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SECTION 1

INTRODUCTION

1.1 Simulation Extension

In support of the Draper Integrated Simulations, Photon Research

Associates (PRA) was placed under subcontract to develop a computer

code capable of generating and manipulating terrestrial scenes as a

function of major surveillance system and mission parameters. This

code (called GENESSIS) will have the capability to interface with the

DMA data base on terrestrial scenes as the source of scene input data.

Consequently, the code will be able to simulate any scene for which DNA

data exists. To have a functioning code as soon as possible, it is

planned to develop the code in three phases, the first phase (i.e., the

present subcontract) provides a functional synthetic scene computer

code. When all three phases of the program are complete, GEIESSIS will

treat all phenomenological and functional aspects of scene simulation

without recourse to simplifying approximations, and will be fully

. - interfaced with the DMA data base. At the end of the first phase a

limited capability will be provided for a limited number of scenes.

During the current reporting period the code has been essentially com-

pleted, with all modules in the final stages of verification and valid-

ation. Code integration has begun and the input data bases are being

accumulated. The progress and accomplishments of PRA during the first

six months of their one year sub-contract are described in Section 2.

.°,.

.- °"° . .. *.. .. . ° . .. .. . . . .. : . ... . .*.. .. ... ~ . . K



1.*2 HALO Optics

CSDL supports DARPA on HALO optics technology by preparing and

evaluating test cases for HALO system alignment and wavefront control.

Three contractors have been working on the general problem of HALO

alignment. Eikonix Corporation has worked on the phase retrieval prob-

lems, i.e, determination of system aberrations from the focal-plane

image data. Itek Corporation uses a wavefront sensor to measure the

system aberrations. These aberrations are decomposed into mirror fig-

ure errors which are then corrected with actuators. Hughes Aircraft

has worked on the problem of optical system correction using "color"

algorithms on the focal-plane data.

In our previous semi-annual report, we reported preparation of

phase retrieval tests for the Eikonix phase retrieval algorithms. An

update on the test results is provided in the current report. It is

shown that the algorithms did not succeed on the blind test. The

algorithms worked when we disclosed all the information to Eikonix.

*CSDL's image sharpening algorithm did succeed on the test, improving

the Strehl ratio of the degraded image from 0.255 to 0.616.

1.3 Active Control of Space Structures (ACOSS)

1.3.1 Scope

Volume 2 of the present report gives an account of the progress

made during the reporting period in implementing various strategies for

active control on ACOSS Model No. 2. The design objective for the sev-

.'4 eral vibration control strategies employed is to attenuate the line-of-

sight (LOS) rotation error and defocus of the optical system induced by

a broad-band disturbance. A slewing controller for implementing large

changes in the rigid-body attitude of the structure with minimal asso-

ciated line-of-sight error is also studied.

,%1:2
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1.3.1.1 Vibration Control

A general form of disturbance containing both broad-band and

discrete-frequency components has been communicated by Riverside

Research Institute to assist in comparing competing designs of vibra-

tion controllers. Several modifications of this disturbance specifica-

tion are made for the purpose of the present study in order to reduce

computation costs. First, the bandwidth of the broad-band portion is 5

Hz., extending from 0 Hz. to 5 Hz. The reduction of the upper boundary

from 15 Hz. to 5 Hz. is dictated by the reduced-order model (20 modes)

being studied. The extension of the lower boundary to 0 Hz. enables

the use of a simpler model of the disturbance without sacrifice of

fidelity since rigid-body modes are not studied in the disturbance-

rejection problem. Second, the disturbance is assumed to be fixed in

direction at each specified point of application to the structure,

varying stochastically only in magnitude. In addition, the one-sided

. spectral density amplitude in the specification is retained for two-

- - sided use. Details are presented in Section 2. These modifications do

not alter the qualitative objective of the study; namely, to examine

* the fundamental difficulties associated with designing vibration con-

trollers to stringent LOS-error tolerances in the presence of a broad-

band disturbance.

