K The Eclipse Array ProCessoOr . « « « o o o« o & 21
- Array Processor Memory Management 22
) A Program for Time-Domain Processing. 23
Programs for Frequency-Domain
‘l ProceSSinNg. « o o o o o o o o o o o o o o o 4 29
! Iv. Computer-Aided Design of Linear Phase
i FIR FI1lters. o o o v o v v v o o o o o o o o o @ 33
The Parks-McClellan Algorithm 33
! Implementation on the Eclipse + + « « « .+ o 36
P' Program Description .« . v « ¢ v ¢ o « o o o 37
V. CONCIUSION o« v 4 4 v o o o o o o o o o« o o o o 43
SUMIMALY v 4« o o« o o o o o o o o o o o o o o @ 43
p Recommendations o ¢ 4 v o ¢ o o s o s o 4 o 44
! Bibliography o o o v 6 4 v o 4 o & s & o o o o o o o @ 47
\ Appendix A: The Eclipse A/D/A Device User's
i Manuale o o 6 6 6 o 4 o o o o o 2 s o o o 48
P
q
\ iii
X
.
)
h
P
b

&~ Ranctas - B

-

YT WY T Y v
.

—F—

Appendix

Appendix

Appendix

Appendix

Appendix

T N L S T I I T T T S T N T T i -1
Contents
Page
B: Extended Memory Data Collection
MeasurementsS. « « « o ¢ o o o o 99
C: Source Code for A/D/A Operations
SOftware@. o o« o o o o o s o o o 104
D: Source Code for Signal Processing
SOftWar€. « o « o o » o s o o o = 150
E: User's Manual and Source Code for
Filter Design Software. 169
I's Source Code for Support Software. 209
iv
- . A m i am . E A e e Aa moa e e e B — e ¥ A A &k el PP |

:
:
F

Fiqure
2-1 An Extended Memory Setup for Repeated
Conversion OperationS. « « « « « « o o« @
2-2 Extended Memory Data Collection Results
While Foreground Was Inactive.
2-3 Extended Memory Data Collection Results
While Foreground Was Idle.
2-4 Extended Memory Data Collection Results
While Foreground Was Compiling
2-5 Program SPEECH Main Menu Options
2-6 Program EDITOR Voltage Histogram
DiSPlay. « « o o o o o s o o o o & o o @
2-7 Program EDITOR Block Histogram
DIisplay. o« o ¢ o o « o o o o o o o o o
2-8 An Example of Recovering Multiplexed
Data With Program DIGITIZE . . « .« « . .
3-1 The Overlap-Save Method of Convolution .
3-2 Data Setup in Array Processor Memory
(a) Prior to Convolution Operation and
(b) After Convolution Operation.
3-3 Program CONV Command Line Options. . . .
3-4 An Example of Using Program CONV With
Two Unit-Step Functions, (a) and (b),
to Obtain the Linear Convolution, (c). .
3-5% An Example of DFT Operations
(a) 65-Point Discrete Sine Wave
(b) The DF1 Magnitude Obtained With
Programs FFT and MAG
(¢) The Inverse DFT With Program IFFT. .
4-1 Sample Program Output from IEEE
Publication. .+ « o v ¢ « o o o o o o o &
4-2 Sample Program Output from Eclipse . . .

10

11

11

15

16

17

20

24

26

27

28

32

38

39

T T T T e Ta T T T T T T T T S e e T R T T e ey g — - — . — - .
4 " PR L R R NN ST --.‘v—}_

List of Figures

v, T"”“"‘"’T ey
. LI . . .
Vo

e G S

Figure Page
4-3 Program LPFIR Command Line Options. 40

. 4-4 Program LPFIR Parameter File Display. 41

vi

r

AN S R A

rx 2ad

n'vvvl-

&

S Ama Atue. e 2

List of Tables

Table

2.1 Remap Operation Test Results.

2.2 Remap Interval and Points Lost
at B8KHz Sampling. . « + « . .

vii

T T T Y v e v v v m— vy v —wm Ty W W v
3

AFIT/GE/EE/82D-16

Abstract

A signal processing software package was generated for
a Dbuta Ceneral Eclipse S/250 minicomputer. The model 4331
A/D/A converter was utilized to perform general purpose A/D/A
uperations and to collect, edit, and play back speech data
files., The model 130 array processor was used to perform
high-speed convolution and Fourier Transform related opera-
tions. The Parks-McClellan algorithm was implemented to
allow design of linear phase, finite impulse response filters.
sSclf~explanatory interactive programs for data collection and
filter design, together with single line commands for signal
processing functions, make this a simple to operate, versatile
package for digital signal processing.

N

\

vili

e o - B - e et e ot s o 2+ AR 2 s et s Wraims s SO+ mtaers Brrima o S

.o,

P A

EXPANSION Ui THE
ECLIPSE
DIGITAL SIGNAL PROCESSING

SYSTEM

I Introduction

Background

With the introduction of the Fast Fourier Transform
(FIFI') in 19064, digital signal processing took on new signif-
lcance. 'Phe PFPast Fouriler Transform provided an efficient
nethod of culcﬁlating the Discrete Fourier Transform (DIT)
and made it a much more feasible tool for use in signal anal-
ysis. Recent advancements in digital hardware and computer
architecture have made digital signal processing techniques
oven more practical.

Today, digltal signal processing techniques have seen
application in many {ields of study. Here at the Aip Force
Institute of ‘fechnology (AFT) signal processing laboratory,
they are used to investigate pattern recognition problems in
the specech and video areas. The laboratory is used to suppor
research by AFIY personnel and other Air Force oroanizations.

Roeceont hardware lmprovements have been made to the lab-
oratory. An array processor and an additional digitizer have
boeon dnstalled. A group of filter design programs has ailso

beoen procured., However, software has not beoen generated to

Panests B B T e g Lavn _aent sl aeabatay JL oL AR S

t

-

T

LB S S0 s JER S S0 A

Y

MBI SR A S e unt um 2 SRR 4

L SR g g Sun o oa g

—

P

allow these devices and programs to be operated easily. Re-
search efforts could be done in a more timely manner if this

software was available.

summary of the Current System

The AFIT signal processing laboratory contains two Data
General minicomputers, the Eclipse S/250 and the Nova 2/10.
The Nova computer 1s interfaced with a digitizer for collect-
ing data samples from an analog signal (A/D operations) and
to output data samples (D/A operations). The Eclipse com-
puter, however, is more computationally powerful and has been
cquipped with its own digitizer and an array processor. The
operating options on the new digitizer are software control-
lable and proper software would allow this device to perform
a varicety of digitizing operations. Also, due to the extended
memory feature of the Eclipse, the Eclipse A/D/A device has
the potential of operating on larger data files than the Nova
A/D/A device, The array processor could be used to greatly
speed up many algorithms that currently require hours to run
on the system. However, the Eclipse A/D/A device has not
beon operated or even interfaced with other laboratory equip-
ment and the array processor has only secen limited applica-
tion due to the time required to become familiar with thesc
doevices,

There is hot any software currently available in the
laboratory to allow personnel to perform convolution or DFTD

operations without generating software. 7To perform signal

e

PPy
-

processing functions, the Interactive Laboratory System (ILS)
and bata Gencral (DC) software packages are available. These
packages provide subroutines that the user can apply in pro-
grams to perform signal processing operations, However,
learning to use these packages is a time-consuming obstacle
and it should not be necessary for individuals who only want
to perform basic signal processing operations.

A group of machine-portable programs for digital signal
processing has been procured for the laboratory. The source
code fur these programs cannot be coﬁpiled and loaded in their
present form. The mainline and subroutines of each program
need tou have machine-dependent variables defined and be com-

piled separately before the program will operate on the Eclipse.

Ob jectives

The overall objective of this effort is to create a
uscr-oriented signal processing software package for the
AFI'T signal processing laboratory. The package will make use
of systew features that reduce user inputs and will implement
the rocent hardware improvements. With only basic knowledge
of system operation, personnel will be able to do meaningful
sitgnal processing operations.

7o enhance the laboratory's A/D/A capability, software
will be gencerated that operates the Eclipse A/D/A device and
makes use of the Eclipse's extended memory feature., The var-
1ous ways to use this device will be studied. Those most use-
ful to signal processing applications will be organized into
a user's manual that will explain how to write software to

3

—w————y v

Ll art S b e e 4

\ :‘vﬂ v

Y ————
-

WEP——
-

operate the device. Two interactive programs will be gener-
ated. One program will be designed specifically to handle
speech data operations, while one will be designed to flexibly
operate all of the device software controllable features to
handle peculiar digitizing operations.

To allow personnel to directly perform basic signal
processing operations with the array processor, general pur-
puse signhal processing programs will be generated. These
programs will allow the user to cperate on entire data files
by typing a single line command. They will also serve as
examples of how to use the array processor to perform the
basic operations that are done in related ILS and DG sub-
routines.

o set up a computer-aided filter design capability in
the laboratory, the Parks-McClellan algorithm for designing
lincar phase finite impulse response (FIR) filters will be
implemented. This is one of the programs contained in the
group of machine-portable programs. This program can be used
to design a wide range of lowpass, highpass, and multiband
tilters. [t oalso can be used to design differentiators and
ffilbert transtormers. In addition to covering a wide range
of tilter applications, this effort will uncover any problems
that niight oxist in implementing other programs in this group
on the Eelipse, Additional software will be generated to
allovw this program to be more scelf-explanatory and casily

operated,

(I

’
3
»
»
»
>
b
»
»
!
3
v
b
»
y

ITI A/D/A Operations

This chapter describes the Eclipse A/D/A device. The
capabilities of the device and the operating methods of most
intcerest for signal processing applications will be discussed.
The two programs will be presented that use this device to
operate on specech data and to perform general purpose digi-

tizing operations.

The Eclipse A/D/A Device

The Eclipse computer in the AFIT signal processing
laboratory is equipped with a model 4331 analog data sub-
system (Ref 1; Ref 2) and the Sensory Access Manager (SAM)
softwarce package (Ref 3)., The SAM software package is a
Data General package that aids in building I/0 programs for
Data General computers equipped with A/D/A devices. The
software package contains libraries that can be used to
manipulatoe the device.

The model 4331 subsystem 1s a general purpose A/D/A
devicee with a resolution of 12 bits. The A/D scection has an
A/D converter with two multiplexors that allow 16 channels of
differential input. Data éamples can be collected from a
single channel or a sequential list of channels. The D/A
section contains two independent D/A converters. The A/D
and /A scctions have both been set to operate at the +5v
range and to handle conversion values in a two's complement
format. Each 12-bit conversion value is stored in one 16-bit

machine word. The remaining least significant four bits of

5

e

ver e ym v
Y

- —
~

v T v

R .

a word are not used., A more detailed description of this
device and how to write software to operate it, is presented
in the Eclipse A/D/A Device User's Manual which is attached
as Appendix A.

One problem with the device was not resolved. A single
conversion operation, according to the specification, should
be able to handle up to 16,384 samples (Ref 3:5-6). However,
the device gave an error for any conversion operation above
10,073 samples., After an extensive search through the man-
uals, a user cerror could not be found to explain this. The
error code returned, 2194, indicated an attempt to move con-
version data outside the area set up to hold data. According
to the SAM User's Manual, this was an error for assembly lan-
guage operation only and should not occur for Fortran opera-
tion. This c¢rror occurred, however, for both operations. It
was concluded that this was a problem with the device. An
option was included in the gencral purpose program to be dis-
cussed later, that allows the maximum error-free conversion
count tour any specificed conversion operation to be quickly
found. lising this option, it was noted that this problem
existod regardless of the channel or clock source used. The
only ocluck source not used with this option was the pulse
generated clock, which is more difficult to sot up and would
not. typically be used for signal processing applications.
This option could be used to verify correct operation when

the device is repaired.

r————— MRS M A e g Btk Si R AT I S S A Aa AL MR ERRCHASNE)

Memory Management Techniques

T'his section describes programming techniques that can
be used to operate the Eclipse A/D/A device. An executable
program on the Eclipse or Nova in the AFIT signal processing
laboratory must be 32KW or less. This includes the source
E code, overhead code, and variable space (Ref 4:1-4). Since
3 operating on most data files usually requires a large amount
‘ of variable space, the method used to implement the device
in a program is an important consideration due to memory
constraints.

The variable space to hold the conversion values of a
single conversion operation must be declared in the main pro-
gram. 'T'his would require 16KW of integer array space to hold
the maximum specification number of 16,384 samples for a sin-
gle conversion operation. The memory problem is compounded
if it is desirable to do both, A/D and D/A operations, in

the same program., ‘The same data arrays cannot be used to

both input and output data, since they must appear in differ-

ent labeled common blocks for an A/D or D/A operation. The

1 additional SAM library overhead further reduces the space

F

r ‘ . ; . .

b left in the main program. Although 32KW certainly provides
;ﬁ cnoudgh space to allow a program to handle either an A/D or

- b/A conversion operation with 16,384 samples, there may not
be cnouah space left for the rest of the user's source code,
To remedy such situations, Data General lFortran V provides

two methods, overlays (Ref 4:4-1) and swaps (Ref 4:4-4), to

3 increase the source code of the main program. Basically,

7

T TV v e —y 6

— T

program swaps operate by overwriting main memory with a new
program, while overlays overwrite only a section of main mem-
ory with new code. Using one of these methods, a secondary
program can be used by the main program to perform A/D/A
operations. Since the secondary program is usually quite
large due to large data arrays, a program swap will generally
be the best method to use. If this is the case, parameters
specifying the A/D/A operation can only be passed to the sec-
ondary program by writing them to a disk file. The secondary
program must then read these parameters from the disk file.
This is the method used by the programs in the next two sec-
tions which use separate, secondary programs to handle A/D
and D/A opcerations.

Sampling at 8KHz, the single conversion operation maxi-
mum of 16,344 samples would provide only 2.05 sec of speech
data. It is desirable to work with longer speech files.
Fortunately, the Eclipse conputer has a feature called ex-
tended memory mapping (Ref 4:4-11), which allows large amounts
ol data to be moved quickly.

Fxtended memory mapplng can be visualized as follows.

A window is set up in the main program that can be made to
slide along additional memory called extended memory. Data
can boe ronted to and from extended memory through this window.
Actually, data iIs not physically moved, address registers are
simply changed. The Belipse computer has up to 42KW of addi-
tional newory that can be accessed through remapping.

The extoended menory setup that is used in the speech

8

Ty

Py

program of the next section is shown in Fig 2-1. 1In this
setup, conversion operations are performed in 10,240-sample
sections. The results -of the first four conversion operations
are routed through the window into extended memory. Using

the data buffer to hold the fifth conversion operation re-
sults, up to 51,200 samples can be collected. Sampling at

8KHz, this provides 6.40 scc of speech data.

10KW vindow | Call 1 10KW
10KW BE?EZr call 2 10KW
Call 3 10KW
Call 4 10KW

Main A Extended

Menmory Memory

Fig 2-1 An extended memory setup for
repeated conversion operations
vf course, cach of the remap operations causes a delay
where sampling points may be lost. A test was devised to
give an approximate indication of the number of points that
may be lust in the above setup. For the test, a triangle wave
was sampled using the scetup shown in Fig 2-1. The break in
the linecarity of the wave during the remap operation was
noted to determine the number of points lost. The Eclipse

9

P TP ——

fgana Jaatc baan aace 2

computer has two user terminals, referred to as foreground

and background, that share the computer's single CPU. To note
the affect of CPU activity on the time required to perform a
remap operation, the test was conducted on the background for
three conditions. First, the foreground was made inactiverx,
2llowing all of the CPU's attention to be given to the A/D/A
program. Ior the other two test runs, the foreground was
allowed to be active. On the second test run the foreground
se¢t idle and on the third test run it was used to compile a
programn. The test setup and description is given as Appendix
B. "The affect of the remap operation on the sampled triangle

wave 1s shown in Figs 2-2, 2-3, and 2-4. For these Figs, a

6.0 JESTOATA . 199

3.0 sampled

. signal ‘\\\
volts

&€ w»
”’
-39 L \actual
signal
- 0
[] L2 Y

sample points

Fig 2-2 Extended memory data collection rosults
while foreground was inactive

* Inactive implics that the foreground was shut down with

the CPRL-PF command.

10

P

ncis Jhdh o

-

.

r R
PR

— YT T T P v v

LN R 1) —— Y .
23 .. actual
.. /signal
volts S
s\
K}
&©® o
-2.9
sampled
signal
-39
. sit
sample points
Fig 2-3 Extended memory data collection results
while foreground was idle
0O
9.9 JESTORTAS $L00K8: TO42
2.3 sampled
signal
volts
.0 A
L4 "
€@ o e
"
-
-2.3 .’ s
.7 e _actual
T c wignal
3.9
®
sample points u
Fig 2-4 Pxtended memory data collection results

while foreground was compilling

11

-

’
.

v W e

K

sct of sample points were chosen that conveniently illustrated
the break in linearity.

The number of points lost during the remap operation
in each of the plots was calculated as follows. The change
in voltage betwcen all data points, except where the slope
changes and the remap transition occurs, was computed and
averaged. The following formula was used to compute the

points lost,

Pts = Mag 1

Incr

where Pts points lost
Mag voltage magnitude of remap transition
Incr = average voltage change between sample
points

A program was used to do the above calculations and the re-

sults for the three plots are shown in Table 2.1.

Filename DATA1 DATA2 DATA3
Pbisk Blocks 80-81 40-41 40-41
Fts Yyo 221 224
May 1.68Y5 4.0601 4.1162
lner L0174 .0183 .0183

Table 2.1 Remap operation test resultis

The results indicate that not the level of activity
cn the opposite terminal, but whether it is active or in-

active, 1s the prime determinant of the points that will be

12

lost. The test data was collected at a 21KHz sampling rate,
however, speech is usually sampled at only 8KHz. Since the
sampling rate and the number of points lost is known for each
condition in the test runs, the time required for the remap
operation and the number of points lost for sampling at 8KHz

can be easily computed. These results are shown in Table 2.2.

Condition 1 } Condition 2 Condition 3
Remap - N 7
Interval 4.57msec 10.5msec 10. 7msec
Points Lost
@ 8KHz 37 84 85

Table 2.2 Remap interval and points lost at
8KHz Sampling

Losing the number of points on the order shown in Table
2.2 could add another dimension of uncertainty in pattern rec-
ognition programs. If the remap occurred during the crucial
ut.terance of o short word, 1ts signature could be seriously
croded. Care must be taken using this setup to collect data,
not Lo have utterances during the remap interval. The primary
use of such a scetup should be to play back edited speech flles
that have been picced together such that no utterance occurs
during the remap interval. However, even if this does occur
during playback, the only affect is the annoying silent gap
of the remap interval.

The following two sections describe two programs that

wore generated using this device., The source code for these

i3

v

a

Tl AT

v v e e T vy —yywTeTe
-

e e wTTS Y WS e Y W W W v

programs and a data format conversion program is given in
Appendix C. The source code for the user subroutines named

in these programs is included in Appendix F.

A Program for Speech Application

An interactive program for working with speech data was
generated. This program allows the user to collect, edit,
piecc together, and play back speech files. The program can
be operated in either short mode, to work with 15,872 samples,
or in long mode, to work with 51,200 samples. During execu-
tion, the program maintains two buffers on disk file, the
data buffer and edit buffer. The data buffer is where con-
version values must originally be placed, either by an A/D
operation or reading from a disk file. The data buffetr can
then be placed in the edit buffer where sections of data can
be played back and deleted. Editing operations performed on
the edit buffer do not affect the data buffer.

The program is actually a collection of siX programs
where the sccondary programs are called upon by swapping.

The central program, SPEECH, performs operations on the data
buffer and calls up the editing mode. A copy of its main

menu options is shown in Fig 2-9%. 'The scecond program, EDITOR,
perforns editing operations on the edit buffer and can return
to the contral program. It provides two types of histograms,
by voltage and by block, on specified blocks of data. A

copy of the display shown for the same blocks of a speech file
is given for cach histogram in Figs 2-6 and 2-7. Two of the

prograwms, SMALLIN and SMALLOUT, are used by the central pro-

14

-

g T e

P g

—~— YT

13
2:
3
43
S:
6:
73

Please select which operation will be performed,

A/D conversion into data buffer
D/A conversion out of data buffer
editing

read from file to data buffer
write data buffer to file

copy data buffer to edit butfer
exit

selection:

r1g 2-5 Program SPEECH main menu options

15

PPy

....................

Voltage Histogram

blocks: 1- 16 samples: 4096,
max voltage: 1,5796(10352)

min valtage: -2,2705(-14880)

total clips

Voltage Positive Negative Total
Magnitude Samples Samples Samples
500‘405 0- 0. 00
4.5-4,0 0,) 0, 0.
4-0‘3'5 0. Q. 0.
305'305 Oo- 00 00
300'205 00 ' 04 00
205'2.0 0. 1., 1.
200‘105 2. 9, 11,
105"100 14, 120 26.
1.0~ .95 79, 97 136.
5= 40 1211, 2806, 4017,

Please select which operatiori will be performed,
1: D/A conversion of histogram blocks
2: delete histogram blocks from edit buffer
Xt return to the editing menu

selectian:

I'ig 2-u Program EDITOR voltage histogram display

16

2" SRR

......

e T T T L ST e TR T e T T T -

Block Histogram

blocks: 1- 16 samples: 4096, total clips
max voltage: 1,5796(10352)

min voltage: -2,2705(-14880)

Black Tatal Max
Number Clips Magrii tude
1 0. 1.1890
2 0. . 5884
3 0, 1,5796
4 (1 1.,4429
5- 6 0. 1.8896
7' 8 00 302705
9- 10 0. + 8398
11- 12 0, 1733
13- 14 0. (1489
15- 16 0, 0732

Please select which operation will be performed,
1: D/A conversion of histogram blocks
2;: delete histogram blocks from edit buffer
J: return to the editing menu

selection:

0.

iy 2-7 Program EDITOR block histogram display

17

ral

— AT e T N, M

gram to handle short mode A/D operations. The last two pro-
grans, BIGIN and BIGOUT, are used by the central and editing
programs to handle long mode D/A operations. Each of the four
A/L/A programs contains an option to repeat the conversion
operat.ion while within the program. This allows the conver-
sion vperation to be repcated without the annoying wait that
is required to swap in an A/D/A program.

The prograne that operates the Nova A/D/A device for
work with speech data, AUDIOHISYT, scans the chosen data file
blocks for histogram parameters cach time a histogram is re-
quested. This causes an annoying delay between histograns.
buring editing, histograms may be requested several times to
1solate a single block of data that will be deleted. To allow
the hilistograms to be presented quickly, paramoter arrays were
used in program EDITOR. The first time a histogram is re-
gquestoed, the histogram parameters for the entire edit buffer
dre coullected and stored in parameter arrays. As blocks of
data are deleted, the parameter arrays are updated. Sub-

sequent hiistograms are displayed without any noticeable delay.

A Program for cdeneral Purpose Application

Anointeractive program for performing goeneral purposce
digiticing operations was generated. Dbuce to the general
nature of ity design, the program is rather cumbersome to
operate, 1Tt s intended to be used to test A/D/A system sotb-
aps arted to handle diglitizing operations nol routinely per-

tormed, [t could also be useful when time does not permit

18

T

4 :’T.l

e 2. 4 o e o

WP T

e

generating additional software for a digitizing operation.

As with the speech program, this program is actually a
collection of programs where the secondary programs are called
upon by swapping. The central program, DIGITIZE, is very
short and sinply directs the user to choose either A/D or
/A nmode. The A/D program, INDIGI, and the D/A program,
OUTrb1GI, maintain separate 16KW data buffers. In addition
to performing conversion operations, cach program allows the
uscer Lo vicew, print, or write to disk file specified sections
of the data buffer. The D/A data buffer can also be filled
by reading from a disk file. Since the data buffers are
independent, the only way the contents of one can be placed
in the other is through an intermediate disk file.

The /A program allows the data buffer to be demulti-
plexed., This option can be used to recover data that was
collected on a single channel wvhen the channel scan feature
v ussed in tikr A/D operation. The starting data sample and
the number of samples to be skipped between subscequent saved
Samples are specified by the user. The channel scan feature
Is useiul for collectine data where the time relationship
botyveon siqguals is luportant, Shown in Fig 2-8 is an example
of such on o application. Here the useor had recorded analog
data sinaltanceously on various channels op o nulti-channel
tape recardey oboa location outside the laboratory. One of
Chee chiamels, contained a timding signal that was nodificed and
used o as o oan external Clock sourcoe. Using proaram DIGITLICE,

the analod data one tvo of Lhe channels was first digitised

19

using the channcl scan feature set to alternate betveen two
channels. Then demultiplexing operations were done on the
sampled data to create the data file for each signal. Pro-
gram CNVRT, which is included in Appendix C, was used to
convert the data files into real number format. Program
PLOT, which 1s included in Appendix F, was used to obtain
the plot shown. The figure shows the plot of an EEGC signal
of a dog's brain and a signal used to control the frequency
of a strobe light flashed into the dog's eyes. The sceparate

data files werce necessary to view the signals and permit data

processing.

Je3loway
EEG
signal
1.9
volts ' sLrobe
signhal
N]
({3 ¥
-4.9
Y
-3 @
L sty
sample puints

Fig 2-8 An example of recovering multiplexed
data with program DIGITIZE

20

-

S e R O A

YA T T T T el

-y wew v v

-~ . rvrrow vy

« w.ov mov

R — Ty

III Signal Processing Functions

This chapter describes the Eclipse array processor.

The two methods of utilizing array processor memory will be
discussed. Several general purpose signal processing pro-
grams that make use of this device will be presented. The
source code for these programs and related user subroutines

is included in Appendices D and F, respectively. Each pro-
gyram is activated by typing a single line command that identi-
fies the processing function and the data files to be operated

On.

The Foelipse Array Processor

The kclipse computer in the AFIT signal processing
laboratory is cquipped with a model 130 array processor
(Ref 5). The array processor is designed to provide high-
speed matrix computations. It contains independent multiply
and add/subtract units that can operate simultancously. Each
unit features pipeline design, which allows several opera-
tions to overlap one another during the same time period.

There are o varlety of matrix operations that can be
poerformed. LBach matrix operation is called as a4 wubroutine
with o single arqument that referonces a control block. The
control block is scet up prior to calling the matrix operation
by using one or more additional library subroutines. It
specificos the oporation's parametoers, such as the location

of input. and output data in array processor memory.

21

v
oa

Array Processor Memory Management

The array processor contains 4KW of memory which is
basically used as a scratchpad for matrix operations. Input
data is loaded into this area and output data is retrieved
from it. Data can be transferred to and from array processor
memory in two ways, directly (Ref 5:2-33) and/or by mapping
(Ref 5:2-10).

Moving data directly requires a separate subroutine
call to transfer data. It allows data of any length or loca-
tion in main memory to be moved to any location in array
processor memory and vice-versa. The major drawback with
this method is the manual loading or unloading of data re-
quired for cach matrix operation.

With memory mapping, data is transferred automatically.
Any contiguous l1KW-multiple of array processor memory can
Le mapped into main memory. The mapping operation that does
this sots up a window in main memory. The data arrays identi-
ficd in this window can be treated as if they were located
in array processor memory. Loading data into thesce arrays
placoes the data directly into array processor memory. If the
arrvay procuessor window is remapped, then the data in the pre-
vious window is destroyed. For this rcason, as is the case
with extended memory mapping, the mapping operation is usually
only called once in the program. Data can be moved to or from
the window by setting up a loop that exchanges values with
anot her array outside the window or by performing disk read/

write operations on the window data arrays. Of the programs

to be presented, the first performs data transfers directly

and the others perform data transfers'by mapping.

A Program for Time-Domain Processing

10 allow signal processing in the time-domain, a convo-
lution program, CONV, was generated that makes use of the
array vrocessor. ‘the program convolves an input file contain-
ing up to 32,767 disk blocks with a filter file containing up
to 512 points. Since the filter file must remain in array
processor memory throughout the operation, a filter file of
512 pouints would consume oﬁe—quarter of array processor mem-
ory (<4xW = 2048 real points). For this recason, a 512-point
madinum was chosen as a balance between memory used to hold
the yilter and a reasonably large impulse response. The
coctffivients of many infinite impulse response filters are
usually small beyond this length.

The algorithm operates by breaking the input data into
sections and using subroutine VCONRZ to convolve each section
with the filter rospohise. The overlap-save method is used
to picee together the individual matrix operation outputs to
form o linear convolution (Ref 6:113-115). The overlap-save
method is illustrated in Fig 3-1. 7The input data is broken
up into M-point scections and convolved with an N-point impulsc
respotise,. The first N-1 points of the first sociion are zoero
filled and the tirst N=-1 points of each subscequent scection
are ident ical to the last N-1 points of the preceding scection.
T irst u-1 points of cach vutput scection are incorrect,
while the romaining points are identical to that of a lincar

23

M points

N-1 points

- —— - ———

-

= - = - - —

y.(n)

scarded

Di

Fig 3-1

2}

........

The overlap-save method of convolution

24

w W T AT e E WY T a4 TR W W W Y W YW W Tw T W T TR

convolution. Each output section has its first N-1 points
discarded. The remaining sections are then abutted together
to construct the final filtered output.

The program makes use of the in-place convolution fea-
ture (Ref 5:4-18). Using this feature, the size of each
output section is maximized. The data setup for a single
operation with an N-point filter file is shown in Fig 3-2a.
The filter file must be loaded at the top of array processor
memory. The input data must then be loaded N points below
the filter data. Using the in-place convolution feature, it
can be specified to begin writing output data beneath the
filter data and to continue overwriting the input data if
necessary. The value of M is determined from the relation-
ship, M = 2048-2N. As shown in Fig 3-2b, for an M-point
section of input data, the matrix operation only gives the
first M points of the M+N-1 point convolution. Since the
program always discards the first N-1 points, each output
save section is only M-N+1 points long. If the in-place
feature s not used, a convolution operation cannot be speci-
ticed where output data will overwrite input data.

For a HlZ-point filter and input file, the program
requires two matrix operations to give the linear convolu-
tion. VFirst, the front of the input data file is augmented
with 511 ceras. The back of the input data file is also
augmented with zeros to allow the matrix operation to overrun.
The input data is then loaded in two 1024-point sections

overlapping each other by 511 points as described in the

—— T T TR

am

N Filter N Filter
points Data points Data
. N Output
‘ polints Data
N M Rt
points Save M-N+1
M Input Section points

: points Data

(a) (b)

Fig 3-2 Data setup in array processor memory
(a) prior to convolution operation and
(b) after convolution operation

26

v

.

— T Y Y

o bt Made Tabvies enniil ARAuMCR i

overlap-save discussion. Each convolution operation yields
513 points of the linear convolution. The last three points
of the second convolution are zero and ignored. The two
output save sections are abutted together and the 1023-point
linear convolution is written to the user-specified file.

The command line options that are given in the program's
source code are reproduced for convenience in Fig 3—5. The
following command line,

CONV INFILE/I OUTFILE/O FILFILE/F/D

was used to convolve the unit-step data files shown in
Fig 3-4a and b. Note that the filter file was deleted after

the operation. The resulting data file is shown in Fig 3-4c.

Lommand line:
CONV 1nput/1 [/D) output/0 filter/F (/D)

shere “input”,"outputr” and "filter"” are any legal KDOS filenames,

The 1nput, output and filter filenames can be typed in any order,
however, the 1 smitch should always be attached to the 1nput
file, the O switch should always be attached to the output file,
and the F switch should always be attached to the filter file.

The D switch can only be attached to the input and filter files,
and deletes these files after the output file has been created.

Fig 3-3 Program CONV command line options

—p—— .Wv, ﬂﬁ“ﬂ.- v

ey

L

pr—

3 2 IELE

x(n)

2 e

hin)

16

yin)

29

() ,,ﬂ]“ ,,,,,,,,]“l”“h.

[} 3
1}

ilg 3-1 An example of using program CONV with two
unit-step functions, (a) and (b)), to obtain
the linear convolution (c)

28

.

.

’

ferew mm —— ot v vTT v w Y ﬂ

——————w e e e L T R L A .
S Sl Secs e Bead o o emd W) - " e o N T AR - . R {

Programs for Freguency-Domain Processing

To allow signal processing in the frequency-domain,
four DT related programs, FFT, IFFT, MAG, and MULT, were
generated that make use of the array processor. Program FFT
computes the corresponding DFT of an input file on a 1024 or
2048-point basis. The input file must contain real number
data and the output file will contain complex number data.
If the input file contains less than the number of points
required for the DFT, it is augmented with zeros as neces-
sary. 1o complement this program, program IFFT computes the
inverse DFT of a 1024 or 2048-point input file. The input
and output file data types for this program are the reverse
of that for the forward DFT program. Two other programs were
created to operate on 1024 or 2048-point DFT data files. Pro-
gram MAG computes the corresponding magnitude file of- an in-
put file and program MULT performs a point-by-point multiplica-
tion of two real or two complex input files., The multiplica-
tion program can thus be used tc operate on both, complex
nutibor DET data files and real number magnitude data files.

To compute the M-point DFT of real data on the array
processor i a single DFT operation sequence, M/2 must be
a power ol 2 and within the limits of 8 and 1024. Three
separate subroutine calls are required for the DFT operation
sedquence,. Since the DET result 1s complex, it requires twice
the space of the time-domnain real data. lowever, making use
o symmetry properties, the array processor returns the DET
in o format Lthat requires only half of this space (Ref 5:4-35).

29

| -~ e 2ea e 4

CH -~

,_

LI SR 20w Jna sl 2 ot

Q¢

P ASMASERIR AR AL o

T

o it
R — T A (i

The DFT result simply overwrites the original data.

The result of an M-point DFT is stored in array proc-
essor memory as follows. Since the first point and the M/2
point of the DT are always real, these two points are stored
in the first two points of the result. The following points
form a complex array that contains the second througﬁ M/2-1
points of the DFT. To obtain the DFT for the M/2+1 through
M points, this complex array is conjugated in reverse order.

To compute the inverse DFT, the DFT data file must be
loaded into array processor memory in the same format as
the forward DFT returns. The inverse DFT operation sequence
can then be called to return the original time-domain real
data.

The MULT and MAG programs usce matrix operations to
directly perform the specified operations on data. Sub-
routines VMCA and VMRA are used to perform a point-by-point
maltiplication of complex and real data, respectively. Sub-
routine VSMA is used to compute the square of the magnitude
ol cowplex data, The square root is taken prior to writing
the results to file.

The process of multiplying two D data files of length
Hoand ot and then taking the inverse DI'P is equivalent to per-
rorming « clrcular convolution. However, 1f the DT data
Iiles were not created on the basis of at least an N+M-=1
point D, the result will not. be a lincar convolution
(Ret oelll). Thuas, when using this DEFT package to implement
a lincar convolution of two data files, it must be remembered

30

T Yy
-

!"

that the sum of the two time-domain data file lengths cannot
be larger than 1025 points when using the 1024-point DFT
option or larger than 2049 points when using the 2048-point
DIl option.

The command line format for each program is given in
the program's source code. Each format is similar to that
of the convolution program. Shown in Fig 3-5 is a 65-point
discrete sine wave (a) and the corresponding magnitude of its
DI data file (b). The following command lines were used to
obtain the magnitude data file,

Fr1/s SINE/I DFTFILE/O
MAG/S DFTFILE/I DFTSINE/O

The S switch indicates that the 1024-point DFT option was
used. ‘The absence of this switch would implement the 2048-
puint DFT option. The following command line,

LII'/S INVSINE/O DFTFILE/I
was used tu retrieve the time-domain signal shown in Fig 3-5c.
only the first 65 points of the inverse DF1 are shown since

the coefficlients are small beyond this length.

31

2030

Wl il

E (a)
' -2.0
;- ‘ : -
f' 3 2UFISINE
s
|x(k)|
3
Er 3
3
° .llll“““h |l| _lhlA YTITIPN
. X “
T> 2.010SIE
F
{ 1.0
] X(n)
| il
, Jl
A £ @)
-1 e
(c)
)
¢ & e
) P
b n
r Fig 3-5 An example of DI uperations
f (a) 65-point discrete sine wave
!. (b) the DFT ragnitude obtained with
b progrom 8T and MAG
) {c) the »nverse DFT with program IFFT
. 32
e
;
b
Y

&

HE

IV Computer-Aided Design of
Linear Phase FIR Filters

This chapter will present a brief description of the
Parks-McClellan algorithm for designing linear phase FIR
filters. The steps necessary to execute the IEEL machine-
portable version (Ref 11:5.2-1) of this algorithm on the
Eclipse will be given. The program, LPFIR, that was gener-

ated by modifying this algorithm will also be presented.

The Parks-McClellan Algorithm

Since the Parks-McClellan algorithm was presented in
1973 (Ref 7), it has appeared in textbooks (Ref 8:354-364;
Ref 9:187-204) and been used in commercial software packages
(Ref 10:18,27). The algorithm can be used to design a large
class of linear phase FIR filters. It makes use of the Remez
exchange, which is un efficient algorithm for designing digi-
tal filters with minimum weighted Chebyshev error.

The frequency response, H(f), of a FIR digital filter
with a N-point impulse response, h(n), is the z-transform
ot the sequence evaluated on the unit circle. The frequency
response of a linear phase filter can be written as,

H(E) = G(f) expl j2rnf(Lw/2-2(N-1))]

where G(f) 1s a real function and L=0 (for positive symmetry)
or 1 (for negative symmelry). Lt can be shown that there are
exactly four cases of linear phase FIR filters. These cascs
difter in length of the inpulse response (even or odd) and

the symmelry of the impulse response (positive or negative).

33

OC

Positive symmetry is defined as h(n) = h(N-1-n) and negative
symmetry as h(n) = —H(N—l—n).

In all four cases, a function G(f) can be used to ap-
proximate the desired magnitude specification. Using symmetry
relations, G(f) can be expressed as follows for the four
different cases. 1In all cases, n =1, 2, 3,...k.

Case 1: positive symmetry, odd length
Kk

G(f) = 22: h(k-n)cos(2nf)
n=0

where k = (N-1)/2 and h(k) = 1/2

Case 2: positive symmetry, even length

k

G(EYy = 2 hW(k-n)coas(2Nf(n-1/2))
n=1

where k = n/2

Case _3: negative symmetry, odd length
K
G(r) = ZE: h(k-n)sin(2mnnf)

n=1

where k = (N-1)/2 and h(k) = 0
Case _4: negative symmetry, even length
k
G(tf) = 22: hik-n)sin(ZNf(n-1/2))
n=1
where k = N/2
Earlier efforts at designing FIR filters concentrated on
Case 1, But Parks and McClellan presented a method of
combining all four cases into one algorithm. This was done
by using symmetyy relations to express the other three cases

34

PP —

—— P T ——— T ~ TETT TS -

as a form of the first case, Q(f), multiplied by a function,
P(f). This allows all four cases to be expressed as
G(f) = Q(f)P(f), where P(f) is a linear combination of cosine
functions. Since all four cases can be expressed in a common
form, a single computation routine (the Remez exchange) can
be used to calculate the filter approximation.

The filter approximation is obtained as follows. Given
a desired magnitude response, D(f), and a positive weight
function, W(f), both continuous over a compact subset

F € [0,%], the absolute weighted error is defined as,

leCeEN) = wax W(E) [D(£)-G(£)]
fEF

befining the frequency domain, F, in this manner implies a
sampling rate of 1. The above expression can be rewritten

AaAS,

(O] = max WCE)Q(E) [L(E£)/Q(£)-P(£)]
fEF

This cxpression can be used to calculate the best approxi-
matlion basced only on cosine functions. The minimum weighted
error can be obtained by careful choice of the coefficients
of P(f). The alternation theorem is used to determine the
number of cosine functions necessary. By making use of the
cerror funhction and the conditions of the alternation theorem,
the Parks-MeClellan algorithm provides the best filter ap-

proximation.

35

b e Lk e e gt

L 4
-

.vvva—,—‘

\ aa ann e e aay o

Implementation on the Eclipse

The referenced IEEE publication contained the source
code for the Parks-McClellan algorithm used in program LPFIR.
This publication was the result of an effort to collect and
nake some of the popular DSP programs more available and
machine independent. In the IEEE version, the Parks-McClellan
algorithm had several variations from the original paper.

The major difference was with the REMEZ subroutine. This
subroutine was changed significantly to allow it to use vari-
ables already present in a common block to compute the cosine
functions, instcad of passing additional variables as argu-
ments . Also, throughout the entire software package, minor
changes were made that affected mixed-mode arithmetic and
library subroutines.

The only system dependent parameters that had to be de-
fined for the IEEE version were the I/0 unit numbers. The
READ statements were changed to ACCEPT statements to allow
data to be casily input from the console. After these changes
wore nmade, thoe source code for the mainline and subroutines
wore separately compiled and the program was loaded. The
program was executed without any problems.

Each filter example given in the TEEE publication and
the original paper was reproduced with the program on the
Lelipse. ‘'he impulse response for all examples was identical
within Y-t decimal positions. The program output given on
e . 1=7 of the IEEE publication for a $%-noint multiband

filter is given as Fig 4-1., The filter design with the pro-

30

L N . PO |

1 S E Ak A £ e
[)

L aan o ae o o

PP

ga

gram executed on the Eclipse for the same parameters is given

as Fiqg 4-2.

Program Description

The Parks-McClellan algorithm as listed in the IEEE
publication and other referenced sources was intended for
use with a card reader. To allow data input to be more de-
scriptive, this section of code was modified to request the
paramcters from the user and give appropriate raages of
values. The program was also modified to be executed in a
command line format similar to that of the signal processing
programs. The command line options that are given in the
program's source code are reproduced for convenience in
'ig 4-3.

There are several options available for executing the
program. A paramcter file is created for each set of filter
parameters glven to the program. This file can be option-
ally deleted after designing the filter impulse response.

