
AD-R124 758 EXPANSION OF THE ECLIPSE DIGITAL SIGNAL PROCESSING i/3
SYSTEM() AIR FORCE INST OF TECH WRIGNT-PATTERSON AFS
OH SCHOOL OF ENGINEERING G R ALLEN DEC 82

UNCLASSIFIED AFIT/GE/EE/82D-16 F/G 9/2 N

smhhhhohhhhi
mhhhhhhhhhhhhI
lmhhhhhhhhhhhhE
smhhhhhhhhhhh
EhhhhhhhhhhhhI
EhhhhhhEmhhhhE

.

44

t.
. Vg

u I k114 2.2

1 .2 I111 .l111 1.6

MICROCOPY RESOLUTION TEST CHART

NA, ONA BURMAU OF SrANDARDS-1963 A

b

i
-I

i.i

1s Lt USF

w191

UNITED STATES AIR FORCE 2

AIR UNIVERSITY E CT
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Bas*,Ohio

I 83 02 022 05C

EXPANSION OF THE ECLIPSE DIGITAL

SIGNAL PROCESSING SYSTI.M

I"'1/GI,/V/H 2 D- I6 Gordon R. Alln
ist Lt USAF"

I

. .

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/GE/EE/82D-16 6>) f

4. TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERED

EXPANSION OF THE ECLIPSE DIGITAL MS Thesis
SIGNAL PROCESSING SYSTEM
SRG6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) I. CONTRACT OR GRANT NUMBER(e)

Gordon R. Allen

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Air Force Institute of Technology(AFIT-EN AREA A WORK UNIT NUMBERS

Wright-Patterson AFB, Ohio 45433

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Institute of Technology(AFIT-EN December 1982
Wright-Patterson AFB, Jhio 45433 1s. NUMBER OF PAGES

247
14. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Office) 15. SECURITY CLASS. (of thie report)

Unclassified

ISa. DECL ASSI FICATION/ DOWN GRADING
4 SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

£'7. DISTRIBUTION STATEMENT (of the abstrect entered In Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES Approved for public release; IAW AFR 190-17

LYNN/ys. 4. JP
paec Oi ReseazCh lcd r 1 'il Developmen tI

Air Force Institute at Technology (ATC)

_rigt-Patiezzon AB Oil 45433
I9. KEY WORDS (Continue on reveree side ii neceesery and identify by block number) S

Eclipse Minicomputer
Fast Fourier Transform (FFT)
Digitizing Operations
Filter Design

20. ABSTRACT (Continue on reverse side ii neceeary and identify by block number) 5
A signal processing software package was generated for a Data

General Eclipse S/250 minicomputer. The model 4331 A/D/A con-
verter was utilized to perform general purpose A/D/A operations
and to collect, edit, and play back speech data files. The
model 130 array processor was used to perform high-speed con-
volution and Fourier Transform related operations. The S
Parks-McClellan algorithm was implemented to allow design of

FORM
DD I JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

S S S S 0 0 9 0 0

. •- - - -.o-. -•-

SECURITY CLASSIFICATION OF THIS PAGE(Wh.n Date Ente*'.d)

linear phase, finite impulse response filters. Self-explanatory
interactive programs for data collection and filter design,
together with single line commands for signal processing func-
tions, make this a simple to operate, versatile package for
digital signal processing.

! b

-, S

SECURITY CLAS FICATI 4 OF TV PAGF'I,& n .. -IP 1

AFIT/GE/EE/82D-16

EXPANSION OF THE

ECLIPSE

DIGITAL SIGNAL PROCESSING

SYSTEM

THESIS

lrts(IlL(d to tIi FcIculty of the School of Enqineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(copy)

by

Gordon P. Allen, B.S.
"I t 7-

1st Lt USAF

€;rduatu Electrical Engineerinq A
December 1982

Approvid for i)LtbliC: release; distribution unlimited.

0

Preface

The data base at the Air Force Institute of Technology

(AFIT) signal processing laboratory has not been able to keep

pace with recent hardware expansion. An array processor has

been installed that has only seen limited application. Its

computational speed could greatly increase the speed of many

algorithms used in the laboratory. The digitizer that has

been added can be controlled by software to a larger degree

and can operate on larger data files than the current model.

However, it has never been interfaced with other laboratory

tequipment. The time required to become familiar with these

devices is prohibitive to thesis students and other personnel

who would benefit most from their use.

Tliis effort resulted from a suggestion by Major Larry

Kizer, Assistant Professor of Electrical Engineering .at AFIT.

Mi jor Kizer teaches the school's digital signal processing

course and is primarily responsible for the laboratory's growth.

H f-itl it would be useful to have a software package that

inteqrated these hardware additions into the system. Also,

this slhould be done in such a way as to allow easy operation.

Witli Lhis initial objective, the final result was a software

packacge capable of performing sophisticated signal processing

functions, yet very simple to operate.

Gordon R. Allen

4

rS s - - '- - v.-.-

Contents

Page

Preface

List of Figures........... v

List of Tables vii

Abstract viii

I. Introduction 1

Background. 1
Summary of Current System 2..........2
Objectives 3

II. A/D/A Operations 5

The Eclipse A/D/A Devices 5
Memory Management Techniques 7
A Program for Speech Application.... . .. 14
A Program for General Purpose
Application 18

III. Signal Processing Functions 21

The Eclipse Array Processor 21

Array Processor Memory Management 22
A Program for Time-Domain Processing 23
Programs for Frequency-Domain
Processing 29

IV. Computer-Aided Design of Linear Phase
FIR Filters 33

The Parks-McClellan Algorithm 33
Implementation on the Eclipse 36
Program Description 37

V. CoIIclusiol... 43

Summary 43
Ion(lomItionda t i ons 44

hJbliu,r1aphy......... 47

Appendix A: '1h Eclipse A/D/A Device User's
N llrual 48

iii

Contents

ru Page

Appendix B: Extended Memory Data Collection
Measurements 99

Appendix C: Source Code for A/D/A Operations
Software 104

Appendix D: Source Code for Signal Processing
Software 150

Appendix E: User's Manual and Source Code for
Filter Design Software 169

Appendix F: Source Code for Support Software. . . . 209

iv

List of Figures

Figure Page

2-1 An Extended Memory Setup for Repeated
Conversion Operations 9

2-2 Extended Memory Data Collection Results
While Foreground Was Inactive 10

2-3 Extended Memory Data Collection Results
While Foreground Was Idle 11

2-4 Extended Memory Data Collection Results

While Foreground Was Compiling 11

2-5 Program SPEECH Main Menu Options15

2-6 Program EDITOR Voltage Histogram
Display16

2-7 Program EDITOR Block Histogram
Display 17

2-8 An Example of Recovering Multiplexed

Data With Program DIGITIZE 20

3-1 The Overlap-Save Method of Convolution 24

3-2 Data Setup in Array Processor Memory
(a) Prior to Convolution Operation and
(b) After Convolution Operation26

3-3 Program CONV Command Line Options27

3-4 An Example of Using Program CONV With
Two Unit-Step Functions, (a) and (b),
to Obtain the Linear Convolution, (c) 28

3-5 An Example of DFT Operations
(a) (,5-Point Discrete Sine Wave
(b) The DFT Magnitude Obtained With

Programs FFT and MAG
(c) The Inverse DFT With Program IFFT 32

4-1 Sample Program Output from IEEE
Publicationi 38

4-2 Sample Program Output from Eclipse 39

v

List of Figures

Figure Page

4-3 Program LPFIR Command Line Options 40

4-4 Program LPFIR Parameter File Display 41

v

vi

List of Tables

Table Page

2.1 Remap Operation Test Results 12

2.2 Remap Interval and Points Lost
at 8KHz Sampling 13

vii

6 AF IT/GE/EE/82D-16

Abstract

fA signal processing software package was generated for

a Data General Eclipse S/250 minicomputer. The model 4331

A/D/A converter was utilized to perform general purpose A/D/A

operations and to collect, edit, and play back speech data

files. The model 130 array processor was used to perform

high-speed convolution and Fourier Transform related opera-

Iq tions. The Parks-McClellan algorithm was implemented to

allow design of linear phase, finite impulse response filters.V
Self-explanatory interactive programs for data collection and

4 filter design, together with single line commands for signal

j~rucI .s~inq functions, make this a simple to operate, versatile

lc zdqe for di~jital signal processing.

ID \

viii

6e

[

EXPANSION O1 THE

ECLIPSE

DIGITAL SIGNAL PROCESSING

SYSTEM

I Introduction

l3, ck(r Urd

With the introduction of the Fast Fourier Transform

(F;l"']) in 1961, digital signal processing took on new signif-

icance. The Fast Fourier Transform provided an efficient

nmetliod)I calculating the Discrete Fourier Transform (DFT)

and made it a much more feasible tool for use in signal anal-

ysis. Recent advancements in digital hardware and computer

arclhitteLure have made digital signal processing techniques

(,vt,1i imotc e prdct.ic,l.

T(,day, diqitAl signal processing techniclues have seen

aipi]i(',at. i(n in mny fields of study. He(re at the ir Force

Inrist it- ut., (('I,ll~lody (ALIT) signal processinq laboratory,

t ,y ,ar, u.;,.'d to i nV(stiqa t. patt(rn recognition problems in

ift' sF ,u'l ,ii ti video) arecas. The laboratory is used to support

res',.,ar 'Ii by Al'IT personnel and other Air Force ortanizations.

.' ' ii I. l ,rdwire impruvuitients have b en mactP to the lab-

r,,I try. An ,irriy processor arid an additional diqitizer have

teiii l i iirt t, 'dl ,c. A jrcUp o)f filteIr desi(gn)1(ograms h1as, also

bt eli "pI(w'klt-i . IOWi'V0r' , SOf twre hals 11ot been11 (Jgenerate'd to

_1

allow these devices and programs to be operated easily. Re-

search offorts could be done in a more timely manner if this

softwaru was available.

Summary of the Current System

The AFIT signal processing laboratory contains two Data

(.eneral minicomputers, the Eclipse S/250 and the Nova 2/10.

'['he, Nova computer is interfaced with a digitizer for collect-

inj data samples from an analog signal (A/D operations) and

to ,Utput data samples (D/A operations). The Eclipse com-

pJtLer, iowever, is more computationally powerful and has been

L CiUipPedC with its own digitizer and an array processor. The

(ijirt inq options on the new diqitizer are software control-

lable ,ind proper software would allow this device to perform

a variety of diqitizing operations. Also, due to the extended

memory feIture, of the Eclipse, the Eclipse A/D/A device has

the pttliti.,l of operating on larger data files than the Nova

A/b/A dtvic,. 'T'|e array processor could be used to greatly

speeCd up IImIy alktoithms that currently require hours to run

(Il tii. :'yst ,i. 1H)wver, the Eclipse A/D/A device has not

H,'(i ol)e Ltt I-d o,-even interfaced with other laboratory equip-

mtit tiid t li, arr-ay processor has only seen limited applica-

I i (III(t u I1 t it, time required to become familiar withi these

dh v i ('(.

'II'r(,' is niot any software currenltly available in the

l1 a Hrit.(,ry t(illow personnel to perform Couivoluti ion o)r DIFT

ipi r,,ttionts witlIout: qenerating software. To perform siqnal

.2

I

processing functions, the Interactive Laboratory System (ILS)

and Data General (DG) software packages are available. These

packaqes provide subroutines that the user can apply in pro-

grams to perform signal processing operations. However,

learning to use these packages is a time-consuming obstacle

and it should not be necessary for individuals who only want

to perform basic signal processing operations.

A qroup of machine-portable programs for digital signal

q processing has been procured for the laboratory. The source

coiCh fur these programs cannot be compiled and loaded in their

pres,2int turm. The mainline and subroutines of each program

need to have machine-dependent variables defined and be com-

piled seAp,.rately before the program will operate on the Eclipse.

The overall objective of this effort is to create a

user-orieniLed signal processing software package for the

A"IT signal processing laboratory. The package will make use

of system features that reduce user inputs and will implement

te, reent lhrdware improvements. With only basic knowledge

uf ,;y-st2m opritiun, persc)nnel will be able to do meaningful

sifln:i] prk)ctssinq operations.

'i'. enhaince the laboratory's A/D/A capability, software

will b(tnrted that operates the Eclipse A/D/A device and

1:110%.'S VUSO Of tlie l.Eclipse's extended memory feature. The var-

iOUs ways t-, use, this device will be studied. Those most use-

ful I(o signail processing applications will be orqanized into

,I user's in,iuil that will expldin how to write software to

3

operate the device. Two interactive programs will be gener-

ated. One program will be designed specifically to handle

speech data operations, while one will be designed to flexibly

operate all of the device software controllable features to

handle peculiar digitizing operations.

To allow personnel to directly perform basic signal

processing operations with the array processor, general pur-

pose siynal processing programs will be generated. These

programs will allow the user to operate on entire data files

by typing a single line command. They will also serve as

examples of how to use the array processor to perform the
basic operations that are done in related ILS and DG sub-

routi nles.

1To set up a computer-aided filter design capability in

4 the Liborat<_ry, the Parks-McClellan algorithm for designing

linear phase finite impulse response (FIR) filters will be

jiltiplitI.lLted. This is one of the programs contained in the

group of macTine-portable programs. This program can be used

to W r iq A wide range of lowpass, highpass, and multiband

tiltir. £ t als, can be used to design differentiators and

HilbYh Lrt". r, r meS I ritrs. In addition to cvoriri agi wide range

(t I i It r appl ications, this effort will tnc(Vr ay problems

that jINlat (,Ni:;t iii implsmefnitinq other p (-"aiiis in this group

)11 t h. l. i t11e. Additional software will be generated to

allf'I, t lli.i Irl' ;il i to be Ita(' bl -a'pLa ati i aii e,,<ily

t(.i i (.

,1

a

II A/D/A Operations

This chapter describes the Eclipse A/D/A device. The

capabilities of the device and the operating methods of most

interest for signal processing applications will be discussed.

The two programs will be presented that use this device to

operate on speech data and to perform general purpose digi-

tizing o)perations.

The Eclipse A/D/A Device

The Eclipse computer in the AFIT signal processing

laboratory is equipped with a model 4331 analog data sub-

system (Ref 1; Ref 2) and the Sensory Access Manager (SAM)

software package (Ref 3). The SAM software package is a

Data (,eneral package that aids in building I/O programs for

Data (enieral computers equipped with A/D/A devices. The

software package contains libraries that can be used to

maniplate, the device.

Tw iu model 4331 subsystem is a general purpose A/D/A

devicie with a resolution of 12 bits. The A/D section has an

A/I) convrter with two multiplexors that allow 16 channels of

6 di fferential iniput. Data samples can be collected from a

siri.jl- chianne] or a sequential list of channels. The D/A

s,,tiJn ('e(intains two independent D/A converters. The A/D

1nd I/A s(cLions haVe both been set to operate at the +5v

r,izqe and to handle conversion values in a two's complement

format. E'ach 12-bit conversion value is stored in one 16-bit

Slachine word. The remaining least significant four bits of

5

I

4

a word are not used. A more detailed description of this

device and how to write software to operate it, is presented

in the Eclipse A/D/A Device User's Manual which is attached

as Appendix A.

One problem with the device was not resolved. A single

conversion operation, according to the specification, should

be able to handle up to 16,384 samples (Ref 3:5-6). However,

tie device gave an error for any conversion operation above

lt,073 samples. After an extensive search through the man-

uals, a user error could not be found to explain this. The

e-rror code returned, 2194, indicated an attempt to move con-

version datd outside the area set up to hold data. According

to the SAM User's Manual, this was an error for assembly lan-

guage, o)peration only and should not occur for Fortran opera-

tion. This error occurred, however, for both operations. It

Iwas con('luded that this was a problem with the device. An

opt iot w~is included in the general purpose program to be dis-

tussued L]iteir, that allows tie maximum error-free conversion

(colit L'Lr ,in specified conversion operation to be quickly

und.l is~ inl tlhis option, it was not ed that this problem

I,(Irega 'll(]'ss of the channel or clock source used. The

oly c (,uck -;oo11-'e not used with this option was the pulse

(l e erat d cl(ck, which is more difficult to set up and would

Snot- typically be used for signal processing applications.

MIiis o)ptio coLlld be used to verify correct operation when

It, d1ev iCe is repaired.

I

ib

Memory Management Techniques

This section describes programming techniques that can

be used to operate the Eclipse A/D/A device. An executable

program on the Eclipse or Nova in the AFIT signal processing

laboratory must be 32KW or less. This includes the source

code, overhead code, and variable space (Ref 4:1-4). Since

operating on most data files usually requires a large amount

of variable space, the method used to implement the device

in a program is an important consideration due to memory

constraints.

The variable space to hold the conversion values of a

single conversion operation must be declared in the main pro-

gram. This would require 16KW of integer array space to hold

the maximum specification number of 16,384 samples for a sin-

(jl e conversion operation. The memory problem is compounded

if it is d(esirable to do both, A/D and D/A operations, in

the s~mi proqram. The same data arrays cannot be used to

both input and output data, since they must appear in differ-

(nit Libeled ct.mmon blocks for an A/D or D/A operation. The

,idditi)iil SAM library overhead further reduces the space

left iii te ira in program. Although 32KW certainly provides

-nouqh sppc(- to allow a program to handle either an A/D or

1)/A Lofnvrsion operation with 16,384 samples, there may not

b- (1011(9 space left for the rest of the user's source code.

To remedy such situations, Data General Fortran V provides

two imflth(ods, overlays (Ref 4:4-1) and swaps (Ref 4:4-4), to

rin're,-, te -)Urce code of the main program. Basically,

7

program swaps operate by overwriting main memory with a new

program, while overlays overwrite only a section of main mem-

ory with new code. Using one of these methods, a secondary

program can be used by the main program to perform A/D/A

operations. Since the secondary program is usually quite

large due to large data arrays, a program swap will generally

be the best method to use. If this is the case, parameters

specifying the A/D/A operation can only be passed to the sec-

qondary program by writing them to a disk file. The secondary

program must then read these parameters from the disk file.

This is the method used by the programs in the next two sec-

tions which use separate, secondary programs to handle A/D

and D/A upurations.

Sampling at 8KHz, the single conversion operation maxi-

mum of 1(l,3H4 samiples would provide only 2.05 sec of speech

data. 1t is dosirable to work with longer speech files.

Fort.iiiiately, the Eclipse computer has a feature called ex-

tendud memory mapping (Ref 4:4-11), which allows large amounts

Of dat,1 tko be m(vL d quickly.

l'x1etuqided memory mapping can be visualized as follows.

4 A WI- (1(.)W is sot up in the main program that can be made to

.,l (hd il]rl; ,dditiolial memory called extLended memory. Data

In bi! routed to ind from extended memory through this window.

SAct willy, dti is not physically moved, address registers are

imply hiai~jt d. 'zThe Eclipse comput"er has up to 42KW of addi-

t i 01 m'tmainry thlitt. can be accessed throuqh remapping.

I '1%, ,xt t,nd ,d im mory setup that is used in the speech

48

program of the next section is shown in Fig 2-1. In this

setup, conversion operations are performed in 10,240-sample

I[sections. The results of the first four conversion operations

are routed through the window into extended memory. Using

the data buffor to hold the fifth conversion operation re-

sults, up to 51,200 samples can be collected. Sampling at

8KHz, this provides 6.40 sec of speech data.

q

10KW Window Call 1 10KW

r Data Call 2 10KW
S1UKW Buffer

Call 3 10KW

Call 4 10KW

Main Extended
Memory Memory

Fig 2-1 An extended memory setup for
repeated conversion operdtions

ot course, each of the remap operations causes a delay

where sampling points may be lost. A test was devised to

iwe a" approximate indication of the number of points that

may be lust in tilu above setup. For the test, a triangle wave

was smpled using the setup shown in Fig 2-1. The break in

the linearity oIf the wavo during the remap operation was

untod to determine the number of points lost. The Eclipse

9

computer has two user terminals, referred to as foreground

and background, that share the computer's single CPU. To note

the affect of CPU activity on the time required to perform a

remap operation, the test was conducted on the background for

three conditions. First, the foreground was made inactive*,

allowing all of the CPU's attention to be given to the A/D/A

program. For the other two test runs, the foreground was

allowed to be active. On the second test run the foreground

set idle and on the third test run it was used to compile a

prugrim. The test setup and description is given as Appendix

B. The affect of the remap operation on the sampled triangle

wave is shown in Figs 2-2, 2-3, and 2-4. For these Figs, a

.STOTAI ILOCKG M162~

3m@ sampled

volts
signal

C(S) '

-36 -O . -' \..Ctual

signa I

Sample points

.iq 2-2 L'xtendedi memory data collection results
while foreground was inactive

1 r i. tivu implies that the foreground was shut down with
thL' ("'RIL- F' command.

i0

4

actual
S• - signal

voltsa

sampled
signal

sample paints

Fig 2-3 Extended memory data collection results
while foreground was idle

0'

'2.5, aiplisd
sign~al

volts

- t; 1

El I)

uignal

Ciq F-4 Xtendud memory catit collectiun results
while forecjround was compiling

set of sample points were chosen that conveniently illustrated

the break in linearity.

The number of points lost during the remap operation

in each of the plots was calculated as follows. The change

in voltage between all data points, except where the slope

gchanges and the remap transition occurs, was computed and

averaged. The followitig formula was used to compute the

points lost,

I Pts = a -M 1
Incr

where Pts = points lost
Mag = voltage magnitude of remap transition
Incr = average voltage change between sample

points

A program was used to do the above calculations and the re-

10 sults for the three plots are shown in Table 2.1.

F i 1 e name I)ATA 1 DATA2 DATA3

Disk Blocks 80-81 40-41 40-41

Pts 9b 221 224

May 1. .665 4.060U 4.1162

K lii'r .017,1 .0183 .0183

' Tb lu 2.1 Remiap operation test results

The results indicate that not the level of activity

cri the, opposite terminal, but whLether it is active or in-

activO, is tLhu prime deturminant of the points that will be

12

lost. The test data was collected at a 21KHz sampling rate,

however, speech is usually sampled at only 8KHz. Since the

sampling rate and the number of points lost is known for each

condition in the test runs, the time required for the remap

operation and the number of points lost for sampling at 8KHz

can be easily computed. These results are shown in Table 2.2.

Condition 1 Condition 2 Condition 3

Interval 4.57msec 10.5msec 10.7msec

Points Lost 37 84 85
8KHz

Table 2.2 Remap iriterval and points lost at
8KHz Sampling

Losing the number of points on the order shown in Table

..2 could add another dimension of uncertainty in pattern rec-

ocjnition programs. If the remap occurred during the crucial

ut-teratice (,)f . short word, its signature could be seriously

er-Oded. rare must be taken using this setup to collect data,

iot t have uttUerances during the remap interval. The primary

u-e Of such a setup should be to play back edited speech files

tLh.t t ha, bheei pieced together such that no utterance occurs

durin(g the remap interval. However, even if this does occur

durinqJ plyb, ('k, the only affect is the annoying silent gap

Of tho remap interval.

Tle following two sections describe two programs that

were, (unerated using this device. ''hie source code for these

i-I

programs and a data format conversion program is given in

Appendix C. The source code for the user subroutines named

in these programs is included in Appendix F.

A Program for Speech Application

An interactive program for working with speech data was

generated. This program allows the user to collect, edit,

piece together, and play back speech files. The program can

-' be operated in either short mode, to work with 15,872 samples,

or in long mode, to work with 51,200 samples. During execu-

tion, the program maintains two buffers on disk file, the

data buffer and edit buffer. The data buffer is where con-

version values must originally be placed, either by an A/D

operation or reading from a disk file. The data buffer can

then be placed in the edit buffer where sections of data can

be played back and deleted. Editing operations performed on

the edit buffer do not affect the data buffer.

The program is actually a collection of six programs

where, the secondary programs are called upon by swapping.

The cont rtl progr,m, SPEECH, porforms operations on the data

huffer jorid c(utlls up the editing mode. A copy of its main

meriu)pt.t enos is shown in Fig 2-5. The second program, EDITOR,

performs (dtijg (perations on the edit buffer and can return

IA, the cntrtl program. It provides two types of histograms,

by voltage, and by block, on specified blocks of data. A

copy (f Lhe display shown for the same blocks of a speech file

is givenl 1(or e'ach histogram in Figs 2-6 and 2-7. Two of the

lr',i , 1.1.I J Naiid SMALLOUIT, a r, used by thoi co ntral pro-

14

Please select which operation will be performed.
1: A/D conversion into data buffer

2: DIA conversion out of data buffer

5; witedat buferto file
6: opydat buferto edit buffer

foselection;j

i~ig 2-5 1PrograiL SPEECHf main menu options

15

I

Voltage Histogram
blocks: 1- 16 samples: 4096, total clips 0.
max voltaget 1,5796(10:352)
min voitaget -2.2705(-14880)

Voltage Positive Negative Total
Magnitude Samples Samples Samples

5,0-4.5 0. 0, 0.
4.5-4.0 0. 06 0.
4.0-3,5 0. 06 0,
3.5-3.5 0, 0, 0.
3.0-2,5 0. 0. 0
2.5-2,0 0. 1. 1.
2,0-1.5 2 9, lit
1,5-1.0 14, 12, 26.
1,0- .5 79. 57. 136.
.5- ,0 1211. 2806, 4017.

Please select which operatiorn will be performed,
1: D/A conversion of histogram blocks
2: delete histogram blocks from edit buffer
3: return to the editing menu

select ion:

Fig 2-u Program EDLITOR voltage histogram display

16

I

BlocK Histogram
blocKs: 1- 16 samples: 4096. total clips 0.
max voltage: 1.5796(10352)
min voltage: -2.2705(-14880)Lq

Block Total MaxNumber Clips Magnitude

1 0. 1.1890
2 0' .5884
3 0. 1,5796
4 0. 1.4429

5- 6 0. 1.8896
7- 8 0' 2.2705
9- 10 0' .8398

11- 12 0. .1733
13- 14 0. .1489

15- 16 0, .0732

Please select which operation will be performed,
I: D/A conversion of histogram blocks
2: delete histogram blocks from edit buffer
3: return to the editing menu

select ion:

|"ig 2-7 Program EDITOk block histogram display

17

4

gram to handle short mode A/D operations. The last two pro-

graus, BIGIN anid BIGOUT, are used by the central and editing

proqriis to handle long mode D/A operations. Each of the four

A/I,/A proqrams contains an option to repeat the conversion

opioration while within the program. This allows the conver-

s on t)peration to be repeated without the annoying wait that

is reqCuired to swap in an A/D/A program.

'The pgi-,ini, that operates the Nova A/D/A device for

work with spee ich data, AUDIOHIST, scans the chosen data file

blocks lur histoqram parameters each time a histogram is re-

quested. '[his causes an annoying delay between histograms.

i)uriDrr1 editLinq, histograms may be requested several times to

isoaLl I a sinqle block of data that will be deleted. To allow

t 1i, ltistoqrrmis to be presented quickly, parameter arrays were

usC in lo)-(,qrar EII)'ITOR. The first time a histogram is re-

quest ,d, tlit' histogram parameters for the entire edit buffer

.it(, tii 'nd stored in parameter arrays. As blocks of

Wti t,, ,it' del t'td, the parameter arrays are updated. Sub-

.,it* ',11 t(Irams are displayed without any noticeable delay.

.*'~ cnnticPurpose. Applica-t ioni

Xi ii in ii iyeprt cra-m for perfortitincg generall purpose

- liglit i Jig ,p(.erat. 1.ons was generated.)uO t(the general

lid t ut,'I I 'i t,;l, thre program is rather n - wtbersoine to

Oi'1'e 1 tie. it is; inttenided I-o be use d to it_(st A/fl/A system set.-

ii i, ind , I it, i, i, d iiji .it izJI(1 oper'att orls II'd it ut iiIe1y per-

I 'l I I)11.d It ct' i' oi lso' be UslI-fU] W11011 t i1II1 (WSl' IW ,t I)Wrtlni t

1 tB

generating additional software for a digitizing operation.

As with the speech program, this program is actually a

collection of programs where the secondary programs are called

uponel by swapping. The central program, DIGITIZE, is very

short ind simply directs the user to choose either A/D or

ID/A i hdi. The A/D program, INDIGI, and the D/A program,

K OUtTlfl(I, maintain separate 16KW data buffers. In addition

-- to p-rf riminq conversion operations, each program allows the
user to view, print, or write to disk file specified sections

of Lii'. d ita buffer. The D/A data buffer can also be filled

by i-t,,,dinc] from a disk file. Since the data buffers are

nlldep e_, Idoflt, the only way the contents of one can be placed

ini t li, otL er is through an intermiediate disk file.

'I'llo i)/A program allows the data buffer to be demulti-

I pl'ed. Tihis option can be used to recover data that was

1, 1,c'lo te L , a si . (21,t11el whelln the Chantnill scan feaLure

W , i u.;k I in th i, A/I) ope- ration. 'Iht startinq dlaLa sample and

1w int' ii,'l- U f Salme;s to be(ski [pj 'd betw ii sUbscjCeLllt sIaved

; , :-;I)-','fied by the user. 'lThe cha lW] s(7ca1 fOture.

S us t 1 ul1 fo'r t'(i~tn Ata, whe(re the time reliationship

b t I 'n l f |,].; u is important. Shown in ['icl -1-H is In example

,,f .u&'lil -11 .g cit _ ,t ion. lltre, t-he user lh ad r ,,2irded a1n alloq

at , I : all I. , u'ul 0;l o1 VariouS CthA els-I0 , 01 LA a I1lllt i-Ca- n ellllll'

t t, ' e'rd'(h- I l)(cation- ouLis hi ' the iab1 ,ra tory. cm01 Of

t ,' ,'I nn,'l: ,'i0,tiit ,d a- timilnl ;iqnal th, , , difj'd an1d

used iit a .Arallohsour1ce. Usingc prokli iGi'

L i'tlA1lo: 'iil 4 ''I t-wcof theLl(chalnnels was firt .liit i.ad

19

Iz

using the channel scan feature set to alternate between two

channels. Then demultiplexing operations were done on the

U" sampled data to create the data file for each signal. Pro-

gram CNVRT, which is included in Appendix C, was used to

convert the data files into real number format. Program

PLOT, which is included in Appendix F, was used to obtain

the plot shown. The figure shows the plot of an EEG signal

of a dog's brain and a signal used to control the frequency

of a strobe light flashed into the dog's eyes. The separate

data files were necessary to view the signals and permit data

processing.
.

EEGCsignal
volts 6 ob,

.O signal

E(a)

-1

Fig 2-b An example of recovering multiplexed
data with program DIGITIZE

20

III Signal Processing Functions

This chapter describes the Eclipse array processor.

The two methods of utilizing array processor memory will be

discussed. Several general purpose signal processing pro-

grams that make use of this device will be presented. The

source code for these programs and related user subroutines

is included in Appendices D and F, respectively. Each pro-

gram is activated by typing a single line command that identi-

fiers the(! processing function and the data files to be operated

(JZII

h'Ihe l ps' Array Processor

'e'lie Hclipse computer in the AFIT signal processing

laboratory is equipped with a model 130 array processor

(Ref 5). The array processor is designed to provide high-

_ spee!od matrix computations. It contains independent multiply

'Ind Idd/subtract units that can operate simultaneously. Each

Unit fetures pipeline design, which allows several opera-

Itiots to (v rlI ()ne another during the same time period.

'lr, ,i-l, ia vAriety of matrix operations that can be

j,'r-f ,rm 'dl, . . iu7 matrix operation is called as a .nhroutine

w itLi n :I r' itiert nt that refurences a control block. The

.'o1t r ot bioRk is set up prior to calling the mnatrix operation

by using(one or more additional library subroutines. It

spi U'vi f i L tj], ,)per,ition's parameters, such as t'he location

of i]j(ut and oUtluL data in array processor memory.

21

Array Processor Memory Management

The array processor contains 4KW of memory which is

basically used as a scratchpad for matrix operations. Input

data is loaded into this area and output data is retrieved

from it. Data can be transferred to and from array processor

memory in two ways, directly (Ref 5:2-33) and/or by mapping

(Ref 5:2-10).

Moving data directly requires a separate subroutine

call to transfer data. It allows data of any length or loca-

tion .in main memory to be moved to any location in array

processr memory and vice-versa. The major drawback with

tlis meltiod is the manual loading or unloading of data re-

quirt,(I for each matrix operation.

With memiory mapping, data is transferred automatically.

Any contiquous 1KW-multiple of array processor memory can

be mappd into main memory. The mapping operation that does

tflis stS up A Window in main memory. The data arrays identi-

fied in this window can be treated as if they were located

in r-ay pr wc0 ss:or memory. Loading data into thuse arrays

pLices t lhe Li ti directly into array processor memory. If the

1r -,1y 'resr window is remapped, then the data in the pre-

viois w inidow is destroyed. For this reason, 's is the case

witil €,xt enldled t(Iiory mapping, the mapping operation is usually

()lily 01,1iid once in the program. Data can be moved to or from

t:lft witd'w by st(ting up a loop that exchanqes values with

,di ,t),,'r ,,rr',' ,iutside the window or by performinq disk read/

writ , ()pi,r.it[i. ts ,n the window data arrays. Of H.i e programs

S2

Lo b(2 presented, the first performs data transfers directly

* . and the others perform data transfers by mapping.

A Program for Titte-Domain Processing

TLo IAllow signal processing in the time-domrain, a convo-

lut ion program, CONV, was qenerated that makes use of the

arraty processor. The program convolves an input file contain-

ici tipl to 32,707 disk blocks with a filter file containing up

to 512 points. Since the filter file must remain in array

proeSS~rmemory throughout the operation, a filter file of

512 po)ints would consume one-quarter of array processor mem-

ory (it 248real points). For this reason, a 512-point

:ith : il~iUll waIs chosen cis a balance between memory used to hold

the(I iltAer an1d ai reasonably large impulse response. The

(iii~ieltsof many infinite impulse response filters are

Ll.-Ud 11' 1YL SM1 1 beyond this length.

Tlt, lgorithm operates by breaking the input data into

sec insArid using subroutine VCONRZ to convolve each section

witi Llite filIlt- rc _sponz~u. The Ovet lap-save miethod is used

L(o pctIoge(tler the individual matrix operation outputs to

form ti liear convolution (ref 6:113-115). The overlap-save

vil(t4iid is i 1 lust-raited .in Fig 3-1 . Thle input ciLa is broken

iiii - p wi i.sctions and convolved with an1 N-point impulse

itptriTl [ti f i LrstL N-i1 points o)f thet f irst. sLion are zero

fII i i ii nt h-li I jut- N-i poilits Of eaIcI sulbs;(CILu nL se -Cion

.aiejII-it ii'.:! to Lthe List N-1 point-s o)f the preceding section.

liI A 1 aI p' i its of eachi output section aire- nc'orrect

whi 14. t hai r-ri'it in i eg points trke idettial to that of a linear

23

M oit

M- points

I N~-^-pins%

sos)

0

ro-ave

Y,
B

0

I IO

01s "1

r-Sa3111fc: ved a-sae 0eho ofcnolto

B 24

convolution. Each output section has its first N-I points

discarded. The remaining sections are then abutted together

to construct the final filtered output.

The program makes use of the in-place convolution fea-

ture (Ref 5:4-18). Using this feature, the size of each

output section is maximized. The data setup for a single

operation with an N-point filter file is shown in Fig 3-2a.

The filter file must be loaded at the top of array processor

imemory. The input data must then be loaded N points below

the filter data. Using the in-place convolution feature, it

can be specified to begin writing output data beneath the

[ilter data and to continue overwriting the input data if

n-cessary. The value of M is determined from the relation-

ship, M = 2048-2N. As shown in Fig 3-2b, for an M-point

section of input data, the matrix operation only gives the

first M points of the M+N-1 point convolution. Since the

proqrm always discards the first N-i points, each output

save section is only M-N+1 points long. If the in-place

frea1ture. is not used, a convolution operation cannot be speci-

iled where' (output data will overwrite input data.

i(,r t 'IZ-p(.int filter and input file, the program

r(l i t~- ' two, matrx operations to qive th(e linear convolu-

i iM. l i r si , thl front (of the inpti (Llta f ile is aucjm1n ted

w~t 'J 1 ~:ir . 'Th back of the input data file is also

iti(I -tittd wit Ii zeros to allow the matrix operation to overrun.

'I1*(- i iiil (ti t, is then loaded in two 1)24--point sections

(,v(riLppinrc e,,tcli other by 511 points is described in the

25

N Filter N Filter
points Data points Data

N Output

points DataI' }
points Save M-N+1

M Input Section points
points Data

Kg

(a) (b)

f f.'ig 3-2 Data setup in array processor memory

(a) prior to convolution operation and
(b) after convolution operation

26

overlap-save discussion. Each convolution operation yields

513 points of the linear convolution. The last three points

Cof the second convolution ate zero and ignored. The two

output save sections are abutted together and the 1023-point

linealr convolution is written to the user-specified file.

The conunand line options that are given in the program's

source code are reproduced for convenience in Fig 3-3. The

following comnuand line,

Cony INFILE/I OUTFILE/O FILFILE/F/D

was used to convolve the unit-step data files shown in

Fig 3-4a and b. Note that the filter file was deleted after

the operation. The resulting data file is shown in Fig 3-4c.

Command line:

CONV input/I [/D] output/O filter/F [/O]

where "input" ,"output" and "filter" are any leqal RDOS filenames.

The input, output and filter filenames can be typed in any order,
however, the I switch should always be attached to the input
file, the 0 switch should always be attached to the output file,
and the F switch should always be attached to the filter file.

The D switch can only be attached to the input and filter files,
and deletes these files after the output file has been created.

Fi.q 3-3 Program CONV command line options

27

24

ILE

I..U

(a

, 3 :,FILFILE

24

j 3e e stin)

I. U -

*31 Q3

II

22

j,'.j 3-.1 Ali exaiup1lu f using prcxlrdan CONV with two
4ua it- ,tLup function s, ()and (b) , to obtain

the linea r ooltn(c

2 8

Programs for Frequency-Domain Processing

To allow signal processing in the freqaency-domain,

four DFT related programs, FFT, IFFT, MAG, and MULT, were

generlited that make use of the array processor. Program FFT

computes the corresponding DFT of an input file on a 1024 or

2048-point basis. The input file must contain real number

data and the output file will contain complex number data.

If the input file contains less than the number of points

required for the DFT, it is augmented with zeros as neces-

sary. To complement this program, program IFFT computes the

inverse DFT of a 1024 or 2048-point input file. The input

and output file data types for this program are the reverse

of th it- for the forward DIFT program. Two other programs were

cre-ated to op)irarate on 1024 or 2048-point DFT data files. Pro-

grain MAG computes the corresponding magnitude file of- an in-

put file and program MULT performs a point-by-point multiplica-

tion t)f two real or two complex input files. The multiplica-

tion pro(gram can thus be used to operate on both, complex

iuIIbIJr I I'T ([,Aa files and real number magnitude data files.

To comlpute, the M-point DIFT of real data on the array

p)rot-(tssor in a si rcjle DFT operation sequence, M/2 must be

,a p w r of 2 iand within the limits of 8 and 1021. Three

at ,r.te , :iUbrOLtiuie calls are required for the I)LI'T operation

at ,jtt it x'I. .i;ic(the DI'T result is complex , it requires twice

t h ' sp,, , ()f th -, timo-domain real dtaI l1wowever, making use

oI -yriii,try prio jrt.ius, the array processor returns the DUT

Sin , ikri;iait (hit_ roquires only half of this space (Ref 5:4-35).

29

The DFT result simply overwrites the original data.

The result of an M-point DFT is stored in array proc-

essor memory as follows. Since the first point and the M/2

point of the DFT are always real, these two points are stored

in tlhe first two points of the result. The following points

form a complex array that contains the second through M/2-1

points of the DFT. To obtain the DFT for the M/2+1 through

M points, this complex array is conjugated in reverse order.