A selection of structural vibration modes to be considered in

the various designs, and a corresponding selection to be used in evalu-

ating the designs, is determined by ranking each of the 156 structural

modes in the NASTRAN finite element model with respect to the root-

mean-square (RMS) error in LOS-rotation that results from the disturb-

ance acting on that mode (viewed as a single channel). The highest

ranking ten modes according to this criterion are chosen to constitute

the model for the control designs, and the highest ranking twenty modes

constitute the evaluation model. The upper limit on the number of

modes to be included is chosen with consideration of the computation

cost. The modes selected and their ranking are also given in Sec-

tion 2.

.--3
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A choice of location for sensors and actuators for the controll-

er design is determined using an original approach particularly suited

to the stringent performance requirements in the present design prob-

lem. Locations are chosen using algebraic methods which make explicit

the contributions to the LOS-error associated with particular sensors

or actuators. Details are given in Section 3.

Three different approaches to the design of a vibration con-

troller are presented. The first approach, disturbance-rejection con-

trol, assumes that complete information on the statistical properties

of the disturbance is available. Using this information, a stochastic

dynamic model of the disturbance is concatenated with the open-loop

design model of the structure. A linear-quadratic-Gaussian (LQG) con-

troller for the enlarged system is designed. The design process

involves a few iterations in which weighting matrices are adjusted to

achieve the desired performance. Details are given in Section 4. Sat-

isfactory attenuation of the disturbance effects upon LOS-rotation

error is achieved. It is important to note that this attenuation is

achieved by moving the characteristic frequencies of the closed-loop

system outside the bandwidth of the disturbance, as well as by adding

damping to the different modes.

In the second approach, linear-quadratic (LQ) optimal control,

more realistic assumptions with regard to the knowledge of the disturb-

ance characteristics are made. The disturbance statistics are not

assumed to be known. Instead, the effect of the disturbance, as re-

flected in the RMS values of the LOS-rotation error, is used to select

desired values for closed-loop modal characteristic frequencies and

damping ratios. Well-known relationships connecting closed-loop modal

parameter values and weighting matrices for LQ design are exploited,

thus generating a systematic analytical approach to the selection of

41-4
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weighting matrices. Details ere given in Section 5. As in the first

design approach, results showi that LOS-error reduction is obtained

principally by augmentation of stiffness rather than of damping.

The third design approach is an extension of the second

approach; actuator synthesizers are incorporated into the design to

alleviate the problem of control spillover to certain modeled modes not

in the controller design model. Details are given in Section 6.

1.3.1.2 Large-Angle Slew Control

A large-angle slew maneuver involves an input of energy to the

vehicle which, in turn, induces vibration in the optical support

structure. The control problem is to apply the energy to the structure

in such a way that the desired attitude maneuver is accomplished and

that the optical system supported by the structure returns rapidly to

acceptable levels of performance following the maneuver. Several

significant extensions to previous work are reported here. One is to

solve the problem of slew to a moving, rather than a fixed, target.

The other is the development of a closed-loop control strategy using

integral compensation based on measurements which include control and

control rate signals, rather than a strategy based only on open-loop

considerations. Details are given in Section 7.

1.3.2 Limitations

The present report gives an account of work in progress, rather

than of completed work. The quantitative results in particular should

be viewed in that light.

With respect to the vibration control designs, the present

report does not include an account of an evaluation of the ten-mode

controller designs against the twenty-mode evaluation model, or the

1-5



effects of the use of an observer in the deterministic LQ controller

designs. Investigations on these matters are in progress and will be

reported on subsequently.

Substantial work has also been done in other related areas, such

as suboptimal output feedback, modal-spring-plus-modal-dashpot output

feedback, and system identification, in relation to ACOSS Model No 2.

In addition, fundamental investigations have been launched into prob-

lems associated with the explicit incorporation of the dynamics of

actuators and of data-sampling devices into the mathematical model for

the structure and controller. Accounts of this work will be reported

in the future.

1-6



SECTION 2

SIMULATION EXTENSION

2.0 Introduction

In support of the Draper Integrated Simulations, Photon Research

Associates (PRA) was placed under subcon~tract to develop a computer

code capable of generating and manipulating terrestrial scenes as a

function of major surveillance system and mission parameters. This

code (called GENESSIS) will have the capability to interface with the

DMA data base on terrestrial scenes as the source of scene input data.