It can also be retained and the next filter design made by
simply refereoncing the existing parameter file. Each fil-
ter design is also written to a file. The filter output
listing, such as that given in Figs 4-1 and 2, can be op-
tionally printed. A new parameter file can be created and

an existing parameter file can be viewed and/or altered with-

out designing the corresponding filter. An example of the

parametoer file display that is given cach time the program
is executed is shown in Fig 4-4. This figure is the display
37

- e A e e e e oot e B e e e e ers BB ree e s+ o

DEVIATION = (0.000734754
DEVIATION = 0.006315947
DEVIATION = (.021567374
DEVIATION = (0.026203127
DEVIATION = -~0.0326802369
DEVIATION = -0,.034435446
DEVIATION = -0.034448B378
DEVIATION = -0.034448593

ROCIAGBVADINSVCREBOAOONGOERGRRGEAIENAEGCUROIRGPRNEOIAICURAGTIEOENGGROENQADN

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
HEMEZ EXCHANGE ALGORITHM

BANDPASS FILTER
FILTER LENGTH = 55

seaes IMPULSE RESPONSE seves

LOWER BAND EDGE
UPPER BAND EDGE
DESIRED VALUE
WEIGHTING
DEVIATION
DEVIATION IN DB

LOWER BAND EDGE
UPPER BAND FDGE
DESIHED VALUE
WEIGHTING
DEVIATION
DEVIATION 1IN DB

= 0.10662652E-02 = H{ 55)
= 0.63777615E~02 = H{ 54)
= 0.35755609E-02 =« H{ 53)
= ~0.90677854E~-02 = H(52}
= ~0.90906978E-02 = H{ 5%)
= 0.29155%5630E-02 » H{ 50)
= 0.39637965E-02 = H{ 49)
= (G.11172051E-01 = H{ 48)
= 0.11646759E-01 = H(47)
= -0,99630785E-02 = H{ 46)
= -0.92384245E-02 « H(45)
= -0.20406392E-01 = H{ 44)
= ~0.19460483E-01 = H{ 43)
= 0.31243014E-01 = H{ 42)
= 0.63045568E-02 = H{ 41)
= -0.20482803E-01 = H{ 40)
= 0.65740513E-02 = H{ 39}
= -0.11202127E-02 a H(318)
= 0.41956986E-01 = H{ 37)
= 0.35784266E-01 = H(36)
= 0.34744803E-01 = H{ 395)
= 0.71496359E~01 = H(34)
= -0.17138831E 00 = H{ 33)
z -0.18255044E 00 = H{ 32)
= 0.74059024E-01 = H{ 31}
= -0.10317421E 00 a H(30)
= 0.25716721E-01 = H{ 29)
« 0.37811546E 00 = H{ 28)
BAND 1 BAND 2
0. 0.1000000
0.0500000 0.1500000
0. 1.0000000
16.0000000 1.0000000
0.0034449 0.03444486
~49.25%65703 0.2941783 -3
BAND 5
0.4100000
0.5000000
0.
20.0000000
0.0017224
~55.2771702

EXTREMAL FREQUENCIES--MAXIMA OF THE ERROR CURVE

.1000000
. 1800000
.2436160
. 35022132
.4457143

cocoocoOoCo

0.0167411 0.0323661 0.0446429
0.10689286 0.126785%7 0.1424107
0.1855804 0.1978571 0.2134821
0.2500000 0.31000000 0.3122768
0.3600000 0.4100000 0.4155804
0.4635714 0.4814285 0.5000000

BPOWO OO

BAND 3

.1800000
.2500000

.0000000
.0114829
. 7989955

0.0500000
0.1500000
0.2302232
0.3323661
0.4289732

BAND 4
0.3000000
0.3600000
1.0000000
1.0000000
0.0344486
0.2941783

BEIRBB AR E08QA20080000R00R00G000RCCRASIEDIBRPEIBNIRGE0803842000000000saA0"

-
t'ig 4-1 Sample program output from IEEE publication

3y

,
.
\
r
s

TPV Wy

DEVIATION
DEVIATION
DEVIATION
DEVIATION
DEVIATION
DEVIATION
DEVIATION
DEVIATION

. 000734923
. 006217232
. 021347347
. 026203336
. 032680636
. 0344325383
. 034448225
. 034440442

SRR ICERAAGNCEGCRNGNGRRERRNANUROCATNNSUNCREREREGENEsERENNEONOINORNRES

FINITE IMPULBE RESPONSE (FIR)

LINEAR PHASE DIQITAL FILTER DESJON

REMEL EXCHANGCE ALCORITHM

BANDPASS FILTER

FILTER LENGTH =

33

essss IMPULSE RESPONSE eseen
H(1) = . 106462480E-02 = H(33)
H(2) = . &63777040E-02 = H(354)
H(3) = . 39756360E-02 = H(5I)
H(4) = - 90677220E-02 = H(52)
H{ 3) = - 90907310€-02 = H(51)
H(6) = . 29153130E-02 = H{ 50)
Ht 7) = . J9637950E-02 = H(49)
Ht 8) = . 11172020E-01 = H(48)
Ht 9) = . 11646760E-01 = H(47)
H(10) = = 9946299B0E-02 = H(46)
H{11}) = = 92383360E-02 = H(43)
H{12) = - 20406370E-01 = H(44)
H(13) = - 19440340E-01 = H(4])
Hila) = . JV142970E-01 = H(42)
H(13) = . 63043660E-02 = H(41)
Hi{16) = = 20482060E-01 = H(40)
H{17) = . 63740030€-02 = H{ 39)
H(IB) = - [1202380E-02 = H(38)
H(19) = . 4199%6930E-01 = H(37)
H(ZQ0) = . J3784270E-01 = H(J6)
H(Z21) = . 34744800E-01 = H(I
H{22) a . 7149465%0E-01 = H(34)
H(23) = - 17138810E 00 = M(33)
H(24) = - 182350%0E 00 = H(J32)
HIZS) = . 7TAQS9010€E-0) = H(31)
H(26) & ~ 10317420E 00 = H(J0)
Hi27) = . 23716610E-01 = H(29)
Hi2B) = . 37813530€E 00 = H(28B)
BAND 1 BAND 2 BAND 3
LOWER BAND EDCE . 0000000 . 1000000 . 1800000
UPPER BAND EDGE . 0300000 . 1300000 . 2300000
DESIRED VALUE B o Teleteletele] . 8000000 . 0000000
WE JOHT INQ 10. 0000000 . 0000000 3. 0000000
DEVIATION . 0034440 . 0344484 . 01146828
DEVIATION IN DB -49. 2963900 . 943704 -38. 7990.00
BAND 3
LOWER BAND EDOE . 4100000
UPPER BAND EDGE . 3000000
DESIRED VALUE . 0000000
WEIOHTING 20. 0000000
DEVIATION . 0017224
DEVIATION IN DB -39. 2771900
EXTREMAL FREQUENCIEB--MAXIMA OF THE ERRDR CURVE
0000000 . 0167411 . 0322661 . 0446420 . 0900000
. 1000000 . 106892u3 . 1267049 . 14240948 . 1900000
1800000 . 1895802 . 1978%6 . 2134811 . 2302217
2436141 . 2300000 . 3000000 . 3122764 . 3322451
3502217 . 3600000 . 4100000 . 413%802 . 4289727
. 4437122 . 4633698 . 4814264 . 3000000

BAND 4

. 3000000
. 3500000
. 0000000
. 0000000
. 0344404
. 2941704

(LA AL A AR A L R A L I T AR I R I T Y R A R R Y Y eIy Y Yy Iy YYYYY)

Fig -2

Sample program output from Eclipse

34

Cosmand line:
!I LPFIR parameter/P L[/E) [/D) (filter/F (/L1]

shere “paraneter” and “filter” are any leqal RDOS filename

The P smitch aust always be attached to the parameter filename, A
. paraneter file wil)l be created with the filter parameters

'I interactively specified by the user, The filter paraseters ®ill
be displayed and can be changed it requested by the user.

The E suitch denotes that the parameter file already exists, The

filter parameters will be display and can be changed if requested
He by the user,

. The filter filename and F switch denotes that the filter specified
by the paraseter file wil) be designed and the iapulse respanse
stored under the filter filename, The F switch must be attached,

The L smitch denotes that a listing for the filter design will
be sent to the printer,

It the paraaeter and filter files-are both given, they can be
typed in any order.

The D seitch can only be attached ta the parameter file {f a
filter file is also specified, This switch deletes the parameter
file after the filter file has been created.

Fig <=3 Program LPFIR command line options

40

o

.Q.FWF

.W.ﬁv< —

MAEAL 40 oo an oy

....................

=-) Multiple Passhand/Stopband Filter (--
Parameter File: PFILE

Filter Length: S5 Nuaber of Bands: § Lrid Density: 14

Lower Upper Frequency

Cutoff Cutoff Response
Band Nuaber 1| +0000 0500 0,
Band Number 2 «1000 +1500 1,
Band Nuaber 3 «1800 12500 0.
Band Nuaber 4 +3000 13600 1,
Band Nuader 5 +4100 +5000 0.

Do you want to,
1t accept the abave parameters

23 change the above parameters
selection:

Filter File: not specified

¥eight
Function

10.
1,
3.
1.

20,

Fig 4-4 Program LPFIR parameter file display

41

v"‘)"".T

’

'

—Y
-

for the parameter file used to generate the output listing

in Fig <=2,

The program fails to design many filters with reason-

able design parameters. Also, design
a woll-designed filter can be changed
yield a very poorly designed filter.

alyorithin returns an error message 1if

parameters that yield
only slightly and will
The Parks-McClellan

the REMEZ routine fails

to find a proper set of cosine functions to approximate the
filter. liowever, the algorithm does not give any error
messages for poorly designed filters, that is, filters with
a4 large amount of ripple and with a frequency response that
ditffers qreatly from the desired amount. All filter designs
from the progroam should be veriried with a DFI' prior to use.
A systematic approach was found to allow the filter
design parameters that most closely approach the desired
tiltor to be found within several filter design iterations.
This method is presented in the form of a user's manual for
program LPFIR. Basically, the user boegins with o design far
tess stringent than what s desired. Parametoers are sepa-
ratoly adjusted until further adjustment does not yield a
Loettoer (ilter design. 'he user's manual and the source code
tor the mainline and subroutines of program LPPIR are given
in Appendix . The user's manual also explains how to scet
)y a macro i le that contains programs LPEFIR, PP, MAG, and
FLLRLOT, Thirs macro allows the uscer to design and display

tilters quickly onoan interactive onvironment .

——
-

Ry

V Conclusion

This chapter will summarize the results of this effort
and give three recommendations of how the signal processing

systom could be improved.

Suninary

The purpose of this effort was to increase the capa-
Lbility of the AFIYT signal processing laboratory and to make
it more user-oriented. Three areas--digitizing operations,
signal pruceﬁsjnq operations, and digital filter design werce
considered for expansion. Software was gencrated that made
use of the Eclipse A/D/A device's two main features, the
capablility to work with large data files and have conversion
operation options interactively set by the user. A user's
manual for this device, that is intended to replace the Data
General documentation, was written to aid in writing future
software, 'The array processor was utilized in several signal
processing programs that are excecuted by typing a single line
command. A convolution program was generated that allows
Jarge data files to be convolved with filters containing up
Lo H12 points. Programs were also generated to allow Fourier
Transtorm related operations to be performed on data files
cont ailning up to 2048 points. An existing filter design
program, capable of building a wide varicty of lincar phasc
IR digital tilters, was modificd to allow casy operation and
execut ton ol the Eelipse. A user's manual for this program
was written to give guidance in adjusting the filter design

43

e v WA T = mw T WY W W W T 3T TR T W

T Ty

S st e 2 o —v:—rvv—v-v —
4) -

p—

parameters to obtain the desired digital filter. This soft-
ware package will allow personnel using the laboratory to

perform additional signal processing operations.

Roecommendal lons

Applying the Eclipse A/D/A device to perform video
digitizing operations should be investigatud. This would
allow Uhe laboratory to have a back-up digitizing capability
in buth, the speech and video areas.

The array processor will not be utilized by the ma-
jority ot users in the laboratory until the degree of diffi-
culty in operating this device is reduced. A way this could
be done 15 by creating corresponding stand-alone subroutines
tor cach ol the array processor matrix operations. This
would free the user from dealing with array processor mem-
ory, setting up matrix operation control blocks, and arranging
data in peculiar forwats required by some operations. All of
Chee ol ria operations deal with small amounts of data, since
AYray processor memory is only 8KW. Data could be inter-
changed belween the mainline and subroutine as arguments
atch grray processor memory transfers could be handled with
Lhe Vork and VILDR subroutines. 1t would require more over-
head ta perform cach matrix operation, however, the speed of
the array processor and the increase in its usage would make
this ctrort worthwhile.

Thoe Crlter design program should be reovised to allow
Pilters containing up to %12 points to be built, since the
comvolut ion program can handle filters of this length. The

A1

v

Y

vw—.v‘v T Y anv.

Ty

currcent filter design program has a filter length limit of
250 points. The following variables within this program can

beo ad justed, however, as shown below to allow filters of any

Sl to bhe bullt.,
Nane Dimension
TEXT MAX/2+2
AD MAX/2+2
ALPHA MAX/2+72
X MAX/2+2
Y MAX/2+2
H MAX/2+2
W 16(MAX/2+2)
DES 16 (MAX/2+2)
GRID 16(MAX/2+42)
vhoere MAX = the waxium filter length

cevising the current program to build 512-point filters would

roeguire doubling the space of the variables given above fronm

11,50 Lo 29,.0KW. This would cause the program's execcutable

save Vile to eoxceed the 32RW maximum,

AN approach to solving this problem would be to use

coebendoed nenory Lo hold two of the large data arrays, DES
ated i b, Bty placing these arrays in extendoed memory, the
recinline con be reduced to oan acceptable gice. The array
Cloment s ocan be accessed by the malnline and subroutines
LY i h oo VSTPASH and VIFETCH ¢alls. Since these are real
Aty thie sollowing lines of code could be placed in the
radinline ta o sel up the extendoed memory wvindow,

EAL WIND(10249)

CALL MAPDE(L7 Wllih, 1,2, 11R)

T dato array subscripts could be changed as shown

ol the et paage to place bEs at the top of extended memory,

A5

TR TR L r————

g

L pmTR— = Lt S-S e R s N - —_—— T ———

followed by GRID.

Original Revised
Array Subscript Subscript
DES J J
GRID K K+4128

An cexample of how to revise the source code to allow
data to be transferred between the mainline and extended mem-
ory is shown bclow,

Original Code Revised Code

GRID(K) = DELEF+NFCNS HOLD = DFELF+NFCNS
PLACE = K+4124
CALL VSTASH(HOLD,PLACE)

H(L) = GRID(K)+DELF PLACE = K+4128
CALL VFETCH(HOLD,PLACE)
H(I) = HOLD+DELF

whore HOLD 1s a real variable
PLACE is an integer variable

The AP signal processing laboratory has grown tre-
mendously in the past few years and plans have been made for
additional expansion. This 1s an indication of tho notable
rescarch that the laboratory is used to support. Although
the rescarch is directed toward military application, many
civilian areas would also benefit. It ts hoped that this
¢ctfort will aid future rescarch by allowing personnel to make

bettor use of the laboratory's capability.

40

»

v— T

TTTYY
-

s s & o

————————

- *f77“‘1

l.

P,

1.

Bibliography

bata General Corporation. Analog Data Subsystem for NOVA
ana ECLIPSE Line Computcrs Models 4330-4333. Programmer's
Rerference Series, 014-0000651, November 1980,

Data General Corporation. Analog Data Subsystem Models
0330~-4331. Technical Reference Series, 014-000652,
Hovoenber 1980,

vate General Corporation. Sensory Access Manager User's
Manual., 093-00025-02, August 1980.

Deta General Corporation. Eclipse-Line Real Time Disk
upcrating System Reference Manual. 093-000129-01,
September 1975,

pbaia General Corporation., Array Processor Software User's
Mortal. 093-0001bY-00, October 14978.

Oppenhiceim, Alan V. and Ronald W. Schafer. Digital Signal
Processing. bBnglewood Cliffs: Prentice-Hall Inc., 1975,

ot lellan, James H,, Thomas W. Parks, and Lawrence R,
itabiner., "A Computer Program for Designing Optimum FIR
Linear Phase pigital Filters," IEEL Transactions on Audio
aiad Blectroacoustics, 21 (0)3;506-525 (December 1973).

Coappellini, V., A, G. Constantinides, and P. Fmiliani.
Digital Filters and Their Applications. New York: Aca-
dele Press Inc., 1978,

wablin v, Lawrence R. and pernard Gold. Theory and Applica-

1o ul Digital Signal Processing. BEngleowvood Cliffs: Pren-

rm—— —————

tioe=1in 1l Ine., 1975,

Stanael Technology, Inc. Digital Filtering. Intoractive
fLaboratory System (I1LS) softwvare user's manual for filtoring
Lacit Loy,

it Prograns jor Digital Signal Processing. bBdited by
fhe Dlgital signal Processing Committoo, 1TREE Acoustics,
Speech, and Sighnal Procossing Socicly. New Yorks TEEL
NS TIPS B IV AN I

Y > Y

Appendix A

—

The Eclipse A/D/A Device
User's Manual

.'Hr

4

R A0 S0 A Sun b g

LR PN S AL AR A BN e o L) ot amm
-

-

a8

Ty

T

Air Force Institute of Technology
bepartment of Electrical Engineering

bigital Signal Processing Laboratory

ticlipse A/D/A Device

User's Manual

Original Release

bec 82

44

B

r—v—»

LRI B 2 _anny L ade

Ty Y

Prefacoe

The kelipse cumputer in the AFIT signal processing
Laboratory is cequipped with a model 4531 analog data sub-
systen and the Sensory Access Manager, SAM, software package.
The SAIY software package aids in building I/0 programs for
Balta General computors equipped with appropriate analog-to-
dlgital-to-analog dovices, such as the model 4331 subsystom.

This manual explains how to write application programs
that operate the Belipse A/D/A device and concentrates on
et hods of wmost interest for signal processing applications.
To tocus 1n this arca, the scope of this manual will be
Limited to workilng withh SAM in lFortran V and DO asscembly
Language and operating the model 4331 subsystem in data
chiannel modes The model 4331 subsystem and SAM, however,
ares versatilo o and have other features that will only be
cent Pornd. T SAR Usoer's Manual and the Models A1330-4333
Procaasser s and Cllechinical References, all written by Data
Gencral, should boe consulted for detailed descriptions of
Chicese aadit bonal featuroes.

V11 sanle programs included in this manual have been
Coritied to o aperate on the BEclipse computor in the cexact

Pt ot s,

T T T g

&

——T T

Pretace . .

Contents

List of Filigures o o o o o o &

List of Tuables. o 0 0 v o o .

Chapter 1 -

Introduction to SAM

Call CategoriesS. o o o o o
Programming 'rade-offs . .
Operating Overview

Chapter 2

The Model 4331 Subsystem.

Genoral Inforimation, o . .

Variable

Chapter 3 -

Definitions o . .

Configuration Files

Program SAMGEN o o o o . .
Sample SAMCEN Dialog o . .

Chaptoer 4 -

Setup.

IFort ran V Operation

nitialization « + « o« « &
CONVOrSion o o« o o o o o o

I

Chaptoer H -

sSetup,

Assembly Language

. - . -

Ihitiallzatilon + « o « « &
COINCESTON o 4 6 6 o o o

Chaptoer 6 - Running Application

Cotpllings o o o v 4 e e e

Loadirg.

Appoendix A -

Sample Assembly Language

A/D/N Program. .

50
52
53
54
54
55
59
60

60
63

71

71
71

78
78
79
79
806
86
87
88
92
92

93

)6

|
|
L

Figure

List of Fiqures

SAM Imterfaces. + ¢ ¢ 0 o . .
Program SWAP Setup.
Conversion Value Stored for
(a) Must Positive and

(1) Most Negative Value . . .
Sample bialog SR File, . . .

Sample Fortran A/D/A Program.

Dol /Wl and DREC[/W] Options

Page
56

58

61
17

84

S o

4
A
1
1

A~ . - e = o - - -~

List of

Tables

Conversion Values Stored and
Corresponding Voltages. « « +« o« « o o

Variable IDATA1l/CDATI1
for A/D Operation . .

Variable IDATA1l/CDATI1
for D/A Operation . .

Bit Definitions

L] . . - . . L .

Bit Definitions

Variable IDATA1l/CDAT]1 Clock Source

Bit Settings. o« « ¢« ¢ ¢ + o . o .

Variable IDATA1/CDAT1 A/D Channel
Use Bit Settings. « « . « « « . .

Variable IDATA1/CDAT]1 D/A Channel
Use Blt Settings. . « « « + . o .

Variable IDATALl/CDAT1 Octal Value
Bit Settings for an A/D Operation

Variable IDATA1/CDAT1 Octal Value
Bit Settings for a D/A Operation.

SAM Fortran Error Codes
(SAM User's Manual, p. 6-9) . . .

SAM Assembly Language Error Codes
(SAM User's Manual, p. 9-4) . . .

65

65

66

68

68

69

69

82

90

T

—————

S SIS sl cae et dEEES o g

>

Chapter 1
Introduction to SAM

Call Categories

The Sensory Access Manager, SAM, is a software package
that simplifies the building of I/O programs which utilize
A/D/A devices. SAM allows these devices to be operated flex-
ibly through the use of Fortran IV, Fortran V, or assembly
language calls. This manual will only discuss usage of For-
tran V and assembly language calls, since Fortran IV pro-
gramming is usually not used on the Eclipse computer. An
application program can perform A/D conversions or D/A con-
versions or both. A single conversion operation, however,
can only perform A/D or D/A conversions.

1'he conversion calls can post either a single-opera-
tiun or multiple-operation request. A single-operation re-
quest specifies a cyclist list of channels from which data
will be coullected or sent, a total conversion count for all
channels, and a single clock source which is used to trigger
conversions. Multiple-operation requests set up a series of
single-operation requests. With both types of requests, pro-
gram control can cither be suspended until the request defined

has been completed or returned immediately, in which case the

progr.aun must check for completion later. Since the main ad-
vantage of multiple-operation requests is the ability to oper-
ale more than one device, their usage will not bo discussed

in this manual.

54

—— Y

The Eclipse A/D/A device can be operated in one of two
modes according to how it will move conversion data--pro-
grammed I/0 or data channel I/0. With programmed I1/0, data
is moved through an accumulator where it is readily available
to the program for manipulation. However, because one or more
instructions must be executed for each word transferred, pro-
grammed I/0 is slow and generally used only when small quanti-
ties of information are transferred. Data channel I/0 reduces
the amount of program overhead by transferring blocks of data
automatically via the data channel. Once the data channel
transfer for a block of data has been set up and initiated
by the program, no further action by the program is required
to complcete the transfer. This is the only method of data

transfer that will be discussed in this manual.

Programming ‘I'rade-offs

The manner in which the Fortran and assembly language
calls intertface with an application program to control a
device is shiown in Fig 1-1. Fortran interfaces work through
the assembly level interface. The assembly level interface
works through the operating system which drives the devices.,
since the assembly language calls require less overhead, they
are faster and allow more space in the main program for data
storayce,. If the user is familiar with assenmbly language pro-
gramming, operating the device at this level is not much more
difficult than operating the device with Fortran programming.

This 1s because the assembly language macros provided in the

(4]
[54]

v, vt e

v vave

\

e

—————— g ——ey ¥ "

Application Program

Fortran Interface

Assembly Level
Interface

. A/D/A
- e .
Operating System Device

Fig 1-1 SAM Interfaces

SAM librarices allow the device to be operated in a manner
similar to that of Fortran programming. With Data General
Fortran V programming, it 1is possible to write the main pro-
gruam for data manipulation in Fortran V and then call upon

a subroutine, overlay, or swap written in assembly language
to operate the device. ‘This method would be useful, for
instance, when repeated A/D conversion calls would be neces-
sary to collect the desired number of data samples. Writing
this section of code in assembly language would allow data to
be moved from the data buffer more quickly, thus losing fewer

data samples between repeated A/D conversion calls. If the

H0

"

BASES S po2m u 2 e A 2 g
-

a2

——r
-

user iIs not familiar with assembly language programming, how-
ever, operating the device at the Fortran level will be much
easier. The Fortran calls can perform any single conversion
operation request that can be done with assembly language
calls. If repeated conversion calls are not necessary to
handle the desired amount of data, then nothing significant
is guined by using assembly language calls. This is because
onee conversion operations begin triggering, Fortran calls
atel ausembly language calls are handled by the operating sys-
teon it the same manner. If the main program cannot provide
vroougt. pace tour the Fortran overhead and data arrays, then
' 1 swap or overlay can be used to handle the conversion

Lot ion,. The largest number of data samples any single con-
viornooas uperation can handle is 16,384. The Fortran overhead
and tata arrays to handle such a single conversion operation’
will 11t within the maximum length of 32KW that can be allot-
ted for an executable overlay or swap file. Basically, pro-
gram swaps operate by overwriting main memory with a new
program, while overlays overwrite a section of main memory
with new code. Program swaps are easier to learn to use and
sobL up than overlays. Thercfore, if a secondary file will be
used to handle the conversion operation and the file is near
3ohW Jong or if the additional processing delay caused by
prograan swaps can be tolerated, then a program swap would be
the better method., An example of a program swap scetup is

given in iy l1-2,

e

Y

?rrfvi v

IO

OO0

The main program could erite
paraaseters, such as output or
input filename, number of
tonversions, etc, to a file,
A swap is called if the
conversion operation is
required,

L]

CALL SWAP("CONV.SV“,IER) ———=C This program could read

IF (1ER.NE+1) CALL ERROK <=

[]

L]

L]
The main progras continues
operation with all variables
returned to their values

L the paraseters froa file
C and perfarmsed the specified
C conversion operatien.

CALL EXIT

before the swap,

———END

Fig 1-2 Progr

am SWAP setup

Operating Overview

The basic additions that must be included in an appli-
cation program to perform A/D/A operations are quite simple.
First, the device op-codes and conversion data buffers, spec-
ificd by the configuration file to be used, are declared at
the beginning of the program. Second, the operating system
is initiaulized with a SAM library subroutine call. Finally,

after setting the arguments to appropriate values, another

;! SAM library subroutine is called to perform the operation.

L

L The SAMGELN program located in the SAM directory of DPA4F
{ is uscd to create the configuration file. The configuration
5' file defines parameters used by the operating system to oper-

ate the 1/0 device., It is loaded with the main program in
the FELDR command line. All conversion operations in the ap-
¥

,c O. plication program must adhere to the framework set up by the

configuration file loaded with the program.

This manual is divided into chapters which discuss each

of the steps necessary to run an A/D/A application program.

Chapter 2 describes the basic capabilities of the Liclipse

A/b/N device and how to set the argument values for the For-

q . .
b tran and assenbly language conversion operation calls, Chap-
4
4 . . ‘ . .
b ter 3 desceribes how to bulld configuration files. The general
,
, program sotupe and the different SAM subroutine calls are de-
K P ter 6
N soeribed in Chapter 4 for Portran Vo programming and Chapter 5
)
' tor asscmbly language prodgramming, Finally, Chapter 6 doe-
)
Y Ser Lhbes how to complle and load application programs.
)
|
N
b
- 59
!
»
,
:
e
S
|
|
|

r—

Ty

NPTy
-

..-.Aw ———

ppTp——

Chapter 2
The Model 4331 Subsystem

General Information

The model 4331 analog data subsystem is a stand-alone
device which contains both the A/D and D/A converters. It
consists of a 15-inch printed circuit board that fits in a
slot on the Eclipse computer chassis., The Eclipse computer
contains many such slots for expansion. User interface to
the circuit board is provided through two connector paddle-
boards--one called analog and one called digital. The pin
connections for these two paddleboards and other specifica-
tions are given in the Mpdels 4330-4333 Technical Reference.

he subsystem contains independent software interfaces
for A/D and D/A operations. Each interface has its own device
code and must be accessed separately in the application pro-
gram. The A/D section is organized around a single 12-bit
A/D converter and two multiplexors. The multiplexors allow
input of up to 16 differential signals. The D/A section is
organized around two 12-bit D/A converters. The A/D and D/A
converters can be set with jumpers to operate at a voltage
range of 0O to 5Sv, 0 to 10v, #5v, or #10v with conversion
values reoturned in either straight binary or two's complement
format. Both converters have been set to operate at the +5v
range in two's complement format.

A conversion value is stored in one machine word with

bit 0 usced as a sign bit and bits 1-11 used to store the

60

ﬁ"rﬁr‘ o ! i -

-~

-

L am g Ao ma s ASERe g ddCae Ciihtare e AR 40 A8 J00 2D SHL e S MY

W

p—

value. The remaining bits, 12-15, are always returned zero

from an A/D operation and are ignored on a D/A operation.
The bit settings are shown in Fig 2-1 for the most positive
conversion value,

077760K, and the most negative conversion

value, 100000K. *

5 6 7 8 91011 12 13 14 15

0 0 O =077760K

b.j1J]0 0 0j0 0 0JO0O O 0O0}jO0 O OO0 0 O =100000K

IFiyg 2-1 Conversion value stored for (a) most positive

and (b) most negative value

The 12 bits provide 4,096 different conversion values, with

2,048 allocated for negative values, 2,047 allocated for posi-

tive values, and one allocated for the value zero. Since the

device is set for a full range of 10 volts, each increment

represents approximately ,0024 volts. Shown in Table 2.1 is

a list of stored values and corresponding voltages for sev-

¢ral conversion numbers. Since integer numbers on the Eclipse

computer also occupy once machine word using the same two's
complement format, a one-to-one correspondence can be made

between a sampled value and its integer value., Due to the

* The symbol K indicates octal format. This notation is

adapted from that used in Data Gencral Fortran V to
indicate that a number is in buse cight representation.

61

least four significant bits of each word not being used, con-
version values occur in corresponding integer-value multiples
‘? , of sixteen. Making use of the integer-value correspondence,
a conversion value can be changed to its actual voltage value
with a single line of Fortran code such as the following,
E! REALNUM=FLOAT(INTNUM)/32768.*5.
: where INTNUM is the one-word conversion value and REALNUM
: is the corresponding two-word, real number representation of
Il
t‘ the actual sampled value.
E To request a conversion operation, variables are passed
! via Fortran or assembly language calls. The following section
E‘ explains how to set the variable values for each type of call.
L The IDATAXx words indicate Fortran variables and the CDATx
4 words indicate assembly language variables.
i 9 :
R Conversion | Octal Value | Integer Value | Actual Sampled
[Number Stored Stored Value
1 -2048 100000 -32768 -5.0000v
2047 100020 -32752 -4.9976v
§ -2046 100040 -32736 -4,9951v
! ~1536 120000 ~24576 -3.7500v
. -512 160000 -8192 -1.2500v
F o -2 177740 -32 -0.0049v
f -1 177760 -16 -0.0024v
0 000000 0 0.0000v
1 000020 16 0.0024v
» 2 000040 32 0.0049v
512 020000 8192 1.2500v
f 1536 060000 24576 3.7500v
! 2046 077740 32736 4,9951v
(2047 077760 32752 4,9976v
Table 2.1 Conversion values stored and
corresponding voltages
{ 62

L-h--u---------I-lI.-I--.-....-.IIII.IIIII-llll..l..l.ll-..-.-

Variable Definitions

The variables passed for both A/D and D/A requests in-
dicate the channel use numbers, conversion count, clock source,
and the storage location for conversion values.

The channel use numbers are specified differently for
A/D or D/A operations. For A/D operations, the initial and
final channel numbers are specified. The A/D channels are
nunbered 0-15. For example, if 4 was given as the start
channel and 7 as the final channel, conversions would be
taken from channels 4, 5, 6, 7, 4, 5, 6, etc. The converter
will wrap around from channel 15 to channel 0. For example,
if 13 and 2 were given as the start and final channels, con-
versions would be taken from channels 13, 14, 15, 0, 1, 2,
ete., lo gpecify a fixed channel, the same value 1s entered
for both the initial and final channel. For D/A operations,
the inittial channel and fixed/alternate mode are specified.
The D/A channels are numbered O and 1.

The device offers four clock sources—--pulse, DCH, in-
ternal, and external. The A/D converter can usce all four
clocks, however, the D/A converter can use only the pulse,
internal, and external clocks. The pulse clock triggers con-
versions from software gencerated pulses and the DCH clock
triggers conversions at the maximum rate the device allows.
These two clocks are not as useful for siqnal processing ap-
plications as arce the internal and extoernal clocks. It is
more ditfricult Lo control the pulse clock rate with precision
than 1L is for the external clock. The DCH cluck rate is too

63

?ﬂ’y‘ﬁv‘ rar)

ey
-

e o

N L e SR R SR

fast for most signal processing applications. Using a TTL
pulsc generator as an external clock, with a frequenc- rounter
to measurce the clock period, the external clock proviues an
accurate, versatile clock source. The A/D and D/A converters
have scparate connections for external clocks. The internal
clock can be set for a clock period range of 45-300 microsec.
llowever, the adjusting mechanism for this clock is a screw-
driver, variable resistor on the main printed circuit board.
Since this board must be removed from the Eclipse computer
for clock adjustment, the external clock must be used if the
current. internal clock setting is not what is desired. Cur-
rently, the internal clock is set for a clock period of 46
microsec.

‘Ihe variable IDATAl/CDAT]1 occupies one machine word
and spoecifies the clock source and the channel use numbers.
1n lortran, IDATAl can be an integer or an integer variable.
In assembly language, CDAT1 is the variable value. The bit
detfinitions of IDATAL/CDAT1I are shown in Table 2.2 for an
A/ opoeration and in Table 2.3 for a D/A operation. The bit
scettings for the clock source with either type of operation
are shown in lable 2.4, ‘Two points should be remembered
whoen setting these bits, First, it is illegal to set the
Lits for DO clock on a D/A operation. Scecond, use of the
pulsce clock requires additional software and should only be
at Lempted after consulting the SAM User's Manual (p. 4-28)

for setup. Use of the pulse clock does not affect the type

0G4

........

_ Bit Function

t Numbers

v 0 {ignored)

1-2 clock source

L 3 fixed/alternate mode

(set to one)

LR PR e

5-1 .
4 (ignored)

Tl

15 start channel

Table 2.2 Variable IDATA1/CDAT]1 bit definitions
for A/D operation

Dadhtiad

Y

=
.

Bit Function
Numbers

0 (ignored)

1-2 clock source
& 3-5 (set to zero)
; 6-9 final channel
t 10-11 (set to zero)
E 12-15 start channel
-
[

Talble 2.3 Variable IDATAl1/CDAT]1 bit definitions
for D/A operation

A
3
y
J Bit 1 Bit 2 Clock Selected
- 0 0 pulse
' 0 1 DCH
1 0 internal
1 1 external

Table 2.4 Variable IDATA1/CDAT1 clock source
bit settings

Pase A e SR St SN SN S Bl

66

o ~————y—r
-

L e e oo uaame 4

of SAMCEN configuration file used. The user, however, must
generate an assembly language module to trigger conversions.
This module is called in the application program for each
conversion triggered. The bit settings for channel use num-
bers are shown in Table 2.5 for an A/D operation and in
Table 2.6 for a D/A operation.

A convenient method for setting the bit values with
Fortran operation is to use the .OR. operator. The octal
values that correspond to setting the required bits for
ditferent options are shown in Table 2.7 for an A/D opera-
tion and in Table 2.8 for a D/A operation. In addition to
setting the bits for clock operation, the clock values shown
also set the miscellaneous bits. The following line of code
could be used to set IDATAL to collect sampled data on chan-
nel 10U using external clock,

IDATAl1=(60000K.0OR.1000K).OR.10K
e following line of code could be used to set IDATAL to
outpul conversion data on channel 1 using internal clock,
TDATA1=44000K.0R. 1K
For b/A operation, 1f alternate mode is not specified, fixed

mode 1s assumed.

07

,,”.-
C

™y T Y

Start Bit 12 Bit 13 Bit 14 Bit 15 Channel
Final | Bit 6 | Bit 7 | Bit 8 | Bit 9 | Selected
0 0 0 0 0
0 0 0 1 1
0 0 1 0] 2
0] 0] 1 1 3
0 1 0] 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0] 0 12
o 1 1 0 1 13
0 1 1 1 0 14
1 1 1 1 15
Table 2.5 Variable IDATALl/CDAT1 A/D
channel use bit settings
Bit 15 Start Bit 3 Channel
Channel Mode
0 0 0 fixed
1 1 1 alternate

Table 2.6 Variable IDATAL/CDATY! D/A
channel use bit settings

68

.................................
.........

- Octal Function
. Value
! 00000K pulse clock
' 20000K DCH clock
40000K internal clock
60000K external clock
!I 0-1700K start channel 0-15
; 0-17K final channel 0-15
: Table 2.7 Variable IDATALl/CDAT1 octal value
F‘ bit settings for an A/D operation

e o

Octal Function
F Value
Ef 04000K pulse clock
i 44000K internal clock
>
E. 64000K external clock
3 10000K alternate channels
0-1K start channel 0-1
;“ Tuble 2.8 Variable IDATAL/CDAT1 octal value
.. bit scttings for a D/A operation
b
]

oY

e B O e T e A o
T PR Gl R A b e i e AR] RN . . Lo X 1

The variable IDATA2/CDAT2 also occupies one machine
word and specifies the total conversion count. In Fortran,
IDATA2 can be an integer or an integer variable. In assembly

language, CDAT2 is the label to the word that contains the

variable value.

X

o

p! The variable IDATA3/CDAT3 specifies the data array where
E conversion values are held. In Fortran, IDATA3 is an integer
e

1 array and it must be placed in a labeled common block when

;‘ data channel 1/0 is used. 1In assembly language, CDAT3 is a
label to the storage area that will hold conversion values.

! The label name must be the same as that given in the SAMGEN

; created configuration file..

————

70

Ty v TST
r

T

—- ~
~N

T Y?—'

T YWY VT YT
-

Rl de Toa B o hin T W e e e EERC Al RN S D S T T : " . ~ N . 4

Chapter 3
Configuration Files

Prograin SAMGEN

The SAMGEN program is used to build a relocatable
binary configuration file which is loaded with the A/D/A
application program. The configuration file defines to the
operating system which hardware and operating modes will be
usaed.

SAMGEN is a Fortran IV program in the form of a save
file. 'Phis program will run on an Eclipse or Nova computer
in cither mapped or unmapped environments. It is located
in the SAM directory on DP4F. SAMGEN is an interactive
program that is cexecuted by name. It takes only a few min-
utes to complete and is self-explanatory. In addition to
producing a configuration .AS file for the asscmbler, SAMGEN
also produces a configuration .SR file which summarizes
answers to SAMUEN questions. For most data channel appli-
cation:s, the only parameters nceeded to run SAMGEN are the
device-ids and the name and size of the conversion data buffers.

It 1s recommended that the configuration files be left
in the SAM directory oand linked to the useor's directory for
Usiv. Alsa, the nawme given Lo the configuration file should
boo ot the ftorm, SAMCONFIGxx, where xx is a number unique from

oLther contiguration tiles in the directory.

Satple SAMGEN Dlalog

The sample dialog section that follows was executed on

71

.AEiff.

P
a

————
-

F-ff..v

the Eclipse computer. The SAMGEN guestions asked would be
similar for other configuration files using data channel mode.
The user inputs are noted with the heading "User:" and
the system responses are noted with the heading "System:."
The user inputs for this dialeg are given exactly as stated
and the symbol "(CR)" notes that the user should depress the
carriage return. At any time during the dialog, SAMGEN can
be aborted by typing a CTRL-A followed by a carriage return.
The following commands get into the SAM directory and
start up SAMGEN,
Systems: K
Usoers DIR DP4F:SAM(CR)
Systems R
User: SAMGEN(CR)
SAMOEN will then display an introductory message and ask
the tollowing question concerning the configuration file name,

system:s Enter a (1-10) character primary file name for
this configuration file?

Usor: SAMCONFIGS(CR)

Phe configuration file name can be any valid RDOS file
mate, 10O alphanumeric characters or less, without an extension.
SAMGED will append JAS to the file name for the file to be
assewd led and W5k to the file name for the file that summa-
Fioes SAHGEND dialog. The name should be unique to the cur-
rent directory or else SAMGEN will abort. The dialog contin-

Ut as tollows,

System: What type 0S is your Target system?

Choices are:0S Type: Response
Mapped RDOS MRD
Unmapped RDOS URD
NOVA DOS URD
micro NOVA DOS URD
Unmapped RTOS URT
Mapped RTOS MRT
: Type of 0S?
! Users: MRD(CR)
é' System: How many DG/DAC chassis (0-4)7
}.
User: O(CR)
.
: System: lnter the entry name of your SAM fatal error
3 routine (up to 5 characters) or type (CR) for
;' default routine?
p
: User: (CR)
! Systom: What type of computer is your target system?

MN -~ MicroNOVA
NI - Nova or Eclipse
Inter (MN,NE)?

lisers NE(CR)

systems How many Nova/BEclipse Analog Subsystems (#
4330-4333) do you have?

Useor: 1(CR)

Systom: What is the device code of A/D converter #17?
(H, 15, 21, 23, 31, 35, 41, 45, 51, 55, 61,
uh, 71)

Usicrs J1(UR)

The A/D convorter is wired for device code 21 octal,

which 15 a bhata General standard for the first stand-alone

device, The device code for the corresponding D/A convertor

73

P
. - _

A
9

is always the A/D code plus two, or 23 in this case. The

dialog continues as follows,

System: What mode will you operate the A/D converter
in?
AP - specifies Programmed I/0
AD - specifies Data Channel Transfers
Enter (AP,AD):
User: AD(CR)

System: Do you have a special interrupt service routine

for this A/D converter?(Y,N):

User: N(CR)

Since the Eclipse is a mapped RDOS system, SAMGEN will

now ask questions concerning the name and size of the conver-

sion data buffers. The name given will be the name used in

a cummon block of each application program to align the con-

version data array with the data channel map. The size given

will be the maximum size that the conversion data array can

be dimensioned to in the common block and, hence, specifies

the maximum nuwwber of conversions a single conversion opera-

tion can handle, The data array will be an integer array

that receives or sends the conversion values., SAMGEN asks

for the A/D data buffer parameters first.,

Systoems:

User:

Systems

Liser s

betermine the maximum amount of data you expect

to transfer in a single request. Then specify

the number of 1024 word blocks required to include
all of that data.

Enter number of blocks:{(1-106)

6CR)

What 1s the global symbol for your data area?
(inter a % character symbol)

I BUFEF(CLY)

[et A S A A A A A i AP A SN S R R A e L

Now SAMGEN asks for the D/A data buffer parameters,

System: What mode will you operate the D/A converter
in?

BP - specifies Programmed I/O
BD - specifies Data Channel Transfers

T .‘.-“'I 7o

Enter (BP,BD)?
User: BD(CR)

System: Do you have a special interrupt service routine
for this D/A converter?(Y,N):?

User: N(CR)
System: Enter the number of blocks:(1-16):
Uscr: 6(CR)

System: What 1is the global symbol for your data area
(Enter a 5 character symbol):

User: IBUFO(CR)

System:s Your configuration file is called SAMCONFIGS5.SR
Good luck with your application! End of SAMGEN
sTop
R

A printout of the configuration source file for the pre-
vious dialoy can be obtained by typing the following command

line,

Systom: R

User: PRINT SAMCONFIG5.SR(CR)

The .sR file for the sample dialod is shown in Fig 3-1.

r
r;_
(‘
)
!
‘

~—. ey —yT - - T T~

=i

LaCE i gl

BAS R dame D

Dy 2eutaul

N
~2
Q
-

The configuration .AS file can be assembled in the SAM
directory. The directions given in Chapter 6 for assembling
application programs can be applied to assembling the config-
uration file. Assembling the configuration file produces a
relocatable binary file which must be loaded with the applica-
tion program in the RLDR command line. A 1link, such as the
following for the sample file, should be set up in the dir-
cctory that the user will be working in. Application pro-
grams can then be loaded from that directory,

SAMCONFIG5.RB SAM: SAMCONFIGS5.RB

76

Y Y

e P A d

................

3 SANGEN Rev, 2.10 11/27/82 at 19: Filenawe:s SAMCONFICS.SK

sAnsmers you gave in the SAMGEN dialog are shown in coasent lines.
jYour inputs are immediately preceded by a colon (i) and appear
;in the samse order as you gave thea to SANGEN,

Target operating systes type :MRD

Numher of DG/DAC 4300 chassis confiqured: 0
Fatal errar handler nase : -1

Fatal error handler sailtbox: -1

s P We Se

DCB.X SANCO 100 -1 -1

Nuaber of Analog Subsystes 3}

-

A/D Con., 1 Device Code :21 MNode :AD Fortran ID = [DS21

-o

Externa) interrupt handler specified :(NONE)

Number of pages in Data Channel area : 6

Specifying a starting address for Data Channel area :Y
Data Channel starting address :IBUFF

- wo P W

DCB.M DBS2Y D.IDF+D.INF+D.DCH 21
DCB.1 DTS21 SAINI 6. [IBUFF
pCB?C -1 -1 D§s21

DCT.R DTS21 000377 INTSA DSS21

DCB.N S21 D.FIF 21 00 AD
DCB.S DBS21 0 AD.IS AD.IN SAIKT
DCB.A

-

D/A Con, %1 Device Code :23 Mode :BD Fortran ID =]IDS23

External interrupt handler specified :(NONE)

Number of pages in Data Channel area : 46

Specifying a starting address for Data Channel area Y
Data Channel starting address :IBUFO

- W0 Br W

DCB.N DBS23 D.IDF+D.INF+D.DCH 23
DCB.I DTS23 SAINI 6, IBUFO
DCB7C -1 -1 Dss23

DCT.A DTS23 000377 INTSA DSS23

DCB.N 523 D.FIF 23 00 BD
DCB.S DBS23 0 BD.IS BD.IN SAIRT
DCB.A

DCB.E

{End of SANCEN confiquration file,

I'ig 3-1 Sample dialog SR file
77

rd .r "rl

ey

T T Y %
[N

[C 0

S = =, TarTw T W wSowp WS U W W

T T T T T T T TR T NTE TN T W L TR s T T e e TR W TR R e e s Y N e T e

EI B T R N N T

Chapter 4
Fortran V Operation

This chapter describes the source code necessary to
operate the Eclipse A/D/A device in Fortran V application
programs. It is divided into three sections according to the
purpose of the source code--setup, initialization, and con-
version. The SAM error codes for the Fortran error return
variables are given in Table 4.1. A sample program that
could be used with the configuration file built in Chapter 3

is given in Fig 4-1.

Setup
The source code for a typical setup in data channel

mode 1s shown below,

EXTERNAL IDS21

EXTERNAL IDS23

COMMON / IBUFF / IDATA3(16384)

COMMON / IBUFO / IDATO(1024)

DIMENSION IORBA(16)
The application program must declare both device-ids, even
if the application program will only use one device. Accord-
ingly, the common block for both the A/D and D/A data buffers
must be declored, even if only one type of conversion will
be performed. The data arrays in the common blocks can be
dimensioned less than the number given to SAMGEN when creating
the configuration file. They must not, however, be dimensioned

larger than the number given to SAMGEN. The space for thoe

data bufiers can be divided among more than one data array
as long as the cumulative space does not exceed the number
74

\

[

S~ S~ T Y YW YT

given to SAMGEN. A single conversion operation, however, can
only operate on one data array. The IORBA data array can be
any integer data array dimensioned to at least 16. It is
used by SAM as a scratchpad for processing the conversion
operation that references it. SAM also uses certain elements
of this array to convey information concerning the status of
the conversion operation. This will be discussed in the con-

version operation section.

Tnitialization

Prior to issuing any conversion call, the application
program must issue the DSTRT call shown below,
CALL DSTRT(IER)
The variable IER is the standard Fortran error return vari-
able. This call initializes the operating system for conver-
sion operations. It can be located anywhere in the applica-
tion program before the first conversion call, but must be

given only once in the same application program.

conversilon

The DOIT{/W) call is used to request a conversion oper-
ation. [t has the basic form shown below,

CALL DOIT|/W] (IORBA,device-id,8,IDATALl, IDATA2, IDATA3,IER)
The call has two forms--DOIT or DOITW. The DOLTW call is
used to halt program control until the operation requested is
completed. The DOIT call is used to instigate the operation
and returns program control immediately. With this call, the

DRECT/WT call must be usced later in the program to determine

79

§

b

e J ML i SID sins gl g
.

r.‘w-ﬂ porp vv-v.vvz'**-

PP

y—

. e . oa

if the conversion operation has completed. The device-id is
IDS21 for an A/D operation and IDS23 for a D/A operation.
'he variables IDATAl, IDATA2, and IDATA3 must be specified
as given in Chapter 2. The variable IER is the standard
Fortran error return variable. The value of IORBA(14) should
always be checked after completion of a DOIT[/W] call in data
channel mode to determine if an external interrupt or if a
clock overrun/underrun occurred. The IER variable will not
return an error for either of these two conditions. On a
normal return, all the bits of IORBA(14) should be zero ex-
cept bit 1. This will give a value of 40000K to IORBA(14).
If an external clock interrupt occurred which caused proces-
sing to be aborted before the conversion operation was com-
pleted, then bit 0 of IORBA(14) will be set to one. If a
clock overrun occurred on an A/D operation or a clock under-
run occurred on a D/A operation, then bit 8 of IORBA(14) will
be set to one. If IORBA(14) returns a value that does not in-
dicate a normal return or either of these two error conditions,
the conversion data should be checked 1f possible to determine
it it is plausible. The SAM User's Manual (p. 4-29,34) does
not cover "non-normal" returns other than the two given.