To compute the inverse DFT, the DFT data file must be

loaded into array processor memory in the same format as

the forward DFT returns. The inverse DFT operation sequence

can tihen be called to return the original time-domain real

d ata.

'llie MULT .ind MAC programs use matrix operations to

directly perform the specified operations on data. Sub-

routin(s VICA and VMRA are used to perform a point-by-point

inulti ilication of complex and real data, respectively. Sub-

voutin(e VSMA is used to compute the square of the magnitude

[1, , lt at-. The square root is taken prior to writing

t~' re ,n~1] ts- -, file.

S 'L'li&' ~L~0~(7:'sS of multiplying two DI' data L iles of length

A id i inid H hni tatking the inverse I"T' is eqIvllnt to per-

I 0,l. i IInj I 'i I uC2 ar conlVolution. Hlowe-ver, if t J '1 datia

ilen.,; were, iiot i'r,,' ted ,!i lit basis of it le,,ist. Lin N+M-1

poinl_ O)"T, t 1e 1 (' ;Ul]L will n(t. LA' 1 lill('ar CoIvo)lution

(' (: I I I) . 'lis., WhWIen us n.! t his I)IT packaiq, to implement

, iIW I CoIV()] Iu] i o of tWoC diL_,l files, it must be remelmbered

3(

7 F<~~~~~~............................. .< i. i i..

7

that the sum of the two time-domain data file lengths cannot

be larger than 1025 points when using the 1024-point DFT

~Uuption or iarger than 2049 points when using the 2048-point

)I)'T option.

The command line format for each program is given in

the program s source code. Each format is similar to that

of the convolution program. Shown in Fig 3-5 is a 65-point

discr t'. sine wave (a) and the corresponding magnitude of its

'1T d itL file (b). The following command lines were used to

Obta-lin thLe I1agnitude data file,

UFT/S SINE/I DFTFILE/O
MAG/S DFTFILE/I DFTSINE/O

'th S switcl indicates that the 1024-point DFT option was

use d. The aibsence of this switch would implement the 2048-

V pint l}I.'T (WtLio. The following command line,

[IVI'lS/ INVSINE/O DFTFIjE/I

was used to retrieve the time-domain signal shown in Fig 3-5c.

Only the fi [rst 65 points of the inverse DFT are shown since

I loe "flit',nI s iare small beyond this length.

31

020

X~nn

£446

LO4

(C)

1'32

64

IV Computer-Aided Design of
Linear Phase FIR Filters

This chapter will present a brief description of the

Parks-McClellan algorithm for designing linear phase FIR

filters. The steps necessary to execute the IEEE machine-

portable version (Ref 11:5.2-1) of this algorithm on the

Eclipse will be given. The program, LPFIR, that was gener-

ated by modifying this algorithm will also be presented.

I The Patrks-McClellan Algorithm

Since the Parks-McClellan algorithm was presented in

1973 (Ref 7), it has appeared in textbooks (Ref 8:354-364;

Ref 9:187-204) arid been used in commercial software packages

(Ref 10:18,27). The algorithm can be used to design a large

class of linear phase FIR filters. It makes use of the Remez

S exchange, which is ,n efficient algorithm for designing digi-

tal filters with minimum weighted Chebyshev error.

The frequency response, 11(f), of a FIR digital filter

with a N-point impulse response, h(n), is the z-transform

u, tL secqunce evaluated on the unit circle. The frequency

ruspioise of a linear phase filter can be written as,

1l(f) = (;(f) etxp j2Trf(LTr/2-2(N-1)) I

wher G(f) is It real function and L=O (for positive symmetry)

or I (for nig,tLivC syI.,aiiLLy). it can be shown that there are

Uxactly four cases of linear phase FIR filters. These caskfs

ditor in l nqth of the ii'ipulsu response (even or odd) and

the iymmutry of the impulse response (positive or negative).

33

Positive symmetry is defined as h(n) = h(N-1-n) and negative

symmetry as h(n) = -h(N-1-n).

C In all four cases, a function G(f) can be used to ap-

proximate the desired magnitude specification. Using symmetry

relations, G(f) can be expressed as follows for the four

different cases. In all cases, n = 1, 2, 3,...k.

Case 1: positive symmetry, odd length

(j(f) - 2 E h(k-n)cos(2Tff)
[- n=O

where k = (N-I)/2 and h(k) = 1/2

Case 2: positive symmetry, even length

k

,(f) = 2 4 hl(k l-n) cos (2Tf (n- 1/2))

n=l

where k = n/2

Case 3: negative symmetry, odd length

k

;(f) -- 2 h(k-n)sin(2TTnf)
I 11= 1

where k = (N-1)/2 and h(k) = 0

(Case 4: negative symmetry, even length

* k

;(f) = 2E)i(k-n)sin(2Tf(n-1/2))
n= 1

where k = N/2

Earlier efforts at designing FIR filters concentrated on

case I. But Parks iind McClellan presented a method of

combining all four cases into one algorithm. This was done
I by usinq symme'try re*lations to express the other three cases

34

4

4

as a form Of the first case, Q(f), multiplied by a function,

Plf). This allows all four cases to be expressed as

(C G(f) = Q(f)P(f), where P(f) is a linear combination of cosine

functions. Since all four cases can be expressed in a common

form, a single computation routine (the Remez exchange) can

Lbe used to calculate the filter approximation.

The filter approximation is obtained as follows. Given

a desired magnitude response, D(f), and a positive weight

function, W(f), both continuous over a compact subset

F C [0,'2, the absolute weighted error is defined as,

m = ax W(f) ID(f)-G(f)l
4 fEF

Defining the frequency domain, F, in this manner implies a

sampling rate of 1. The above expression can be rewritten

GASP

IIE (t)II = max W(f)Q(f) ID(f)/Q(f)-P(f)j
fEF

This expression can be used to calculate the best approxi-

mitLion based only on cosine functions. The minimum weighted

error can be obtained by careful choice of the coefficients

of P(U). The dlternation theorem is used to determine the

rnUlllbe.r of (co)sinu functions necessary. By making use of the

urror futction and the conditions of the alternation theorem,

tlie Parks-McClellan algorithm provides the best filter ap-

prux i ma t in.

35

Implementation on the Eclipse

The referenced IEEE publication contained the source

code for the Parks-McClellan algorithm used in program LPFIR.

This publication was the result of an effort to collect and

incke some of the popular DSP programs more available and

machine independent. In the IEEE version, the Parks-McClellan

algorithmn had several variations from the original paper.

The major difference was with the REMEZ subroutine. This

q subroutine was changed significantly to allow it to use vari-

dbles already present in a common block to compute the cosine

functions, instead of passing additional variables as argu-

mnt,,. Also, throughout the entire software package, minor

changes were made that affected mixed-mode arithmetic and

librtry subroutines.

'l'e only system dependent parameters that had to be de-

fin(,d for the IEEE version were the I/O unit numbers. The

ILAD state(ernts were changed to ACCEPT statements to allow

d,at.i to be easily input from the console. After these changes

wtere made, the source code for the mainline and subroutines

w0re, sCpdrately compiled and the program was loaded. The

proqram wits executed without any problems.

E',c'ii filt.e r example given in the IEEE publication and

the e rAj(qjil1 pip(r was reproduced with the program on the

tel jls;. lie , impulse response for all examples was identical

w Lhi i 5- dl' Ia 1lpositions. The progqram output given on

, ,. -7 -of the, IEEE publication for i 55-p oint multiband

e it ,r j i (iv ll ,as l'i(4 -I. 'he filter eU.SiC1n with the pro-

36

I

gram executed on the Eclipse for the same parameters is given

as Fig 4-2.C
Program Description

IThe Parks-McClellan algorithm as listed in the IEEE

publication and other referenced sources was intended for

use with a card reader. To allow data input to be more de-

scriptive, this section of code was modified to request the

I parameters from the user and give appropriate raages of

values. 'he program was also modified to be executed in a

command line format similar to that of the signal processing

* programs. The command line options that are given in the

prog ram's source code are reproduced for convenience in

fig ,I-3.

0 There are several options available for executing the

procram. A parameter file is created for each set of filter

pirImiters given to the program. This file can be option-

illy dt,e td after designing the filter impulse response.

It ,,n lso be retained and the next filter design made by

simply rteferencing the existing parameter file. Each fil-

* ter desiqn is also written to a file. The filter output

listing, such as that given in Figs 4-1 and 2, can be op-

tionilly prinLed. A new parameter file can be created and

* ,ill existing parameter file can be viewed and/or altered with-

mit de,:;igqitii the corresponding filter. An example of the

)aral-,tt, r f il di spliy that is given eaCh time the program

• is ex(,cLt:,d is shown in Fig 4-4. This figure is the display

37

0

... -.. 4 .. • •

DEVIATION - 0.000734754
DEVIATION a 0.006315947
DEVIATION a 0.021567374

DEVIATION a 0.026203127
DEVIATION a -0.032680369

DEVIATION a -0.034435446
DEVIATION a -0.034448370
DEVIATION a -0.034448593

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN

RE#4EZ EXCHANGE ALGORITHM
BANDPASS FILTER

FILTER LENGTH a 55
**oo IMPULSE RESPONSE *-*..

H(1 a 0.10662652E-02 Hl 55)

H(2) = 0.63777615E-02 a H(54)
H(3) a 0.35755609E-02 H(53)
Ht 4) = -0.90677854E-02 H(52)
H(5) & -0.90906978E-02 a H(51)
1(6) z 0.29155630E-02 H(50)

H(7) a 0.39637965E-02 H(49)
(8) = 0.11172051E-01 a H(48)

H(9) a 0.11646759E-01 a H(47)
H(10) a -0.99630785E-02 a H(46)
H(11) - -0.92384245E-02 - H(45)

H(12) a -0.20406392E-01 a H(44)
H(13) a -0.19460483E-01 a H(43)
H(14) - 0.31243014E-01 a H(42)

H(15) = 0.63045568E-02 a H(41)
1W16) -0.20482803E-01 a H(40)

H(17) - 0.65740513E-02 a H(39)
H(18) a -0.1i202127E-02 a H(38)
1(19) - 0.41956986E-01 a H(37)

H(20) - 0.357184266B-01 s H(36)

Ht21) x 0.34744803E-01 = H(35)
H(22) = 0.71496359E-01 = H(34)
H(23) x -0.17138831E 00 a H(33)
H(24) - -0.18255044E 00 a H{ 32)

H(25) a 0.74059024E-01 a H(31)
H(26) a -0.10317421E 00 - H(30)

l(27) a 0.25716721E-01 x H(29)

H(28) a 0.37813546E 00 a H(28)

BAND 1 BAND 2 BAND 3 BAND 4
LOWER BAND EDGE 0. 0.1000000 0.1800000 0.3000000
UPPER BAND EDGE 0.0500000 0.1500000 0.2500000 0.3600000
DESIRED VALUE 0. 1.0000000 0. 1.0000000
WEIGHTING 10.0000000 1.0000000 3.0000000 1.0000000
DEVIATION 0.0034449 0.0344486 0.0114829 0.0344486
DEVIATION IN DB -49.2565703 0.2941783 -38.7989955 0.2941783

BAND 5
LOWER BAND EDGE 0.4100000
UPPER BAND EDGE 0.5000000

DESIRED VALUE 0.
WEIGHTING 20.0000000
DEVIATION 0.0017224

DEVIATION IN DB -55.2771702

EXTREMAL FREQUENCIES--MAXIMA OF THE ERROR CURVE
0. 0.0167411 0.0323661 0.0446429 0.0500000
0.1000000 0.1089286 0.1267857 0.1424107 0.1500000
0.1800000 0.1855804 0.1978571 0.2134821 0.2302232
0.2436160 0.2500000 0.3000000 0.3122768 0.3323661

0.3502232 0.3600000 0.4100000 0.4155804 0.4289732
0.4457143 0.4635714 0.4814285 0.5000000

Fig 4-1 Sample prugram output from IULi publicatiorn

31..

DEVIATION - .000734925

DEVIATION - .006317233
DEVIATION - .021567347
DIEVIATION - .02620335
DEVIATION - -. 032680636

DEVIATION - -. 034433245
DEVIATION - -. 034448223

DEVIATION - -. 034440442

FINITE IMPULSE RESPONSE EFIR)
LINEAR PHASE DIGITAL FILTER DESIGN

REMEZ EXCHANQE ALGORITHM

*ANDPASS FILTER

FILTER LENGTH - 55

*.... IMPULSE RESPONSE **.e.
HE 1) - .10662480E-02 - H(55)
H(2) - .63777040E-02 - H4 54)
HE 3) - .3575636OE-02 - HE 53)
H(4) -. 90677220E-02 H, 52)
H(5) -. 90907510E-02 H 51)
HE 6) .29155130E-02 HE 50)
Ht 71 .39637950E-02 HI 49)
H(8) .11172020E-01 HI 481
HE 9) - 11646760E-01 Hl 47)
H(IO) - -. 996299DOE-02 H(46)
H(Ill - -. 92363360E-02 - Ht 45)
H412) - -. 20406370E-01 - H(44)
H(13) - -. 19460540E-01 - H(43)
H(14) - .31242970E-01 - H(42)
Hl(5) - .63045660E-02 - H(41)
H(16) - -. 20482860E-01 - H(40)
HEE17) - .6574035OE-02 - H(39)
HEII2) - -. 11202380E-02 - HE 38)
H(19) - .41956930E-Oi - H(37)
H(20) - .35784270E-01 - H(36)
H(21) - .347440OOE-0 - HE 35)
HE22) .71496550E-O1 - H(34)
H HE231 , -. 1713BUIOE 00 - HE 33)
H124) - -. 18255050E 00 - HE 32)

H(251 - .740590t0E-01 - HE 31i

H426) - -. 10317420E 00 - HE 30)
H427) - .25716610E-01 - HE 29)
H426) - .37813530E 00 - HE 28)

BAND I BAND 2 BAND 3 BAND 4
LOWER BAND EDGE 0000000 .1000000 .1000000 .3000000
UPPER BAND EDGE .0500000 .1500000 .2500000 .3e00000
DESIRED VALUE .0000000 1.00O000 .0000000 1.0000000
WEIGHIING 10. 0000000 1. 000000 3. 0000000 1.0000000
DEVIATION .003444a .0344484 .0114828 .0344484
DEVIATION IN DB -49.2565900 .2941704 -38.79iO0 .2941704

BAND 5
LOWER BAND EDGE .4100000
UPPER BAND EDGE .5000000
DESIRED VALUE .0000000
WEIGHTING 20.0000000

DEVIATION .0017224
DEVIATION IN DO -53.2771900

ETREMAL FREQUENCIES--MAXII'A OF THE ERROR CURVE
0000000 0167411 .0323661 .0446420 .0500000

.u0000 O.0092U3 .1261U49 .1424094 .1500000

1000000 .1055002 .1978566 .2134811 .2302217
2436141 .2500000 .3000000 .3122764 .3323651
3502217 .3600000 .4100000 .4155002 .4269727
.4457132 .4635698 .4614264 .5000000

Fiq 1-2 Sample pr((trin output from Eclipse

"tl

Command lines
LPFIR parameter/P 1/1) [/D3 [filter/F (/L) I

@here "parameter" and "filter" are any legal ROOS filenaoe

The P switch must always be attached to the parameter filename. A
parameter file will be created with the filter parameters
interactively specified by the user, The filter parameters sill
be displayed and can be chanqed if requested by the user.

The E switch denotes that the parameter file already etists, The
filter parameters mill be display and can be changed if requested

4q by the user,

The filter filename and F switch denotes that the filter specified
by the parameter file mill be desiqned and the impulse response
stared under the filter filename. The F switch must be attached,

ID 4 The L switch denotes that a listing for the filter design mill
be sent to the priater.

If the parameter and filter files-are both given, they can be
typed in any order.

The 0 switch can only be attached to the parameter file if a
filter file is also specified. This switch deletes the parameter
file after the filter file has been created,

i.,j 4t-3 Prograin LPFIR command line options

40

j

-h) Nultiple Passband/Stopband Filter (--Parameter file: PFILE Filter File: not specifiedFilter Lenqth: 55 Number of Bands: 5 Grid Density: 16

Lover Upper Frequency NeightCutoff Cutoff Response Function
band Number 1 .0000 .0500 0. LO.Band Number 2 .1000 .1500 1. 1.Band Number 3 61800 ,2500 0. 3.Band Number 4 .3000 .3600 1. 1.
Band Number 5 ,4100 .5000 0. 20.

Do you want to,
1: accept the above parameters
2: change the above parameters

selection:

Fig 4-4 Program LPFIR parameter file display

41

for LiII' par mtur file used to generate the output listing

in 4ig 4-2.

Tlhe program fails to design mnny filters with reason-

tbli, design pArameters. Also, design parameters that yield

a well-de.signed filter can be changed only slightly and will

yi lc a very poorly designed filter. The Parks-McClellan

algurithm returns an error message if the REMEZ routine fails

to find a proper set of cosine functions to approximate the

q filte, lloweve.r, the algorithm does not give any error

messages for poorly designed filters, that is, filters with

Alarge.' amount of ripple and with a frequency response that

(litffirs gr atly from the desired amount. All filter designs

fltuJtl ti ptreqIO a should be verified witl a DFT prior to use.

A systemhtic approach was found to allow the filter

V';(lespiil laramaters that most closely approach the desired

I iIta'a to(be, founld within several filter design iterations.

'Ti ;l v.i 'w is pr(e sited in the form of a user's manual for

Pr' IF a in I,11I'I P. Ba sically, the user becjins witli a design far

I':;:; :-;i ti 1igi Hi ,iii w-at is desired. ParIaaaaeteL- ,,re sepa-

ra, ely adjusted until furtler adjust-mnrent does r(t yield a

klu ta'I I i l t .,r (h '1,iqa. 'The LiSt'r's mlanual. ind tIll(' socrc(' co)de

I (i e :I .a il a arli d 11d subrutin('s)f prociram IA'I< are given

ii, Atead'Kli I'. 'lie usur's 11,.rau1al also .Xpllains ho()w to set

La - m, lj,; tIJ I I i that (cont,in.s jpr(granls 1h111.1N, I.'I. , MAk, '1nd

I l I 'IiV'I ,H . '[I .,; aa ,l cro a] lOWS f.1ie LS(er t() d1s11 auad di splay

I ill; ui 'l y I LII an1 inte('ra 'ti ' (tIVJ l lo(n Iat.

,'12

V Conclusion

(Tis cliaptor will summarize the results of this effort

aInd qive tlree recommendations of how the signal processing

syst~~ ~tcould be imuproved.

Suimai ry

'ihe purpose of this effort was to increase the capa-

Lility of the AFI' signal processing laboratory and to make

it mor, user-oriented. Three areas--digitizing operations,

siqll p)rocess un operations, and digital filter design weru

'on1side r-ed for expansion. Software was generated that made

Suse (of the Llipse A/D/A device's two main features, the

,ihi l ity t.,(work with larqU data files and haive conversion

opt'rcitiolr options interactively set by the user. A user's

V ' mianuM,1 for this device, that is intended to replace the Data

eera~l documentation, was written to aid in writing future

toft wIr,. Tiie irray processor was utilized in several siqnal

" Os, n: pr(qrams that are executed by typinq a single line

,t~fIII~itL. A (c,)volution program was generated that allows

a rolt (t,-i I el(,s to be convolved with filters containinq up

t, ,.' pi rt.s. Procrams were also qener,ted to allow, Fourier

4 , m -elited operations to be performed on data files

c '~t [,iki, up to 20-1lH points. An existinq filter design

pramn, capale o(f buildinq i wide varioty of linear phase

I'ilP ,it iIt i ilt rs, was modified to allow ea isy operat-ion and

,,(t to' o t heFcli pse. A user's manual for this proqram

W,a; wlittenii to jive quidan(ce' in ad justitq tle filter design

'13

~irnters to obtain the desired digital filter. This soft-

w,are) tckaiqo will allow personnel using the laboratory to

perform otdditionil signal processing operations.

N(,i')iniii(lda 1L ioi is

Applying tle Eclipse A/D/A device to perform video

(1i(jit izi.1nq (jratiors should be investigated. This would

,illow th* lathoratory to have a back-up digitizinq capability

it IA, t It, t speech and video areas.

'Ihe rraiy processor will not be utilized by the ma-

-otV 'L users in the laboratory until the degree of diffi-

cul4y in op,ratiing this device is reduced. A way this could

, d,,, i. I), 'r(.atinq corresponding stand-a]one subroutines

i or ,i'h oil ti le array processor matrix operations. This

Would free(, t.1e0 user from dealing with array processor mem-

-ry, klt. t-inq up matrix operation control blocks, and arranging

dlit a ill p'l uliir formats required by some operations. All of

tI ll , , i opi. { l-t. loris deal with, small amounts of data, since

.iri-iy pr~ ii,.r memory is only 8KW. Data could be inter-

'l, -* *m-', t lit mainlince and subroutine as arguments

,Ilid it Ly ,li' e:-;s ,r mumory transfers could be handled with

L, \':i;'i' ii- d VIJlN' subroutines. It- would recluire more over-

dld I pt j'ri rl (I.h matrix ope ratio()n, hiow .er, the speed of

1]1h a pl l ('I S .(Jr iind tfime incr:,,ise in its us-aqe would lake

hi t e, at ,- Wolft liwbtile.

'HTk((il 1 -i- d ': igon pruc)C raim shoould be r,v15s1,d to ,ill(w

I It ir:; (',,itt,,ii ii i' lii t-) 12)) iits to b ' bIuilt, sillc the

('(JUit iol l '(-,ll <_lit t ll o i ui' dlt filters (of lli . lt lqth. Titw

.1+1

-1

uuLrrei-nt filte(r design program has a filter length limit of

.)(i Tpo ut S. 'The following varidbles within this prog ram can

bte Id jWseCid, howeover, as shown below to allow filters of any

Name__ Dimension

6I-11XT MAX/2+2
Al) MAX/ 2+ 2
ALPHA MAX/2+2
X MAX/2+2
Y MAX/2+2
I I MAX/ 2+ 2W111 (M X 2 2

hi 16(MAX/2+2)
f~lS 16(MAX/2+2)

khei(re MAX tLI ,,iA.%iLuun filter length

:ivh~ I h' erre-nL program to build 512-point filters would

rs 'cii i i di uh)li l Hie space of the variables given above from

II §A~to 9). UKI. This would cause the program' s executable

I il(to 'X'eLCIthe 32KVW uaiiNiurzi.

Au 1 r h vhLt solving ti us problemn would be to use

>1'uiI~ ~~i'riy Ii hld~lC two of the (Iu~'l dl a uDyPS

n I' 1). Hy [1uCiugthese trraiys in e-xt.A'uuded miemoruy~, the

Il I[it,' C jli1)' uIuOCILI-Odtoc 121a c(1 i jTl' s .s. 'liu arraty

Ii ~ (,I IA W t lu ~ iCOS.S(cd by t:W lit' iui.iiou 11)(u(;uU L krOUiilt o

IAWI NI (I (2d)
o*AI NIIL(1,h, 121L

en i ie ie p,,(t. to piiac(a': hist. the toip of extteldeci meutu1ory,

follo)wed by GRID.

original Revised
Atray Subscript SUbscript

DES: Jj
GkI D K K+4128

An example of how to revise the source code to allow

data to be transferred between the mainline and extended mem-

ory is shown below,

()rigirial1 Code Revised Code

(L11l)(K) =I)1ELtE+NFCNS HOLD =DELF+NFCNS

PLACE =K+41283

CALL vsTrASII(HOLD, PLACE)

[1(L) = GRII)(K)+DELF PLACE = K+4128
6 CALL VFET'C1([[OLD, PLACE)

[[(I) = iOLD+DELI

whe(re- 11[OLD is a real variable
PLACE is an integer variable

Ilie AFIl' siqinal processing laboratory has grown tre-

rIi'duOLSly iii thei(past few years and plans have been made for

add it-iorial ex:,pansion. This is anl indication of the notable

res~~arli t I-it, laiboratory is use~d to support. Alth~ough

ti rsarw is dire cted toward military applica-tion, many

(V I I itl .I 'IS wou ld also benef it. It is hope)(d that this

ef ()1 1 11~ i d F t U t re-search by 1l 1. 1ii(I per,,;oniiel I o make

Let(()fw~ I 1w lielboraitory'Is eapibi lit y.

K Bibliography

1. iit , neral Corporation. Analocl Data Subsystem for NOVA
tnd SCH,]I.; Line Comput.,rs 7Models 4330-4333. Programmer's
F(,[fererit, e Series, 014-000051, November 1980.

at-i (k-nor-i Corporation. Anlo(Data Subsystem Models
.13 1(1-,1"331. Technical Roferenco Series, 014-000652,

. ie i, ral Corporation. Sensory Access Manager User's
.M .kiitl. (93-00025-02, August 1980.

, (K4nrdl Corporation. Eclipse-Line Real Time Disk
q (JI' ri . iiic. System Reference Manual. 093-000129-01,

sk-'pt, mb r 1975.

.Iiii ,; (rral Corporation. Array Processor Software User's
>1. ri.,1..)U93-000lg-o0U, Octob(er 1978.

(. c)ppenim , Alan V. and Ronald W. Schafer. Digital Signal
Or - ,,ssi. Englewood Cliffs: Prentice-Hall Inc., 1975.

/. [tiC'Ill, 1I meS H., Thiomas W. P~irks, and Lawrence R.
ilbillir. "A Computer Program for Designing Optimum FIR
kii ,,ir li'hse iqita1 Filters," IEEE Transactions nn Audio
.,ilu -IvCLrtloustics, 21 (6);506-525 (December 1973).

t. (', ,']I liii, V. , A. G. Constantinides, and P. Emiliani.
i).jitl.tl Filters and 'hir Applications. New York: Aca-

{l mi" ' -,,;s Inc.•, 1978.

U i.~Ur, N1,ri1C(i,. and ilurrird (Thlcd. Tl'lery aind A 'pplic,-
ii ,1 ij;ita 1Siqnal Procossing. Englow wod Cliffs: Pren-

-Ii' .t I c. , 1975.

,). igal T 'ic ,ii ,qy, InC. I)iqital 'iltering. In rt.ur,.ctiv
ihi . ,1ry System (IIS) sof twa ro user ' s Mrnual for f i ltori q

1 I. I !-i i. 1'i-',Eriiis i)r Oigit..itl u 1 l'r *,,os:;iLU. dcliti d by
1!1k 1ji(III,i] SiCII1,1 P'rocos:si.1) (, m itA , lliI:,c(M Stic's,

1;i .,,'1, . , . J(I dl l' o(:(' {.:i i %{ci('ty. N(,w York: I I:1F.F

- 7

Appendix A

The Ecips A/D/A Device--

User's Manual

Air Force Institute of Technology

I) epartment of Electrical Engineering

Diqital Signal Processing Laboratory

I

Eclipse A/D/A Device

User's Manual

Original Releaise

Dec 82

4 (

Preface

'IK' Ec'lipse computer in the AFIT siqnal processing

Itinnti - is .'e quipped with a model '131 analoq data sub-

sy:t a iicI t Llw S'.nsory Access Manager, SAM, software package.

The Sd softlware package aids in building I/O programs for

l,, l,'ri 1 t:in:()rIf)ut-ers equipped with appropr-iato analog-to-

(hi]l< I 1 i]-~ t-itil iql devices, such as the model 4331 subsystem.

l iS iiz, manual explains how to write application programs

it t wro.r per, Ec lK lipse A/b/A device and concentrates on

I ,i1 ti(V-: of mt.st interest for signal processing applications.

iIi i()'Ls ilt this area, the scope of this manual will be

timiid W uiwj:,i ni; withi SAM in Portran V and DQ assembly

l,1J0i Li V' i(d operatinq the model 4331 subsystem in data

Ii' I .1'cl,. 'Th(u model 4331 subsystem and SAM, however,

.I t V(. n;.t j i 1 and have other fea'tUreS that~ will- only be

ii n1.'Fhg SAWi User''s Mainual andh WIe Mi de Is '1330-4333

ii ',i- :d. . ITo clinicol I furncu 's, all writtn'rI by DaL.A

h,'L , b. consulted for detailedc descriptions of

;1-':;- 1 t lin l feai tres.

All .nI, le 1 rcranis included in this manual have .eeii

V,',ri i,, 1,, ,l'r).n. , tl ELi , lclips is cfml puthJ t- in tlh(' Pt'a ,L t

4so

I5

..

Contents

Pref ('e 50

, t ' urs52

lis (f bl(s. 53

Cihptor I - Introduction to SAM 54

(',iii. (.i..q.ris 54
l'roqrratruninq Trade-offs 55
Oporating Overview 59

q (?1h ptvr 2 - The Model 4331 Subsystem 60

(; i('rw il Iniformation 60
V,iria ble lthfinitions 63

('it yr 3 - (?,nficuration Files 71

Promrm ';i AM; 71
•;j D;Ipl >.AN(;M 1)Jlog 71

('li .t ,I - ln rm V Operition 78

t 78
il l lizi i or1..ti 79
ui rsio 79

('it r ', - As:i(mily Language Operation 86

>;,t u 86
li t jl i, i olt n 87

('4 li\ (II 88

Ch,.pt (,r I,- I'unninq Application Prociriims 92

I i 93

A1l,(i 'i. A - S Ll ' Assombly J-anquaice
A/I)/A\ Pruqlram...

51

List of Figures

C 1~~' i(Ijure ag

1-1 ;AM [ntterfaces 56

1-. Pro(jr,im SWA1P Setup 58

- CMve.rsion Value Stored for
(,a) Must Positive and
(1) Most. Negative Value 61

i-I S, tmplo Dialoq .SR File 77

1 .l-I .F(,rtran A/D/A P'rogram 84

• t-i. D)Il/W I anld DIEC[/W] Options 5

7.

6

K
L .. !

4

List of Tables

Table Paq

2.1 Conversion Values Stored and
Corresponding Voltages 62

2.2 Variable IDATA1/CDAT1 Bit Definitions
for A/D Operation 65

2.3 Variable IDATA1/CDAT1 Bit Definitions
for D/A Operation 65

2.4 Variable IDATA1/CDAT1 Clock Source
Bit SetLings 66

2.5 Variable IDATAI/CDATI A/D Channel
Use Bit Settings 68

r 2.6 Variable IDATA1/CDAT1 D/A Channel
Use Bit Settings 68

2.7 Vairiable IDATAI/CDATI Octal Value
Bit Settings for an A/D Operation 69

2.8 Viriable IDATAI/CDAT1 Octal Value
9B bit Settings for a D/A Operation 69

4.1 SAM Fortran Error Codes
(SAM User's Manual, p. 6-9) 82

5.1 SAIN Assembly Language Error Codes
(SAM User's Manual, p. 9-4) 90

53

-

Chapter 1
Introduction to SAM

Call Categories

The Sensory Access Manager, SAM, is a software package

that simplifies the building of I/O programs which utilize

A/D/A devices. SAM allows these devices to be operated flex-

ibly through the use of Fortran IV, Fortran V, or assembly

q language calls. This manual will only discuss usage of For-

tran V and assembly language calls, since Fortran IV pro-

gramminq is usually not used on the Eclipse computer. An

4 a pplication program can perform A/D conversions or D/A con-

versions or both. A single conversion operation, however,

cin only perform A/D or D/A conversions.

_'Ifh conversion calls can post either a single-opera-

tiun or multiple-operation request. A single-operation re-

quCest spcifies a cyclist list of channels from which data

will b, cu.lected or sent, a total conversion count for all

(lianhnels, and a single clock source which is used to trigger

convorsions. Multiple-operation requests set up a series of

single-operation requests. With both types of requests, pro-

qr~mt c'ontrol can either be suspended until the request defined

hILIs bL oe Comiipletod or returnod immediately, in which case the

prt,<qr..in must c(_-h'.k for completion later. Since the main ad-

vant.a' of multiple-operation requests is the ability to oper-

,'I mort, th,11n or dovice, their usage will not be discussed

ii t hi s mnuJ 1.

54

6

The Eclipse A/D/A device can be operated in one of two

modes according to how it will move conversion data--pro-

grammed I/O or data channel I/O. With programmed I/O, data

is moved through an accumulator where it is readily available

to the program for manipulation. However, because one or more

instructions must be executed for each word transferred, pro-

qrammed I/O is slow and generally used only when small quanti-

ties (,f information are transferred. Data channel I/O reduces

q the amount of program overhead by transferring blocks of data

automatically via the data channel. Once the data channel

transfer for a block of data has been set up and initiated

by the program, no further action by the program is required

to complete the transfer. This is the only method of data

trinf er that will Le discussed in this manual.

Pro,rmming 'Trad-e-offs

The min ntlzler in which the Fortran and assembly language

ctlls ioit ictt!. with an application program to control a

devick_ is shown in Fig 1-1. Fortran interfaces work through

th, assomhly level interface. The assembly level interface

works thirouqLh the operating system which drives the devices.

b)i ,ie the issembly language calls require less overhead, they

,.re fist.er :nd illow more space in the main program for data

st.oraqL . ff the user is familiar with assembly language pro-

q ramm og , iptproVitg the device at this level is iiot much more

d17fictiIt than operating the device with iFortran programming.

'11i"i is bt'Cause" the? assembly language macros provided in the

55

Application Program

Fortran Interface

Assembly Level
Interface

Operating System Device

Fig 1-1 SAM Interfaces

SAM libraries allow the device to be operated in a manner

2,imilar to thAt of Fortran programming. With Data General

Fortrn V programming, it is possible to write the main pro-

gram for data iiinipulation in Fortran V and then call upon

a subroutine, overlay, or swap written in assembly language

to ope-rate tiLe device. ihis method would be useful, for

instance, when repeated A/D conversion calls would be neces-

sary to collect the desired number of data samples. Writing

this section of code in assembly language would allow data to

be movud from the data buffer more quickly, thus losing fewer

d.,ta sapjl)eUs between repeated A/D conversion calls. If the

560

W ._•..

user is not familiar with assembly language programming, how-

ever, operating the device at the Fortran level will be much

£ easier. The Fortran calls can perform any single conversion

operation request that can be done with assembly language

calls. If repeated conversion calls are not necessary to

handle the desired amount of data, then nothing significant

is qcaiiid by using assembly language calls. This is because

t (,)L wvt.rsion operations begin triggering, Fortran calls

Six,,:;''rmily language calls are handled by the operating sys-

t,,:! i, ite smw manner. If the main program cannot provide

i, for the Fortran overhead and data arrays, then

;w ij) or overlay can be used to handle the conversion

1,1. ,11w largest number of data samples any single con-

V. .. r,it toir can handle is 16,384. The Fortran overhead

in-1 ita ,ir,iys t:o handle such a single conversion operation

w1 1 i 1 within the maximum length of 32KW that can be allot-

t(.d Jsj .:i ,.e,.cutable overlay or swap file. Basically, pro-

(jran swtps oj)wr,ite by overwriting main memory with a new

proqr.im, wh]ile overlays overwrite a section of main memory

wit-h nf w (_ode,. Program swaps are easier to learn to use and

st 1p than overlays. Therefore, if a secondary file will be

u.st'd to liurdle the conversion operation and the file is nelar

L'6 tti (I (,r if the1. additional1 processing delay cLaused by

p r -,,ir, u tw c b * tolerated, then a proqgram swap would be

tlit, i i,,t (r met 1Lod. An example of a prociram swaop setup is

,viw(.V i in iq 1-2.

5 7

C The main program could srite
C parameters, such as output or
C input filename, number of
C conversions, etc, to a file,
C A soap is called if the
C conversion operation is
C required,

CALL SWAP("CONY.SV-"IER) - C This program could read
IF (IER#NE.1) CALL ERROR -" - C the parameters from file

* C and performed the specified
C conversion operation.

C The main program continues
C operation with all variables
C returned to their values CALL EXIT
C before the swap. END

Fig 1-2 Program SWAP setup

I

IL

oporating Overview

The basic additions that must be included in an appli-

Scation program to perform A/D/A operations are quite simple.
First, the device op-codes and conversion data buffers, spec-

ified by the configuration file to be used, are declared at

the begining of the program. Second, the operating system

is initialized with a SAM library subroutine call. Finally,

Ift(,r setting the arguments to appropriate values, another

SA 1brtry subroutine is called to perform the operation.

Ih;A sA\'(;,,N program located in the SAM directory, of DP4F

is use d to create the configuration file. The configuration

fil (ldfine-s paraimeters used by the operating system to oper-

'Ito t,, I/o device. It is loaded with the main program in

tlie lID cPaiunnd line. All conversion operations in the ap-

plic.ttLuln program must adhere to the framework set up by the

et.nfjquratiotn file loaded with the program.

'Tliis mdniual is divided into chapters which discuss each

,f the1 st(s necssary to run an A/D/A application program.

Ci[, [te r 2 dscribes the basic capabilities of the Eclipse

A/I)/A (1(,vit'ce and how to set the argumient values for the For-

t-a, ind lanquacle conversion operation calls. Chap-

.V I d seres]ow to build con figuration filos. TIie general

j'r-q lil-,set tip 1ind the different SAM subreuttin c,1lls aire de-

.,' i ii Viipter el for F(rtrn V proqrami:iing and Chapter 5

i ,r t)1 ;i'.,.i ,]y lIit(jUd(qO proqrog ltttinq. linilly, Chapter h de-

st-t I hi'5 it u i~i1 bandc load ajp1 1'a tioti progirais.

59

Chapter 2
The Model 4331 Subsystem

General Information

The model 4331 analog data subsystem is a stand-alone

device which contains both the A/D and D/A converters. It

consists of a 15-inch printed circuit board that fits in a

slot on the Eclipse computer chassis. The Eclipse computer

q contains many such slots for expansion. User interface to

thy circuit board is provided through two connector paddle-

boards--one called analog and one called digital. The pin

4 connections for these two paddleboards and other specifica-

tions are given in the Models 4330-4333 Technical Reference.

The subsystem contains independent software interfaces

(Qe for A/D and D/A operations. Each interface has its own device

c')ce ,and must be accessed separately in the application pro-

gr,m. The A/I section is organized around a single 12-bit

A/i c(orter ind two multiplexors. The multiplexors allow

iLnpUt of up t, 16 differential signals. The D/A section is

o)rqtn ,&2ed around two 12-bit D/A converters. The A/D and D/A

(,onvrters :,tiI be set with jumpers to operate at a voltage

rn(pe o)f () t() %;v, 0 to i0v, +5v, or +10v with conversion

va]S~; r' 4uriid in either strai lit binary or two's complement

I o rm lt, lt i converters hav', b(,en set to operate at the +5v

r ,, in I w, I' s (:mp lement format.

A ('(,iiw.V-un oii va1ue is stored in one macliine word withli

I i1 0 used as a! siqn bit and bits 1-11 used to store the

60

value. The remaining bits, 12-15, are always returned zero

from an A/D operation and are ignored on a D/A operation.

The bit settings are shown in Fig 2-1 for the most positive

conversion value, 077760K, and the most negative conversion

valuo, 1OOOOOK.*

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a. 10 1 I I I 1 1 1 1 1 1 1 0 10 0 _0 =077760K

b. I I 1 0 0 0 1 0 0 0 1_0 0 0 1_0 0 0 0 0 0 =100000K

Fi. 2-1 Conversion value stored for (a) most positive

and (b) most negative value

The 12 bits provide 4,096 different conversion values, with

2,0,l8 allocated for negative values, 2,047 allocated for posi-

tive values, atid one allocated for the value zero. Since the

device is set for a full range of 10 volts, each increment

represents approximately .0024 volts. Shown in Table 2.1 is

a list of stored values and corresponding voltages for sev-

oral conversion numbers. Since integer numbers on the Eclipse

compuLr also occupy one machine word using the same two's

complument format, a one-to-one correspondence can be made

b1etween i sampled value arid its integer value. Due to the

* The tymbol K indicates octal format. This notation is
adaptecd from that used in Data Gene-ral Fortran V to
iiidicaite that a number is in base eight representation.

b1

least four significant bits of each word not being used, con-

version values occur in corresponding integer-value multiples

(of sixteen. Making use of the integer-value correspondence,

a conversion value can be changed to its actual voltage value

with a single line of Fortran code such as the following,

REALNUM=FLOAT(INTNUM)/32768.*5.

where INTNUM is the one-word conversion value and REALNUM

is the corresponding two-word, real-number representation of

the actual sampled value.

