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Preface

After having worked for three and a half years

in a Computer-Aided Design Facility for microelectronics,
many of the problems with the design tools available to
the designer became apparent. Most of all the complaints
t‘ and frustrations were caused by the ineffective computer
- use by the design tools. The two worst problems were the

inflexible user interfaces to the computer and the many

data bases that had to be maintained during the design
cycle. At the Air Force Institute of Technology the
exciting opportunity to address both of these problems

was presented by Dr. Carter. He proposed a plan to design
and implement a Digital System Design Automation Facility.
This thesis project is one of the many efforts required to
bring this plan to completion.

Special thanks are due to Tom Herbert, Gary
Pritchard, and J. B. Rawlings who patiently helped me dur-
ing my developmental years at the Avionics Laboratory.
Thanks are also extended to Rick Stormont and Bill Ure
for their time and aid. Also the patient and insightful

help provided by Dr. Carter was greatly appreciated.

A thank you to my parents for their sacrifices and

et Pa Putd

lessons that I will never forget. Finally, a warm and
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special thank you to my fiancee, Chris, for her patience,
understanding, and support during this long educational

journey.

— Michael A. Tebo
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Abstract

This report presents a model for an integrated
design data base that will be used within an integrated
design system for microelectronics. This report also
describes a model of an integrated design system, whose
functions include a single, flexible interface between the
designer and the design system. These two models provide
a conceptual-level design of a Design Automation System;
however, the emphasis in this report is on the data base
model.

The results described in this report are two of
the models necessary for the design of a Design Automation
(DA) System. The first model is a high-level design which
shows the components and the interactions of these com-
ponents within the DA System. The second model constitutes
the design at the conceptual-level of the data base
required by the DA System. This data base, called an
Integrated Design Data Base, is an integral part of the
DA System. The model of the data base defines the data
requirements of the design tasks within the microelectronic

design cycle.
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CHAPTER I

INTRODUCTION

Introduction

The challenge addressed in this report is to design
models of a Design Automation System (DA System) including
its integrated data base. This model development is a
first step in designing a tool that will be used in the
design of microelectronic devices (ICs, PCBs, Hybrids).
This tool (DA System) has often been designed and imple-
mented separately with largely unsuccessful results.
Instead, there must be a coordinated effort, integrating
the designs of both the DA System and its data base. This
coordinated design is necessary because there is a symbiotic
relationship between the DA System and the data base.
Therefore, decisions must be considered with both the data
base and the DA System taken into account. "The data base
is needed to tie all the elements of the design together
and to allow automation. The design must be integrated
into the CAD data base [6:550]." As used in this report,
the data base embedded in the DA System will be calied an
Integrated Design Data Base (IDDB), because it is an Inte-
grated (into the DA System) Design (type of data contents)

Data Base (IDDB).
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The design of the DA System including its IDDB
described in this report will support hierarchical design
without a prespecified selection of design representations.
The design of the DA System and the IDDB models is founded
on current Software Engineering and Data Base Design Tech-
niques. The objective guiding the design was to concentrate
on providing an interface to design data and to design tools
that would improve the efficiency and effectiveness of the

designer's work.

Important Concepts

Independence

Data Independence. The object of data independence

is to clearly differentiate between the logical and
physical aspects of data base management. These differ-
ences include data base design (total system), data retrie-
val (physical), and data manipulation (logical). The major
advantage of data independence in model design work is that
it provides a protective "buffer" against damage, or data
integrity problems, which are caused by growth and restruc-
turing of the data base (27:106). Growth and restructur-
ing are the components that force disconcerting changes

in a data base. Two of these buffers are required, in both
a data base model as well as a DA system model. Each buffer
will protect against the major components of data integrity

problems; i.e., growth and restructuring. These two




buffers are defined to be physical and logical data inde-

pendence.

Physical Data Independence. This term implies data

and program immunity to changes in the physical storage
structure. This means that the physical storage organiza-
tion and its implementation may be changed without changing
either the logical structure of the data or the Application
Program's data concerns. Other authors call this term

"Hardware Independence."

Logical Data Independence. This term implies data

and program immunity to changes in the data model. This
means that the total logical structure of the data may be
changed, but these changes will not affect the Application
Programs (AP). Other authors call this term "Software

Independence."