The DRECL/W] call is used to check for completion of a
bol'l conversion operation. It has the basic forin shown below,

CALL DRECL/W] (IORBA,ILR)

The ¢all has two forms--DREC or DRECW. ‘The DRECW call is
used to hall program control unt®l the DO1T conversion opera-
tion, with the JORBA array referenced, is completed. The

80

e et A —— — ik

!)l

R———

DREC call is used only to check the current status of the
conversion operation. If the operation is completed, then
the DREC call places a non-zero value in IORBA(6). If the
operation has not completed, then the DREC places a value of
zero in IORBA(6). A guide illustrating the different DOIT[/W]

and DREC[/W] combinations is given in Fig 4-2.

81

hadt T——— T —~— L T N 4 =

,..w_

e}

Sl on gk AP d

Ffwiﬁ'-r —
N -

'
.
T

Value Meaning

2179 | No-.LNK routine in DCB. invalid DCB. Ofien
results from an invalid device-id, so check the
device-ids. The Mirst two characters are 1D, the
third cither S, A, or O, and the last two are
numbers (e.g.. IDS21).

2180 | No DCB identifier in JORB, invalid DCB.
Same cause a5 2179,

218! Not used. This error should not occur.

2184 | Noiniualizing routine for a device that needs
initialization. Sume cause as 2179.

2185 | Output requested to a channel for an illegal
device (e.g.. output 1o an A/D converter).

2186 | Aucmpt toset upa locked IORB array. This
can happen if a sccond DSAN/DSOR call uses
the same JORB array argument before the
original DSAN /DSOR completes.

2187 Unable to find rec IORE “'ck in IORB
array. Can happen if the IORB array was
DIMENSIONcd 100 small. A
multiple-operation call needs 8 elements + 8
elements per operation.

2188 Nu DCB exists with specified device-id. Same
cause as 2179.

2189 | Attempt 10 use unsupported feature (e.g.,
mapped call in unmapped system).

2190 | Attempi 10 return bad buffer. Will never occur.

2191 An IDATAx argument gave anallegal cloch
setting for an A/D or D/A converter.

Table 4.1 SAM Fortran error codes

(SAM User's Manual, p. 6-9)

82

L AED

-

F'

- - - - - R i & i

D¢

Value

Meaning

2192

Hliegal conversion count -- more than 255 or less
than | - for an A/D copverier mode in A2,
DG/DAC only.

2193

Asscmbly lunguage only. Attempt to move data
channel map while 1ORB is locked. A task
tried 1o change the map while a request was
using the window.,

2194

Attempt to move data channel map to an
address outside the window.

2195

1Megul conversion count: less than 1 or more
than the device allows.

2196

Interrupt occurred from 4222 without a strobe
or latch chunge.

2197

Assembly lanpuage only. Attempt to use data
channel map while it is being inttialized or
moved.

2198

Assembly Janguage only. Data channel not
initiakized: use an RMAP call before issuing
this mode A2 request.

2199

SAM punic code. SAM could not transmit
CIXMT) 0 the calling task on IORB array
complenion. SAM abors the program unless
you sct up a fatal error handhing RECeive wask
and gave its nume 10 SAMGEN, as described
in Chapter 5, “loitial Dwlog™.

External tnterrupt occurred on a stand-alone
analog converter, aborting the request. This
errorf returns from ISA calls only, not from
DSAN/DSOR calls.

Table 4.1 continue

83

T WU Y S

Tooooo T
a

- T w Y Ry T Y ¥ VW
-

oy

Py r—y— T T T YT A T
-

[N x]

25

This progras will collect and then output 5120 data saaples
using the Eclipse A/D/A device.

EXTERNAL IDS21 1setup code
EXTERNAL 1D523

CONMON / TBUFF / IDATA3(S5120)
COMNON /7 IBUFD / IDATOD(3120)
DIMENSION IDRBA(16)

CALL DSTRT(IER) jalways initialize device
IF (IER.NE.1) CALL EKROR("DSTRT")

1DATA1=60000K jexternal clock and channe! 0 (A/D)
IDATAZ:=5120

TYPE “Press carriage return to begin A/D"
ACCEPT

CALL DOITM(IOKBA,IDS21,8,1DATAL,IDATA2,IDATA3) 3A/D
IF (1ER.NE.1) TYPE "DOIT error “,IEK

IF (I0KBA(14).NE.40000K) WRITE(10,1) IORBA(14)
FORMAT("10RBACI4): " ,06)

D0 25 I=1,5120 ;load sampled data into D/A array
IDATOCI)=1DATAZ(1)
CONTINUE

IDATA1=64000K ;external clock and channel 0 (D/4)

TYPE “Press carriage return to begin D/A"
ACCEPT

CALL DOITW(IORBA,IDS23,8,IDATAL,IDATA2,IDATO,1ER) ;D/A

IF (1ER.NE.1) TYPE "DOIT evror “,IEK
IF (IORBA(14).NE.40000K) WRITE(10,1) IORBA(14)

CALL EXIT
END

Fig 4-1 Sample Fortran A/D/A program

84

AD-A124 7580 EXPANSION OF THE ECLIPSE DIGITAL SIGNAL PROCESSING 2/3
VSTEH(U) AIR FORCE INST OF TECH WRIGHT-PRTTERSON AFB
SCHOOL OF ENGINEERING G R ALLEN DEC 82
UNCLASSIFIED RFIT/GE/EE/BZD-i F/G 972 - ML

[N

&

==
N
3
g
tn

1

™ g
L2 Tlis nis

FrEEEE

EEE]
S IR

r

rrer

4
v

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

FA
!
-
S
%
”
—

v

B ARELL -y an ol SEE GEL)
a o

no

to do other
processing during
\the conversion?

Use DOITW

Use DOIT

General
processing

Need yes

to wait for Use DRECW
conversion data?

no

Curious yes

bout conversion Use DREC
status?

no

no

Request
done?

yes

Continue
program

Fig 4-2 DOIT[/W] and DREC{/W] options

85

L

Chapter 5
Assembly Language Operation

This chapter describes the source code necessary to
operate the Eclipse A/D/A device in Data General assembly
language. It is divided into three sections according to the
purpose of the source code--setup, initialization, and con-
version. The SAM libraries provide various macros that make
operating the device at the assembly language level much
easier. A macro is a predefined section of code and in
this chapter it is used in a manner similar to a Fortran
subroutine. The Models 4330-4333 Prograrmer's Reference
should be consulted for operating the device in assembly
language without the macros described in this chapter. The
SAM error codes for assembly language error return messages
are given in Table 5.1. A sample prog:am that could be used
with the configuration file built in Chapter 3 is given as

Appendix A. Throughout this chapter, references will be

made to SAM Fortran subroutines. This 1s done for further

clarification, since it is assumed that most users will op-
erate the device at the Fortran level first. This, of course,

is not required.

Setup

Shown on the next page is the source code for a typical

setup in data channel mode.

86

4
.ENT IBUFF ;declare the A/D data buffer
.ENT IBUFO ;declare the D/A data buffer
. «ZREL
. RECW 0
; .NREL

IORB . .BLK 10

STACK .BLK 40 .

IBUFF .BLK 12000 ;set aside 6KW for A/D storage
IBUFO .BLK 12000 ;set aside 6KW for D/A storage

- '
1~ PO

The application program must declare both the A/D and D/A

-

data buffer names given to the SAMGEN program with the .ENT

statement. This allows the operating system to access the

conversion storage area in the application program. Accord-

'

"
}

]
L
I}

»

- ingly, both data buffer names must appear in the program and

.
}
Q

label the areas that will be used for conversion data storage.
The ;BLK statement can be used to set aside the storage area
up to the 1limit specified in the SAMGEN created configuration
file. The IORB variable is an eight-word block that holds

the parameters for a conversion operation. The STACK variable
is a 32-word block that is used by SAM as a scratchpad to
process a conversion operation. The RECW variable is used

to indicate when % conversion operation is completed. Each
separate single-operation conversion request must have its

own IORB, STACK, and RECW setup.

Initialization

Prior to issuing any conversion call, the application
program must issue the S.STR macro shown below,
S.STR STACK
JMP ERRI1 ;to handle error return
JMP CONT1 ;to continue processing
This call initializes the operating system to the device and

is similar in function to the PFortran LSIRT cell. Program

87

control is returned to the location immediately following the
macro on an error return. The error code‘is contained in
accumulator 2. For a normal return, program control is re-
turned to the location immediately following the macro plus

one.

Conversion

Performing a conversion operation in assembly language

Dhn s e am un o

that is similar to the Fortran DOIT call, is a two-step proc-

Y

ess. First, the parameters of the conversion call are placed

in the IORB block with the S.SET macro. Then, either the

T W

S.DOR or S.DAN macro can be used to initiate the single-oper-

v
- .

ation request. The S.DAN macro has been chosen to be used

3 - for the purpose of illustration. The basic form of the S.SET

macro is shown below,

Q¢

S.SET IORB,0,device-id,CDAT1,CDAT2,CDAT3
The device-id is IDS21 for an A/D operation and IDS23 for a
D/A operation. The variables CDAT1, CDAT2, and CDAT3 must be
specified as given in Chapter 2. The basic form of the S.DAN
macro to initiate the conversion operation is shown below,
S.DAN IORB,RECW,STACK

L JMP ERR2 ;to handle error return
JMP CONT2 ;to continue processing

YTy

As with the S.STR macro, program control is returned to the

location immediately following the S.DAN macro on an error

e
,
' return. The error code is contained in accumulator 2. For
a normal return, program control returns to the location
‘@ immediately following the macro plus one. Completion of the
P' .
conversion oporation 1s dotorrlie by Chiediiang Uhie st s
88

of the variable RECW. When the operation is completed, SAM
places a non-zero value in RECW.

As is the case with Fortran operation, the error return
will not indicate if an external interrupt or a clock overrun/
underrun occufred. Either of these conditions may make the
conversion data invalid. The CDATl1 word can be checked to
determine if either of these conditions occurred. On a normal

return, all of the bits of CDATl are zero except bit 1. If

an external interrupt occurred which caused processing to be
aborted before the conversion operation completed, then bit 0
of CDAT1 will be set to one. If a clock overrun occurred on
{ an A/D operation or a clock underrun occurred on a D/A opera-
tion, then bit 8 of CDATl1 will be set to one.

k Program control can be held up until the conversicn

t(!" operation is completed, as is done with the Fortran DOITW

1 _ call, by using the .REC macro. The basic setup for the

.REC macro is shown below,

‘! ' .EXTN .REC
4 .ZREL
[' PREC RECW
' .NREL
LDA 0,PREC
}. .REC

The address of the RECW word is placed in accumulator O and
the macro .REC is called. Program control is then held at

4 the location of .REC until the conversion operation refer-

. enced with the PREC word is completed. The value of the word

at label RECW should be 0 prior to the .REC call.

89

'—vﬁfvv

"-‘H".T’ L
. . L

LA 4

r-rvvy}w T

28mA

Caneui aal i et e arRiudr- Y Ar il S i

Value = mnemonic

Meaning

4200 = DEROO

No -.LNK routine in DCB,
invalid DCB. Could be an
invalid (mistyped)
SAMGEN device-id. All
device-ids begin with the
letters ID. followed by S, A,
or O, followed by two
numbers.

4201 = DEROI

No DCB identifier in
IORB, invalid DCB. 8ame
cause as 4200.

4202 = DERO2

Not used. This should not
occur.

4205 = DEROS

No initialization routine for
a device that needs
initialization. Same cause
as 4200.

4206 = DERO6

Output requested to a
channel for an illegal device
{e.g..outputtoan A/D
converter).

4207 = DERO?

FORTRAN only. Attempt
to sct up a locked IORB
array.

4210 = DERI0O

FORTRAN vnly. Unable
to find free IORB in IORB
array.

4211 = DERII

No DCB exists with
specified device-id. Same
cause as 2179,

4212 = DER1I2

Attempt to use unsupported
feature (e.g., mapped call in
unmapped system).

4213 = DERI3 Atteinpt to return bad
butfer. Wili never occur.
4214 = DERI4 Itlegal clock setting for an
A/Dor D/A converter.
Table 5.1 SAM assembly language error codes

(SAM User'

90

it oot ciacath, —n

s Manual, p. 9-4)

e s Tnt s i SR

AW T w M e ST

L e A

Value = mnemonic

Meaning

Hlegal conversion count --
more than 377, or less than
1 for an A/D converter
mode A2; DG/DAC only.

Altempt to move data
channel map while IORB is
locked. A task tried 1o
change the map while a

| request was using the

window.

4215 = DERIS
4216 = DER16
= DER}7

1217

Attempt to move data
channel map to an address
outside the window.

4220 = DER20

Hiegal conversion count:
less than | or more than the
device allows.

4221 = DER2I

Interrupt occurred from
4222 without a strobe or
latch change.

4222 = DER2?

Attempt to use data
channe! map while it is
being initialized or moved.

Data channel not
initialized; use an RMAP
call betore issuing this
mode A2/AD request.

4224 = DER2M4

SAM panic code. SAM
could not transmit
{.IXMT) to the calling task
on IORB array completion.
SAM aborts the program
unless you set up a fatal
error handling RECeive
task and gave its pame to
SAMGEN, as described in
Chapter 5, “lanitial Dialog™.

4225 = DER2S

ISA calls only. External
interrupt occurred on a
stand-alone snalog
converter, aborting request.

Table 5.1

91

continue

-~

Chapter 6
Running Application Programs

This chapter describes how to compile and load SAM ap-
plication programs on the Eclipse computer. The RDOS commands
given in this chapter should only be typed when the systém,R
prompt is given on the screen. The "(CR)" denotes that the
user should depress thé carriage return and "program" denotes

the user's program name.

Compiling

Compiling a SAM Fortran V application program is identif
cal to compiling the usual Fortran V program. The directory
must contain the necessary files or links to them for Fortran V
compiling. The following command line will compile the appli-
cation program,

FORTRAN program

The following files are required to assemble a SAM

assembly language application program,

MAC,SV,NBID.SR,0SID.SR,NEID.SR,ARDOS.SR,PARU.SR
and SAMPARS. SR

All of the above files are or should be in the SAM directory.
Links can be made to any of these files that are not contained
in the directory that the user will be working in. The com-
mand line given below will assemble the application program.

MAC NBID/S 0SID/S NEID/S ARDOS/S PARU/ST(CR)
SAMPARS/S program(CRr)

The symbol "1" is used in the previous command line, since

it is the correct syntax for continuing an RDOS cormand on

92

i AR o ot ity 2 4 RS RS

S
F
9
3
|
3

the next line. The command, however, can be typed on a single
line if it fits.,

To lessen the effort in assembling an application pro-
gram, an indirect file named SAMASSM has been created and
placed in the SAM directory. It contains the parameter files
as typed in the previous command line. Using this indirect
file, the previous command line can be given as shown below,

MAC @SAMASSM@ program

As is the case with all indirect files, SAMASSM can be
linked to the directory that the user will be working in.
However, links to the files contained in an indirect file

must still be made.

Loading

The files given below are required to load the applica-
tion program.

samconfig, SAMF5E.LB,SAME.LB, TFLIB

The file "samconfig" dcnotes the user's relocatable binary
configuration filename. The other files are or should be in
the SAM directory. Links can be made to any of these files
that are not contained in the directory that the user will be
working in. The command line given below will load the appli-

cation program.

RLDR/P 2/K program config samconfig subroutines 1(CR)
SAMFSE.LB SAME.LB @TFLIB@

In the previous command line, "subroutines" denotes where

any user subroutines should be loaded. The P switch is

93

b BN B 4

HRORS - AREARAS~ Gt
= ;

M h e £ s 4a e a . ames s aan

G ie Siien 2m A an aee aa g o 4

1

E
[

Dl A AN A A L AN e At R Mt . ey . s FTORTTE T

optional. If it is attached, the load addresses for the
various modules in the program are given in octal format.
The 2/K switch is required and creates a second task. The
SAM package is designed for a multitask environment and re-
quires at least one more task_than the program uses.

To lessen the effort in loéding an application program,
an indirect file named SAMLIB has been created and placed in
the SAM directory. It contains the library and TFLIB files
as typed in the above cormand line. Using this indirect file,
the previous command line can be given as shown below,

RLDR/P 2/K program samconfig subroutines @SAMLIB@ |

Every application program will generate an "XN I43RT"
error on the load command. This is because the samconfig
file is requesting software to handle an A/D/A device other
than the model 4331. Since the device that the samconfig
file is requesting information for is not in the system and
will not be called upon, this error message can be ignored.
This is the only error message from the load command that

can be ignored.

J4

laif

B SR~ R

LR il o 2 o o Sh e SRl
-

LAt ol ob o8 o¢
1 e

e - w v~ -

(e WA A A A Sl Mt St S

WP S B PP PP PP PP PP P PP

PBEG:
PBYE:
PADO:
PDAO:
PER1:
PER2:
PER3:
PIBUF:
P1BUL:
PREC:
RECW:
CDAT2:
2ERO:
+EK:
+BNDC:
N
+NWLN:
+H586:

.
1]

START:

TR TR T LTI, T Y

Appendix A

This program wil) collect and then output 5120 data
samples using the Eclipse A/D/A device. It is
similiar in operation to the sample Fortran A/D/A
program, except that the user cannot initiate

bath conversion operations. The user can only
initiate the A/D operation by turning the external
clock on when it is desired to begin collecting
data. The CDAT! variable for both, the A/D

and D/A operation, has been set for external

clock and channel 0.

+ENT IBUFF

+ENT IBUFQ
+EXTN ,REC

+ZREL

BEG jaddresses
BYE

ADO

DAD

ER1

ER2

ER3

IBUFF

1BUFD

RECM

0 .

12000 jconversion count
0

ERROR 3 ump locations
BNOC

CHAR

NWLN

MSSG

+NREL

Main progran

LDA 0,PBEGC jsend startup message to screen
JSR @, NSS6
JSR 0. NWLN

§«8TR STACK jinitialize the device
Jnp ERR1 serror return will have error code in AC2,

S.SET 10RB,9,IDS21,60000,CDAT2,IBUFF jsetup the A/D

LDA 0,PADD ;send A/D message to screen

JSR ®,M5S6

JSR @, NWLN

S.DAN IORB,RECW,STACK jinitiate the A/D

JNP ERR?2 jerror return will have error code in AC2.
95

¥, STy

-
.
>
b
;o
I -
L)
-t

7

P e ———

ADDRL:
ADDR2:
COUN:

ERR1:

ERR2:

EKR3:
NUMB:

DONE:

LDA
+REC

JHp

LDA
STA
LD4
STA
LDA
STA
LDA
STA
182
152
DS2
Jup

LDA
STA

S.SET

LDA
JSR
JSR

S.DaN
Jnp

LDA
+REC

LDA
JSR
JHp

LDA
JHP

LDA
JHp

LDA
JSK
nov
JSR

JSR
+SYSTH
+RTN
JHP

0,PREC

44

0,PIBUF
0,ADDR1
0,PIBUO
0,ADDR2
3,CDAT2
3,COUN

3,84DDR1
3,BADDR2

ADDR1
ADDR2
COUN
)

0,2ERD
0,RECH

jwait for the A/D to
jcomplete.

sload the sampled data into
jthe D/A data array

jzero the status word

10RB,0,10523,64000,CDAT2,IBUFD jsetup the D/A

0,PDAD
8. NSSC
B NWLN

;send D/A message to screen

IORB,RECW,STACK jinitiate the 0/A

ERK3

0,PREC

swait for the D/A to

jcomplete

0,PBYE
8,HS5C
DONE

0,PER1
NUMB

0,PER?
NUNB

ssend exit message to screen

jsend error message to screen.

1get error code from AC2

96

LES an e aa aomcae)

,fﬁ
S

Y

v v v wme

-l P

NELN:
STOR1:
CR:
NL:

s e W

CHAR:
STOR2:

-é PP W P

MSSGe
STOR3:
STOR4:

 WORD1:

oo

et et e e e e . A B e 1o s

The NWLN routine places the cursor at the .e¢ginning of
the next line.

JNP v+l
0

15

12

STA 3,ST0R1
LDA 0,CR
JSR #,CHAR
LDA 0,NL
JSR 8. CHAR
Jnp @5TOR1

.

The CHAR routine sends an ASCI1 character that
has been placed in ACO to the screen. The
contents of AC3 are destrayed.

JHp 42

0

STA 3,5T0R2
SYSTH

+PCHAR

JNP 8.ER
JHP RSTOK2

The MSSG routine sends a smessage that has heen
created with the ,TXT pseudo-op to the screen,
The label for the message must he placed in
ACO,

JHP o+4

0

0

177

STA 3,STOR3
§TA 0,5TORd
LDA 0,85TOR4
LDA 3,W0RD!
AND 0,3,SNR
Jip 412

JSR 8,CHAR
LDA 0,d5TORM
Hovs 0,0

LDA 3,40RD1
AND 0,3,5NR

JNP otd
JSR ¢, CHAR
1874 STOR4
JHP HS5G+6

JupP @5TOR3

The BNOC routine will convert a 16-bit binary integer
97

r .

¢
3

; 3

It BNOC:

*c STORS :
STORS:
SIX:
COUNT:

WORD2:

E WORD3:

—y

TR T T T YT

——

-
9

ER1:
ER2:
ER3:
BEG:
BYE:
ADO:
DAD:

A EEEamCata

IORB:

STACK:
IBUFF:
IBUFO:

£‘ H
[ERROR:

MAENAEL Sh b e e cas ae A e a0 et e g

placed in ACO to ASCII character string for output,
The ASCII string is output in reversed order.

14 47

3 3,STORS
STA 0,5TO0RS
LDA 0,8IX

STA 0,COUN
LDA 0,HO0RD2
LDA 3,5TORS

AND 3,0

LDA 3,40RD3
ADD 3,0

JSR 8. CHAR
LDA 0,5TORS
HOVZIR 0,0
WOVZR 0,0
HOVZIR 0,0

STA 0,STORS
052 COUN
JNP BNOC+13
Jup 85TORS

Storage space

JIXT £5,5TR ERKOR : »

+IXT %¥5,DOR ERROR (A/D): #
oITXT ¥5.,DOR error (D/A):¥
+ TXT tHello#

+TXT xGood Byex

OTXT t -- A/D -

IXT ¥ -- D/A --%

+BLK 10
+BLK 40
+BLK 12000
+BLK 12000

Error return

+SYSTA
+ERTN
JAFP e.ER
+END START

98

T

P JRin g

Y v vy v vwvw

o~

Appendix B

Extended Memory
Data Collection Measurements

99

rdant et e ey Sred rﬁ o

i SN S
-

Eclipse A/D/A Device
Extended Memory Data
Collection Measurements

Background

There is a limit on the number of data samples that
the Eclipse A/D/A device can collect on a single A/D call.
This limit is due to the size of the A/D data buffer. Sam-
ples are lost during the time it takes to remove data from
this buffer and issue another conversion call. The fastest
method of moving data on the Eclipse is with the extended
memory feature. With this feature data is not physically
moved, address registers are simply changed. Program SPEECH
will be used to collect data in long mode operation and the

remap intervals will be noted.

Purpose

The purpose of this test is tc determine the number of
sample points lost between remap operations. The affect of

activity on the opposite ground will also be noted.

Pretest

Since a linear test signal will allow the delta voltage
between samples to be easily seen, a triangle wave will be
used as the test signal.

To best iliustrate the time lost during a remap opera-
tion, the sampling rate will be set near maximum. From the
Technical Reference of Analog Data Subsystems, Models 4330-4333,
p. 7, the maximum A/D conversion rate is given as 22KHz (45.4

microsec). The test signal will be ey 1oel o0 2100 147 ¢

100

[PP S Sy S S Sy A S R SR

g - P e WL TN TR T
p— T e e e e - -
- — e T o . .

microsec).
A plot routine will be used that can plot a maximum of
- 512 points. The signal frequency will be set at a rate which
! will collect 512 samples on a single peak-to-peak swing, that
is, one-half of a period. The test signal period to allow
! ' this can be calculated as follows,
47.6 microsec/pts * 1024 pts = 48.76 msec (20.51Hz)
The test signal frequency will be set to 20Hz, which will
closely satisfy the above condition and certainly satisfy
the Nyquist sampling condition.

The test signal and clock signal to be used are shown
below,

5 }

1

x(t)
(volts)

— —) t (msec)

test signal

— T

1 x(t)
{ (volts)

Yy

t (microsec)
47.0

Y ——————T Y

clock sianal

101

PP T

T

P ——
Y

Q¢

An oscilloscope will be used to view both signals with

the settings as below,

distance scale value
clock: 4.76 cm * 10 microsec/cm = 47.6 microsec (21KHz)

signal: 5.0 cm * 10 msec/cm = 50.0 msec (20Hz)
A frequency counter will be used to verify the above frequen-

cies.

Test Equipment

PME I.D. Date of Date of
Number Cal. Recal.
Oscilloscope, 49100/ 27 Jul 82 14 Nov 82
Ballantine - 4H5627
Frequency 49100/ 28 Jul 82 25 Nov 82
Counter, 4H6122
HP 5326A
Counter-Timer
External 49100/ 22 Mar 82 22 Mar 83
Clock, 4H6222
Wavetek
Generator
Test 49100/ 19 Nov 81 19 Nov 82
Signal, 4H6008
Wavetek
Generator

Test Comments and Results

1. Test equipment settings were set as described in Pre-
test and frequency settings were verified with a fre-
guency counter.

2. Program SPEECH was executed on the background in long
mode operation and threce data files were collected

under the following conditions,

102

T

A Ginamminmenniiandiy die atind

DATAl: foreground inactive (CTRL-F)

DATA2: foreground active and idle

DATA3: foreground active and compiling a program

The three data files were changed from two's complement
data to real number data with program CNVRT. The new data
files were named as follows,

TESTDATAL: DATAl converted

TESTDATA2: DATA2 converted

TESTDATA3: DATA3 converted

Program PLOT was used to view the remap regions in the
TESTDATAx files.

The frequency of the external clock generator was slightly

read justed between test runs one and two.

Conducted pby: Lt Allen

Date: 11 Oct 82

103

Appendix C

Source Code
for
A/D/A Operations Software

104

—_— e T W - T W T AT T . - T .
5 it o oo ot ahe S e et S uiel e ARl D AR D

1

T vy

¥ —m v v ww wew = oy WY

————

-

v ——— v v - < =¥ =T

ST e S "n“‘v‘*"' M .'- v

0

CRE X060 00036000606 3636236069636 06 06 06 3696 36 30 36 0630 06 36 06 0636 06 36 06 06 06 36 36 06 36 06 36 06 0606 06 06 06 06 08 6 06 06 606 30 00 6 06 206 36 00 I 06 6 06 O E D6 6

[B o B o B o B or | o I

'R e B xxl

L N x/

[N o

[N B o B W]

Title: Speech
futhor: Lt Allen

Date: Dec 82

Function:
This is the central program of a six-program package that utilizes
the Eclipse A/D/A device to work with speech data files, Thic is
an interactive softmware package that allows the user to collect,
edit, and play back speech data files,

Environaent:
This is a Fortran V prograw that has been desigined to run
on a mapped-KDOS Eclipse $/250 minicomputer-equipped with a
snadel 4331 single board converter,

Compile command:
FORTRAN SPEECH

Load command:
RLDR/P SPEECH NEWSCR @FLIh@

Comments:
Refer to lines 30 and 47 of the program text for information
explaining the operation of this package,

The term “"block™ is used throughout the program text to refer
to a disk blocK (a disk block contains 256 bytes),

C 06 060006 0606 080606 36 06 90 06 060696 06 08 06 06 96 96 00 06 06 30 06 06 0606 06 36 08 6 06 06 00 06 06 0006 0600 00 06 36 06 06 06 36 J6 06 06 06 06 06 36 06 06 06 J6 006 06 D600 DO R 000 0E 0 0 6

g M x N]

30

INTEGER OPTION,MENUZ,MENU3,MENU4 NENUS -

INTEGER WORK(15872)

INTEGEK EDBUF,DTHBUF,EMFTY,FULL

INTEGER FILENAN(7),STATUS(18)

INTEGEK NUMELK,FIRELK,STBLK,BLKLEFT,READBLK,DBLKS,FKLKS,WELKS
INTEGER HODE,SHORT,LONG

DATA EDBUF,DTBUF,EMPTY,FULL,SHOKT,LONG / 3%0,2%1,2 /
DATA WORK / 15872%0 /

CALL NEWSCR jerase the screen

Erase files that may have been left from a previaus abort,

CALL DFILM("DIGI.DT",IER)
CALL DFILW("DIGI.ED",IER)
CALL DFILW("DI1GI.OU",IER)
CALL CFILW("DIGI.DT",2,IER)
CALL CFILW("DIGI.ED",2,IER)
CALL CFILW("DIGI.OU",2,1EK)

TYPE "(CR)
105

Lo i e st Sl G et

—v

e vy ¥

IO

[x NN xr N]

45

47

*1f this program fails to operate properly, consult the(CR)
¥laboratory software documentation manual for a complete({CR)
tdescription of hardware setup and verify all connections.(CR)
#{CR}

¥This program maintains two independent buffers, called data(CR)
*and edit, to hold conversion data.(CR)

%(CR)

kConversion data can be placed in the data buffer through an(CR)
¥A/D operation or hy a series of read operations from disk{(CR)
kfiles, The data buffer can then be copied into the edit buffer(CR)
%for editing, Editing operations do not affect the data buffer.(CK)
(CR)

#To select menu options in this program, type only the number(CR)
kcorresponding to the option and carriage return.(CR)

%#(CR)

tPress carriage return to begin,”

ACCEPY

CALL NEWSCR

The variable MODE is used to determine which program wil be called
to input or output the data huffer,

ACCEPT “(CR)

%Please select which mode will be used or a description of (CR)
#both modes,(CR)

¥ 1: short mode(CR)

¥ 2: long mode(CK)

& 33 description(CR)

sselection:”,NODE

CALL MNEWSCR

IF (NODE.EQ.SHORT .OR. MODE,EQ.LONG) GO TOD 49
1F (MODE,EG.3) GO TO 47

WRITE(10,1)

GO TO 45

This wessage can be requested by the user to explain the difference
between short mode and long mode operation,

TYPE "(CR)

®Acording to the length of the data file, this prograa(CR)
%operates in one of two modes- short mode or long mode,(CK)

®(CR)

¥Short mode operation allows 15,872 samples (1,98 sec at 8 KHz(CK)
¥saapling) to he collected and played hack without interruption,(CK}
%The directory shouid have 175 disk blocks availabie for(CR)
%¥execution in this mode.{CK)

#(CR)

#Long mode operation allows 51,200 sawples (6,40 sec at 8 KHz(CR)
%¥sampling) to he collected and played back, but with short(CK)
kinterrupts every 10,240 samples, For minimum interrupt tiwe,(CR)
%#it should be operated on the background terminal with the(CK)
%¥foreqround terwinal brought down. Long wode operation raquires(CR)
*#40 kW of ertended memory and has JCNQET Processing aviaysiln)
#than short mode, The directory should have 450 disk blocks(CR)

106

be S (ad A e
! & :

— .ﬁvnwjvv-vf‘;w..v_

L pemmn An 4 e g
vy A

<

1Ilﬁ—r —p——— i;:rw'"v-ww~,,

—

q,.

IO IO

49

#available for execution in this mode.(CK)
#(CR)

%Press carriage return to continue.”
ACCEPT

CALL NENSCR

G0 TO 45

The variable MODE is cowmunicated to the editor program through
file DIGI.0U, This allows the editor pragram to determine which
progras to call to autput the edit buffer,

CALL FOPEN(1,"DIGI.OU™)
CALL WRSEG(1,mMODE,2,I1EK)
CALL FCLOSE(1)

CRee s et R R R BN RRRRRRARRNNRERRRERREIE RN RRNRRRIE I RIS WU IR I I I

¢
¢
c

50

This is the central program’s msain msenu,

ACCEPT " (CR)
#Please select which operation will be perforued,(CR)
¥ 1: A/D conversion into data buffer{CR}
% 2: D/A conversion out of data buffer(CR)
¥ 3% editing{CK}
L] 4: read from file to data buffer(CR)
5: write data buffer to file(CK)
43 copy data buffer to edit buffer(CR)
73 exiti{CR}
#selection:”,OPTION

CALL NEWSCK

IF (OPTION.EQ.1) GO TO 100

IF (OPTION.EQ.2) GO TO 200

IF (OPTION.EQ.3) GO TO 205

IF (OPTION,EQ.4) GO TO 400

IF (OPTION.ED.5) GO 10 700

IF (OPTION.EQ,4) GO TO 400

IF (OPTION.EQ.7) GO TO 1000
WRITE(10,1)
FORMAT("CCRY(7ICCRIC?ICLRI(7)
#Please select options from the list only,™)
G0 T0 50

00606 06 06 06 00 36 90606 38 96 08 96 36 06 06 06 16 06 96 06 16 06 06 06 96 06 06 06 36 96 06 06 06 06 06 0 36 06 00 06 06 06 06 06 06 06 36 96 J6 6 06 36 30 00 0006 4606 6 0000 JE 6 D DI DX K I

100

This section of code fills the data buffer with an A/D conversion
operation,

DTBUF-FULL 3this operation will put data in the data buffer
TYPE “(CKR)

* --) entering A/D wmode (--"
IF (MODE,kQ.SHOKT) CALL SWAP("SMALLIN.SV",1ER)

107

IF (MODE.EQ.LONG) CALL SWAP("BIGIN.SV",IER)
IF (IEKR.NE.1) TYPE "SWAP error “,IER," with A/D file"
G0 T0 50

0000 06 00 0800 00006 06 00 06 06 06 00 066 06 06 06 06 96 06 06 06 06 06 06 06 06 06 00 36 00 06 00 06 00 06 06 00 06 06 00 06 06 060006 00 0600 D0 0000 00 060600 M B O MEE MDD MM

This section of code outputs the data buffer with a D/A conversion
operation,

[B x N x N]

200 IF (DTBUF.EQ.EMPTY) GO T0 251
TYPE “(CK)
¥ --) entering D/A mode (--"

CALL DFILW("DIGI.FG",IEK)

IF (NODE.EQ.SHORT) CALL SWAP("SNALLOUT.SV",IER)

IF (NODE.EQ.LONG) CALL SWAP(“BIGOUT.SV",1ER)

IF (IER.NE.1) TYPE "SWAP error “,IEK," with D/4 file"
€0 T0 S50

G306 36300600 069636 0600 06 06 00 06 06360606 06 000006 06 06 00 06 06 06 06 36 06 00 00 0606 636 36 00 0600 06 36 62600 20 J0 00 0000 0006 00 00000 D006 00 0606 O JEJE B O JE B JE 00 ¢

C
£ This section of code calls the editor progras.
C
205 IF (EDBUF.EG.EMPTY) GO T0 250
TYPE “(CKR)}
& --) entering edit mode (--"

CALL SWAP("EDITOK.SV",IER)
IF (IER.NE.1) TYPE "SWAP error ",IER," with editor file"
G0 TO 50 :

0006 00 0600000000 0600 0000 00000600 0600 0600 0000 06 06 06 0606 06 00 0606 06 06 0606 06 36 0606 0606 06 06 0600 06 3600 0 e DEREOE MO E MMM R DE DU R RN I

One of the following messages is sent to the screen if the user
atteapts a buffer operation when the buffer is empty,

OO0

230 TYPE "(CRX(7)(7)(7)
%The edit buffer is currentiy eapty.”
G0 10 50

251 TYPE “(CRM7)7XT7)
%The data buffer is currently empty.”
G0 T0 50
00606 00900060060 3000 0000 00060960606 09600 0606 00060006 0600063606 06060000 00000002006 3030 0000000060000 O 0B D IE DR M I W R I O B e

This section of code allows the user to fill the data buffer through
a series of read operations from disk files,

[o N x N]

400 ACCEPT "(CRY(7(7X(7)
¥The current data buffer is erased(CRK}

108

Tal

[N N o ¥ x)

sprior to reading frow disk.(CR)
%#{CK)

#Do you want to,{(CR)

L] s continue{CR)

* ¢ return to the wain menu(CR)
xselection:”,NENUS

IF (MENUS.E@.1) GO TO 401
1F (MENUS.EQ.2) GO TO 50
WRITE(10,1)

GO TO 400

401 IF (MODE.EQ.SHORT) TYPE "(CR)
%¥The data bhuffer can hold up to 42 disk blocks."
IF (MODE.EQ.LONG) TYPE “(CR)
#The data buffer can hold up to 200 disk blocks,{CK)
%and are output in 40 block sultiples,”

The variable STBLK maintains the starting block position for each
warite operation into the data buffer, The variabie BLKLEFT maintains
the number of available blocks left in the data buffer that can
receive data.

STBLK=0 jinitialize data buffer
IF (NODE.EQ,SHORT) BLKLEFT:=42 ;write parameters
IF (NODE.EQ.LONG) BLKLEFY=200

CALL DFILW("DIGI.DT",IER) jerase the current data buffer to
CALL CFILM("DIGI.DT",2,IER) jready for new data
DTBUF=ERPTY

403 ACCEPT “(CR)
¥Enter the filename for reading:”
READ(11,2) FILENAM(1)

2 FORMAT (S13)

CALL SYAT(FILENAH,5TATUS,IER)

IF (IER.EQ,13) GO TO 420

IF (IEK.NE.1) TYPE "STAT error “,IER," with your file"
FBLXS=STATUS(Y) tFBLKS is the nuamber of full
IF (STATUSC10).EQ.512) FBLKS=FBLKS+1 jdisK blocks in the user file
IF (FBLKS.LT.1) GO TO 425

405 WMKRITE(10,5) FILENAM(1),FBLKS,FBLKS

5 FORMAT("(CK)

kFile ",513," contains ",13," disk blocks, numbered 1 - *,I3)

ACCEPT “(CR)

#Please specxfy the blocks to be read 1n,(CR)
#first block: ™ ,FIRBLK

IF (FIRBLK.LT.1 .OR. FIRBLK.GT.}BLKS) G0 10 435
ACCEPT "

%¥last block: ",NUHBLK

1F {NUNBLK.GT,FBLKS .OK, NUMBELX.LT.FIRBLK) GO TO 435

109

SAIERR

SRAGRORtan ot A ar dis

_w‘vvrﬁ,..(
a

—rﬂﬁﬁ i

Ty

Cames ama Al Suaen oue

415

416

420

425

430

. v 4 WT T, T . oM ' T T

BLKLEFT=BLKLEFT- ((NUMBLX-FIRBLK)+1)
IF (BLKLEFT.LT.0) GO TO 430
FIRBLK=FIRBLK-1

CALL OPEN(1,FILENAM,1,IEK)

IF (IER.NE.1) TYPE “OPEN error ",IER,” with your file"

CALL OPEN{2,"“DIGI,DT",0,1ER)

IF (IER.NE.1) TYPE "OPEM error “,IER," with the data buffer”

STBLX=STELX+FIRKLK
READBLK=NUNBLK

IF (READBLX.GT.A2) READELK=42
NUMBLK=NUMBLK-READBLK

CALL RDBLX(1,FIRKLK,WORK,READELX,IEK)

IF (1IER.ME.1) TYPE "RDBLK error ",IER," with your file"
CALL WRBLK(2,STRLK,WORK,READBLX,IER)

IF (IER.NE.1) TYPE "MRBLX error “,IER,” with data buffer”
FIRBLK=FIRELK+READELK

SYBLK=STBLXK+READBLK

IF (NUMBLK.NE,0) GO TO 415

CALL RESET
DTBUF=FULL jthe data buffer contains data
IF (BLKLEFT.EQ,0) GO TO 50 j3return to the main menu

WRITE(10,3) BLKLEFT

FORMAT (" (CK}

%The data buffer can hold “,13," additional disk blocks.™)
ACCEPT "{(CK)

%#Do you mant to read from file into these blocks,(CR)
® 12 yes(CR}

& 22 nolCR)
*¥selection:”,MENU4

IF (NENU4,EQ.1) GO T0 403

IF (MENU4,EQ,2) GO TO 50

WRITE(10,1)

GO TO 4148

TYPE "(CRY(7X(7X(7)

#This file does not exist in the current directory.”
GO TO 450

TYPE "(CRM7Y (77
#This file is less than one disk block."”
GO TO 450

BLKLEFT=BLXLEFT+ ((NUMBLK-FIRBLX)+1)

WRITE(10,7) BLKLEFT

FORMATY (“(CRI(7)(7)(?)

¥You zpecified ton sany hlochs, The data nuffer canllk?
fonly hold ",13," disk hiocks. Please try again.")

GO TO 405

110

DL

MR 4

YT Y T YV

P T
-

i

435 TYPE "(CRY(2)(7X(?
#You cannot make that block{CK)

tselection. Please try again,"
GO TO 405

450 ACCEPT *
¥Do you want to,({CR}
1: try another file(CR)
¥ 2% return to the main menu(CK)
kselection:”,NENU2

1F (MENU2.,EQ.1) GO TO 403
IF (MENU2.E0.2) GO TO 50
WKITE (10,1)

GO TO 450

c***liﬁillllill*l?l*****l*ll*l*l!ii*!*llil*il****llll*!**l**!ll*l&lllllll!*ll

This section of code allows the user to write the data buffer
to a disk file at a specified heginning blaock number,

OO,

700 IF(DTBUF.EQ.EMPTY) GO TO 251

CALL STAT("DIGI.DT",STATUS,IER)
" DBLKS=STATUS(9)+1 sDBLKS ié the number of data buffer disk blocks

WRITE(10,13) DELKS,DBLKS

13 FORMAT("(CK) .
%¥The data buffer contains ",I3," diskblks numbered 1 - ",13,".")
TYFE " ‘

#It can be written to specified blocks of an existing file,(CR)
%¥or to a new file."”

705 ACCEPT “(CR)
#Enter the filename for writing:”
READ(11,11) FILENAM(1)

11 FORMAT(S13)

HENU3:=0

CALL STAT(FILENAM,STATUS,IER)

IF (IER.EQ.13) GO TO 710 it the file does not exist, create it
IF (IER.NE.1) TYPE "STAT error ",IER,” with your file"

FBLKS:=STATUS(Y) ;FBLKS is the nuaber of full
IF (STATUS(10).EQ,512) FBLKS=FBLKS+1 3disk blocks in the user file

GO T0 720

710 CALL CFILW(FILENAM,2,IER) j3create the user file as a random file
IF (IER.NE.1) TYPE 'CFIL4 ervor ",I1EK," with your f1ite”

715 CALL OPENC1,"DIGI.DT",1,IER)
111

A SR i M ke ¢

———r—y

714
15

16

717

12

720
14

IF (IER.MNE.t) TYPE "OPEN error ",IER," with the data buffer”
CALL OPEN(2,FILENAN,3,1ER)
IF (IER.NE.1) TYPE "OFEN error *,1ER," with your file”

STBLK=0

FIRBLK:=0

WBLKS=DBLKS

IF (MENU3.ED.0 .OR. MENU3.EQ.1) GO TO 717

IF (FBLKS.NE.O0) MRITE(10,15) FILENAM(1) ,FBLKS
FORMAT("{CR)
%File ",513," contains ",I3," disk blocKs.")

IF (FBLKS.EG.0) WKITE(10,14) FILENAM(1)

FORMAT("(CR)

#File ",513," is eapty, it contains zero disk blocks.™)
TYPE "
%¥Disk blocks are numbered beginning with one.”