Consequently, the code will be able to simulate any scene for which DNA

data exists. Because it is desirable to have a functioning code as

soon as possible, it is planned to develop the code in three phases,

the first phase (i.e., the present subcontract) providing a functional

synthetic scene simulation computer code. In the paragraphs to follow,

the progress and accomplishments of PRA during the first six months of

their one year sub-contract are described.

To achieve these goals the first-phase code will have three basic

limitations. First, some of the higher-order phenomena controlling

scene radiance (e.g., cloud shadowing) will be neglected. Second, some

of the phenomenological treatments will utilize simplifying approxima-

tions. Last, the input data base will be limited to five terrestrial

scenes and two cloud representations. It is planned to eliminate these

limitations during subsequent phases. In particular, it is anticipated

that the full interface with DMA data will have been accomplished by

the end of the second phase.

2-1
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In summary, when all three phases of the program are complete,

GEESSIS will treat all phenomenological and functional aspects of

scene simulation without recourse to simplifying approximations, and

will be fully interfaced with the DMA data base. At the end of the

first phase a limited capability will be provided for a limited number

of scenes. During the current reporting period the code has been

essentially completed, with all modules in the final stages of verizi-

cation and validation. Code integration has begun and the input data

bases are being accumulated.

2.1 Code Architecture

Scene simulation is based upon a point-by-point algorithm, a

single cycle which consists of collecting (and in some instances,

computing) inputs specific to a single point on the scene, calculating

the apparent radiance of that point from the collected inputs, and

finally weighting and assigning the calculated radiance to the appro-

priate pixel in the observer's field of view. If the density of points

is large enough, the scene is properly sampled and the radiances corn-

. puted by repeated point calculations can be combined to produce an

accurate pixel radiance map of the scene. The parameters of these

radiance grid points are computed from the three-dimensional scene

itself.

Scene data consists of discrete altitude and material type pairs

specified at regular intervals on a planar rectangular grid. Contin-

uous surfaces are produced from the discrete scene data using a bi-

cubic spline fitting technique. Point data can be computed from these

surfaces at any desired spatial resolution.

The computed apparent radiance consists of four terms combined

additively. These are reflected solar, thermal emission, reflected

skyshine and path radiance. These respective calculational procedures

are discussed in Section 2.2.4. Each major calculational operation is

2-2



[ I I ~~~~~~~~~~~~~~~~~~~~. .......... . . . . . .. .... ........ :.... :....-....-,.. _"-'..'..... .

performed with a separate software module. Each module has stand-alone
*. capabilities, but are normally executed in sequence to produce a final

result.

The simulations' primary output is an N X M viewer-perspective

pixel apparent radiance map. Diagnostic output is also available to

check on the proper running of the code.

2.1.1 Modules

The GENESSIS code is comprised of six (6) main modules (sub-

S.routine packages) each with a single specific task. These are geo-

metric; atmospheric, heat transfer, radiance, image, and ephemeris.

With the exception of the ephemeris module, these packages are dis-

cussed in detail in Sections 2.2.1 through 2.2.5. The ephemeris module

computes the altitude-azimuth position of the sun for any specific

time, date and observer location. A published user's manual exists for

this package.*

2.1.2 Module Interaction

A flow diagram of the GENESSIS architecture is given in Fig-

ure 2-1 which details module interaction and hierarchy. The geometric,

ephemeris, atmospheric and image modules have independent capabil-

ities. The radiance module is dependent upon the heat transfer module

and requires inputs in real time.

*Solar Emphemeris Algorithm, W. Wilson. Visibility Laboratory, Scripps

Institution of Oceanography, UCSD. S10 Ref. 80-13, July 1980, La Jolla,
CA.
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2.1.3 User Input/Control

User inputs are categorized according to purpose. These are

geometric, sensor, atmospheric, and orbital. The elements of these

are:

2.1.3.1 Geometric Inputs

(a) The date and time of the simulation used to compute the

position of the sun.

(b) The latitude and longitude of the viewer subsatellite

point.

(c) The observer altitude in kilometers.

2.1.3.2 Sensor Inputs

(a) The vertical and horizontal angular field-of-view.

(b) Focal plane rotation in degrees.