Schema

Conceptual Schema. This term represents the entire

data base as an abstract model description that provides a
mapping function hetween the logical and physical schemas.
The conceptual schema is the framework which will hold the
values of the data items. This data base model, the con-
ceptual schema, is independent of hardware and software

considerations. Therefore, the conceptual schema is both

physically and logically independent. Data independence
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is required to keep the conceptual schema as stable and

as loné-lasting as possible. Stability is needed in the
design because the conceptual schema is the foundation upon
which the rest of the design is built. The other two
components of the data base model, physical and logical
schemas can and will change, but the conceptual schema
should not change. Instead, it is designed to be resistant

to change, if its two buffers work properly.

Physical Schema. This is the storage organization

of the data base including its implementation on some
storage media. Storage mechanisms and access methods are
elements of the physical schema. The physical data struc-
ture is the form in which the data is recorded on the
storage media. This characteristic of the data base model
provides the physical data independence required by the

canonical schema.

Logical Schema. This term is a description of the

data as seen by the users of the data base. Each user, or
each design task, has its own view of the data (called a
task-view in this report, sub-schema by other authors)
which consists of definitions of each of the data items,
their relationships, and the format of the data as seen by
the design task. The logical data structure is the struc-

ture of the data as required by a design task. This
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representation of the data basé model provides the logi-

cal data independence required by the canonical schema.

Considerations. The need to create an integrated

design system with the data base and application programs
integrated into the system has been generated by micro-
electronic design complexity design tool incompatibility,
and the designer's need for automated design tools that are
easily and effectively used. LSI/VLSI/VHSI circuits must
be designed quicker, cheaper, reliably, and more testable,
despite the increased complexity of the design process.

The approach taken in this report is that VLSI/VHSI
circuit design must be done using an automated design sys-
tem that is composed of a set of integrated design tools
and associated data bases. The integration of the data
bases makes up the core of the integrated design system
and provides the key to the integration of the entire DA
system. The design system utilized here is called a Design
Automation System. It includes an Integrated Design Data
Base (IDDB), which is an essential, and in fact an inherent
element of such a Data System. Thus, when DA System capa-
bilities and functions are discussed, it is assumed that
the IDDB is a part of this system.

Designing and implementing an integrated DA system
is difficult because of the many functional components of
such a system. These required components include Applica-
tion Programs (AP), an operating system, peripheral

5
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interfaces, interprocess communications, a Data Base Man-
agement System (DBMS), and user interfaces. However, the
key component of the DA System is the Integrated Design

Data Base.

But what is possibly the most important, the vari-
ous software pieces of the CAD puzzle--usually incom-
patible programs written at different universities in
different languages running on the different operating
systems of different computers--are being knitted
together into cohesive operational programs drawing
upon unified data bases [9:74].

The IDDB is characterized by the access and the use

of a centralized data base by the design tools or APs.

The data is physically stored independently of the soft-
ware that will access it; and the data is accessed by the
software independently of the storage medium. This data
independence characteristic of the IDDB must be "designed-
into" the model from the beginning. Furthermore, it is

essential for the model to be physically and logically

independent.

Design Considerations

There are three major views of a data base design,

each of which must be designed in turn. These three views
are called the conceptual, logical, and physical views or
schemas of the data base. This report describes a

conceptual-level model, conceptual schema, of an IDDB.

The DA System will be designed similarly to its

IDDB. Because of integrated design decisions that must




be made, the DA System and IDDB must be designed in concert.
The DA System must be designed at the conceptual-, logical-,
and physical-level before implementation. This report also
includes a description of a conceptual-level model of a DA
System.
The first and most important elcment of the design
process is the conceptual-level design.
The CAD data base system [has] two major design
goals: to unify existing CAD tools and to provide a
nucleus for future growth. To meet these goals, a
data base structure [more properly, a data base SCHEMA

that defines such a structure] has to be defined.
[22:401].

I ats st s g PET

It is especially important in this report because of its

R

emphasis on the model design of the IDDB. The conceptual
schema design will describe the integration of the data.
P‘ ) The conceptual schema will also define the data requirements
of the data base with a flexible specification of the data
- requirements, which will allow the design to absorb changes
*! and growth to the data base. The
. conceptual model [conceptual schema] plays a

crucial role in the data base design process: first,
3 it provides the framework within which user require-
ments must be identified and understood. Second, the
model [conceptual model] provides a specification

mechanism for communicating the global conceptual view
of the enterprise [11:546].