To request a conversion operation, variables are passed

via Fortran or assembly language calls. The following section

A explains how to set the variable values for each type of call.

The IDATAx words indicate Fortran variables and the CDATx

words indicate assembly language variables.

Conversion Octal Value Integer Value Actual Sampled
Number Stored Stored Value

-2048 100000 -32768 -5.0000v

-2047 100020 -32752 -4.9976v

-2046 100040 -32736 -4.9951v

-1536 120000 -24576 -3.7500v

-512 160000 -8192 -1.2500v

-2 177740 -32 -0.0049V

-1 177760 -16 -0.0024v

0 000000 0 0.0000v

1 000020 16 0.0024v

2 000040 32 0.0049v

512 020000 8192 1.2500v

1536 060000 24576 3.7500v

2046 077740 32736 4.9951v

2047 077760 32752 4.9976v

Table 2.1 Conversion values stored and

corresponding voltages

62

Variable Definitions

The variables passed for both A/D and D/A requests in-

(dicate the channel use numbers, conversion count, clock source,

and the storage location for conversion values.

lThe channel use numbers are specified differently for

A/I) or D/A operations. For A/D operations, the initial and

final channel numbers are specified. The A/D channels are

numbei d 0-15. For example, if 4 was given as the start

q channel and 7 as the final channel, conversions would be

taken from channels 4, 5, 6, 7, 4, 5, 6, etc. The converter

will wrap around from channel 15 to channel 0. For example,

if 13 and 2 were given as the start and final channels, con-

versions would be taken from channels 13, 14, 15, 0, 1, 2,

etc. To speqcify a fixed channel, the same value is entered

for bth the initial and final channel. For D/A operations,

the initidl channel and fixed/alternate mode are specified.

The 1)/A channels are numbered 0 and 1.

T1'h'l,_ device offers four clock sources--pulse, DCH, in-

te;rnatl, and external. The A/D converter can use all four

clcks, ljhowe-ve-r, the D/A converter can use only t}he pulse,

iarriLrxial, and external clocks. The pulse clock triggers con-

' ,r:-;s I ru(m) software genera ted pulses 11nd the DCII clock

tri (qqors o(,)nversions at the maximum rate the device allows.

'Ihe i I we t(lovks are not as useful for siqnal processing ap-

p1 ia',0 itW s is air(the internal and external clo)cks. It is

IMIr(d t iLcUlt to control the pulse clock rate with precision

t liati it is fr tie external clock. The DCl clock rate is too

03

fast for most signal processing applications. Using a TTL

pulse genurator as an external clock, with a frequent,. -ounter

[to measure the clock period, the external clock provic. an

accurite, versatile clock source. The A/D and D/A converters

hawe s parate connections for external clocks. The internal

clock can be set for a clock period range of 45-300 microsec.

fowever, the adjusting mechanism for this clock is a screw-

driver, variable resistor on the main printed circuit board.

Since t- his board must be removed from the Eclipse computer

for clock adjustment, the external clock must be used if the

currtnt. internal clock setting is not what is desired. Cur-

rently, the internal clock is set for a clock period of 46

IMi Lcrose-c.

The variable IDATAI/CDAT1 occupies one machine word

and specifies the clock source and the channel use numbers.

In i'(,rLraII, IDATA1 can be an integer or an integer variable.

In dis;tmhly lanquage, CDATI is the variable value. The bit

dcl. iiiit, iotis of II)ATA1/CDAT1 are shown in Table 2.2 for an

A/l operaition and in Table 2.3 for a D/A operation. The bit

settitigs for tlie clock source with either type of operation

,re .lown i 'aAble 2.4. Two points should be remembered

wlhn sottinq these bits. First, it is illegal to set the

bL_-; ,-)r CII]co,,k on a D/A operation. Second, use of the

)u]se, clock re(quires additional software and should only be

,tI 1.('Il)t(d aft(r' cotisulting the SAM Hlser's Manual (p. 4-28)

brst u{tp. seJs of the pulse clock does not affect the type

0,4

I

Bit Function
'- Numbers

0 (ignored)

1-2 clock source

3 fixed/alternate mode

4 (set to one)

'- 5-14 (ignored)

15 start channel

A,

Table 2.2 Variable IDATAI/CDATI bit definitions
for A/D operation

Bit Function
Numbers

0 (ignored)

1-2 clock source

3-5 (set to zero)

6-9 final channel

10-11 (set to zero)

12-15 start channel

']-iblo, 2.3 Variable IDA'|AI/CDATI bit definitions
for D/A operation

65

-

Bit 1 Bit 2 Clock Selected

0 0 pulse

0 1 DCH

1 0 internal

1 1 external

Table 2.4 Variable IDATA1/CDATI clock source
bit settings

66

0

of SAMUEN configuration file used. The user, however, must

generate an assembly language module to trigger conversions.

CT This module is called in the application program for each

conversion triggered. The bit settings for channel use num-

bers are shown in Table 2.5 for an A/D operation and in

Table 2.6 for a D/A operation.

A convenient method for setting the bit values with

Fortran operation is to use the .OR. operator. The octal

I vdalues that correspond to setting the required bits for

diltfreint options are shown in Table 2.7 for an A/D opera-

t ion ind in Table 2.8 for a D/A operation. In addition to

e ,ttiiiq t.ii_* bits for clock operation, the clock values shown

also set the miscellaneous bits. The following line of code

could b' Useld to) set IDATAl to collect sampled data on chan-

4 nel 10 using external clock,

IDAIAI=(60000K.OR.1000K).OR.10K

'I'll(. 1oliowitiq line of code could be used to set IDATAI to

utlut, conversion data on channel 1 using internal clock,

I DATA1=44000K. OR. 1K

1J/r b/, opertiorn, if alternate mode is not specified, fixed

I(J)dk L' S a U11 'CI .

6 7

* .- . . -.-

Start Bit 12 Bit 13 Bit 14 Bit 15 Channel
Selected

Final Bit 6 Bit 7 Bit 8 Bit 9

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2
0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

o I 1 1 7

1 0 0 0 8

1 0 0 1 9
1 0 1 .0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

1 1 15

Table 2.5 Variable IDATAl/CDATI A/D
channel use bit settings

1it 15 Start Bit 3 Channel
Channel Mode

0 0 0 fixed

1 1 1 alternate

Table 2.6 Vari abl TI)ATAI/CDA'11 D/A
channel use bit settings

68

u n, . , nn N P. " . , , -" - " " - -

Octal Function
V', 1 ue

00000K pulse clock

20000K DCH clock

40000K internal clock

60000K external clock

' 0-1700K start channel 0-15

0-17K final channel 0-15

Table 2.7 Variable IDATAl/CDATI octal value
bit settings for an A/D operation

Octal Function
Value

04000K pulse clock

44000K internal clock

64000K external clock

10000K alternate channels

0-1K start channel 0-1

''Miblu 2.8 Variable IDATAI/CDATI octal value
bit settings for a D/A operation

I

(A)

0m~md., ma mm~lalm ' m~m mm ~ ~ m J

6

The variable IDATA2/CDAT2 also occupies one machine

. word and specifies the total conversion count. In Fortran,

i! IDATA2 can be an integer or an integer variable. In assembly

langugqe, CDAT2 is the label to the word that contains the

variable value.

The variable IDATA3/CDAT3 specifies the data array where

conversion values are held. In Fortran, IDATA3 is an integer

array and it must be placed in a labeled common block when

q data channel I/O is used. In assembly language, CDAT3 is a

label to the storage area that will hold conversion values.

TIhe label name must be the same as that given in the SAMOEN

crea led conf iguration file.

7()

. • • . . -. . .. ° . h . . - I

Chapter 3
Configuration Files

P'roqram SANGEN

The SAMGEN program is used to build a relocatable

binary configuration file which is loaded with the A/D/A

ipplication program. The configuration file defines to the

operating system which hardware and operating modes will be

used.

SANGEN is a Fortran IV program in the form of a save

f le . 'liis program will run on an Eclipse or Nova computer

in eLLir mapped or unmapped environments. It is located

in the SAM directory on DP4F. SAMGEN is an interactive

pro(jqrm that is executed by name. It takes only a few min-

utes to c(JLplete and is self-explanatory. In addition to

p ruLc Iiq a conafiguration .AS file for the assembler, SAMGEN

aso)ro Lduc(,s a configuration .SR file which summarizes

i ,;w-ir -; to, SAM6f'j questions. For most data channel appli-

On Lti L:;, [i i ('ny parameters need(d to run SANGEN are the

&h 'v i',- i d; i11cd t l IC 01110e and size of thi, conversion data buffers.

It is v(!,-cmiinunded tlUat t Th confiqurtion filus be left

ill It,. A (""A di e 't.tr y .nd linke:d to LIike use r's diiectory for

* A l-S, t,1e 11(1111e (jivell Lo t11e ('uufiqora-,t ion tile shlould

i' a t li, I, ri, SA.N(:ONVIG , whri, xx is a number unique from

h~ lti (,)i LUCII.1Ft o iles in thie dirLcto(ry.

IIt si rn,'1 dia log section t. hat fP tollows was 'xecuted on

71

the Eclipse computer. The SAMGEN questions asked would be

similar for other configuration files using data channel mode.

- TIlTe user inputs are noted with the heading "User:" and

the system responses are noted with the heading "System:."

The user inputs for this dialog are given exactly as stated

and Lh symbol "(CR)" notes that the user should depress the

carriage return. At any time during the dialog, SAMGEN can

be aborted by typing a CTRL-A followed by a carriage return.

q The following commands get into the SAM directory and

start up SAMGEN,

Syst-'rii: <

E U~ s: DIR DP41' :SAM(CR)

sy ,,- t tu:

Ujser: SAM(,EN (CR)

0SAbGi{h' will then display an introductory message and ask

ti(- t,_(;)wi rq question concerning the configuration file name,

'iii{,|: IK ii r ,a (1-10) character primary file name for
this configuration file?

ist MI 'IIo F IG 5 (CR)

1 ve nt igLuration file name can be any valid RDOS file

I1.lilt{ , 1.(11,. iitILI1rri.c ciharacters or le(ss, with{out an eXtuiiSion.

M;: ; wi]l ipg,'nd .AS to the file riatrie fur thle file to be

dsst h {'c arid . h1 to the file lhlme for t-1W filL' that SUmnlla-

:~:{: ;.,\bl;ljI~ da c Il} Tj. 'Ihe n 11e shIould be kI igiIt-{' t.O the (-ur-

'lt t r'c - r '1s SAH('LN wiLl I.bOrt. TIli' diaklog colit i -

72

System: What type OS is your Tarqet system?

Choices are:OS Type: Response

Mapped RDOS MRD
% Unmapped RDOS URD

NOVA DOS URD
micro NOVA DOS URD
Unmapped RTOS URT
Mapped RTOS MRT

Type of OS?

User: MND(CR)

S.System: How many DG/DAC chassis (0-4)?

User: 0(CR)

Syst. tmt: Enter the entry name of your SAM fatal error
routine (up to 5 characters) or type (CR) for
default routine?

Ulser: (Ci-,)

Systent: What type of computer is your target system?

(e MIN - MicroNOVA

NE - Nova or Eclipse

"tt-er (MN,NE)?

y,4te,: flow many Nova/Eclipse Analog Subsystems (#
,1330-1333) do you have?

tLst *r : I ((')

I S yte,: What is the device code of A/D converter #1?
(', 15, 21, 23, 31, 35, 41, 45, 51, 55, 61,
W,, 71)

'lW, A/i) Inv'rter is wired for devic, code- 21 octal,

wleil i: i lt. erl standard for t he first st-and-alolne

(hviti, '['le 4ev Lte code for the c r't Spondi nc 1)/A convert,r

7 -3

is always the A/D code plus two, or 23 in this case. The

dialog continues as follows,

C System: What mode will you operate the A/D converter

in?

AP - specifies Programmed I/O
AD - specifies Data Channel Transfers

Enter (AP,AD):

User: AD(CR)

Sy'stem: Do you have a special interrupt service routine
q for this A/D converter?(Y,N):

User: N(CR)

Since the Eclipse is a mapped RDOS system, SAMGEN will

now ask questions concerning the name and size of the conver-

sion data buffers. The name given will be the name used in

a common block of each application program to align the con-

0 V ersiol data array with the data channel map. The size given

will b(the maximum size that the conversion data array can

be dijmensioned to in the common block and, hence, specifies

the' RkILNun umber of conversions a single conversion opera-

Lion (-,iii iandle. The data array will be an integer a.rray

tihat r'c v'"'Vyes or sends the conversion values. SAMGEN asks

for tie A/I) d,it-, buffer parameters first.

Syt1 .t : In'Lorm ine the IIhaXillllm amo10un1t of dcir a you expect
t-o transfer in a single request. Then specify
the(, number of 1024 word blocks required to include
a1ll of that data.

iLer number of blocks: (1-11))

I Jseur : , ((',<)

ysi t(,tn: WIhltL.t is the qlbcal1 symbol for your data area?
(i<In-'r a 5 chiraicter symbol)

J:w i : I IU l " (CI)

74

.4

Now SAMGEN asks for the D/A data buffer parameters,

System: What mode will you operate the D/A converter
in?

BP - specifies Programmed I/O
BD - specifies Data Channel Transfers

Enter (BP,BD)?

User: BD(CR)

Systeffm: Do you have a special interrupt service routine

for this D/A converter?(Y,N):?

User: N (CR)

System: Enter the number of blocks:(1-16):

User: 6(CR)

System: What is the global symbol for your data area
(Enter a 5 character symbol):

Lser: IbUFO(CR)

Systom: Your configuration file is called SAMCONFIG5.SR
Good luck with your application! End of SAMGEN
STOP
P,

A printout of the configuration source file for the pre-

vious dialog can be obtained by typing the following command

System : I,

User: PRINT SAMCONFIG5.SR(CR)

'te .SR file for the sample dialo is shown in Fig 3-1.

7

75

The configuration .AS file can be assembled in the SAM

directory. The directions given in Chapter 6 for assembling

,T application programs can be applied to assembling the config-

uration file. Assembling the configuration file produces a

relocatable binary file which must be loaded with the applica-

tion program in the RLDR command line. A link, such as the

following for the sample file, should be set up in the dir-

ectory that the user will be working in. Application pro-

I gram s cn then be loaded from that directory,

SAMCONFIG5.RB SAM:SAMCONFIG5. RB

lot

I
7 6

6

0 SANGEN key. 2.10 11/27/82 at 19: 8 Filenames SANCONFIG5,SR

;Answers you gave in the SANGEN dialog are shown in comment lines.
;Your inputs are immediately preceded by a colon (a) and appear
;in the same order as you gave them to SANGEN.

; Target operating system type :ORD
N Number of DG/DAC 4300 chassis configured: 0

; Fatal error handier name : -1
; Fatal error handier mailbox: -1

DCDX SANCO 100 -1 -1

; umber of Analog Subsystem :l

; A/D Con. ml Device Code :21 Node :AD Fortran ID IDS21

; External interrupt handier specified :(NONE)
Number of pages in Data Channel area z 6

; Specifying a starting address for Data Channel area :Y
* ; Data Channel starting address ;IBUFF

DCBN DBS21 D.IDF+D.INF+D.DCH 21
DCB.I DTS21 SAINI 6. IBUFF
DCD?C -1 -1 DSS21
DCT.N DTS21 000377 INTSA DSS21

DCD.N S21 D.FIF 21 00 AD

DCB,.S DBS2 0 ADIS ADIN SAIRT
DCBA

; P/A Con, *l Device Code :23 Node :DD Fortran ID I IDS23

; External interrupt handier specified t(HONE)
; Number of pages in Data Channel area : 6
; Specifying a starting address for Data Channel area :Y

* ; Data Channel starting address :IBUFO

DCD.N DBS23 DIDF+D.INF+D.DCH 23
DCD.I DTS23 SAINI 6, IDUFO
DCBC -1 -1 DSS23
DCT.' DTS23 000377 INTSA DSS23

a
DCD.N S23 D.FIF 23 00 60
DC8.S DBS23 0 BD.IS BDIN SAIRT
DCB.A

DC1,1

;End of SARGEN configuration file.

Fig 3-1 Samiplu didlog .SR file

77

...

LA

Chapter 4
Fortran V Operation

This chapter describes the source code necessary to

operate the Eclipse A/D/A device in Fortran V application

programs. It is divided into three sections according to the

purpose of the source code--setup, initialization, and con-

version. The SAM error codes for the Fortran error return

uI variables are given in Table 4.1. A sample program that

could be used with the configuration file built in Chapter 3

is giver in Fig 4-1.

Setup

'P'he source code for a typical setup in data channel

mode is shown below,

EXTERNAL IDS21
EXTERNAL IDS23
COMMON / IBUFF / IDATA3(16384)
COMMON / IBUFO / IDATO(1024)
DIMENSION IORBA(16)

The application program must declare both device-ids, even

if the application program will only use one device. Accord-

ingly, the common block for both the A/D and D/A data buffers

4 must be declired, even if only one type of conversion will

be pe.rformed. The data arrays in the common blocks can be

dimensioned less than the number given to SAMGEN when creating

the, confiquration file. They must not, however, be dimensioned

lirqrqr h n th(number given to SAMGEN. The space for the

data btiFj.ers k:in be divided among more than one data array

as lonq as tle cumulative space does not exceed the number

78

given to SAMGEN. A single conversion operation, however, can

only operate on one data array. The IORBA data array can be

any integer data array dimensioned to at least 16. It is

used by SAM as a scratchpad for processing the conversion

operation that references it. SAM also uses certain elements

of this array to convey information concerning the status of

the conversion operation. This will be discussed in the con-

version operation section.

Initi,-ilization

Prior to issuing any conversion call, the application

program must issue the DSTRT call shown below,

CALL DSTRT(IER)

'The variable IER is the standard Fortran error return vari-

ible. This call initializes the operating system for conver-

sion operations. It can be located anywhere in the applica-

tion prograim before the first conversion call, but must be

qiveri only onice in the same application program.

(Covcvrs i ()

'lhe DOIT[/Wj call is used to request a conversion oper-

atton. It has th e basic form shown below,

CA1,], DOlT[/Wi (IORBA,device-id, J, IDATAl,II)ATA2,IDATA3,II.ER)

The cill has two forms--DOIT or DOITW. The DOITW call is

used t:o(halt proqrm control until the operation requested is

coililet d . The DOIT call is used to instiqate tho operation

,izid retiirnis proqram control immediately. With this call, the

L)ti~.I /'W] (,,all must be use'd later in the prociram to determine

719

. . . --~- - - ' - - .- -- . -- ° -. .

if the conversion operation has completed. The device-id is

IDS21 for an A/D operation and IDS23 for a D/A operation.

A The variables IDATAI, IDATA2, and IDATA3 must be specified

as given in Chapter 2. The variable IER is the standard

Fortran error return variable. The value of IORBA(14) should

always be checked after completion of a DOIT[/W] call in data

channel mode to determine if an external interrupt or if a

clock overrun/underrun occurred. The IER variable will not

return an error for either of these two conditions. On a

normal return, all the bits of IORBA(14) should be zero ex-

cept bit 1. This will give a value of 40000K to IORBA(14).

If an external clock interrupt occurred which caused proces-

sing to be aborted before the conversion operation was com-

pleted, then bit 0 of IORBA(14) will be set to one. If a

clock overrun occurred on an A/D operation or a clock under-

run occurred on a D/A operation, then bit 8 of IORBA(14) will

be se, to one. If IORBA(14) returns a value that does not in-

dicate a normil return or either of these two error conditions,

th1e conversion d0ta should be checked if possible to determine

it it is plausible-. The SAM User's Manual (p. 1-29,34) does

lot (L,(v(.r "rnon-no)rmal" returns other than the two given.

'Iho DIflVI'/W] call is used to check for completion of a

D)uIT c ,n(t'rsion op)Ieration. It has the basic form shown below,

('ALL DREC[/W] (IOR}A,I I'P)

'11w, (.,III l ,,ia two foritis--DRE'C or J)RECW. Tlh)LCW call is

used to iIt. program control unt:1 the DOlT conversion opera-

tioni, wit-h tlie [ORIA array referenced, is completed. The

80

DREC call is used only to check the current status of the

conversion operation. If the operation is completed, then

the DREC call places a non-zero value in IORBA(6). If the

operatioh has not completed, then the DREC places a value of

zero in IORBA(6). A guide illustrating the different DOIT[/W]

and DREC[/W] combinations is given in Fig 4-2.

4

81

- - ->-

CValue Meaning

2179 No -.LNK routine in DCB, invalid DCB. Often
results from an Invalid device-id, so chuck the
device-id%. The first tswo characters are ID, the
third either S. A. or 0, and the last two arc
numbers (e.g.. IDS?1).

2170 No DCB identifier in IORB, invalid DCB.
Same cause as 2179.

2181 Not used. This error should not occur.

2184 No initializing routine for a device that needs
initialiation. Same cause as 2179.

2185 Output requested to a channel for an illegal

device (e.g.. output to an A/D converter).

2186 Attempt to set up a locked IORB arra) This
can happen if a second DSAN/DSOR call uses
the same IORB arra) argument before the
original DSAN/DSOR completes.

2187 Unable to find free IORL 'ck in IORB
array. Can h.tppen if the IORB array was
DIMENSIONed too small. A
multiple-operattion call needs 8 elements + 8
elements per operation.

2188 No DC B exists w ith specified device-id. Same
cause a, 2179.

2189 Attempt to use unsupported feature (e.g.,
mapped call in unmapped system).

2190 Attempt to return bad buffer. Will never occur.

2191 An lDATAx argument gave an illegal clock
setting for an A/D or D/A converter.

Table 4.1 SAM Fortran error codes
(SAM User's Manual, p. 6-9)

I

82

Value Meaning

2192 Illegal conversion count -- more than 255 or less
than I -- fur an AID copvcrtcr mode in A2,
DG/DAC only.

2193 AsscmblN language onl). Attempt to move data
channel map while IORB is locked. A task
tried to change the map while a request was
using the %indow.

2194 Attempt to move data channel map to an
address outside the window.

2195 Illegal conversion count: less than I or more
than the device allows.

2196 Interrupt occurred from 4222 without a strobe
or latch change.

2197 Assembl) language onl). Attempt to use data
channel map while it is being initialized or
moved.

2198 Assembl) language onl). Data channel not
initialied: use an RMAP call before issuing
this mode A2 request.

2199 SAM panic code. SAM could not transmit
(.IXMT) io the calling task on IORB arra)
completion. SAM aborts the program unless
you set up a fatal error handling RECeive task
and gave its name to SAMGEN. as described
in Chapter 5, "Initial Dtalog".

2200 External interrupt occurred on a stand-alone
analog converter, aborting the request This
error return. from ISA calls only, not from
DSAN/DSOR calls

Table 4.1 contLnue

-4

I

83

I

I

C This program gill collect and then output 5120 data samples
C usinq the Eclipse A/D/A devices

EXTERNAL IDS21 ;setup code
EXTERNAL 1DS23
COMMON / IBUFF / IDATA3(5120)
COMMON I IBUFO / IDATO(5120)
DIMENSION IORDA(16)

CALL DSTRT(IER) ;always initialize device
IF (IERNE.1) CALL ERROR("DSTRT")

IDATAI:600O0X ;external clock and channel 0 (AID)
IDATA2:5120

q TYPE "Press carriage return to begin A/D"
ACCEPT

CALL DOITW(IORBAIDS21 8tIDATAIIDATA2,IDATA3) ;AID

IF (IERNE,1) TYPE "DOLT error ",IER
IF (IORDA(14),NE,40000K) WRITE(1O,1) IORBA(14)

1 FORMAT("IORBA(14)x ",06)

DO 25 I:l,5120 ;load sampled data into D/A array
IDATO(I):IDATA3(1)

25 CONTINUE

IDATAI:640001 ;external clock and channel 0 (D/A)

TYPE "Press carriage return to begin D/A"
ACCEPT

CALL DOITW(IORBAIIDS23t,8IDATA1IIDATA2tIDATO4IER) ;D/A

IF (IERNE.1) TYPE "DOIT error ",IER
IF (IORBA(14),NE.40000K) WRITE(101) IORBA(14)

4 CALL EXIT

END

Fig 4-1 Sample Fortran A/D/A program

84

7-A124 759 EXPANSION OF THE ECLIPSE DIGITAL SIGNAL PROCESSING 2/3
SY5TEM(U) AIR FORCE INST OF TECH &RIGHT-PRTTERSON AlFB
ON SCHOOL OF ENGINEERING 0 R ALLEN DEC 82

UCLASSIFIED RFIT/GE/EE/82D-16 F/G 9/2 N

smhhhmhhhhhhiI
smhhhhhhhhhhh
smhhhhhhhhhhh
EhhhhhhhhhhhhEm
EhhhhhhhhhhhhI

1

'Woo

&2 11 ,2 .

, . __ _ _
,_ _ .

t

1~W 10 1132812.5

NAIN L BUEUO TADR93 -A

processing

pprogeraing

II

N ed y5

0 o s RC

4

Chapter 5
Assembly Language Operation

This chapter describes the source code necessary to

operate the Eclipse A/D/A device in Data General assembly

language. It is divided into three sections according to the

purpose of the source code--setup, initialization, and con-

version. The SAM libraries provide various macros that make

operating the device at the assembly langulage level much

easier. A macro is a predefined section of code and in

this chapter it is used in a manner similar to a Fortran

subroutine. The Models 4330-4333 Programmer's Reference

should be consulted for operating the device in assembly

language without the macros described in this chapter. The

SAM error codes for assembly language error return messages

are given in Table 5.1. A sample proglam that could be used

with the configuration file built in Chapter 3 is given as

Appendix A. Throughout this chapter, references will be

made to SAM Fortran subroutines. This is done for further

clarification, since it is assumed that most users will op-

erate the device at the Fortran level first. This, of course,

is not required.

Setup

Shown on the next page is the source code for a typical

setup in data channel mode.

86

Ii

~I

ENT IBUFF ;declare the A/D data buffer
.ENT IBUFO ;declare the D/A data buffer

.ZREL
RECW 0

.NREL
IORB .BLK 10
STACK .BLK 40
IBUFF .BLK 12000 ;set aside 6KW for A/D storage
IBUFO BLK 12000 ;set aside 6KW for D/A storage

The application program must declare both the A/D and D/A

data buffer names given to the SAMGEN program with the .ENT

statement. This allows the operating system to access the

conversion storage area in the application program. Accord-

ingly, both data buffer names must appear in the program and

label the areas that will be used for conversion data storage.

The .BLK statement can be used to set aside the storage area

up to the limit specified in the SAMGEN created configuration

file. The IORB variable is an eight-word block that holds

the parameters for a conversion operation. The STACK variable

is a 32-word block that is used by SAM as a scratchpad to

process a conversion operation. The RECW variable is used

to indicate when a conversion operation is completed. Each

separate single-operation conversion request must have its

own IORB, STACK, and RECW setup.

Initialization

Prior to issuing any conversion call, the application

program must issue the S.STR macro shown below,

S.STR STACK
JMP ERRI ;to handle error return
JMP CONTI ;to continue processing

This call initializes the operating system to the device and

is similar in function to the Fortran DSI'I'T call. Progra.

87

q

0

control is returned to the location immediately following the

macro on an error return. The error code is contained in

accumulator 2. For a normal return, program control is re-

turned to the location immediately following the macro plus

one.

Conversion

Performing a conversion operation in assembly language

that is similar to the Fortran DOIT call, is a two-step proc-|
ess. First, the parameters of the conversion call are placed

in the IORB block with the S.SET macro. Then, either the

S.DOR or S.DAN macro can be used to initiate the single-oper-

ation request. The S.DAN macro has been chosen to be used

for the purpose of illustration. The basic form of the S.SET

macro is shown below,

S.SET IORB,O,device-id,CDAT1,CDAT2,CDAT3

The device-id is IDS21 for an A/D operation and IDS23 for a

D/A operation. The variables CDAT1, CDAT2, and CDAT3 must be

specified as given in Chapter 2. The basic form of the S.DAN

macro to initiate the conversion operation is shown below,

S.DAN IORB,RECW,STACK
JMP ERR2 ;to handle error return
JMP CONT2 ;to continue processing

As with the S.STR macro, program control is returned to the

location immediately following the S.DAN macro on an error

return. The error code is contained in accumulator 2. For

a normal return, program control returns to the location

immediately following the macro plus one. Completion of the

con%\'crs cn oo:t'njJt

88

0

of the variable RECW. When the operation is completed, SAM

places a non-zero value in RECW.

As is the case with Fortran operation, the error return

will not indicate if an external interrupt or a clock overrun/

underrun occurred. Either of these conditions may make the

conversion data invalid. The CDAT1 word can be checked to

determine if either of these conditions occurred. On a normal

return, all of the bits of CDAT1 are zero except bit 1. If

q an external interrupt occurred which caused processing to be

aborted before the conversion operation completed, then bit 0

of CDAT1 will be set to one. If a clock overrun occurred on

an A/D operation or a clock underrun occurred on a D/A opera-

tion, then bit 8 of CDAT1 will be set to one.

Program control can be held up until the conversicn

operation is completed, as is done with the Fortran DOITW

call, by using the .REC macro. The basic setup for the

.REC macro is shown below,

.EXTN .REC

.ZREL
PREC RECW
.NREL
LDA O,PREC
.REC

The address of the RECW word is placed in accumulator 0 and

the macro .REC is called. Program control is then held at

the location of .REC until the conversion operation refer-

enced with the PREC word is completed. The value of the word

at label RECW should be 0 prior to the .REC call.

89

-

p : 'Value = mnemonic Meaning

4200 = DEROO No-.LNK routine in DCB,

invalid DCB. Could be an
invalid (mistyped)
SAMGEN device-id. All
device-ids begin with the
letters ID. followed by S. A.
or 0, followed by two
numbers.

4201 DEROI No DCB identifier in
IORB. invalid DCB. Same
cause as 4200.

4202 = DER02 Not used. This should not
occur.

4205 = DER05 No initialization routine for
a device that needs
initialization. Same cause
as 4200.

4206 = DERO6 Output requested to a
channel for an illegal device
(e.g.. output to an A/D
converter).

4207 = DER07 FORTRAN only. Attempt
to set up a locked IORB
array.

4210 = DERIO FORTRAN unly. Unable
to find free IORB in IORB
array.

4211 = DERI I No DCB exists with
specified device-id. Same
cause as 2179.I

4212 = DER[2 Attempt to use unsupported
feature (e g., mapped call in
unroapped system).

4213 = DER 13 Attempt to return bad
buffer. Will never occur.

4214 = DERI4 Illegal clock setting for an
A/D or D/..\ converter.

Table 5.1 SAM assembly language error codes
(SAM User's Manual, p. 9-4)

9O

Value = mnemonic Meaning

4215 = DER 15 Illegal conversion count
more than 377, or less than
I for an A/D converter
mode A2; DG/DAC only.

4216 DERi6 Attempt to move data
*channel map while IORB is

locked. A task tried to
change the map while a
request was using the
window.

4217 = DER17 Attempt to move data
channel map to an address
outside the window.

4220 = DER20 Illegal conversion count:
less than I or more than the
device allows.

4221 - DER21 Interrupt occurred from
4222 without a strobe or
latch change.

4222 DER22 Attempt to use data
channel map while it is
being initialized or moved.

4223 = DER23 Data channel not
initialized; use an RMAP
call before issuing this
mode A2/AD request.

4224 = DER24 SAM panic code. SAM
could not transmit
(.IXMT) to the calling task
on IORB array completion.
SAM aborts the program

*I unless you set up a fatal
error handling RECeive
task and gave its name to
SAMG EN. as described in
Chapter 5. "Initial Dialog".

4225 - DER25 ISA calls only. External
interrupt occurred on a
stand-alone analog
converter. aborting request.

Table 5.1 continue

91

Chapter 6
Running Application Programs

This chapter describes how to compile and load SAM ap-

plication programs on the Eclipse computer. The RDOS commands

given in this chapter should only be typed when the system R

prompt is given on the screen. The "(CR)" denotes that the

user should depress the carriage return and "program" denotes

the user's program name.

Compiling

Compiling a SAM Fortran V application program is identi-

1.-4cal to compiling the usual Fortran V program. The directory

must contain the necessary files or links to them for Fortran V

compiling. The following command line will compile the appli-

cation program,

FORTRAN program

The following files are required to assemble a SAM

assembly language application program,

MYAC.SV,NBID.SR,OSID.SR,NEID.SR,ARDOS.SR,PARU.SR
and SAMPARS.SR

All of the above files are or should be in the SAM directory.

Links can be made to any of these files that are not contained

in the directory that the user will be working in. The com-

mand line given below will assemble the application program.

MAC NBID/S OSID/S NEID/S ARDOS/S PARU/ST(CR)
SAMPARS/S program(CR)

The symbol "T" is used in the previous command line, since

it is the correct syntax for continuing an RDOS cortimand on

92

the next line. The command, however, can be typed on a single

line if it fits.

To lessen the effort in assembling an application pro-

gram, an indirect file named SAMASSM has been created and

placed in the SAM directory. It contains the parameter files

as typed in the previous command line. Using this indirect

file, the previous command line can be given as shown below,

MAC COSAMASSM@ program

As is the case with all indirect files, SAMASSM can be

linked to the directory that the user will be working in.

However, links to the files contained in an indirect file

must still be made.

Loading

The files given below are required to load the applica-

tion program.

samconfig,SAMF5E.LB,SAME.LB,TFLIB

The file "samconfig" denotes the user's relocatable binary

configuration filename. The other files are or should be in

the SAM directory. Links can be made to any of these files

that are not contained in the directory that the user will be
6

working in. The command line given below will load the appli-

cation program.

RLDR/P 2/K program config samconfig subroutines1(CR)
SAMF5E.LB SAME.LB TFLIB@

In the previous command line, "subroutines" denotes where

any user subroutines should be loaded. The P switch is

93

II

optional. If it is attached, the load addresses for the

various modules in the program are given in octal format.

The 2/K switch is required and creates a second task. The

SAM package is designed for a multitask environment and re-

quires at least one more task than the program uses.

To lessen the effort in loading an application program,

an indirect file named SAMLIB has been created and placed in

the SAM directory. It contains the library and TFLIB files

as typed in the above command line. Using this indirect file,

the previous command line can be given as shown below,

RLDR/P 2/K program samconfig subroutines @SAMLIB@

Every application program will generate an "XN 143RT"

error on the load command. This is because the samconfig

file is requesting software to handle an A/D/A device other

than the model 4331. Since the device that the samconfig

file is requesting information for is not in the system and

will not be called upon, this error message can be ignored.

This is the only error message from the load command that

can be ignored.

,j4

Appendix A

This program will collect and then output 5120 data
samples using the Eclipse A/D/A device, It is
similiar in operation to the sample Fortran A/D/A
programt except that the user cannot initiate
both conversion operations, The user can only
initiate the A/D operation by turning the external
clock on when it is desired to begin collecting
data. The CDATI variable for both, the A/D
and D/A operation, has been set for external
clock and channel 0.

.ENT IBUFF
#ENT IBUFO
,EXTH ,REC
.ZREL

PBEG: BEG ;addresses
PBYE: BYE
PADO: ADO
PDAO: DAO
PERI: ER1
PER2: ER2

hPER3: ER3
PIDUF: IBUFF
PIBUOz IBUFO
PREC: RECU
RECM: 0
CDAT2: 12000 ;conversion count
ZERO: 0
#ER: ERROR ;jump locations
,BNOC: BHOC
*If"'R% CHAR

oNULH; HULN
.HSSG: HSSG

,NREL

Hain program

START: LDA OPBEC ;send startup message to screen
JSR 8.HSSG
JSR MNULN

SSTR STACK ;initialize the device

JHP ERRI ;error return will have error code in AC2.

S.SET IORB,01IDS21t60000tCDAT2pIBUFF ;setup the A/

LDA 01PADO ;send A/D message to screen
JSR @,MSSG
JSR @,IWLH

S.DAN IORDRECUSTACI ;initiate the A/D

mJP ERR2 ;error return oill have error code in AC2.

95
h

LDA OPREC ;uait for the A/D to

*REC ;completes

im +4P ;load the sampled data into
ADDRI% 0 ;the 9/A data array
ADDR2: 0
COUN; 0,IU

LDA 0,PIBUU
STA 0,ADDRI
LDA 3,CDAT2
STA 3OUNDR
LDA 3,CDATDR
STA 3,8ADDR
ISZ 30ADDRI

qISZ ADDR2
DSZ COUN
imp 5

LDA 0,ZERO ;zero the status word
STA 0,RECW

S.SET IORI,0,19S23,64000,CDAT2,IBUFO ;setup the D/A

LDA 0,PDAD ;send 9/A message to screen
JSR IIMSSG
JSR I.NULH

S.DAN IDRBtRECISTAC(;initiate the 0/A
Jmp ERR3

LDA 01PREC ;wait for the 9/A to
*REC ;complIete

LDA 0,PDYE ;send exit message to screen
JSR @"S

ERRi: LDA 0,PER1 ;send error message to screen*
Jimp NUMB

ERR2% LDA OPER2
imp NUMB

4ERR3i LDA OPER3
NUMB: JSR IIMSSG

Nov 2,0 ;get error code from AC2
JSR IIRNOC

DONE: JSR NWLN
4 *SYSTH

RTN
Jimp OoER

96

I

The H4LH routine places the cursor at the a+qinninq of
the next line.

N NULH; JMP . 4

STORI; 0
CR. 15
ML-. 12

STA 31STORI
LDA OICR
JSR @,CHAR
LDA ONL
JSR @,CHAR
JP @STORI

The CHAR routine sends an ASCII character that
has been placed in ACO to the screen. The
contents of AC3 are destroyed,

CHAR- JmP ,+2
STOR2: 0

STA 3tSTOR2
.SYSTM
,PCHAR
JNP @.ER
JP @STOR2

The flSSG routine sends a message that has been
created with the .TXT pseudo-op to the screen.
The label for the message must be placed in
ACO.

"SSG: JiP #+4
STOR3a 0
STOR4: 0
WORD1: 177

STA 31STOR3
STA OSTOR4
LDA OSSTOR4
LDA 3,WORDI
AND Ot3,SR
JP .+12
JSR @.CHAR
LDA OVSTOR4

4 NOYS 010
LDA 31WORD1
AND 03tSNR
JP .+4
JSR @.CHAR
JSZ STOR4
JNP "SSG+6
JP @STOR3

The BNOC routine will convert a 16-bit binary integer

97

plIaced in ACO to ASCII character string for output.
The ASCII string is output in reversed order,

(SOC: imp #7
STOR5z 0
STDR6z 0
SIX: 6
COUNT% 0
WORD2: 7
WORD3% 60

STA 3,STOR5
STA 0,STOR6
LDA 0,SIX
STA 01COUN
LDA 0,UORD2
LDA 3,STIIR6
AND 3,0
LDA 3pWORD3
ADD 3,0
JSR @,CHAR
LDA 0,STOR6
N OVZR 0,0
NOVZR 0,0
NDVZR 0,0
STA 0,STUR6
DSZ COUN
imp Dt4OC+13

Storage space

ERi:. MyX *S.STR ERROR *
ER2: .TXT IS.DOR ERROR (A/D):
ER3% .TXT *S.DOR error (D/A)tI
DEC: .TXT *Hello*
DYE- . TXT *Good Byel
ADO: .TXT * - A/D -

1 4DA D. TXT * -- /A - I

IORD: BDLK 10
STACK: BDLI 40
IDUFF: .DLX 12000
IBUFO: .DLl 12000

4 1Error return

ERROR: *SYSTM
#ERTN
imp @,ER

4 END START

98

Appendix B

Extended Memory

(Data Collection Measurements

99

Eclipse A/D/A Device
Extended Memory Data

Collection Measurements

BackQround

There is a limit on the number of data samples that

the Eclipse A/D/A device can collect on a single A/D call.