(c) The vertical and horizontal spatial resolution in meters.

2.1.3.3 Atmospheric Inputs

(a) Atmospheric model (six LOWTRAN standard atmospheres).

(b) Aerosol model.

(c) Haze model.

(d) Visibility in kilometers.

2-4
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2.1.3.4 Orbital Inputs (Scene Sequencing Option)

(a) Orbital inclination angle with respect to the equator.

(b) Longitude of ascending mode.

(c) Framing rate.

d) Number of total frames.

2.1.4 Scene Data Base Inputs

Scene data inputs consist of the altitude, material type pairs

which were mentioned previously, plus thermal, atmospheric, and

reflectance data. The elements of these inputs are:

*(a) Material thermal properties (solar absorptance, thermal

emittance, thermal conductance and thermal mass) required

by the heat transfer module.

(b) Material in-band diffuse reflectance.

(c) Cloud in-band bi-directional reflectance.

(d) Surface level atmospheric properties (temperature, wind

speed, and humidity).

2.2 Module Description

2.2.1 Geometry

The geometric module supplies information regarding the visibil-

ity, orientation and projection of scene radiance grid points. All

geometric calculations are based on an earth centered Cartesian coordi-

..', nate system.

2-6
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Surfaces and normal vectors are produced from the scene data

using a bi-cubic spline fitting technique. In the event grid points

are required at a higher resolution than the scene input data, they are

generated from the spline-fit produced surfaces.

The visibility of each grid point is determined using a hidden

line masking technique. The scene is processed twice, once for the

observer and once for the sun. Points not visible to the observer are

ignored. Points not seen by the sun are in shadow and are treated

accordingly by the radiance module.

Projection of each point into the observer's image plane com-

pletes the primary task of the geometric module. The module is dia-

grammed in Figure 2-2.

2.2.2 Atmospheric Module

The atmospheric module supplies LOWTRAN-derived data for one of

six standard atmospheres. It computes four in-band parameters: re-

flected solar, reflected skyshine, path transmission and path

radiance. The reflected components are apparent values, having been

attenuated spectrally along the observer's line-of-sight path. Path

transmission and path radiance are computed for the path from the

surface to the observer only. This path transmission attenuates the

surface emission. For the reflected components, the atmospheric module

calculates path transmission and radiance spectrally for the path from

source to the surface and to the observer. The spectral data are then

integrated over wavelength to produce a simple in-band value for the

entire path.

In order to reduce the long-term costs associated with the com-

putation of atmospheric parameters, and to provide the necessary compu-

tational flexibility, it is desirable to have the atmospheric param-

eters functionally related to altitude. Early investigations showed

that these parameters could be represented by polynomials over the al-

titude range from 0 to 10 km.

2-7
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Parameters are calculated parametrically for a series of zenith

angles and altitudes. At each altitude a polynomial fit versus air

mass is computed and stored for reflected solar, path transmission and

path radiance. For skyshine, polynomial fits are stored as a function

of altitude only. From this data base, polynomial fits versus altitude

for each of the four atmospheric parameters are produced for any given

solar and observer position.

Since the reflected solar component is also a function of the

solar zenith angle, an additional series of cases and curve fits are

required to completely describe this parameter.

Figure 2-3 is a flow diagram of the atmospheric module. Fig-

ures 2-4 through 2-7 illustrate sample atmospheric module outputs for

the following conditions:

Atmosphere: Subarctic Summer

Observer Altitude: 100km

Observer Zenith Angle: 0 degs

Sun Zenith Angle: 64 degs

Band: 7.5 - 12.0zm

2.2.3 Heat Transfer

Surface temperature is determined by the energy fluxes and ther-

mal properties of the surface. The fluxes considered in the model are

those resulting from solar irradiance, sky irradiance, convection to

the air, self-emitted radiation, latent heat flux due to evaporation of

surface moisture, and the distributed flux through the material to a

substrate. The heat balance solution of the dynamic surface tempera-

ture employs two simplifying assumptions. These are that the lateral

heat flux at the surface is zero, and that the distributed heat flux to

the substrate can be calculated using n discrete layers, the lowest of

2-9
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which is adjacent to a diurnally constant subsurface. The result and

physical model and its equivalent electrical circuit are given in Fig-

ure 2-8.