ACCEFPT "(CR)

kPlease specify the starting block for the data buffer(CR)
¥to be eritten:”,FIRELK

FIKBLK=FIRBLK-1

IF (FIRBLK.GE.0 .AND., FIRBLK.LE.FBLKS) GO 10 717

TYPE “(CRMT7 U7

#You cannot maKe that block(CR)
kselection. Please try again,"”
GO 10 714

NUHBLK=UBLKS

IF (NUMBLK.GT.62) NUNBLK=62
WEBLKS=WELKS- NURKLK

CALL RDBLK(1,STBLK,WORK,NUNBLK,IER)

IF (IER.NE.1) TYPE "KRDBLK error ",1EK," with the data huffer”

CALL WRBLK(2,FIRBLK,WORK ,NUMBLK,IER)

IF (1ER.NE,1) TYPE "MRBLX error “,IEK," with your file"
STBLK=STBLK+NURBLK

FIRBLK=FIRBLK+NURHELK

IF (WBLKS.NE.O0) GO T0 717

CALL RESET

WRITE(10,12) FILENAN(L)

FOKRBAT("{CK)

%#The data buffer has been written to file ",513)
GO T0 50

WRITE(10,14) FBLKS

FORMAT (" (CK)

#This file already exists in the current directory,(CR)
¥It contains “,13," disk blocks.,™)

ACCEPT "(CK)
#Do you want to,{(CK)

* t delete the current file(CR)

* 2t overamrite specified blocks of the current {f1(e(CR)
3: select a different f1le(CR)

112

] 4: return to the main menu{CR)
rselection:™,NENU3
CALL NEMWSCR

IF (MENU3.EQ.1) GO TU 730
IF (MENU3.EG.2) GO TO 715
IF (MENU3.EQ.3) GO TO 705
IF (MENU3.EQ.4) GO TO 50
NRITE(10,1)

€0 TO 720

“r71=lﬁwrv.»(r'7 v
~

730 CALL DFILW(FILENAN,IER)
IF (IER.NE.1) TYPE "DFILW ervor “,1ER," with your file"

o

- €0 10 710

(

. Clllll*lllllill*l!lilllilllllillllllli***lllll!*!llll*l&lllll!&l*lll*llli&!!!
s ¢

; c This section of code copies the data buffer to the edit buffer,

1 c

?' 600 IF (DTBUF.EQ.ENPTY) GO 10 251

: CALL STAT("DIGI.DT",STATUS,IER)

e BLKS=STATUS(9)+1

!), CALL FOPEN(1,"DIGI.DT")
CALL FOPEN(2,"DIGI.ED")

T -

FIRBLK=0

605 NUMBLK=BLKS
IF (NUMBLK.GT.42) NUMBLK=42
BLKS=BLKS-NUNBLK

_

CALL RDBLK(1,FIKELK,WORK ,NUNKLK,I1ER)
CALL WRBLK(2,FIKBLK,WORK,NUMBLK,IER)
FIKBLK=FIKELK+NUMKLK

IF (BLKS.NE.0) GO TO 605

CALL FCLOSE(1)
CALL FCLOSE(2)

TP T~
-

EDBUF:=FULL jthe edit huffer contains data

TYPE "(CLR)

#The data buffer has been copied to the edit buffer.”
GO T0 50

006 063606005696 00 00 96 00 06 0006 06 00 00 00 060000060008 3 06 06 06 06 06 0606 06 06 06 00 06 06 066 06 36 30 06 00 08 J6 00 0F 00 06 0600 6 06 06 96 06 00 3006 06 06 JE 0F J6 JH 30 6 DE 06

1000 CALL DFILW("DIGI.DT",1EK)
CALL DFILW("DIGI.ED",IER)
CALL DFILW("DIGI.OU",IER)
CALL EXIT
113

L . o o)

L et Rt SV S SU B Jie e f PR
~ : .

36 0696 3696 36 06 36 J6 96 36 96 30 6 36 96 96 06 6 36 6 06 06 30 0 96 06 06 06 06 T8 06 06 06 06 16 06 06 6 36 06 96 38 06 96 06 36 36 06 06 0 36 46 96 06 36 06 6 06 06 96 06 46 36 06 6 06 6 06 06 06 36 % 38 06 ¢

L

REES = &

—v RLAE
i

b 114

iC AR

—

n o 4

CUEIEIE0E 060600 0 000000 0000000 00 0600 6 00 00 30 00 6 00 06 00 00 00 00 00 0000 00 00 06 00 06 000606 06 06 06 006 00 06 00 00 00 0006 06 00 06 36 06 06 06 06 06 06 06 06 06 0F 06 36 40 06 6 06 06 3¢

c
C
¢

RN rNeNErNeNelr)

[ZNEN - N o

[3]

[B o N]

Title: Editor
Author: Lt Allen
Date: Dec 82

Function:
This program handles the editing operations in the SPEECH package.
The SPEECH package is a siz-program pacKage that utilizes the
Eclipse A/D/A device to mork with speech data files, This prograw
is not a stand-alaone program. 1t's operation depends upon parameter
files created by other prograws. To understand the operation of
this program, program SPEECH, which is the central prograa of the
pacKage, should be cunsulted first,

Compile command:
FORTRAN EDITOR

Load command:
RLDR/P EDITOR MEWSCR BFLIBE

'CO||ents:

The save file (.SV) of the following programs are required in
the user’'s directory to operate this package,

. SPEECH,EDITOR,SMALLIN,SNALLOUT ,BIGIN,BIGOUT

G006 06303606 06 06 06 36 06 06 6 06 36 06 06 0 06 06 6 36 26 0606 36 J6 36 060600 0600 06 36 D6 06 06 JE 0 JEJE D000 06 00 00 00 D606 JE D06 D000 JE JE D006 JE JE G O BRI B E O 6 0

IO

INTEGER STATUS(18),EBLKS,FIRST,LAST,INFC(2)

INTEGER HELKS,EELKS(10),CLIFS(200),5ARPS(200,20) ,START,FIN
INTEGER IWIN,INAX,LEN,MORE,BFLAG

INTEGER IBOT,ITOF,10F,LINIT,NUAELK,FIRBLK

INTEGER FILEWAM(7),IDATA3(10240),FBLKS

INTEGER STBLK,KEADELK,MODE,SHORT ,LONG ,MENU1,MENU2

REAL RMAXS(200),RMINS(200) ,RNUN,TOP,BOT,KNAX,RNIN,NAC(10)
KEAL INCR(20),TINCK,POINTS,CLIF

DATA SHORT,LONG / 1,2 /

IDATAL1:64000K
CALL NEWSCR

Retrieve variable MNODE to deterwine which program to ca2ll to output
the edit buffer,

CALL FOPEN(1,"DICI.OU™)
CALL KDSEO(1,MODE,2,1EK)
CALL FCLOSE(1)

M R R R Ry R R R R R R N R R R Y R R RSS2 YR 21 1T

100 TYPE "(CR)

115

--) the program is in edit mode (--"
CALL STAT("DIGI.ED",STATUS,1ER) jqet the edit buffer's size

, EBLKS=5TATUS(9)+1 jthis is the number of blocks
(, ;in the edit buffer
\. c
C The variables NUMBLK and FIRBLK are used to represent the number of
c blocks and the first block, respectively, that will be involved in
C an edit buffer D/A operation.
c
] NUNBLK=EBLKS jset the D/A parameters to output
A FIRBLK=0 jthe entire edit buffer
BFLAG=0 jthis flag is set to one when the histogram
jparameters have been collected
. C .
' L This is the editing program’s main menu.
» c
105 ACCEPT “(CR)
%Please select mhich operation mill be performed,(CR)
- ¥ 1: D/A conversion of edit buffer{CK}
¥ 2: voltage histogram(CR)
re ¥ 3% block histogram{CR}
f ¥ 4: write edit buffer to file(CR)
% 53 return to main menu{Ck)

; tselection:” ,HENUL
‘ CALL NEWSCK

IF (MENU1.EG,1) GO TO 500

IF (MENU1,EQ.2 ,OR, MENU1,ER.3) GO TO 200
IF (MENU1.EQ.,4) GO TO 700

IF (MENU1.EQ.5) GO TO 1000

WRITE(10,1)

1 FORRAT("(CR)Y (7Y {CRI{7I{CRI(7)

¥Please select only from options given.*)
GO TO 105

c&l*!l!i!llll*l‘lllilllli*lilillll**l!*illl*l!li*l*ll!l*i**l!*!&ll!!ﬁl*ll*ﬁl**

This section of code collects the histogram parameters., It is executed
only once each time the editing program is called,

[l x N o)

. 200 IF (EBLKS.EQ.0) GO TO 250
- IF (BFLAG.EQ.1) GO TO 220

: TYPE “(CR)
' ® --) histogram paraseters being collected (--"

DO 203 I:1,EBLKS
CLIPS(I) =0
° RNAXS(1)2-5,
RNINS(I) =5,
DO 203 J=1,20
SANPS(I,J)=0
116

e~ v v Y= w - ey —w— v~

-

-

vy

203 CONTINUE

NUMBLK=EBLKS

J=1

FIRBLK=0

LINIT=0

CALL FOPEN(1,"DIGI.ED™)

204 KEADBLX=NUMBLX
IF (READBLK.GT.40) READBLX=40
NUNBLK=NUMBLK-READBLK
CALL KDBLK(1,FIRBLK,IDATA3,READBLK,IER)
IF (IER.NE.1) TYPE "RDBELX error ",IEK," with edit buffer”

LINIT-LIMIT+READBLK
FIRBLK=FIRBLK+READBLK
START=1
FIN:=25%
205 DO 210 I=START,FIN
RNUR=FLOAT{IDATA3(1))/327468.%5,
IF (KNUW.EQ.5, .OR. RNUM.E@.-5.) CLIPS(J)=CLIPS(d)+1
IF (RNUM,GT.RMAXS(J)) KMAXS(J)=RNUR
IF (RNUNLLT.RMINSCJ)) RMINS(J)=RNUM
TOP=5.,0
B0T=4,5
DO 210 X=1,20
IF (RNUH.LE.TOP +AND. RNUN.GE.BOT) SAMPS(J,K)=SANPS(J,K)+1
T0P=TOP-,5
BOT=B0OT-.5
210 CONTINUE
J=J41
START=START+254
FIN=FIN+256
IF (J,LE,LINIT) GO TO 205
IF (NUMBLK.NE.O) GO TO 204
BFLAG=1
CALL FCLOSE(1)
G0 TO 220

06 0836 06 06 0000 0006 00 00 00 06060600606 00 06 06 06 06 06 08 06 06 06 06 36 26 06 06 06 06 06 36 06 06 96 06 06 01 36 06 06 36 I 3 6 MMM IEM MDD U IR0 DU NN

This message is sent to the screen if the user attempts a buffer
operation when the buffer is empty.

oOMeO

250 TYPE “(CRX(7){(2)(])
%The edit buffer is currently eapty.”
GO TO 105

0600 0600 00 00 006 00 0000 00 00 0690 00 06 00 0000 00 00 06 06 90 00 06 06 00 00 40 00 30 00 06 00 0036 00 0008 90 06 36 06 00 06 30 3000 06 00 06 36 00 00 00 36 06 06 6 6 00 06 06 06 06 06 J6 38 DE 06 06 36

C
£ This section of cade requests frow the user which bloctks of the
c edit buffer will be 1n the histogran.

117

()

|
4
f
r
A
)
!
.
"
A
b
:
[
;
!
.
[
L

£

219 WRITE(10,1)

220 WKITE(10,3) EBLKS,EBLXS
3 FORMAT (“(CR)

%The edit buffer contains “,I13," disk blocks, numbered 1 - “,I3)
TYPE

¥Please specify which blocks will be in the histogras”

ACCEPT "(CK)
¥first block: ",FIRST
IF (FIRST.LT.1) GO TO 219

ACCEPT *©
%¥last block: “,LAST .

IF (LAST.GT.EBLKS .UR. FIRST.GT,LAST) GO 10 219

HBLKS=(LAST-FIRST)+1 jthis is the number of blocks in the histagram

NUMBLK=HBLKS yset the D/A paraveters to only output
FIRBLK=FIRST-1 jthe histogram blocks

POINTS=HBLKS%256, jthis 1s the number of samples in the
shistogram blocks

IF (MENU1.EQ@.3) GO TO 350 3to give the block histogranm
ielse give the voitage histogranm

CEE36.0 0660630000 06006 000006000 0006 0606000600 0606 0606 066 060 300000 00000000006 9000 00060630 36 0000 00 0 00 006 06 06 0606 004606 0696 06 06 36 6 0636 00 06 6 06 ¢

This section of code prepares and dispiays the voltage histogram, It
scans the parameter variables for the histogram blocks,

[N ol 1]

TYPE “(CKk)
% --) voltage histogram being prepared (--"

D0 301 1:1,20
INCR(I) =0,
301 CONTINUE
CLIP=0.,
KMAX:-5,
RNIN:=S,

DO 302 I=FIRST,LAST
CLIP=CLIP+CLIPS(I)
IF (RWAXS(1) .GT . RNAX) RMAX:=RMAXS(I)
IF (RMINS(I).LT.RAIN) RMIN=RMINS(D)
D0 302 J=1,20
INCR(J)=INCRCJ) +SARPS(T,)

302 CONTINUE
IMAX=INT(RMAX/5.%432768.,)
IMIN=INT(RNIN/S, %32748.)

325 TYFE "

T YT T TS

Yr—rTvv v~

—~w

P

#Voltage Histograa”
WRITE(10,4) FIRST,LAST,POINTS,CLIP
4 FORMAT ("

#blocks:",I3,"-",I13," total samples: ",Fé6.0," total clips: ",Fé6.0)
WRITE(10,5) RMAX,INMAX,RMIN,ININ
5 FORMAT ("

¥mayx voltage: ",F7.4,"(",I6,")(CR)
#ain voltage: ",F7.4,"{",14,")")

TYPE "{(CR)

¥ Voltage Positive Negative Tatal (CR)
] Ragnitude Samples Samples Samples{Ck}"
T0P=5.0

B0T=4.5

J=20

D0 303 1=1,10
TINCR=INCR(J)+INCR(I)
WRITE(10,6) TOP,BOT,INCR(I),INCK(J),TINCR
6 FORHAT ("
' “ F3.1,"-",F3.1," " 6.0, “ F6,0," “,F6.0)
T0P=T0P-.5
BOT=BOT-.5
J=d-1
303 CONTINUE
GO TO 400

060600600060 03036 000006360000 00600000000 I NN NN AN RN NNRRN
This section of code prepares and displays the biock histogram. It

scans the parameter variables for the edit buffer data blocks to
be included in the histogranm,

OO IO

350 TYPE "(CK)
¥ --) block histogram being prepared (--"

D0 351 1I=1,10

RBAG(I)=-),

INCR(1):=0,
351 CONTINUE

CLIP=0,
RUAX=-,5
RARIN=S,

LEN=INT(HBLKS/10.)
MWOKE=10- (HELKS- (LEN®10))

DO 352 1:1,10
I1F (LEN.NE.O) BBLKS(I)=LEN
IF (LENJEQ.0) BRLKS(I)=1
IF (1.GT.NOZE o AMD, LEHME Q) HEL¥S(IY=BULECS(IV !
IF (LENJEQ.O +AKD. I.GT HBLKS) BBLKS(1):0
352 CONTINUE
119

Q¢

O 00 0006 0008 000600 00 06 06 06 00 0000 06 06 0600 06 06 06 00000006 06 96 06 06 06 06 06 00 06 00 00 06 36 06 06 06 06 00 00 06 30 06 0F DU 06 06 6 06 06 06 06 06 06 06 06 06 06 06 06 00 06 00 6 06 06 0 JE 6 ¢

c
c
c

354

353

J=1

START=FIRST

FIN=START+BBLKS(J)-1

DO 353 I=STAKT,FIN

CLIP=CLIP+CLIPS(I)
INCR(J)Y=INCKR(J)+CLIPS(])

IF (KRAXS(I).GT.RMAX) RMAX=RNAXS(I)

IF (RMINS(I),LT,RMIN) RMIN=RMINS(I)

IF (RHAXS(I).GE.MAG(J)) HAG(J)=RMAXS(I)

IF (ABS(RMINS(I)).GE.MAG(J)) MAGLJ)=ABS(RMINS(I))
CONTINUE

J=Jd+l

START=FIN+1

IF (BBLKS(J).NE.O AND., J.LE.10) GO TO 354

IMAX=INT{(RNAX/5.,%32748,)
ININ=INT(RMIN/S,%32768.)

365 TYPE

360

10

400

%Block Histogranm®

WKITE(10,4) FIRST,LAST,POINYS,CLIP
WRITE(10,8) RMAX,IMAX,RMIN,ININ
FORMAT("

max voltage: “,F7.4,"(",16,")(CR)
#ain VOltaqe: “,F704,“(“,16’“)“)

TYPE "(CR)

] Block Tota) Rax{CR}

* Number Clips Magnitude(CR}"

1=0

ITOP=FIRSY

1=1+1
IBOT=ITOP+BBLKS(I)-1

1F (BBLKS(I).EQ.0) TYPE

IF (BBLKS(I1).EQ.1) WRITE(10,9) ITOP,INCR(I),NAG(I)

FORMAT("
' “,13," " F6.0," " JE7.4)

IF (BBLKS(I).GT.1) WRITE(10,10) ITOP,IBOT,INCR(I),NAG(])

FORNAT("

¥ ";13,“‘",13," ",FboO;" “,}’704)
1TOP=1B0T+1

IF (1.,L7.,10) GO 10 360

G0 T0 400

This is the editing program’s histogram menu.

ACCEPT "(CR)

kPlease select ahich operation w»ill be perforwed,(CR)

¢ 1: D/A conversion of histogram biocks(Ck}

& 2: delete histogram blocks from edit buffer(LR)

/
120

HT A
e

—r——— v v v - —

e

3 return to the editing menu{CKk)
#selection:”,HENU2
CALL REWSCR

IF (NENU2.EQ.1) GO TO 500

IF (MENU2.EQ.2) GO TO 400 ﬂ
IF (MENU2.EG.3) GO TO 650
WRITE(10,1)

G0 TO 400

C0EHE06 0006000600000 0000000000000 000 0E 0000000000006 0BT 000 IE I I IR IR
500 IF (EBLKS.EQ.0) GO TO 250

TYPE "(CR)
--) entering D/A aode (--"

Create a flag file which wil) indicate to the D/A program to output

‘ the edit buffer instead of the data buffer., The parameters are
eritten to the flag file specifying the section of edit bpuffer to
output,

IO OO

INFOC1)=FIRBLK
INFO(2)=NUMBLK

CALL DFILWC"DIGIJKG",IER) jdelete possible flag file left from

32 previous abort
CALL CFILW("DIGI.FG",2,{ER)
CALL FOPEN(1,"DIGI.FG™)
CALL WRSEQ(1,INFO,4,IER)
CALL FCLOSE(1)

IF (MODE.EQ.SHORT) CALL SWAP("SMALLOUT.SV",IER)
IF (MODE.EQ.LONG) CALL SWAF("BIGOUT.SV",IER)
J¥ (IER.NE.1) TYPE "SWAP error “,IER

CALL DFILW("DIGI.FG",IER)

1¥ (MENU1,.EQ.1) GO 1D 103 3to the editing menu

IF (MENU1,EQ,2) GO TO 325 ;to the volt hist menu
IF (MENUL.EQ,3) GO TO 365 jto the block hist aenu

(2232322323222 2222223222322 2322222332322 332223 3222223222222 3222 3]

This section of code delietes the histogram blacks by overwriting these
blaocKks in the edit buffer with the data iamediately following the
histogram biocks. The histogram parameter arrays are similarily
updated,

CICICIOIOD

600 CALL FOPEN(!,"DIGL.EL™)

NUMBLK=EBLXS-LAST
STIBLK=LAST-1

405 KEADBLK=NUMBLK :
IF (READBLK.CT.40) READELK:=40 |

121

-

- C

L am e SO S e S A aul S iR S o

LA aan LA
]

yyw— vva—rgv'v.

)¢

T

606

815

450

NUMBLK=NUMBLK-READBLK

CALL RDBLK(1,STHLK,IDATA3,READBLY,IER)

IF (IER.NE.1) TYPE "KDELK error *,IER,” with edit buffer"
CALL WRBLK(1,FIRBLK,IDATA3,READELK,IER)

IF (IEK.NE.1) TYPE "WKKLK error “,IER," with edit buffer"
STBLK=STELK+READBLK

FIRBLK:FIRELK+READBLK

IF (NUMBLK.NE.0) GO TO 605

CALL FCLOSE(1)

DO 615 I:FIRST,LAST

J=1+HBLXS

CLIPS(I)=CLIPS(J)

RNAXS (1) =RMAXS(J) .
RNINS (1) :=RNINS(J)

DO 615 k=1,20

SANPS(I,K)=SANPS(J,K)

CONTINUE

EBLKS=EBLKS-HBLKS

TYPE “(CK?
®The edit buffer has been updated.”

;set the D/A parameters to output
LKS jthe entire edit bhuffer

jreturn to main Renu

FIRELK=0
NUNBLK=EB
GO TO 105

C 003606369696 06 9696 3 36 96 96 96 36 96 36 36 96 36 36 36 06 36 36 36 06 96 16 36 36 36 36 36 96 76 36 36 36 36 16 36 36 96 36 36 36 36 06 46 36 08 O 06 96 36 06 36 6 06 06 36 36 90 36 06 06 26 36 36 36 36 6 3t M ¢

700

13

705

i1

710

IF (EBLKS.EQ.0) GO TO 250

WRITE(10,13) EBLKS,EBLKS
FORMAT (" (CK?

%The edit buffer contains “,I3," diskblocks nusbered 1 - ",13,".")
TYFE *©

#It can be written to specified blocks of an existing file,(LR)

%or to a new file,”

ACCEPT "(CR)

kEnter the filename for ariting:”
READ(11,11) FILENAN(1)
FORMAT(S13)

10P=0

CALL STAT(FILENAN,STATUS,IER)

IF (IEK.EQ.13) GO TO 710

IF (IER.NE.1) TYPE “STAT error “,IER," with your file"
FBLKS=STATUS(Y)

IF (STATUS(10).EQ@,512) FBLKS:=FBLKS+1

GO Y0 720

CALL CFILW(FILENAM,2,1EK)
122

&
4
q
A
1
1
1
4
4
A
[

;
e
3
b
\'4
g IF (IER,NE.1) TYPE “CFILW error “,IER," with your file"
: 715 CALL OPEN(1,"DIGI.ED",1,IER)
' IF (IER.NE.1) TYFE “OPEN error ",IER,” with the edit buffer”

CALL OPEN(2,FILENAM,3,1ER)
IF (IEK.NE.!) TYPE "OFEN error ",IER," with your file"

STBLK=0

FIKBLK=0

BLKS=EBLKS

IF (10P.EQ.0 .OR. IOP.EG.1) GO T0 717

T Td

716 IF (FBLKS.NE.O) MWRITE(10,15) FILENAM(1),FBLKS
' 15 FORMAT(“(CK)

1 %#File ",513," contains “,13," disk blocks.")
‘ IF (FBLKS.EQ.0) WRITE(10,14) FILENAN(})

16 FORMAT("(CR)

{ #File ",513," is empty, it contains zero disK blocks.,™)
p TYPE "
f #Disk blocks are numbered beginning with one.,”
}' ACCEPT "(CK}
b #Please specify the starting block for the data buffer(CR)
\ #to be written:”,FIRBLK
3 FIRBLK=FIRBLK-1
- IF (FIRBLK.GE.O) GO TO 717
i G0 T0 714
¢
tc O 717 NUMBLK=BLKS

IF (NUNRLK.GT.40) NUNBLK=40

BLKS=BLKS-NURBLK

CALL RDBLK(1,STSLK,IDATA3,NUNBLK,IER)

IF (IER.NE.1) TYPE "KDBLK error ",1ER," with the data buffer”
CALL WKBLK(2,FIRBLK,IDATA3,NUNBLK,IER)

IF (IER.NE.1) TYFE "WRBLK error “,IER," with your file"
STBLK=STBLK+NUMBLK

FIRBLK=FIKRHLK+NURELK

IF (BLKS.NE.0) GO TO 717

CALL RESET
WRITE(10,12) FILENAM(1)
12 FORMAT("(CK}
%#The data buffer has been written to file *,513)
GO TO 105

FC 720 MWRITE(10,14) FBLKS
14 FORMAT("(CR)
#This file already exists in the current directory.(CR)
¥It contains ",13," disK blocks.”)
ACCEPT “(CR)
#Do you want to,{(CR)
¢ ¥ 1: delete the current file(CR)
t oversrite specitied hiocKs of the current fi1le(CR}
create a new file(CK)
return to the editing menu{CK)

12

we oe &

3
4

‘&

v oy v~

—%

Q)O

kselection:”,l0P
CALL NEWSCK

IF (I0P.EQ.1) GO TO 730
IF (10P.EQ,2) GO TO 715
IF (10P.EQ.3) GO TO 705
1F (10P.EG.,4) GO TO 105
WRITE(10,1)

GO TO 720

730 CALL DFILW(FILENAM,IER)
IF (IER.NE.1) TYPE "DFILW error ",IER,” with your file"
GO TD 710

060606060060 063600636 00600960 066 3630 962606600060 5606 00060000060 0006 06000360600 0600000000 060060000000 000 DE M IR B D0 OE R
1000 CALL NEWSCK

CALL EXIT

END

Cll!I*l**l*l*!i*!*l***ll*llII!****ll!*!***il**l**ll*l!lllll&**lll!lilil*il*lI

124

v

~—v—Tr v

= wWT W A AT T W T T T T eT T

(2123232222322 2 3233322222322 2223 222222 2232 2223223 2222233232223 1323233

¢
c
¢

CTOIIC:OICIOI IO

[R]

Title: Swallln
Author: Lt Allen
Date: Dec 82

Function:
This progras handles the short mode A/D conversion operations
in the SPEECH package, The SPEECH package is a siz-progras
package that utilizes the Ecligse A/D/A device to work with
speech data files. This program is not a stand-alone progranm.
It’s operation depends upon parameter files created by ather
programs, To understand the operation of this program, program
SPEECH, which is the central progras of the package, shauld
be consulted first,

Compile command:
FORTRAN SHALLIN

Load command:
RLOR/P 2/K SMALLIN NEMSCR SAMCONFIG3 QSAMLIBR

Comments:
The save file (,5V) of the following programs are required in
the user’s directory to operate this package,

" SPEECH,EDITOR,SMALLIN,SHALLOUT,BICIN,BIGOUT

IR 3221222322222 2222223222323 28222 23223323333 333323322337133333"

EXTERNAL 1DS21 jdeciare A/D device

EXTERNAL IDS23 imust also declare D/A device

CONNON / IBUFF / IDATA3(15872) jsetup the A/D conversion data buffer
COMMON / IBUFO / IMASTE jmust also set up a D/A buffer
INTEGER IDRBA(14)

IDATA1=60000K juse channel one and external! clock
CALL NEMSCR :erase the screen

TYPE “(CR)
&% --) the program is in A/D mode (--"

CALL DSTRT(IER) sinitialize A/D/A device
IF (IER.NE.1) CALL ERROR(“DSIRT error")

CALL OPZN{1,"DIGI.DT",3,1ER) jready program SPEECH's data
jbuffer for writing
IF (IER.NE,1) TYPE “OPEN error “,lER," with the data buffer"

100 ACCEPT "(CK)

#Press the carriage return to begin”
ACCEPT

CALL DOITW(IORBA,IDS21,8,IDATAL,15872,1DATA3,IER)

175

T

£

IF (1ER.NE.1) TYPE "DOITW ervor”,IEK

TYPE “(7X(7)(7){(CR)}
#That's al) folks!"

150 I0P=0
ACCEPT “(CK)
%press the carriage return to return to the sain wenu,(CR)

¥or press the space bar and carriage return to do a retake:"
READ(11,2) IDP
2 Fokmat(§1)

CALL NEWSCR

IF (10P.EG,0) GO TO 200
IF (10P.E0.8192) GO 10 100 .
WRITEC10,1)

1 FORMAT("(CR)(7)(CR)(7)(CRY(7)

%Please select only from options given.")
60 10 150

200 CALL WRBLK(1,0,IDATA3,42,1ER) g3write the conversion data to

jprograa SPEECH's data buffer
IF (IER.NE.1) TYPE "WRBLX error ",IER,"with data buffer”
CALL CLOSE(1,IER)

IF (IER.NE.1) TYPE “CLOSE error”,IER,” with data buffer”

TYPE "(CK)

£ --) exiting #/D wode (--°
CALL EXIT
END

06082606 36 96 06 08 26 06 36 0606 06 06 36 06 06 06 06 06 0696 06 06 06 06 96 06 36 36 96 36 16 06 96 96 26 06 J6 96 06 J6 36 0060 DT D000 D R UMMM MU N RUERURNE R

126

N N s e g

Lo,

Q

i o -

C 0606 0606 0606 36 06 06 9692 96 96 96 3636 06 06 1606 06 06 0606 06 06 06 06 06 06 JE 0600 00 06 B 6 D M I B O M R B MM E MU M MMM MMM MU NN

€ Titie: SmallOut

C Author: Lt Allen

c Date: Dec 42

c Function:

c This progras handles the short mode D/A conversion operations
C in the SPEECH package. The SPEECH package is a siz-program

C package that utilizes the Eclipse A/D/A device to work with

C speech data files. This program is not a stand-alone progran,
L It's operation depends upen parameter files created by other
c programs. To understand the operation of this program, prograa
c SPEECH, which 1s the central program of the package, should

C be consulted first,

C Compile command:

C FORTRAN SMALLOUT

C Load cosmand:

c RLDR/F 2/K SHALLOUT NEWSCR SAMCONFIG4 ASAKLIBR

c Comments:

c The save file (.SV) of the following programs are required in
C the user's directory to operate thils package,

c " SPEECH,EDITOR,SMALLIN,SRALLOUT,BIGIN,BIGOUT

o NI I 000600 I NN I D N RN N R RN RN RRERERRRURER

EXTERNAL 1DS21 suust also declare A/D device

EXTERNAL IDS23 jdeciare D/A device

CONMON / IBUFF / INASTE smust alsc set up A/D buffer

COMMON / 1BUFD / 1DATA3(15872) ;set up the D/A conversion data huffer

INTEGER IORBA(16),STATUS(18) ,NUMBLK ,NUMB,FIKBLK,IEXT
INTEGER PLACE,ZERO,INIT,READBLK,INFO(2)

IDATA1:464000K juse channel! one and external clock
CALL NEWSCK jerase the screen

TYPE “(CR)
® --) the program is in }/A wode (--"

CALL DSTRT(IER) sinitialize A/D/A device
IF (IER.NE.1) CALL ERROR("DSTRT error™)

CALL OPEN(1,"DIGI.FG";1,1ER)

IF (IER.EQ.13) GO T0 100 ;if flag file does not exist, then
joutput data buffer

GO T0 200 jelse output the edit bhuffer

Gl kM R RN R R R AR AR RN RN RN R RN R P RN RN RN RN

127

This section of code sets the output parameters to output the emtire
data buffer,

[B I x N o]

100 CALL CLOSE(1,IER)
CALL STAT("DIGI.DT",STATUS,IER)
NUMBLK=5TATUS(9)+1
FIRBLK=0
CALL FOPEN(1,"DISI.DT"™) jopen the data buffer for reading
GO TO 300

000000 0036 06 00 00 00 06060606 06 06 06 06 06 36 06 36 06 06 06 06 06 06 06 06 06 96 06 06 06 06 06 36 06 06 36 06 06 36 36 36 06 36 36 08 06 J 00 06 0636 00 36 064606 06 06 06 96 96 06 36 36 J0 00 46 I 36 36 6

This section of code retrieves the parameters.from the flag file
that specifies the section of edit huffer to output,

Lar 3 2 BN o B o]

200 CALL RDSEQ@(1,INF0,4,IER)
CALL FCLOSE(1)

FIRBLK=INFO(1) 3;the first black
NUMBLK=INFQ(2) jthe number of data blocks
CALL FOPEN(1,"DIGI.ED") jopen the edit buffer for reading

o000 006 0600606 360606 3 06 06 060606 363606 36 06 06 06 0606 36 00 JE 006 I 06 06 I JE 00 JE D6 JE I JE D 6D D D DR

500 CALL RDBLK(1,FIRBLK,IDATA3,NUNBLK,IER)

1F (1ER.NE,1) TYPE "RDELX error “,IEK," with output buffer”
IDATA2=NUMBLK%¥256 ;the number of data samples to output

505 ACCEPT “(CR)
kPress the carriage return te begin”
ACCEPT

506 CALL DOITW(IORBA,IDS23,8,26624,1DATAZ2,IDATA3,IER)
IF (IER.NE.1) TYFE “DOITW error ",IEKR

510 1I0P=0
ACCEPT “(CK?
%press carriage return tc continue,(CR)
%or press space har and carriage return to repeat:”
READ(11,2) 1a0P
2 FORMATISY)
CALL NEWSCER

IF (10P.EQ.0) GO TO 1000
IF (I0P.EQ, 8192) GO T0 506

WRITE(10,1)
1 FORMAT("CCRIC7)CCRIC7(CRI(7)

¥Please select options from the list only.")
GO TO 510

1000 TYPE "{(CK)
128

L — o B

-
¥ --) exiting D/A wode (--"
2 CALL EXIT
a : END
R
,_(06 06 6 066 960696 0606 06036009006 2006 3006060606 060606060 0606 06606 00660600000 0 A0 006 3000 I B0 DE D00 DN A0 EBE D Q0 D B I B R BE I

129

g —

Q

O NN N N RN RN RN RN RN NN

3 OO OCO, I,

[x ¥ -}

[3 o JE]

Title: Bigin
Author: Lt Allen
Date: Dec 82

Function:
This program handles the long mode A/D conversion operations
in the SPEECH package., The SPEECH package 15 a six-progran
package that utilizes the Eclipse A/D/4& device to warkK with
speech data files. This programs is not a stand-alone program.
It's operatiaon depends upon parameter files created by other
prograns, To understand the operation of this program, program
SPEECH, which i1s the central program of the package, should
be consulted first.,

Comspile cowmand:
FORTRAN BIGIN

Load command:
RLDK/FP 2/K 2000/N BIGIN NEWSCR SARCONFIG3 @SAMLIB®

Comments:
The save file (.,5V) of the following programs are required in
the user's directory to operate this package,

SPEECH,ED1TOK ,SMALLIN,SMALLOUT,BIGIN,BIGOUT

R I I I s ezt iz sssssssseslzssssziatssiziizaaaazesizizszsiiy]

[r I or N o B o]

EXTERMAL IDS21 sdeclare A/D device

EXTERNAL 1D523 smust also declare D/A device

COnMON IWIND(10240) jextended memory window

COMMON / IBUFF / IDATA3(10240) j3set up the A/D conversion data buffer
COMMON / IBUFO / IWASTE smust also set up a D/A buffer

INTEGER IOKBA(16),IFILE(7)
CALL NEWSCR jerase the screen

TYPE "(CR)
® --) the program is in A/D mode (--"

Set up extended wemory to hold the results of the first four conversion
operation calls,

CALL VMEM(IEXT,L1ER)

1F (1ER.NE.1) TYPE "VRMEM ervor “,l(ER

IF (IEXT,LT.40) CALL ERROR("insufficient extended memory")

CALL MAPDF(40,IWIND,10,1ER) jeach conversion operation will
jcollect 10KM of data

IF (1IEK.NE.1) TYFE “"NAFPDF error ",IER

CALL DSTRT(1ER) sinitialize A/D/A device

130

150

[M N

200

....... v g .- . e Ty N e N e T

IF (IER.NE.1) CALL ERROR("DSTRT error")

CALL OPEN{(i,"DIGI.DT",3,IER) yready program SPEECH's data
thuffer for writing

IF (IER.NE.1) TYPE "OPEN error “,IER," with data buffer”

100 TYPE “(CK)

#Press the carriage return to begin:”
ACCEPT

CALL DOITW(IOKBA,1DS21,8,24575,10240,IDATA3,IEK)
CALL VUSTASH(IDATA3,1,10240)

CALL DOITW(IOKBA,IDS21,8,24576,10240,1DATA3,IER)
CALL VSTASH{IDATAD,10241,10240)

CALL DOITW(IOKBA,1DS21,8,24576,10240,1DATAS,IER)
CALL VSTASH(IDATA3,20481,10240)

CALL DOITW(IORBA,IDS21,8,24576,10240,IDATA3,IER)
CALL VSTASH{IDATA3,30721,10240)

CALL DOITW(IORBA,IDS21,8,24576,10240,IDATA3,IER)

TYPE “(7¥{(7){7)LR}
#That's all folks!"

10P=0

ACCEPT “(CR)
#Press carriage return to return to the main menu,(CR}
%0or press space bar and carriage return to do a retake:"
READ(11,2) I0OP

FORNAT(S1)

CALL NEWSCR

1f (10P.EQ.0) GO TO 200

IF (IOP.EQ.,81%2) GO TO 100

WKITE(10,1)

FORMAT("(CRI{(7X{CRY{7X(CR)(7)

kPlease select only from options given,")

GO0 T0 150

Write the conversion data to program SPEECH’'s data buffer,

CALL WRBLK(1,160,IDATA3,40,IER)
IF (IER.NE.1) TYPE "WRBLK errvor ",IER," with the data buffer”

CALL VFETCH(IDATA3,1,10240)
CALL WRBLK(1,0,1DATA3,40,1ER)

CALL VFETCH(IDATA3,10241,10240)
CALL WRBLK(1,40,1DATA3,40,[ER)

CALL VFETCH(IDATA3,204681,10240)
CALL RRBLK(1,80,IDATA3,40,IER)

131

T T W T e T

_— e w T e

J.,‘

v

gl annt

—— Pk Ay . T e
- T T T W Y
e -

CALL VFETCH(IDATA3,30721,10240)
CALL WRELX(1,120,1DATA3,40,1ER)

IF (IER.NE,1) TYPE “WRBLK error “,IER,” eith the data buffer"
CALL CLOSE(1,IER)

[F (IER.ME.1) TYPE "CLOSE error ",IER," with the data buffer”

TYPE “{(CK)
% --) exiting A/D mode (--"

CALL EXIT
END

G096 0636 000606 0606 06 06 0606 1626 06 6 06 060 026 000 HE 0600 600 0000 000000 00 00 06 06 06 00 06 0606 00 B0 TR B0 JR R 0 TR J 00T 00 dE 0000 30 06 06 J6 06 06 06 06 06 06 36 3¢ 38

132

Q

D003 300000 30 0000000000 00 0000 00 000000 000600 36 06 00 06 06 006 00 J6 06 0600 06 06 06 00 06 00 00 06 06 00 00 00 00 00 06 06 06 36 06 00 0 JF 0 06 3006 06 0606 00 D 0 06 G 06 00 D6 06 8

[N = OO e [z NN]

Ll

[2 xr N o)

Title: BigOut
Author: Lt Allen
Date: Dec 82

Function:
This program handles the long mode D/A conversion operations
in the SPEECH package. The SPEECH package is a six-program
pacKage that utilizes the Eclipse A/D/A device to work with
speech data files. This program is not a stand-alone program,
It's operation depends ypon parameter files created by other
programs, To understand the operation of this program, progran
SPEECH, which is the central progras of the package, should
be consulted first, iy

Compile command:
FORTRAN BIGOUT

Load cowmmand:
RLDR/P 2/K 2000/N BIGOUT NEWSCR SAMCONFIGC4 @SAMLIbR

Comments:

The save file (.SV) of the following programs are required in
the user's directory to operate this package,

SPEECH,EDITOR ,SMALLIN,SHALLOUT,BIGIN,BIGOUT

ORI NI 003000000 I 00 006 J6 006 36 060 0T M IO O RN NN

[r o B o

EXTERNAL 1IDS21 joust also declare A/D device

EXTEKNAL 1DSz3 jdeclare D/A device

COMMON IWIND(10240) jextended wemory window

COMMON / IBUFF / IWASTE smust also set up A/D buffer

COMNON / TBUFO / IDATA3(10240) jset up the D/A conversion data buffer

INTEGER IOREA(14),STATUS(18) ,NUMKLX ,LASBLK,FIRBLX,1EXT
INTEGER PLACE,ZERO,INIT,READBLK,INFO(2) ,MANY,SET

IDATAL1:44000K juse channel one and external clock
CALL NEWSCR jerase the screen

TYPE “(CR)
% --) the program is in D/A mode (--"

Set up extended memory to hold conversion data to bhe output,

CALL VHERM(IEXT,IER)

IF (IER.NE.1) TYFE “VNEM error ",IER

IF (IEXT.LT.40) CALL ERROR("insufficient extended wemary")

CALL MAPDF(40,ININD,10,1ER) seach conversion operation will
soutput 10K¥ of data

IF (IERK.NE.1) TYFE "MAFDF error “,lEK

133

e

Py

D s

T ——
-

CALL DSIRT(IER) jinitialize A/D/A device
IF (IER.NE.1) CALL ERROR("DSTRT error")

CALL OPEN(1,“DIGI.FG",1,1ER)

1F (IER.EQ.13) GO TO 100 ;if flaq file does not exist, then
soutput data huffer

GO TO 200 jelse output the edit buffer

C 0606060698 0606 06 36 06 06 96 06 30 36 06 06 36 96 06 00 96 06 06 36 0 96 06 06 6 06 06 00 06 06 06 06 06 36 06 6 36 36 06 06 36 36 06 06 96 16 06 96 26 06 06 36 46 36 36 06 06 06 36 36 06 36 00 36 06 06 36 6 3 X6

This section of code sets the parameters to output the entire
data huffer.

[B o B o B o]

100 CALL CLOSE(1,IER)
CALL STAT("DIGI.DT",STATUS,IER)
NUMNBLK=STATUS(9)+1
FIRBLK=0
CALL FOPEN(1,"DIGI.DT") jopen the data buffer for reading
TYPE "(CR?}
¥ --) the programs is in D/A mode (--"
GO0 TO 500

0606 06 0636 96 060836 06 96 36 00 00 6 36 06 06 96 36 06 6 06 36 36 26 06 06 06 06 06 06 26 6 96 06 06 06 06 06 06 06 0 30 06 36 08 06 6 06 06 36 06 06 06 36 36 J6 06 06 06 06 96 06 00 46 36 36 06 36 06 36 6 06 3t 3

This section of code retrieves the parameters from the flag file
that specifies the section of edit buffer to output,

IO

200 CALL RDSEQ(1,INFO0,4,IER)
CALL FCLOSE(1)

FIRBLK=INFO(1) jthe first block
NUMBLX=INFO0{2) sthe numher of blocks
CALL FOPEN(1,"DIGI.ED")

06060636 96 00 06 06 06 96 06 0606 06 06 00 36 00 38 06 00 06 00 06 06 06 00 06 06 00 06 06 36 36 06 06 06 0606 0 06 36 06 3606 36 06 06 00 06 06 00 36 06 06 06 30 36 36 06 46 08 06 06 06 06 06 00 06 06 06 0 9 06 3 &

This section of code places the data to be ouput in the first NUNBLX
blocks of the conversion data buffer. Any remaining conversion data
buffer blocks are zero filled. Each D/A operation will output 200
disk blocks of data in 40-disk block sections.,

[N X o B i)

500 CONTINUE

PLACE=1
ZERO=0
INIT=FIKBLK
LASBLK=NUMBLK
SET=0

IF (LASBLK.LE.40) GO Tu 502
LASBLK:=40
134

Q¢

501

530

520

502

540

503

504

......

FIRBLK=FIRBLK+40
NUNBLK=NUNBLK-40

READBLK=NUMBLK
1F (READBLK.GT.40) READBLK=40
NUNBLK=NUNBLK-READBLK

CALL RDBLK(1,FIKBLK,IDATA3,KEADKLK,I1ER)

IF (IEK.NE.1) TYPE “RDBLK error “,IER," with the output buffer®
WANY =READBLK %254

IF (NANY.EQ.10240) GO T0 520

WARY =NANY +1

DO 530 I=MANY,10240

IDATA3(1)=ZERD

CONTINUE ;
CALL VSTASH(IDATA3,PLACE,HANY)
PLACE=PLACE+RANY

FIKBLX=FIRBLY +READELK

SET=SET+1

IF (NUMBLK.NE.0) GO TO 501

IF (SET.EQ.4) GO TO 503

DO 540 1:1,10240
IDATA3(1)=ZERD

CONTINUE

PLACE=(SET#10240)+1

CALL VSTASH(IDATA3,PLACE,10240)
SEYT=SET+1

GO TO 502

CALL RDBLX(1,INIT,IDATA3,LASBLK,IEK)
IF (1IER.NE.1) TYPE "RDBLK error ",I1ER," with output buffer"
PLACE=(LASBLK¥256)+1

IF (PLACE.GT.10240) GO TO 505
IDATA3(PLACE)=ZERO
PLACE=PLACE+1

G0 T0 504

U000 T 0000063606 086 30 06 06 26 06 06 36 96 06 06 06 36 06 06 36 06 06 0 06 96 36 06 06 06 6 06 06 36 06 6 36 06 06 06 6 08 16 06 26 06 06 06 36 06 16 06 3 06 16 6 36 06 06 06 06 06 06 6 36 06 06 06 36 3t

505

506

ACCEPT "{(CK)
#Press the carriage return to begin”
ACCEPT

CALL DOITW(IORBA,IDS23,8,26624,10240,1DATA3,1ER)

CALL VFETCH(IDATA3,1,10240)
CALL DOITM(IORBA,ID523,8,26624,10240,IDATA3,IER)

CALL VFETCH(IDATA3,10241,10240)
CALL DOITW(IORBA,1DS23,8,26674,10240,1DATA3,1ER)

CALL VFETCH(IDATA3,20481,10240)
135

T T Y TN Y
.