This limit is due to the size of the A/D data buffer. Sam-

ples are lost during the time it takes to remove data from

this buffer and issue another conversion call. The fastest

method of moving data on the Eclipse is with the extended

memory feature. With this feature data is not physically

moved, address registers are simply changed. Program SPEECH
'I

will be used to collect data in long mode operation and the

remap intervals will be noted.

Purpose

The purpose of this test is to determine the number of

sample points lost between remap operations. The affect of

activity on the opposite ground will also be noted.

Pretest

Since a linear test signal will allow the delta voltage

between samples to be easily seen, a triangle wave will be

Oused as the test signal.

To best illustrate the time lost during a remap opera-

tion, the sampling rate will be set near maximum. From the

Technical Reference of Analog Data Subsystems, Models 4330-4333,

p. 7, the maximum A/D conversion rate is given as 22KHz (45.4

Microsoc). The test -iInal T.'i i , V T'' , : Y': .

100

I

microsec).

A plot routine will be used that can plot a maximum of

512 points. The signal frequency will be set at a rate which

will collect 512 samples on a single peak-to-peak swing, that

is, one-half of a period. The test signal period to allow

this can be calculated as follows,

47.6 microsec/pts * 1024 pts = 48.76 msec (20.51Hz)

The test signal frequency will be set to 20Hz, which will

closely satisfy the above condition and certainly satisfy

the Nyquist sampling condition.

The test signal and clock signal to be used are shown

below,

5

x(t)
(volts)

- - t (msec)

50

-5

V

test signal

5

x(t)
(volts) IL"ii

t (microsec)47.6

clock sicnl .1

101

An oscilloscope will be used to view both signals with

the settings as below,

distance scale value

clock: 4.76 cm * 10 microsec/cm = 47.6 microsec (21KHz)

signal: 5.0 cm * 10 msec/cm = 50.0 msec (20Hz)

A frequency counter will be used to verify the above frequen-

cies.

T~t Equipment

PME I.D. Date of Date of
Number Cal. Recal.

Oscilloscope, 49100/ 27 Jul 82 14 Nov 82
. Ballantine 4H5627

Frequency 49100/ 28 Jul 82 25 Nov 82
Counter, 4H6122
HP 5326A
Counter-Timer

External 49100/ 22 Mar 82 22 Mar 83
Clock, 4H6222
Wavetek
Generator

Test 49100/ 19 Nov 81 19 Nov 82
Signal, 4H6008
Wavetek
Generator

Test Comments and Results

1. Test equipment settings were set as described in Pre-

test and frequency settings were verified with a fre-

* quency counter.

2. Program SPEECH was executed on the background in long

mode operation and three data files were collected

* under the following conditions,

102

DATA1: foreground inactive (CTRL-F)
DATA2: foreground active and idle
DATA3: foreground active and compiling a program

3. The three data files were changed from two's complement

data to real number data with program CNVRT. The new data

files were named as follows,

TESTDATA1: DATAl converted
TESTDATA2: DATA2 converted
TESTDATA3: DATA3 converted

4. Program PLOT was used to view the remap regions in the

q TESTDATAx files.

5. The frequency of the external clock generator was slightly

readjusted between test runs one and two.

Conducted by: Lt Allen

Date: 11 Oct 82

103

Appendix C

Source Code
for

A/D/A Operations Software

ILI

104

4

C Title: Speech
U Authort Lt Allen
C Date: Dec 82

C Function:
C This is the central program of a six-program package that utilizes
C the Eclipse A/D/A device to work with speech data files. This is
C an interactive software package that allows the user to collect)
C edit, and play back speech data files,

C Environment:
C This is a Fortran V program that has been desiqined to run
C on a lapped-RDOS Eclipse S/250 minicomputer-equipped with a
C model 4331 single board converter,

C Compile command;
C FORTRAN SPEECH

C Load command:
C RLDR/P SPEECH NEWSCR IFLIBI

C Comments:
C Refer to lines 30 and 47 of the program text for information

C explaining the operation of this package.

C The term "block" is used throughout the program text to refer
C to a disk block (a disk block contains 256 bytes),

INTEGER OPTIONtMENU21MENU31MENU4,IIEMU5

INTEGER WORX(15872)
INTEGER EDBUFtDTBUFtEtPTYFULL
INTEGER FILEHA (7),STATUS(18)
INTEGER NUMBLKFIRBLXSTBLXKBLKLEFTREADBLXDBLXSFBLKSUBLXS
INTEGER MODESHORTLONG

r4 DATA EDBUFDTBUFEMPTYFULLSHORTLOHG / 3*0,2*112 /
DATA WORK / 15872*0 /

CALL NEWSCR ;erase the screen
C
C Erase files that may have been left from a previous abort.
C

CALL DFILW("DIGI.DT",IER)
CALL DFILW("DIGI.ED",IER)
CALL DFILW("DIGI.OU",IER)
CALL CFILW("DIGI.DT"j2,IER)
CALL CFILM("DIGI.ED",2,IER)
CALL CFILU("DIIOU"12,!E)

30 TYPE "(CR)

105

*If this program fails to operate properly, consult the(CR)
*laboratory software documentation manual for a complete(CR)
*description of hardware setup and verify all connections.(CR)
'(CR)
*This program maintains two independent buffers, called data(CR)
land e dit, to hold conversion data.(CR)
"(CR)
*Conversion data can be placed in the data buffer through an(CR)
IA/D operation or by a series of read operations from disX(AR)
*files. The data buffer can then be copied into the edit buffer(CR)
*for editing. Editing operations do not affect the data buffer,(CR)
'(CR)
#To select menu options in this program, type only the number(CR)
*corresponding to the option and carriage return.(CR)
*(CR)
#Press carriage retur, to begin."
ACCEPT
CALL NEWSCR

C
C The variable MODE is used to determine which program oil be called
C to input or output the data buffer,
C
45 ACCEPT "(CR)

Please select which mode will be used or a description of(CR)
*both modes,(CR)
I 1: short mode(CR)
' 2: long mode(CR)
§ 3: description(CR)
*selection:" ,ODE

CALL NEWSCR
IF (MODE#EQ,SHORT #OR. ODE#.EQ.LONG) GO TO 49
IF (MODEEQ,3) GO TO 47
URITE(1O,1)
GO TO 45

C

C This message can be requested by the user to explain the difference
C between short mode and long mode operation.
C
47 TYPE "(CR)

6 *Acording to the length of the data file, this program(CR)
*operates in one of two modes- short mode or long mode,(CR)
*(CR)
*Short mode operation allows 15,872 samples (1.98 sec at 8 KHz(Ck)
*sampling) to be collected and played back without interruption,(CW)

* *The directory should have 175 disk blocks available for(CR)
*execution in this mode,(CR)
*(CR)
*Long mode operation allows 51,200 samples (6.40 sec at 8 KHz(CR)
*sampling) to be collected and played bacK, but with short(CR)
'interrupts every 10,240 samples. For minimum interrupt time,(CR)

* *it should be operated on the background terminal with the(CR)
*foreground tervinal brouqht down. Long mode operation r2nuire(CR)
*40 kW of extendeu memory and Ias I cnoer processi ng co- aysEi)
'than short mode. The directory should have 450 disk blocks(CR)

106

I

4

*available for execution in this mode,(CR)
#(CR)
*Press carriage return to continue."
ACCEPT
CALL NENSCR
GO TO 45

C
C The variable MODE is communicated to the editor program through
C file DIGI.OU, This allows the editor program to determine which
C program to call to output the edit buffer,
C
49 CALL FOPEN(1l"lIGI.OU")

CALL WRSEQ(1,MODE,2,IER)
CALL FCLOSE(1)

C
C This is the central program's main menu.
C
50 ACCEPT "(CR)

Please select which operation will be performed,(CR)
e 1: AID conversion into data buffer(CR)
' 2: D/A conversion out of data buffer(CR)
e 3: editing(CR)
' 4: read from file to data buffer(CR)
* 5: write data buffer to file(CR)
* 6: copy data buffer to edit buffer(CR)
e 7z exit(CR)

eselection:",OPTION

CALL NEUSCR
IF (OPTION.EQ.1) CO TO 100
IF (OPTION.EQ,2) GO TO 200
IF (OPTION.EQ.3) GO TO 205
IF (OPTIONEQ.4) GO TO 400
IF (OPTION.EO.5) GO TO 700
IF (OPTION.EQ,6) GO TO 600
IF (OPTION.EG.7) GO TO 1000
WRITE(101)

1 FORMAT("(CR)(7)(CR)(7)(QR)(7)
ePlease select options from the list only.")
GO TO 50

C
C This section of code fills the data buffer with an AID conversion
C- operation,
C
100 DTBUF:FULL ;this operation will put data in the data buffer

TYPE "(CR)
* --) entering A/D mode (--"
IF (MODEkQ.SHORT) CALL SWAHi"SMALLINSV",IER)

107

IF (MODE.EO.LONG) CALL SWAP("VIGIKSV",IER)
IF (IER,NEI) TYPE "SWAP error ",IEX," with A/D file"
GO TO 50

C
C This section of code outputs the data buffer with a D/A conversion
C operation,
C
200 IF (DTBUF*EO.ENPTY) CO TO 251

TYPE "(CR)
I --) entering D/A mode (--"

CALL DFILU("DIGIFG",IER)
IF (HODE,EO,SHORT) CALL SWAP("SMALLOUT.SV",IER)
IF (HODE,EO.LOHG) CALL SWAP("BIGOUT.SV",IER)
IF (IERNE,1) TYPE "SWAP error ",IEK," with l/A file"
GO TO 50

C
C This section of code calls the editor program.
C
205 IF (EDDUFEO,ENPTY) GO TO 250

TYPE "(CR)
--) entering edit mode (--"

CALL SWAP("EDITOR.SV--,IER)
IF (IER.NE.1) TYPE "SWAP error ",IER," with editor file"
GO TO 50

C
C One of the following messages is sent to the screen if the user
C attempts a buffer operation when the buffer is empty.
C

* 250 TYPE "(CR)(7)(7)(7)
*The edit buffer is currently empty."
GO TO 50

251 TYPE "(CR)(7)(7)(7)
*The data buffer is currently empty."

SGO TO 50

C
C This section of code allows the user to fill the data buffer through

* C a series of read operations from disk files.

400 ACCEPT "(CR)(7)(7)(7)
*The current data buffer is erased(CR)

108

*prior to reading from disko(CR)
*(CR)
*Do you want to,(CR)

* 1% continuelCR)
I 2: return to the main aenu(CR)

*selection"IiEI4U5

IF (MENU5.EO.1) GO TO 401
IF (MENU5,EG#2) GO TO 50

GO TO 400

401 IF (MODE.EG.SHORT) TYPE "(CR)
*The data buffer can hold up to 62 disk blocks,"
IF (HODE.EGLOHG) TYPE **(CR)

*The data buffer can hold up to 200 disk blocks,{CR)
*and are output in 40 block multiples."

C
C The variable STYL(maintains the starting block position for each
C write operation into the data buffer, The variable BLXLEFT maintains
E the number of available blocks left in the data buffer that can
C receive data.H C

STDLX:0 ;initialize data buffer
IF (MODE#ED.SHORT) BLXLEFT=62 ;write parameters
IF (HODE*EQ.LOl4G) BLKLEFT=200

CALL DFILW("DICI.DT->IER) ;erase the current data buffer to
CALL CFILW("l)IGI.DT",t2,IER) ;ready for new data
DTBUF EMPTY

403 ACCEPT "(CR)
*Enter the filename for readingt"

2 FORMAT (S13)

CALL STAT(FILENAMSTATUSIER)
IF (IER.EQ.13) GO TO 420
If (IEI(.HE.1) TYPE "bTAT error ",IUR," with your file"
FBLIS:STATUS(9) ;FBLXS is the number of full
IF (STATUS(10).EO#512) FBLXS=FBLRS+l ;disk blocks in the user file
IF (FBLXS.LTl) GO TO 425

405 WRlTE(10)5) VILLE4AM(1),FBLKSFVLKS
5 FORMAT("(CR)

*File ",S13," contains ",13," disk blocks, numbered 1 - "t3)

ACCEPT "(CR)
'Please specify the blocks to be read in,(CR)
*first block-. ",FIRBLK
IF (FIRBLK.LTol oOR, FtRBLK9GT.PlBLKS) GO TO 435
ACCEPT"

*last block: ,NmflBLK
IF (l)4ULK.T.FBLKS eOR* HNUlL1.LT.FIRBLX) GO TO 435

109)

DLKLEFT:BLKLEFT- ((NUMBLK-PIRBLK)+1)
IF (BLKLEFT.LT,0) GO TO 430
FIRBLK:FIRBLX-l

CALL OPEN(1,FILENAN,1,IER)
IF (IER.NE.1) TYPE "OPEN error ",IER," with your file"
CALL OPEN(21--DIGIM-- t" 0IER)
IF (IER.NE.1) TYPE "OPEN error ",IER," with the data buffer"

SIBLX:YBX IRL
415 READBLK:IJIBLK

IF (READBLI.GT,62) READE4LXt62
NUMBLK:NUM'BLK-READBLK

CALL RDBLK(1 FIRIBLK ,ORK ,READI IER)
IF (IER.HE.1) TYPE "RDBLX error ",IER," with your file"
CALL WRBLK(2,STI4LKWORKREADBLXIEx)
IF (lER,14E.1) TYPE "U)RBLX error , IER," with data buffer"
FIRlBLl(:IREBLK+READBLK

* STBLI(:STBLKREADBL(
IF (NUMiRLK.NE,0) GO TO 415

CALL RESET
DTBUF!FULL ithe data buffer contains data
IF (BULLEMTEQ.0) GO TO 50 ;returni to the main menu

416 WRITE(10,3) BLKLEFT
3 FORMAT("(CR)

The data buffer can hold "113t" additional disk blocks")
ACCEPT "(CR)

*Do you want to read from file into these blocks,(CR)
* 1i yes(CR)
£2: no(CR)

*selection:" ,MENU4
IF (IENU4,EO.1) GO TO 403
IF (MENU4.EO,2) G0 TO 50
URITE(1O,1)
GOTO416

420 TYPE "(CR>(7)(7>(7)
*This file does not exist in the current directory."
GO TO 450

425 TYPE "(CR)(7)(7)(7)
*This file is less than one disk block."
GO TO 450

430 BLKLEFT:BLKLEFT+((HUMBLK-l'IRBLK)+1)

4 WRITE(10,7) BLKLEFT
7 FORMAT("(CR)(7)(1)(7)

*only hold ",13,' disk blocks. Please try again.")
GO TO 405

110

435 TYPE "(CR)(7)(7)(7)
IYou cannot make that block(CR)

I *selection# Please try again."
GO TO 405

450 ACCEPT
*Do you want to,(CR)

t* 1 try another file(CR)
* 2: return to the main menu(CR)
*selection:"pMENU2

IF (MENU2.EQI) GO TO 403
IF (MENU2.EQ.2) GO TO 50
WRITE (10,1)

qGO TO 450

C
C This section of code allows the user to write the data buffer
C to a disk file at a specified beginning block number,
C
700 I'(DTBUF,EQoEMPTY) GO TO 251!I

CALL STAT("DIGI.DT"ISTATUSIER)
- DBLXS:STATUS(9)+t ;DBLKS it the number of data buffer disk blocks

WRITE(10,13) DBLUSDLIS
13 FORMAT((CR)

*The data buffer contains "131" diskblks numbered 1
TYPE " I
*It can be written to specified blocks of an existing file,(CR)
*or to a new file,"

705 ACCEPT "(CR)
*Enter the filename for writing:"

r READ(ilI11) FILENAM(1

" 11 FORMAT(S13)

MEHU3:0
CALL STAT(FILENAMSTATUSpIER)
IF (IER.EO.13) GO TO 710 ;if the file does not exist, create it
IF (IERHEI) TYPE "STAT error ",IERt" with your file"

4
FBLKS:STATUS(9l ;FBLIS is the number of full
IF (STATUS(10).EQ.512) FBLKS:FLKS+i ;disk blocks in the user file

GO TO 720

4 710 CALL CFILW(FILENAl,2,IER) ;create the user file as a random file

IF (IER.NE.1) TYPE 'CFIl*4 error ",IEK," with your file"

715 CALL OPEN(It"DIGI.)T",1jIER)

I

IF (IER,NEI) TYPE "OPEN error ",IER," with the data buffer"
CALL OPEN(2tFILENAM,3,IER)
IF (IER.HE,) TYPE "OPEN error "IIER," with your file"

STBLX:O
FIRBLK:O
UBLKS:DBLKS
IF (MENU3,EOO *OR. IENU3,EO,1) GO TO 717

716 IF (FBLKS,HEO) WRITE(10)15) HLENAM1),FLS
15 FORMAT("(CR)

*File ",S13," contains "pl3t" disk blocks.")
IF (FBLKS.EQ.O) WRITE(10j16) FILENAM(l)

16 FORMAT("(CR)
*File ",S13," is empty, it contains zero disk blocks.")

q TYPE "
IDisk blocks are numbered beginninq with one,"
ACCEPT "(CR)

MPlease specify the starting block for the data buffer(CR)
*to be written:",FIRBL
FIRBLK:FIRBLX-1
IF (FIRBLKGEO .AND. FIRBLK.LB.FBLKS) GO TO 717

TYPE "(CRUM)MM(7

*You cannot make that block(CR)
*selection, Please try aqain#"

9,' GO TO 716

717 NUMBLX:UBLIS
IF (NUBLK.GT.62) NUMBLX=62
UBLKS BL1KS - HU BLX

CALL RDBLX(1STBLXUORKXHUMlLXIER)
IF (IERHE.1) TYPE "RDBLK error "tIERt" with the data buffer"
CALL WRBLK(2,FIRBLKpWURXpWUMBLKXIR)
IF (IERNE.1) TYPE "WRBL error ",IER," with your file"
STBLX=STBLX+NUMBLK
FIRBLX:FIRBLX+NUMBLK
IF (WBLKS°NEO) GO TO 717

CALL RESET
WRITE(10,12) FILENAM(1)

12 FORMAT("(CR)
*The data buffer has been written to file ",S13)
GO TO 50

720 WRITE(1014) FBLKS
14 FORMAT("(CR)

*This file already exists in the current directory.(CR)
*It contains "1I3f'" disk blocks,")
ACCEPT "(CR)

*Do you want to,(CR)
1 1: delete the current file(CR)
2: overwrite specified blocKs of the current fiie(CR)
3; select a different file(CR)

112

I 4: return to the wain menu(CR)
*sel1e c tion:" ,MENU 3
CALL NEUSCR

IF~ (HENU3,EQ.1) CO TO 730
IF (fENU3.EO2) GO TO 715
IF (MENU3.EG.3) GO TO 705
IF (IENU3.E.4) GO TO 50
URITE(1O,1)
GO TO 720

730 CALL DFILW(FILENAKIER)
IF (IERNE.1) TYPE "DF1LW error ",IER," with your file"
GO TO 710

C
C This section of code copies the data buffer to the edit buffer#

600 IF (DTBUF*EO.EnPTY) GO TO 251

CALL STAT(*'DIGI.DT-tSTATUSIER)
BLKSzSTATUS(9)*1

CALL FOPEN(1,"DIGI.DT")
~: "CALL FOPEN(2t,"DIGI.ED)

FIRDLK:0
605 NUI BLI(:BLKS

IF (NUl BLK,GT,62) NUMBLK:62
BLKS:BLKS-NUMB LK

CALL RDBLK(1,F1RBLKWORtNUMi'LK,1ER)
CALL IRBLK(2,FIR8LKUORKNUflbLXIER)
FIRbLK:FIkBLK.NUlML
IF (BLXS*lIE,0) GO TO 605

CALL FCLOSEM1
CALL FCLOSE(2)

EDBUF:FULL ;the edit buffer contains data

4 TYPE "(CR)
*The data buffer has been copied to the edit buffer,"
GO TO 50

1000 CALL DFILW("DIGI.DT",IEk)
CALL DFPILW("DJGI.EDU",IER)
CALL DFILW("DIGI.OUtIER)
CALL EXIT

113

END

114

I

CmwuIIi*tiNlliltw*tt**I***UIIU*UIthiWuiulm~til*,iiiEiiN~iul,,iiitm§

C Title: Editor
C Author: Lt Allen
C Date: Dec 82

C Function:
C This program handles the editing operations in the SPEECH package#
C The SPEECH pacKage is a sii-program package that utilizes the
C Eclipse A/D/A device to work with speech data files. This program
C is not a stand-alone program. It's operation depends upon parameter
C files created by other programs# To understand the operation of

C this programt program SPEECH, which is the central program of the
C package, should be cunsulted first,

q C Compile commandt
C FORTRAN EDITOR

C Load command%
C RLDR/P EDITOR NEWSCR @FLIV1

C Comments:
C The save file (,SV) of the following programs are required in
C the user's directory to operate this package,

C .SPEECHEDITORISRALLINISRALLOUTBIGINtBIGOUT

INTEGER STATUS(18)EBLKSFIRSTLASTIHFC(2)
INTEGER HBLKSBBLXS(1O),CLIPS(2OO),SAfPS(20020),STARTIFIN
INTEGER IMINIMAXpLENIMORLDFLAG
INTEGER IOTtITOPIOPLINITNURBLKFIRBLK
INTEGER FILERAlI(7),IBAA3(lO240)fLlS
INTEGER STBLKREADBLKIMODESHORTLONGRENUIMENU2

REAL RRAXS(200) ,RMINS(200) RNUMITOPDOTRfAXRNINNAG(IO)
REAL INCR(20),TINCRIPOINTSICLIP

DATA SHORTLONG / 1,2 /

IDATAI:64000K
CALL HEWSCR

C
C Retrieve variable MODE to determine which program to call to output
C the edit buffer,
C

CALL FOPEN(1,"DICI.OU")
CALL RDSEQIIODDE2,1ER)
CALL FCLOSE(1)

100 TYPE "(CR)

115

I --) the program is in edit made (--"
CALL STAT("DIGI.ED",STATUSIER) ;get the edit buffer's size
EBLKS:STATUS(9)+1 ;this is the number of blocks

;in the edit buffer

C The variables NUMBLI and FIRLX are used to represent the number of
C blocks and the first block, respectively, that will be involved in
C an edit buffer D/A operation,
C

NUNBLK:EBLkS ;set the D/A parameters to output
FIRBLKzO ;the entire edit buffer

BFLAG:0 ;this flag is set to one when the histogram
;parameters have been collected

C
C This is the editing program's main menu,
C
105 ACCEPT "(CR)

IPlease select which operation will be performed,(CR)
I : D/A conversion of edit buffer(CR)

I 2: voltage histogram(CR)
. 3z block histogram(CR)
* 4: write edit buffer to file(CR)
I 5: return to main menu(CR)
*selection:",?EHUI
CALL NEWSCR

Q€ IF (NENUIEO.i) GO TO 500
IF (MENU1.EQ.2 .OR. MENU1.EG.3) GO TO 200
IF (NENU1,EQ.4) GO TO 700
IF (KENUI.E0.5) GO TO 1000
VRITE(101)

I FORMAT("(CR)(7)(CR)(7)(CR)(7)
MPlease select only from options given.")
GO TO 105

C
* C This section of code collects the histogram parameters. It is executed

C only once each time the editing program is called.
C
200 IF (EBLKS.EQ.O) GO TO 250

* . IF (8FLAG.EO,1) GO TO 220

0• TYPE "(CR)
* --) histogram parameters being collected (--"

DO 203 I=1ELKS
CLIPS(I):0
RlAXS(1):-5,
RMINS(I):5,
DO 203 JaI,20
SA"PS(IJ):0

116

203 CONTINUE

NUMDLK:EBLXS
Jal
FIRBLKzO
LIMIT:0
CALL FOPEN(1,"DIGI.E)")

204 kEADBLKHUABL(
IF (READBLX.GT,40) READBLK=40
NUMB~LX:NUMBLK-READBL(
CALL RDBL1K(lFIRBLX,1DATA3,READBLK,1ER)
IF (IERNE,1) TYPE "RDBLK error ",IER," with edit buffer"

LINITzLINIT*READBLK
FlRBLKzFIRBLK+READBLKU START:1
FIN: 256

205 DO 210 I:STARTFIN
RNUN:=FLOAT(IDAA3I))/32768,*5,
IF (NNUM.EQ,5. *OR. RHUM.EG.-5.) CLII'S(J)zCLIPS(J)+1

* IF (RNUt ,GT.RMAXS(J)) RIIAXS(J)=RNUMi
IF (RtUK*LT.RPIINS(J)) RI INS(J)=RHU
TOP:5.0
807=4.5
DO 210 Izi 20
IF (RNUN.LE.OP *AND, RHUM.GE.BOT) SAMPS(JX):SAMPS(Jlk),I

BOT:BOT- .5
210 CONTINUE

J=J,1
START: START +256
FINzFIN+256
IF (JLE,LIMiIT) GO TO 205
IF (NUMBLKNE,0) GO TO 204
VFLAG: 1
CALL FCLOSE(1
GO TO 220

C
C This message is sent to the screen if the user attempts a buffer
C operation when the buffer is empty,

250 TYPE "(CR)(7)(7)(7)
*The edit buffer is currently empty,"
GO TO 105

C
C This section of code requests frow t~e user NhI~h blocks of the
C edit buffer will be in the histogram.

117

4

C
219 WRITE(I011)

220 RITEIO13) EBLXSIEBLIS
3 FORMAT ("(CR)

*The edit buffer contains ",131" disk blocks, numbered 1 - "p13)
TYPE "

'Please specify which blocks uill be in the histogram"

ACCEPT "(CR)
*first block. ")FIRSTIF (FIRST.LT.I) GO TO 219

ACCEPT "
'last block. ",LAST
IF (LAST.GT.EBLKS .OR. FIRST.CT.LAST) GO TO 219

HBLKS:(LAST-FIRST)+ ;this is the number of blocks in the histogram

NUNBLX:HBLKS ;set the D/A parameters to only output
FIRBLKz:FIRST-1 ;the histogram blocks

POINTS:HBLKS*256. ;this is the number of samples in the
-. ;histogram blocks

IF (MENU1.EQ.3) GO TO 350 ;to give the block histogram
;else give the voltage histogram

C This section of code prepares and displays the voltage histogram. It
C scans the parameter variables for the histogram blocks,

TYPE "(CN)
I --) voltage histogram being prepared (--"

DO 301 1:120
INCR(1):0.

301 CONTINUE
CLIP:0.
RMAX:-5,
RNIN:5.

DO 302 I:FIRSTILAST
CLIP:CLIP+CLIPS(I)
IF (RMAXS(1).GT.RMAX) RlAX:RMAXStl)
IF (RHINS(I).LT.RMIN) RlLH:RlIHS(I)
DO 302 J:p20
IHCR(J)=INCR(J)+SAflPS(IJ)

302 CONTINUE
IMAXzINT(RMAX/5.32768,)
IMIN:INT(RKIlN/5,.32768,)

325 TYPE

I ip1

*Voltage Histogram"
WRITE(104) FIRSTLASTPOINTSCLIP

4 FORMAT ("
*blocks:"p13p"-"tI3p" total samples: "F6,0)" total clips: "IF6.0)
WRITE(105) RMAXIMAXRMINIMIN

5 FORMAT ("
*max voltage: ",F7,4"(",I6,")(CR)
*min voltage. "jF7,4;"(..I6j)")
TYPE "(CR)

p Voltage Positive Negative Total(CR)
M Bagnitude Samples Samples Samples(CR)"

TOP:5,0
1VOTz4,5
J:20
DO 303 1:1,10
TINCR:INCR(J)+INCR(I)
WRITE(10,6) TOPIDOTINCR(I),INCR(J)ITINCR

6 FORMAT ("
* ",F3.11"-",J3.1t." .6.01" ",F6.0," "F6.0)

'4 TOP:TOP- .5

BOT:DOT-#5
JZJ-1

303 CONTINUE

GO TO 400

C
C This section of code prepares and displays the block histogram. It
C scans the parameter variables for the edit buffer data blocks to
C be included in the histogram,
C
350 TYPE "(CR)

* --) block histogram being prepared (--"

DO 351 1=1110
MAG(I)z-5.
INCR(I):0,

351 CONTINUE

CLIP:0,
RMAX:-.5
lRNIl:5,

LEN:INT(HBLKS/10.)
MORE:10-(HBLKS-(LEN*10))

DO 352 1:1,10
IF (LENNE.O) BBLKS(I):LEN
IF (LEN.EO,0) BBLlS(I)z1

IF (HGT.rii:E ,PD, LE M, 1
,0) 1.YS(1).. .

IF (LEH,EQ.0 AtD, I.GTHbLK5) bbLA5(1J:0
352 CONTINUE

119
I(

Jai
START:FIRST

354 FINaSTART+BBLXS(J)-i
DO 353 IzSTARTIFIN
CLIP:CLIP*CLIPS(I)
INCR(J):INCR(J)i-CLIPS Li)
IF (WhAXS(I).GT*RHAX) RHAX:RMAXS(I)
IF (RHINS(1),LT.RIIN) RIIIN=RPIINS(l)
IF (RHAXS(I).GEflAG(J)) IAG(J)=RhAXS(I)
IF (ABS(RMiINStI)),GE.I AG(J)) fAG(J):ABS(RflINS(I))

353 CONTINUE
J:J~j
START: F IN+ 1

q IF (BDLKS(J),NH.0 .AND, J*LE,10) GO TO 354

INAX:INT(RNAX/5.*32768,)
INIH:IHT(RHIN/5.*32768,)

365 TYPE
*Bliock Histogram"
WRITE(10,4) FIRSTLASTPOINTSICLIP
WRITE(10,8) RHAXIIHAXRflINIfIN

a FORMAT("
*~max vol tage: - ,F7q4,"("16,")(CR)

U~3l TYPE *(CR)
B lock Total MaxPCR)

I Number Clips Ragnitude(CR)"

1--0
ITOPzFIRST

360 1:1+1
IBOT=ITJP+BBLKS(1)-i
IF (BBL)IS(I).EQO) TYPE
IF (BBLXS(I).EO.1) WRITE(10,9) ITOPtINCR(I),NAG(I)

9 FORMAT(

" 1,131" J,6.01" ",lJ7.4)
4 IF (BBLIS(I).QT.1) WRITE(10,10) ITOPIBOTINCR(I),l AG(l)

10 FORMAT("

ITOPclDOT+1
IF (,LI..1) GO TO 360

4 GO0TO400

C
C This is the editing program's histogram menu#

4 400 ACCEPT "(CR)
W~ease select shicth opieration uxfl be perfurmed,(C2R)
1: b/A conversion of histogram blocKs(CIO
§ 2: delete histogram blocks from edit buffer(LR)

4I

e 3t return to the editing menu(CR)
*selection:"pENU2
CALL N£ESCR

IF (tN£U2.eQ.1) GO TO 500
IF (IENU2.EO.2) GO TO 600
IF (MENU2.EQ.3) GO TO 650

* IRITE(10t1)
GO TO 400

CuhuuuuUM IMI*U**W~muu,MmuuI*I uuE**uuu*~uuwuuI~mtmmi~mj~mNM uueuuuuuu

500 IF (EBLKS.EO*0) CO TO 250

q TYPE "(CR)
-- entering D/A mode (--"

C
C Create a flag file which will indicate to the D/A program to output

C the edit buffer instead of the data buffer, The parameters are
C written to the flag file specifying the section of edit buffer to

C output.
C

INFO(I):FIRBLK
IHFO(2):NUMbLK
CALL DPILW("ICI.G"IIER) ;delete possible flag file left from

;a previous abort

CALL CFiLW("DIGI.FG"2,LER)
CALL FOPEN(I"DICI.FC")
CALL WRSEQ(1,INFO,4,IER)
CALL FCLOSE(l)

IF (NODE.EQ.SHORT) CALL SVAP("SMALLOUT.S4",IER)
IF (IODE.EQ.LONC) CALL SWAP("1GOUT.SV" ,IER)
JI (IER.NE.1) TYPE "SWAP error ",IMR

CALL DFILW("DiGI.FG" ,IER)
IV (MEHUI.EQ.) GO TO 105 ;to the editing menu
IF (MENUI.EQ,2) GO TO 325 ;to the volt hist menu
IF (MENUI.EQ.3) GO TO 365 ;to the block hist menu

C
C This section of code deletes the histogram blocks by overwriting these
C blocks in the edit buffer with the data immediately following the
C histogram blocks. The histogram parameter arrays are similarily
C updated.
C
600 CALL FOPEN(I,"DIGI.ED")

NUI BLX:EBLXS-LAST

STDL-LAST-1
605 READBLX:NUMBLX

IF (READBLK.GT.40) READBLK:40

121

NUMBDLI NUMBL - READBLI

606 CALL RDBLK(1,ST)ULKIDATA3,READBLX,1ER)

IF (IER.NE,1) TYPE "RDBLK error "IIER," with edit buffer"
CALL WRBLX(lFIRBLKIDATA3,READBLKIER)
IF (IERNE.1) TYPE "WR1BLK error ",IER," with edit buffer"
STBLX:STBLK+READBLK
FIRBLK:FIR8LK+READBL1
IF (NUMBLK*NE.0) GO TO 605
CALL FCLOSEM1

DO 615 IzFIRSTLAST
J=I+HBLXS
CLIPS(I):CLIPS(J)
RMAXS(I)=RIIAXS(J)

DO 615 1:1,20
SAMPS(IK)=SAMPS(JK)

615 CONTINUE

EBLXS=EBLXS-HBLXS

TYPE "(CR)
*The edit buffer has been updated."

650 FIRBLX=0 ;set the b/A parameters to output
NUMBLK:EBLXS ;the entire edit buffer
GO TO 105 ;return to main menu

700 IF (EBLKS.EQO) GO TO 250

WRITE(10t13) EBLXSIlEDLXS
13 FORMAT("(CR)

*The edit buffer contains "t131" diskb'Iocks numbered 1 "13""
TYPE"
*It can be written to specified blocKs of an existing file,(MR
*or to a new f ile,"

705 ACCEPT "(CR)
*Enter the filename for writing:"
READ(11,11) FILEHAI (1

11 FORIIAT(S13)

4

CALL STAT(FILEHAI1,STATUSIER)
IF (IER.EQ.13) GO TO 710
IF (IER.NE.1) TYPE "STAY error ",IER," with your file"
FBLKS:STATUS(9)

4 IF (STATUS(10).EQ.512) FBLXS:FBLXS+1
GO TO 720

710 CALL CFILWJ(FILENAfl,2,IER)

122

4

4

IF (IER.HE.1) TYPE "CFILU error ",IEa~," with your file"

715 CALL OPEN(1,"-DICI.ED,-1,IER)
(2 IF (IER.NE,1) TYPE "OPEN error ",IER," with the edit buffer"

CALL OPEN(21FILENA~l,3tIER)
IF (IERE,1) TYPE "OPEN error ",1ER," with your file"

SIB LK:0
FIRBL1=0
BLKSzEBLXS
IF (IOP,EQ.0 *OR, IOPEa.1) GO TO 717

716 IF (FBLXSNE.0) WRITE(10.,15) FILENAMI'()IFBLI(S
15 FDRIIAT("(CR)

*File "IS13," contains "1131" disk blocks.")
q IF (FBLKS.EGO0) WRITE(10,11) FILENAM(1

16 FORNAT("(CR)
*File ",S13," is empty) it contains zero disk blocks,")
TYPE 1
*DisK blocks are numbered beginning with ones"
ACCEPT "*(CR)
MPease specify the starting black for the data buffer(CR)
*to be written:," FIRBLX
FIRBLK=FIRBLX-l
IF (FIRBLXGE,0) GO TO 717
GO TO 716

7 17 NUNBLI:DLKS
IF (NUMPJLI.GT,4O) lUMBLX:40
BLXS:BLKS-NUMBLX
CALL RDBLX(1,STLXIDATA3,NUMBLXIER)
IF (IERNE,1) TYPE "RDBLi error ",IER," with the data buffer"
CALL WkBLX(2,FIRBLKIUATA3NUlBLXIER)
IF (IER.NE.1) TYPE "WRBLK error "IIERI" with your file"
ST DLX STBL + NUn BLX
FIRBLX=FIRBLK+NUMILK
IF (DLXS.NE.O) CO TO 717

* CALL RESET
VRITE(1O,12) FILENAM(1

12 FORMAT("{CR)
*The data buffer has been written to file ",S13)
GO TO 105

4 7M WRITE(1O,14) FBLKS
14 FORMAT("(CR)

*This file already exists in the current directoryt(CR)
*It contains "1131" disk blocks,")
ACCEPT "(CR)

*Do you want tol(CR)
4 1: delete the current file(CR)

'2i overorite specifie1 hloc~s of the current ille(CR)
1 3: create a new file(CM

I 4: return to the editing menu(CR)

4
12

*seection:" ,IOP
CALL NEWSCR

IF (IOP.EO.I) GO TO 730
If (IGP,£Q,2) GO TO 715
IF (IOP.EQ*3) GO TO 705
IF (IOP.EO.4) GO TO 105
WRITE(10,l)
GO TO 720

730 CALL DFILW(FILEHAMtIER)
IF (IER.NEI) TYPE "DFILW error "IERI" with your file"
GO TO 710

1000 CALL NEWSCR
CALL EXIT
END

I

I

124

I i m ~ i ii ml~ / I l a l wti m

C Title: SmallIn
C Author: Lt Allen
C Date: Dec 82

C Function:
C This program handles the short mode A/D conversion operations
C in the SPEECH package, The SPEECH package is a six-program
C package that utilizes the Eclipse A/D/A device to work with
C speech data files. This program is not a stand-alone program,
C It's operation depends upon parameter files created by other
C programs. To understand the operation of this program, program
C SPEECH, which is the central program of the package, should
C be consulted first,

C Compile command:
C FORTRAN SMALLIN

C Load command:
C RLDR/P 2/K SMALLIN NEUSCR SAMCONFIG3 ISAMLIBI

C Comments:
C The save file (.SV) of the following programs are required in
C the user's directory to operate this pacKage,

C SPEECHEDITORSMALLINISMALLOUTBIGINIBICOUT

EXTERNAL IDS21 ;decIare A/D device
EXTERNAL IDS23 ;must also declare D/A device
COMMON / IBUFF / IDATA3(15872) ;setup the AID conversion data buffer
COMMON / IBUFO / IWASTE ;must also set up a D/A buffer
INTEGER IORBA(16)

IDATAI:60000K ;use channel one and external clock
CALL NEWSCR :erase the screen

TYPE "(CR)
* --) the program is in A/D mode (--"

CALL DSTRT(IER) ;initialize A/D/A device
IF (IER.NE.1) CALL ERROR("DSTRT error")

CALL OPEN(1"DIGI.DT"3IER) ;ready program SPEECH's data
;buffer for writing

IF (IER,NE,1) TYPE "OPEN error ",lERI" with the data buffer"

100 ACCEPT "(CR)
*Press the carriage return to begin"
ACCEPT

CALL DOITW(IORBAlDS21,8,IDATAItl5872IDATA3,IER)

4

IF (IERoNE1I) TYPE "DOITW error",IER

TYPE "(7)(7)(7)(CR)
*That's all folks!"