The heat balance equation for the physical model is

Ssun +sky +stored = fconv+ evap +emit +cond (2-1)

All fluxes are in units of W/M2 and all vary with time. Each of

these fluxes is expressed as follows.

The solar irradiance flux, *sun' is calculated by

u = a(s)E(sun,t)cosr.(t) (2-2)
sun.

where

a(s) is the effective solar absorptance,

O(t) is the time dependent angle between the vector to

the sun and the surface normal vector, and

E(sun,t) is the time dependent solar irradiance at the surface.

The solar irradiance at the surface is given by

E(sun,t) = E (sun,h).f()(t), (2-3)+0

where E.o(sun,h) is the zenith solar irradiance as a function of

surface altitude, h, and f(*) is a factor to correct for increasing

atmospheric attenuation with increasing solar zenith angle ,.

2-15
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The sky irradiance flux, sky' is computed from the Idso-

Jackson formula

*sky =(L)yTa {1-0.261exp r-7.77Xlo 4 (273-T2 (2-4)
sya (2 3 a

where

-8W2 o
a is the Stephan-Boltzmann constant, 5.6687 X 10 W/m K,

T is the ambient air temperature, and
a

c(L) is the effective thermal absorptance.

The convective flux to the atmosphere is computed by

* = pcDW(T-T ) (2-5)
cony a

where

p is the ambient air density,

c is the specific heat of dry air,

D is the drag coefficient, empirically determined from

ground truth data ranging from 0.002 to 0.01 depending

upon the material,

W is the wind speed factor, equal to 1+Vw where Vw is

the wind speed in m/sec, and

T is the surface temperature.

The latent heat flux is computed by

ev " 0.622pDWe(v-v )/P (2-6)
evap a a
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where

e is the latent heat of evaporation, 0

v is the vapor pressure at the surface,

v is the vapor pressure of the air, and
a

a is the atmospheric pressure. .

If va is larger than v, *evap is set equal to zero.

The emitted flux is computed by

4€

* =e(L) a T4  (2-7)
emit

where 6(L) is the effective thermal emittance, set equal to a(L) in

Equation (2-4).

The conductance flux to the substrate is computed by '.

on =g (T-T)

cond s

where g is the conductance to the substrate, equal to 1s*K where £s

is the depth at which the soil is diurnally constant and K is the soil

conductivity, and T. is the substrate temperature.

The stored flux in the surface layer is computed by

fstoredw 1oC [T(t+At) - T(t)] /At (2-8)

where

X is the layer thickness,
0

C is the heat capacity of the surface material, and

AT is the time increment.
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The solution for the surface temperature T is achieved using an

. iterative method wherein the surface temperature is initially chosen as

* : the ambient air temperature at midnight, and the heat balance equation

* is iteratively evaluated in time increments At (usually set equal to 30

minutes). This iteration is continued until successive diurnal cycles

match, commonly occurring within three days.

This procedure is used to produce a data base for all materials 0

within the scene. All independent variables are varied over a suf-

ficient range so as to bracket all conditions that may be encountered

in the scene. These independent variables are:

(a) Peak solar irradiance,

(b) Air-surface convective flux,

(c) Air-surface evaporative flux,

Cd) Substrate-surface conductive flux,

(e) Time.

The data base is compressed using a technique by which only the

j most informative time points are retained of the i that were calcu-

lated. This results in a significant reduction in size of the data

base i usually 48, j/i usually 1/6) with little reduction in accuracy.

2.2.4 Radiance Module

The apparent radiance of a specific grid point is composed of

four terms combined additively. These include reflected solar, thermal

emission, reflected skyshine and path radiance.

2.2.4.1 Reflected Solar

The apparent reflected solar component is

NCo
solar P Oser
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where

p = surface in-band diffuse reflectance (bi-directional

reflectance for clouds),

* (h) = computed fit to apparent reflected solar versus
solar

altitude (supplied by atmospheric module),

h = surface altitude in km, and ,

e = local sun zenith angle (the angle between the vector

to the sun and the surface normal).