Purpose

The purpose of this report is to present the
conceptual-level model design of the DA System and its

IDDB. The DA System model will be described in relatively




general terms, with its component parts, and the data and
control paths defined. These component parts include the
Executive, DBMS, APs, and Data Dictionary. The IDDB model
will be described in greater detail. A complete conceptual
schema modcl of the IDDB will be developed and explained.
All of the data requirements and the organization of the
data will be described through the design of the conceptual
schema.

The two major components of this report are the
IDDB and the DA System. They each have a symbiotic rela-
tionship to each other. The DA System is the environment
for the Integrated Design Data Base. Thus, the data base
is dependent on the design of the DA System. However,
because of the dynamic nature of the DA System's applica-
tion programs, the DA System demands that the data base
which supports the APs must be physically and logically

independent. This explains the DA System and the IDDB

interdependence. The author maintains, that to adequately
9 describe the DA System and its IDDB, both must be designed
4 in concert.

Another reason to design an IDDB and a DA System

together is that VLSI/VHSI circuit design demands a DA

AR B e A 2 o4
(S 2

System with an integrated design data base. The literaturec
(10:353) clearly shows that with today's design complexi-

ties, automated design cannot be done by the "bag of tools"

o 4 g o o

approach. Present designs are so complex that structured

B2 e s




engineering approaches are being used in design work.
These same structured approaches must be engineered into
the design tools (AP) and techniques used by the designer.
The effective use of these computer programs neces-
sitates structured design applications so that the
complexity of the design and verification tasks is
reduced to a manageable level. Large amounts of data
and a variety of design representations are used for
each circuit. Thus, it is important that an integrated
set of computer aids, coupled with a unified approach
to data management, be provided to the IC designer
[12:1197].
Once the present design tool problems ("bag of tools"”
approach), are solved, the designers can return to the true
microelectronics design problems, because a usable set of
integrated tools facilitating design work will have been
developed.
Design tools are needed, which include a DA System,
IDDB, and application programs, that can be easily used by
designers, and have no inherent problems of their own.
These tools should be just as easy and as flexible for the
designer to use as a paint brush or a hammer are to a
painter or a carpenter. The designer should not be aware
of the data base, the DA System, or the individual require-
ments of these design tools. Instead, the designer should
only be faced with the problem of the design itself. To
provide such design tools, the DA System and its data base,

must be transparent to the designer, and perform all tasks,

quietly and responsively.
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Goals

The goals of this thesis are to:

1. Provide the reader with a clear understanding
of both the background of the problem and its solution. In
providing this description, the characteristics of the
problem that cause the greatest design difficulties will
be described, along with a discussion of the major factors
that are essential in creating a solution.

2. Describe the software engineering and data
base design techniques and the design approach used during
the design efforts.

3. Present important, known data requirements for
the design tasks to be performed by the DA System, and char-
acterize these design tasks.

4. Conceptually design the DA System, and use this
design as a model to describe the environment of the IDDB.
Insure the DA System and the IDDB designs are physically
and logically independent of hardware and software considera-
tions.

5. Conceptually design the Integrated Design Data
Base and describe the data contents and the data relation-
ships within the data base.

6. Provide recommendations concerning the imple-

mentation and the maintenance of the IDDB.

10




Overview
‘é o As previously stated, the purpose of this report
? is to provide a conceptual-level model of the DA System and
its Integrated Design Data Base. The first three chapters
p provide the essential introductory information concerning
this report's design efforts. Chapter II discusses the
important background elements of both the design challenges
(problems) and the solutions to these challenges. Once the

reader has a grasp of the important characteristics of the

T
PR

background, Chapter III provides an explanation of the soft-

ware engineering and data base design techniques and the
design approach that was used.

The DA System model is presented in Chapter III.
This design is presented in two parts: (1) the organization,

and (2) the usage of the DA System. Chapter V presents the

conceptual-level model of the IDDB. This design consists
of an explanation of the individual relationships of the
data, the information content of these relationships,

and the total system view of this representation of the

IDDB.
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Conclusions are given in Chapter VI that discuss

how the six goals outlined above were met by the work
described in this report. Functions of the Data Base
Administrator (DBA) along with important characteristics

of the data base models and a DBMS are discussed in

11
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Chapter VII. Recommendations are also provided in Chap-

ter VII which describe the implementation of the DA System

including its IDDB.
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CHAPTER 1I

BACKGROUND

Introduction

In a broad sense, the Age of Microelectronics has
arrived. New ways are being discovered daily to use micro-
electronic devices in unique ways. In addition, dgreater
demands are being placed on the performance characteristics
of microelectronic devices. These additional uses and
demands have an effect on the design of these devices.