150 IOPZO

ACCEPT "(CR)
*press the carriage return to return to the main menut(CR>

*or press the space bar and carriage return to do a retake."
READ(11 2) IOP

2 FORI AT(41)
CALL NEWSCR

IF (IOP.EQO) GO TO 200

IF (IOP.EQ,8192) GO TO 100
WRITE(10,1)

IFORhAT("(CR)(CR)(?)(CR)(7)
Please select only from options given.")
GO TO 150

200 CALL WRBLK(1,OIDATA3,62tIER) ;write the conversion data to
A ;proqram SPEECH's data buffer

IF (IER.NE.1) TYPE "ORBLX error ",IER,"mith data buffer"
CALL CLOSE(t1,IER)
IF (IER.E.1) TYPE "CLOSE error",IER," with data buffer"

TYPE "(CR)
£,u --) exiting A/D mode (--"

CALL EXIT
END

126

C Title: SmallOut
C Author: Lt Allen
C Date: Dec 82

C Function:
V C This program handles the short mode D/A conversion operations

C in the SPEECH package, The SPEECH package is a six-program
C package that utilizes the Eclipse A/D/A device to work with
C speech data files. This program is not a stand-alone program.
C It's operation depends upon parameter files created by other
C programs, To understand the operation of this program, program
C SPEECHp which is the central program of the package, should
C be consulted first,

iC Compile command:
C FORTRAN SMALLOUT

C Load command:
C RLDR/P 2/K SMALLOUT NEWSCR SANCONFIG4 8SARLIBI

C Comments:
C The save file (.SV) of the following programs are required in
C the user's directory to operate this package,

C SPEECHEVITORSNALLINSNALLOUTBIGIHBICOUT

EXTERNAL IDS21 ;must also declare A/D device
EXTERNAL IDS23 ;declare D/A device
COMMON / IBUFF / IWASTE ;must also set up A/) buffer
COMMON / IBUFO / IDATA3(15872) ;set up the D/A conversion data buffer

INTEGER IORBA(16),STATUS(18),HUMBLLKNUMBFIRBLKIEXT
INTEGER PLACEIZEROINITREADBLKIINFO(2)

IDATA1:64000K ;use channel one and external clock
CALL NEWSCR ;erase the screen

TYPE "(CR)
I --) the program is in 1/A mode (--"

4 CALL DSTRT(IER) ;initialize AID/A device
IF (IERNE,1) CALL ERROR("DSTRT error")

CALL OPEN(1"DIGIFG" 1,IER)
IF (IEREQ,13) CO TO 100 ;if flag file does not exist, then

;output data buffer

I GO TO 200 ;else output the edit buffer

127

C
C This section of code sets the output parameters to output the entire
C data buffer,IC C
100 CALL CLOSE(lIER)

*4 CALL STAT("DIGI.DT",STATUSIIER)
*, NUMBLK:STATUS(9)+

FIRBLK:O
CALL FOPEN(l"DISSI.DT") ;open the data buffer for reading
CO TO 500

C

C This section of code retrieves the parameters.from the flag file
C that specifies the section of edit buffer to output,
C
200 CALL RDSEQ(1IIHFO,4,IER)

CALL FCLOSE(1)

FIRBLK:INFO(1) ;the first block
I NUMBLK:INFO(2) ;the number of data blocks

CALL FOPEN(1,"DIGI.ED") ;open the edit buffer for reading

500 CALL RDBLK(1,FIRLXtIDATA3HUBLXIER)

IF (1ER.NE.1) TYPE "RDBLX error "IiERt" with output buffer"
IDATA2:HUMBLK*256 ;the number of data samples to output

505 ACCEPT "(CR)
*Press the carriage return to begin"

ACCEPT

506 CALL DOITU(IORBAIDS23,8,26624)IDATA2,IDATA3pIER)

IF (IER.NE.1) TYPE "DOITW error "IIER

510 IOP:O
4 ACCEPT "(CR)

*press carriage return tG continue,(CR)
*or press space bar and carriage return to repeat:"
READ(112) IOP

2 FORNAT(S1)
4 CALL NEWSCR

IF (IOP.EO.0) GO TO 1000
IF (IOP.EQ. 8192) GO TO 506

WRITE(10,1)
1 FORMAT("(CR)(7)(CR)(7)(CR)(7)

Please select options from the list only.")
GO TO 510

1000 TYPE "(CR)

128• 2

I -)exiting D/A mode (-

CALL EXIT
END

129

6

C Title: Bigln
C Author: Lt Allen
C Date% Dec 82

C Function:
C This program handles the long mode A/D conversion operations
C in the SPEECH package. The SPEECH package is a six-program
C package that utilizes the Eclipse A/D/A device to work with
C speech data files. This program is not a stand-alone program.
C It's operation depends upon parameter files created by other
C programs, To understand the operation of this program) program
C SPEECH, which is the central program of the package, should
C be consulted first,

C Compile command:
C FORTRAN BIGIN

C Load command:
C RLDR/P 2/1K 2000/N BIGIN NEWSCR SANCONFIG3 @SAMLIB#

C Comments:
C The save file (.SV) of the following programs are required in
C the user's directory to operate this package,

C SPEECHEDITORSMALLINSNALLOUTIBIGINBIGOUT

EXTERNAL IDS21 ;declare AID device
EXTERNAL 1D523 ;must also declare D/A device
COMMON IWIND(10240) ;extended memory window
COMMON / IBUFF / IDATA3(10240) ;set up the AID conversion data buffer
COMMON / IBUFO / IWASTE ;must also set up a D/A buffer

INTEGER IORBA(16),IFILE(7)

CALL NEWSCR ;erase the screen

TYPE "(CR)
I --) the program is in A/D mode {--"

C
C Set up extended memory to hold the results of the first four conversion
C operation calls.

4 C

CALL VMEM(IEXTIER)
IF (lER.NE,I) TYPE "VMEM error ",IER
IF (IEXT.LT,40) CALL ERROR("insufficient extended memory")
CALL MAPDF(40jIWIND, 10IER) ;each conversion operation will

;collect 101(of data

IF (lER,NE.1) TYPE "NAPDF error ",IER

CALL DSTRT(IER) ;initialize A/D/A device

130

IF (IERNE*l) CALL ERROR("DSTRT error")
CALL OPENU(1,D[GI.DT",3,IER) ;readyi progras SPEECH's data

ibuffer for writing
IF (IER*NE.1) TYPE "OPEN error ",IER," Pith data buffer"

100 TYPE "(CR)
*Press the carriage return to begin.-"
ACCEPT

CALL DDITW(IORBALDS2I,8,24576,10240,IDATA37IER)
CALL YSTASH(IDAYA3,1,11240)

CALL DOITW(IORBAIDS21,8,24576;10240,IDATA3,IER)
CALL VSTASHUM~AA3110241,I0240)

CALL DOITW(IORBAtIDS21,8,24576,10240,IDATA31IER)

CALL VSASH(IDA'A31204&1,10240)

CALL DOITW(IORBAIDS21,8,24576,10240,IDATA3,IER)
CALL MSASHUM~AA3,3O721,10240)

CALL DOITW(IORBAIDS21,8,24576,10240,IDATA3,IER)

TYPE "(7)(7)(7)(CR)
'That's all folks!"

150 IOPz0v ACCEPT "(CR)
*Press carriage return to return to the wain menu,(CR)
*or press space bar and carriage return to do a retaket"
READ(11,2) IOP

2 FORNIAT(SI)
CALL HEWSCR
IF (IOP.EQ.0) 6O TO 200
IF (IOP,EQ,8192) GO TO 100
NRITE(10,1)

I FORflATC"(CR)(7)(CR)(7)(CR)(7)
'Pease select only from options given,")
GO TO 150

C
C Write the conversion data to program SPEECH's data buffer,
C
200 CALL WRDLX(1,160,IDATA3t40,IER)

IF (lER.NE.1) TYPE "WRBL(err'or ",LER," with the data buffer"

K CALL VFETCNUIDATA3,1it1240)
CALL URBLK(1,0,IDATA3,40,IER)

CALL YFETCH(EDATA3,10241,10240)

I r CALL WRBLK(l40pIDATA3,40,LER)

CALL VFETCH(IDA~tA20481,10240)
CALL WRDLXU1,80,IDATA3,40,IER)

131

0 CALL VFETCHWIDATA3,30721,10240)
CALL MRbLjt120j1IATA3,40j1ER)

IF (IER.NE,1) TYPE "WRBLK error "#lER," with the data buffer"
CALL CLOSE(IIIER)
IF (IER.NE.I) TYPE "CLOSE error ",IER," with the data buffer"

TYPE "(CR)
I --) exiting A/1 mode i--"

CALL EXIT
END

132

C Title: BigOut
C Author: Lt Allen
C Date: Dec 82

C Function:
C This program handles the long mode D/A conversion operations
C in the SPEECH package, The SPEECH package is a six-program
C package that utilizes the Eclipse A/D/A device to worK with
C speech data files, This program is not a stand-alone program.
C It's operation depends upon parameter files created by other
C programs, To understand the operation of this program, program
C SPEECH, which is the central program of the package, should
C be consulted first.

C Compile command:
C FORTRAN BIGOUT

C Load command:
C RLDR/P 2/K 2000/N DIGOUT NEWSCR SAMCONFIG4 OSAMLIBI

I

C Comments:
C The save file (.SY) of the following programs are required in
C the user's directory to operate this package,

C SPEECHEDITORSHALL1NSHALLOUTBIGINBICOUT

EXTERNAL IDS21 ;must also declare AID device
EXTERNAL IDS23 ;declare D/A device
COMMON IbIND(10240) ;extended memory window
COMMON / IBUFF / IWASTE ;must also set up A/D buffer
COMMON / IBUFO / IDATA3(10240) ;set up the D/A conversion data buffer

INTEGER IORIA(16)STAUS(1)INUMBLXLASLKFIRLXIEXT

INTEGER PLACEtZEROtIHITpREADBLKIHFO(2),MANYSET

4 IDATA1:64000K ;use channel one and external clock

CALL NEWSCR ;erase the screen

TYPE "(CR)
I --) the program is in D/A mode (--"

C
C Set up extended memory to hold conversion data to be output.
C

CALL VMEM(IEXTIER)
IF (IERNE.I) TYPE "MEli error ",IER
IF (IEXT.LT.40) CALL ERROR("insufficient extended memory")
CALL MAPDFC40?IWIND10,IER) ;each conversion operation will

;output 10lW of data
IF (IER.NEI) TYPE "MAF error ",iER

133

4

CALL DSTRT(IER) ;initialize A/D/A device
IF (IER.NE.I) CALL ERROR("DSTRT error")

CALL OPEN(l,"DIGI.WG1,11ER)
IF (IER.,E.13) GO TO 100 ;if flag file does not exist, then

;output data buffer
GO TO 200 ;else output the edit buffer

CJN~ummmI§mm*u~IIMuI***Imt§NR~ Nm**m Nm***i**uuIJIuNiimmf*mim~mI

C
C This section of code sets the parameters to output the entire
C data buffer,
C
100 CALL CLOSE(1tIER)

CALL STAT("DIGI.DT",STATUSIER)
NUMBLK:STATUS(?)+
FIRBLK:O
CALL FOPEN(I,"DIGI.DT") ;open the data buffer for reading
TYPE "(CR)

I --) the program is in D/A mode (--"
GO TO 500

C
C This section of code retrieves the parameters from the flag file
C that specifies the section of edit buffer to output,
C
200 CALL RDSEG(IIHFO,4IIER)

CALL FCLOSE(M)

FIRBLK:INFO(l) ;the first block
NUNBLI:INFO(2) ;the number of blocks
CALL FOPEN(1,"DICI.ED")

C
C This section of code places the data to be ouput in the first NUMBLK
C blocks of the conversion data buffer, Any remaining conversion data
C buffer blocks are zero filled. Each D/A operation will output 200
C disk blocks of data in 40-disk block sections.
C

500 CONTINUE

PLACE:1
ZEROx0
INIT:FIRBLK
LASBLK:NUMBLK
SETtO

IF (LASBLK.LE.40) GO TU 502
LASBLX:40

134

FIRDLK:-FIRDLK,40
NUNIBLK:NUNBILX-40

501 READDLKNU DL(
IF (READBLI.GT,40) READBLX=40
NUMBLK:NUflBLK-READBLK

CALL RDBLK(.lFlkBLK,1DATA3,READLKIER)
IF (IER,NE.1) TYPE "RDBLX error ",IER," with the output buffer"
%A~4i REAbBLK*256
IF (RANY.EO.1024O) GO TO 520
PIANY:NAN't,4
DO 530 I:MANY,10240
IDATA3(I) ZERO

530 CONTINUE
520 CALL VSTASH(IDATA3,PLACEIAY)

PLACE: PLACE +IANY
PIRBLX:FIRBLX+READBLk
SET=SET+1
IF (NUMDLK*NEo0) GO TO 501

502 IF (SET.EQ.4) CO TO 503
DO 540 1:1,10240
IDATA3(I)=ZERO

540 CONTINUE
PLACE=(SET*10240)+l
CALL VSTASH(IDATA3,PLACE,1Q240)
SET:SET+1
CO TO 502

503 CALL RDBLK(1,1ITtIDATA31LASRIIER)
IF (IER,NE.1) TYPE "RIBLK error *,IER,"' with output buffer"
PLACE: (LASBLK*256)+1

504 IF (PLACE.CT,10240) GO TO 505
IDATA3(PLACE) :ZERO
PLACEzPLACE+l
GO 70 504

505 ACCEPT "*(CRt)
*Press the carriage return to begin"
ACCEPT

506 CALL DOITW(IORBA,1DS23,8,26624,10240,IDATA3,IER)

CALL YFETCH(IDATA3,1,10240)
CALL DOITW(IORBA,1DS23,8,26624,10240,IDATA3,IER)

CALL VFETCH(IDATA3?10241,10240)
CALL DOITW(IORBA,1DS23,8,26624lO24,IDATA3,IER)

CALL VFETCH(IDATA3,20481,10240)

135

* . .. • .

CALL DOITW(IORBAlDS23,8,26624,10240,IDATA3,IER)

CALL VFETCH(IDATA3,30721,10240)
CALL DOITW(IORBAIDS23tt26624tlO240IDATA3,IR)
IF (IER,HE,I) TYPE "DOITU error ",IER

510 IOP:O
ACCEPT "(CW)
*press carriage return to continue,(Ck)
*r press space bar and carriage return to repeatz"
READ(lt2) IOP

2 FORNAT(S1)
CALL NEWSCR

qIF (IOP.EQ.O) GO TO 1000
IF (IOP.EQ. 8192) GO TO 503
URITE(101)

1 FORHAT("(CR)(7)(CR)(7)(CR)(7)
*Please select options from the list only,")
GO TO 510

1000 TYPE "(CR)

* --) exiting D/A mode (--"
CALL EXIT
END

136

C Title: Digitize
C Author: Lt Allen
C Date: Dec 82

C Function:
C This is the central program of a three-program package that
C interactively allows the user to set different operating features

X C of the Eclipse A/D/A device.

C Environment:
C This is a Fortran V program that has been designed to run on a
C mapped-RDOS Eclipse S/250 minicomputer equipped with a model 4331
C single board converter.

C Compile command:
C FORTRAN DIGITIZE

C Load command:
* C RLDR/P DIGITIZE IFLIBI

C Comments:
C Refer to line 5 of the program text for information regarding
C the data buffers in this package,

C The save file (,SV) of the following programs are required in
C the user's directory to operate this package,

G DIGITIZEINDIGIOUTDIGI

INTEGER OPTION

5 TYPE "(CR)
*The A/D and D/A data buffers are separate with each dimensioned(CR)
*to their maximum spec size of 16XW. Due to the data buffers being(CR)
* this large, this program swaps to program INDIGI.SV for A/D(CR)
*conversions and swaps to OUTDIGI.SV for D/A operations.(CR)(CR)
*To output data collected in A/ID modet the AID data buffer must(CR)
*be written to a disk file while in A/D mode and then read into(CR)
*the D/A data buffer after switching to D/A mode."

10 ACCEPT "(CR)
MPlease enter which operation will be performed,(CR)

* 1: A/D conversions(CR)
I 2: D/A conversions(CR)
* 3: exit(CR)
*selection:",OPTION
IF (OPTION.GT.1 *OR, OPTION.LT.3) GO TO 20
TYPE "(CR)(CR)(CR)
IFlease select options from the list only."

GO TO 10

137

20 IF (OPTION.EQ.1) CALL SWAP("INDICI.SV",IER)
IF (OPTION,EQ.2) CALL SWAP("OUTDICI.SV",IER)
IF (OPTIOH,LQ,3) GO TO 900C IF (IER,NE*I) TYPE "(CR)

*SWAP error ",IER
Go TO 10

900 CALL EXIT
END

138

C Title: OutDigi
C Author: Lt Allen
C Date: Dec 82

C Function:
C This program handles the D/A mode options in the DIGITIZE
C package, The DIGITIZE package is a three-program package that
C interactively allots the user to select different operating
C features of the Eclipse A/D/A device. This program, however,
C can be operated as a stand alone program.

C Environment:
C This is a Fortran V program that has been designed to run
C on a mapped-RDOS Eclipse S/250 minicomputer equipped with a
C model 4331 single board converter.

C Compile command:
C FORTRAN OUTDIGI

C Load command:
C RLDR/P 2/K 0UTDIGI CLKSET CHNSET CHVSET SEEIT PAPERA
C REDBUF SETUP HEADER WRTBUF WARNNG SAMCOHFIG4 @SAMLIB@

C Comments:
C Refer to line 10 of the program text for the menu options of
C this program,

C The save file (.SV) of the following programs are required in
C the user's directory to operate the DIGITIZE package,

C DICITIZEIHDIGIOUTDIGI

EXTERNAL IDS21 ;A/D device required by SAN
EXTERNAL IDS23 ;D/A device
COMMON / IBUFF / IWAST ;A/D data buffer required by SAM
COMMON / IBUFO / IDATA3(16384) ;D/A data buffer
INTEGER FILENAM(7),IORBA(16)pCLOCXFIRSTMODEDEVICE

CALL DSTRT(IER) ;always initialize device
IF (IER.NE.1) CALL ERRUR("DSTRT error(CR)program aborted")

DEVICE:23

TYPE "(CR)
*Program OUTDIGIoSV executing ---) the device is in D/A mode"

I0 ACCEPT "(CR)
Please select which operation will be performed,(CR)

1 1: conversions(C!)
I 2: data buffer display(CR)
I 3: data buffer print(CR)

139

6

I 4: data buffer write to file(CR)
* 5: read from file to data buffer(CR)
I 6; data buffer demultiplexing(CR)
* 7: exit(CH)
*selection;",IOP

IF (IOP.EO,1) GO TO 20
IF (IOPEO,2) GO TO 40
IF (IQPoEO.3) GO TO 40
IF (IOPEQ,4) GO TO 80
IF (IOP.EO.5) GO TO 50
IF (IOP°EQo6) CO TO 60
IF (IOPoEQ,7) GO TO 90
WRITE (10,1)
GO TO 10

1 FORMAT ("(CR)(CR)(CR)
*Please make selections only from the given options")

20 CALL CLKSET(DEVICECLOCK) ;set the clock

CALL CHNSET(DEVICE,)IRSTMODE) ;set the channel

IDATAI:((CLOCK.OR,FIRST),ORMODE),OK,4000

25 ACCEPT "(CR)
*Do you wish to set the conversion count (1),(CR)
*or perform an error check (2)?"IIERR

IF (IERRoEQ,1) CO TO 30
IF (IERR.EO.2) GO TO 35
WRITE(101)
GO TO 25

C~I****wwu*****M**wNwUtumwuuwsmw**wwIwu III*Ih*NNN~NNNNNi**INIIU*UN

30 CALL CHYSET(IDATA2) ;set the conversion count

CALL WARNNG(CLOCK) ;give warning message for clock set
ACCEPT

CALL DOITW(IORbAt IDS23, 8t IDATAlt IDATA2, IDATA3t IER)

TYPE "(CR)
*Conversion operation completed"
IF (IERE.1) TYPE "DOIT error ",IER
IF (IORBA(14).HE,4OO0K) TYPE "IORBA(14) return "tIORBA(14)
IF (IER,EQ.1 ,AND. IORBA(14).EQ.40000K) TYPE "No errors reported"
GO T0 10

40 CALL SETUP(IFOR11OP1STARTSTOPl ;get the parameters specifying

140

;the section of data buffer to be
;worKed with.

C
C Display te user requested section of data buffer.
C

IF (IOP.EQ.2) CALL SEEIT(IFORISTARTtISTOPIDATA316384)
C
C Print the header and the user requested section of data buffer.
C

A IF (IOP.ED.3) CALL H)ADER(DEVICEtFIRSTMODEIDATA2,IERIORBACLOCK)
IF (IOP.EQ,3) CALL FPAPER(IFORISTARTISTOPIDATA3,16384)
GO TO 10

35 INCREM:=1000
IDATA2:INCREM

37 CALL DOITW (IORDA, IDS231 B, IDATAl, IDATA2, IDATA3, IER)
IF (IERNE.1) GO TO 38
IDATA2:IDATA2+INCREM

* 1F (IDATA2#GT,16384) GO TO 38
GO TO 37

38 IDATA2:IDATA2-4CRE
CALL DOITW (IORNA, IDS23, 8t IDATAl, IDATA2, IDATA3, IER)
INCRE':INT(INCRE/I0,O)
If (INCREN.Mi.0) GO TO 37
TYPE "(CR)
'DOIT error ",IERp"(CR)
*on conversion count ",lDATA2
TYPE "(7)(?)(7)"
GO TO 10

50 CALL REDBUF(IDATA3,16384) ;let the user read specified sections
;of a file into the data buffer.

GO TO 10

60 TYPE "(CR)
eThe data buffer will be devultiplexed by retrieving(CR)
*every Nth point from a specified startinq point,(CR)
*(CR)
*There will be H-i data buffer points skipped(CR)
*between each two demultiplexed points.(CR)
*(CR)
*The first data buffer point is numbered one."

ACCEPT "(CR)
'Please specify,(CR)
' H:",IHTH
ACCEPT

141

- starting pointz"LONE

IF (INTH.LT.2 .OR. IONE.GT.16384) GO TO 60

ISTOP:16384/INTH
INTH:!'NTH

DO 65 IIpISTUP
IDATA3(l):IDATA3(J)
JOJ+INTH

65 CONTINUE
DO 66 IzISTOP 1,16384
IDATA3(1):O

66 CONTINUE
GO TO 10

80 CALL WRTBUF(IDATA3,16384) ;let the user write specified sections
;of data buffer to file.

'4 GO TO 10

90 CALL EXIT
END

142

C Title: InDigi
C Author: Lt Allen
C Date: Dec 82

C Function:
C This program handles the A/U mode options in the DIGITIZE
C package. The DIGITIZE package is a three-program package that
C interactively alloms the user to select different operating
C features of the Eclipse A/D/A device, This programt however,
C can be operated as a stand alone program.

C Environment:
C This is a Fortran V program that has been desigined to runC on a mapped-RDOS Eclipse S/250 minicomputer equipped with a

C model 4331 single board converter,

C Compile command:
C FORTRAN INDIGI

C Load command:
C RLDR/P 2/K INDIGI CLXSET CHHSET CNVSET SEEIT PAPERA
C SETUP HEADER WRTBUF WARNG SAMCONFIG3 @SAMLI8@

C Comments:
C Refer to line 10 of the program text for the menu options of
C this program.

C The save file (.SV) of the following programs are required in
C the user's directory to operate the DIGITIZE package,

C DICITIZEINDICItOUTDIGI

EXTERNAL IDS21 ;A/D device
EXTERNAL IDS23 ;D/A device required by SAM
COMON / IBUFF / IDATA3(16384) ;A/D data buffer
COMMON / IBUFO / IWAST ;D/A data buffer required by SAM

INTEGER IURBA(16),DEVICECLOCKFIRSTLAST
DEVICEz21

TYPE "(Ck)
eProgram INDIGI.SV executing ---) the device is in A/D mode"

CALL DSTRT(IER) ;always initialize device
IF (IER.NE.W) CALL ERROR("DSTRT error")

10 ACCEPT "(CR)
*Please select which operation will be perforsed(CR)

I: conversions(CR)
2: data buffer display(CR)

143

L _ _ _

I.

' 3: data buffer print(CR)
1 4: data buffer write to file(CR)

5: exitiCR)

*selection:",IOP

IF (IOP.EO.1) GO TO 20
IF (IOP.EO,2) GO TO 50
IF tIOP.EO,3) GO TO 50
IF (IOP°EO.4) GO TO 60
IF (IOP,EO.5) GO TO 80
MRITE (10,1)
GO TO 10
FORMAT ("(CR)(CR)(CR)

*Please make selections only from the given options")

20 CALL CLISET(DEVICECLOCX) ;set the clock

CALL CHNSET(DEVICEFIRSTLAST) ;set the channel

IDATA1=(CLOC.OR,FIRST),ORLAST

TYPE "(CR)
*The device may give an error for conversion counts(CR)
*above 16073.(CR)
*(CR)

" *The error check option will return the maximum error(CR)
*free conversion count for the set up given. The conversion(CR)
Wclock must alloa for repeated conversion calls when using(CR)
*this option,"

30 ACCEPT "(CR)
*Do you wish to,(CR)

1 1: set the conversion count(CR)
* 2: perform an error check(CR)
*selection:",IERR

IF (IERREO,1) GO TO 40
IF (IERR.EO.2) GO TO 35
WRITE(10pl)
GO TO 30

35 INCRE=N1000
IDATA2:INCREM

37 CALL DOITU(IORBAIDS21,8,IDATAIIDATA2,IDATA3,IER)
IF (IERNE.1) GO TO 38
IDATA2slDATA2+IHCREH
IF (IDATA2,GT,16384) GO TO 38
GO TO 37

38 IDATA2:IDATA2-INCREM

144

I

CALL DOITW(IORBAIUS21 tIDATAIIDATA2tlDATA3,IER)
INCREHzINT(INCREM/I0,O)
IF (INCREt.1E.0) GO TO 37
TYPE "(CR)

MDOIT error ",IER,"(CR)
ion conversion count ,IDATA2r TYPE "(7)(7)(7)"
GO TO 10

40 CALL CNVSET(IDATA2) ;set the conversion count

CALL NARHNG(CLOCK) ;give warning message for clock set

ACCEPT

CALL DOITh(IORBAIDS21,t8lDATAIIDATA2,IDATA3,IER)

TYPE "(7)(7){7)(CR)
*Conversion operation completed"
IF (IER.NEI) TYPE "DOIT error ",IER
IF (IORBA(14),HE.40000K) TYPE "IORBA(14) return "tIORUA(14)
IF (IER.EQ,1 ,AND. IORBA(14),EQ,40000K) TYPE "No errors reported"
GO 10 10

q 9 50 CALL SETUP(IFORIOPISTARTISTOP) ;qet the parameters specifying
;the section of data buffer to be
;worKed with,

C
C Display the user requested section of data buffer,
C

IF (IOPEQ,2) CALL SEEIT(IFORtISTARTISTOPpIDATA3,16384)
C
C Print the header and the user requested section of data buffer,
C

IF (IOP.EO.3) CALL HEADER(DEVICE FIRSTtLASTIDATA2,IERIORBACLOCK)
IF (IOP,EQ,3) CALL PAPER(IFORISTARTISTOPIDATA3,16384)
GO TO 10

60 CALL WRTBUF(IDATA3,16384) ;let the user write specified sections
;of data buffer to file,

GO TO 10

80 CALL EXIT
END

145

C Title: Cnvrt
C Author: Lt Allen
C Date: Dec 82

C Function:
C This program converts conversion data from the format used
C by the Eclipse AID/A device into real number data and vice-versa.

C Compile Command:
C FORTRAN CHVRT

C Load Command:
C RLDR/P 2000/H CHYRT COMLN SORT2 STATUS DELCHC FILCHC @FLIBD

C Environmentz
C This is a Fortran V program that has been designed to run on
C a mapped-RDOS Ecipise 5/250 minicomputer.

C Command line:

C CHYRT t/R or /1) input/I /D] output/O

C where "input" and "output" are any legal RDOS filenames,

C Either the R or I switch must be attached to CHYRT, The R
C switch denotes conversion from device format to real and

V C the I switch denotes conversion from real to device format,

C The input and output filenames can be typed in any order,
C however, the I switch should always be attached to the
C input file and the 0 switch should always be attached to the
C output file,

C The D switch can only be attached to the input file, and
C deletes the input file after the output file has been created,

C Comments:
C This program is designed for use with conversion data that was
C collected with or will be output by the device set at an operating
C range of +/- 5v.

C The output file will be created as a random file. If
C it already exists, the original file will be deleted first,

C The input file cannot be larger than 32768 disk blocks, There
C is not an errcr check for this condition,

C This program requires 8K of extended memory.

CONON IWAST(1024) ;ll size min 1ov req!i.ed for

;extended memory setup

146

Appendix D

Source Code
for

Signal Processing Software

1

150

RDISC=RDISCUDLK
IF (RSWIT) ILN=ILN-(WBLX*128,)
IF (ISWIT) ILN=ILN-(UDLK*256#)
IF (AGAI14.Ego.) GO 1O 10 ;if true, have not finished all

;input data

30 CALL CLOSE(2,IER)
IF (IER*NE.1) TYPE "CLOSE error",lERt"vith output file"
CALL APPEND(2,FILEO,2,lER)
IF (IER.14E*l) TYPE "APPEND errcr"tIERt"uith output file"
BYTS=ILN*4
IF (ISWIT) It'TS=BYTSI2

CAL DEI)CALL EFI)NU(TAT BTpIR

80 CALL REIT

C V

149

CIF (IER.14E61) TYPE "OPEN error",lER,"With output file"

C Set up extended memory to hold input data. The 8XW of extended
C memory can hold 8192 integer elements (to be converted to 8192 real)

(C or 4096 real elements (to be converted to 4096 integer),
C

CALL VIEM(EXTMIER)
IF (IER.NE,1) TYPE "UIIEM error",IER
IF (EXTM1.LT,8) CALL ERROR("not enough extended memory")
IF (RSWIT) CALL lAPDF(8,IWASTjlLER) ;retrieve one-word elements
IF CISWIT) CALL MAPDF8,IWASTt1,2,1ER);retrieve two-word elements
If (lER,E1) TYPE "I APOF error",IER

C
C Compute the number of data elements,

1 C
1LN:(1DLXS1256,)i(LASTBYT/2.)
IF QIUIT) ILN:(IBLKSwI28.)+(LASTBYT/4.)
IBLJCS=IBLXS,1 ;may try to read past EOF
AGAiN: IK4 C

C Work with 32-block sections of input data. This fills the 8KW
FC partition of extended memory,

C
10 READDLX:IBLXS

IF (IBLXS.GT.32) READI4LX=32 ;32 * 256 8192 z8KW of storage
~ CALL ERDB(1,IDISCOREADBLKCHEC~iER)

IF (IER.EG.9) GO Ta 12 ;ignore EOF error
IF (IERNE.1) TYPE "ERDB error",IER

12 INDEX=O

20 U4DEX=iIHDEX,1
IF (RSWIT) CALL IYF(IHOLDtINDEX)
IF (ISWIT) CALL VNiRHOLDIINDEX)
IF (RSWIT) REALNUI'(INDEX)LOAT(IHOLD)/32768.*TOPVOLT
IF (iSUIT) INTNI(INDEX):11NT(RHOLD/TOPV0LT*32768,)

IF (RSWITtAND.INDEX.E0.81M2) GO TO 25
IF (ISWIT*AHD*(IHDEXoEO.4096)) GO TO 25
IF (FLOAT(INDEX)oLTILN) GO TO 20
AGAIN:0

425 UBLX:INT(IHDEX/256)*2
If (ISWIT) UBLK:IH7(1NDEX/256)
IF (RSWIT) CALL WRBLK(2,RDISCREALNUMWBLXCHECLER)
IF QIUIT) CALL WRBLK(2,RDISC~INTNUl~,UBLXCHECIER)
IF (IER.NE.1) TYPE "WRIBLX error",IER,"with output file"
DBLKS:INT(INDEX/256)

U IF (ISWIT) DIBLKS=DBLXS*2
IBLIS:IBLXS-DBLXS
IDISC: IDISC+DBLXS

148

L

A

REAL REALNUl(8192)pTOPUOLTILNRHOLD

(INTEGER FILEI(7)tFILEO(7),RETtFI(2)tFO(2),MS(2)
INTEGER LASTBYTINDEXCHECIHOLDDBLKSIBLXS
INTEGER INTNUM(4096)
INTEGER READBLXEXTMBYTSIDISC RDISCtAGAINWBLX START

LOGICAL ITESTRSITISWIT

DATA TOPVOLTtFItFORDISCtIDISC / 5.,6*0 /

C
C Retrieve command line files and verify two exist.
C

CALL COMLN(RETIHOLDtFILEIFILEOtHOLDtMSFItFOHOLD)
IF (RETEO,2) GO TO 3
CALL ERROR ("The command line must contain two files,")

C
C Determine which type of file the output file mill be. Verify
C that only the I or R switch was attached to CHVRT.
C
3 RSWIT:ITEST(S(2)t14) ;if true, real output file

ISMIT:ITEST(MS(1),7) ;if true) integer output file
IF (ISWIT.AND..NOT.RSWIT) GO TO 4
IF (RSUIT°AND°.NOT4ISWIT) GO TO 4
CALL ERROR("must include /R or /I switch")

C
C Sort the files and verify the I and 0 switches,
C
4 CALL SORT2(9t15,FILEItFILEOFIFO)
C
C Verify that the filenames are not identical,
C

CALL FILCHC(FILEIFILEO)
C
C Verify that the input file exists and retrieve it's size,
C

CALL STATUS(FILEItIBLKStLASTBYT)
C
C Prepare the input file for reading.
C

CALL OPEN(ltFILEIt2,IER)
IF (IER.NE,1) TYPE "OPEN error")lER"with input file"

C
C Prepare the output file for writing,
C

CALL DFILW(FILEOIER)
IF (IER.EO.13) CO TO 5 ;IER:13 implies the file does not exist
IF (IER,NE,I) TYPE "DFILU error"11ERp"with output file"

5 CALL CFILU(FILE9O ,?(M
IF (IERNEI) TYPE "CF1LW error" IERp"Pith output file"
CALL OPEH(2,FILEO,2,IER)

117

C Title% Cony
C Author: Lt Allen
C Date: Dec 82

C Function:
C This program convolves an input file with an impulse response
C file, The filtered output is written to a separate file,
C All file data types are treated as real.

C Compile command;
C FORTRAN/T CONV

C Load command%
C RLDR/P 2000/N CONY COMLN SORT3 STATUS LENCtIC RDBYTS FILCHCA
C APSLB OFLIB@

C Environment:
C This is a Fortran V program that has been designed to run on a
C mapped-RDOS Eclipse S/250 minicomputer equipped with a model
C 130 array processor,

C Command line:
C CONV input/I [/D] output/O filter/F L/D]

C where "input","output" and "filter" are any legal RDOS filenames.

I C The input, output and filter filenames can be typed in any ordert
C however, the I switch should always be attached to the input
C filet the 0 switch should always be attached to the output filet
C and the F switch should always be attached to the filter file.

C The D switch can only be attached to the input and filter files,
C and deletes these files after the output file has been created.

C Comments:
C The output file will be created as a random file, If it already
C existsp the original file will be deleted,

C The filter file can be up to 512 points long.

C The input file cannot be over 32767 disk blocks long. There is not
C an error ceck for this condition.

C The program will abort if the output filename given is the
C same as the input or filter filenames.

REAL WORK(2048)tDATA(10240)t1LHtOLN'
INTEGER RETSPFILEI(7),FI(2),FILEO(7),FO(2),FILER(7),FR(2)
INTEGER RLNTLN.TLOCSTARTTFf,.TOTFYTe
INTEGER FILLtREADBK IDISC K ODL CBKIIBL StO LtHECINIT

151

INTEGER STESTELNtHUMBYTStMAXREADtZERORLXSRYTS
INTEGER CBI(OzCBMAX),CB2(O:CBMAX),CB3(O0CBMAX)

INCLUDE "ARRAYP:F5APS.FR" ;must include in any AP program

C Initialize the AP.
C

CALL APIHIT(NILHILtIER)
IF (IERNEI) CALL ERROR("APINIT errorr")

C
C Retrieve command line files and verify three#
C

CALL COMLN(RETSPFILEItFILEOFILERtSPtFIIFOtFR)
IF (RET.HE.3) CALL ERRUR("command line must specify three files")

C
C Sort the files and verify the It Ot and F switches,
C

CALL SORT3(9t,5.t6FILEItFILE0tFILERFIFOtFR)
C
C Verify that the filter file exists and is of proper length.
C

CALL STATUS(FILERtRBLStRBYTS)
CALL LENCHC(FILERRBLKSRBYTS,1t512)

RLN:(RBLKS*128)+(RBYTS/4) ;filter response length
TOTBYTS=RLN*4 ;number of byts in filter

C
C Get the filter response data and load it into to the top of
C AP memory,
C

CALL RDBYTS(FILERtTOTBYTStWORXt512)
CALL CBSET(CBIICBLRLNCBAXIOCBAANIIWORKIER)
IF (IER.NE.1) TYPE" CBSET error ",IER," loading filter"
CALL VLDR(CBI)

C
C Verify that the input file exists.
C

CALL STATUS(FILEIIBLKSIBIYTS)
C
C Verify that the output filename is not the same as the input or
C filter filenames.
C

CALL FILCHC(FILEOFILER)
CALL FILCHC(FILEDFILEI)

C
C Ready the output file,
C

CALL DPFIL(FILEOIER)
CALL CFILW(FILEO,21IER)
IF (IER.NEI) TYPE "CFILW error",1ER,"with output file"
CALL OPEH(2,FILEO,2,IER)
IF (IERNE.1) TYPE "OPEN error",IERp"with output file"

C
C Gather parameters.

152

.4

C
ILN:(IBL1S*128.),(IBYTS/4,) ;length of input data
IBLKS=IBLKS+l ;number of input data disk blocks,

;last block may not be full
OLN=FLOAT(RLH)+ILH-1, ;length of output data
TLOC:2*RLH ;AP memory location where input data can be loaded
TLN:2048-TLOC ;length of convolution input section
FILL:TLN-RLN ;length of zero fill for the first set of input data

C
C Ready the input file.
C

CALL OPEH(IIFILEIttIER)

IF (IER.NE,1) TYPE "OPEN error",IERI"with input file"

C Set the CBSET arrays for the current filter size.
C

CALL CBSET(CBl CDLtTLNCBAXTLOCCBAARltWORKIER)
CALL CBSET(CB2,CBLITLNCBAXTLOCCBAYOtCBAZtRLNCBIMItRLNIER)
CALL CBSET(CB3,CBLTLNCBAZRLNtCBAAMfWORXIER)

C
C Set counters.
C

4 IDISCBK:O
ODISCBK:O
STEST=O
ZERO:FILL
HAXREADa64

10 DO 20 I:1,ZEROI0' DATA(I)=O.
20 CONTINUE

IF (STEST.EO.O) GO TO 25 ;On subsequent reloading of the DATA
DO 24 L:STARTpFIN ;array) over)apping data and data to
DATA(I):DATA(L) ;close to the bottom of the array to
1:1+1 ;allow convolving is reloaded at the top.

24 CONTINUE
25 CONTINUE
C
C Load up the DATA array, The DATA array is used to hold botht
C input and output data by performing an in-place convolution
C as the VCONRZ routine does* Each output data save section is
C written to the DATA array overwriting the first RLH-1 points
C of its input data.
C

READBX:IBLXS
IF (IBLXS.GT.lAXREAD) READBX=nAXREAD

CALL RDBLK (IIDISCBHDATAM(I)READBHIIER)
IF (IERNE.1) TYPE "RDBLX error",IERf"with input file"
ELN:I+((READBK-I)128)+(IBYTS/4)
IF (READBM.E0,fAXREAD) ELN:I+(MAXREAD*128)

DO 40 IzELN,10240 ;zero fill the rest of thp DATA array so
DATA(I):0,O ;the convolution can overrun.