2.2.4.2 Thermal Emission

The thermal emission component is given by

2r
Nthemal = c t(H) N(X,T) dA

.. 7o

where

, - surface emissivity,

p - surface in-band diffuse reflectance (1-e),

T(h) - computed fit to path transmission versus altitude

(supplied by the atmospheric module),

h a surface altitude in kin,

AIA = beginning and ending band wavelengths in um,

N(,T s ) = Planck function, and
5

T equilibrium surface temperature in Kelvin

(supplied by the heat transfer module).

2.2.4.3 Reflected Skyshine

-* The apparent reflected skyshine component is given by
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N -p Wh
sky sky

where

p = surface in-band diffuse reflectance,

. (h) = computed fit to apparent reflected skyshine versus
sky

altitude (supplied by the atmospheric module), and

h = surface altitude in km.

2.2.4.4 Path Radiance

Path radiance is given by

N (h)
path path

where

(h) = computed fit to path radiance versus altitude
path (supplied by the atmospheric module), and

h =surface altitude in km.

The total apparent surface radiance returned by the radiance

module for a single grid point is ..-

N -N + N + N +1N
apparent solar thermal sky path

Two additional calculations are made by the radiance module.

These are the total (overall wavelengths) solar and skyshine irradi-

ances required by the heat transfer module.

°:r.:
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The total surface solar irradiance was approximated utilizing

LOWTRAN 5 path transmissions computed spectrally at 20 cm-I resolution

in the 0.25 to 4.0 Um region (nearly 99% of the sun's total exoatmos-

pheric irradiance is emitted between 0.25 and 4.0 um) and a blackbody

the size, distance and effective temperature of the sun. Exoatmospher- -

ic irradiance is attenuated spectrally and integrated over wavelength

to yield the total surface solar irradiance. 0

Total diffuse sky irradiance is computed from a pressure compen-

sated Idso-Jackson formulation.

Functional relations between solar and diffuse sky irradiance

and altitude are computed off-line and are stored as data for each of

the six standard atmospheres. The radiance module is diagrammed in

Figure 2-9. Figures 2-10 and 2-11 illustrate the functional relation

between solar and diffuse sky irradiances and altitude.

2.2.5 Imaging

A mean pixel radiance is computed for each pixel in the observ-

er's image plane from the weighted sum of grid point apparent radiances
* . projected into that pixel. That is,

n

n
Wi: 

,,where

N = mean apparent radiance of pixel,

n - number of radiance points projected into pixel,

Wi  weighting factor (equal cos Bi1,

= angle between surface normal and vector to sun, and

* . Ni  apparent radiance of grid point

2
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Figure 2-10. Solar irradiance versus air mass for standard

atmosphere computes at 20 cm resolution
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The geometric module supplies both surface normal and projected grid

point position in the observer's image plane. This produces an N X 1

. viewer-perspective pixel apparent radiance map. The image module is

diagrammed in Figure 2-12.
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* SECTION 3

HALO OPTICS

3.0 Introduction

The previous semiannual report described the three phase retriev-

al blind tests CSDL prepared for Eikonix. These tests were based on

aberrations representing cryogenic deformations of an Itek HALO mirror

0.6m in diameter made of lightweight fused silica. The aberrations

were scaled so that their peak-to-peak value was equal to one optical

wavelength. The aberrated PSF was sampled by an 8 X 8 array of square

detector elements, each element having a full width of 2.13 XF, where X

is the optical wavelength and F is the optical system focal ratio. To

this array of signals, Gaussian random noise was added which had a

uniform standard deviation of 2% of the peak diffraction-limited signal

in the first two tests, and 5% in the third test. The second test also

had a line-of-sight error of (-0.984X/D, -0.984X/D), where D is the

optical system pupil diameter. The data for the three tests is given

in Table 3-1.

In this report a brief analysis of the aberrations is presented

and the test results updated.

3.1 Aberration Analysis

The aberrations used in the phase retrieval tests were derived O

from the cryogenic deformations of an Itek HALO mirror. The aberration

data is given in Table 3-2. The normalization factor is 100 so that
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the peak-to-peak aberration is 1 X. The array size is 21 X 21 corre-

sponding to 317 rays inside a circular pupil. A plot of the S.-

aberrations is shown in Figure 3-1. The diffraction limited and

,'.- aberrated point-spread functions are shown in Figures 3-2 and 3-3

respectively.