R ———
-

-

YR

LA 43 8 SIS 40

LA n me o o

PP———

- A

CALL DOITN(IORBA,IDS23,8,26624,10240,1DATA3,IER)

CALL VFETCH(IDATA3,30721,10240)
CALL DOITW(IORBA,1D523,8,26624,10240,1DATA3,IER)
IF (IER.NE.1) TYFE "DOITW ervor ",IEK

510 10P=0
ACCEPT "(CK)
%press carriage return to continue,(CK)
%¥or press space bar and carriage return to repeat:”
READ(11,2) IOP
2 FORNAT{(S1)
CALL NEWSCR

IF (10P,EQ.0) GO TO 1000
IF (10P.EQ, 8192) GO TO 503
WRITE(10,1)
1 FORMAT("CCRI(7)(CRI(7)(CRI(7)
#Please select options from the list only.,")
G0 T0 510

1000 TYPE "(CR)
& --) exiting D/A wode (--"
CALL EXITY
END

09606 06 06 06696060600 06 06 06 06 066 6 06 00 06 06 06 06 0606 06 60696 06 06 0096 06 06 96 06 060606 76 0600 00 00626 360600 3000 D000 D0 JE O DE 0GR DEDE R XM IO 0

136

e S

R R RN RN RN RN RN RN RN R R RN RRR AR RRERERERRE

Title: Digitize
Author: Lt Allen
Date: Dec 82

3

Function:
This is the central program of a three-program package that
interactively alloms the user to set different operating features
of the Eclipse A/D/A device,

IITICY

Environment:
This is a Fortran V program that has been designed to run on a
mapped-KDOS Eclipse 5/250 minicomputer equipped with a model 4331
single board converter,

OO0

Compile command:
FORTRAN DIGITIZE

[M/

Load cosmand:
RLBR/P DIGITIZE OFLIBE

[>/

Coanents:

Refer to line 5 of the progras text for information regarding
the data buffers in this package.

[y I o]

The save file (45V) of the following programs are required in
the user’'s directory to operate this package,

[N o]

t DIGITIZE,INDIGI,OUTDIGI
Col RN NI I I I IR R RN RN RN R RRARNRRRRNS
INTEGER OPTION

5 TYPE "(CR}
%The A/D and D/A data buffers are separate mith each dimensioned(CR)
%£to their maximum spec size of 14KW, Due to the data huffers heing{(CR)
%this large, this program swaps to program INDIGI.SV for A/D(CR}
tconversions and swaps to OUTDIGI.SY for D/A operations.{CR){CR)
#To output data collected in A/D mode, the A/D data buffer must(CR)
%he written to 2 disk file while in A/D mode and then read into(CR)
#the D/A data buffer after smitching to D/A mode.”

10 ACCEPT "(CR)

#Please enter shich operation will be performed,(CR)
13 A/D conversions(CRK)

& 2: D/A conversions(CR)

£ 31 exit(CR)
tselection:”,0PTION

IF (OPTION.GT.1 .OK., OFTION.LYT.3) GO TO 20

TYPE "(CRI(CRI(CR)
%Flease select options from the list oniy,"

GO 10 10

137

- . PR Y SN VIS W N S WD WO
e - -

20 IF (OPTION.EG.1) CALL SWAP("INDIGI.SV",IER)
IF (OPTION.EQ.2) CALL SWAP("OUTDIGI.SV“,IER)
.IF (OPTION.EQ.3) GO T0 900
IF {IER.NE.1) TYPE “(CK}
%¥SWAP error “,IER
GO TO 10

900 CALL EXIT
END

06 160606 06 00 06 06 36 06 06 06 06 06 06 06 06 36 0606 36 36 06 06 06 06 06 26 06 06 9606 06 06 06 06 06 06 30 36 0096 06 00 36 96 06 06 06 06 16 00 30 36 36 96 00 36 06 0696 06 06 08 06 06 06 06 36 06 36 96 3 3t 96

T Tall

T

At St L o0 e AR Eaand) - SRR

PR e e e

- — ———————~ — = % T~ ¥

\\\\ TR

— T A R bl b R bl

CREEREEERIEENIEI AR NEEEINEETRN I NI R R RN NIRRT RN RN XRNRERIERE RN

[qr 2 2 I o [N A O I IO (x> N x)

Lap B B¥ or]

10

Titlee OutDigqi
Author: Lt Allen
Date: Dec 82

Function:
This progran handles the D/A wode options in the DIGITIZE
package, The DIGITIZE package is a three-program package that
interactively allows the user to select different operating
features of the Eclipse A/D/A device. This program, however,
can he operated as a stand alone proqranm.

Environment: .
This is a Fortran V program that has been designed to run

on a mapped-kDOS Eclipse 5/250 minicomputer equipped with a
nodel 4331 single board converter.

Compile command:
FORTRAN OUTDIGI

Load command:
RLDR/P 2/K OUTDIGI CLXSET CHNSET CNVSET SEEIT PAPER*
REDBUF SETUP HEADER WRTRUF WAKNNG SAMCONFIG4 @SAMLIEQ

Comments:

Refer to line 10 of the program text for the menu options of
this program.

The save file (.5V) of the following prograws are required in
the user's directory to operate the DIGITIZE package,

DIGITIZE,INDIGI,OUTDIGI

R R R R R RN NSRRI R RN RN RN RN RN R R RN RURA RN RARRNRANRRN

EXTERNAL ID521 ;A/D device required by SANM

EXTERNAL 1DS23 1D/A device

COMMON / IBUFF / IWAST 34/D data buffer required by SAM
COMMON / IRUFO / IDATA3(14384) sD/A data buffer

INTEGER FILENAM(7),10RBAC16),CLOCK,FIRST,N0DE,DEVICE

CALL DSTRT(IER) jalways initialize device
IF (JER.NE.1) CALL ERRURC"DSTRT error(CR)program aborted")

DEVICE:=23
TYPE "(CR)
#Program OUTDIGI.SV executing ---) the device is in D/A mode"

ACCEPT "{(CR)

¥Please select which operation mill be performed,(CR)
¥ 1: conversions{CXk)

¥ 2: data buffer display(CR)

%# 3t data buffer print(CK)

139

T T

'-'vmﬁv
‘

L(00

4: data buffer write to fiie(CR)
5: read from file to data bhuffer(CR)
é: data buffer demultiplexing(CLR?
t exit(CK?
selection:”,10P

wm & & Wk

IF (IOF.EQ.1) GO TO 20
IF (I0P.EQ.2) GO TO 40
IF (10P.EG.3) GO TO 40
IF (I0P.EQ.4) GO TU 80
IF (IDP.EQ.5) GO TO 50
IF (10P.EQ.6) GO TO 60
IF ¢10F.EQ.7) GO TU 90
WRITE (10,1)
G0 TO 10
1 FORMAT ("(CR)(CR)(LR)
%Please make selections only from the given options™)

CIF3006 0600000000600 I I A0 3 A0 I I N RN
20 CALL CLKSET(DEVICE,CLOCK) jset the clock
CALL CHNSET(DEVICE,¥IRST,NODE) yset the channel
IDATAL=((CLOCK,OR,FIRST).OR,NODE) .OK,4000K

25 ACCEPT "(CR)
Do you wish to set the conversion count (1),(CR)
%tor perform an error check (2)7",1ERK

IF (IERR.ED.1) GO TO 30
IF (1EKR.EQ.2) GO TO 35
WRITE(10,1)

G0 T0 25

60606 0600606060600 060 0636060000 03600 360006 0606 000606 0 3600000000 0600606 0606 06060360006 060606060000 060606 966 0606 J6 06006 0606 06 06 06 0 06 LI 6
30 CALL CNVYSET{IDATA2) jset the conversion count

CALL WARNNG(CLOCK) jgive warning message for clock set
ACCEPT

CALL DOITW(IORbEA, IDS23, 8, IDATA1, IDATA2, IDATA3, IER)

TYPE "(CK)

%#Conversion operation completed”

IF (1EK.NE,1) TYPE "DOIT error ",1EK

IF (JORBA(C14),NE.40000K) TYPE "I0RBA(14) return “",I0RBA(14)

IF (IER,EQ.1 ,AND. 1OKBA(14),EQ.40000K) TYPE “No errors reported”
G0 10 10

GOt 000 0NN NN NN NN RN RN RN RN

40 CALL SETUP(IFOK,I0F,ISTART,ISTOF) jget the parameters specifying
140

P

Py

3O

[B N 3/

jthe section of data buffer to be
smorKed with,

Display te user requested section of data buffer,

IF (10P.EG.2) CALL SEEIT(IFOR,ISTART,ISTOP,IDATA3,146384)

Print the header and the user requested section of data buffer,

IF (10P.EQ.,3) CALL HEADER(DEVICE,FIRST,MODE,IDATA2,IER,IORBA,CLOCK)

IF (10P,EQ,3) CALL FAPER(IFOR,ISTART,ISTOP,IDATA3,14384)
G0 10 10

O 06 0600 06 96 06 00 006 00 086 96 0626 06 06 06 36 36 0000 06 06 0 06 06 06 D006 JE 00 D0 D60 D0 D D MR DL RO DR N O M MM MR RNENNR

35

37

38

INCREN=1000

IDATA2=INCREN

CALL DOITW (IORBA, IDS23, 8, IDATAL, IDATA2, IDATA3, IER)
IF (1ER,NE.1) GO TO 38

IDATA2=IDATA2+INCREN

1F (1DATA2,GT.16384) GO TO 38

G0 T0 37

IDATAZ2=1DATA2-INCREN

CALL DOITW (IORBA, IDS23, 8, IDATAl, IDATA2, IDATA3, IER)
INCREM=INT{INCREM/10.0)

IF (INCREM,HE,Q) GO TU 37

TYPE “{(CR)
#DOIT error ",IER,"(CR)
¥on conversion count “,1DATA2

TYPE “(7)(7¥{(7)"

GO 10 10

C06 06 36 00 00 00 06 06 06 00 36 06 36 0036 06 006 0 0006 06 M0 M0 000 00000 D000 O 00 B 0006 0000000000 dE DD D DN TN NN

50

CALL REDBUF(IDATA3,14384) jlet the user read specified sections

jof a file into the data buffer.,
G0 T0 10

Co 00000000606 0090 00 3606 06 06 06 06 06 600 06 06006 0000 D QD M O O R NN RN RN NN NRRNERRRN

A0

TYFE “(CR)

¥The data buffer will be demultipleved by retrieving(CR)
%every NHth point from a specified starting point,.(CR}
#(CR)

%£There wil) be N-1 data buffer points sKipped(LR)
thetween each two demulitiplered points.(CR)

%#(CR)

#The first data buffer point is numbered one.”

ACCEPT "(CR)
¥Please specify,(CR)
* +") INTH
ACCEPT
141

—aa U T - - Po—— i ens v s o e W
e om e - ' — - -~

starting point:”,[ONE
IF (INTH.LT.2 +OR, IONE.GY.16384) GO T0 40

1STOP=146384/1INTH
INTH=INTH
J=10NE
X : DO 65 1=1,18T0P
i IDATA3(1)=IDATRI(J)
! V3J+INTH
45 CONTINUE
DO 66 1=15TOP+1,16384
1DATA3(1) =0
66 CONTINUE

' CO TO 10
L
i 36 06 98 06 36 36 96 6 36 36 96 36 36 36 06 36 36 36 36 96 6 36 36 6 J6 3 06 36 06 06 % 36 96 36 06 36 06 36 6 36 96 36 36 06 36 16 36 36 06 36 36 06 6 36 06 36 3% 36 36 0 96 36 06 9 06 96 06 O 36 36 6 36 36 ¢ ¢ ¥
| 80 CALL WRTBUF(IDATA3,14384) ylet the user write specified sections
sof data buffer to file.
e G0 T0 10

(96 36063606 08 96 060606 96 06 36 36 06 06 36 36 26 96 96 06 06 06 J6 06 06 06 06 06 06 06 06 06 06 06 06 00 16 36 36 06 06 06 36 00 06 0F 06 06 06 06 06 36 06 06 96 06 96 06 D6 06 96 06 36 96 36 36 06 06 36 46 06 96 36 3¢

90 CALL EXIT
END :

006 06 96 06000636 06 080696 36 96 06 36 96 06 36 36 96 06 06 06 06 36 96 06 06 06 48 6 J6 96 36 06 06 0F 36 36 06 06 06 36 06 06 06 26 6 06 36 06 06 06 96 06 06 36 06 06 36 96 06 36 36 96 36 96 06 6 9 96 3 06 06 2

v
L

142

— v v > T —
-

s

[P VP N -

CREREREREREMMERIIIE NIRRT 06003006 060600 00 060606 3000 00 06 06 06 06 06 00 06 06 36 0 06 36 06 36 6 06 06 00 36 6 06 36 96 36 06 06 36 6 06 6 2 &

C Title: InDigi
| c Author: Lt Allen

C Date: Dec 82
¥ c Function:
- c This program handles the A/D wode options in the DIGITIZE

c package. The DIGITIZE package is a three-program package that
! c interactively alloms the user to select different operating
: c features of the Eclipse A/D/A device., This program, however,
: c can be operated as a stand alone proqrams.
: c Environment:
. c This is a Fortran V program that has been desigined to run
! c on a mapped-KDOS Eclipse §/250 ainicomputer equipped with a
. C uodel 4331 single board converter,
%
¢ c Coapile coamand:
s c FORTRAN INDIGI
r c Load command:
’ C RLDR/P 2/X INDIGI CLKSET CHNSET CNVSET SEEIT PAPER*
) c SETUP HEADER WKTEUF WARNNG SAMCONFIG3 @SAnLlse

Comments:

Refer to line 10 of the program text for the menu options of
this progras,

-
\
e Xk

C The save file (.5V) of the following programs are required in
& c the user’'s directory to operate the DIGITIZE package,
C DIGITIZE,INDIGI,OUTDIC]

GO0 3000000000 3 0600 00606 30006 06 06 26 060 33 I 000606 DI I NN RN NRE

EXTERNAL IDS21 3R/D device
EXTERNAL 1D523 ;D/A device required by SAN
CONMON / IBUFF / IDATA3(16384) 3A/D data buffer

COMMON / IBUFO / IMAST 3D/A data buffer required by SAN
INTEGER IORBAC16),bEVICE,CLOCK,FIRST,LAST

DEVICE=21

TYPE “(CK)

%Program INDIGI.SV executing ---) the device is in A/D wmode"

X CALL DSTKT(1ER) jalways initialize device
, IF (IER.NE.1) CALL ERKOR("DSTRT error”)

’ 10 ACCEPT "(CR)

#Please select which operation will be performed,(CR)
1: conversions{CK)

% 23 data buffer display(tR)

143

T

]

]

)

]

]

]

3

]

|

]
]
4

r—rvvrv
-

!

I

Chiae Tt Than Jia aubet Sl ORI

Cland - seal g Shult S gt — . T AR MAEC T R R * *

% 3: data buffer print(CR)

& 4: data buffer write to file(CR)
¥ 9 exitiCk)

¥selection:™,I0P

IF (10P,EQ.1) GO TO 20

IF (IOP.EG.2) GO TO 50

IF (I0P.EQ.,3) GO TO %0

IF (10P.EQ.4) GO TO 40

IF (10P.,EQ.5) GO TO 80

WRITE (10,1)

GO TO 10

FORMAT (“(CR>(CR)(CK>
%Please make selections only from the given options™)

063606 0600 36 96 06 36 30 36 06 06 36 06 96 36 98 30 06 06 J6 96 36 08 26 36 36 36 96 36 36 36 36 06 36 96 96 36 6 06 9 36 36 36 96 36 98 36 96 % 96 36 96 36 16 36 3 36 36 36 3 J6 96 96 96 36 36 6 3 8 3¢ 36 6 96 3¢

20

30

CALL CLXSET{DEVICE,CLOCK) ;set the clock
CALL CHNSET(VDEVICE,FIRST,LAST) sset the channel
IDATAL1=(CLOCK.OR.FIRST) ., OR,LAST

TYPE "(CK)
#The device may give an errar far conversion counts(CR)
kabove 16073.(CK}
#(CR) '
#The error check option wil) return the maxiasum error{CR)
%#free conversion count for the set up given. The conversion{(CK)

#clock must allow far repeated conversion calls when using¢(CR)
#this option.”

ACCEPT "(CR}

#Do you wish to,(CK}

¥ 1: set the conversion count(CR)
2% perform an error check(Ck?
#selection:”,1ERR

IF (1ERR.EG.1) GO TO 40
IF (IERR.E0.2) GO TO 35
WRITE(10,1)

60 T0 30

360606 096 06 36 1006 06 96 06 36 08 16 3036 36 36 06 06 6 08 06 06 08 96 06 06 08 06 36 6 36 06 06 06 06 08 06 36 36 36 36 26 36 36 6 30 16 06 06 36 96 96 00 96 36 36 6 96 06 06 06 6 06 2 06 16 96 36 0 3 3 3 &

35
37

38

INCKERN=1000

IDATA2:INCREN

CALL DOITW(IORBA,IDS21,8,IDATAL,IDATA2,IDATAS,IER)
IF (IER.NE.1) GO TO 38

IDATA2:IDATA2+INCREN

IF (IDATA2,GT.16384) GO TO 38

G0 10 37

IDATA2:1DATAZ- INCKEN
144

A}r‘..n

Ty

-

CALL DOITW(IORBA,IVS21,8,1DATAL,IDATA2,IDATA3,.IER)

INCREM=INT(INCKEN/10.0)

IF (INCRER.NE.O0) GO YU 37

TYPE "(CR)
%«D0IT error “,I1ER,"(CR)
son conversion count ",IDATA2

TYPE "< (7X "

GO T0 10

CIE0 36006003630 0006 00960 36 36 063600000606 006 060036 60006000600 0000060606 06606 0000000006 03030000 06 00 DE 0 D0 0 D6 D0 R MR O I M B MO O
40 CALL CNVSET(IDATA2) jset the conversion count

CALL WARNNG(CLOCK) jgive warning message for clock set
ACCEPT

CALL DOITW(ICORBA,IDS21,8,1DATAL,IDATA2,IDATA3,IER)

TYPE “(7){(7X{7){Ck)
%¥Conversion operation coupleted”

IF (1ER.NE.1) TYPE "DOIT error ",1ER

IF (IORBA(14).HE.40000K) TYPE "IORBA(14) return ",I0RBA(14)

IF (IER.EQ.1 ,AND. IORBA(14),EQ.40000K) TYPE “No errors reported”
G0 T0 10

CRMIEE 00026000 0000000 0 200 0 DI 00D I 00 I I D00 TN D D OO M DI 0

50 CALL SETUF(IFOK,IO0P,ISTART,ISTOF) jget the parameters specifying
ithe section of data buffer to be
snorkKed with,

c
C bisplay the user requested section of data buffer.
c _
IF (10P.E@.2) CALL SEEIT(IFOR,ISTARY,ISTOP,IDATA3,146384)
c
C Print the header and the user requested section of data buffer,
c

IF (10P.EQ.3) CALL HEADER(DEVICE,FIRST,LAST,IDATA2,IER,IORBA,CLOCK)
IF (10F.EQ.,3) CALL FAPER(IFOR,ISTART,ISTOP,IDATA3,16384)
G0 T0 10

060600060606 36.0 0000 060000360 0606060606066 96 000606000600 06 060060606000 0606002606 2600 000 3600000 0000 JE 00O DO B B R M B O M I B D O
40 CALL WRTBUF(IDATA3,14384) stet the user write specified sections
jof data buffer to file,
GO T0 10

00 06 0006 06 00 06 06 06 06 9606 06 06 06 00 06 06 06 00 06 06 96 00 06 0600 06 06 0 06 06 06 06 6 006 6 48 0 00 000 00 3600 00 0006 00 00 36 00 06 00 00 0006 00 0000000000000 00 00 D0 Q0 Q00 O DE 8

80 CALL EXIT

END

C 00060606 0606 0608 06 3696060006066 06 06 060606 06 06 000 96 06 00 06 06 006 00 I JE O MR R MMM R X MR KRR NNAE
145

E
|
3

7 o« e

e T v wer o

GO 360 00 3600 003606 00 0000 000 00 I I A N NN NN RN RN

90 [x N o] [N N [I] [B I x4 (o B o N o]

I

™™

c

Title: Cnvrt
Authar: Lt Allen
Date: Dec 82

Function:
This program converts conversion data from the format used
by the Eclipse A/D/A device into real number data and vice-versa.

Compile Command:
FORTRAN CNVRT

Load Command:
RLDR/P 2000/N CNVRT COMLN SORT2 STATUS DELCHC FILCHC &FLIBe

Environment:

This is a Fortran V program that has been designed to run on
a mapped-RDOS Eclpise 5/250 minicomputer.

Command line:
CNURT (/R or /1) input/1 [/D] output/0

where “input” and “output” are any legal RDOS filenames.

Either the R ar 1 switch must be attached to CNVKT. The K
switch denotes conversion frow device format to real and
the 1 switch denotes conversion frow real to device format,

The input and output filenames can be typed in any order,
however, the I switch should always be attached to the

input file and the 0 switch should always bhe attached to the
output file,

The D switch can only be attached to the input file, and
deletes the input file after the output file has been created,

Comments:
This program is desiqned for use with conversion data that was

collected with or will be ocutput by the device set at an operating
range of +/- 3v.

The output file wil) be created as a random file, If
it already exists, the original file will be deleted first.

The input file cannot he larger than 32748 disk hlocks. There
is not an errcr check for this conditian.

This program requires 8K of extended memory.

G336 00 0600000 000006000606 06 066 0060000 0 I I RN MR NANNERRNN

CONMDR IWAST(1024) tHin size window reaniced for
sextended mesory setup

146

P W 3 . i . o PP NP N Sy

N 3 'rv . .

e g, -

L A ae o0

YT YT
-

Ty Yy f'T T ——m
. : .) s

M

A I ot

R DT T,

L gl g R TN e —— n s anaa e

Appendix D

Source Code
for
Signal Processing Software

RDISC=RDISC+WBLK
IF (RSWIT) ILN=ILN-(WBLK#128,)
' IF (ISWIT) ILN=ILN-(WBLK#256.)
l': , IF (AGAIN.EQ.1) GO T0 10 3if true, have not finished all
» jinput data

30 CALL CLOSE(2,IER) ,

. IF (IER.NE.1) TYPE "CLOSE error”,lER,"with output file"
CALL APPEND(2,FILED,2,1ER)

IF (IER.NE.1) TYPE “APPEND error”,l1ER,"with output file"
BYTS=1LN*4

IF (ISMIT) BYTS=BYTS/2 ‘
IF (RSWIT) START=(WBLK#128)4+1 j
IF (ISWIT) START=(WBLK%256)+1 l
IF (RSWIT) CALL WRSEQ(2,REALNUM(START),BYTS,I1ER)

IF (ISWIT) CALL WRSEQ(2,INTNUR(START),BYTS,I1EK)

IF (IER.NE.1) TYPE "WRSEQ error”,l1ER,"with output file"

CALL RESET
G060 000 0000000 06 00606 00606 0060606 0 TR O SO IR M RN NNN K A
¢
c - Handle the D switch option,
C

CALL DELCHC(FILEI,FI)
80 CALL EXIT
END

GBI NI 0600 0 I R RN RN RN FARNRR 05

. 149

— = T T

a

IF (IER.NE.1) TYPE "OPEN ervor”,IER,"with output file”

Set up extended memory to hold input data. The 8XW of extended
aemory can hold 8192 integer elements (to be converted to 8192 real)
or 40946 real elements (to be converted to 4094 iwteger),

IO,

CALL VMEM(EXTM,IER)

1F (IER.NE.1) TYPE "VUMEM error”,IER

IF (EXTH.LT.8) CALL ERROK("not enough extended memory™)

IF (RSWIT) CALL WAPDF{8,IWAST,1,[EK) j3retrieve one-word elements
IF (ISWIT) CALL RAFDF(8,IWAST,1,2,1ER)jretrieve two-word elesents
1F (IER.NE.1) TYPE "HAPDF error",IER

GO A0 00 000 0 I 0 0060 IO O 06 0 I D I I I O U IR RN NN

c

[Compute the number of data elements,

c
YLN=(IBLXS%254,)+ (LASTRYT/2,)
1F (ISWIT) ILN=(IBLKS*#128.,)+(LASTBYT/4.)
IBLKS=IBLKS+1 ;may try to read past EOF
AGAIN=1

c

C Work with 32-block sections of input data. This fills the 8K

C partition of extended memory.

£

10 READBLK=IBLKS
IF {(IBLKS.GT.32) READELX=32 s 32 % 256 = 8192 = QKN of storage
CALL ERDB(1,IDISC,0,READBLK,CHEC,IER)
IF (IER.EG.9) GO TO 12 jignore EOF error
IF (IER.NE.1) TYPE "ERDB errer",IER

12 INDEX=0

20 INDEX=INDEX+1
IF (RSWIT) CALL IVF(IHOLD,INDEX)
IF (ISWIT) CALL VF{(RHOLD,INDEX)
IF (RSWIT) REALNUM(INDEX)=FLOAT(IHOLD)/32768.%TOPVOLT
IF (ISWIT) [NTNUMCINDEX)=IWT(RHOLD/TOPVOLT%32768.)

IF (RSWIT.AND.(INDEX.EQ.81Y2)) GO TO 25
IF C(ISWIT.AND.(INDEX.EQ.4096)) GO TO 25
IF (FLOAT(INDEX).LT.ILN) GO TO 20
AGAIN=0

25 MBLK=INT(INDEX/254)#2
IF (ISWIT) WBLK=INTCINDEX/254)
IF (RSWIT) CALL WKBLK(2,RDISC,REALNUM,WBLK,CHEC,IER)
IF (ISWIT) CALL WRBLK(2,RDISC,INTNUM,WBLK,CHEC,IEK)
IF (IEK.NE.1) TYPE "WRBLK erraor”,lER,"with output file"
DBLKS=INT(INDEX/254) '
IF (ISWIT) DBLKS=DBLKS#%2
1BLKS=1BLKS-DBLKS
ID1SCsIDISC+DBLKS

148

!

REAL REALNUM(8192),TOPVOLT,ILN,RHOLD

INTEGER FILEI(7),FILEO(7),RET,FI(2),F0(2),H5(2)
INTEGER LASTBYT,INDEX,CHEC,{HOLD,DBLKS,IBLKS

INTEGER INTNUM(4094)

INTEGER READELK,EXTHM,BYTS,IDISC,RDISC,AGAIN,WBLK,START
LOGICAL ITEST,RSWIT,ISWIT

DATA TOPVOLT,FI,FO,RDISC,IDISC / 5.,6%0 /

CREEENEMIETEIIEIFEIEIIE NN NI RII NIRRT REERERRR R RN R RN RRERRER

c
c
c

IO

€I - IO [B o I o] [B o B o |

[z Ny N x]

Retrieve command line files and verify two exist,

CALL COMLN(RET,HOLD,FILEI,FILED,HOLD,NS,FI,F0,HOLD)
IF (RET.E0.2) GO T0 3

CALL ERROR ("The command line must contain twao files:")

Determine which type of file the output file mill he. Verify
that only the 1 or R switch was attached to CHVRT.

RSWIT=ITEST(MS(2),14) 3if true, real output file
ISWIT=1TEST{NS(1),7) jif true, integer gutput file
IF (ISWIT.AND..NOT.RSWIT) GO TO 4

IF (RSWIT.AND, NOT.ISWIT) GO YO 4

CALL ERROK("must include /R ar /I switch")

Sort the files and verify the I and 0 switches,

CALL SORT2(9,15,FILEI,FILEQ,FI,FOQ)

Verify that the filenames are not identical,

CALL FILCHC(FILEI,FILEO)

Verify that the input file exists and retrieve it's size.
CALL STATUS(FILEY,IBLKS,LASTBYT)

Prepare the input file for reading,

CALL OPEN(1,FILEI,2,IER)
IF (IER.NE.1) TYPE "OPEN error”,l1ER,"with input file"

Prepare the output file for writing,

CALL DFILW(FILEOQ,IER)

IF (IER.ER.13) GO T0 5 $YER=13 implies the file does not exist
IF (IER.NE.1) TYPE "DFILW error",1ER,"with output file"

CALL CFILY(FILEOD,?,TFR)

IF (IER.NE.1) TYPE “CFILW error”,IER,"with output file"

CALL OPEN(2,FILED,2,IER)

147

CRII0E 0000000000606 06 060606 606 TR TN IR NN NN NN AN RN NRNREE

¢
c
€

(xS e N o [3 o} [r 3 or B o B o L r I IO OO0 L B o X 3 [ar B e B xBxlExl

[N 5]

O3 000600 00 08 36 0006 00 0696 06 00 9636 36 06 06 06 06 36 06 0636 06 36 06 00 36 06 06 06 36 36 06 3636 06 6 06 0606 6 06 0696 36 06 00 JE 06 60 DI M I MM N DM NN NRINY

i e ova lamee - et amesaaciesr- et Al NS SN

Title: Conv
Author: Lt Allen
Date: Dec 82

Function:
This program convolves an input file mith an ispulse response
file, The filtered output is written to a separate file,
All file data types are treated as real,

Compile command:
FORTRAN/T CONV

Load coamand:

RLDR/P 2000/N CONV COMLN SORT3 STATUS LENCHC RDBYTS FILCHC*
APS.LB QFLIBO

Enviranument:
This is a Fortran V program that has been designed to rum agn a

mapped-RDOS Eclipse S/250 minicomputer equipped with a aodel
130 array processor,

Command line:
CONV input/I (/D] output/0 filter/F (/D]

where "input”,"ocutput” and “filter” are any legal RDOS filenames.

The input, output and filter filenames can be typed in any order,
however, the 1 switch shouid always be attached to the input
file, the 0 switch should always be attached to the output file,
and the F switch should always be attached to the filter file.

The D switch can anly be attached to the input and filter files,
and deletes these fileg after the output file has been created,

Comments:
The output file will be created as a random file., If it already
exists, the original file will he deleted.

The filter file can be up to 512 points long,

The input file cannot be over 32747 disk blocKs ltong. There is not
an error check for this condition,

The program wil) abort if the output filenase given is the
same as the input or filter filenames,

REAL WOKK(2048),DATA(10240) ,ILN,OLN’

INTEGER RET,SP,FILEI(7),F1(25,FILED(7),FO(2),FLLER(7),FR(2)
INTEGEK KLN,TLN.TLOC,START.FIN,TOTHYTS

INTEGEK FILL,KEADBK,I1DISCHK,0D!5CEK, 1BLKS,0BLKS,CHEC,INTT

151

x

v ————y

-y

I

o)™

[rEx Nyl

[ar M or Mo I o] [N o]

oMM r N el]

LB > I8 o}

[o 1 or]

INTEGER STEST,ELN,NUMBYTS,BAXREAD,ZERQ,RBLKS ,RBYTS
INTEGER CB1(0:CBMAX),CB2(0:CBMAX),CB3(0:CBNAX)

INCLUDE "ARRAYP:FSAPS.FR" jmust include in any AP program
Initialize the AP,

CALL APINIT(NIL,NIL,IER)
IF (IER.NE.1) CALL ERROR("APINIT errorr™)

Retrieve comsmand line files and verify three,

CALL COMLN(RET,SP,FILEI,FILEO,FILER,SP,FI,FQ,FR)
1F (RET.NE.3) CALL ERROR(“command Vine must specify three files™)

Sort the files and verify the I, 0, and F switches,
CaLL SORT3(9,15,6,FILEI,FILEQ,FILER,FI,F0,FR)
Verify that the filter file exists and is of proper length,

CALL STATUS(FILER,RBLKS,RBYTS)
CALL LENCHC(FILER,RBLKS,RBYTS,1,512)

RLN=(RBLKS*128) +(REYTS/4) sjfilter response length
TOTBYTS=KRLN*4 snuaber of byts in filter

Get the filter response data and load it into to the top of
AF memory.

CALL RDBYTS(FILER,TOTBYTS,WORK,512)

CALL CBSET(CB1,CBL,RLN,CBAX,0,CBAANN,WORK,TER)

IF (IER.NE.1) TYPE" CBSET error ",1ER," loading filter"
CALL VLDK(CBY)

Verify that the input file exists.,
CALL STATUS(FILEI,IBLKS,IBYTS)

Verify that the output filename is not the same as the input or
filter filenames,

CALL FILCHC(FILEO,FILER)
CALL FILCHCUFILED,FILED)

Ready the output file,

CALL DFILW(FILEO,IER)

CALL CFILN(FILED,2,1ER)

IF (IER.NE.1) TYFE "CFILW error",1ER,"with output file"
CALL OPEN(2,FILED,2,I1ER)

IF (IER.NE.1) TYPE "OPEN errar",[ER,"with output file"

Gather paraseters,

152

€
ILN=(IBLKS#128.)4+(IBYTS/4,) ylength of input data
IBLKS=IBLKS+1 snuaber of input data disk blocks,
jlast block may not be full
. OLN=FLOAT(RLN)+ILK-1. jtength of output data
! TLOC=2%RLN ;AP memory location where input data can be loaded
TLN=2048-TLOC jlength of convolution input section
FILL=TLR-RLN slength of zero fill for the first set of input data
c
. C keady the input file,
‘l c
N CALL OPEN(1,FILEI,1,IER)
; IF (IER.NE.1) TYPE "OPEN ervor”,I1ER,"with input file"
' ¢
C Set the CBSET arrays for the current filter size,
c
CALL CBSET(CB1,CBL,TLN,CBAX,TLOC,CEAANM,NORK,IER)
CALL CBSET(CB2,CBL,TLN,CBAX,TLOC,CBAY,0,CBAZ,KLN,CBINA,RLN,IER)
CALL CBSET(CB3,CBL,TLN,CBAZ,RLN,CBAANM ,WORK,IER)
c
c Set counters,
c
IDISCEK=0
ODISCBK=0
STEST=0
ZERO=FILL
MAXREAD=44
10 DO 20 1-1,ZERO
DATA(I)=0,

20 CONTINUE

IF (STEST.EQ.0) GO TO 25 30n subsequent reloading of the DATA

DO 24 L=START,FIN jarray, overjapping data and data to
DATA(I)=DATA(L) sclose to the bottom of the array to
I=1+1 3yallom convolving is reioaded at the top.

24 CONTINUE
" 25 CONTIRNUE

¢
C Load up the DATA array, The DATA array is used to hald both,
C input and output data by perforaing an in-place convolution
S C as the VCONRZ routine does. Each output data save section is
i c written to the DATA array overwriting the first RLN-1 points
- c of its input data.
s c
ﬁ READBK=IBLKS
¥ IF (IBLXS.GT,HAXKEAD) KREADEK=MAXKREAD

] CALL KDBLK (1,IDISCBK,DATA(]),READBK,IER)

: IF (IER.NE.1) TYPE "RDELX error",IER,"with input file"®
ELN=T+((READBK-1)%128)+(IBYT5/4)

IF (READBK.EQ.MAXKEAD) ELN=I+(MAXKEAD%®128)

¢ DO 40 I=ELN,10240 jzero fiil the rest of the DATA array so
DATA(I)=0,0 ythe convolution can averrun,

153

vttt oo S s W it Mo

T
a

™ Y v
T T v y PP o
\

40

80

60

70

1

74

75

S et

CONTINUE

J=FILL-RLN jstarting index value for input data to be convalved
K=0

D0 40 I=1,TLN
JsJ+l
WORK(I)=DATA(J)
CONTINUE

CALL VLDR (CB1)
CALL VCONRZ(CB2)
CALL VSTR(CE3)

INIT=RLN+1

DO 70 I=INIT,TLN
K=K+1

DATA(K) =WORK(I)
CONTINUE

STEST:ELN- (J-RLN)

IF (FLOAT(K).GE.OLN) GO TO 74

IF (FLOAT(X+FILL).GE.OLN) GO TO 71
IF (STEST.LT.TLN) GO TO 75

J=J-RLN

GO TO &0

K=INT(OLN)
STEST=TLN+1

OBLKS=INT(X/128)

START=J-RLN- (K- (OBLKS¥128))+2

FIN=ELN-1

CALL WRBLK (2, ODISCBK, DATA, OBLKS, IER)

IF (IER.NE.1) TYPE “WRBLK error”,IER,"with output file"
CALL CLOSE (2, IER)

IF (IER.NE.1) TYPE "CLOSE error”,IER,"with output file"
CALL APPEND(2,FILED,2,1ER)

TF (IEK.NE.1) TYPE "APPEND error”,l1EK,"with output file"
ODISCEK=0DISCBK+0BLKS

ID1SCBK=IDISCEK+READBK

IBLKS=1BLKS -READBK

ZERO=FILL-KLN

MAXKEAD=48

OLN=OLN- (0BLKS#128,)

IF (STEST.LT.TLN) GO 10 10

START=(0BLKS*128)+t

NUMBYTS=0LN#4

CALL WRSEQ (2, DATA(STAKT), NUMEYTS, IER)

IF (IEK.NE,1) TYPE “WRSEQ error”,1EF,"with output file”
CALL RESET

154

A f—— b s A ey B el i

D SEan 4 0 I it aagd
- .

VY

T

——— paae~thanthuse " he SR AL S
—— 0y N " - . - - N ~ - . N =
- ven et me mres g

1000 CALL EXIT
END

CCRREERRAE RN RN LR R RN R RN R NN R KRR R AR REAREARRAARRRR NS

155

R e U .2 e e
. ~

,.,,

.

Nl
Tl

06300830 0600 0000 00 30 3600 06 06 06 00 36 06 06 36 00 06 06 00 00 06 36 36 06 36 30 00 30 36 00 06 96 36 06 06 36 36 06 36 36 06 06 6 06 06 00 06 36 36 06 36 06 1% 06 36 00 00 6 00 06 06 06 06 36 6 6 06 36 0 2

C Title: FFT
. . C Author: Lt Allen
I C Date: Dec 82

; » Function:
: C This program computes either the 1024-point or 2048-point DFT
- e of an input file of rea)l eleaents. The input file is augmented
% c with zeros as necessary to make the input file the correct
c size, The results is a file of coaplex elesents.
c Compile comwmand:
c FORTRAN/T FFT
c Load command:
c RLDK/P 2000/N FFT COMLM SORT2 STATUS LENCHC TOFILE DELCHC*
c APS.LB BFLIBE
C Environment:
c This is a Fortran V progqram that has heen desigued to run on a
c mapped-KRDOS Eclipse 5/250 minicoaputer equipped with a sode)
€ 130 array processor,
c Command line:
C FFT L[/S] input/I [/D] output/0
p—c 0. c uhere"‘input“ and “output™ are any leqal RDOS filenames.
8
1 c The input and output filenames can be typed in any order,
s C however, the I switch should always he attached to the input
- c file and the O switch should always be attached to the output
4 £ file,

The D switch can only be attached to the input file, and deletes
the input file after the output file has been created.

¢ The S switch denates that the 1024-point DFT of the input file
{ c #ill be computed, othermise the 2048-point DFT is computed.
&
) 3606060060600 96.30 06 060 360600 060606360006 060606060606 J6 600 J6 0000300 JE 00000000000 00 A0 O A AT B NN RN R
4 INTEGER RET,SP,FILEI1(7),FILEO(7),F1(2),FD(2),XLN,XBLKS,NS5(2)
INTEGER COUNT,CB1(0:CENAX),CB2(02CBMAX) JNUMBLK,LASTBYT
LOGICAL ITEST,SWIT,NOSWIT
F ¢ KREAL WORK(2048),PLAY(2048) ,FIKRST,LAST,XFORM(4094)
g c
c Map all of AP memory.
c
CONMMON / APNEM / WORX
F
:. c INCLUDE "ARRAYP:F5APS.FR" jeust include in any AP progran
3
i c Initialize the AP and set up mapping window,
} 156
K

~—y

e~ oy

Y

p——p————

L I ar I o] [x Ny N x] [w Bl 4 [z BN x] [B B x4

[r o I o]

[N]

[2R

50

60

CALL APINIT(NIL,NORK,4,IER)

IF (IER.NE.1) CALL ERROR(“APINIT error")
CALL APMAP(WORK,0,4,1ER)

IF (IER.NE.1) CALL ERROR(“AFNAP error")

Retrieve comamand line files and verify only two.

CALL COMLMN(RET,SF,FI)LEI,FILEO,SF,NnS,FI,F0,SP)
IF (RET.NE.2) CALL ERKOR(“command line must specify tuwo files")

Determine which length DFT will be computed,

SWIT=ITEST(NS(2),13) ;if true, the 1024 point
NOSWIT=,NOT.SWIT 1if true, the 2048 point

Sort the files and verify the I and 0 switches,
CALL SORT2(9,15,FILEI,FILEO,FI,F0)
Verify that the input file exists and retrieve its size,

CALL STATUS(FILEI,NUMBLX,LASTBYT)
XBLKS=NUNBLK+1 inusber of input file disK blocks
XLN=(NUMBLK#128)+(LASTBYT/4) jnunber of real input file elements

Verify that the input file is the proper length,

IF (NOSWIT) CALL LENCHC(FILEl,NUMELK,LASTBYT,16,2048)
IF (SWIT) CALL LENCHC(FILEI,NUMBLK,LASTBYT,16,1024)

Get the input file data.

CALL OPEN(1,FILEI,1,IER)

IF (1ER.NE.1) TYPE “OFEN error “,1ER," with input file"
CALL KDBLK(1,0,UO0RK,XHLKS,COUNT,IER)

IF (IER.EQ.9 .AND. COUNT.EQ.NUMBLK) GO T0 SO

IF (IER.NE.1) TYPE “KDBELK error “,IER," with input file"
CALL FCLOSE(1)

Augment the input file with zeros,

DU 60 I=XLN+1,2048
WORK(1)=0.
CONTINUE

Take the DFT.

IF (NOSWIT) CALL CBSET(CB{,CBL,1024,CBAXC,WORX,CKCW,CMDFT,1EK)

I {5417 CALL CHSET(CEI CBL)512,CBAXC, WORK CBCU) CUDET, TER)
ER.NE/1) TYPE "CESE? error *,IER,*® on transform”

CALL VFFTC(CEL)
CALL VBRC(CHI)
CALL VFFTR(CB1)

157

P e N

!
|
)
]
J
|
1

T

Arrange the AP DFT results into proper format,

[B o I]

XFORM(1)=WORK(1) jget the first element
XFORML2)=0,

Rz i

IF (NOSWIT) GO TO 59

XFORR(1025)=MORK(2) sget the middle element of matrix operation
' XFORM(1024)=0,

‘!! DO 63 1:=3,1024 sget the first half of the matrix

- XFORM(1)=WORK({) joperation

F 43 CONTINUE

K=2049 sget the second half of the matrix operation
'. DO 44 1=3,1024,2
J=1+1

K=X-2
XFORM(K) =WORK(I)
K=K+1
XFORN(K)=-1,%WORK(J)
F-‘ K=K-1
§ 44 CONTINUE

GO T0 70

4 59 XFORM(2049):=WORK(2)

XFORM(2050)=0.

D0 61 1=3,2048
XFORM(I)=WORK:1)

41 CONTINUE

K=4097

DO 42 I=3,2048,2 A
J=1+1

X=X-2

XFORM(X)=NORK(1)

K=K+l

XFORN(K)=WORK(J)

} K=K-1

L 62 CONTINUE

Write results to file,

[M N x)

70 IF (NOSWIT) CALL TOFILE(FILEQ,XFORM,4094)
IF (SWIT) CALL TOF(LE(FILED,XFO&RN,2048)

o c

}

L c Handle the D switch option,

f c

L

r CALL DELCHC(FILEI,FD)

' o 80 CALL EXIT

[END

i GO0 I 060 I I I I TN N RN NN NN RN RN RNNENEN

158

q

J-'

ARSI A S g v

S~ - SEAEMMME

M R S At e & SERR A L Mn 4 0 a0 ChM A Hdded
Y

[3 2 o)

CoRm Bt s i s 0030000600 NN NN RN RN NN NN RN NN RN RR RN RN REEN

c Title: IFFT
C futhor: Lt Allen
£ - Date: Dec 82

C Function:

c This program computes either the 1024-point or the 2048-point

c inverse DFT of an input file. The input file aust contain complex

c elements in rectangular farmat, that is X + ;Y. The result is

c a file of real eleaents,

c Compile command:

C FORTRAN/T IFFY

C Load coamand:

c RLDR/P 2000/N IFFT COMLN SORT2 STATUS LENCHC INFILE*

c TOFILE DELCHC APS.LB QFLIE®

C Environment:

c This is a Fortran V program that has been designed to run on a

£ mapped-RDPOS Eclipse 5/250 minicomputer equipped with a model

c 130 array pracessor,

C Comsnand line:

c IFFT (/5] input/Y (/D) output/0

c where “input” and “output” are any legal RDOS filenaames,

C The input and output filanamnes can be typed in any order,

C however, the I switch should always be attached to the input

c file and the 0 switch should always be attached to the output

C file, N
The D switch can only be attached to the input file, and deletes
the input file after the outvput file has heen created,

C The § switch denotes that the 1024-paint inverse DFT of the

C input file will bhe computed, If it is not present, the 2048-point

c inverse DFT is computed.,

C 30630806 00 06 00 000606 06 06 06 36 06 36 00 00 06 06 00 060636 36 00 06 36 00 36 06 06 J6 06 0006 6 06 36 06 06 36 066 06 06 06 J0 06 00 00 60606 060000 R 60 DE 00D DR O D O DI

INTEGEK RET,SP,FILEI(7),FILEO(7),FI(2),F0(2),M5(2),LENGTH
INTEGER CB1(0:CBNAX),CBZ(0:CRMAX)

LOGICAL ITEST,SWIT,NOSWIT

REAL WORK(2048),F1,TABLECO:511),XFORN(2176)

c
C Map all of array processor memory,
c
COMNON / APMNEM / MORK
INCLUDE "ARRAYP:F3APS.FR" smust include 1n any AP progran
C

PRt
’

,«,.,,.~v
AR
¥ Y

T,

’w RO v f T
R~ S

——T— YT
-

C g

Ty Y
[

—TT Y

[N]

[N v N x/ [M x N IO [M x I

[x N x W

xRy Nl

IO OO

35

[z N x M w N o]

Initialize the AP and set up mapping window,
CALL APINIT(NIL,WORK,4,IER)

IF (IER.NE.,1) CALL ERROR(“APINIT error")

CALL APMAP(WORK,0,4,1ER)

IF (1ER.NE.1) CALL ERROR("APMAP error")

Retrieve command line files and verify only two.