153

40 CONTINUE

J:FILL-RLN ;starting index value for input data to be convolved
K:0

Ic80 DO 60 Iz1,TLN
J:J+1

UORK(I)=DATA(J)
60 CONTINUE

CALL VLDR (CBI)

CALL VCOI4R2(CB2)

CALL VSTR(CB3)

INIT=RLN,1
DO 70 IzINITTLN

DATA(X)=WORXCI)
70 CONTINUE

I STEST:ELN-(J-RLN)
IF (FLOAT(k).GE*OLN) GO TO 74
IF (FLOAT(X+FILL).GE.OLN) GO TO 71
If (STESTLT*TLN) GO TO 75

71 J:J-R(jN
q~Go GTO 80

74 KzINT(OLM)

STEST:TLIj1

75 OBLXS:INT(X/128)
START=J-RLN- (K-(OBLKS*128))t2
FINzELN-l
CALL WRBLK (2, ODISCBX, DATA, OBLKS, IER)
IF (IER.NE.1) TYPE "IJRBLI(error",IERf"with output file"
CALL CLOSE (2t ZER)
IF (IER.HE.l) TYPE "CLOSE error",IER,"with output file"

* CALL APPEWiD2,ILEO,2,IER)
IF (IER,NE.1) TYPE "APPEND error",IER "with output file"
ODISCBX=DDISCBI(+OBLKS
IDISCBK: IDISCBX+READBX
IBLKS:IBLXS-READBK
ZERO=FILL-RLN

* NAXREAD:48
OLN:OLN-(OBLXSN 128.)
IF (STEST.LT.TLH) GO TO 10

START: (OBLXS*128)+1
HUflBYTSzOLN*4
CALL WRSEO (2, DATA(START), NUflBYTSt IER)
IF (IER.HE.1) TYPE "WRSEQ error";]ER,"withi output file"
CALL RESET

154

1000 CALL EXIT
END

155

- -- --. C. -~tUNNI NJUN~§NmNm§UIm§NNNNJJ ltUMN

C Titlet FFT

C Authorz Lt Allen
C Date: Dec 82

C Function%
C This program computes either the 1024-point or 2048-point DFT
C of an input file of real elements, The input file is augmented
C with zeros as necessary to make the input file the correct
C size. The results is a file of complex elements,

C Compile couand;
C FORTRAN/T FFT

C Load command:
C RLDR/P 2000/N FFT COMLH SORT2 STATUS LENCHC TOFILE DELCHCA
C APSOLB OFLIBI

C Environment:
C This is a Fortran V program that has been designed to run on a
C mapped-RDOS Eclipse S/250 minicomputer equipped with a model
C 130 array processor.

C Command line:
C FFT [/S] input/I E/D] output/O

C where "input" and "output" are any legal RDOS filenames.

C The input and output filenames can be typed in any ordert
C however, the I switch should always be attached to the input
C file and the 0 switch should always be attached to the output
C file*

C The D switch can only be attached to the input file, and deletes
C the input file after the output file has been created,

C The S switch denotes that the 1024-point DFT of the input file
C will be computed) otherwise the 2048-point DF1 is computed.

INTEGER RETSPFILEI(7),FILEO(7) PI(2),FO(2),XLNXBLKSMS(2)
INTEGER COUNTICBI(OCBMAX),CB2(0OCBMAX),HUiBLKLASTBYT
LOGICAL ITESTSWITINOSW1T
REAL WORK(2048),PLAY(2O48),FIRST LASTXFOR(4096)

C
C Map all of AP memory.
C

COMON / APNEM / WORK

INCLUDE "ARRAYP;F5APS.FR' ;must include in any AP program
C
C Initialize the AP and set up mapping window.

156

...I--_ _ - m mfamd ma~m mmI m m

C
CALL APIN[T(NILUOR1,4,IER)
IF (IER,lIE.1) CALL ERROR("APINIT error")
CALL APMAPCWORK,0,4,IER)

IF (IER.NE.1) CALL ERROR("APHAP error")
C Rtiv omn ieflsadvrt nyto
C Rtiv omn ieflsadvrf nyto

CALCMNRTSIE ,IEPMIFP
CAL (RETNNE.) CALL EROR("commaINdli ustspecf) w ie"
IFCE*E2 ALERR"oan iems pcf w ie"

C Dtriewihlnt F ilb optd
C D t r i e w i h l n t F i l b o p t d

SWTIETIS2,3 iftute12 on
SIOS=I:,TE S UIT()13 ;if true, the 1248 point
MOqTONT I Ci re he24 on

C SotteflsadvrfthIan0swths
C Sotteflsadvrf th Ian 0swths

CALSR291,ILIFLOFO
C ALSR291jIL~FL~FtO

C Vrf htteiptfl xssadrtiv t ie
C Vrf htteiptfl xssadrtiv t ie

CALSAU(IEUCKLSDT
CAL STAUS(FBLK+ numer f iputfil dikbock
XBLXS(NUlBLKX2+(LASB ;number of reanput file ek lemens

C LzNML*2)(ATY/) ;ume fra nu ieeeet
C Vrf htteiptfl stepoe egh
C Vrf htteiptfl stepoe egh

IF(OUT ALLNHCIE1NMCKLSDT1,08
IF (NSWIT) CALL LENCHC(FILEIHUBLLASTBYT6124)

C F(WT ALLNK(IEpUBKLSB71jO4
C Gtteiptfl aa
C Gtteiptfl aa

CALOE(,FLI1IR
CAL OENE,1) TYE "OEN rro ,E it nu ie
IFCALL N*I TYPE "OPEN errLKS, or T,[ER "wt nu ie
CAL (DLE (~WRE, AN.CtINT.EO.NIERL) G O5
IF (IER,EQ,1 TYPND, L UTerrorBK GOI, Th i5 utfie

50 IAL FCLOSHE,1) TP RBKerr"I "wt nu ie
50 C ALFCO
C Agetteiptfl ihzrs

DO 60 IzXLN+1,2048
WOR (I)=0,

60 CONTIN4UE
C
C Take the DFT.
C

IF (HOSWIT) CALL CBSET(CBICDL,1024,CBAXCWORKCBCWCWDFTIER)
W (ITl) CALL CBSET(CB B1CBL,512jC&AXCjWORKCCWd ,CIDFTIIER)

If ER.NE.1) TYPE "C1BSET error ,IER, on trans farm"
CALL YFFTC(CB1)
CALL VMC(CI)1
CALL VFFTR(CB1)

157

C
C Arrange the AP DFT results into proper format,
C

XFORM(1):WORK(I) ;qet the first element
XFOR (2):O,

IF (NOSWIT) GO TO 59

XFORM(1025)zWORX(2) ;qet the middle element of matrix operation
XFORM(1026):0,
DO 63 1:3f1024 ;get the first half of the matrix
XFORM(I):UORK(I) ;operation

63 CONTINUE

1:2049 ;get the second half of the matrix operation
DO 64 1=3,102412
J=I+1
1:1-2

XFORI(X):WORX(I)

XFORI(X)=-I,*WORX(J)

64 CONTINUE
GO TO 70

59 XFORM(2049):WORX(2)

XFORNo(2050)o,
DO 61 1-3 204V ~3 XFORli(I)ICOR1I-1)

61 CONTINUE

1:4097
DO 62 I:3,20482
J:l~j

K-2

XFORM(K)=WOR1(1)

XFORN(l):WORK(J)
141-1

* 62 CONTINUE
C
C Write results to file,
C
70 IF (HOSWIT) CALL TOFILE(FILEOtXFORM?4096)

IF (SUIT) CALL TOFILE(FILEOXFORM,2048)

C Handle the D switch option.
C

CALL DELCHC(FILEIIFI)

80 CALL EXIT
END

158

C Title: IFFT
C Authort Lt Allen
C Date: Dec 82

C Function;
C This program computes either the 1024-point or the 2048-point
C inverse DF7 of an input file, The input file must contain complex
C elements in rectangular format, that is X + jY. The result is
C a file of real elements.

C Compile command:
C FORTRAN/T IFFY

q C Load command:
C RLDR/P 2000/1 IFFT COMLH SORT2 STATUS LEHCHC IHFILE4
C TOFILE DELCHC APS.LB @FLIB@

C Environment:
C This is a Fortran V program that has been designed to run on a
C mapped-RDOS Eclipse S/250 minicomputer equipped with a model
C 130 array processor.

C Command line;
C IFFT I/S] input/I [/D] output/O

C where "input" and "output" are any legal RDOS filenames.

C The input and output fil2names can be typed in any order,
C however, the I switch should always be attached to the input
C file and the 0 switch should always be attached to the output
C file,

C The D switch can only be attached to the input file, and deletes
C the input file after the output file has been created.

C The S switch denotes that the 1024-point inverse DFT of the
C input file will be computed. If it is not present, the 2048-point
C inverse DFT is computed.

INTEGER RETSPtFILEI(7),FILEO(7),FI(2)tFO(2),tS(2)tLEGTH
INTEGER CB1(0:CBMAX)jCB2(0:CBMAX)
LOGICAL ITESTSWITNOSJIT
REAL WORK(2048),PliTABLE(0:511)XFOR(2176)

C
C Map all of array processor memory*
C

COMMON / APNEM / ORX

INCLUDE "ARRAYP:F5APS.FR- ;must include in any AP poqram

C

159

C Initialize the AP and set up mapping window,
C

CALL APINIT(NILIWORXt4tIER)
IF (IER,HE.I) CALL ERROR("APINIT error")

V CALL APMAP(WORK,0t4tIER)
IF (IER.NE.I) CALL ERROR("APNAP error")

C
C Retrieve command line files and verify only two,
C

CALL COMLN(RETtSPtFILEIFILEOtSPtMbtFIFOtSP)
IF (RET,NE,2) CALL ERROR("command line must specify two files")

C

C Determine which length inverse DFT will be computed#
C

SWIT=ITEST(MS(2)t13) ;if truer the 1024-point
NOSWIT:,HOT,SWIT ;if true, the 2048-point

C Sort the files and verify the I and 0 switches.
C

CALL SORT2(9t15,FILEIFILEOtFIFO)
C
C Verify the input file exists and retrieve its size.
C

CALL STATUS(FILEIIIBLKStBYTS)
C
C Verify that the input file is the proper length,
C

IF (SUIT) CALL LENCHC(FILEItIBLKSIBYTS,20482048)
If (NOSWIT) CALL LENCHC(FILEIIBLKSIBYTS,4096,4096)

C
C Get the input file data.
C

IF (SUIT) CALL INFILE(FILEItOt9XFORlI152) ;must read 9 disk
;blocks to get 1025 points

IF (NOSWIT) CALL INFILE(FILEIIO,17XFORMN2176);must read 17 disk
;blocks to get 2049 points

C
C Set up the cosine table that is required for inverse DFT
C operations of equal to or more than 1024 points, This table
C could be set up identically for other inverse DFT operations,
C

PI:4,IATAN(I,)

DO 55 1:0,511
TABLE(I):COS((2,*PI*FLOAT(I))/2048.)

55 CONTINUE
* C

C Arrange the input data into AP inverse DFT format and provide
C scaling.
C

IF (NOSWIT) GO TO 60

UORX(1):XFORM(1)/512,

WORX(2):XFORM(1025)/512.
DO 59 1:3,1024

160

UORI):XFORN(1)512.
59 CONTINUE

Go To 70

C 60 WORK(1)XFORM(1)/1024,
WORX(2):XPORM(2049)/1024,
DO 61 1:3,2048
WORK(I)zXFORMlC)/1024#

61 CONTINUE

C Set the length for inverse DFT operation.
C
70 IF (HOSUIT) LENCTH=1024

IF (SWIT) LENGTH=512
C
C Take the inverse DFT.
C

CALL CBSET(CBICDLLENGTHCBAXCUORXCCWdCWIFTRCBAAMrnTABLE,
*CBERMASK ,APflALLERpIER)
IF (IER.NE.1) TYPE "CBSET error "fIER" on transform"
CALL VFFTR(CBI)
CALL CBSET(CB2,CDLLENGTHCBAXCUORKCCCITCCERASAPlALLERIER)
IF (IER.NE#1) TYPE "CBSET error ",IER," on complex"
CALL VFFTC(CB2)
CALL VBRC(CB1)

C
C Wirite the results to file.

IF (SUIT) CALL TOFILE(FILEOtWURK,1O24)

IF (NOS'IIT) CALL TOFILE(FILEOL4ORKt204&)
C
C Handle the D switch option*
C

CALL DELCHC(FILEIFI)

80 CALL EXIT
END

4

161

0

C Title: Nag
C Author: Lt Allen
C Date: Dec 82

C Function:
C This program takes an input file of either 1024 or 2048 complex
C elements and computes the corresponding magnitude file. The
C result is a file of real elements.

C Compile command:
C FORTRAN/T NAG

C Load command:
C RLDR/P 2000/N MAG COtLN SORT2 STATUS LENCHC TOFILE DELCHC"U C INFILE APS,L8 @FLIB@

C Environment:
* C This is a Fortran V program that has been designed to run on a

C mapped-RDOS Eclipse S/250 minicomputer equipped with a model
* C 130 array processor.

C Command line:
C NAG I/SJ input/I [/D3 output/O

C where "input" and "output" are any legal RDOS filenames.

lo C The input and output filenames can be typed in any order,
C however, the I switch should always be attached to the input
C file and the 0 switch should always be attached to the output
C file.

C The D switch can only be attached to the input file, and deletes
C the input file after the output file has been c,'eated.

C The S switch denotes that the input file contains 1024 complex
C elements, otherwise 2048 complei elements are assumed,

INTEGER RETSPFILEI(7),FILEO(7),FI(2),F(2)lS(2)
INTEGER CBI(0:CBMAX),IIL1SIBYTS
REAL ORK(2048),AHSU(4096)
LOGICAL ITESTSWITtNOSWIT

4 C
C Map all of AP memory.
C

COMMON / APMEM / WORK

INCLUDE "ARRAYP:F5APSFR" ;must include in any AP program
C
C Initialize the AP and set up mapping vindom.
C

162

CALL APINIT(NILtWORK14,IER)
IF (IERNE,1) CALL ERROR("APINIT error")
CALL APMAP(WOROt4tIER)
IF (IERME,1) CALL ERROR("APHAP error")

C
C Retrieve command line files and verify only too.
C

CALL CUL(RETtSPFILEIFILEOSPlM'SFIFOSP)
IF (RET.HE.2) CALL ERROR("command line must specify two files")

C Determine which length magnitude will be computed.
C

SWIT:ITEST(S(2)t13) ;if true, the 1024 element
NOSWIT:,NOT*SUIT ;if true, the 2048 element

C
C Sort the files and verify the I and 0 switches,
C

CALL SORT2(9,15,FILEItFILEOtFItFO)
C
C Verify that the input file exists and is the proper length.~c

r 'CALL STATUS(FILEItIBLKSIBYTS)

IF (HOSUIT) CALL LEHCHC(FILEIIBLXSIBYTS,4096t4096)
IF (SWIT) CALL LENCHC(FILEIIBLKStIBYTS,2048,2048)

CALL CBSET(CBItCBL,1024,CBAZCWORXCBAXCUORXI!R)
IF (IER.HE.1) TYPE "CBSET error ",IER," with square"

IF (SWIT) GO TO 55

IzO

DO 52 1=0,16,16
CALL IHFILE(FILEItIt6,UORX,2048) ;Get a section of input data.
CALL VSHA(CB1) ;Compute the square of the

;magnitude.
DO 52 J:z11024
K:K+I

ANSU(K):SORT(WORX(J)) ;TaKe data out of window.
52 COHTIHUE ;Get next section,

GO TO 70

55 CALL IHFILE(FILEI,0,16,UORK 2048)
CALL VSMA(CB1)

C
C Write results to file.
C
70 IF (HOSUIT) CALL TOFILE(FILEOANSW,2048)

IF (SIT) CALL TOFILE(FILEOUORI,1024)
C
C Handle the D switch option.
C

CALL DELCHC(FILEiFI)

80 CALL EXIT

163

END

16

I

I

I

164

I

0

C Title: ult
C Author: Lt Allen
C Date: Dec 82

C Functiont
C This program multiplies the individual elements of two 1024-point
C or two 2048-point elemerr files together to form a third file,
C The two files must have matching data types (either real or
C complex), which will be the data type of the third file,

C Compile command:
C FORTRAN/T MULT

C Load command:
C RLDR/P MULT COMLH SORT3 STATUS LENCHC INFILE TOFILE'
C DELCHC APS.LB @FLIB8

C Environment:
C This is a Fortran V program that has been designed to run on a
C sapped-RDOS Eclipse S/250 minicomputer equipped with a model
C 130 array processor.

C Command line:
C MULT L[/C or /R]/S] input/I (/D] output/O filter/F [/D]

V. C where "input")"output" and "filter" are any legal RDOS filenamest

C The /C or /R switch must be included and signifies either complex

C or real data files, respectively,

C The S switch denotes that the input file contains 1024 elements,
C If it is not presentt it is assumed that there are 2048 elements
C in the input file,

C The input t output and filter filenames can be typed in any order t
C however, the I switch should always be attached to the input
C file, the 0 switch should always be attached to the output file,
C and the F switch should always be attached to the filter file,

C The D switch can only be attached to the input and filter
C files, and deletes these files after the output file has
C been created,

INTEGER RETSPFILEI(7)tFILEO(7),FILER(7),FI(2),FO(2),FR(2),MS(2)
INTEGER CBl(O:CIMAX)ILXSIBYTSRBLXSRBYTS
INTEGER STOPSIZE
REAL WORX(1024)tPLAY(1024),ANSW(4096)
LOGICAL ITESTSWITNOSWIT

C

C Map all of AP memory.

165

C
COHNON / APIEM / WORYIPLAY

INCLUDE "ARRAYP0F5APS.FR" ;must include in any AP program

C Initialize the AP and set up mapping windowt
C

CALL APINIT(NILtWORX,4tIER)
IF (IER.NE.1) CALL ERROR("APIHIT error")
CALL APMAP(WORKOt4,IER)
IF (IERNE,1) CALL ERROR("APMAP error")

C
C Retrieve command line files and verify three.
C

CALL COHLN(RETSPFILEItFILEOFILERMStFIFOFR)
IF (RET,NE,3) CALL ERROR("command line must specify three files")

C Determine the element length of the input file,
C

SWIT:ITEST(MS(2),13) ;if truer 1024 elements
NOSWIT:.NOT,SWIT ;if true, 2048 elements

-A IF (SWIT) SIZE=2048
IF (NOSWIT) SIZE=4096

C
C Sort the files and verify the I, Ot and F switches#
C

CALL SORT3(9,1511BtFILEIFILEOFILERFItFOFR)
(9)' C

C Verify that the input and filter files exist and retrieve their
C size.
C

CALL STATUS(FILEIIBLKStIBYTS)
CALL STATUS(FILERIRBLKSIRBYTS)

C
C Determine the type of data file elements,
C

IF (ITEST(MS(I),tI)) GO TO 50 ;complex data
IF (ITEST(MS(1),3)) GO TO 60 ;real data
CALL ERROR("program name must have either /C or IR attached")

C
C This section of code performs a complex multiplication,
C
50 CALL CBSET(CBl CBL,512,CBAZCtWORKtCBAXCWORKtCBAYCtPLAYtIER)

IF (IERHE.1) TYPE "CBSET error ",IER," with complex"
C
C Verify the input and filter file lengths for complex data,
C

CALL LENCHC(FILEIIBLXSIBYTStSIZES)ZE)
CALL LEHCHC(FILERRBLXSRBYTSSIZESIZE)

IF (SWIT) STOPz8

166

-4

IF (NOSWIT) STOP=24

1--0
DO 52 I:-OSTUP,8
CALL IHFILE(FILEIt8tWORKtI024) ;Get input
CALL INFILE(FILERI,8,PLAY11024) ;and filter data
CALL VMCA(CB1) ;and perform a complex multiplication.
DO 52 J:11024
K: K+ I
ANSW(K):WORK(J)

52 CONTINUE
C
C Write results to file.
C

CALL TOFILE(FILEOANSWSIZE)
SCOTO 80

C
C This section of code performs a real multiplication,
C
60 CALL CBSET(CB1tCBL,1024tCBAZCtWORtCBAXCtWORtCtAYCtPLAYtIER)

IF (IER.NE.1) TYPE CBSET error "IIER," with real"
C
C Verify the input and filter file lengths for real data,

C
(s.. C CALL LENCHC(FILEItIBLKStIBYTStSIZESIZE)

CALL LENCHC(FILERRBLKSRBYTSSIZESIZE)

IF (SWIT) STOP=O
IF (NOSWIT) STOP=8

x1O
DO 62 I:OtSTOP,8
CALL INFILE(FILEItt8tWORKt1024) ;Get input
CALL IHFILEMF1LERj,,8)PLAY,1024) ;and filter data
CALL VMRA(Cbl) ;and perform a real multiplication,
DO 62 J:11024

ANSW(K):WORK(J)

62 CONTINUE
C
C Write results to file,
C

CALL TOFILE(FILEOaAHSWISIZE)
GO TO 80

C

C Handle the D switch option,
C
80 CALL DELCHC(FILEItF[)

167

CALL DELCIIC(FILERFR)

-CALL EXITC END

168

-4

Appendix E

User's Manual
and

X Source Code
for

Filter Design Software

L1

.

4

169

I

User's Manual
for Interactive Filter Design

with Program LPFIR

This user's manual explains how to adjust the filter

design parameters in program LPFIR to obtain the filter that

most closely approaches the user's specifications. It also

explains how to set up a macro file to allow program LPFIR

to be used with other programs to design filters in an inter-

active environment. This macro should be executed on a

Tetronix graphics terminal interfaced with the Eclipse com-

puter. The user should also verify that the array processor

has been initialized.

Macro File Setup

The save file (.SV) of the following programs are re-

quired in the user's directory to execute the macro file,

LPFIR, FFT, MAG, FILTPLOT

The macro file can be built using the SPEED editor.

The macro filename chosen by the user should be appended with

the .MC extension when entering the editor. The following

4command would be used to enter the editor and build a macro

file named FILTER.

SPEED FILTER.MC

4 Once in the editor, the user should insert the following

character string with the I command.

LPFIR PFILE/P FFILE/F;FFT/S FF1LE/I/D CFILE/O;
NAG/S CFILE/I/D LOGMAG/O;FILTPLOT/L LOGMAG

The user should refer to the source code heading of

170

4

each program for a description of the switch definitions and

data files. After the above macro file has been executed,

the user's directory will contain the following files,

PFILE a parameter file describing the
filter

LOGMAG a file containing the magnitude of
the 1024-point DFT of the filter
impulse response

Macro Execution

The macro file can be executed by typing the macro

filename with or without the .MC extension. Program LPFIR

was not designed for use on a Tetronix graphics terminal.

This section of the macro file can be executed on the Tet-

ronix terminal, however, the screen must be manually erased

when necessary by the user depressing the PAGE key. The user

can also allow this section of the macro to be executed on

the non-graphics terminal and then switch to the Tetronix

terminal prior to execution of the plotting section of the

macro.

Parameter Adjustment

4 The user must begin the parameter adjustme1 t sequence

with a filter design that does not generate a program error.

To obtain an initial design, specify the desired filter with

a set of fairly relaxed parameters. The following guide may

be helpful.

171

1. small filter length, 20-50 points

2. large band lengths, .05-.10

3. large transition regions, .05-.10

4. low weight factors, 5-20

The grid density. is a factor affecting the resolution of the

filter, much like the filter length. It should be chosen to

be 16 for the most resolution.

The deviation numbers that are displayed, while the fil-

ter is being designed, are an indication of how close the fil-

ter is approaching the design parameters. If the magnitude

of the numbers remains less than 1, the design will generally

be reasonable..

A design example will be given to clarify the design

sequence. The example will design a notch filter to remove

a tone located at .1 on the frequency scale. The initial

design for such a filter is shown in Fig 1.

The filter length, with respect to being an odd or even

number, appears to affect the program's ability to design a

filter. The user can determine which type of filter length

is best for the given design, by holding all other parameters

constant and changing only the filter length. The result of

doing this for the design example is shown in Fig 2. Since

the odd filter length yielded the better design, all sub-6
sequent filter lengths will be odd.

Filters of larger lengths can have sharper transition

regions and narrower bands. Therefore, the next steps involve

increasing the filter's lenath until a filter- with an arcept-

172

I

* - ftLTIPLE PASSADQ4WAb FILTER <-

- U-OWE(FILE PFILL FILTER FILE MDT SPECIFIED
FILTER WWII 'A KMBEu OF BO - 3 ato DESITY- 16

LcIE~k UPE PEU£CY IEIO4T
CUTOFF CUTOFF RSONSE FUNCION0

D~.ttfEr I slo .4 Oda Is.
W40(Ie~VFr 2 .65OO .15M06.

* W0 'eOU WIdT TO,.

Fig 1 IE.ETZIM

U2.
E(11

-4.,

- IULTIPI.E P * S WI)STPM FILTER (-

PAWtfTEP FILE PFILE FILTER FILE: WILE
FIEP. LENGTH 55 WINIIM OF WQS! 3 GRID DENSITY, 16

L~k PPER FRI OIENCY be 104T
CUJTOFF CUTOFF RSONSE FUNCTION

649- M41W I .AM0 .6400 1. 15S.
b44i t.oUltP 2 .0W ~ .35006.5
bwo NUf(k 3 .1606 .5m5 I.f:O

DO YOUJ 6"47 1,,

I W.'XFT THE~ Off. PA6ETERS,
2: CWZ THE A PEtwETERtS

SELFCTFIP

4Fig 2 0

E(1)

173

4

able transition and bandwidth are obtained. For the design

example, the filter length was increased to 165 points with

the result shown in Fig 3. Since the ripple appears uneven,

this filter was on the verge of not converging. The ripple

should be improved before other parameters are varied. The

filter length was reduced to 95 points with the results shown

in Fig 4.

2--*4 f IP E PPA164nT OP O FILM (
' F ,%,,01E f. M'IE; PrILE FILT1EP FILE,- FILE

FILTMk LF.IE TH ' 6 ME OF' MMM - 1 3 GRID 004SITY, 16

L(ACrR uPPE. FPEOLIeCY be 10I4T
CTOIFF CUTO)FF RES E FUNCTION

- ,.0 P'R 2 .A5 :15o .3th1ViD NUG 3 .1600o .5W. I

EC. YOU b&V-T TO,
I' (VPTr. TH A& PA.PAMFTErS'

-6.01

-.90 511

Fig 3

174

-) tLYIPLE P............C F3ILTER 4-
PAPWETEW FILE WVILE FILT'ER PILE- WFILE
rILTER LEWIH. 95 Mu OF DNS- 3 M~ID DIGM 34

LOWNT LITP FwQLJEICY I 1T
CUJTOFF CUTOFF WSON4E FLOCTLPN

Sol-U0(fos I .0" .0480 a. s
It4Cs HUW 2 . W" .I140 ..
6" NU43D 3 .144 SM s

ID PM bI1T TO.
W.CEXPT ltf AWE PWMMETEPS
0" C TM 60L P"TERS

.9

-3..

-. 0.

.99 511

Fig 4

175

The number of ripples in the bandstop band indicates

that the transition and bandstop width can be reduced. The

final result of several attempts, that varied only the cutoff

* . frequencies, is shown in Fig 5.

-) ILTIPLE PASSANDSYOPW F1LYLM <-

PPME~TER FILE- MILE FILTER PILEt FFILE
FILTER LL;TH- 95 AIER OF *A#=, 3 GRID DITY if

Lcbte LPPE FEUECY W I GW
CUTOFF CUTOFF MSOMS FUNC7104

WITfr~r I .*9e ."M a a
(;6 1HIFt 2 AM90 18 01.

O4E aSfEc 3 V10 580a s

D) YOU IJ T TO,
1;I WtIT T THE WE PAPETEVS
2. 0"414C DE 6&MO~ P4*"E1WE,.

SELECII5)44

-2.6

-6

Fig 5

176

-. --- .

The stopband contains only one ripple. This indicates

that the width of the stopband and transition regions cannot

be decreased significantly without increasing the filter

length. An attempt to do this without increasing the filter

length caused the ripple to increase as shown in Fig 6. The

result of increasing the filter length only gave much better

results as shown in Fig 7.

[

) ULTIPLF PASBND SCTOPBACD FILIER (4-

PIsk,'E3TE FILE- FLE FILTER FILE, FFILE
* FILTER LE4Th 9. tL OF BANDS 3 GRID DEN ITY, 16

LC4AE U FREQUENCY E 104T
(A)r. CITOFF MRSOK F.ICTIG4

WE~d, Ml."WR I -Owe am' I- to.BM*r 04.9 ,EF 2 .03W0 .e00 S. 5.

W.
1
V NIM 3 .115 .5000.

lot
W .YOIL 1 T TO,

1 S KLEPT TI HE
2:CVZTIE fEOIX POSWIETERS

SELECTZI-1

0 -E l)

-. 4

* 60 511

Fig 6

6

177

-) PLTIPLE PAIMOST~gOPB FILTER(

U6WICTEc FILE- PFILE FILTER FILE WILE
FILT~fk L0"TH- 125 MOVER OF RANDS 3 GRID W4NSITY' 16

LOWLR UFME FmW..Dcy belof
WCTF CUTOF EMS FLICTIO

E4.~tI&?E4E I .68 .6 1. to.
9s~~~ &"a 110 .13006 5

bh4D MPlR 3 .126 .5m . 0

DO Y~tJ W44T 10,
I- fffXPT THE WEU PWETER.S
2 CHWI.E TIE W~kX PoiAs*EERS

-.0

E(1)

-46a

Fig 7

178

The cutoff frequencies were again varied to reduce the

length of the bandstop to only one ripple centered on the

desired notch frequency. The final filter design is shown

in Fig 8.

Fw10*CTlP FILE PFILE FILTER FILE, FFILEFILTER~ LE14TH M2 9JSEP OF BF* 3 0 10 DENITY% 16

CUTOFF CTOFF R1O FNON

WCEPT.9 1.~FW T R

I CETE mWE PAiAPETERS
2 .(Har TH AM PAAMY.

Fig 8

179

To illustrate the affect of even/odd filter length on

the filter design, the length of the filter shown in Fig 8

was changed from 125 to 124 points. The result is shown in

Fig 9.

> ULTIPLE PASS OSTOCPI, FIL R (<-
PWAETER FILE. FFIL FILTER FIllE FrILE
FILTER LETh

:
124 HU R OF BO: 4 3 RIO DENSITY; 16

LLR UPPER FREECY WEI4T
CUTOFF CUTOFF RESHSE FIUCTION

B, ~~41 NI.MEFl 2 .0.3at~~ @5
E,4t N'trlV0E 3 .111* .3000 . 0

D) YC, J ww4, TO.
I' ACIcEPT THE ABY PC~bVICMRS
2: CHAN THE ABMIE P M'IETERS

I-LECT riV)
7 LOOW

*1IA f i ,A ! A A A
ii

-1 4

Fig 9

After the filter cutoff frequencies are a-djusted as

desired, the weight factor in eaah band can be adjusted to

give the desired rolaf iv e e'Lrr.

180

A!'D-Ri24 758 EXPANSION OF
THE ECLIPSE

DIGITAL SIGNAL
PROCESSING

3/3
SYSTEM() AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB

UN LSCLA ON SCHOOL OF ENGINEERING G R ALLEN DEC 92

UNLSSIFIED FIT/GE/EE/2D-ig F/G 9/2 MCRM ENOMONE .ho iI
EhhhhhhhhhhhhI
mhhhhhhhhhhhhI
mhhhhhhhhhhhhI
EMMONShhhhMhM1hN

Lamo

CL -

ir

'-.2

NATIONAL BUREAU Of STANDARDS-1963 A

- 'I

C file and is 88 bytes long. Both files are always deleted prior
C to being created#

CV C The filterscan have a maximum of 10 bands.

INTEGER PFILE(7),PF(2),SPRETFFILE(7),FF(2)
LOGICAL SETITEST

C
C Retrieve the command line files,
C

CALL COMLN(RETSPPFILEFFILESPSPPFtFFSP)
IF (RET.EQ.1) GO TO 45 ;if only one file
iF (RET.EO.2) GO TO 50 ;if two files

*GO TO 800

45 SET:ITEST(PF(1),0) ;check for P switch
IF (SET) GO TO 55 ;if present) continue
GO TO 800 ;if not, abort

50 CALL S0RT2(16,6,PFILEFFILEPFFF) ;sort the command line files

55 CALL CHOICE(PFILEtFFILEtPFtFFRET) ;obtain the parameter file

IF (RET6EQ.1) GO TO 900 ;if no second file) then done
60 CALL DESIGH(PFILEtFFILEtFF) ;if second file presentfthen design filter
C
C The D switch option is considered only if a filter was designed.
C

CALL DELCHC(PFILEtPF)

GO TO 900

800 TYPE "(CR)
*Incorrect command line. Consult program(CR)
*documentation for the correct syntax.(CR)"

900 CALL RESET
CALL EXIT
END

182

I

C Title: LPFir
C Author: Lt Allen
C Date; Dec 82

C Function:
C This program utilizes the Parks-McClellan algorithm to design
C linear phase FIR filters. It can be used to design lospass,
C highpass, multiband, differentiators and Hilbert transform filters
C with an impulse response between 3 and 256 points.

C Environment:
C This is a Fortran V program that has been designed to run on
C a mapped-RDOS Eclipse S/250 minicomputer.

C Compile command:
C FORTRAN LPFIR

C Load command:
C RLDR/P LPFIR COMLN SORT2 FILCHC CHOICE STATUS RDBYTS SHOPARA
C NEWSCR DESIGN REMEZ WATE EFF D GEE OUCH NFLIB@

C Command line:
C LPFIR parameter/P [/E) [/D (filter/F E/L] 3

;. , C where "parameter" and "filter" are any legal RDOS filename

C The P switch must always be attached to the parameter filename. A
C parameter file will be Lreated with the filter parameters
C interactively specified by the user. The filter parameters will
C be displayed and can be changed if requested by the user.

C The E switch denotes that the parameter file already exists, The
C filter parameters will be display and can be changed it requested
C by the user,

C The filter filename and F switch denotes that the filter specified
C by the parameter file will be designed and the impulse response
C stored under the filter filename, The F switch must be attached.

C The L switch denotes that a listing for the filter design will
C be sent to the printer.

C If the parameter and filter files are both given, they can be
C typed in any order.

C The D switch can only be attached to the parameter file if a
C filter file is also specified* This switch deletes the parameter
C file after the filter file has been created.

4
C Comments:
C The impulse response file wili be Lreated as a random file and vill
C contain real data. The parameter file is also created as a random

181

C Title: Choice
C Author% Lt Allen
C Date: Dec 82

C Function;
C This routine is used by program LPFIR to collect filter design
C parameters from the users

C Compile command:
C FORTRAN CHOICE

. C Load command:
C RLDR/P main program CHOICE STATUS RDBYTS SHOPAR NEMSCR etc

C Coaments;
C The variables that are passed to this routine have the following
C meaning,

C PFILE/PF the filename that the filter design parameters
C will be written to and switch array

C FFILE/FF the filename that will contain the filter
C impulse (if one was requested by the user)
C and switch array

C RET this integer variable is sent to the routine
" E C set to 1 (if FPILE does not exist) or 2

C (if the FFILE does exists)

C The filenames and switch arrays are of the type returned by the
C COIARG routine.

SUBROUTINE CHOICE(PFILEFFILEPFPPFRET)

INTEGER PFILE(7),FFILEC7),PF(2),FF(2),YESNOtEEPtEXISTBYTS
4 INTEGER BLKSILASTBYTIRET

REAL PARA(44)

LOGICAL ITESTSET

NOzO

YES:1

SETaITEST(PF(1),II) ;check for E switch
IF (.NOT.SET) GO TO 10 ;if not present t collect parameters

C
C This section of code collects the filter parameters from a disk

* C file.
C

LALL STATUS(PFILEBLKStLASTBYT)

183

4

BYTS:(DLIS*512).LASTBYT
CALL RDBYTS(PFILEBYTSPARAt88)
EXIST:YES
GO TO 70

r C This section of code collects the filter parameters interactively
C from the user#
10 EXIST:NO

CALL NEWSCR

ACCEPT "(CR)
cEnter the filter length,(CR)
i (3-256): ",PARA(1)
IF (PAkA(1)oGE,30 tAND. PARA(1).LE.256) GO TO.20
WRITE (10,1)

I FORNAT ("(CR){CR)(CR)
*Please make selections only from the given options,")
GO TO 10

20 ACCEPT "(CR)
*Enter the type of filtert(CR)

1 1: multiple passband/stopband filter(CR)
* 2: differentiator(CR)
I 3: Hilbert Transform filter(CR)
eselection:",PARA(2)
IF (PARA(2).GE.1. *AND. PARA(2).LE.3.) GO TO 30
URITE(0,1)

, GO TO 20

30 ACCEPT "(CR)
*Enter the number of bands)(CR)
* (1-10):",PARA(3)
IF (PARA(3).GE,.1. *AND, PARA(3),LE,10.) GO TO 40
WRITE (10,l)
GO TO 30

40 ACCEPT "(CR)
*Enter the grid density,(CR)

* * (1-16):",PARA(4)
IF (PARA(4).GE°l. ,AND, PARA(4),LE,16.) GO TO 50
WRITE(10,1)
GO TO 40

50 TYPE "(CR)(CR)(CR)(CR)(CR)(CR)(CR)
*The following must be specified for each bandl(CR)
*(CR)
e lover cutoff freq(CR)
* upper cutoff freq"

IF (PARA(2).EO.1 .OR. PARA(2).EO.3) TYPE
* i freq response"

IF (PARA(2).EQ.2) TYPE

184
ta

t slope"

TYPE"

w oeiqht function"

TYPE "(CR)
-where#(CR)
-(CR)
. the lower and upper cutoff frequency specified(CR)
. must be in the interval 1-.5(CR)
- (this implies a sampling frequency of 1)(CR)"

IF (PARA(2).EO.1 *OR, PARA(2),EQ,3) TYPE
I the frequency response must be zero or(CR)
: a positive value"

IF (PARA(2),EQ.° *OR, PARA(2 *EO°3) TYPE "(CR)
* the weight function must be a(CR)
I positive value"

IF (PARA(2).EQ.2) TYPE
* the slope and weight function vust(CR)
I be a positive value"

TYPE "(CR)
*Press carriage return to begin"
ACCEPT

IZO

J:4
60 J:J.l

URITE(10,6) I
6 FORMAT ("(CR)Band number "t12)

ACCEPT "
*lower cutoff freq : ",PARA(J)
J:J*l
ACCEPT
*upper cutoff freq - ",PARA(J)
J:J+1
IF (PARA(2),EQ,° .OR. PARA(2),EQ.3) ACCEPT

*freq response: ",PARAJ)
IF (PARA(2),EQ,2) ACCEPT

Islopet "pPARA(J)
J--J+l

ACCEPT
*weight function: "tPARA(J)
IF (FLOAT(I),LT.PARA(3)) GO TO 60

C
C Display the parameters and have the user decide if they will be Kept.
C
70 CALL SHOPAR(PARAPFILEFFILEtRETtKEEP)

IF (REEPEO.HO) CO TO 10
IF (XEEP.EQ°YES ,AND, EXISTEQ.NU) GO TO 75

185

74

IF (KEEP.EO.YES .AND, EXIST.EO.YES) GO TO 90
CALL ERROR("invalid value returned for KEEP")

* *. C

C This section of code writes the filter parameters to file, if the
C parameter file does not already exist.
75 CALL DFILW(PFILEtIER)

CALL CFILW(PFLLE,2,IER)
IF (IE.1NE.I) TYPE "CFILW error ",IER

CALL OPEN(IPFILE,3,lER)
IF (IERNE.I) TYPE "OPEN error "tIER

DYTS:16+(PARA(3)*16)
CALL WRSEQ(1tPARAtBYTStIER)
IF (IERtE,I) TYPE "WRSEO error ",IER

CLOSE 1

90 RETURN
END

186

C Title: ShoPar
C Author: Lt Allen
C Date: Dec 82

C Function:
C This routine is used by program LPFIR to display filter design
C parameters, It also requests from the user whether the parameters
C will be Kept or changed and returns the decision to the calling
C proqran.