The effect is that the designs are becoming more complex
which causes the design problems to increase.

The designer has to bear the additional burdens
created by the increased complexity of the microelectronic
design. In the past the designer developed the need for
design tools to help in the design process. Out of neces-
sity, the designer is being aided by the use of computers.
The purpose of design automation computer programs is to
minimize the complexity of the design tasks for the designer.
Computer use by designers is a source of help. Unfor-
tunately, it is also a source of problems. Computer use
certainly helps reduce the complexity of the design work,
but the computer is not an easy design tool because of
inflexibility in responding to different designer require-
ments.

13




The objective of this report is to improve the com-
puter's usability for the designer's work on microelectronic
design. The problems to be addressed in this report are
some of the factors that negatively affect the computer's
usability. These problems must be overcome if truly effec-

tive use of computer-aided design tools is to be realized.

Background to the Problem

The problems are basically generated from two
sources which are characteristics of:

1. the microelectronic design environment, and

2. the designer.
This background text will describe the basic problem areas

of these two sources. It should be remembered that charac-

teristics of these two problems are interrelated.

As a prefacing remark, it should be noted here
that there is a difference between "incorporating" versus
"integrating" software tools or data bases into a design
system. "Incorporating" implies that the tools and data
bases are gathered and are available for a designer's use;
in effect, a "bag of tools" approcach. CAD Systems are
usually nothing more than this, containing diverse data
bases with a different data base for each application pro-
gram. "Integrating" implies that there is an integrated
design data base, where all of the design tools access one
data base and the boundaries betwcen individual programs
are "fuzzy." The boundaries are "fuzzy" because designers

14
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do not have to re-submit the entire design description data
for each Application Program (AP) used. The majority of
the design description has already been supplied from pre-
vious AP runs. There is only a small amount of additional
data required to augment the present design. For a DA
System to function as described here it must have inte-

grated data bases as well as integrated design tools.

Growth

The microelectronic design field has grown rapidly;
consequently, the design tools and techniques are changing.
The diversity of the design problems and the complexity
of the solutions to these design problems have grown. The
knowledge required and skills required for the designer to
perform an effective job using the new design tools and tech-
niques have also increased dramatically.

This growth has affected not only the designer's
performance but also the design tools created tn minimize
the design complexities. Usable design tools that will
provide solutions for the design problems are needed and
are causing rcsearchers to improve the present design tools.
But the rapid pace of microelectronic changes tends to
prevent researchers from designing for the future. 1Instecad,
new tool deveclopment requirements are driven by today's
problems, but end up being yesterday's solutions. There
are "two corstants found in design automation systems--
growth and change [35:464]." Not only are the tools being

15




developed too late, but in the past they were not being

designed well (18).

Designers

Veteran designers are accustomed to having complete
control and knowledge of their design work. However, it
is almost impossible for one person or even one team to be
aware of all the advances and potential ways to solve
present design problems. This often means that viable
design tools exist to be used, but the tools are not a
coherent set. Furthermore, they cannot be easily con-
catenated into an incorporated system. Thus, use of the
design tools (application programs, design systems, data
base, etc.) that can help solve the design problem often
introduce more problems. Thesz2 new problems can be in the
form of translation from one data format to another, from
onc computer repre;entation to another (60 bits to 32 bits,
ASCII to EBCDIC, etc.), new input/control languages, or
different data base formats. An\example of a designer's
nightmare is controlling design data integrity, which can
easily cause problems in an incorporated design system.
For instance, the design may have to be manually checked
to prove that the resultant design of an AP is logically

and functionally equivalent to the design input to the AP.

Incompatible data may make it impossible to deter-
mine if, say, the circuit simulated with logic simu-
lator is in fact the same circuit simulated via the
circuit simulator {2:108].
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Bag of Tools Approach

New microelectronic design problems are forcing
the designer to use new design tools. Often, to avoid

losing personal control of the design, the designer may

oy QE‘-W... —

begin to design using the "bag of tools" approach. The
typical solution is to find stable, understandable design
techniques that allow personal design control, contain

only a couple of input/control languages to learn, and safe
data (i.e., card deck stored on desk). This solution typi-
fies the "bag of tools" approach, also called an incorpo-

rated CAD System.