CALL COMLN(RET,SP,FILEI,FILEO,SP,NS,FI,F0,SP)
IF (RET.NE,2) CALL ERROR("comsand line must specify two files™)

Determine which length inverse DFT will be computed.

SWIT=ITEST(MS(2),13) 3if true, the 1024-point
NOSWIT=,NOT.SWITY 3if true, the 2048-point

Sort the files and verify the I and 0 switches.,

CALL SORT2(9,15,FILEI,FILEQ,FI,F0)

.Verify the input file exists and retrieve its size,

CALL STATUS(FILEI,IBLKS,IBYTS)
Verify that the input file is the proper length,

IF (SWIT) CALL LENCHC(FILE],IBLKS,IBYTS,2048,2048)
IF (NOSWIT) CALL LENCHC(FILEI,IBLKS,IBYTS,4095,4096)

Get the input file data.

IF (SWIT) CALL INFILE(FILEY,0,9,XFORM,1152) juwust read 9 disK
' sblocks to get 1025 points

1F (NOSWIT) CALL INFILE(FILE1,0,17,XFORMN,2174);jaust read 17 disk
shlocks ta get 2049 points

Set up the cosine table that is required for inverse DF?
operations of equal to or more than 1024 points, This table
could he set up identically for other inverse DFT operations.

PI=4.%ATAN(L,)

D0 55 1:0,511
TABLE(I)=C0S((2.,%PI®FLOAT(1))/2048.,)
CONTINUE

Arrange the input data into AP inverse DFT format and provide
scaling,

IF (NOSWIT) GO TO 40
WORK(1):XFORN(1)/512,
NORK(2)=XFORN(1025) /512,
D0 59 1:3,1024

160

WORK(I)=XFORM(Y)/512,
39 CONTINUE
GO T0 70

C 60 WORK(1)=XFORM{(1)/1024,
: WORK(2)=XFORM(2049) /1024,
DO 61 1:3,2048
VORK(I)=XFORM(I)/1024,
61 CONTINUE

Set the length for inverse DFT operation,

N ER
I

70 IF (NOSWIT) LENGTH=1024
IF (SMIT) LENGTH=512

Take the inverse DFT.

[¥ x

CALL CBSET(CB1,CBL,LENGTH,CBAXC,MOKK,CBCW,CRIFTR,CBAANH,TABLE,
%CBERMASK ,APNALLER,IER)

IF (IER.NE.1) TYPE "CBSET error “,IER,” on transform”

CALL VFFTR(CB1)

.CALL CBSET(CE2,CBL,LENGTH,CBAXC,WORK,CBCW,CWIFTC,CBERMASK,APNALLER,IER)
IF (1ER.NE.}1) TYPE "CBSET error ",IER," on compiex”

CALL VFFTC{(CB2)

CALL VBRC(CBI)

C
C Urite the results to file,
C
IF (SMNIT) CALL TGFILE(FILEO,WORK,1024)
IF (NOSYIT) CALL TOFILE(FILEO,W0RK,2048)
- C
¥ c Handle the D switch option,
b C
F! CALL DELCHC(FILEI,FI)
1 80 CALL EXIT
5 END
i CRREBARXNIMIIIENE KRR I T I T T T 000006 T 06 606 00 06 06 00 06 06 06 06 36 96 06 06 06 06 96 96 96 96 96 96 96 06 06 9 08 46 16 46 26 06 6 6 ¢ % ¢

v T YTy

161

Bl A un o aman et G GEL NN AN

-

I 0 0 I IO O R N R N N NN NNNANNNRN RN RN NN

C Title: Mag

c Author: Lt Allen

c Date: Dec 82

c Function:

c This program takes an input file of either 1024 or 2048 complex
C elesents and computes the corresponding magnitude file. The

C result is a file of real elements.,

c Compile command:

c FORTRAN/T MAG

c Load command: :

C KLDR/P 2G00/N MAG COMLN SORT2 STATUS LENCHC TOFILE DELCHC*

c INFILE APS.LEB QFLIER

c Environment:

C This is a Fortran V programs that has been designed to run on a
c mapped-RDOS Ec)ipse 5/250 minicomputer equipped with a model

c 130 array processor,

L Command line:

c MAG [/S] input/I [/D] output/0

c where "input” and “output”™ are any leqgal RDOS filenames.

c The input and output filenames can bhe typed in any arder,

C however,; the 1 smitch should always be attached to the input

€ file and the 0 switch should always be attached to the output
c file,

C The D switch can only he attached to the input file, and deletes
c the input file after the output file has been created.

¢ The § switch denotes that the input file contains 1024 complex
c elements, atherwise 2048 complex elements are assumed.

R RN R RN 0 MM IR0 0 I 000 T MM ORI MO NN

INTEGER KET,SP,FILEI(7),FILEO(7),F1(2),FO(2),N5(2)
INTEGER CBi(0:CBMAX),IELKS,IBYTS

REAL WORK(2048),ANSW(4096)

LOGICAL ITEST,SWIT,NOSWIT

g Map all of AP memory.
‘ COMNON / APMEM / WORK

INCLUDE “ARRAYP:FS5APS.FR" imust include in any AP pragrae
E Initialize the AP and set up mapping windowm,

162

e e veepstes om0 st et hs o Lin s b

-

A PP SRS g

W

vvrrry ————— .w'vv- ,,vqrﬁ
- -

—y——
[

p—p——

[N or W]

[x B x N x]

[N x N o]

[N w W

IO

52

55

70

80

= i haa o St e Sl T

CALL APINIT(NIL,VORK,4,IER)

IF (IERWNE,1) CALL ERROR{"APINIT error")
CALL APNAP(WORK,0,4,IER)

IF (IER.NE,1) CALL ERROR("APMAP error”)

Retrieve command line files and verify only two,

CALL CUMLN(KET,SP,FILEI,FILEC,SP,nS,FI,F0,5¢)

IF (RET.NE.2) CALL ERROR("command line must specify two files")

Determine which length magnitude will be computed,

SWIT-ITEST(NS(2),13) 3if true, the 1024 element
NOSWIT=.NOT.SUIT jif true, the 2048 element

Sort the files and verify the I and 0 switches,
CALL SORT2(9,15,FILEI,FILEOD,FI,FO)
Verify that the input file exists and is the proper length,

CALL STATUS(FILEI,IKLKS,IBYTS)
IF (NOSWIT) CALL LENCHC(FILEI,IBLKS,IBYTS,4094,4094)
IF (SWIT) CALL LENCHC(FILE1,IBLKS,IBYT5,2048,2048)

CALL CBSET(CB},CBL,1024,CBAZC,WORK,CBAXC,WORK,IER)
IF (1ER.NE.1) TYPE "CBSET error ",{ER," with square”

IF (SHIT) GO T0 55

K=0
bo 52 l=0,16,16

CALL INFILE(FILEI,I,15,W0RK,2048) ;6et a section of input data.

CALL VSHA(CBY)

jmagnitude,
D0 52 J=1,1024
K=K+1
ANSH(K)=SORT(WORK(J)) sTake data out of window,
CONTINUE jbet next section,
G0 10 70

CALL INFILE(FILEI,0,15,WDRK,2048)
CALL VSMA(CB1)

Write results to file,

IF (NOSWIT) CALL TOFILE(FILED,ANSW,2048)
IF (SWIT) CALL TOFILE(FILEO,WORK,1024)

Handle the D switch option,
CALL DELCHC(FILEL,FID)

CALL EXIT
163

;Compute the square of the

. 4 m - "

Lo an 4

T Y
>

5 GG SO e

P
P

(hae e ae T e

T E

v

CH B e s

&

ey r:n—‘ 2oy PPy vv-vg..w—-‘ Py

PP
-

]
1
1
4
|
2

Q

END

G0 360630 38 006 00 303000 06 3836 06 06 06 06 96 0696 06 96 36 06 06 06 26 90 06 06 06 06 06 36 06 96 96 96 06 06 36 9606 6 06 06 36 06 00 36 06 06 96 96 16 6 36 06 266 06 06 06 36 06 36 36 06 00 06 3 6 6 6

164

TTY Y v

CO 0000000000 0096 06 060600 06 00 06 J6 36 0 36 00 06 06 00 06 06 36 06 06 00 06 0 06 06 30 06 06 06 36 0636 36 06 00 06 00 06 06 30 06 00 36 06 00 06 96 06 36 06 36 06 06 26 00 36 06 06 06 36 6 06 06 06 06 36 90 3¢

e N N x Ny [B I =] [] IO

[N]

I, [N xlx]

[x M N]

Title: Mult
Author: Lt Allen
Date: Dec 82

Function:
This progras multiplies the individual elements of two 1024-point
or two 2048-point elemenc files together to fora a third file.
The two files must have matching data types (either real or
complex), which will pe the data type of the third file,

Compile command:
FORTRAN/T MULT

Load command:
RLDR/P HMULT COMLN SORT3 STATUS LEMCHC INFILE TOFILE*
DELCHC APS.LB WFLIB®

Environaent:
This is a Fortran V program that has been designed to run on a
sapped-RDOS Eclipse $/250 ainicomputer equipped with a aodel
130 array processor,

Cosmand line:
MULT LL/C or /R1/S]) input/I [/DJ) output/D filter/F [/D]

" .

where “input”,"output” and “filter” are any lega) RDOS filenames.

The /C or /K switch must be included and signifies either complex
or real data files, respectively,

The S smitch denotes that the input file contains 1024 elements.,
If it is not present, it is assumed that there are 2048 elenents

in the input file,

The input, output and filter filenames can be typed in any order,
however, the 1 switch should always he attached to the input
file, the 0 switch should always be attached to the output file,
and the F switch should always be attached to the filter file.

The D switch can only be attached to the input and filter
files, and deletes these files after the output file has
been created.

GO0 000606 06 06 06 96 06 06 06 06 06 06 06 36 36 0036 06 30 06 00 060 20 S0 B 0 M B M B NN RN NN RN RN RNRRNEREY

0O

INTEGER KET,SP,FILEI(7),FILEO(7),FILER(7),F1(2),F0(2),FR(2),NS(2)
INTECER CB1(0:CEMAX),IBLKS,1BYTS,RBLKS,RBYTS

INTEGER STOP,S(ZE

REAL WORK(1024) ,PLAY(1024) ,ANSH(4098)

LOGICAL ITEST,SWIT,NOSWIT

Hap all of AP mewmory.

165

Al

L2 g -m ———

| e S An R S S

———r—vr

CONNON / APHMEM / WORK,PLAY
INCLUDE "ARRAYP:FSAPS.FK" imust include in any AP prograa

Initialize the AP and set up mapping windam,

I

CALL APINIT(NIL,WORK,4,IER)

IF (IER.NE.1) CALL ERROR(“APINIT error™)
CALL APMAP(WORK,0,4,IER)

IF (IER.NE.1) CALL ERROR(“APNAP error")

[N o]

Retrieve toamand line files and verify three,

CALL COMLN(RET,SP,FILEI,FILEO,FILER,NS,FI,F0,FR)
IF (RET.NE.3) CALL ERROR("coamand line must specify three files™)

Deternine the element length af the input file,

Lo M o I o]

SWIT=1TEST(NS(2),13) 3if true, 1024 elements
NOSWIT=,NOT,SUIT jif true, 2048 eleaments
1F (SWIT) SIZE=2048

IF (NOSWIT) SIZE=4096

Sort the files and verify the I, 0, and F switches,

I

CALL SORT3(9,15,18,FILEI,FILED,FILER,FI,FO,FR)

Verify that the input and filter files exist and retrieve their
size.

[B e 2 2 I o |

CALL STATUS(FILEI,IBLKS,IBYTS)
CALL STATUS(FILER,RBLKS,KBYTS)

Determine the type of data file elements,

[M 3]

IF (ITEST(NS(1),11)) GO TO SO jcomplex data
IF (ITEST(RS(1),3)) GO TO 40 jreal data
CALL ERKOR(“"prograw name must have either /C or /R attached”)

X2 T332 3332222322322 2322323223323 3323233333 33232 3333383333333 33233 1}

c
c This section of code performs a complex multiplicatian,
c

50 CALL CBSET(Ch1,CBL,512,CKAZC,MORK,CBAXC,WORK,CKAYC,PLAY,IER)
IF (IEK.NE.1) TYPE "CBSET ervor ",1ER," with cowplex”

c
c Verify the input and filter file lengths for complex data,
C

CALL LENCHC(FILEI,IBLKS,IBYTS,S12E,S)2E)
CALL LENCHC(FILER,RBLKS,%kBYTS,S1ZE,511IE)

IF (SWIT) STOP:=8
166

B e ot g EEE L & Bed e JuR
-

IF (NOSWIT) STOP:=24

K=0

DO 52 I=0,5TuP,8

CALL INFILE(FILEI,I,8,N0RK,1024)
CALL INFILE(PILER,1,8,PLAY,1024)
CALL VMCA(CBE1)

D0 52 J=1,1024

K=K+t

ANSH(K) =UWDRK(J)

52 CONTIMUE

Write results to file.

IO

CALL TOFILE(FILEQ,ANSHW,SIZE)
GO T0 80

CR I 00060600 060606 06363606 0696 06069696 2606 06 96 06 36 96 06 0 96 96 06 06 06 0606 90 06 06 36 06 06 06 06 00 06 00 06 06 06 06 96 96 36 36 J6 6 06 06 J6 96 96 36 30 6 6 6 06 S o B

C
C This section of code perforws a real multiplication,
C

60 CALL CBSET(CB1,CBL,1024,CBAZC,WORK,CBAXC,WORK,CRAYC,PLAY,IER)
IF (IER,NE.1) TYPE “"CBSET error “,IER,"” with real”

€
¢ Verify the input and filter file lengths for real data.
C

CALL LENCHC(FILEI,IBLKS,IBYTS,SIZE,SIZE)
CALL LENCHC(FILER,KBLKS,RBYTS,S51ZE,SIZE)

1F (SWIT) STOP=0
IF (NOSWIT) STOP=8

K=0
D0 62 1=0,5T0F,8
CALL INFILE(FILEL,I,8,W0RK,1024)
CALL INFILE(FILER,(,8,PLAY,1024)
CALL UMRA(CB1)
DO 62 J=1,1024
K=K+l
ANSW(K) =WORK(J)
62 CONTINUE

Write results to file,

[r B I

CALL TOFILE(FILEQ,ANSM,SIZE)
GO TO 80

sGet input
sand filter data
sand performe a complex multiplication,

sGet input
sand filter data
sand perform a real multiplication,

G0 0606 00008 0600 08 0006 06 06 06 06 06 0600 96 06 06 06 96 96006 J6 0006 36 606 36 0 006 06 0 G 0 B OO IR BE D OB MM MM RN NERRRN

c

C Handle the D switch option,
c
80 CALL DELCHC(FILEI,FID)

167

N . , o " . N el e st

P

Py

CALL DELCHC(FILER,FR)

_CALL EXIT
END

G0 3630 06 0606 96 06 00 00 06 06 06 06 06 06 06 26 06 30 06 06 0606 06 BRI 06 o6 20O O D D600 O O O OO B M MR N RN NN

168

Appendix E

R } User's Manual
| and
.(Source Code
for
Filter Design Software

i g'r Bl o S S04

. iy

—r

'
;

:
b
g

!

:

F

1§

g

4

\

'.

b

>

|

169

YTy W w v w .Y
)

W W TR TR T T T L TR T, TR T TR R L W T, R R e Y

Q

e ¥, T W T T . TR, W, R, Ty oy o v W, L W

User's Manual
for Interactive Filter Design
with Program LPFIR

This user's manual explains how to adjust the filter
design parameters in program LPFIR to obtain the filter that
most closely approaches the user's specifications. It also
explains how to set up a macro file to allow program LPFIR
to be used with other programs to design filters in an inter-
active environment. This macro should be executed on a
Tetronix graphics terminal interfaced with the Eclipse com-
puter. The user should also verify that the array processor

has been initialized.

Macro File Setup

The save file (.SV) of the following programs are re-
quired in the user's directory to execute the macro file,
LPFIR,FFT,MAG,FILTPLOT

The macro file can be built using the SPEED editor.

. The macro filename chosen by the user should be appended with

the .MC extension when entering the editor. The following
command would be used to enter the editor and build a macro
file named FILTER.

SPEED FILTER.MC
Once in the editor, the user should insert the following
character string with the I command.

LPFIR PFILE/P FFILE/F;FFT1/S FF1LE/I/D CFILE/O;
MAG/S CFILE/I/D LOGMAG/0;FILTPLOT/L LOGMAG

The user should refer to the source code heading of

170

Do mgies sun . slmen e une o

each program for a description of the switch definitions and
data files. After the above macro file has been executed,

the user's directory will contain the following files,

PFILE a parameter file describing the
filter
LOGMAG a file containing the magnitude of

the 1024-point DFT of the filter
impulse response

Macro Execution

(3

The macro file can be executed by typing the macro
filename with or without the .MC extension. Program LPFIR
was not designed for use on a Tetronix graphics terminal.
This section of the macro file can be executed on the Tet-
ronix terminal, however, the screen must be manually erased
when necessary by the user depressing the PAGE key. The user
can also allow this section of the macro to be executed on
the non-graphics terminal and then switch to the Tetronix
terminal prior to execution of the plotting section of the

macro.

Parameter Adjustment

The user must begin the parameter adjustme:it sequence
with a filter design that does not generate a program error.
To obtain an initial design, specify the desired filter with
a set of fairly relaxed parameters. The following guide may

be helpful.

171

Qs

1. small filter length, 20-50 points

2. large band lengths, .05-.10

3. large transition regions, .05-.10

4. low weight factors, 5-20
The grid density. is a factor affecting the resolution of the
filter, much like the filter length. It should be chosen to
be 16 for the most resolution.

The deviation numbers that are displayed, while the fil-
ter is being designed, are an indication of how close the fil-
ter is approaching the design parameters. If the magnitude
of the numbers remains less than 1, the design will generally
be reasonable. .

A design example will be given to clarify the design
sequence. The example will design a notch filter to remove
a tone located at .1 on the frequency scale. The initial
design for such a filter is shown in Fig 1.

The filter length, with respect to being an odd or even
number, appears to affect the program's ability to design a
filter. The user can determine which type of filter length
is best for the given design, by holding all other parameters
constant and changing only the filter length. The result of
doing this for the design example is shown in Fig 2. Since
the odd filter length yielded the bYetter design, all sub-
sequent filter lengths will be odd.

Filters of larger lengths can have sharper transition
fegions and narrower bands. Therefore, the next steps involve

increasing the filter's lenagth until a filter with an accent-

172

;.‘) MLTIPLE PRSSBAND STOPORND FILTER (—

— PARETER FILE PFILE L
. FILTER LOKTH 4 NOEER OF BANDS- 3 u‘xﬁefs"i‘w '?' sreciFie
. LOMLK UPPER FRE!
- s o Rsose Fasiion
. Bl NIEER . O . 9400 .
Bl NIECF 2 500 | 1560 ‘ ‘gl
Bl NPEER 3 . 1600 . 5000 1. 10.

00 ¢y Wil T,
1o W 0IPY YDC HBUE PAFAME TEWS
2. CHREE THE BOKE PrHENE TEFS
s SELECTION

Fig 1 2 oLOENG

-2.9
&« 1
-4.0
-6
[] S
—% MATIPLE PRSSBAND/STOPRRD FILTER ¢(—
PARWETEF FILE PFILE FILTER FILE: FFILE
FI.TER LEMGTH S8 NIBER OF BANDS: 3 GRID ENSHV- 16
LOMER UPPER FRE QUENCY MEIGHT
CUTOFF CUTOFF PESONSE FUNCTION
B MIFBEF | . 805 . 9400 1. 10.
fedld NIEER 2 . @500 . 1500 0. S.
. b NOEERK 3 .1608 - 3909 1. 10.
DO YO WANT TO,
1 WCEFT THE AFAKE PRPUIE TERS
2: CHANGE THE ADAE PHRAFETERS
SELECTION:
2.0L0%G

Ol e P

173

P T - e - P U Y P SRR

able transition and bandwidth are obtained. For the design

example, the filter length was increased to 165 points with

the result shown in Fig 3. Since the ripple appears uneven,

this filter was on the verge of not converging. The ripple

should be improved before_ other parameters are varied. The

F filter length was reduced to 95 points with the results shown
E in Fig 4.
'

Y —> MATIRLE PASSBAND-STOPBAMD FILTER (—

| PERETER FILE: PEILE FILYEP FILE: FFILE

b FILTER LENGTH: 165 NUPMBER OF BRNOS: 3 GRID DOXSITY: 16

3 LOMER UPPER FREQUENCY WETGHT

CUTOFF CUTGFF REBONSE FUNCTION

Bl MIBER | .80 .8400 1. 19.
B4 NFEER 2 @508 11500 ® s
vl MIEEX 3 [1600 .5000 1. 10!

OC. YOU WY 7O,
1° WCCEPT THE RBOKE PWrETERS
2 CHIGE THE RDOVE PFHETERS
SLLECTION

3.@LOGHAS

[m

Fig 3 -

YRy TEPTY TV ¥ew W W T =)
’

174

—rry"

T

T

~ T

[b oo a2

—-) MATIAE PASSBAND/BTOPEBND FILTER (~—~

PACETER FILE PFILE FILTER FILE: FFILE
FILTER LENCTH: 935 MMBER OF BRNDS: 3 CRID DENSITY: 316
LOMCK UPPER FREQIENCY [T 3{"
CUTOFF CUTOFF RESONSE FUNCTJON
B HIEER 2 N el . D400 1. 18
F 2 Nt . 1900 ? S.
3 . 1608 . 3000 . 10.
D) W WANT TO.
1 wW.CEFT TME AEUXE PHPRIETERS
2! CHAIKE THE BUE PARWIETERS
STLECTION:
3. @ LOGHAG
.0
-3.¢
& '
-£ @
-9 @
P Sit
Fig 4
175

s Bt e o o - S

A e

ey wWrrerrryy

W

Q¢

The number of ripples in the bandstop band indicates

that the transition and bandstop width can be reduced.

final result of several attempts, that varied only the cutoff

frequencies, is shown in Fig 5.

=3 PATIPLE PASSBAND/SYOPBAND FILTER ¢—

PARMETER FILE- FFILE FILTER FILE: FFILE
FILYER LENCTH: 93 NMBER OF BNDS: 3 GRID DENSITY. 16
LOWEF UFPER FREQUENCY WEIT
CUTOFF CUTOFF RESONSE FUNCTION
B NFREF ¢ N ed . 0600 1. 1e
€0 NIEER 2 G0 .1180 | B 3.
60 HUrEER 3 1200 . 3000 1. te.
D) YUOU Wi ¥
1: WLEFT THE fbod £ PRPAMETERS
2. CHALE THE tbUE PUFIETERY
SELECT ION:
2. oL0GWG
e e e iy - "
-2.0
€
- @
-5 8
L] st

Fig 5

176

The

oo e e o B o e 4 A P S8 B S B bt e e

The stopband contains only one ripple. This indicates
that the width of the stopband and transition regions cannot
be decreased significantly without increasing the filter
length. An attempt to do this without increasing the filter
length caused the ripple to increase as shown in Fig 6. The

result of increasing the filter length only gave much better

results as shown in Fig 7.

-

-
[~> MATIPLF PASEBAND STOPBAND FILTER (-~
b FRRWETER FILE: PFLLE FILTER FILE: FRILE
*' FILTER LENCTH: 95 MUMPER OF GANDS: 3 GRID DENSITY: 16
- LOUER UPPER FREQUENCY SE IGHT
3 CUTCFF CUTOFF RESONSE FULTION
i GO NMGER | 000 .ee%0 1. 10.
' Bl INER 2 L6300 .1108 9. S.
4D NMEER 3 1158 .5990 1 1.
C Q¢
00 YOU W1 10,
1: GCUEPT THE ABCVE PARMETESS
2: CHAGE THE HBOVE PURHIETERS
1 SELECTIN:
3 2. 6LOGWG
4 .
b e A A PP AT AT
.
A
. -2.0
. E 1
>
- -- 9
3 ¢ -€.0
° st
£ :
- Fig 6
A
1
y
r
s
4
; 177
A

- T T e T oW T T e T T R

—> MALTIPLE PASSBRND/STOPBRND FILTER (-~
ELEETER FILE PEILE FILTER FILE: FFILE
FILTER LENGTH. 125 MUMPER OF BANDS- 3 GRID DENSITY. 16
LOWER FPER FREQUENCY WEIGHT
CUToFF CUTOFF RESONSE FUNCTION
BtD MIEER | .6800 L9600 1. 19.
B0 NIBER 2 300 S1188 o. -3
B¢D NIEER 3 .1208 5600 i 18,
3
P' -
.
b
S D) YOU WedT 10, .
X 1- SCTEPT THE HBONE FARWETERS
s 2 (MACE THE (BINVE PHRMETERS
' SELECTION:
b
f 2.0L0GWG
0
&
3
- -2.0
[~ .
o E 1>
]
-
F‘ o ' e
3
3
p
.
s <o
3 [11

Fig 7

>

L gen e R ey aon) 0 SR B b B SEE o cegi)

178

pp——

YT

DA i
&

The cutoff frequencies were again varied to reduce the
length of the bandstop to only one ripple centered on the

desired notch frequency. The final filter design is shown

in Fig 8.

—> BALTIPLE PRSSBRHD/STOPESSD FILTER (—

FWORETER FILE FFILE FILTER FILE FFILE
FILTER LENITH. 125 MNSBER OF 805 3 QPID DENSITY: 16
LOsEK UPPER FREQUENCY ME 1GKT
CUTOFF CUTOFF RESONSE FANCTION
Bl HMEER 1 . 0080 9830 1. 10
B0 D HYEER 2 L0330 .18%8 e S.
Brells NIEER 3 -11%8 K- 3. 19

DO OU Wi TO,
1 H.CEPT THE wBO'E PARAMETERS
2 (HdWE THE ABOVE PRRANETERS
SELECTION.

3 o LOGRG

Fig 8

179

O S S

'-j'T rv YV et

vy
.

To illustrate the affect of even/odd filter length on

‘the filter design, the length of the filter shown in Fig 8

was changed from 125 to 124 points. The result is shown in

Fig 9.

—> MATIPLE PASSBAD STOPBRD FILYER <~—
PARAHETER FILE. FEILE ILTER FILE: EFILE
FILTER LEMGTR: 12¢ MPBER OF BONDS: 3 GRID CEISTTv- 16
LUER UPPER FREQUENCY SETCHT
CUTORF CUTOFF RESONSE FUNCTION
pewE B am ! s
B0 BBER 3 1% K->~ 1. 8.
D) YOu) Wty T0.
1 HCCEPT TE a0 PivETERS
b THE ABCUE PAPAHETERS
seLietion
2L0GWG
) i ' w i If ‘
| l | It
l ' J
-2 ¢
E/ 1>
-1 4
21
[] 1

Fig 9

After the filter cutoff frequencies are ad justed as
desired, the weight factor in ecach band can be ad justed to
give the desired relative orror.

180

AD-R124 758 EXPANSION OF THE ECLIPSE DIGITAL SIGNAL PROCESSING
SYSTEM(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB
OH_SCHOOL OF ENGINEERING G R ALLEN DEC 82

UNCLASSIFIED AFIT/GE/EE/82D-16 , F/G 972

2l I 4 A 30N
. () e L Lane g L
ﬁ- .r.u m. . T ———
: . L .d o | . X - . . RANIESRN gl gk ot 2l o aunn o oo e
. byt M o . v
S R % o2 .] \ 3 At 14ﬂ,~<q,< TV oY

. e e A & K . . -~
ﬁ., “——— - M s o dn f..’b- : : ’
_ A Qe . _ .
. i ay ae, . “ o
v P, ,.v.&l‘ Lo . '- o - .L

¢

o el ellal
’

e
<

. -
.

’j RN

-t - -t -
- - et e

I

R

HEEE

S o off o 33
N K EEFEERITS

EE

I

1.4

 ——
—
—
—

125

 —
P —]

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

]
. ———— —— ———
] iu——— —— A———— ———
B Sem———— ——p—— —————
Enm—— —— —
s e——— I —— ———

e AL

PaRN S aum e 4

S e e e e o e 2o

€
c

c

file and is 88 bytes long. Both files are always deleted prior
to being created,

The filterscan have a maximun of 10 bands.

06 3636 36 08 36 36 36 3606 36 96 36 36 36 36 36 36 06 26 36 30 06 36 36 06 36 36 36 36 36 36 06 36 36 30 00 36 06 36 3 36 06 96 06 6 36 36 36 06 96 36 36 36 36 06 36 96 36 36 36 36 36 36 06 30 06 36 36 0 06 36 06 34 3 ¢

(xR >N x]

45
50
55

60

0¢

[- B8 ar B o]

INTEGER PFILE(7),PF(2),5P,RET,FFILE(7),FF(2)
LOGICAL SET,ITEST

Retrieve the coumand line files,

CALL COMLN(RET,SP,FFILE,FFILE,SP,SP,PF,FF,SP)

IF (RET.EQ.1) GO T0 45 ;if only one file

1F (RET.EQ.2) GO TO 50 ;if two files

GO TO 800

SET=ITEST(FF(1),0) scheck for P switch

IF (SET) GO TO 55 3if present, continue

GO TO 800 ;if not, abart

CALL SORT2(14,6,PFILE,FFILE,FF,FF) ;sort the command line files
CALL CHOICE(PFILE,FFILE,PF,FF,RET) sabtain the parameter file

IF (RET.EQ.1) GO TO 900 31f no second file, then done
CALL DESIGN(PFILE,FFILE,FF) 3if secaond file present,then design filter

The D switch option is considered only if a filter was designed.
CALL DELCHC(PFILE,PF)
GO TO 900

800 TYPE "(CK)

#Incorrect command line, Consult progras{CR)
sdocumentation for the correct syntax.{CK)"

900 CALL RESET

CALL EXIT
END

000606 0606 06 36 98 06 06 06 06 0606 06 06 06 06 06 96 96 36 J6 06 06 06 06 26 36 0 6 0 0E0E D000 6 B D MO M M MMM RN NN HR R

182

CHEIEIE0E0 0030006 0006 06 00 9960060000 0606 0606 06 6 0600 30 06 00 06 06 26 06 06 36 06 06 0600 06 06 06 06 06 06 06 06 06 6 46 00096 96 06 06 6 636 06 00 696 06 36 96 06 06 6 ¢ ¢

C Title: LPFir

c Authors: Lt Allen

c Date: Dec 82

c Function:

c This program utilizes the Parks-NcClellan algorithm to design

C linear phase FIR filters. It can he used to design lowpass,

c highpass, multiband, differentiators and Hilbert transfors filters

C with an impulse response between 3 and 254 paints.

c Environment:

C This is a Fortran V program that has been designed to run on

c a sapped-RDOS Eclipse §/250 minicomputer, -

c Compile command:

L FORTRAN LPFIK

c Load command:

c RLDR/F LFFIK CORMLN SORT2 FILCHC CHOICE STATUS RDBYTS SHOPAK*

c NEWSCR DESIGN REMEZ WATE EFF D GEE OUCH ®FLIBO

¢ Command line:

C LPFIK parameter/P [/EJ (/D] [filter/F (/L1]

C where "parameter” and "filter” are any legal RDOS filename

c The P switch must always be attached to the parameter filename. A

c parameter file will pe created with the filter paraneters

c interactively specified by the user. The filter parameters will

c be displayed and can be changed if requested by the user,

c The E switch denotes that the parameter file already exists, The

c filter parameters will be display and can be changed it requested
- C by the user,

C The filter filenane and F switch denotes that the filter specified

c by the parameter file wil) be designed and the impulse response

C stored under the filter filename, The F switch must be attached.

c The L switch denotes that a listing for the filter design will

c be sent to the printer,

C 1f the parameter and filter files are both given, they can be

c typed in any order,

C The D switch can only be attached to the parameter file if a

c filter file is also specified, This switch deletes the parameter

t file after the filter file has heen created.

c Comaents:

C The impulse response fi1le will be created as a randos file and w1l

c contain real data, The parameter file is also created as a randoa

181

,.rrwrv,,_,m
Y :

¢

DeaRA = - B
.;“I " . ‘“ '..
o

o "j-vm)

CO6 060363008696 06 3600 00 30 0616 96 06 6 06 36 06 36 06 26 06 3606 06 00 38 366 06 36 06 06 06 30 006 06 36 06 06 06 06 J6 36 I 00606 S 0600 DR 6 D00 JEDE DD E MDD EEE M DG QR 8

c
- C
c

IO L M] [z N x N x/ oo M (e N W]

[r B ar W >/

¢
c

Title: Choice
Author: Lt Allen
Date: Dec 82

Function:

This routine is used by program LPFIR to collect filter design
parameters from the user,

Compile command:
FORTRAN CHOICE

Load commpand: :
RLDR/P main program CHOICE STATUS RDBYTS SHOPAR NEWSCR etc

Coaments:
The variables that are passed to this routine have the following
aeaning,

PFILE/PF the filename that the filter design parameters
will be written to and switch array

FFILE/FF the filename that will contain the filter
impulse (if one was requested by the user)
and switch array

RET this integer variahle is sent to the routine
set to 1 {if FFILE does not exist) or 2
(if the FFILE does exists)

The filenames and switch arrays are of the type returned by the
COMARG routine.

G000 00000606606 006 0006 0606 0606 06 060006 0606 06 06 96 96 26 06 00 36 06 06 06 06 JE 06 B M 6 B KU EAAARR AR AR AR

[Bl x l x r]

SUBROUTINE CHOICE(PFILE,FFILE,PF,FF,RET)

INTEGER PFILE(7),FFILE(7),FF(2),FF(2),YES,NO,KEEP ,EXIST,BYTS
INTEGER BLKS,LASTBYT,RET

REAL PARA(44)

LOGICAL ITEST,SET

NO=0
YES=1

SET=ITEST(PF(1),11) jcheck for E switch
IF (.NOT.SET) GO TO 10 jif not present, collect parameters

This section of code collects the filter parameters from a disk
file,

CALL STATUS(PFILE,BLKS,LASTRYT)

183

CIC3IMe™

10

20

30

40

50

BYTS:=(BLKS¥512) +LASTBYY

CALL RDBYTS(FFILE,BYTS,PARA,88)
EXIST=YES

0 10 70

This section of code collects the filter parameters interactively
fromn the user,

EXIST=NO
CALL NEWSCK

ACCEPT “(CR)
tEnter the filter length,(CK)
® (3-256): ",PARAL(L)

IF (PARA(1).GE.3. (AND. PARA(1).LE.256,) GU YQ 20
WRITE (10,1)

FORHAT ("(CRY(CR)(CK}
%¥Please make selections only from the given options.”)
€0 TO 10

ACCEPT “(CR)

%Enter the type of filter,(CR)

¥ 1: sultiple passband/stopband filter(CR)

2: differentiator(Ck>

3: Hidtbert Transfora filter(CR)
#selection:” ,PARA(2)

IF (PARA(2).GE.1, ,AND. PARA(Z).LE.3.) GO T0 30
WRITE(10,1)

GO TO 20

ACCEPT “{CK>

#Enter the number of bands,{(CR)

¥ (1-10):",PARA(I) .

IF (PARA(3).GE.1, .AND., PARA(3).LE.10,) GO TO 40
MRITE (10,1)

60 10 30

ACCEPT "(CR}

%Enter the qrid density,(CK)

& (1-16):",PARA(4)

1F (PARA(4).GE.1. .AND, PARA(4).LE.146.) GO T0 50
WRITE(10,1)

GO T0 40

TYPE "(CR)}(CRY(CRY{CR)(CR)(CRY(CK}

#The following must be specified for each band,(CR)
E(CR)

& lower cutoff freq(CR)
% upper cutoff freq"

IF (PAKA(2).EQ.1 .OR. PARA(2),EQ,3) TYPE *
t freq response”

IF (PARA(Z).EQ42) TYPE "
184

S A A

[z NN x

60

70

& slope”

TYPE *
* wseight function”

TYPE “(CR)
twnhere,(CR)
*#{CR)
& the lower and upper cutoff frequency specified{CR)
¥ aust be in the interval 1-.5(CK}
¥ (this implies a sampling frequency of 1)(CR)"

IF (PARA(2).BO.1 .OK., PARA(2).EQ.3) TYPE "
% the frequency response must be zero or(CR)
% 3 positive value”

IF (PARA(2).,EQ.1 .OR, PARA(Z),EQ.,3) TYPE “(CR)
¥ the weight function must be a(CR)
% positive value”

1F (PARA(2).EQ.2) TYPE "
¥ the slope and weight function must(CR)
® Dbe a positive value"

TYPE “(CR)
%Press carriage return to begin"”
ACCEPT

1=0
J=4
Jad+l
I=1+1
WRITE(10,68) I
FORMAT ("(CR)Band number “,I2)
ACCEPT *
%lower cutoff freq : ",PARA(J)
JzJd+l
ACCEPT *
kupper cutoff freq : “,PARA(J)
J=d4l
IF (PARA(2).EQ.1 +OR., PARA(2).EQ.3) ACCEPT "
tfreq response: ",PARA(J)
IF (PARA(2),EQ.2) ACCEPT *
kslopet ",PARALY)
Jzd+l
ACCEPT "
kweight function: " ,PARA(J)
1F (FLOAT(1).LT.PARA(3)) GO TO 40

S e T

Display the parameters and have the user decide if they will be Kept,

CALL SHOPAR(PARA,PFILE,FFILE,RET,KEEP)
IF (KEEP.EQ.HO) GO D 10
IF (KEEP.EQ.YES .AND. EXIST.EG.NU) GO TO 75

185

IF {(KEEP.EQ.YES .AND. EXIST.EQ.YES) GO TO 90
CALL ERROR("invalid value returned for XEEP™*)

This section of code writes the filter parameters to file, if the
paraseter file does not already exist.

[z B x Ny N x]

75 CALL DFILV(PFILE,1ER)
CALL CFILW(PFILE,2,1ER)
IF (IEK.NE,1) TYPE “CFILW error ",IER

CALL OPEN(1,PFILE,3,1ER)
IF (IER.NE.1) TYPE "OPEN error ",IER

v "H’TVT"‘_'T'_I‘?—-_-TM AP I S
. B o . - .

BYTS=16+(PARA(3)%14)
CALL WKSEQ(1,PARA,BYTS,IER)

} IF (IER.NE.1) TYPE "WKSEQ error " ,IER
{! CLOSE 1 |
- 90 RETURN
END
t! c‘****l*!ll!*l***!*!***i!**********Il****ilI**l******l***l*****i***'**l*l*!*!

186

h-iﬁ”.,‘i

R R

P, ey
- +

COIU 2006 060030000006 00 06 06 30 00 06 36 06 36 30 06 36 36 06 06 06 06 06 00 06 36 06 36 00 06 36 1696 06 06 06 06 06 06 36 06 06 06 06 06 06 06 36 30 36 00 06 00 6 06 06 36 36 06 36 J6 06 36 I 36 06 3

[z B N x/ [o [I o] [B o I] [I] 3O

e NN xr N]

Title: ShoPar
Author: Lt Allen
Date: Dec 82

Function:
This routine is used by program LPFIR ta display filter design
parameters., [t also requests from the user whether the paramseters
will be Kept or changed and returns the decision to the calling
pragras.

Compile command:
FORTRAN SHOPAK

Comments:

The variables that are passed to this routine have the following

aeaning,

PARA 2 44-element array that contains the design paraseters

PFILE the namne of the paranmeter file (in S format) that
contains array PARA

FFILE the name of the filter impuise response file (in §
format) if this file was requested by the user

REY . this integer variable is sent to the routine set to
1 (if FF1LE was not requested) or 2 (if FFILE was
requested)

KEEF this integer variable is returned by the routine

set to 1 (if the user decided to Keep the design
parameters) or 2 (if the user wants to change the
design parameters)

08 0000 06 00 00006 06 900060606 06 00 06 00 06 00 06 06 06 06 06 06 06 96 06 96 06 36 06 06 96 06 06 06 00 00 9608 6 06 06 06 06 0F 06 JE 0006 06 JEJ6 000620 0600 0 D 6 MO B 0006 00 06 06 0

10

SUBROUTINE SHOPAR(PARA,PFILE,FFILE,RET,KEEP)

INTEGER PFILE(7),FFILE(7),RET,KEEP,YES,NO
KEAL PARA(44)

NO:0
YES=1

NFILT=INT(PARA(1))
NBANDS=INT(PARA(3))
LGRID=INT(PAKA(4))

TYPE
1F (PARA(2).EQ.1.,) TYPE "

* --) Wultiple Passband/Stopband Filter (--"
IF (PAKA(2),EQ.2,) TYFPE "

187

PG ST SR PO P S

P

— T
s

o

3

50

85
80

* --)Differentiator (--"

IF (PARA(2).EQ+3+) TYPE *

% -=) Rilbert Transform Filter {(--
TYPE

IF (RET.EQ.2) MWRITE(10,3) PFILE(1),FFILE(1)
FORMAT("
#Parameter File: “,513," Filter File: “,813)

IF (RET.EQ.1) WRITE(10,4) PFILE(1)

FORMAT("

¥Parameter File: ",513," Filter File: not specified”)
WRITE(10,2) NFILT,NBANDS,LGRID

FORMAT("

%Filter Length: ",I3," Number of Bands: “,I12," Grid Demsity: ",I2)

IF (PARA(2),EQ.1 .OR., PARA(2),E0.3) TYPE "(CR)
% Lower Upper Frequency Weight(CR)
* Cutoff Cutoff Resonse Function”

IF (PARA(2),EQ.2) TYPE "

* Lower Upper Slape Weight(CR)
* Cutoff Cutoff Function”
TYPE
[=1
J=3
WRITE(10,6) 1,PARA(J) ,PARA(J+1) ,PARA(J+2) PARA(J+3)
FORMAT("
#Baid Number “,I2," “)P504," ')PS.‘,“ ",P3.0,
LN *F3.0)
I=141
Jzded
IF (FLOAT(I).LE,PARA(3)) GO TO 40
DO 65 K:=1,11
TYPE
CONTINUE
ACCEPT "
Do you want to,{CR)
8 t accept the abave parameters{(CR)
* t ch7nge the above parameters(CK)

tselection: “,IKE

KEEP=2

If (IKE.EG.1) KEEF=YES

1F (IKE.EQ.2) KEEP=ND

IF (KEEP.NE.2) GO T0 90

WRITE(10,1)

FORMAT("(CR)(CR){CR)}
*Please select only froa the options given.(CRY{CK)™)
TYPE "
%#Press carriage return to continue”

188

ACCEPY
G0 T0 10

90 RETURN
END

3608069696 0806 36 3606 06 06 966 96 36 06 06 36 08 06 06 36 06 06 36 06 36 36 36 06 3636 06 06 36 06 6 96 36 06 6 06 06 96 06 06 06 16 06 96 96 6 96 36 06 96 96 36 96 96 06 36 36 96 96 96 38 06 6 36 3 8 0 3 &

v

‘-',VTY v Ty 'V'.A'
v 0 AR

A
2

r T

LR & 2o 4k S SAn gt o
a coe

i g

P

PR S S

189

PRI S P Y S S

"¢

[N x!

..

R0 00300600 0036303600 36 06 06 06 00 36 36 30 00 06 06 36 26 06 90 30 36 30 06 36 06 36 06 30 30 30 066 06 06 06 06 J6 06 36 6 06 06 06 06 06 6 36 06 06 36 06 06 06 06 36 36 00 06 36 36 06 06 26 06 06 06 36 0

C Title: Design
c fAuthors: James H., NcClellan
C Thomas W, Parks
£ Lawrence K. Rabiner
c Date: Dec 73
[Revised by: Lt Allen
c Revision date: Dec 82
C Function:
c This routine implements the Parks-McClellan algoritha to design
C a variety of linear phase FIR filters, For a discussion of this
c algarithe, refer to section 5,1 of the following publication,
c Progranss for Digital Signal Processing
C New York, IEEE Press, 1979
C 1EEE BooK Numbers: Clothbound: 0-87942-127-4
c Paperbound: 0-87942-128-2
C The above publication contains the source code for the algoritha
c that was revised and used in this subroutine., It also cantains
c the source code for the subroutines listed in the load line., The
¢ revisions allow the progras to be used as a subroutine with the
c filter design parameters read from disk file and the filter
C inpulse response written to disk file,
[This routine was designed for use with program LPFIR, Program LPFik
c should be consulted for a description of the type of filters that
C this routine can be used to design, Subroutine CHOILE creates the
C parameter file that is intended for use with this routine.
Comspile command:
FORTRAN DESIGN
C Load comsand:
c RLDR/P mwain program DESIGN EKROR EFF REMEZ D GCEE OUCH WATE etc
c Comments:
C The variables that are passed to this routine have the following
C aeaning,
c PFILE the parameter filename
C FFILE/FF the filter filename and corresponding switch array
c both filenames should be in § foraat and the switch array is of
L the type returned by the COMARG subroutine

'C!ll*!llliiill!lllillll&llﬁ!lil!!**lllllll!*!ll*lli*!il*!l*l*ll**lill!*ll!ﬁ**

SUBROV "TNE DESI#™ FFILE,FFILE,FF)
190

2 L Iy s T2 1 313233332 3 2223332323122 21 8111}

c
c
€

This section of code is identical to the referenced program.