C Compile command:
C FORTRAN SHOPAR

C Comments:
C The variables that are passed to this routine have the following
C meaning,

C PARA a 44-element array that contains the design parameters

C PFILE the name of the parameter file (in S format) that
C contains array PARA

C FFILE the name of the filter impulse response file (in S
C format) if this file was requested by the user

C RET this integer variable is sent to the routine set to
C 1 (if FFILE was not requested) or 2 (if FFILE was
C requested)

C KEEP this integer variable is returned by the routine
C set to I (if the user decided to Keep the design
C parameters) or 2 (if the user wants to change the
C design parameters)

SUBROUTINE SHOPAR(PARAIPFILEFFILERETKEEP)

INTEGER PFILE(7),FFILE(7),RETIlEEPYESNO
REAL PARA(44)

NO:O
YES2!

NFILT:INT(PARA(1))
NBANDS:INT(PARA(3))
LGRID:INT(PARA(4))

10 TYPE
IF (PARA(2),EQ.i.) TYPE

--) Multiple Passband/Stopband Filter (--"

IF (PARA(2),EO,2,) TYPE "

187

- - - .. .-.

*: e --)Differentiator (--"
IF (PARA(2),EO,3o) TYPE
*. .. } --) Hilbert Transform Filter (--

TYPE

IF (RET.EG.2) bRITE(1Ot3) PFILE(I),FFILE(1)
3 FORMAT(

*Parameter File: ",S13t" Filtsr Filet ",S13)

IF tRET.EO.1) WRITE(1O,4) PFILE(1)
4 FORMAT("

*Parameter File: ",Sl3," Filter File: not specified")
URITE(1O,2) NFILTYNBANDSLGRID

2 FORMAT("
*Filter Length: ",I3t" Number of Bands: ",121" Grid Density: "112)

IF (PARA(2),EO, ,OR. PARA(2).EU,3) TYPE "(CR)
£ Lower Upper Frequency Weight(CR)
I Cutoff Cutoff Resonse Function"

IF (PARA(2),EO,2) TYPE
* Lower Upper Slope Weiqht(CR)
* Cutoff Cutoff Function"

TYPE
50 1:1

J--5
60 WRITE(0Ot6) IPARA(J)tPARA(J 1)tPARA(J.2),PARA(J+3)

" 6 FORMAT("
*Dad Number "#121 . .F5.4," ",F5.4," "F3.01
I" "F3.0)

J:-J+4

IF (FLOAT(I).LE.PARA(3)) GO TO 60

DO 65 K:Il1
TYPE

65 CONTINUE

80 ACCEPT
*Do you want to,(CR)
£ 1: accept the above parameters(CR)
I 2: c 7nqe the above parameters(CR)
*selection: "#IKE

KEEP=2
IF (IKE.EQoI) KEEP:YES
IF (IKE.EO°2) KEEP:NO
IF (kEEP°NE.2) GO TO 90
,RITE(1O,1)

FORfAT("(CR)(CR)(CR)
*Please select only from the options given.(CR)(CR)")
TYPE

*Press carriage return to continue"

188

- . .

ACCEPT
GO TO 10

90 RETURN
END

*18

I

I

189

C Title: Design
C Authors: James H, tcClelian
C Thomas W, ParKs
C Lawrence R. Rabiner
C Date: Dec 73

C Revised by: Lt Allen
C Revision date: Dec 82

C Function:
C This routine implements the ParKs-icClellan algorithm to design
C a variety of linear phase FIR filters, For a discussion of this
C algorithm, refer to section 5,1 of the following publication.

C Programs for Digital Signal Processing
C New York, IEEE Press, 1979

C IEEE Book Numbers: Clothbound: 0-87942-127-4
C Paperbound: 0-87942-128-2

C The above publication contains the source code for the algorithm
C that was revised and used in this subroutine. It also contains
C the source code for the subroutines listed in the load line# The
C revisions allow the program to be used as a subroutine with the
C filter design parameters read from disk file and the filter
C impulse response written to disk file,

C This routine was designed for use with program LPFIR, Program LPFIR
C should be consulted for a description of the type of filters that
C this routine can be used to design, Subroutine CHOICE creates the
C parameter file that is intended for use with this routine,

C Compile command:
C FORTRAN DESIGN

C Load command:
C RLDR/P main program DESIGN ERROR EFF RENEZ D GEE OUCH WATE etc

C Comments:
C The variables that are passed to this routine have the following
C meaning,

C PFILE the parameter filename

C FFILE/FF the filter filename and corresponding switch array

C both filenames should be in S forsat and the switch array is of
C the type returned by the CONARG subroutine

I

SUBROIF'TNE DES1f' PFILEFFILEIFF)

190

C
VC This section of code is identical to the referenced program.

C
* COMMON P12,ADDEVX,YGRIDIDESNIITALPHAIEXTNFCNSINGRID

COMMON /OOPS/NITERIOUT
DIMENSION IEXT(130) ,AD(130)t,ALPHA(130),X(130) ,Y(130)
DIMENSION H(130)
DIMENSION DES(2OaoGRD2080UT(2080J
DIMENSION EDGE(20),FX(1O),UTX(1O),DEVIAT(1O)
DOUBLE PRECISION P121PI
DOUBLE PRECISION ADDEVIXY
DOUBLE PRECISION GEED
INTEGER BDIBD2,BD3j8D4
DATA BD1,BD2,BD3,DD4/IHBIHAIHN,1HD/
IOIJT=1O ;this is the 1/O unit number for the console
PI=4,OIDATAN(1.ODO)
P12=2,ODOO*Pl

C
C This section of code is a revision to the referenced program,
C
C Revision code parameters
C

REAL PARA(44),IMPULSE(128)
~ INTEGER PFILE(7),PP1LE(7),FF(2),BYTSBLKSLASTBYT

LOGICAL ITESTSET
C
C Get filter parameters from file,
C

CALL STATUS(PFILEDLXSLASTBYT)
BITS: (BLXS*512)+LASTBYT
CALL RDBYTS(PFILEBYTSPARA,44)

-C
C Align parameters with variables in the ParKs-McClellan algorithm.
C,

NFILT=PARA(1)
JTYPEsPARA(2)
NBANDS=PARA(3)
LGRID=PARA(4)

L'0

Jz4
60 11

Lu L+ I
EDGE(L):PARA(J)

EDCE(L) :PARA(J)
J:-J+1

191

FX(I):PARA(J)

VTX(I)zPARA(J)
IF (I*LT.INT(PARA(3))) GO TO 60

C
C This section of code is identical to the referenced program#
C

NEC:1
IF (JTYPE.EO.1) NEG=0
NODD=NFILT/2
NODDzNFILT-2MNODD
NFCNS=NFILT/2
IF(NODD.EQ,1.AHDtNEC.EQ.O) NFCNS=NFCNS,1

C
C SET UP THE DENSE GRID. THE NUMBER OF POINTS IN THE GRID
C IS (FILTER LENGTH + 1)'GRID DENSITY/2
C

GRID(1)=EDGE(1)
DELF:LGRIDIHFCNS

I DELF=0,5/DELF
IF (NEG.EO0) Ga TO 135
IF(EDGE(1).LT.DELF) GRID(1):DELF

135 CONTINUE
Ja1
L=1
LBAI4D=1

140 FUP:EDGE(L,1)
145 TEMP:GRID(J)
C
C CALCULATE THE DESIRED MAGNITUDE RESPONSE AND THE WEIGHT
C FUNCTION ON THE GRID
C

DES(J) :EFF(TEMPPX ,WTXLDANDJTYPE)
IIT(J) :VATE(TEIPFXWTXLBAND ,JTYPE)
J=J+1
GRID(J) :TEMPDELF

4i IF(GRID(J).GT.FUP) GO TO 150
GO TO 145

150 CRID(J-1):FUP
DES(J-1):EFF(FUPFXWTXLBANDJTYPE)
WT(J-1):WATE(FUPFXWTXLDANDJTYPE)
LBAND:LBAND+ I
L:L,2
IF(LlBAND*CT*NBANDS) GO TO 160
CRID(J) :EDGE(L)
GO TO 140

160 NURI~zJ-1
IF(NEGtHENODD) GO TO 165
IF(CRID(NGR1D),GT,(0,5-DELF)) NGRID=NGRID-1

165 CONTINUE
C
C SET UP A NEW APPROXIMATION PROBLEM WHICH IS EUUIYALENT

192

C TO THE ORIGINAL PROBLEM.
C

IF(NEG) 170,170,180
170 IF(NODD.EO.1) GO TO 200

DO 175 J:1,NCRID
CHANGE:DCOS(PI*GRID(J))
DES (J):DES(J)/CHAHCE

175 WT(J)=UT(J)*CHANGE
GO TO 200

180 IF(NODD.EQ.1) GO TO 190
DO 185 J:1,NGRID
CHANGr':DSIM(PI*CRID(J))
DES(J)=DES(J)/CHAHGE

185 WT(J)!UT(J)*CHANGF
GO TO 200

q190 00 195 J:1,NGRID
CHANGE=DSIN(PI2*GRID(J))
DES(J)=DES(J)/CHANGE

195 WT(J):IJT(J)*CHANGE

C INITIAL GUESS FOR THE EXTREMAL FREQUENCIES- -EQUALLY
C SPACED ALONG THE GRID
C

200 TENP:FLOAT(NGRID-1)/FLOAT(NFCNS)
DO 210 Jz1,NFCHS
XT:J-1

210 IEXT(J):-XTTEMP+1,0
YJ IEXTIHFCNS.1)zNGRID

Nh1:NFCNS-1
NZzNFCNS4 1

C
C CALL THE REMEZ EXCHANGE ALGORITHM TO DO THE APPROXIMATION
C PROBLEM
C

CALL REMEZ
C
C CALCULATE THE IMIPULSE RESPONSE.
C

IF(NEG) 300,300,320
300 IF(NODD.EQO0) GO TO 310

DO 305 Jz1,NMI
NZMJ:NZ-J

305 H(J)=0#5UALPHA(NZMJ)
H(NFCNS):ALPHA(1)

4G GTO0350
310 Htl)z0,25*ALPHAtNFCHS)

DO 315 J=2,NM1
NZNJZNZ-J
NF2J:NFCNS,2-J

315 H(J)z0,251(ALPHA(NZMiJ).ALPHA(NF2J))
* H(NFCNS):0,5*ALPHA(1)+0.25*ALPHA(2)

GO TO 350
320 IF(H'uDD.EQ.O) GO TO 330

H(1) c,25*ALPNA(NFCNS)
193

H(2):0,Z5*ALPHA(NMI)
DO 325 J:3,Nlil

NF3J=NFCHS+3-J
325 H(J):0,251(ALPHiA(NZI J)-ALPHA(NF3J))

H(NFCHS)=0,5*ALPHA(l)-0.25*ALPHA(3)
H(NZ)=O#0
GO TO 350

330 H(1)=O,25*ALPHA(NFCNS)
DO 335 J:2,Nlil
NZflJ:NZ-J
NF2JzNFCHS+2-J

335 H(J)zO,25*(ALPA(NZ'J)-ALPHA(NF2J))
H(NFCNS):0.5*ALPHA(l)-0,25*ALPHA(2)

C
C This section of code is a revision to the referenced program.
C
C Calculate the complete impulse response,
C
350 CONTINUE

DO 351 J:INFCNS
X:NFILT+1-J
IF (NEC.EQ.) IMPULSE(J)=H(J)
IF (NEG.EO0) IMPULSE(K):H(J)
IF (NEG.EQ.1) IIPULSE(J)=H(J)
IF (NEG.E.1) IMPULSE(K)=-H(J)

351 CONTINUE
IF (HEG.E0l.1 *AND. NODD.EO.1) II'PULSE(NZ)=0,0

C
C Write filter impulse response to file.
C
352 CALL DFILW(FFILEIER)

IF (IER.EQ.13) GO TO 353
IF (IERNE.1) TYPE "DFILW error "IIER," with filter file"

353 CALL CFILW(FFILE,2,IER)
IF (IER*NEoI) TYPE "CFILW error ",IER," with filter file"
CALL OPEN(2,FFILE)3,IER)
IF (IER.NE.1) TYPE "OPEN error "tIER," with filter file"

BYTS:HFILT*4
CALL WRSEO(2,IMPULSEIBYTSIER)
IF (IERNE.1) TYPE "WRSEG error ",IER," with filter file"

CALL CLOSE(2,IER)
IF (IERNE.1) TYPE "CLOSE error ",IER," with filter file"

SET:ITEST(FF(1),4) ;true if L switch is present
IF (*NOT.SET) GO TO 500 ;if L switch is not presenlt

ithen do not send a filter design
;listing to the printer

194

C
C This section of code is identical to the referenced program.
C
C PROGRAM OUTPUT SECTION.
C:

URITE(IOUT,360)
360 FORMAT(IH1, 70(IH*)//15X,29HFINITE IMPULSE RESPONSE (FIR)/

113X,34HLINEAR PHASE DIGITAL FILTER DESIGN/
217X,24HREREZ EXCHANGE ALGORITHM/)
IF(JTYPEEO.l) WIRTE(IOUT,365)

365 FORMAT(22XIl5HBANDPASS FILTER/)
IF(JTYPEEG,2) WRITE(IOUTt370)

370 FORMAT(22XtI4HDIFFERENTIATOR/)
1F(JTYPE.E0,3) WRITE(1OUT1375)

375 FORMAT(20XI9HHILBERT TRANSFORMER/)
IWRITE(IOUT,378) FL

378 FORMAT(20X,l6HFILTER LENGTH z 13/)
URITE(IOUT,380)

380 FORfATU15X,28H**** IMlPULSE RESPONSE 1**

DO 381 J=1,NFCNS
j(:NFILT+l-J
IF(NEG.EQ40) WRITE(lOUTt382) JH(J),K
IF(NEG*EO.1) UR17E(IOUT,383) JH(J),

381 CONTINUE
382 FORMAT(13Xp2HH(,12,4H) =,E15.8t5H zH(,13pIH))
383 FORMiAT(13X,2HH(,12,4H) z E15,8,6H =-H(,13,1H))

IF(NEG.EO.1.AND.NODD.EO.I) WRITE(IOUTt384) NZV 0384 FORMAT(13X,2HH(,12,8H) z0,0)
DO 450 X:1,NlANDS,4
KUP:K+3
IF(KUP.GTNBANDS) KUP=NBANDS
WRITE(IOUT,385) (BD1,8D2,8D3,BD4,JJzRKUP)

385 FORMAT(/24X,4(4A13,7X))
WRITE(IOUT,390) (EDGE(2*J-l),J=XKUP)

390 FORMAT(2XI5HLOWER BAND EDGE,5F14.7)
WRITE(IOUT:395) (EDGE(2WJJ,UP

395 FORPIAT(2XI15HUPPER BAND EDGEt5F14.7)
IF(JTYPENE.2) WRITE(IOUTp40) (FX(JJKjKUP)

*400 FORMAT(2Xt13HDESIRED VALUE,2X,5F14.7)
IF(JTYPE.EQ.2) WR17E(lDUT,405) (FX(J),J:XI(UP)

405 FORMAT(2XI3HDESIRED SLOPEp2X,5F14.7)
WRITE(IOUT,410) (WTX(J),J=KIUP)

410 FORMAT(2X,9HWEIGHTINC,6X,5Fl4.7)
DO 420 J:KKUP

4 420 DEVIAT(J)DEV/WTX(J)
WRITE(IOUT,425) (DEVIAT(JJ1KUP)

425 FOkMAT(2X,9HDEVIATIONX5F47)
lF(J7YPENE,1) GO TO 450
DO 430 J:X,KUP

430 DEVIA7(J):20,0*ALOtIO(DEVIAT(J)+FX(J))
* WRITE(IOUT,435) (DEV1AT(J),J=KXUP)

435 FORMA7(2X,15HDEVIATION IN DB,5F14.7)
450 CONTINUE

DO 452 J:1,NZ

195

IX:IEXT(J)
452 CRJD(J):CRID(JX)

URITE(IOUT,455) (GRID(J),J:1,NZ)
455 FORNAT(/2X,41HEXTREIAL FREQUENCIES--MAXIMA OF THE ERROR CURVE/

I (ZX,5F12.7))
URITE(IOUT,460)

460 FORIAT(/1X,70(1HU)/1HI)

500 RETURN

END

CII INI IINI*II**IN*INI**III**IIIINIINNI196NIIII

C

C SUBROUTINE: REMEZ
C THIS SUBROUTINE IMPLEMENTS THE REMEZ EXCHANGE ALGORITHM
C FOR THE WEIGHTED CHEBYSHEV APPROXIMATION OF A CONTINUOUS
C FUNCTION WITH A SUM OF COSINES, INPUTS TO THE SUBROUTINE
C ARE A DENSE GRID WHICH REPLACES THE FREQUENCY AXIS, THE
C DESIRED FUNCTION UN THIS GRIDt THE WEIGHT FUNCTION ON THE
C GRID, THE NUMBER OF COSINES, AND AN INITIAL GUESS OF THE
C EXTREMAL FREQUENCIES. THE PROGRAM MINIMIZES THE CHEBYSHEV
C ERROR BY DETERMINING THE BEST LOCATION OF THE EXTREMAL
C FREQUENCIES (POINTS OF MAXIMUM ERROR) AND THEN CALCULATES
C THE COEFFICIENTS OF THE BEST APPROXLMATION.
C --
C

SUBROUTINE REMEZ
COMMON P12,ADtDEVXtYGRIDtDESIWTALPHAIEXTNFCNStNGRID
COMMON /OOPS/HITERIOUT
DIMENSION IEXT(130)tAD(130)tALPHA(130),X(130),Y(130)
DIMENSION DES(2080),IRID(2080)tUT(2080)
DIMENSION A(66)tP(65),O(65)
DOUBLE PRECISION Pi2tDHUMIDDENpDTEMPAPU
DOUBLE PRECISION DKtDAX
DOUBLE PRECISION ADDEVXY
DOUBLE PRECISION GEEtD

C
C THE PROGRAM-ALLOWS A MAXIMUM NUMBER OF ITERATIONS OF 25
c

ITRMAX=25
DEVL=-I,
NZ:NFCNSl
NZZ:NFCNS+2
NITER:0

100 CONTINUE
IEXT(NZZ):NGRID+l
NITERzHITER,1
IF(NITER.GT.ITRMAX) GO TO 400
DO 110 JzlNZ
JXT=IEXT(J)
DTEMP:GRID(JXT)
DIEMP:DCOS(DTEMP*PI2)

110 X(J):DTEMP
JET:(NFCNS-I)/15+1
DO 120 J:z1HZ

120 AD(J)=D(JtNZJET)
DNUMz0=0
DDEN=0,0

DO 130 J:ztNZ
L:IEXT(J)
DTEMP:AD(J)*DES(L)
DNUM:DHUM4DTEMP
DTEMP=FLOAT(X)xAD(J)/WT(L)
DDEN:DDEN+DTEMP

197

130 1:-K

WRITE(IOUT,131) DEY
131 FORI ATIX,12HDEVIATION J ,12.9)

IF(DEV.GT.0.0) 00:-1
DEV:-FLOAT(NU)*DEV
1--"U
DO 140 Jz1,NZ
L:IEXT(J)
DTEl1P:FLOAT(K)*DEV/VT CL)
Y(J):DES(L),DTEIP

140 1:-K
IF(DEV.CI.DEVL) GO TO 150
CALL OUCH
GO TO 400

150 DEVL:DEV
JCHNGE:0
K1:IEXT(1)
KNZ:IEXT(NZ)
KLOW :0
NUTz-NU

C
C SEARCH FOR THE EXTREIIAL FREQUENCIES OF THE REST
C APPROXiIMATION

(U~e c
200 IF(J*EO.HZZ) YNZ:COMP

IF(J.CE*NZZ) GO TO 300
KUP=IEXT(J,1)
L:IEXT(J),l
NIJT:-HUT
IF(JOED.2) Y1:cOh1P
COI P=DEV
IF(L.GE.KUP) GO TO 220
ERR=GCEE(CLpHZ)
ERR=CERR-DES(L))#T CL)
DTEMP:FLOAT (NUT) 'ERR-COIP
lF(DTEIIPLE.0.0) GO TO 220
COMP: FLOAT(CNUT)* E RR

210 L:L,1
IF(L.GE.KUP) GO TO 215
ERR: CEE CLPHZ)

4 ERR:(ERR-DESCL))*WTCL)
DTEIIP=FLOAT(NUT) fERR-COIP
IF(DTEIIPLE.0,0) GO TO 215
COMP:FLOAT (NUT) *ERR
GO TO 210

215 IEXT(J):L-1
J:-J~j
KLOWzL-l
JCHHGE:JCHNCE+1
GO TO 200

220 LzL-i
198

225 L:L-1
IF(L.LE.LOW) GO TO 250
ERR:GEE(LNZ)
ERR=(ERR-DES(L))*VT(L)
DTEMPzFLOAT(NUT)*ERR-CO P
IF(DTEIIP,GT,0.0) GO TO 230
IF(JCHNGE.LE,0) GO TO 225
GO TO 260

230 COMPmFLOAT(NUT)*ERR
235 L=L-1

IF(L.LE.KLOW) GO TO 240
ERR GEE (LtNZ)
ERR=(ERR-DESCL))*WT(L)
DYEIIP=FLOAT (NUT) 'ERR-COMP
IF(DTEIIP.E.0.0) GO TO 240
CONP=FLOAT(NUT)*ERR
GO TO 235

240 KLOW=IEXT(J)
IEXT(J)=L,1
J:J+1

* ~J CHNG E: iC HNG E.1
GO TO 200

250 L=IEXT(J),1
IF(JCHNGE.GT*0) GO TO 215

255 L:L+I
IF(L.GE.KUP) GO TO 260
ERR=GEE(LtNZ)
ERR=(ERR-DES(L))*VT(L)
DTENP=FLOAT(HUT)*ERR-COIP
IF(DTEIIPLE.0.0) CO TO 255
COMP=FLOAT(NUT) KERR
GO 7O 210

260 KLOIW:IEXT(J)
J:-J,1
Go TO 200

300 IF(JGT.NZZ) GO TO 320
IF(KI.GTIEXT(1)) KI:IEXT(1)
IF(KNZ.LT,IEXT(HZ)) KHZ=IEXT(NZ)
NUTI: NUT
NUT:-HU
L:0O
KUP-K I
CONP:YNZ*(1000001)
LUCK: 1

4310 L:L,1
IF(LCE.KUP) GO TO 315
ERR: GEE (LtHZ)
ERR:(ERR-DES(L))*WT(L)
DTEMP:PLOAT(HUT) 'ERR-COMP
IFCDTEMP*LE,0*0) GO TO 310

* COPP:FLOAT(HUT)*ERR
JzNZZ
GO TO 210

315 LUCK:6

199

GO TO 325
320 IF(LUCK.GT.9) GO TO 350

IF(CONP.CTOYI) YI:COMP
Kl:IEXT(NZZ)

325 L=NGRID,1
K KLOU:INZ

NUT=-NUT1
* CDMP:Y1*I,00001)

330 L=L-I.
IF(L.LE.KLOJ) GO TO 340
ERR: GEE (L Z)
ERR=(ERR-DES(L))*UT(L)

* DTEMP:FLOAT(NUT)*ERR-COMP
IF(DTEMP.LE.0.0) GO TO 330
J=NZZ
CDIIP:FLOAT(NUT) .ERR
LUCK: LUCli 10
GO TO 235

340 IF(LUCK,EO,6) GO TO 370
DO 345 Jz1,NFCNS
NZZNJ=NZZ-J

4 NZNJ=NZ-J
345 IEXT(HZZNJ)=IEXT(NZIJ)

IEXT(1):K1
Go TO 100

350 KN:IEXT(NZZ)
DO 360 J=1,NFCNS

360 IEXT(~J)%IEXT(JjI)
IEXT(NZ)=KN
GO TO 100

370 IF(JCI*IGEG7.0) GO TO 100
C
C CALCULATION OF THE COEFFICIENTS OF THE BEST APPROXIMATION
C USING THE INVERSE DISCRETE FOURIER TRANSFORM
C

400 CONTINUE
NNHFCNS-1
FSHzl . O-06
GTENP:GRID(1)

4 X(NZZ):--2.0
CN:2INFCHS- 1
DELF:1.0/CN

IF(CRID(1).LT.0.01,AND.GRID(NGRID).GT.0.49) KKK:1
IF(NFCNS.LE,3) ICKK:1
IF(lXKEO.1) GO TO 405
DTEMP:DCOS(P12*GRID(1))
DNUNzDCOS(PI2iGR[D(NGRID))
AAz2o0/(DTEMiP-DUMi)

4 DD:-(DTEMP+DNUM)/(DTEMP-DNUM)
405 CONTINUE

DO 430 J=1,NFCNS
FTZJ-1

200

FT=FT*DELF
XTaDCDS(PI2IFT)
IF(XKI.Ego.) CO TO 410
XT:(XT-BB)/AA
XTl:SGRY(I .- XT*XT)
FT=ATAN2(XTlXT)/PI2

410 XE:X(L)
IF(XT.GT*XE) GO TO 420
IF((XE-XT)*LT.FSH) GO TO 415
LxL,1
GO TO 410

415 A(J)zY(L)
CO TO 425

420 IF((XT-XE).LT.FSH) GO TO 415
CRID(l):PT
A(J)=GEE(INZ)

425 CONTINUE
IF(L.CT,1) L:L-1

430 CONTINUE
CRID(1) =TEI P
DDEN=P'12/CN
DO 510 JzlNFCNS

4 DTENP=0.0
DNUfl:J-1
DHU?1:DHNIJIDDEN
IF(NM1.LT.1) GO TIO 505
DO 500 K:1,NmI
DAK:A(1+1)
DK:i(

500 DTEI'PDTEIPDAX*DCOS(DNUI1*Dk)
505 DYEMP:2,0*DTEflP+A(1)
510 ALPHA(J):DTEMP

DO 550 J=2,HFCNS
550 ALPHA(J)=2,0*ALPHA(J)/CN

ALPHA(I)=ALPHA(1)/CN
IF(XXX*EQI) GO TO 545
P(1)z2,0*ALPHA(NFCNS)*BB+ALPHA(NN1)
P(2):2,OUAA*ALPHA(NFCNS)
O(1):ALPHA(NFCNS-2)-ALPHA(NFCHS)

4 DO 540 J:2,NM1
IF(J.LT.NhI) GO TO 515
AAz0.5IAA
B820,5*9D

515 CONTINUE
P(J+1)z0,0
DO 520 K:1,J
A(K)zP(K)

520 P(K)z2,OEBDUA(X)
P(2):PC2)+A(1)12,0NAA
Jml1zJ-1
DO 525 K~1,JN1

525 P(K):P(X)+Q(X)+AA*A(X,1)
JP1:J,1
DO] 530 X:3,JP1

201

530 P(X)=P(K)eAA*A(K-1)
IF(JEO.NN1) GO TO 540
DO 535 K:1,J

535 G(K)z-A(K)
NF1J:NFCNS-1-J
O(1)zO(1),ALPHA(NFlJ)

540 CONTINUE
DO 543 J:1,NFCNS

543 ALPHA(J):P(J)
545 CONTINUE

IF(NFCNS.CT*3) RETURN
ALPI4A(NFCNS.I) 0,0
ALPHA(NFCNS+2) :0,0
RETURN
END

202

Ic

C---
C FUNCTIONz WATE
C FUNCTION TO CALCULATE THE WEIGHT FUNCTION AS A FUNCTION
C OF FREQUENCY, SIMILAR TO THE FUNCTION EFF, THIS FUNCTION CAN
C BE REPLACED BY A USER-WRITTEN ROUTINE TO CALCULATE ANY
C DESIRED WEIGHTING FUNCTION.
C---
C

FUNCTION WATE(FREOFXWTXLBANDJTYPE)
DIMENSION PX(5),WTX(5)
IF(JTYPE.EO.2) GO TO I
WATE:WTX(LBAND)
RETURN

I IF(FX(LBANDboLT*O.OOO1) GO TO 2
WATE=WTX(LBAND)/FREG
RETURN

2 WATE=WTX(LBAND)
RETURN
END

203

C FUNCTION: EFF
C FUNCTION TO CALCULATE THE DESIRED MAGNITUDE RESPONSE
C AS A FUNCTION OF FREQUENCY,
C AN ARBITRARY FUNCTION OF FREQUENCY CAN BE
C APPROXIMATED IF THE USER REPLACES THIS FUNCTION
C WI1TH THE APPROPRIATE CODE TO EVALUATE THE IDEAL
C MAGNITUDE, 14OTE THAT THE PARAMETER FREG IS THE
C VALUE OF NORMALIZED FREQUENCY NEEDED FOR EVALUATION,
C---
C

FUNCTION EFF(FREQFXWTXtLBANDIJTYPE)
DIMENSION PX(5),WTXC5)
IF(JTYPEEG,2) GO TO 1
EFFzFX(LBAND)
RETURN

I EFFzFX(LBAND)*FREO
RETURN
END

204

:4

C

C FUNCTION% D
C FUNCTION TO CALCULATE THE LAGRANGE INTERPOLATION
C COEFFICIENTS FUR USE IN THE FUNCTION GEE,
C---
C

DOUBLE PRECISION FUNCTION D(KtNM)
COMMON P12,ADIDEVXYGRIDDESWTALPHAlEXTNFCNSNGRIO
DIMENSION IEXT(130),AD(130),ALPHA(130),X(130),Y(130)
DIMENSION DES(2080),GRID(2080),WT(2080)
DOUBLE PRECISION ADIDEVXtY
DOUBLE PRECISION 0
DOUBLE PRECISION P12
D=I.0
i=X(K)
DO 3 LzlII
DO 2 J=LNlM

~ m IFtJ'K)1,2,1

I Dz2,0EDE(O-X(J))
2 CONTINUE
3 CONTINUE

D=1.0/D
RETURN
END

205

C

C FUNCTION: GEE
C FUNCTION TO EVALUATE THE FREOUENCY RESPONSE USING THE
C LAGRANGE INTERPOLATION FORMULA IN THE BARYCENTRIC FORM
C ---------------------- 7--
c

DOUBLE PRECISION FUNCTION GEE(XtN)
COMMON PI2,ADDEVXY ,GRIDDESUTALPHApIEXT.NFCNSHGRID
DIMENSION IEXT(130)pAD(130),ALPHA(130)tX(130)tY(130)
DIMENSION DES(2080),GRID(2080),WT(2080)
DOUBLE PRECISION PCDXF
DOUBLE PRECISION P12
DOUBLE PRECISION ADpDEVtXtY
PmO.O
XF:GRID(K)
XFzDCOS(PI2*XF)
D:OO

DO I JclN
C=XF-X(J)
C=AD(J)/C
D=D+C

1 P=P+Cm'tJ)
GEE=P/D
RETURN
END

206

CC-

C SUBROUTINE: OUCH
C WRITES AN EkROR MESSAGE WHEN THE ALGORITHM FAILS TO
C CONVERGE. THERE SEEM TO BE TUO CONDITIONS UNDER WHICH
C THE ALGORITHM FAILS TO CONVERGE: (1) THE INITIAL
C GUESS FOR THE EXTREMAL FREQUENCIES IS SO POOR THAT
C THE EXCHANGE ITERATION CANNOT GET STARTED, Ok
C (2) NEAR THE TERMINATION OF A CORRECT DESIGN,
C THE DEVIATION DECREASES DUE TO ROUNDING ERRORS
C AND THE PROGRAM STOPS, IN THIS LATTER CASE THE
C FILTER DESIGN IS PROBABLY ACCEPTABLE, BUT SHOULD

C BE CNECKED BY COMPUTING A FREOUENCY RESPONSE.
C---------- -- - ------ --------- ---------- --------- --------- ----- ---

C

SUBROUTINE OUCH
COMMON /OOPS/HTERIOUT
WRITE(IOUT,1)NITER

I FORMAT(44H *******" FAILURE TU CONVERGE *****.*/
I41HOPROBABLE CAUSE IS MACHINE ROUNDING ERROR/
223HONUMBER OF ITERATIONS =p14/
339HOIF THE NUMBER OF ITERATIONS EXCEEDS 31/
462HOTHE DESIGN MAY BE CORRECT, BUT SHOULD BE VERIFIED WITH AN FFT)
RETURN
END

I

I

207

4

Appendix F

Source Code
for

(Support Software

208

C Title: ComLn
C Author: Lt Alien
C Datet Dec 82

C Function:
C This routine fetches the number of filest filenames and switch
C values of up to 3 files that may have been entered in the
C command line with the executing program.

C Compile commandi
C FORTRAN COMLN

C Command line:

C CALL CONLN(TOTALNAINFILEIFILE2FILE3NStFlF2,F3)

C where)

C TOTAL returns the number of filest in addition to the executing
C program, that were entered in the command line of the executing
C program.

C MAIN/HS are the name and switch values entered for the executing
C program.

C FILEI/FIt FILE2/F2 and FILE3/F3 are the additional filenames
C and corresponding switches if entered in the command line.

C All filenames are returned in the S format. The following table
C gives the bit that is set in the switch array for each switch
C that is attached to a filename. If the switch is not attached,
C then the corresponding bit will be zero. Also) the unused bits
C in the second switch element will be returned zero, The bits
C are numbered from 0) the rightmost, to 15, the leftmost. This is
C the convention used by the ITEST subroutine.

C switch bit of SW(1) switch bit of SW(2)

4 C A 15 0 15
C 9 14 R 14
C C 13 S 13
C D 12 T 12
C E tl U 11
C F 10 V 10
c G 9 W 9
C H 8 X a
C 1 7 Y 7
C 3 6 Z 6
C K 5
C L 4
C I 3
C N 2
C 0 1

209

C P 0

JC SUBROUTINE CONLN(T0TALDMAINFILE1,FILE2,FILE3INSFlF2,F3)

INTEGER NAIN(7),FILEI(7),FILE2(7),FILE3(7)
INTEGER KS(2),F1(2),F2(2),F3(2),TOTAL

T0TAL:0
CALL GROUND(I)
IF (I.EO.0) OPEN 1,"CON.CN" ;operating on background terminal
IF (I.EQ.1) OPEN 1,"FCON.C11" ;operating on foreground terminal

CALL COMARC(1,NAINNSIER)I IF (IER.NE.1) TYPE "CONARC error",IER," with main file"
CALL COMARG(1,F1LEIFIIER)
IF (IER.EO.9) GO TO 10
IF (IER.NE,1) TYPE "COMARG error",IER," with first file"
TOTALz7OT AL.!

*4 CALL COMARC(1,FILE2tF2,I1R)
IF (IER.EG.9) GO TO 10
IF (IER.NE*I) TYPE ICONARG error"tIER," with second file"
TOTALzTOTAL* 1

CALL COMARG(1,FILE3,F3,IER)
IF (IEREQ.9) GO 10 10
IF (IER.NE.1) TYPE "CONARG error",IER," with third file"
T OTAL zTOT AL, I

10 CLOSE I
RETURN
END

210

C Title% ClkSet
C Author: Lt Allen
C Date: Dec 82

C Function;
C This routine allows the user to interactively set the clock to
C be used for an Eclipse A/D/A conversion operation.

!C Compile command:

C FORTRAN CLISET

C Comments:
C The device number (21 for AID or 23 for D/A) is sent to the
C routine in variable DEVICE.

C The clock chosen is returned to the calling program in variable

C CLOCK.

SUBROUTINE CLKSET(DEVICECLOCK)

INTEGER DEVICECLOCI

IF (DEVICE.EO,21 .OR, DEVICE.EO.23) GO TO 10
CALL ERROR("improper device number")

10 TYPE "(CR)
IWhat type of clock?(CR)
4 1: pulse(CR)
0 2a external(CR)
I 3: internal"
IF (DEVICE.EO,21) TYPE " 41 DCH" ;not allowed for A/D operations
ACCEPT "

'selection:",1CLOCK
4

CLOCK:7771
IF (ICLOCK.EOQ,) CLOCK:OK
IF (ICLOCK.EQ,2) CLOC1'600001
IF ([CLOCK.EO.3) CLOCX:40000K
IF ((DEVICE.EO,21) .AND.(ICLOCK.EQ.4)) CLOCK:20000K

4 IF (CLOCi.NE,777K) GO TO 15
WRITE (10,1)

I FORMAT ("(Ck)(CR)(CR)
IPlease make selections only from the given options.")
GO TO 10

4 15 IF (CLOCK.EO.01) TYPE "(7)(7)(7)(CR)
*Use of the pulse clock requires special software setup(CR)
land should not be attempted without consultinq the SAH(CR)

211

*User's Manual."

16 IF (CLOCI.EO.0) ACCEPT "(CR)
*Do you want to,(CR)

1 1% use pulse clocK(CR)
I 2t select another clock(CR)
tselection;-1NHIS

IF (INIS.Ego,) GO TO 20
IF (IMISEQo2) GO TO 10
URITE(10,)
GO TO 16

20 RETURN
END

CiltitIU.lui~ll uut4i lMlllt EtltuEtNt*tiEI lluitI21iiuiii*i***iil2uI*I~hI

212

C Title: DelChc
C Author: Lt Allen
C Date% Doc az

C Function:
C This routine deletes a disk file if it's switch array has the D
C D switch set, The shitch array should be of the form returned
C by the CONARG call,

C Compile command:
C FORTRAN DELCHC

C Comentsa
C The variables that are passed to this routine have the following
C meaning,

C FILENAM the disk filename (in S format)

C FS the corresponding switch array for the
* C disk file

CiiuhlmJM§JJhIi**OhhhuhJhiiiiJim*IjuhjhaIIjhIiihhhIjhih*.hjijjhjifhihimf

SUBROUTINE DELCHC(FILENANFS)

INTEGER FILENAN(7),FS(2)
LOGICAL ITEST

IF 4,NOT.ITEST(FS(l),12)) GO TO 10
CALL DFILN(FILENANIIER)
IF (IER.NE.I) URITE(101) IERFLLEMAN(l)

1 FORNAT("
*DFILW error "*12," with file ",S13)

10 RETURN
END

4

I

213

Celmmeeleeseieleeummseammeemlesssmmammmeammaemmueemimmmmie~m

C Title: FilChc
C Author: Lt Allen
C Date: Dec 82

C Function:
C This routine verifies that tmo filenames are not identical. If
C they are, an error message is printed to the screen and the
C program is aborted.

C Compile command:
C FORTRAN FILCHC

C Comments:
C The filenames sent to this routine should be in the S format.
C (This is the format returned by the CONARG call)

CeIsmeeueeum'emeeeememeeeeieeeeeummeeeameaemeemeuuemeueemaeee

SUBROUTINE FILCNC(FILEIIFILE2)

INTEGER FILEI(7),FILE2(7,TEST

TESTx0
1:1

10 IF (FILEI(I).NEFILE2(I) GO TO 20
) I=141

IF (I.LT.8) GO TO 10
GO TO 30

20 TEST.1

30 IF (TEST.EQ.O)
#CALL ERROR("the given command line filenames cannot be identical")

RETURN
END

C~m~lleuueeeeueim~eoii~iiaetseie~iueisueeuesseeemegeeaeemegeeet~eemmg

214

-4

Ciittt*m~iti*tlttlNlii*ii***iittti*ii*Emiuiiilletiliiititieieilulie

C Title: FiltPiot
U C Authort Lt Allen

C Date: Dec 82

C Function:
C This program plots filter responses on the tetronix terminal. It
C sill plot an impulse of up to 512 points or the magnitude or log
C magnitude of the 1024-point DFT magnitude of the impulse
C response. The program assumes that the filter file is of
C the type (time or frequency magnitude) specified to be
C plotted. Only the first half (512 points) of the DFT files
C are plotted. All file data types should be real.