The aberrations were analyzed in terms of Zernike polynomials,

given in Table 3-3. Starting with a standard deviation of 0.181X and a

Strehl ratio of 0.255, a 6-term (Z4 through Z8 , and Z1 1 ) Zernike

correction reduces the standard deviation to 0.081) and increases the

Strehl ratio to 0.7. An 8-term correction (Z1 through Z8 ), which now

includes the two tilts (Z2 and Z3 ), does not change the image quality
significantly indicating that the centroid of the spread function lies

very close to the origin. A 15-term (ZI through Z15 ) correction

reduces the standard deviation to A/20 and increases the Strehl ratio

to 0.9. These results are summarized in Table 3-4.

3.2 Phase Retrieval Test Results

Eikonix estimated the aberrations from the noisy aberrated 8 X 8

array of point-spread function data in terms of Zernike polynomials.
From the Zernike coefficients CSDL calculated the aberrations at a

21 X 21 array of points (within a circle) and subtracted them from the

actual aberrations, thus making a correction. However, the residual

aberrations were much worse than the initial ones. The standard

deviation of the aberrations increased from an initial value of 0.186X

to approximately 0.4,. -j

Various approaches such as the interchange of x and y coordi-

nates, removal of the tilt aberrations, shift of the origin of the

* detector array coordinate system, addition instead of subtraction of

' aberrations, were tried to improve the system performance, but none

worked. It was concluded that something had gone wrong with the

"ikonix efforts.
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y 1)/2 1

Figure 3-1. Plot of the aberration data

w =1 0.186X D pupil diameter

wI
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x

Figure 3-2. Diffraction limited point-spread function

s = O.16XF. Detector width = 13s =2.13 F.

Airy disc diameter =2.44XF = 15s.
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XI

* / 0. 16 XF

Figure 3-3. Aberrated point-spread function. PSFr

centroid lies at (0.OO5XF, 0.O4BXF). The

Strehi ratio is 0.255 and peak value is

0.277 at (0, -0.32XF) .
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Finally, under direction from RADC, CSDL gave Eikonix noise-free

and aberration-free data sets, detailed procedures on how all the data

had been generated and the actual aberrations to see if they could

'-: determine the source of their difficulty. They checked their software

by duplicating our data. This time they obtained much more favorable

results; the estimated aberrations looked quite similar to the actual

ones. The residual aberrations had a standard deviation of 0.123X giv-

ing a Strehl ratio of 0.556. However, they could not determine why the

algorithm had not worked before. Of course, it was no longer a blind

test.

CSDL suggested to RADC/DARPA that another blind test be carried

out but this has not happened to date.

3.3 Image Sharpening Test Results

As reported earlier, CSDL's image sharpening algorithm, which

works in a closed loop manner, was applied to the same noisy and

aberrated spread-function data as the phase retrieval test. With six

Zernike modal corrections (Z through Z8 and Z 11 ), the Strehl ratio of

the spread-function increased from 0.255 to 0.616 in one iteration.

Due to the noise in the spread-function data, a second iteration did

not improve the performance significantly.

3.4 Summary, Conclusions, and Recommendations

Eikonix's phase retrieval algorithms did not succeed on the

blind test prepared by CSDL. The algorithm did work once all the

information was disclosed to Eikonix. Unfortunately, Eikonix has not

been able to determine why the algorithms failed on the blind test.

These algorithms presumably work when (1) the peak-to-aberration is

. less than 1A, (2) the pixel width is less than 2AF, and (3) the noise

'* is less than 2%.
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myIt would have been desirable to go through another blind test.

It may still be desirable to do so. However, a hardware simulation

should be prepared to test the practical limits of the applicability of

the Eikonix algorithms.

CSDL's image sharpening algorithm has been demonstrated in both

software and hardware simulations. It worked successfully on the same

. noisy and aberrated spread-function as the Eikonix phase retrieval

algorithm. It appears to be a robust and powerful technique for adap-

.:*.. tive correction of aberrated images. It can be used both in closed-

- loop image correction mode or phase retrieval mode.

r
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