COnMON PI2,AD,DEV,X,Y,GRID,DES,WT ,ALPHA,IEXT ,NFCNS ,NGRID
COMMON /00PS/NITER,10UT

DIMENSION IEXT(130),AD(130),ALPHA(130),X(130},Y(130)
DIMENSION H(130)

DIMENSION DES(2080),GRID(2080),NT(2080)

DIMENSION EDGE(20),FX{10),WTX(10),DEVIAT(10)

DOUBLE PRECISION PI2,PI

DOUBLE PRECISION AD,DEV,X,Y

DOUBLE PRECISION GEE,D

INTEGER &D1,BD2,BD3,8D4 .

DATA BD1,BD2,BD3,BD4/1HB,1HA,LHN,1HD/

10UT=10 jthis is the 1/0 unit number for the console
PI1=4,0%DATAN(1.0D0)

P12-2,0D00*P]

C 060606 0636 0606 06 06 06 06 06 08 06 06 06 96 3606 06 06 96 36 06 06 06 06 06 36 96 96 06 06 06 J6 06 06 36 36 9 6 06 06 06 06 06 06 06 06 36 36 06 96 06 06 96 96 06 06 06 26 36 06 36 6 06 36 36 06 36 06 Je 6 6 ¢

I IS

[x N xr N]

60

This section of code is a revision to the referenced program.
Revision code parameters

REAL PARA(44),IMPULSE(128)

INTEGER PFILE(7),FFILE{(?),FF(2),BYTS,BLKS,LASTBYT
LOGICAL ITEST,SET

Get filter parameters from file,

CALL STATUS(PFILE,BLKS,LASTBYT)
BYTS= (BLKS*512) +LASTEYT
CALL RDBYTS(PFILE,BYTS,PARA,44)

Align parameters with variables in the Parks-McClellan algoritha,

NFILT=PARA(1)
JTYPE=PARA(2)
NBANDS=PARA(3)
LGRID=PARA(4)

L=0

1=0

J=4

1=1+1

J=Jdal

L=L+1
EDGE(L)=PARA())
J=J+1

LzL+l

EDGE(L) =PARACJ)
J=Jd+l

191

o

ML Gul et B0 o

o .

= rilr.._.,.

\AA SN L om A s o e s e Lam o e e e
» M !

2

FX(I)=PARA(I)

J=J+1

HIX(1)=PARACY)

IF (I.LT,INT(PARA(3))) GO TO 40

O30 9636 06 06 96 36 06 06 06 06 36 36 3 36 36 96 36 36 36 3 36 36 36 36 06 30 06 06 36 06 06 06 36 36 000696 00 06 06 06 06 06 06 06 06 36 36 6 00 06 36 06 26 36 96 36 30 06 36 6 30 26 36 06 36 36 36 06 36 36 36 46 ¢ %

¢
c
c

IO OO

Lar 3 B o B o

c
c

This sectian of code is identical to the referenced progras,

NEG=1

IF (JTYPE.EQ.1) NEG:=0

NODD=NFILT/2

NODD=NFILT-2%NODD

NFCNS=NFILT/2

IF(NODD.EQ.1.AND.NEG.EQ,0) NFCNS=NFCNS+1

SET UP THE DENSE GRID. THE NUMBER OF POINTS IN THE GRID
{S (FILTER LENGTH + 1)*GRID DENSITY/2

GRID(1)=EDGE(1)
DELF:=LGRID*NFCNS
DELF=0.,5/DELF
IF (NEG.EG.O) GO TO 135
IF(EDGE(1) .LT.DELF) GRID(1)=DELF
135 CONTINUE
J=1
L=1
LBAND=1
140 FUP=EDGE(L+1)
145 TERP:=GRID(J)

CALCULATE THE DESIRED MAGNITUDE RESFONSE AND THE WEIGHT
FUNCTION ON THE GRID

DES(J)=EFF(TEMP ,FX,HUTX,LEAND,JTYFE)
WT(J)=WATE(TENP ,FX,WTX,LBAND,JTYPE)
J=Jd+l
GRID(J)=TEMP+DELF
IF(GRID(J).GT.FUP) GO TO 150
GO TO 145
150 GRID(J-1)=FUP
DES(J-1)=EFF(FUP,FX,WTX,LBAND,JTYFE)
WT(J-1)=NATE(FUP,FX,NTX,LEAND,JTYPE)
LBAND=LBAND+1
LzL+2
IF(LBAND.GT.NBANDS) GO TD 160
GRID(J)=EDGE(L)
GO TO 140
160 NGRID=J-1
IF(NEG.NE.NODD) GO TO 145)
IF(GRID(NGRID) . ,GT+¢0.,S-DELF)) NGRID=NGRID-1
165 CONTINUE

SET UP A NEW APPROXINATION PROBLEM MHICH IS EUUIVALENT
192

o C TO THE ORIGINAL PROBLEW

: IF(NEG) 170,170,180
;I 17¢ IF(NODD.EQ.1) GO TO 200
DO 175 J=1,NGRID
CHANGE=DCOS(PI*GRID(J))
DES(J)=DES(J)/CHANGE
175 WT(J)=WT(J)*CHANGE

!

- €0 TO 200

&! 180 IF(NODD.EQ.1) GO TO 190
D0 185 J=1,NGRID

CHANGE=DSINCPI*GRID(J))

i DES(J)=DES(J)/CHANGE

; 185 WT(J)=WT(J)*CHANGE

60 T0 200

'| 190 DO 195 J=1,NGRID
CHANGE=DSIN(PI2%GRID(J))

DES(J)=DES{J)/CHANGE
195 WT(J)=WT(J)%CHANGE

INITIAL GUESS FOR THE EXTREMAL FREQUENCIES--EQUALLY
SPACED ALONG THE GRID

e ExNxNx/

200 TEMP=FLOAT(NGRID-1)/FLOAT(NFCNS)
D0 210 J=1,NFCNS
XT=J-1
;‘ 210 TEXT(J)=XT#TENP+1.0
: 9 TEXT(NFCNS4+1)=NGRID
NM1=NFCNS-1
NZ=NFCNS+1

CALL THE REMEZ EXCHANGE ALGORITHR TO DO THE APPROXIMATION
PROBLER

[N x N)

CALL REMEZ

CALCULATE THE IMPULSE RESPONSE.

e N N]

IF(NEG) 300,300,320
300 IF(NODD.EG.0) GD TC 310
DO 305 J=1,NNM1
NZNJ=NZ-J
305 H(J)=0.3%ALPHA(NZNJ)
HINFCNS) =ALPHA(1)
G0 TO 350
310 H(1)=0.,25%ALPHA(NFCNS)
PO 315 \"2,""1
NINJ=NZ-J
NF2J=NFCNS+2-J
315 H(J)=0.25%(ALPHA(NZNI) +ALPHA(NF2J))
H(NFCNS)=0,5¢ALPHA(1)+0,25%ALPHA(2)
G0 T0 350
320 IF(NODDJEG,.O) GU TO 330

Hi1)=0,25%ALPHA{NFCNS)
193

4
;

""T b bt
Pl -y
o e

325

AN~ et

330

" Vﬂ‘.‘l"- —

335

IO,

350

351

[ar I8 o BN o]

352

353

H(2)=20.25%ALPHA(NNL)

D0 325 J=3,NM

NZRJ=NZ-J

NF3J=NFCNS+3-J

R(J)=0,25% (ALPHAINZNJ) -ALPHA(NF3J))
H(NFCNS)=0.,5%ALPHA(1)-0,25%ALPHA(I)
H(NZ)=0.0

G0 TO 350

H(1)=0,25*%ALPHA(NFCNS)

D0 335 J=2,NM1

NZMJI=NZ-J

NF2J=NFCNS+2-J

H(3)=0,25% (ALPHA(NZNJI) -ALPHA(NF2J))
H(NFCNS)=0,5%ALPHA{1)-0.25*%ALPHA(2)

o 0 I I DI I TN I M N RN RN RN RN RN RN RN RERNR

This section of code is a revision to the referenced program.
Calculate the complete impulse response,

CONTINUE

D0 351 J=1,NFCNS

K=NFILT+1-J

IF (NEG.ED,0) INPULSE(J)=H(J)

IF (NEG.EQ.0) IMPULSE(K)=H(J)

I[F (NEC.EQ.1) INPULSE(J)=H(J)

IF (NEG,EQ.1) IMPULSE(K)=-H(J)

CONTINUE

IF (NEG.EQ.1 .AND., NODD,.EQ.1) IMPULSE(NZ)=0,0

Write filter impulse response to file,

CALL DFILW(FFILE,IER)

IF (IER.,EQ.13) GO TO 353

IF (IER.NE.1) TYPE "DFILW error “",IER," mith filter file"
CALL CFILW(FFILE,2,IER)

IF (IEK.NE.1) TYPE "CFILV error “,IER," with filter file"
CALL OPEN(2,FFILE,3,1ER)

IF (IER.NE.1) TYPE “OFEN error ",IER," with filter file"

BYTS=NFILT*4
CALL WRSEQ(2,IMPULSE,RYTS,IER)
1F (1ER.NE.1) TYPE “WRSEQ error ",IER," with filter file"

CALL CLOSE(2,IER)
IF (IER.NE,1) TYPE "CLOSE error “,IER," with filter file"

SET=1TEST(FF(1),4) ytrue if L switch is present

IF (+NOT.SET) GO TO 500 ;if L switch is not present
jthen do not send a filter design
jlisting to the printer

CRuE MRt RN RN RN RN RN RN RN ERRNE R RN RRR RN RRRRRRARRRRERRR

194

v,vva

k=

A S A0 o an o

vrrr
. ’ -

ey —p——r

c
c
c
c
c

This section of code is identical to the referenced progranm.
PROGRAM QUTPUT SECT1ON.

WRITE(IOUT,340)

360 FORMAT(1H1, 70(1H®)//15X,29HFINITE LINPULSE RESPONSE (FIR)/
113X,34HLINEAR PHASE DIGITAL FILTER DESIGN/
217X,24HREMEZ EXCHANGE ALGORITHM/)

TF(JTYPE.EQ.1) WRITECIOUT,345)

365 FORBAT(22X,15HBANDPASS FILTER/)
IF(JTYPE.EQ,2) WKITECI0UT,370)

370 FORMAT(22X,14HDIFFERENTIATOR/)
IF(JTYPE.EU.3) WRITE(IOUT,375)

375 FORRAT(20X,19HHILBERT TRANSFORMER/) .
WKITE(IOUT,378) NFILT

378 FORMAT(20X,14HFILTER LENGTH = ,13/)
WRITE(IOUT,380)

380 FORHAT(15X,28H*%x%% IMPULSE RESPUNSE #wwxx)
DO 381 J=1,NFCNS
K=NFILT+1-J
IF(NEG,EQ.0) WKITE(10UT,382) J,H(J),K
IF(NEG.EQ.1) WRITEC(IOUT,383) J,H(J),X

381 CONTINUE

382 FORMAT(13X,2HH(,12,4H) = ,E15.8,5H = H{(,13,1H))

383 FOKMAT(13X,2HH(,12,4H) = ,E15.8,6H = -H(,13,1H))

IF(NEG.EQ,1,AND,NODD,EQ.1) WRITE(10UT,384) N2

384 FORMAT(13X,2HH(,12,8H) = 0.0)

DO 450 K=1,NBANDS,4
KUP:K+3
IF(KUP.CT.NBANDS) KUP=NBANDS
WKITE(IOUT,385) (BD1,BD2,BD3,8D4,J,J=K,KUF)
385 FORMAT(/24X,4(4A1,13,7X)) '
WKITE(IOUT,390) (EDGE(2%J-1),J:=K,KUP)
390 FORMAT(2X,15HLOWER BAND EDGE,SF14.7)
WRITE(IOUT,395) (EDGE(Z%J),J=K,KUP)
395 FORMAT(2X,15HUFPER BAND EDGE,SF14.7)
IF(JTYPEJNE.2) WRITECTIOUT,400) (FX{J),J=K,KUP)
400 FORMAT(2X,13HDESIKED VALUE,2X,5F14.7)
TIF(JTYPE.EG.2) WRITE(IDUT,405) (FX{J),J=K,KUP)
405 FORMAT(2X,13HDESIRED SLOPE,2X,5F14,7)
WKITECIOUT,410) (WIX(J),J=K,KUP)
410 FORMAT(2X,9HWEIGHTING,4X,5F14,7)
DO 420 J:=K,KUF
420 DEVIAT(J)=DEV/NTX(J)
WKITE(IOUT,425) (DEVIAT(J),J=K,KkUP)
425 FORMAT(2X,9HDEVIATION,4X,5F14,7)
IF(JTYPE,NE.1) GO TO 450
DO 430 J:=K,kup
430 DEVIAT(J)=20,0%ALOGIO(DEVIAT(J)+FX())
WRITE(IOUT,435) (DEVIAT(J),J=K,KUF)
435 FORMAT(2X,15HDEVIATION IN DB,5F14.7)
450 CONTINUE
DO 452 J:=1,NZ

195

Py

14

P

v

0

IX=1EXT(J)

452 CRID(J)=GRIDLIX)
NRITE(IOUT,455) (GRID(J),d=1,N2)

455 FORMAT(/2X,47HEXTREMAL FREGUENCIES--NAXINA OF THE ERROR CURVE/
1 (2X,5F12.7))
WRITE(IOUT,460)

460 FORMAT(/1X,70(1H%)/1H1)

C 062026 00 0630 260606 96 36 38 96 06 96 06 96 36 36 6 3 06 36 36 36 30 36 36 00 30 36 06 36 06 06 06 06 00 06 36 00 30 06 06 00 06 06 06 06 06 36 06 06 3036 06 06 06 36 36 36 0% 36 6 36 06 06 36 06 06 36 30 06 06 6

500 RETURN
END

G296 06 36 96 36 36 06 36 96 36 36 6 96 6 36 06 06 36 96 36 96 06 96 96 96 6 36 96 96 96 96 36 6 36 36 96 96 96 36 96 96 9 36 € 36 6 36 06 36 96 36 36 46 96 96 36 96 9 36 06 36 36 36 96 36 6 36 96 96 96 96 3 % 3 %

196

..........

,‘:‘N

T

SUBROUTINE: REMEZ

THIS SUBROUTINE IMPLEMENTS THE REMEZ EXCHANGE ALGORITHM
FOR THE WEIGHTED CHEBYSHEV APPROXINATIUN OF A CONTINUOUS
FUNCTION WITH A SURM OF COSINES. INPUTS TO THE SUBROUTINE
ARE A DENSE GRID WHICH REPLACES THE FREQUENCY AX1S, THE
DESIRED FUNCTION UN THIS GKID, THE WEIGHT FUNCTION ON THE
GRID, THE NUMEER OF COSINES, AND AN INITIAL GUESS OF THE
EXTREMAL FREQUENCIES., THE FROGRAM MINIMIZES THE CHEBYSHEV
ERROR BY DETERMWINING THE BEST LOCATION OF THE EXTREMAL
FREQUENCIES (POINTS OF MAXIWUM ERROR) AND THEN CALCULATES
THE COEFFICIENTS OF THE BEST APPROXTWATION,

IO 00

SUBROUTINE RENMEZ
COMMON PI12,AD,DEV,X,Y,GRID,DES,WT,ALPHA,IEXT,NFCNS,NGRID
COMNON /0OPS/NITER, (OUT
DIMENSION IEXT(130),AD(130),ALPHA(130),X(130),Y(130)
DINENSION DES(2080),GRID{2080),RT(2080)
DIMENSION A(44),P(45),Q(45)
DOUBLE PRECISION FI12,DNUM,DDEN,DTENP,A,P,Q
DOUBLE PRECISION DK,DAX
DOUBLE PRECISION AD,DEV,X,Y
DOUBLE PRECISION GEE,D
C
C THE PROGRAM ‘ALLOWS A MAXIMURM NUMBER OF ITERATIONS OF 25
L
ITRNAX=25
DEVL=-1.¢
HZ=NFCNS+1 p
NZZ=NFCNS+2
NITER=0
100 CONTINUE
IEXT(NZZ)=NGRID+1
NITER=NITER+1
IF(NITER.GT.ITRMAX) GO TO 400
D0 110 J=1,NZ
JXT=IEXT(I)
DTENP=GRID(JXT)
DTIEMP=DCOS(DTENPXPI2)
110 X(J)=DTENP
JET=(NFCNS-1)/15+1
DO 120 J=1,NZ
120 AD(J)=D(J,NZ,JET)
DNUN=0,0
DDEN=0.,0
K=1
PO 130 J=1,N2
L=IEXT(J)
DTENP=AD(J)*DES(L)
DNUM=DNUN4DTENP
DTEMF=FLOAT(X)XAD(J)/WT(L)

DDEN=DDEN+DTENP
197

130 X=-K
DEV=DNUNM/DDEN
WRITE(IOUT,131) DEV

131 FPORMAT(1X,12HDEVIATION = ,F12.9)
NU=1
IF{DEV.CT.0.0) NU=-1
DEV=-FLOAT(NU)%DEV
K=NU
DO 140 J:=1,NZ
L=1EXT(J)
DTEMP=FLOAT(K)*DEV/NT(L)
Y(J)=DES(L)+DTENP

140 K=-K
IF(DEV.GT.DEVL) GO TO 150
CALL OUCH
G0 TO 400

150 DEVL=DEV
JCHNGE=0
K1=IEXT{(1)
KNZ=TEXT(N2)
KLOW=0 '
NUT=-NU
J=1

Jir"“r'ﬂfn]lv~yvf<
. A I . .

SEARCH FOR THE EXTREMAL FREQUENCIES OF THE BEST
APPROXIHATION

[W Ne Ly

200 IF(J.EQ.N2Z) YNZ=COMP
1F{(J,GE,NZZ) GO T0 300
KUP=TEXT(J+1)

L=TEXT(J)+1
NUT=-NUT
IF(J.EQ.2) Yi=CONP
CONP=DEV

‘ IF{L.GE.KUP) GO TO 220

! ERR=GEE(L,NZ)

1 ERR=(ERR-DES{(L))*NT(L)
DTEMP=FLOAT(NUT)*ERR-CONP
IF(DTENP.LE.0.,0) GO TO 220
COMP=FLOAT(NUT)%ERR

210 L:=L+1
IF(L.GE,XUP) GD TO 215
ERR=GEE(L,N2)
ERR=(ERR-DES(L))#NT(L)
DTERP=FLOAT(NUT)*ERK-CONP
IF(DTENP.,LE.0.0) GO TO 215
CONP=FLOAT(NUT)*ERR
G0 T0 210

) ~215 IEXT(J)=L-1

¢ J=Jdsl

- KLOW=L-}

1 JCHNGE=JCHNGE+1

‘ GO TD 200
1 220 L=L-1

Ty .ﬁu-, 2 i da 4 —————
-

R _umn e aey 4
-_

——v

198

L PSP S SUNU Y . TUNUY SRV 1

o TRy Camat s y ., LT Haaid LRt . Sate —— AR A

225 L:=L-1
IF(L.LE.KLOW) GO TO 250
ERR=GEE(L,N2)
ERR=(ERR-DES(L))*NT(L)
DTEMP=FLOAT(NUT)*ERR-CONP
IF(DTEMP,GT.0.,0) GO TO 230
IF(JCHNGE,LE.0) GO TD 225
€0 TO 260
230 COMP=FLOAT{NUT)*ERR
235 L=L-1
IF(L.LE.KLOW) GO TD 240
ERR=GEE(L,NZ)
ERR=(ERR-DES(L))*¥T(L)
DTENP=FLOAT(NUT) *ERR-CONP
IF(DTEMP.LE.0.0) GO TO 240
COMP=FLOAT(NUT)*ERR
G0 TO 235
240 KLOW=IEXT(J)
IEXT(J) =L+t
J=Jd+l
JCHNGE=JCHNGE+1
€0 TO 200
250 L=IEXT(J)+1
IF(JCHNGE.GT.0) CO TO 219
255 L:zLl+1
IF(L.GE.KUP) GO TO 240
0 ERR=GEE(L,NZ)
ERR={ERK-DES(L))*#NT(L)
DTEMP=FLOAT(NUT)*ERR-CONP
IF(DTENP,LE.0,0) GO TO 255
COMP=FLOAT(NUT) %ERR
60 T0 210
260 XLOW=IEXT(J)
J=J+l
GO TO 200
300 IF(J,CT.NZZ) GO TO 320
IF(K1.GT IEXT(1)) K1=IEXT(1)
IF(KNZ,LT.IEXTINZ)) KNZ={EXTIND)
] NUT1=NUT
NUT=-NU
L:0
XUP=K1
COMP=YNZ#*(1,00001)
: LUCK=1
¢ 310 L=L+t
IF(L.GE.KUP) €D TO 315
\ ERR=GEE(L,N2)
L ERR=(ERR-DES(L))*WT(L)
{ . DTEMP=FLOAT(NUT)*ERR-CONP
! IF(DTENP.LE.0.0) GO 1O 310
¢ COMP=FLOAT(NUT) *ERR
J=NIZ
G0 TO 210
315 LUCK=4

,,vv
TR

N d‘ 'T-YI l'."_ Lot i

'r'.jl (.-‘V"zvvijv

R —

P——"

199

P — ——" o T R T e e T T T e e

t

IYrYr

L o oh ok ag

v'v‘v
N

...f--".'..f‘,,‘u-r‘,r - -vav

Lam am o o am . 2 e

[N x NNyl

0 10 325

320 IF(LUCK.GT.9) GO TO 350
IF(COMP.GT,Y1) Y1:=CONP
K1:=1EXT(NZ2)

325 L=NCRID+1
KLON=KNZ
NUT=-NUTY
COMP=Y1#(1,00001)

330 L:L-1
IF(L,LE.KLOW) GU TO 340
ERR=GEE(L,N2)
ERR=(ERR-DES(L))*¥T(L)
DTENP=FLOAT(NUT) *ERR-CONP
IF(DTENP,LE.0.0) GO TO 330
J=N22
COMP=FLOAT(NUT) #ERR
LUCK=LUCK+10
60 TO 235

340 IF(LUCK.EQ.6) GO TO 370
DO 345 J=1,NFCNS
NZZNJ=N2Z-J
NZNJ=NZ-J

345 IEXT(NZINJ)=IEXT(NZNS)
IEXT(1)=K1
60 TO 100

350 KN=IEXT(NID)
D0 340 J=1,NFCNS

360 IEXT(J)=IEXT(J+1)
IEXT(NZ)=KN
0 TO 100

370 IF(JCHNGE.GT.0) GO TO 100

CALCULATION OF THE COEFFICIENTS OF THE BEST APPROXIMATION
USING THE INVERSE DISCRETE FOURIER TRANSFORM

400 CONTINUE
NM1=NFCNS-1
FSH=1,0E-06
GTENP=GRID(1)
X(N2Z)=-2,0
CN=2¥NFCNS-1
DELF=1.,0/CN
L=t
KKK=0
IF(GRID(1),LT.0,01,AND.GRID(NGRID),CT,0,49) KKK=1
IF(NFCNS,LE,3) KKK=1
IF(XKK.EQ.1) GO TO 405
DYENP=DCOS(PI12*GRID(1))
DNUM=DCOS(PI2%GRID(NGRID))
AA=2,0/(DTENP-DNUM)
BB=-(DTENP+DNUM)/ (DTEMP -DNUN)
405 CONTINUE
DO 430 J=1,NFCNS
FT=J-1

200

S MR

FT=FT#DELF
XT=DCOS(PI2%FT)
IF(KKK.EQ.,1) GO TO 410
XT=(XT-BB)/AA
XT1=SQRT(1.,0-XT#XD)
FT=ATAN2(XT1,XT)/P12

410 XE=X(L)
IF(XT.GT.AE) GO TO 420
IF((XE-XT),LT.FSH) GO TO 415
L=L+1 ' '
GU TO0 410

415 A(J) =Y (L)
GO TO 425

420 IF((XT-XE).LT.FSH) GO TO 415
GRID(1)=FT

1 A(J)=GEE(1,N2)

r‘ 425 CONTINUE
IF(L.GT+1) L=L-}

430 CONTINUE
GRID(1)=GTENF
DDEN=PI2/CN
DO 510 J=1,NFCNS
DTENP=0,0
DNUN=J-1
DNUN=DNUNXDDEN
IF(NM1,LT.1) GO TO 505
DO 500 K=1,NH1
DAK=A(K+1)

DX=K '

500 DTENP=DTEMP+DAXK%DCOS(DNUN*DK)

505 DTENP=2,0%DTENP+A(1)

510 ALPHA(J)=DTENP
D0 550 J=2,NFCNS

350 ALPHA(J)=2,0%ALPHA(J)/CN
ALPHACL) =ALPHAC(1)/CN
IF(KKK.EQ.1) GO TO 545
P(1)=2,0%ALFHA(NFCNS) ¥BE+ALPHACNRL)
P(2)=2,0%Aa%ALPHA(NFCNS)
@(1)=ALPHA(NFCNS-2)-ALPHA(NFCNS)
DO 540 J=2,NM1
IF(J,LT.NNL) GO TO S15
AA=0,5%AA
Bb=0,5%BB

5135 CONTINUE
P(I+1)=040
DO 520 Kk=1,J
ACK)=P(K)

520 P(K)=2,0%BB*A(K)
P(2):=P(2)+A(1)%2,0%AA
Jni=J-1
DO 525 K=1,JM1

525 P(K)=P(K)+Q(K)+AA%A(K+1)
JP1zJ+}

DU 530 K=3,JP1

201

£
3
h
S
2
>

p———y
P

530

333

540

343
545

PUK)=P LK) +AARACK-1)
IF(J.EQ.NN1) GO TO 540
D0 535 k=1,J
G(X)=-A(K)
NF1J=NFCNS-1-J
Q(1)=0(1)+ALPHA(NF1J)
CONTINUE

DO 543 J=1,NFCNS
ALPHA(J) =P (J)
CONTINUE
IF(NFCNS.CT.3) RETURN
ALPHA(NFCNS+1)=0,0
ALPHA(NFCNS+2)=0,0
RETURN

END

202

Rt hhalh e A Shndet

L S e s s e o0 aun s o g o e 4
-~

c

-C FUNCTION: WATE

FUNCTION TO CALCULATE THE WEIGHT FUNCTION AS A FUNCTION

OF FREQUENCY. SINILAR T0 THE FURCTIUN EFF, THIS FUNCTION CAN
BE REPLACED BY A USER-WURITTEN ROUTINE TO CALCULATE ANY
DESIRED WEIGHTING FUNCTION.

FUNCTION WATE(FREQ,FX,NTX,LBAND,JTYPE)
DINENSION FX(3),WTX(3)
IF(JTYPE.EQ.2) GO TO 1
WATE=WTX(LBAND)
RETURN

1 IF(FX(LBAND),LT.0,0001) GO TO 2
WATE=WTX(LBAND)/FREQ
RETURN

2 WATE=WTX(LBAND)
RETURN
END

203

FUNCTION: EFF
FUNCTION TO CALCULATE THE DESLRED MAGNITUDE RESPONSE
AS A FUNCTION OF FREQUENCY.
AN ARBITRARY FUNCTION OF FREQUENCY CAN BE
APPROXIMATED IF THE USER REPLACES THIS FUNCTION
WITH THE APPROPKIATE CODE TO EVALUATE THE IDEAL
MAGNITUDE, NOTE THAT THE PARAMETER FREQ IS THE
VALUE OF NOKMALIZED FREQUERCY NEEDED FOR EVALUATION,

-

FUNCTION EFF(FREQ,FX,NTX,LBAND,JTYPE)
DINENSION FX{5),UTX(S)
1F(JTYPE,EQ.2) GO TO 1
EFF=FX(LBAND)
RETURN
1 EFF=FX(LBAND)*FREQ
RETURN
END

- ﬁﬁ Y

204

Cla

C FUNCTION: D
I C FUNCTION TO CALCULATE THE LAGRANGE INTERPOLATION
C COEFFICIENTS FUR USE IN THE FUNCT(ON GEE.

DOUBLE PRECISION FUNCTION D(K,N,n)

COMNON P12,AD,DEV,X,Y,LRID,DES,WT,ALPHA,[EXT NFCNS,NGRID
DIMENSION IEXT(130),AD(130),ALPHA(130),X(130),Y(130)
DIMENSION DES(2080),GRID(2080),UT(2080)

DOUBLE FPRECISION AD,DEV,X,Y

DOUBLE PRECISION 0

DOUBLE FRECISION PI2

D=1.0

u=X(K)

DO 3 Let,M

DO 2 J=L,N,N

IF(I-X)1,2,1

D=2.0%D%(0-X(J))

CONTINUE

CONTINUE

D=1.0/D

RETURN

END

el

3
b
I
M

[A I

T P
-

T —

i

L

C FUNCTION: GEE
C FUNCTION TO EVALUATE THE FREQUENCY RESPONSE USING THE
C LAGRANGE INTERPOLAT{ON FORHULA I[N THE BARYCENTRIC FORM

DOUBLE PRECISION FUNCTION GEE(K,N)
COMMON F12,AD,DEV,X,Y,GR{D,DES,WT ,ALPHA, IEXT NFCNS NGRID
DIMENSION IEXT(130),&D(130),ALFHA(130),X(130),Y(130)
DIMENSION DES(2080),GRID(2080),UT(2080)
DOUBLE PRECISION P,C,D,XF
DOUBLE PRECISION FI12
DOUBLE PRECISION AD,DEV,X,Y
P=0.0
XF=GRID(K)
XF=DCOS(PI2%XF)
P=0.,0
DO 1 J=1,N
C=XF-X{J)
C=aD¢J)/C
D=D+LC
1 P=PaC¥Y()
GEE=P/D
RETURN
END

206

p— e e S o aa Rl it A o e e R R TWTTW T LW T TR LN TS o T
—p gt o o T LS RS TN T T, . TN T IR

.......

e
C
c ...
€ SUBROUTINE: OUCH
‘: C MNRITES AN EKKROR MESSAGE WHEN THE ALGORITHM FAILS TO
g C CONVERGE. THERE SEEW TO BE TWO CONDIYIONS UNDER WHICH
' C THE ALGORITHM FAILS TO CONVERGE: (1) THE INITIAL
. C GUESS FOKR THE EXTREMAL FREQUENCIES 1S SO POOR THAY
: C THE EXCHANGE ITERATLION CANNOT GET STARTED, OK
’ C (2) NEAK THE TERMINATION OF A CORRECT DESIGN,
!! € THE DEVIATION DECKREASES DUE TU ROUNDING ERRORS
, C AND THE PROGRAM STOPS., IN THIS LATTER CASE THE
; € FILTER DESIGN IS PROBABLY ACCEPTABRLE, BUT SHOULD
4 C BE CHECKED BY COMPUTING A FREQUENCY RESPONSE.,
b C """""""""""""""""""""""""""""""""""""
| C
"' SUBROUTINE OUCH
f CONMMON /00PS/NITER,IOQUT
WRITEC(IOUT,L1)NITER
I FORMAT(44H sxxxxxuxxxxe FALLURE TU CONVERGE wwxxxx#xwx/
141HOPROBABLE CAUSE 15 BMACHINE ROUNDING ERROR/
223HONUNBER OF ITERATIONS =,I4/
k'. 339HOIF THE NUWBER OF ITERATIONS EXCEEDS 3,/
1 462HOTHE DESIGN MAY BE CORRECT, BUT SHQULD BE VERIFIED WITH AN FFT)
: RETURN
= END
8
L.
jc o
b
&
!
}
!
4
q
|
207

L AJEm s @ an aun
-

———

Appendix F

Source Code
for
Support Software

208

R i i i sy et YTt essaatseaszsssstititzizy]

[N o] [[N N x] [x/ [</ [¥ x] [z N x N x N g

CIIIICICD

«

IO OO M,

Title: Coaln
Author: Lt Allen
Date: Dec 42

Function:
This routine fetches the number of files, filenames and switch
values of up to 3 files that may have been entered in the
command line with the executing program.

Compile comsand:
FORTRAN COMLN

Comaand line: .
CALL COMLN(TOTAL,MAIN,FILEL,FILE2,FILE3,NS,F1,F2,F3)

where,

TOTAL returns the number of files, in addition to the executing

program, that were entered in the command line of the executing
program.

HRAIN/NS are the name and switch values entered for the executing
program,

FILE1/F1, FILE2/F2 and FILE3/F3 are the additional filenames
and corresponding switches if entered in the cosmand line,

All filenames are returned in the S format, The follawing table
gives the bit that is set in the switch array for each switch
that is attached to a filename. If the switch is not attached,
then the corresponding bit wil) be zero., Also, the unused bits
in the second switch element will be returned zero., The bits

are numbered from 0, the rightmost, to 15, the leftmost, This is
the convention used by the 1TEST subroutine.

switch bit of SW(1) switch bit of SW(2)
A 15 a 13
B 14 R 14
c 13 S 13
D 12) 12
E 19 U i
F 10 v 10
G 9] 9
H 8 X 8
I 7 Y 7
J) l $
¢ 5
L 4
N 3
N 2
0 1

209

Qe

3 D L S

c P 0

0 O A N R RN AR RN
SUBKOUTINE COMLN(TOTAL,MAIN,FILE1,FILE2,FILE3,NS,F1,F2,F3)

INTEGER WAIN(7),FILEL1(7),FILE2(7),FILE3(7)
INTEGEK nS(2),F1(2),F2(2),F3(2),T0TAL

. TOTAL=0
CALL GROUND(I)
IF (1,EQ.0) OPEN 1,"COM.CNH" joperating aon background teraminal
1F (1,EQ.1) OPEN 1,"FCORM.CH" joperating on foreqround termsinal

CALL COMARG(1,MAIN,MS,IER)

IF (1ER.NE.1) TYPE "CONARGC error”,IER," with main file"
CALL COMARG(1,FILE1,F1,IER)

1F (1EK.EQ.9) GO TO 10

IF (IER.NE.1) TYPE "COMARG error”,IER," with first file"
TOTAL=TOTAL+1

CALL COMARG(1,FILE2,F2,IER)
IF (1ER.EQ.9) GO TO 10

IF (IEK.ME.1) TYPE "CLOMARG error”,IER," with second file"
TOTAL=TOTAL+}

CALL COMARG(1,FILE3,F3,1ER)
IF (1ER.EQ.9) GO YO 10
IF (IEK.NE,1) TYPE “COMARG error”,IER," with third file"

TOTAL=TOTAL+1
10 CLOSE 1

KETURN
END

oA R B o o RO RN NN R RN R ERRNRNRERREN

210

GOt i I A N RN RN NRERNRBARRRRNERA RN

[r B o 3 o] [2K or] [M x N x]

L ar B]

Titie: ClikSet
Author: Lt Allen
Date: Dec 82

Function:

This routine allows the user to interactively set the clock to
be used for an Eclipse A/D/A conversion operation,

Compile comwand:
FORTRAN CLKSE?T

Comments:

The device nuaber (21 for A/D or 23 for D/A) is sent to the
routine in variable DEVICE.,

The clock chosen is returned to the calling program in variable
cLock.

Cos Mmoo I I OO O I N OO NN NN NR RN R R

SUBROUTINE CLKSET(DEVICE,CLOCK)
INTEGER DEVICE,CLOCX

G0 000000000 000600000 0000 0606 00600 000000 00 060000 00 06 06 9006 06 06 000000 6 00 00 06 06 00 62600 00 00 00 JE O J 00 06 00 0O M P IOt B QR B E IR BEDE R E IR O

10

15

IF (DEVICE.EQ.21 ,OR, DEVICE.EQ.23) GO Y0 10
CALL ERROR(“improper device number™)

TYPE “(CR)

tlhat type of clack?(CR)
® 1: pulse(CR)

2 external(CK)

& 3: internal®

IF (DEVICE.EG.21) TYPE " 4: DCH" ;not allowed for A/D aperations
ACCEPT -

tselection:”,1CLOCK

CLOCKk=777X

IF (ICLOCK.EQ.1) CLOCK=0K

{F (ICLOCK.EQ.2) CLOCK*40000X

IF (ICLOCK.EG.3) CLOCK=40000K

1F ((DEVICE.EQ.21) .AND,(ICLOCK,EQ.4)) CLOCK=20000K
IF (CLOCK.NE.777K) GO TQ 15

WRITE (10,1)

FOKRAT ("(CKY(CR)(CK)

#Please make selections only from the given options.”)
GO TO 10

IF (CLOCK.EQ.0K) TYPE “(7)(7)(7){CR)
tUse of the puise clock reguires special software setup(CR)
sand should not be attempted without consulting the SAM{(CR)

211

tlser’'s Manual.”
IRIS=1

:! 16 IF (CLOCK.EQ.0X) ACCEPT “(CLR}
, 8Do you eant to,(CR)
13 use pulse clock(CR}
2% select another clock(CR)
tselection:”,lNIS

N (F (INIS.EQ,1) GO TO 20
IF {INIS,EQ.2) GO TO 10
MRITE(10,1)
G0 T0 16

20 RETURN
END

0000630000806 06 06 30 00 36 06 00 08 96 0000 08 00 06 06 36 06 0 96 06 08 96 0 96 JE 0896 26 36 06 JE O E 0 060 6 O QE OO O MO E QR b B U QR QN DR E QO R QR OE N R 0 00

212

P

.

R e R R E e i ity

Title: DelChc
Author: Lt Allen
Date: Dec 82

[N N]

Function:

This routine deletes a disk file if it's switch array has the D
D switch set, The switch array should be of the fora returned
by the COMARG call.

LI B o 2 r |

Cospile command:
FORTRAM DELCHC

[x R/

Conaents:

The variables that are passed to this routine have the following
aRaning,

L M I o |

C FILENAN the disk filenase (in S format)

F§ the corresponding switch array for the
disk file

xR

CRUMIMIN DRI IO 0000000000000 0000000000000 000000 IO IO IO DO R R RN
SUBROUTINE DELCHC(FILENAN,FS)

INTEGER FILENAN(7),FS(2)
LOGICAL ITEST

IF (. NOT.ITEST(FS(1),12)) €0 10 10
CALL DFILW(FILENAM,LER)
IF (IEK.NE.1) URITEC10,1) IER,FILENAN(1)
1 FORMAT("
#DFILW error ",I12," with file ",513)

10 RETURN
END

600060600060 06 000 00000000600 0000000000606 000000060630 0000000060000 060600096000 00 00 000606 00000 00006 00 000600 0606 00 06 600 06 00 46 00 0 OO

213

C 00000000 060000 00000600 00 06 000000 00000000000 0000 00000000 00 00 30 00 00 00 00 00 00 00 00 00 00 0 00000 000 00 0 0 0 0 0 00 00 00 000 0 00 0E D0 DR 0 8

c
C
¢

Title: FilChc
Authar: Lt Allen
Date: Dec 82

Function:
This routine verifies that two filenames are not identical, If

they are, an error aessage is printed to the screen and the
progras is aborted.

[-3 o B or BN o]

Compile command:
FORTRAN FILCHC

[X 5/

Comaents:

The filenames sent to this routine should be in the § format.
(This is the format returned by the COMARG call)

e N xRl

3000006460006 00000000000 O O N R RN RN,
SUBROUTINE FILCHC(FILE1,FILE2)
INTEGER FILE1(7),FILE2(7),TEST

TEST=0
1=1
10 IF (FILE1{I).NE.FILE2(I)) GO TO 20
1:141
IF (I.LT.8) GO TO 10
GO 10 30

20 TEST=1

30 1F (TEST.EQ.0)
#CALL ERROR("the given command line filenames cannot be identical®)

RETURN
END

G N RN N NN NN RN R RN RN RGN

CHum RN NN RN NN NN R TR RN REN RN RRR R RRRRE N NAEE

(C Title: FiltPlot
c Author: Lt Allen

£ Date: Dec 82

c Function:

c This program plots filter responses on the tetronix terminal., It
] L wil) plot an impulse of up to 512 points or the sagnitude or log
A c magnitude of the 1024-point DFT magnitude of the impulse

C response, The program assumes that the filter file is of

C the type (time or frequency magnitude) specified to be
: C plotted. Only the first half (512 points) of the DFT files
s C are plotted. Al) file data types should be real.
}
n‘ € Compile command:
b c FORTKAN FILTPLOT
. c Load command:
; C KLDk/¢ FILTPLOT COMLN STATUS CGRPH.LB @FL1BE
9
»‘ C Command Line: '

C FILTPLOT (/I or /M or /L) filename

c wshere “filenase” can be any legal KDUS filenane

Erther the [, M or L switch must be attached amd indicates
an impulse, magnitude or log magnitude piot, respectively.

‘,A-,—-r‘wfv
-
[-]

Ciilllilllillli&!i!iili!l&lll*i**ll*‘lﬂ!‘!llllillli!liil!l‘liili!il*l*lll*lilill

REAL RFILT(1024),kP1,kP2,kP3

INTEGER FILE(7),SF,NS(2),RET,NUNBLK,LASTBYT,POINTS,BYTS
LOGICAL ITEST,SET

i Sal

- c

E c Retrieve command line file and verify only one.

1 c

¥ CALL COMLN(KET,Sp,FILE,SK,SP,NS,SF,5P,5P)

£ IF (KET.EQ.1) GO TO 20

r CALL ERKROK{(“incorrect command line syntax")

3 C
C Verify input file exists and retrieve it's contents.
C

:
1 20 CALL STATUS(FILE,NUMBLK,LASTBYT)
Fq POINTS=(NUNBLA®128) 4+ (LASTBYT/4)
4 BYTS=POINTS#4
CALL FOPEN(1,FILE)
CALL RDSEQ(1,RFILT,BYTS,1ER)
IF (IER.NE.1) CALL ERROR("KDSEQ error™)
CALL FCLOSE(1)

Detersmine the type of plot,

[K x N

N
—
[4]

[or Bl o]

oocC O

[2 o I o]

[or I8 or]

30

40

16

50

60

70

SET=ITEST(ANS(1),7) scheck for I saitch
IF (SET) GO TU 50

SET=1TEST(NS(1),3) scheck for M switch
IF (SET) GO TO 30

SET-ITEST(NS(1),4) scheck for L swmitch
IF (SET) GO YD 40
CALL ERKOR("invalid command line switch”)

Plot the first half of the magnitude response.

POINTS=POINTS/2
GO TO 60

Compute log magnitude response,

POINTS=FOINTS/2

DO 16 1=1,POINTS
RFILT(I)=10,#ALOGLO(RFILT(1))
CONTINUE

0 T0 &0

FPlot impuise response with vertical lines.

IF (POINTS.GT.S512) CALL ERKUR("iwpuise response too long™)
CALL GRPH2(FILE,1,RFILT,RP1,POINTS,1,RP2,RP3,0)

ACCEPT sallow user to position cursor far typing
ACCEPT ion graph

ACCEPT

ACCEPT

G0 T0 90

Flot magnitude and log magnitude response with smaoth line.