C Compile command:
C FORTRAN FILTPLOT

C Load command:

C RLDR/P FILTPLOT COMLN STATUS GRPH.LB IFLiIB

C Command Line:

C FILTPLOT (/[or /H or IL) filename

C where "filename" can be any legal RDUS filename

C Either the 1, 11 or L switch must be attached and indicates

C an impulse, magnitude or log magnitude plot, respectively.

REAL RFILT(1024)jRPIjRP2,RP3
INTEGER FILE(7),SPtfIS(2tRETItUflbLKtLASTBYTPOINTSBYTS

LOGICAL ITESTpSET
C
C Retrieve command line file and verify only one.
C

CALL COflLN(RETSPFILESPISPflStSPSPSP)

IF (RET.EQ.1) GO TO 20
CALL ERROk(incorrect command line 6yntax")

C
C Verify input file exists and retrieve it's contents.
C
20 LALL STATUS(FILEtNUMBLXtLASTOYT)

POINTS:6WUhBLK*128)t(LASTBT/4)
BYTS:POINTSM4
CALL FOPEN(IFILE)
CALL RDSEU(1,RFILTtVYTS,1ER)
IF (IER.NE.1) CALL ERROR("kDSO error")
CALL FCLOSE(M)

4 C

C Determine the type of plot.
C

215

SET=IT18T(MS(I),7) ;checK for I switch
IF (SET) GO TO 50

SET:ITEST(NS(1)13) ;checK for N switch
IF (SET) GO TO 30

SET:IT1ST(HSt1),4) ;checK for L switch
IF (SET) GO TO 40
CALL ERROR("invalid command line switch")

C
C Plot the first half of the magnitude response.
C
30 POINTS:POINTS/2

GO TO 60
C

C Compute log magnitude responsesI C
40 POINTS=POINTS/2

DO 16 I=IlPOINTS
RFILT(I):0,IALOGIO(RFILT(I))

16 CONTINUE
60 TO 60

C

C Plot impulse response with vertical lines.
C
50 IF (POINTS.GT.512) CALL ERROU("impulse response too long")

CALL GRPH2(FILEI1RFILTRPIPOLNTSIIRP2,RP30)
ACCEPT ;allow user to position cursor for typing
ACCEPT ;on graph
ACCEPT
ACCEPT
GO TO 90

C
C Plot magnitude and log magnitude response with smooth line.
C
60 IF (POINTS.NE.512) CALL ERROR("frequency response not 1024 points")

CALL GkPH2(FILEIlRF1LTRPI1POINTSOIRP2,RP3,O)
ACCEPT
ACCEPT
ACCEPT
ACCEPT

90 CALL EXIT
END

216

C Title: Header
C Author% Lt Allen

C C Date: Dec 82

C Function:C This routine prints on the printer a header specifying an Eclipse

C A/D/A conversion operation. The conversion results specified can
C then be printed beneath the header#

C Compile commandt
C FORTRAN HEADER

C Comments:q C The variables that are passed to this routine have the following
C meaning,

C DEVICE 21 for A/D or 23 fo D/A

C SPECI starting channel for A/D or D/A

C SPEC2 ending channel for AID or mode set for f/A

C IDATA2 conversion count

C IER DOITW error return

C IORBA the operation's IORDA array

C CLOCK conversion count

SUBROUTINE HEADER(DEVICESPECISPEC2,IDATA2,IERIORDAtCLOCK)

INTEGER DEVICESPECISPEC2plDATA2,IERIORBA(16),CLOCI

IF (DEVICEEQ.21 .OR, DEYICE.EO.23) GO TO 605
4 CALL ERROR("improper device number")

605 CALL FGDAY (INON, IDAY, IYR)
CALL FGTINE (IHOUR, ININ, ISEC)

WRITE (12,1O)
10 FORNAT (IX,"Eclipse A/f/A operation')

WRITE (12,115)
WRITE (12,11) INONjIDAYIYR

11 FORNAT (IX,"date: ",12,"/"12,"/",12)
WRITE (12,12) IHOURININ

12 FORNAT (iX,"time: ",12," - "t12)
WRITE (12,115)
WRITE (12)1)
IF (CLOCIEO,1) WRITE (12,21)

217

IF (CLOCX.EO.2) WRITE (12t24)
IF (CLOCKoEO.3) WRITE (12,23)
IF (CLOC.EO.4) WRITE (12,2)
WRITE (12,3) SPECI
IF (DEYICE.EO,2L) WRITE(12,4) SPEC2
IF (DEVICE.EO,23) WRITE(12,8) SPEC2
WRITE (12,5) IDATA2
WRITE (12,6) IER
WRITE (12,7)
WRITE (12,9) (IORBA(I)=l1p16)

I FORMAT (1X,"analog-to-digital conversion")
20 FORMAT (Xp"diqital-to-analoq conversion")
2 FORMAT (IX,"ClocK: ",12)
3 FORMAT (X"First channel- ")12)
4 FORMAT (IX,"Last channel: "tI2)
5 FORMAT (1XI"Conyersion count; ")I5)
a FORMAT (lX,"Node; "112)
6 FORMAT (lX,"OOIT error. "114)
7 FORMAT (1X,"Iorba(1-16) (Octal format):")
9 FORMAT (IX,16(IXpO6))
21 FORMAT (IX,"pulse clock")
22 FORMAT (IX,"DCH clock")
23 FORMAT (MX,"internal clock")
24 FORMAT (1X"external clock")

WRITE (12,115)
115 FORMAT (IX)

I -4 RETURN
END

2

218]

-e

C Titlez InFile
C Author: Lt Allen
C Date: Dec 82

C Function:
C This routine reads a specified section of a disk file into a real
C data array.

C Compile command:
C FORTRAN INFILE

C Comments:
C The variables that are passed to this routine have the following
C meaning,

C FILENA the disk filename (in S format) to be read

C STBLK the number of the disk blocK to begin
C reading (the first block of a file is 0)

C HUMBL(the number of disk blocks to read

C ARRAY the array to receive data

C LEN the length of the data array

SUBROUTINE INFILE(FILENANSTBLKNUMBLKARRAYLEH)

INTEGER FILENAN7),STLKHUMBLXLEN
REAL ARRAY(LEN)

CALL OPEN(I FILENAMI'lIER)
IF (IER.NE.1) WRITE(I0p1) 1ERFILENAM(1)

I FORMlAT("
#OPEN error ",16t" with file"S13)

CALL RDBLK(tlSTBLIARRAYINUMBLII1ER)

IF (IERNE.) WRITE(lO,2) IERFILENAM(1)
2 FORMIAT("

IRDBLK error "14," with file ",S13)

4 CALL FCLOSE(1)
RETURN
END

219

C Titlet LenChc
C Author: Lt Allen
C Date; Dec 82

C Function:
C This routine verifies that a disk file fits a specified minimum
C or maximum size, If the disk file is too large or small) the
C program is halted and an error message is printed on the console's
C screen. The unit used to measure the file's length is a real
C number element, which requires 4 bytes of memory,

C Compile command:
C FORTRAN LENCHC

- C Comments:
C The variables that are passed to this routine have the following
C meaning,

C FILENAM the disk filename (in S format) that is
* C being checked

C NURL the number of the last disk block oi the
C disk file

C LASTRYT the number of the last byte in the last
C disk block of the file

C "IN the minimum acceptable number of real elements

C HAX the maximum acceptable number of real elements

SUBROUTINE LENCHC(PILENAMIUMBLXLASTBYT,IINIAX)

INTEGER FILENA(7)tNUNBLKILASTBYTLENNAXNIN

* LEN:(NUMBLK*128)+(LASTBYT/4)
IF (LEN.LT.MI N) WRITE(1OI) FILEHAMl(I),lI
IF (LEN.GT.HAX) WRITE(1O,2) FILENAN(I)pAX
IF (LEH.LTIIIN dOR, LEN.GTNAX) GO TO 20

1 FORHAT("
*File ",5131" must contain at least "#161" real elements,")

4 2 FORHAT("
*File ",S13," cannot contain over "1161" real elements,")
RETURN

20 TYPE "
*program aborted"
CALL EXIT
END

6esl available COPY,

cII.I~II~u~u.*,*.EI*,,E~u*,~tu**fj.EIuIIuIII.u..

0

C Title: NewScr

C Author; Lt Allen
u C Date% Dec 82

C Function:
C This routine erases the screen by typing 24 blank lines.

C Compile command;

IN C FORTRAN NEWSCR

CttluINlueuuleleeeteetmeeteeu*.*etee,.,e,..elueefeet....,ueit,,,..eliiileull.

SUBROUTINE NEWSCR

DO 10 1:1,24
TYPE

10 CONTINUE

RETURN
END

0

222

6

C Title: Paper
C Authort Lt Allen
C Date: Dec 82

C Function:
C This routine prints sections of an integer data array on the
C printer in 512-word pages. The calling program specifies all
C of the parameters required.

C This routine was designed for printing data collected with the
C Eclipse A/D/A device, When executing the real number print
C option# the integer word is converted to the real number
C equivalent that this device uses to store data samples.

C Compile command:
C FORTRAN PAPER

C Comments:

C The variables that are passed to this routine have the following
i C meaning,

C IFOR display format: I for integer, 2 for real number
C and 3 for octal

C ISTART the starting page

C ISTOP the ending page

C ARRAY the data array to be shown

C LEN the length of the data array

SUBROUTINE PAPER(1FQRISTAR1ISrOPARRAYLEH)

INTEGER IFORISTARTISTOPLENARRAY(LEN),IPRTIPAGE
REAL TOPVOLTREALNUR

TDPVOLT:5,0 ;magnitude of Eclipse device bi-polar setting
IPRT:32

IPAGE:ISTART-1
ll:(ISTARI-1)0512

610 12=0
IPAGE:IPAGEI
WRITE (12,8) IPAGEIPRT
WRITE (12,115)

115 FORMAT (IX)
8 FORNAT (1XI"paqe",13p" of")13)
615 13=0
620 14:0

2 2 3

625 11811+1
14414+1
REALNUH:FLOAT(ARRAY(Il))/32768,OITOPVOLT ;convert to real number
IF (IFOR.EO.1) WRITE (12p9) ARRAY0(1)C If (IFOR*EQ.2) WRITE (12,14) REALNUM
IF (IFBREG.3) WRITE (12,13) ARRAY(tI1)

14 FORMAT ("+",IXF7.4,Z)
13 FORMAT ("+",lXpI6,Z)
9 FORMAT ("+.,1X,06,Z)

IF (14,NE.16) GO TO 625
WRITE (12,115)
13zI3+1
IF (13.NE.16) GO TO 620
WRITE (12,115)
WRITE (12,115)
I2z12+1
IF (12.WE.2) GO TO 615
IF (IPAGENE.ISTOP) GO TO 610

RETURN
END

224

:4

C Title: Plot
" C Author% Lt Allen

C Date: Dec 82

C Function:
C This program allows the user to set the plotting options in the
C GRPH2 subroutine to plot real and complex data files.

C Compile command:
C FORTRAN PLOT

C Load command:

C RLDR/P PLOT IHFILE STATUS GRPH.LB IFLIVI

C Envirosent:
C This is a Fortran V program that has been designed to run from a
C TeKtronix graphics terminal on a aapped-kDOS Eclipse S/250
L minicomputer system.

CMeeaumeememuea~emeuga gum~e e em~eIumeleeaeImueegmfueeeaeeue*m

REAL RDATA(512),IDATA(512),TEMP(1024),SPISP2
INTEGER FILENAN(7) FIRSTNUMBiBLKSBYTSITYPELENTOTBLKSPOIHTS
INTEGER IPLOIDECjISCIOPIAN1MO

CALL ERS(
CALL FDELAY(10)

TYPE "(CR)
*This program plots up to 512 specified points(CR)
*from file on the tetroni. graphics terminal."
ISEC:2
ISCXO

30 ACCEPT "(CR)
*Enter filename for reading:"
READ(1105) FILEMA M()

5 FORNAT(S13)

IF (ISEC.E0.1) GO TO 50

40 ACCEPT "(CR)
*Nhat type of data does this file contain,(CR)
4 1: real(CR)
* 2: complex(CR)
*selection:",ITYP

IF (ITYP.EO.1 *OR. ITYP.EO.2) GO TU 50
WRITE(1O11)

1 ORNAT ("(Ck)(CR)(CR)
Please chose only from the options given.")
GO TO 40

225

50 ST1 ATUS(FILENAN ,DLKS ,DYTS)

TOTVLKSz4*ITY'
IF (IYrS.EQ.512) BLKS=VLIS+1

60 WRITE(I012) FILENARIIDKSBLKS
2 FORIAT("(CR)

*file ",S13," contains ",13,' diskblocksp numbered from 1I
kiR1TE(10,3) LE14

3 FORMAT("(CR)
#Each disk block contains ",13," elements*")
WRITE(1014) TOTVLKS

4 lFORfAT("(Ck)
*Up to ",I1," disk blacks can be plotted in#")

ACCEPT "(CR)
*Please specify,(CR)
£starting block.-",FIRST
IF (ISEC.EQ.2) ACCEPT

I number of blocks:",NUMB
CALL ERS(1
CALL FOELAY(lO)

IF ((FIRST-1).CT.bLX5) GO TO 60
IF (NUMB.CT.TOTDLIS) GO TO 60
IF ((NUhB+FIRST-2),CT.LKb) GO TO 60

FIRST=FIRST-l

IF (ITYP.EQ.1) GO TO 70

CALL INF1LE(FILEtIlFIRSTNUMBTEMll',124)

K=O
DO 72 1=1,512

RDATA(I)zTEMIP(K)
X:K+l
IDATA(l):TENP(l)

72 CONTINUE

74 ACCEPT "(Ck)
*Which data plot(s) will be viesed,(CR)

*1: real data(CR)
*2: imaginary~ data(CR)
*3: both(Ck)

Iseiection:" ,IPLO
IF (IPLO.GE.1 SAND, IPLO.LE.3) CO TO 80
4RIYEtI101)
CO TO 74

226

70 IF (ISECoEQ,2) CALL IWFILE(FILENANFIKSTWUNRDATA,512)
IF (ISEC.EO,1) CALL INFILE(FILENANFIRSTNUNIIDATA,5l2)
IPLO:-1
IF (lSEC,EO.1) IPLOz3
IF (ISECLQIO.) CO TO SO

75 ACCEPT "(CR)
* *Do you want to place a second plot(CR)

*of real data on the qraph'(CR)
I 1: yes(CR)
* 2: no(CR)

*selection-." ISEC

IF (ISEC.EO.1) LO TO 30
* IF (ISEC.EQ,2) GO TO 80

ORITC10, 1)
GO TO 75

8Q ACCEPT "(Ck)
*Do you *ant to set the scaling lisits?(CR)

I 1: yes(CR)
* 2: no(CR)

*selection: "1lOP

V ~ If~ (IOP.EQ.1) GO TO 81
IF (IOP.EQ.2) GO TO 83
WRITE (10,1)
GO TO 60

81 ACCEPT "(CH)
*Enter the m&Aimus. ",SP2
ACCEPT
*Enter the minimum% ",SPI
ISC:1I

83 ACCEPT "(CM
#Do you want to,(CR)

* 1: connect with vertical lines(CR)
I 2: connect with smooth line(CR)

* 'selectionz "#IANl

IF (IAN.E0.I) 1110:1
IF (IAN.EU.2) 1110:0
IF (IAN.EQ.1 MO. IANEQ.2) GO TO 85
WRITE (10,1)
GO TO 63

2217

85 ACCEPT "(CR)
*Enter the number of points to plot: ",POINTS
TYPE "ISC",1SC,"SP1",SP1,"SP2",SP2
ACCEPT
IF (IPLO.EO. 1) CALL GRPH2(FILENAN,1,RDATAIDATAPOINTS,1NOSP1,SP2,ISC)

If ~ S:~:~ ALLFILENAN,1,IlDATApRDATAPONTSISISP21SC)
1 SC :0

ACCEPT
ACCEPT
ACCEPT
ACCEPT
CALL ERS(I
CALL FDELAY(1O)

90 ACCEPT "1(CR)
*D)o you want to,(CR)
* 1: plot from another file(CR)
* 2: plot from current tile(CR)
* 3: exit(CR)

*selection:."pIDEC

IF (IDEC9EO.1) GO TO 30
If (IDEC.EO.2) GO TO 60
IF (IDEC.EO.3) GO TO 100
WRITEC 10,1)
GO TO 90

100 CALL EXIT
END

Cu~~~~~~~~~~~~ 2,.~a*~*,,.,, M.. 8***I****g****~~*fa*uMI

C Title; RdByts
C Author: Lt Allen
C Datei Dec 82

* . C Function:
C This routine reads a section of data from disk file isto an
C integer data array,

C Compile command:

C FORTRAN RDBYTS

C Comments:

C The variables that are passed to this routine have the following
C meaning

C FILE the disk filename (in S format) to be read

C BYS the number of byts to be read

C ARRAY the array to receive data

LEN the length of the data array

Caatteaueeaeeeeeeumeueeeeuee~eeeeeuueaue~e,eeeueemmuiu~e,,eeeeeeee

. e1g SUBROUTINE RDB'TS(FILEjb11SjARRA1,LEH)

INTEGER FILE(7),BYTSLEN
INTEGER ARRAY(LEN)

CALL OPEN(IFILE1tIER)
IF (IERNE,I) WRITE(IO,1) IERjFILE(1)

I FORNAT("
#OPEN error "#16," with file "IS13)

CALL RDSEO(IARRAYBYTSIER)
IF (IERNE*1) WRITE(IO,2) IERtFILE(l)

4 2 FORMAT("
'RDSEG error "116t" with file "IS13)

CALL FCLOSE(I)
RETURN
END

4

229

mi Cemmemmeeememugemesmememmmteee~e eimeemm.,.m,.mmmnmmees~eNmmsl

C Title: Redbuf

C Author; Lt Allen
ii C Date: Dec 82

C Function;
C This routine reads a section of disk file into an integer data
C array, The file and data section are specified interactively
C by the user,

C Compile command:
C FORTRAN REDBUF

C Comments:q C The variables ARRAY and LEN that are passed to this routine are
C the data array and it's length, respectively. On returns the array
C contains the user data&

C*emmeem*ueummeieu,.mme,meieesemee~eeeesmumememee,,eemmemee,,me

SUBROUTINE REDBUF(ARRAYLEN)

INTEGER LENARRAY(LEN),FILENAN(7),IFIRSTIINUNIDEC

500 TYPE
ACCEPT
#Enter the filename for reading:"
READ (11,2) FILENAM(i)

2 FORNAT (613)

CALL OPEN (IFILENAN,2,IER)
IF (IEREO.13) GO TO 510
IF (IERNE.I) TYPE "OPEN error",IER

ACCEPT "(CR)
#Enter the starting block for reading,(CR)
I (the first block of a file is 1)")IFIRST
IFIkSTzLFIRST-I

ACCEPT "(CR)
*Enter the number of blocks for reading:"IINUR

CALL RDBLK(IIFIRSTARRAYINUNIER)
IF (IER.NE.1) TYPE "RDBLX error",IER
IF (IER.NE.1) GO TO 520
CALL RESET
GO TO 100

510 TYPE "(CR)
#This file does not exists"
GO TO 520

520 CALL RESET
2 30

ACCEPT "(CR)
'Do you @ant to,(CR)
* 1% try another file(CR)c 2: return to the main menu(CR)
-selection:",IDEC

IF (IDECEO.1) GO TO 500
IF (IDEC.EO,2) GO TO 100
WRITE (10,1)

1 FORNAT("(CR)(CR)(CR)
*Please make selections only from the qiven options.")
GO TO 520

100 RETURN
END

'23

231

4

C Title; Seelt
C Author; Lt Allen
C Date% Dec 82

C Function:
C This routine displays sections of an integer data array on the
C screen in 128-sord pages. The calling program specifies all the
C parameters required.

C This routine Pas designed for displaying data collected with the
C Eclipse A/D/A device. When executing the real number display
C option, the integer word is converted to the real number
C equivalent that this device uses to store data samples.

C Compile command:
C FORTRAN SEEIT

C Commentst
C The variables that are passed to this routine have the following
C meaning)

C IFOR display format: 1 for integert 2 for real number
C and 3 for octal

C ISTART the starting page

C ISTOP the ending page

C ARRAY the data array to be shown

C LEN the length of the data array
g Ci iiiidiiiNid*iiititdidliNi**ietiillIiliditi**i*Itiidttiiiditei

SUBROUTINE SEEIT(IFOROISTARTISTOPARRAYLE)

INTEGER IFORISTARTtISTOPLENARRAY(LEN),ITOTIIPAGE
REAL REALNUMITOPVQOLT

ITOT:128
TOPVOLTz5. ;magnitude of Eclipse device hi-polar setting

505 TYPE "(CR)(CR)
*Press carriage return to begin and(CR)
*to continue with the next paqe.(CR)"
ACCEPT

IPAGE:ISTART-1
I1:(ISTART-1)e128

510 12z0
IPAGE:IPAGEtl
TYPE "(CR) page"tIPAGEO" of",ITOT,"(CR)"

0

515 13:0
520 14:0
525 11=11+1

CI4z14+I
REALNUN:FLOAT(ARRAY(I1))/32768,0*TOPVOLT, ;convert to real number
IF (IFOR.EQI) WRITE (10,110) ARRAY(II)
IF (IFOR,EQ,2) WRITE (10,111) REALNUN
IF (IFOR.EO.3) WRITE (10,112) ARRAYtII)

110 FORMAT (IXO6,Z)
111 FORMAT (IXF7.4,Z)
112 FORMAT (1X,16tZ)

IF (14.NE.8) GO TO 525
WRITE (10,115)

115 FORMAT (IX)
13:13+1
IF (13.NE.8) G~O TO 520
WRITE (10,115)
WRITE (10,115)

12:12+1
IF (12.NE.2) GO TO 515
ACCEPT
IF (IPAGE,NE,ISTOP) GO TO 510

RETURN
END

23 3

4lilllililllilill~lllilillll~~li~J~~ii~

C Title: SetUp
C Author; Lt Allen
C Dater Dec 82

C Function:
~I C This is a special purpose routine used by program INDIGI and

C OUTDIGI. It allows the user to select the type of format and
C section of data buffer for printing/displaying.

C Compile command:
C FORTRAN SETUP

C Comments:
C The variable IOP that is passed to this routine has the value 2,
C for data buffer display) or 3, for data buffer print.

C The other variable values are returned to the calling program
C as set by the user.

SUBROUTINE SETUP(IFORIOPISTARTtISTOP)

230 ACCEPT "(CR)
*What type of format?(CR)

1 1: too's complement(CR)
m 2: real number(CR)
* 3: integer number(CR)
*selection:")IFOR

IF ([FOR.LT.1) GO TO 230
IF (IFQR,GT.3) GO TO 230

231 IF (IOP.EO,2) GO TO 225
IF (IOP.EG.3) GO TO 235

225 TYPE "(CR)
*There are 128 pages of data, numbered I through 128,(CR)

4 *with each page containing 128 samples."

GO TO 250

235 TYPE "(CR)
IThere are 32 pages of data, numbered I through 32#(CR)
*mith each page containing 512 samples."

4 250 ACCEPT "(CR)

*What page mill be first? ")ISTART
ACCEPT "
*What page mill be last? ",ISTOP

IF (ISTARY.LT.I) GO TO 231
4 ITEST:((-960lOP),320)

IF (ISTOP.GT.IIEST) GO TO 231
IF (ISTART.GT.ISTOP) GO TO 231

234

h.

RETURN

END

lote Iit flht1111t1111tl tt* iIII*E1t111ttlt I101t u1111t1111111tuI11t11

U

0,

0 Q

0

II

Cm~ummmmwmswsweememmsnmeesnmnnnmwmamewewmenumnemnnen~emmnmm

C Title: Sort2
C Author: Lt Allen
C Date: Dec 82

C Function:
C This routine receives too filenames and their corresponding switch
C arrays. It arranges the filenames and switch arrays in order of
C position according to specified switch values also passed to it,

C Compile command:
C FORTRAN SORT2

C Command line:

C CALL SORT2(XYFILEIFILE2,F1,F2)

C where,

C X and Y are numbers corresponding to switch options set in
C F1 and F2. The number is the position of the letter in the

I C alphabet, that is Aa1..9Z:26.

C FILEI/FI and FILE2/F2 are filenames and their corresponding
C switch arrays in the format returned by the CONARG call (this
C is S format for the filenames).

C On return, the file with switch X set will occupy the position
C of FILEI/FI and the file with switch Y set mill occupy the
C position of FILE2/F2,

C Comments:
C Fl and F2 may also contain other switch values besides X and Y,
C and these values will not be altered.

C If one or both of the files do not contain either of the switch
C values specified, the program is halted with an error message.

C If either file contains both switch values X and Y, the program
C is halted with an error message.

SUBROUTINE SORT2(XYjFILE1#F1LE2,FlF2)

INTEGER XYtFILEI(7),FILE2(7),Fl(2),F2(2),TENP(7)tbIT

LOGICAL ITESTCASEItCASE2
C
C The first element of the switch array contains switches A-P.
C The second element of the switch array contains switches U-Z.
C

1:0
IF (X,GT.I ,AND. X.LE.16) 1:I ;determine which switch array

3

IF (X.GT.16 ,AND. X.LE.26)1:2 ;element mould contain switch X
IF (IE.0) GO TO 90

C

C The following transformation gives the bit position of a
C switch in the switch array element.
C

lIT:(-I*X)*(16*1)

CASEI:ITEST(FI(I),IIT) ;test both switch arrays
CASE2:ITEST(F2(1),bIT) ;for switch X

IF (CASEI.AND..NOT.CASE2) GO TO 60 ;switch X is in the first file
;and not second file

IF (CASE2.AND,.NOTCASEI) GO TO 50 ;switch X is in the second file
;and not first file) so the
;file positions are switched

GO TO 90

50 DO 15 1=1,7
TERP(I)zFILE2(I)
FILE2(I)xFILE1(I)

FILEl(1):TEP(I)
15 CONTINUE

0 DO 16 11,2
TEMP(I):F2(I)
F2(1)zFI(1)
F1(I):TERP(1)

16 CONTINUE

60 1:0
IF (Y.CT.1 .AND. Y.LE.16) 1:1 ;determine which switch array
IF (Y.GT.16 .AND. Y.LE.26) 1:2 ;element would contain switch Y
IF (I.EO.0) GO TO 90

CASEIzITEST(FI(I)IBIT) ;test both switch arrays
CASE2:ITEST(F2(1),BIT) ;for switch Y

IF (CASE2.AND..NOT.CASE0) GO TO 100 ;switch Y is in second file
;and not first file

0 90 TYPE "(CR)
'The files included in the command line do not have(CR)
*valid switches. Consult proqram documentation for(CR)
*the correct syntax."

STOP

LO0 kETURN
END

0llttltftl~tllllltitmttmlttlt~ltll~ltlti

O

S

Cmeemaeaeteemmegee, mw.,etueumumn*tmeuueemuuemmneewe§mm

C Title: Sort3
C Author: Lt Allen
C Date: Dec 82

C Function: This subroutine arranges three files and their switches

C in a specified order of position,

C Compile command:
C FORTRAN SORT3

C Command line:
C CALL SORT3tXYZtFILEIFILE2,FILE3,FIF2,F3)

C where,

C XY and Z are numbers corresponding to switch options set in
C switch arrays FIF2 and F3. The number is the position of
C the letter in the alphabet, that is A:1,,,Z:26.

C FILEI/FIFILE2/F2 and FILE3/F3 are filename arrays and
C their corresponding switch arrays in the format returned by
C the COMARG call (this is S format for the filenames),

C On return, the file with switch X set mill occupy the position
C of FILEI/FI, the file uith switch Y set mill occupy the
C position of FILE2/F2 and the file mith switch Z set millI C occupy the position of ?ILE3/fl.

C Comments:
C FIF2 and F3 may also contain other switch values besides XY
C and Z, and these values will not be altered.

C If one or more of the files do not contain any of the switch
C values or if any of the files contains more than one of the
C switch values, the program is halted with an error message.

Cm ii**imieiai*,m.,mamamm*m,u,.,.,mm~e...ue.mmm..m.,mm.u,mime,

SUBROUTINE SORT3(XYZFILEI FILE2,FILE3,FlF2tF3)

lITEGER XYZFILEI(7),FILE27),FLE3(7),F1t2)IF2(2)F3(2)
INTEGER TEMP(7)DB[T

LOGICAL ITESTICASEICASE2,CASE3
C
C The first element of the switch array contains switches A-P.
C The second element of the switch array contains switches O-Z.
C

1=0
IF (X.GE.1 ,AND, X.LE,16) [:j ;determine which switch array
IF (X.GT.16 ,AND. XLE.26) 1:2 lelement mould contain switch X
IF (I.EO.O) GO TO 95

C

4

C The follositq transformation gives the bit position of a switch
C array element.
C(BIT'(-LX s(16,1)

CASE1xITEST(F1(1),BIT)
CASE2zITEST(F2(I) ,IT)
CASE3:ITEST(F341) ,IT)

C
C First, check if switch X is in the first file and not the other too.

IF ((CASE1,AND,,NOT.CASE2) .ANDs .NOT.CAS93) GO TO 70
C
C Second, check if switch X is in the second file and not the other two.
C

IF ((CASE2,AND..NOTCASEL) .AND,. ,NOT.CASC3) CO TO 50

C Third, check if switch X is in the third file and not the other two,
C

IF ((CASE3.AND..NOT.CASE1) *AND, *NOT.CASE2) GO TO 60
GO TO 95

C
C Place the file with switch X in the first position.
C
50 DO 15 I:1,7

TERP(1):FILE2(1)
FILE2(1):FILEI(I)
FILE1(1):TEMP(1)

' 15 CKTINUE
DO 16 1:=12
TENP(1):F2(I)
F2(IP:Fl(l)
FI(1)zTEHP(I)

16 CONTINUE
GO TO 70

60 DO 17 1:1,7
TEMP(1)=FILE3(I)
FILE3(l) FILE(1)
FILEI I):TEMP(I)

17 CONTINUE
DO 18 Il#2
TEMP(1):F3(1)
F3(1)=FI(1)
Fltl)TElPHI)

18 CONTINUE

70 I:O
iF (Y.GE,1 *AND. Y,LE.16) 1:1 ;determine which switch array
IF (Y.GT,16 ,AND, Y,LE,26) 1:2 ;element would contain switch Y
IF (1.EO.O) GO TO 95

C
C Find switch Y's bit position.
C

DIT:('I1.r).(1661)

I

CASEI:1TEST(F1(I),D1T)

CASE2:ITEST(F2(I)tDIT)
CASE3zITEST(F3(1) BIT)

C First, check if switch Y is in the second file and not the other too.
C

IF ((CASE2.AND..NOT.CASEL) .AND. .NOT.CASE3) GO TO 90
C
C Second, checK if switch Y is in the third file and not the other two.
C

IF ((CASE3.AND..NOT.CASE2) .AND. .NOT.CASEI) GO TO 80
CO TO 95

C
C Place the file with switch Y in the second position,
C
80 DO 19 11,7

TENP(I):FILE3(1)
FILE3(I):FILE2(1)
FILE2(I):TENP(1)

19 CONTINUE
DO 20 Iz1,2
TEHP(I):F3(I)
F3(I)zF2(I)
F2(1):TEMP(I)

20 CONTINUE

90 1:0
r n IF (Z.GE.1 .AND. Z.LE.L6) 1:1 i4etermine which switch array

IF (Z.GT.16 .AND. Z.LE.26) 1:2 ;eisment would contain switch Z
IF (I.EO.O) GO TO 95

C
C Find switch Z's bit position.
C

CASEI:ITEST(FI(I),BIT)
CASE2:ITEST(F2(I) BIT)
CASE3:ITEST(F3(I) BIT)

C
C Finally# check if switch Z is in the third file and not the other two.
C

IF ((CASE3.AND..NOT.CASEI) *AND. NOT.CASE2) GO TO 100

95 TYPE "(CR)
*The files included in the command line do not have(CR)
*valid switches. Consult program documentation for(CR)
*the correct syntax,"
STOP

100 RETURN
END

4 Ceutuloulteeeeiettelieeetuuewgelieeeeetgitituelitutettlwimliuliaeele.,llail

C Title: Status
C Author: Lt Allen
C Date: Dec 82

C Function:
C This routine returns the number of the last disk block and the
C number of bytes in the last disk block of a specified d4ik file,

C Compile command:
C FORTRAN STATUS

C Comments:
C The variables that are passed to this routine have the following
C meaninqt

C FILENAA the disk filename (in S format) to be

C checked

C NUMbLX returns the number of the last disk block
C in the file, which is the number of disk

* C blocks minus one

C LASTBYT returns the number of bytes that are in
C the last block of the file

SUBROUTINE STATUS(FILENAMINUNlBLKtLASTBYT)

INTEGER FILENAM(7)ISTAT(18),NUMBLKLASTbYT

CALL STAT(F[LENAMLSTATIER)
IF (IER.EO.13) CO TO 20
IF (IER.NE.I) WRITE(10t) IERtFILENAR(1)

1 FORMAT("
WSTAT error "tl2," with file "#S13)
NUMBLI:lSTAT(9)
LASTBYTzISTAT(IO)

RETURN

20 ORLTE(10,2) FILENAHIl)
2 FORMAT("

*File "S13," does not exist.(CR)
*program aborted")
CALL EXIT
END

Clllllilllllllm elueellielellItt**ieellli*eililluiIiilleNlluuuleeluNieemmlel

6

.i.,

C Title: ToFile
C Author% Lt Allen
C Date: Dec 82

C Function:
C This routine writes a real data array to disk file. It first
. deletes/creates the file, so that the file will only contain
C the data passed, The calling program should verify that it is
C agreeable to delete any existing file before calling this
C routine.

C Compile command:
C FORTRAN TOFILE

C Comments:
C The variables that are passed to this routine have the following
C meaning,

C FILENAN the disk filename (in S format) to be
C written to; it mill be created as a
C random file

C ARRAY the data array to be written to file

C LEN the length of the data array

CIIII*II*IIJ*JiJJwmI*JElmmmlJmmlJBI*llJ*EIl*lJii**uJJJMI~uNJIllfIllJ*lllIl

SUBROUTINE TOFILE(FILENARIARRAYtLEN)

INTEGER FILENAN(7),LENIBLKS
REAL ARRAY(LEN)

BLKS:INT(LEN/128)

CALL DFILW(FILENANtIER)
CALL CFILW(FILENAM,2,IER)
IF (IER.NEI) NRITE(lOtl) IERFILENA(R1)

1 FORMAT("
*CFILW error ",l2," with file ",S13)

CALL OPEN(1,FILENAN,3,1Ek)
IF (IER.NE.i) WR[TE(lO,2) IERFILENAR(1)

2 FORMAT("
*OPEN error "112p" with file ",S13)

CALL WRBLK(IOARRAYBLKSIER)
IF (IERNEl) WRITE(1Ot3) IERFILENAM(1)

3 FORMAT("
*kRBLK error "#12t" with file "p$13)

CALL FCLOSEI1)

124 2
4 I

4

RETURN
I ND

L

I

21/ 3l

C Title: Warnng

C C Author: Lt Allen
C Date: Dec 82

C Function:
C This routine prints Eclipse A/D/A device earning messages to the
C screen explaining to the user what to do for various error
C conditions. It should be placed in an A/D/A program just before
C the conversion operation is performed.

C Compile command:
C FORTRAN MARNNG

C Comments:
C The clock that has been chosen for the conversion operation is
C sent to the routine in variable CLOCK.

Ceieleelmeewieaenemaetwmmgeee.e,,aam,eeeeweeingieeeemeeeeeeuemeww

• SUBROUTINE WARNNG(CLOCK)

INTECER CLOCK

TYPE "(CR)
*The conversion operation can be safely aborted at this(CR)

QI € time by typing CTRL-A,"

TYPE "(CR)
*After the conversion operation has been initiated, wait an(CR)
*appropriate amount of time before considering to abort an operation(CR)
*which mill not return. The only way to abort a conversion(CR)
*operation that will not return is by typing CTRL-A. Noveveri(CR)
*this may result in crashing the system."

IF (CLOCK.EO.60000K) TYPE "(CR)
*If the conversion operation does not return in an appropriate(CR)
*amount of time, verify that the external clock is properly(CR)

0 *connected. The clock can be reconnected once the conversion(CR)
*operation begins."

TYPE *(CR)
*Press carriage return to begin the conversion operation."

* RETURN
END

2 ,14

CIwNIwaNNIaueowawwuuweemwwiNuemwweNNewwiw§NaeNN§eeNmImemeeNeu~weiewaeN

C Title: Ortbuf
C Author: Lt Allen
C Date: Dec 82

C Function:
C This is a special purpose routine used by program INDIGI and
C OUTDIGI. It allows the user to write specified sections of the
C data buffer to a disk file.

C Compile command:
C FORTRAN WRTBUF

C Comments:
C The variables ARRAY and LEN that are passed to this routine are
C the data buffer and it's length, respectively.

SUBROUTINE WRTBUF(ARRAYLEN)

INTEGER LENpt1RAY(LEN),FILENAM(7)

245 TYPE "(CR)
*There are 64 disc blocks in the data buffer, numbered I(CR)
*through 64, with each block containing 256 samples."

fACCEPT "(CR)
*Uhat block will be first? ",ISTART
ACCEPT "
*What block will be last? "IISTOP

IF (ISTART.LT.1) GO TO 245
IF (ISTOP.CT.64) GO TO 245
IF (ISTART.GT.ISTOP) GO TO 245
ISTART:ISTART-1

255 ACCEPT
*Enter the filename for writingt"
READ (11t15) FILENAM(I)

15 FORMAT (S13)

260 CALL CFILW (FILENAM02,IER)
IF (IER.EO.12) GO TO 265
IF (IER.NE.I) TYPE "CFILd error "IER," with your file"

CALL OPEN (1,FILENAl112,tER)
IF (IERNE.1) TYPE "OPEN error ",IER," with your file"
CALL WRBLK(ItlSTARTARRAYIISTOPIER)
IF (IER.kNEl) TYPE "URBLK error ",IER)" with your file"
CALL CLOSE (ilER)
IF (IER.NEZ) TYPE "CLOSE error ",IER,* with your file"
GO TO 280

t1

265 ACCEPT "(CR)
*This file already exists.(CR)(CR)
*Do you want to,(CR)

I: delete the current file(CR)
* 2: try another file(CR)
oselection:",IDEL

IF (IDEL.EO,1) GO TO 270

IF (IDEL.EO.2) GO TO 255
WRITE (10,1)

1 FORRAT ('(Ck)(CR)(CR)
*Please make selections only from the given options.")
GO TO 265

270 CALL DFILW (FILENANIIER)
IF (IER.NE.1) TYPE "DFILW error ",IERI" with your file"

GO TO 260

280 RETURN
END

I26

241)

VITA

Gordon i. Allen was born on 16 January 1957 in Hardins-

burg, Kentucky. He received the Bachelor of Science Electrical

lngiineoring degree from the University of Kentucky in 1975.

Upon graduation, he received a commission in the United States

Air Force and was assigned to the Space and Missles Systems

Organization, Los Angeles AFS, Los Angeles, California. In

June 1981 he attended the Air Force Institute of Technology

JaS a craduate student in the Digital Communications and Sig-

nail Processing Sequence. Gordon Allen is a member of Eta

KaIppa Nu and 'Tau Beta Pi.

o /

Permanent address: Route 2, Box 229
Vine Grove, KY 40175

247

FIME