IF (POINTS.NE.512) CALL ERKROR(“frequency respanse not 1024 points”)
CALL GRPH2(FILE,1,KRFILT,RkPY,POINTS,0,RP2,RP3,0)

ACCEPT

ACCEPT

ACCEPT

ACCEPT

CALL EXIT
END

36 060000 0600 08 00 9806 0006 00 00 0696 06 96 96 06 00 0696 08 06 0 06 08 36 36 00 36 0 90 06 06 16 06 36 96 06 36 06 06 06 48 06 00 06 06 91 36 06 36 06 40 00 96 2600 30 00 06 00 630 6 06 00 36 06 D 0 0 ¢

216

RN E RN R RN RN RN RN RN RN RN RN REE R NRER RN

c
c
¢

-~

»

o
[
L
L7

s NN x N x/

3

[x N N x]

c
¢

405

10

11
12

Title: Header
Author: Lt Allen
Date: Dec 82

Function:
This routine prints on the printer a header specifying an Eclipse
A/D/A conversion operation. The comversion results specified can
then be printed beneath the header,

Compile command:
FORTRAN HEADER

Comments:

The variables that are passed to this routine have the following
seaning,

DEVICE 21 for A/D or 23 fo D/A

SPEC1 starting channe) for A/D or D/A

SPEC2 ending channel for A/D or sode set for D/A
IDATA2 conversion coﬁnt

IER DOITW error return

10RBA the operation’s 10RBA array

cLock conversion count

COMTEIE 00000080006 00 00 0006 30 00 00 00 06 30 0 0006 06 0006 00 06 00 00 0036 00 06 0 06 00 30 06 00 06 36 20 06 06 36 00 00 06 06 06 06 36 00 00 06 30 00 J0 06 06 30 00 0 06 00 30 0 0 0000 B 6 B 6 0

SUBROUTINE WEADER(DEVICE,SPEC1,SPEC2,IDATA2,IER,I0REA,CLOCK)
INTEGER DEVICE,SPEC1,SPEC2,1DATA2,1ER,10RBA(14),CLOCK

1F (DEVICE.EQ.21 .OR, DEVICE.EQ.23) GO TO 405
CALL ERROR("improper device nusber”)

CALL FGDAY (IMON, IDAY, IYR)
CALL FGTINE (IHOUR, IMIN, ISEC)

WRITE (12,10)

FORMAT (1X,"Eclipse A/D/A operation”)
WRITE (12,115)

WRITE (12,11) 1IMON,1DAY,I1YR

FORMAT (1X,"date: ",12,"/",12,"/",12)
WRITE (12,12) IHOUR,INMIN

FORMAT (1X,"tipe: *,12," : *,12)
WRITE (12,115)

WRITE (12,1)

1F (CLOCKX.BO.1) WRITE (12,21)

217

0O

T T L
L sastd et e onihe i S e A LA - K Pl

IF (CLOCK.E@.2) MKRITE (12,24)

1F (CLOCK.EQ.3) MRITE (12,23)

IF (CLOCK.EQ.4) WRITE (12,22)

WKITE (12,3) SPEC1

IF (DEVICE.EQ.21) WKITE(12,4) SPEC2

IF (DEVICE.EQ.23) WRITE(12,8) SPEL2
WKITE (12,5) IDATA2

WRITE (12,6) IER

WRITE (12,7)

WRITE (12,9) (I10KBA(I),1=1,14)

FORMAT (1X,"analog-to-digital conversion”)
FORMAT (1X,"digital-to-analog conversion®)
FORMAT (1X,“Clock: “,12)

FORRAT (1X,“First channel: ",12)

FORMAT (1X,"Last channel: “,I12)

FORMAT (1X,"Cowversion count: “,19)
FORNAT (1X,"Mode: ",12)

FORNAT (1X,"DOLT error: ",14)

FORMAT (1X,"larba{1-16) (Octal format):")
FORMAT (1X,14(1X,04))

FORRAT (1X,"pulse clock™)

FORMAT (1X,"DCH clack”)

FORMAT (1X,"internal clock™)

FORBAT (1X,"external clock™)

WRITE (12,115)

115 FORRAT (1X)

[=4

O NO OV VN

NN
- LI PO -

KETURN
END

G0 00063006 00 00 000606 360 0608 5E 3006 9606 6 06 96 96 3606 06 36 38 06 0006 00 000 06 00 S JE O QR OO0 E OO E DO E MO E QR R ORI DD CE M M ME QRO G M R OE SR OE O

218

.....

oA N O N R N BN NN RN RARRRN NN ERRA AR NN

- . C Title: InFile
. ' c Author: Lt Allen
j: [Date: Dec 82

C Function:
c This routine reads a specified section of a disk file into a real
C data array.
p c Compile command:
L L FORTRAN INFILE
I
¢ Comments:
¢ The variables that are passed to this routine have the fallowing
f. L aeaning,
c FILENAN the disk filenawe (in § format) to be read
C STBLK the nuuber of the disk block to begin
. C reading (the first block of a file is 0)
T‘ € NUNBLK the number of disk blocks to read
X c ARRAY the array to receive data

C LEN the length of the data array
G060 0600060 0600000060 0600600000036 0600000300000 00 BT I DT I N
SUBROUTINE INFILE(FILENAM,STBLK,NUMBLK,AKRAY,LEN)

INTEGER FILENAMC(7),STBLX,NURBLK,LEN
REAL ARRAY(LEN)

CALL QPEN(1,FILENAR,1,IER)

IF (1ER.NE.1) WRITE(10,1) 1EK,FILENAN(1)
1 FORMAT(™

«0PEN erroiv “,I6," with file",513)

CALL RDBLK(1,STBLK,ARRAY,NUNBLY,1ER)
IF (IER.NE.1) WKITE(10,2) IER,FILENARM(1)
2 FORMAT("

KDBLK error “,14," with file *,513)
CALL FCLOSE(1)

RETURN

END

C 0000460000 0696 06 38 00 06 0690 06 00 90 06 00 06 06 06 6 06 06 06 06 36 08 08 96 06 36 06 00 06 96 06 06 08 6 06 36 00 96 06 26 06 06 00 06 00 06 06 96 96 06 30 96 36 06 06 00 96 06 06 46 06 06 90 3 0 06 46 88 ¢t 9

219

A b iom e oo e e 1AM o s e e o B o [T RPREPUIE SDTOT WO SRS

GO0 000000000 00000000 0000600060000 06 00 000000 00 0600 R 0 DO O DO OO RN ARG NRRENS

I ™ «o (xRl Xl N x] oI

o

[e 2K o] L B o]

Titie: LenChc
Author: Lt Allen
Date: Dec 82

Function:
This routine verifies that a disk file fits a specified minioum
or saximsum size, If the disk file is too large or small, the
progras is halted and an error message is printed on the console’s
screen, The unit used to measure the file's length is a real
number element, which requires 4 bytes of memory,

Cospile command:
FORTRAN LENCHC

Comments:

The variables that are passed to this routine have the following
seaning,

FILENAN the disk filename (in S format) that is
being checked
NURBLX the number of the last disk block of the
disk file .
LASTBYT the number of the last byte in the last
disk block af the file
RIN the minimum acceptable nuaber of real elements
NAX the maximum acceptable nuaber of real elements

R0 0606000800 0600 0000 900 0 06 00 06 06 00 06 06 00 06 0 06 00 00 0 06 0 06 00 JE 0620 00 000 6 OO OO DO O MO JE RO E DR EDE EOF MO M MM MDD G B0 0 0

2

20

SUBKOUTINE LENCHCC(FILENAN,NUNBLK,LASTBYT,NIN,NAX)
INTEGER FILENAM(7) ,NUMBLK,LASTBYT,LEN,NAX,NAIN

LEN=(NUMBLK%128) + (LASTBYT/4)

[F (LENJLT.MIN) WRITE(10,1) FILENANC1) ,HIN
IF (LEN.GT.MAX) WRITE(10,2) FILENAN(1),NMAX
IF (LEN.LT.HIN 0K, LEN.GT.HAX) GO TO 20
FORMAT("

#File ",513," must contain at least ",I14," real elements,”)

FORRAT("

#File ",513," cannat contain aover ",[4," real elements.,”)

KETURN

TYPE "

%proqram aborted”

CALL EXIT
END

220

-

g

Ci‘il!liillIllllllllllllllllll!l!lillllll!!lllllill}lilll’l!ll!!lllllilli!lli!

Reproduced from
best available copy.

221

J

P

CRMu 0000000000000 00000000000 0 IO O RN RNRA SRR RREAARE RN

c
c
C
c
c

£
C

Title: NewScr
Author: Lt Allen
Date: Dec 82

Function:
This rautine erases the screen by typing 24 blank lines.

Compile coamand:
FORTRAN NEWSCR

R R R I R It E S R e R LR R R s T Ity

10

SUBKOUTINE NEWSCK

DO 10 1=1,24
TYPE
CONTINUE

RETURN
END

CE i RN NN M 0000 060006 06 06 00 0 0 3000 00 00000030 0000 0000 0 0 00 06 06 06 30 06 06 06 06 46 06 06 00 06 06 01 96

0¢

222

PR Gy R

|

Tr Y WA’”’“

-

T
an

P

M I T L I R L L LR R R TR R R R R R T asa il iaedssistsadstigdl)

c Title: Paper

c Author: Lt Allen

c Date: Dec 82

C Function:

C This routine prints sections of an integer data array on the

C printer in 512-word pages. The calling program specifies all

C aof the parameters required,

C This routine was designed for printing data collected with the
¢ Eclipse A/D/A device., When executing the real number print

c option, the integer word is converted to the real nusber

c equivalent that this device uses to store data samples,

c Compile command:

c FOKTKAN PAPER

c Comments:

c The variables that are passed to this routine have the following
c meaning,

c IFOR display forwat: 1 for integer, 2 for real number
c and 3 for octal

c ISTART the starting page

c 18T0P the ending page

c ARRAY the data array to be shown

C LEN the length of the data array

0000000000000 00000 N RN RN RN
SUBROUTINE PAPER(IFOR,ISTART,ISTOP,ARRAY,LEN)

INTEGER IFOR,ISTART,ISTOP,LEN,ARRAY(LEN),IPRT,IPAGE
REAL TOPVOLT,REALNUN

TOPVOLT=5.0 jmagnitude of Eclipse device bi-palar setting
{PRT=32

IPAGE:ISTART -1
11=(1START-1)#512
610 12:0
IPACE=1FAGE+1
WRITE (12,8) IPAGE,IPRT
WRITE (12,115)
115 FORMNAT (1X)
8 FORNAT (1X,"page”,(3," af",13)
613 13=0
620 14:0

P SEREE

Y

825

14
13

GOt o 00t o 00000 O OO NN RN RN ER RN NN RN BUR SRR RN

I1:1141

14:1441

REALNUN=FLOAT (ARRAY(11))/32768,0%T0PVOLT
1F (1FOR.EQ,1) WRITE (12,%) ARRAY(I1)
IF (IFOR.E@.2) MRITE (12,14) REALNUN
1F (IFOR.EQ.3) WRITE ¢12,13) ARRAY(1})
FORMAT ("4+",1X,F7.4,2)

FORMAT (“+",1X,14,2)

FORRATY (“+",1X,06,1)

IF (14,NE.146) GO TO 425

WRITE (12,115)

13=13+1

IF (I3.ME.16) GO TO 4620

WRITE (12,115)

WRITE (12,115)

121241

IF (I2.,ME.2) GO TO 415

1F (1PAGE.NE.1STOP) GO TUO 610

RETURN
END

224

jconvert to real nuaber

e

Ty e YIRS,
® '

EAT

’

L o8 AT

!’0

...........................

S R R R R a Rt g dddaasd st ad sttt asididdditlidiiiddddd)

C
¢
c

o B - o]

[BN o [or 3 o}

[ol o B or B]

Titie: Plot
fAuthor: Lt Allen
Date: Dec 82

Function:
This program allows the user to set the plotting aptians in the
GRFH2 subroutine to plot real and complex data files.

Compile command:
FORTRAN PLOT

Load coamand:
KLDR/F PLOT INFILE STATUS GRPH.LB BFLIBR®

Enviroment:
This 1s a Fortran V program that has been designed te run from a

Tektronix graphics terainal on a sapped-KRDOS Eclipse $/250
sinicomputer systes.

C 0600 0608 360830 904806 36 08 36 96 0808 0008 3896 96 00 06 06 6 06 00 06 08 06 06 06 38 06 06 00 36 06 36 90 06 36 30 6 36 36 06 06 38 96 6 38 06 6 36 06 06 36 06 36 06 36 06 0 06 06 06 06 & S 06 06 2 0 00 it

30

40

REAL KDATA(512),1DATA(512),TENF(1024),5F1,SP2
INTEGER FILENAM(7),FIRST,NUMk,BLKS,BYTS,ITYPE,LEN,TOTHLKS,POINTS
INTEGEK 1PLO,1DEC,1SC,10F,IAN,IND

CALL ERS(1)
CALL FDELAY(10)

TYPE "(CK)
#This program plots up to 512 specified points(LR)
#from file on the tetroniy graphics tersinal.,”
ISEC=2

15C=0

ACCEPT “(CR)
sEnter filename for reading:”
READ(11,5) FILENAN(Y)
FORNAT(S13)

IF (ISEC.EG.1) GO TO 50

ACCEFT "(Ck?

#hat type of data does this file contain,(CR)
*» 13 real(CK)

2: complex(CR)

sselection:™,ITYP

IF (1TYP.EQ.1 ,OK. ITYP,EQ.2) GO TU 50
WRITE(10,1)

FORMAT ("(CRICCRY(CK)
#Please chose only from the options given,”)
€0 T0 40

225

—— vvvvrv VTYVYY I,

v

-

r——

50

EehL STATUS(FILENAN,BLKS,BYTS)
=128/11Yp
TOTBLKS=4#1TYF

IF (BYTS.EQ.512) BLKS=BLKS+l1

WKITE(10,2) FILENAN(1),BLKS,BLKS
FORMAT("(CR)

#File ",513," contains “,I13," diskblocks, nusbered from 1 - °,13,",%)
WRITE(10,3) LEN .
FORMAT("(CR) :

#kach disk block contains “,I13," elements."”)

WRITE(10,4) TOTBLKS
FORMAT (" (CR)
#Up to “,I1," disk blocks can be plotted in.")

ACCEPT "(CK)
#Please specify,(CR)

% starting block:",FIKST
IF (ISEC.EQ.2) ACCEPT "

& nuaber of blocKs:™,NUnb
CALL ERS(1)

CALL FDELAY{(10)

IF ((FIRST-1).,GT.bLKY) GO TO 60

IF (NUMWB.GT.TOTBLKS) GO TO 40

IF ((NUMB+FIRST-2),GT.BLKS) GO TO 60
FIRST=FIRST-1

IF (ITYP.EG.1) GO TO 70

C 3000000000 0000000000 00 06 00 06 06 00 06 00 00 08 06 00 06 06 00 38 06 06 96 00 00 06 00 06 06 D 36 0 06 36 006 36 00 36 30 06 00 08 06 06 30 06 00 00 01 0 00 U 06 Ot 3 D DO UM OO B R

72

74

CALL INFILE(FILENAM,FIRST,NUNE,TERF,1024)

k=0

DO 72 1:1,512
K=K¢1
KDATA(I)=TERP(K)
K=K+l
IDATACI)=TERF(K)
CONTINUE

ACCEFT "(CK)
#Which data plot(s) mill be viemed,(CR)
¥ 1: real data(Ck)

* 2: jmaginary data(CR)

& 3: both(CK)

sselection:”,[PLO

IF (IFPLO.GE.1 .AND, [PLO.LE.3) GO TO &0
WRITE(10,1)

GO T0 74

Q¢

70

IF (ISEC.EQ.2) CALL INFILE(FILENAW,FIRST,NUNB,RDATA,S512)
IF (1SEC,EQ.1) CALL INFILE(FILENAM,FIRST,NURB,IDATA,512)
IPLO=1

IF (1SEC,EQ.1) 1PLO=3

IF (ISEC.EQ.1) GO TO 80

CRIMER 000000606 00060000 06 06 00 0600 06 0000 06 06 060600 00 06 0 06 00 06 06 06 0 00 00 06 00 06 6 0000 00 0600 B IO DM I DD IR D O D DR B G R O

75

ACCEPT “(CR)

Do you want to place a second plot(CK)
#of real data on the graph?(CR)

£ 1: yes(CK)

& 2: no(CR)

tselection:”,1SEC

IF (ISEC.EQ.1) GO TO 30
IF (ISEC.EQ.2) GO TO 80
WRITE(10,1)

o 10 75

COE 000000000030 000000 0600 00000000 00 000606 0000 00 0006 0000 0600 06 06 00 06 06 06 06 600 00 00 00 00 00 00 06 00 00 30 00 00 30 00 36 00 00 06 00 06 00 00 06 00 08 00 06 30 06 36 30 08 96 06 B

80

81

ACCEPT "(CK)

%bo you want to set the scaling Vimits?(CR)
1: yes(CK)

¥ 2: no(CK)

%#selection: “,10P

IF (10P.ED.1) GO 10 81
IF (10P.EQ.2) GO TO 83
WKITE (10,1)

60 TO 80

ACCEPT “(CR)
xEnter the maximum: ",5P2
ACCEPT *
sEnter the ainimum: ",5F1
ISC=1

CO3t 000000 000000000 0000 3000000000 00 00 06 0000 000 000000000600 000606 00 0606000600 0006000606 06 00 00 0000 00 006 000600 06 0O JE 0D OO D QM R O B

83

ACCEFT “(CK)

Do you want to,(CR)

)2 connect with vertical lines(CK)
® 2: connect mith smocoth line(CR)
tselection: ")l1AN

IF (IANLEQ.1) INO=1

IF (IAN.EQ.2) IMO=0

I¥ (IAN.EQ.3 ,OR. TAN,EQ.2) GO TU 85
WKITE (10,0)

G0 10 43

000000000000 000000000 000000 000000 0600 00 06 0000 00 0000 0600 0 00 06 00 06 0600 06 06 0606 00 0606 36 00 0696 90 00 06 38 0 06 06 00 00 06 06 0000 00 06 06 06 0 0600 30 ML 00 B M A 0 Ot

227

I‘.f

Eate e SRS

Mo

.Ivﬂ"’v—vv‘

na AR 4 4

" AEENS o b I e an 4

CAR B Al)

85 ACCEPT "(CK)
#Enter the number of points to plot: “,POINTS
TYPE “18C",1SC,"SP1",SF1,"SP2",5P2
ACCEPT
IV (IPLO.EG.1) CALL GRPH2(FILENAM,1,RDATA,1DATA,POINTS,INO0,SP1,5P2,15C)

»(FILENAN 1 IDATA RDATA POLNTS) 1IN0} SF1,5p2, 1SC)
IF (IBLD:E0:3) CALL BREHA{FILENAR 2 1DATA RDATA POINTS N0, SP1.SP2,15C)
15C:0

ACCEPT

ACCEFT

ACCEPT

ACCEPT

CALL ERS(1)
CALL FDELAY(10)

90 ACCEPT "(CR)
*Do you want to,{(CK)
* 1: plot froe another file(CR)
£ 2: plot from current t1le{CK}
3: exit(CR)
¥selection:”,IDEC
ISEC=2
If (IDEC,EQ.1) GO TO 30
IF (IDEC.EQ.,2) GO T0 60
IF (IDEC.EQ,3) 6O TO 100
WKRITE(10,1)
GO TO ¥0

100 CALL EXIT
END

C 0000008300000 0000 00 0006 00 0600 0606 00 00 08 06 36 06 36 06 0 00 06 00 06 08 10 36 06 06 06 00 06 06 06 36 36 00 00 96 36 96 36 08 36 36 06 16 30 96 36 36 26 96 9 46 36 06 36 0F 06 9 98 06 3 56 36 06 % 3 o

.

B S e T T L R T R I L Y Y]

C Title: RdByts

C Author: Lt Allen

C Date: Dec 42

[Function:

C This routine reads a section of data from disk file into an

C integer data array.

c Compile command:

c FORTRAN RDBYTS

C Comments:

C The variables that are passed to this routine have tha following
c seaning,

c FILE the disk filename (in § format) to be read
c BYTY the nuaber of byts to be read

C ARRAY the array to receive data

L LEN the length of the data array

Ry R Y Y T I T eeyyY
SUBROUTINE RDB“TIS(FILE,BYTS,ARRAY,LEN)

INTEGER FILE(7),BYTS,LEN
INTEGER AKKAY(LEN)

CALL OPEN(1,FILE,1,IER)

IF (1ER.NE.1) WRITE(10,1) IER,FILE(1)
1 FORMAT ("

S0PEN error ",16," with file *,513)

CALL RDSEQG(1,ARKAY,BYTS,IEK)
IF (1ER.NE.1) WRITE(10,2) IER,PILE(1)
2 FORMAT("

sRDSEQ error ",14," with file “,513)
CALL FCLOSE(1)

RETURN
END

G000 00060600 0000 0000000000000 OO O BRI O OO O O NN NN

229

—

T T T T

Cumm im0 00 0000 00 00 00 00 00 0 0 00 06 000600 00000 0000 0000 0000 00 0000 0 00 DO G O IO OO O O M RN

[ar B or I o Y o [x X x N o]

[ar 3 o]

[B B o B o]

Title: RedBuf
Author: Lt Allen
Date: Dec 82

Function:

This routine reads a section of disk file into an integer data
array., The file and data section are specified interactively

by the user,

Compile coamand:
FORTRAN REDBUF

Comments:

The variables ARRAY and LEN that are passed to this routine are
the data array and it's length, respectively. On return, the array

contains the user data.

G300 3006 00 3000 00 00 06 00 00 06 00 0000000 00000000 00000000 0000 0000 0000 06 00 00 00 00 000 0 0000 00000 00 00 00 00 00 00 06 30 06 36 06 0600 06 6 00 30 00 06 00 06 00 00 06 06 06 6 % It

500

510

SUBKOUTINE REDBUF(ARRAY,LEN)

INTEGER LEN,ARKAYC(LEN) ,FILENAN(7),IFIRST,INUN,IDEC

TYPE

ACCEPT ~
#Enter the filename for reading:"
READ (11,2) FILENAM(}1)

FOKNAT (513)

CALL OPEN (1,FILENAN,2,1ER)
IF (IER.,EQ.13) GO TO 510
IF (1IER.NE.1) TYPE "OPEN error”,IER

ACCEPT “(CK)
#Enter the starting block for reading,(CR)
(the first block of a file is 1):",IFIRST
IFIRST=1FIRST-1

ACCEPT " (CK)
#Enter the number of blocks for reading:™,INUM

CALL RDBLK{(1,IFIRST,ARRAY,INUN,1ER)
IF (IER.NE.1) TYPE "RDBLK error”,IER
IF (IER.NE.1) GO T0 520

CALL RESET

GO 10 100

TYPE " (CK)
#This file does not exist.,”
G0 T0 520

520 CALL RESET

230

SR -

X

ACCEPT “(CR}
#Do you mant to,{CR)
4 13 try another file{CK)
23 return to the main menu(CR)
sselection:”,IDEC

IF (1DEC.EQ.1) GO TO 500
IF (IDEC.EQ.2) GO TO 100
WRITE (10,1)

1 FORMAT (" (CR}(CR)(CR)

#Please make selections only fros the given options,™)
G0 TO 520

100 KETURN
END

33806 00806 003606 00 46 06 0008 06 06 0006 00 06 26 06 06 0606 00 R 00 O E 00 O 6 DE Ot E QO B O B QR OB MR EQE EE M R E NN ERRUBERUASE

231

g~ SRR

Q,c

PR ACE AR il ¢

...................

CHmu e nnma s e et RN R RN RN RN RR NN RN RN RN R R RS RN RRE RN EREEREE

c
c
c

[By] [38 or X 3 2 wr] [N x B x N]

[B x N x!

o3

C

Title: Seelt
Author: Lt Allen
Date: Dec 82

Function:

This routine displays sections of an integer data array on the
screen in 128-word pages. The calling proqram specifies all the
parameters required,

This routine was designed for displaying data collected with the
Eclipse A/D/A device. When executing the real nuaber display
option, the integer ward is converted to the real number
equivalent that this device uses to staore data samples.

Compile command:
FORTRAN SEEIT

Comments:

The variables that are passed to this routine have the fallowing

meaning,

IFOR display format: 1| for integer, 2 for real nuaber
and 3 for octal

ISTART the starting page

ISTOF the ending page

ARRAY the data array to be shown

LEN the length of the data array

C 3069000 060600 06 4896 96060608 06 06 06 0636 00 06 46 06 98 06 06 06 06 36 08 06 36 06 36 6 36 06 0 96 38 6 06 06 6 06 0606 96 06 06 0606 0 06 6 06 000 0F 360 D O U E D EQE B Ot

505

510

SUBROUTINE SEEIT(IFOR,ISTART;ISTUP,QRRRY,LEN)

INTEGEK IFOK,ISTART,ISTOP,LEN,AKRAY(LEN),IT0T,IPAGE
REAL KEALNUM,TOPVOLT

IT0T=128
TOPVOLT=5, jnagnitude of Eclipse device bi-palar setting

TYPE "(CR)(CK)

#Press carriage return to begin and(CR)
#to continue with the next page.{CK)}"
ACCEP?Y

IPAGE=ISTART-1

I1=(ISTAKT-1)%128

1220

IPAGE=1PAGE+!

TYPE "(CK) page”,IPAGE," af",1T0T,"(CR)"

[
o
v

T
' |

il 'T‘.

Ty

. o g

515
520
525

110
111
112

115

C300608 00 08 000600 06 06 300800 00 06 0606 06 06 066 06 00 06 00 48 00 00 3000 06 90 36 06 08 06 06 06 36 06 0 00 06 00 06 06 06 06 06 26 0 06 O QT 06 QR 0000 D D OE QA QR EHE MO MROE QN R IR O

13:0
14:0
11:1141
[4:1441

REALNUN=FLOAT (ARKRAY(I1))/32768.0%TOPVOLT.

IF (IFOK.EQ.1) MRITE (10,110) ARRAY(I1)
IF (IFOR.EQ.2) MRITE (10,111) REALNUM
1F (IFOR.EQ.3) MWRITE (10,112) ARRAY(I1)
FORMAT (1X,05,2)

FORMAT (1X,F7.4,2)

FORMAT (1X,16,2)

IF (14.NE.8) GO T0 525

WRITE (10,115)

FORMAT (1X)

13=13+1

IF (I3.NE.8) GO T0 520

WRITE (10,113)

WRITE (10,115)

[12=12+1

1F (12,NE.2) GO T0 515

ACCEPT

IF (IPAGE.NE,ISTOP) GO TO 510

RETURN
END

jconvert to real nuaber

.

- TR
W R T et d -

CHMBERNEEE RN RN NN RN RN R R RN RN PR R RN R U B RRREN R RN R R R R R B RN

¢
C
c

(BN x N x]

o0

C
c
C

c
C

Title: SetUp
Author: Lt Allen
Date: Dec 82

Functian:

This is a special purpase routine used by program INDIGI and
QUTDIGI. It allows the user to select the type of format and
section of data buffer for primting/displaying,

Compile comaand:
FOKTRAN SETUP

Cosments:

The variable IOP that is passed to this routine has the value 2,
for data bhuffer display, or 3, for data buffer print,

The other variable values are returned to the calling program
a5 set by the user.

CIllli!iIIIilllllilillll&illl**!i!!illil!llllﬁli!lllllll}l*lilliiiiiillllilil

SUBROUTINE SETUP{IFOR,10P,15TAKT,ISTOP)

230 ACCEPT “(CR)

231

223

235

250

sWhat type of foraat?(CR)

% 1: teo’'s complement(CR)
* 23 real number(CR)

¢ 3: integer number(CK)
sselection:”,IFOR

IF (IFOK.LT.1) GO TO 230
IF (IFOR.,CT.3) GO TO 230
IF (10P,EQ.2) GO TO 225
IF (10P.EQ.3) GO TO 233

TYFE “(CR)

#There are 128 pages of data, numbered 1 through 128,(CR)
#with each page containing 128 samples.”
G0 TO 250

TYPE "(CK)

#There are 32 pages of data, numbered 1 through 32,(CR}
smith each page containing 512 samples.”
ACCEPT "(CR)

sWhat page will) be first? " ,ISTAKT
ACCEPT *

#dhat page will be last? ",ISTOP

IF (ISTARY.LT.1) GO TO 231
ITEST={(-96%10F)+320)

1F (1ISTOP.GT.ITEST) GO TO 231
IF (ISTART.GT.ISTOP) GO TO 231

234

q

~

Lt s SR A AR Y Ywvrrwyr

P

Q¢

RETURN
END

Clo ot N I NN RN NN NN NN RERA RN NR RN SR RRRAEN

235

"
PRV G TP N —a e

I A L L A L e L L L L L T R R T L I T E

c
c
c

Ll I] L2 o I ar o [r 3 o’ [or B ol o 38 or

L]

eI ™

o

Title: Sort2
Author: Lt Allen
Date: Dec 82

Function:
This routine receives two filenames and their corresponding switch
arrays. [t arranges the filenames and switch arrays in order of
position according to specified seitch values also passed to it,

Compile command:
FORTRAN SORT2

Coamand line:
CALL SORT2(X,Y,FILE{,FILE2,F1,F2)

shere, ,

X and Y are numbers corresponding to seitch options set in
F1 and F2. The number is the position of the letter in the
alphabet, that is A=1..,2226,

FILEY/F1 and FILE2/F2 are filenames and their corresponding
switch arrays in the format returned by the COMARC call (this
1s § format for the filenames),

On return, the file with switch X set wil) occupy the pasition
of FILE1/F1 and the file with switch Y set will occupy the
position of FILE2/F2.

Coamsents:

F1 and F2 may also contain other switch values besides X and Y,
and these values wi)l not be altered.

If one or bath of the files do not contain either af the switch
values specified, the program is halted with an error message.

If either file contains both switch values X and Y, the programs
1s halted mith an error sessage.

CHMM RN 000000 00000606 0600 0506 06 9006 96 0606 06 06 06 06 00 06 36 06 06 0636 7006 00 06 06 00 06 06 06 9 06 06 06 90 06 0 6 36 00 6 46 36 06 00 06 06 06 3 06 6 0 06 06 00 O

[2c 3 o B 2 o2

SUBKOUTINE SORT2(X,Y,FILE1,FILE2,F1,F2)
INTEGEK X,Y,FILEL(7),FILE2(7),F1(2),F2(2),TENP(7),BIT
LOGICAL 1TEST,CASE1,CASE2

The first element of the switch array contains smitches A&-P,
The second element of the switch array contains switches -2,

I=0 ,
IF (X.,GTs1 ,AND, X.LE.16) [:=1 ideternine which switch array

2 3(’

-

Q¢

[2 o B ord

50

15

16

60

90

IF (X.GT.14 AND. X.LE.26) (=2 ;element would contain switch X
IF (1,EQ,0) GO T0 90

The following transformation gives the bit position of a
seitch 1n the switch array eleaent,

BIT=0-1#X)+(14%])
CASEL=ITEST(F1(1),BIT) jtest bath switch arrays
CASE2=1TEST(F2(1),BIT) j;for seitch X

IF (CASE1.AND, .NOT.CASE2) GO TO 60 ;switch X is in the first file

sand not secand file
IF (CASE2.AND,.NOT.CASEL) GO TO 50 ;switch X is 1n the second file
sand not first file, so the

jfile pasitians are ssitched
G0 TO 90

DO 15 1:=1,7
TERPC(I)=FILE2(T)
FILE2(I)=FILEL(I)
FILEI(I)=TENP (L)
CONTINUE

D0 16 1:1,2
TEMP (D) =F2(1)
F2(1):F 1D
F1(1)=TEWP(I)
CONTINUE

1=0
IF (Y.GT.1 ,AND. Y.LE,18) 1:=1 sdetermine which switch array

IF (Y.GT.,14 .AND, Y.LE.26) 1:2 ;element would contain switch Y
IF (1,EG.0) GO TO %0

BIT=(-1%Y)4(14#1)
CASE1=ITEST(F1(1),BIT) jtest bath switch arrays
CASE2:=1TEST(F2(1),BIT) ifor switch Y

IF {(CASE2,AND..NOT.CASEL) GO TO 100 ;switch Y is in second file
1and not first file

TYPE "(CK)

#The fi1les 1ncluded 1n the command line do not have(CK)

avalid switches, Lonsult program documentation far(CR?}
#the correct syntax.”

5T0°P

100 KETURN

END

CoHmmra AN RN R R RN NI NI RN NN RN NRR RN AR RARRERAUAN

237

e
G RN AR SRR R R RN NN RN R RN N
c Title: Sortd
€ Author: Lt Allen
(C Date: Dec 82
¢ Functiont This subroutine arranges three files and their switches
c in a specified order of position,
c Comprie command:
: c FORTRAN SORT3
.
C Command line:
c CALL SORT3(X,Y,Z2,FILEL,FILE2,FILE3,Ft,F2,F3)
C shere,
.' C X,Y and Z are numbers corresponding to switch aptians set in
C seitch arvays F1,F2 and F3. The nuaber is the position of
c the letter in the alphabet, that is A=1.,.2:226.
C FILEY/FL,FILE2/F2 and FILE3/FJ are filename arrays and
;' £ their correspanding switch arrays in the format returned by
3 C the COMARG call (this 1s S format far the filenames),
T € On return, the file with switch X set will occupy the positianm
£ of FILE1/F1, the file with switch Y set will occupy the
C pasition of FILE2/F2 and the file with switch Z set will
c occupy the position of FILEDJ/FD,
C Couments:
€ F1,F2 and F3 may also contain other seitch values besides X,Y
X and 2, and these values will naot he altered.
¢ 1f one or wore of the files do not contain any of the switch
c values or 1f any of the files contains more than one of the
C

switch values, the pragram is halted with an error message,
; CONTEIAEI 00 M0N0 I0 0000000000006 0060000000000 00000000006 30006 06 JE B0 OO IO M I IO NN RN RN
F o SUBKOUTINE SORT3(X,Y,Z,FILE1,FILE2,FILE3,F1,F2,F3)

INTEGEK X,Y,Z,FILEN(7),FILE2(7),FILED(7),F1(2),F2(2),F3(2)
INTEGER TEWP(7),BLT

i LOGICAL ITEST,CASE1,CASE2,CASE]
q C
1 c The first element of the switch array contains switches A-P,
c The second element of the switch array contains seitches 0-2.
C
1=0
IF (X.GE.1 +AND, X,LE.16) I=1 jdetermine which switch array
[¢ IF (X.GY.,16 .AND. X,LE.26) (=2 jelement would contain seitch X
1 IF (1.EQ,0) GO TO 95

RAR S

[3 o]

[g ol [N or]

[

Lar 2 or I or]

[or B o N r]

50

15

16

60

17

18

70

The following transformation gives the bit position of a ssitch

array eleasent.

BlTa(-1aX)a(168])

CASEL1=ITEST(F1(1),BIT)
CASE2=1TEST(F2(1),BIT)
CASE3=ITEST(F3(1),BIT)

First, check if switch X is in the first file and not the other two.

IF ((CASE1.AND..NOT.CASE2) .AND., .NOT.CASE3) GO T0 70

Second, check if switch X is in the secaond file and naot the other two.

IF ((CASE2.AND..NOT.CASEL) .AND. .NOT,.CASE3) GO TO 50

Third, check if switch X is in the third file and not the other two,

IF ((CASE3.AND,.NOT.CASE1) +AND, .NOT.CASE2) GO TO 40

GO TO 95

Flace the file with switch X in the first position,

D0 15 I=1,7

TENP (1) =FILE2(1)
FILE2(1)=FILE1(I)
FILE1(1)=TEMF(I)
CONTINGE

DO 16 1:1,2
TEMP(1)=F2(1)
F2(1)=F1L1)
FI(I)=TEMP(I)
CONTINUE

G0 10 70

D0 17 1:1,7

TERP (D) =FILE3(I)
FILE3(I):=FILEIC(D)
FILEL(D)=TEAP(I)
CONTINUE

D0 18 I:1,2
TERP(1)=F3(1)
F3(ly=F1(1)
FL{I):=TERPLT)
CONTINUE

120
\F (Y.GE.1 .AND. Y,LE.16) I:=1

IF (Y.GT.16 AND., Y.LE.26) 1:=2
IF (1.EQ.0) GO TQ 95

Find smitch Y's bhit pasition,

BIT=(-18Y)+(16%1)

AL

jdeteraine mhich switch array
ielesent would contain switch Y

T

~r

vl,l,‘_','; i

L AL & Al AL Jan g
a

Q’o

[BN [N x]

[or I o]

80

19

20

70

lor B o N 32/

o

95

CASE1=1TEST(F1(1),B1T)
CASE2:=ITEST(F2(1),BIT)
CASE3=1TEST(F3(1),B1Y)

First, check if switch Y is in the second file and not the other two,
IF ((CASE2.AND..NOT,CASEL) .AND. ,NOT.CASE3) GO TO 90
Second, check 1f switch Y i1s in the third file and not the other tea.

IF ((CASE3.AND..NOT,CASE2) .AND. .NOT.CASE1) GO TO 80
GO TO 95

Place the file with switch Y in the second position,

D0 19 I=1,7
TERP(L)=FILE3(])
FILE3(I)=FILE2(1)
FILE2¢I)=TERF(I)
CONTINUE

Do 20 I-1,2
TEMP(I)=F3(I)
F3(1)=F2(1)
F2¢1)=TERP(I)
CONTINUE

1=0 A
IF (Z.GE.1 ,AND, Z,LE.16} 1=s1 jdetermine shich switch array

IF (2.GTs16 .AND, 2.,LE.28) 1:=2 ;eicoment would contain switch 2
IF (1,EQ,0) GO TO 95

Find switch Z's bit paosition,
BIT=(-1%2)+(10%])
CASE1=ITEST(F1(1),B1IT)

CASE2=ITEST(F2(1),BIT)
CASE3=ITEST(FI(I),BIT)

Finally, check if switch Z is in the third file and nat the other two.
IF ((CASE3.AND..NOT.CASEL) ,AND. .NOT.CASE2) GO TO 100
TYPE "(CK)

I

#The files i1nciuded in the command line do not have(Ck)
®valid seitches. Consult program documentation for{(CK)
wthe correct syntax,”

STOP

100 RETURN
END

Crtmadt it s gt gt 0000000t I Ot OOt OO DO R NN R RN RN RN NN

240

Coo i ie s i gt 0 e 00t 0O I 0 0 OO D O B R Nl NN RN NN ERR NN RN RERE RN ERERREY

C Title: Status

C futhor: Lt Allen
"3 C Date: Dec 82

C Function:

c This routine veturns the number of the last disk blocK and the

C nusber of bytes in the last disk block of a specified disk file,
! c Compile command:
’ C FORTRAN STATUS
f C Comments:
b C The variables that are passed to this routine have the following
1 C seaning,
q
). (FILENAN the disk filename (in § format) to be

C thecked

c NUMBLK returns the number of the last disk block
: L in the file, which is the nuaber of disk
}Q C blocks minus ane
} *
' C LASTBYT returns the nusber of bytes that are in
3 C the 1ast block of the file

G000 060000 000600 90 08 0000 06 0006 00 06 00 00 06 00 06 00 06 30 00 003000 06 90 36 00 06 06 06 00 0600 00 0 000 06 6 6 6 6 0 00 00 06 76 00 36 30 00 30 0600 00 06 00 06 00 06 06 36 06 06 06 06 06 38

SUBROUTINE STATUS(FLLENAM,NURELK,LASTBYT)
INTEGER FILENAN(7),ISTAT(18) ,NUNBLK,LASTBYT

CALL STAT(FILENAM,(STAT,(ER)
fF (1EK.EQ.,13) GO TO 20
IF (IEK'NE.1) WRITE(10,1) IER,FILENAN(1)
1 FORAATL"
#5TAT error ",12," with file “,513)
NUBBLK=1STAT(Y)
LASTBYT=-15TAT(10)

RETURN

20 MWRITE(10,2) FILENAM(Y)
2 FOKRAT("
#File ",513," does not exist.(CK)
#program ahorted”)
CALL EXIT
END

CRmunaan Rk r R R RN RN RN R RN RN RN RN RN RN R ER RN ER AR RERER

241

| o~

- w— —T—— T T .

S I R R R R IR R R I R R R i e ey dzaadi st dadiqddss]

c Title: ToFile

c futhor: Lt Allen

c Date: Dec 82

c Function:

C This routine writes a real data array to disk file. It first
L deletes/creates the file, so that the file will only contain
¢ the data passed. The calling program should verify that it is
C agreeable to delete any existing file before calling this

¢ routine.

C Compile comsmand:

c FORTRAN TOFILE

C Comaents:

c The variables that are passed to this routine have the fallowing
¢ aeaning,

c FILENAN the disk filename (in § format) to be
¢ written toj it will bhe created as a

c randos file

c ARRAY the data array to be sritten to file

C LEN the length of the data array

COIMIEE It 00T 00 06000000 0000000000000 I0 0000000000000 DA DI O ORI I AR RN
SUBKOUTINE TOFILE(FLLENAM,ARKAY,LEN)

INTEGEKR FILENAM(7),LEM,BLKS
KREAL AKKAY(LEN)

BLKS=INT(LEN/128)

CALL DFILW(FILENAN,IER)
CALL CFILW(FILENAN,2,1EK)

IF (IER.NE.1) WRITE(10,1) IEK,FILENAN(1)
i FORMAT("

#CFILN error “,I12," with file ",513)

CALL OPEN(1,FILENAN,3,1EK)

IF (IER.NE.1) MRITE(10,2) IER,FLILENAN(1)
2 FORMAT("
*OPEN error “,12," with file “,513)

CALL WRBLK(1,0,ARRAY,BLKS,IER)
IF (IER.NE.1) WRITE(10,3) IER,FILENAN(1)
3 FORMAT ("
#WKBLK error “,12,” with file ",813)

CALL FCLOSE(D)
292

Loan 2mes B a uvnmute 2naha

R

T -y
- AR

ATV

v YT YT G

—

e

W-

Y

| g

B AN A e
. Jaagh sl et SalNOSt ~ T T T

RETUKN
END

CHU R 0000000000000 08 00 00000600 00060600 06 06 00 06 00 06 06 00 48 00 06 36 4806 00 96 06 40 06 06 36 06 06 06 06 36 08 06 06 00 06 08 00 06 06 00 38 08 0F 36 06 00 46 6 06 36 00 36 06 06 38 &

213

T

S SEN | G ans ol aAr PRI
' B

L g an an san an aan o alaes e i g

Q¢

G000 00 0000 060000000060 00 00 00 0RO OO0 I OO O R MU RN R R AR NRAARAANE

c Title: Warnng

C Author: Lt Allen

c Date: Dec 82

c Function:

c This routine prints Eclipse A/D/A device marning messages to the
C screen explaining to the user what to do for various error

c conditions. [t shouid be placed in an A/D/A pragraa just befare
c the conversion operation is perforaed,

c Cowpile command:

c FORTRAN WARNNG

c Comments:

c The clock that has been chosen for the conversion aperatiom is
€ sent to the routine in variable CLOCK,

S Y R E Y Y P R T e e s e Iy eysy]
SUBROUTINE WARNNG(CLOCK)
INTEGEK CLOCK

TYPE “(CK)

#The conversion operation can be safely aborted at this(CR)
stime by typing CIRL-A.”

TYPE “(CR)

#After the conversion operation has beem initiated, wait an(CR)
®appropriate amount of time before considering to abort an operation(CR)
tuhich will not return. The only way to abort a conversion(CR?
xpperation that will not return is by typing CTRL-A. However,(CK)

xthis may result in crashing the systeas,”

1F (CLOCK.EQ.40000K) TYPE "(CK)
%1f the conversion operation does not return in an appropriate(CR)
#asount of time, verify that the external clock is properly(CR)

¥connected, The clock can bhe reconnected once the conversion(CKR}
koperation begins.”

~ TYPE "(CR)
%Press carriage return to beqin the conversion operation.”

RETURN
END

Coor o 0000 00000000 0000 060600 O DO O RN RN RN NER RN RN

2414

N R R i i R IR I R T T R R R e I el

[or I o | [z BN x N x [B o I o]

[o I]

Title: WrtBuf
Author: Lt Allen
Date: Dec 82

Function:

This is a specia) purpose routine used by progras INDIGI and
OUTDIGI. It allows the user to write specified sections of the
data buffer to a disk file.

Compile command:
FORTRAN WRTBUF

Comsents:

The variables ARRAY and LEN that are passed to this routine are
the data buffer and it's length, respectively.

CHE 00006060600 00 00 06 06 00 06 00 06 00 06 06 006 06 06 36 06 06 06 06 00060000 000000 00 06 00 00 06 00 06 06 000 0 00O OO 0006 30 S0 00 B0 00 0000 6 O E AR AR BB DB Q0 D R E D 6 O

SUBROUTINE WRTBUF(ARKAY,LEN)

INTECER LEN,PTIRAY(LEN) ,FILENAN(7)

245 TYPE "(CR)

235

15

260

#There are 64 disc blocks 1n the data buffer, numbered 1(CR}
kthrough 64, with each block containing 256 samples.”

ACCEPT "(CK)

sWhat block will be first? *,ISTART
ACCEPT "
tMhat block will be last? ",ISTOF

IF (ISTAKT.LT.1) GO TO 245

IF (ISTOP.GT.544) GO TO 245

1F CISTART.CT.ISTOF) GO TO 245
ISTART:=ISTART-1

ACCEPT ™
#Enter the filename for writing:"”
READ (11,15) FILENAN(1)

FORMAT (51D)

CALL CFILW (FILENAN,2,1EK)
IF (IER,EQ.12) GO TO 265
IF (1ER.NE.1) TYPE "CFILW error ",IER,” with your file"

CALL OPEN (1,FILENAN,2,LER)

IF (IER.NE.1) TYPE “OPEN error “,IER," with your file" N
CALL WKBLK(1,1START,AKKAY,ISTOP,IER)

IF (IER.NE.1) TYPE “WKBLK error “,IER,” with your file”
CALL CLOSE (1,[ER)

1 (1EK.NE.1) TYPE "CLOSE errar “,IER,” @ith your file"
GO TO 240

215

265 ACCEPT “(CR)
#This file already exists. (CRI(CR)
1 Do you want to,(CK)
1: delete the current file(CR)
& 2: try another file(CK)
sselection:”,1DEL

. IF (IDEL.EQ.1) GO TO 270
B IF (IDEL.EQ.2) GO TO 25%
‘ NRITE (10,1)

1 FORRAT ("(CRI(CRI(CR)
#Please sake selections only from the given options.”)
- GO TO 265
,‘ 270 CALL DFILW (FILENAM,IER)
b IF (1ER.NE.1) TYPE “DFILM error “,1ER,” with your file"”
{ GO TO 260
280 RETURN
& END
1
1 CO 060600000 000600060 000 006 000 0006 0O RO MR NN

246

MED Ath ans

s

‘VI. f'.‘ i)

ToprY merwyrw

oy

VITA

Gordon R. Allen was born on 16 January 1957 in Hardins-
burg, Kentucky. He received the Bachelor of Science Electrical
Engincering degree from the University of Kentucky in 1975,
Upon graduation, he received a commission in the United States
Alr Force and was assigned to the Space and Missles Systems
Organivzation, Los Angeles AFS, Los Angeles, California. In
June 1981 he attended the Air Force Institute of Technology
as a graduate student in the Digital Communications and Sig-
nal Processing Sequence. Gordon Allen is a member of Eta
Kappa Nu and ‘l'au Beta Pi.

/

!’, Permanent address: Route 2, Box 229
Vine Grove, KY 40175

247

UG U IRNUON WAPIT SHPROPUR. SN SIS PR AP AR