Incorporated CAD Systems

Many incorporated CAD systems are inefficient and
unresponsive to the designer's needs. They require differ-
ent control languages for each different Application Pro-
gram. The different APs also require the design data to
be reformatted for each AP. Thus, each AP must be provided
all the data required in its own format, and the syntax
énd contents of the data must also be correct. The inter-
face programs that were needed to convert the data format
from one program's format to another were also a hinder-
ance. So, CAD Systems tended to be either too imposing to
learn how to use, or too frustrating because of the con-
stant updates to new interfaces for the application pro-

grams.

17
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Within the microelectronic design field there are
whole companies and sciences devoted to specialized sec-
tors of this diverse field. For each sector, design tools

and related elements are developed, which include:

1. specialized software,

>

2. standardized component and electrical char-

"

acteristic libraries,

L)

3. design rules,

Ty

4. individual data bases for each software

package, and
5. specialized input/output control command
requirements.

A design system consists of a collection of these above

design tools and related elements. There are huge amounts

of redundancies, overhead and interface programs and data

Ty
Wt b

requirements that must be contended with when using a design

system that only "incorporates" the design tools. These

are elements of the problem to be solved and they make the
computer very difficult to use for design work. Thus, an

incorporated design system is difficult and inefficient

MR A, 2L ol 00 SR S0 0 e
.

to use, and the

- . . . waste [was] centered around the development

[ and use of many translators which [are] nceded to con-
F vert data files from the format of one application pro-
gram to that of another. The main concern of user
(designer] frustration came from the diversity of

input foremats and diagnostics which forced the user

to become familiar with many different languages
[10:353].

-
”
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Data Bases

There are data problems to be addressed that affect
the usability of design systems. Designers have experi-
enced the lack of data integrity and this is a very serious
data base problem. It is very difficult for the designer
to verify the integrity of the design data. Briefly, data
integrity is the preservation of data items, their associa-
tions, and their values. 1In this case, to verify data
integrity, the designers are concerned that the design data
has not been lost or compromised (changed). There are two
ways to perform the verification: (1) compare the data
character-by~character, or (2) have an accurate data manage-
ment function, which will monitor and maintain the design
data. Difficulty in verifying the design data is another
factor that causes the designer to find that design systems

are difficult to use and inflexible.

Example

A simple example representing an incorporated CAD
system with diverse data bases should show the relevant
problems. Consider a car requiring mechanical repair.
Experts are required to perform mechanical repairs. An
expert has the special skills, knowledge, and tools that
must be used to make proper repairs. An expert is usually
linited to only one field. Thus, there is an incorporated

group of expert mechanics that will be used to work on the

19
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car. An expert in fan belts is required to change the fan
belt. After the change is accomplished, the alternator

is diagnosed as needing repair or replacement, so the
alternator is replaced. The job is very difficult because
the fan belt gets in the way. But the replacement is made
in spite of the difficulty. The ability to replace the
alternator, with the fan belt in the way, is the major skill
required in alternator repair. During the process of
changing the alternator, the fan belt is often moved, maybe
forcing readjustment. Next, the generator must be replaced,
which requires another expert. This time both the alter-
nator and the fan belt are in the way, and both get acci-
dentally moved. Thus, the generator replacement may force
reiteration of the two previous repairs. This exemplifies
how each step of a design (replace) or a verification
(adjust) can have a rippling effect throughout the system
(engine).

As in the preceding example, design programs and
their data constantly change, and each data format or input/
control language change causes a ripple, affecting all sub-
sequent programs and data bases. During each step of the
design cycle, data can be mistyped or translation programs
may introduce errors. These are comparable to the acci-
dental readjustments that the mechanics were doing on the
car parts. And even more importantly, it can be seen that

the major skill required is the knowledge of how to get the

20
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job done in spite of the non-integration of skills (input/
control languages) and tools (data bases). The "bag of
tools" (division of tools) approach has also led to optimi-
zation and total design problems. ". . . the division has

blindered designers, forcing them to attempt optimization

without regard to its impact on the overall circuit [2:108]."

The redundant "specialized" skills or tools (i.e.,
translators), and knowledge required for each application
program (scen in the above example) are easily reduced.

The reduction occurs as a result of a DA system because of
the integration of its design data base and AP.

Each CAD program usually has its own unique input
language, library, and data storage. The designer must
take the time to learn each input language, and, even
worse, must specify the particular design (often with
redundancy, sometimes with error) for each program he
desires to use. Tor example, circuit connectivity must
be given in different forms for logic simulation, test
generation, and circuit layout programs [22:399].

The proper implementation of an Integrated Design Data Basc
to be used within the context of a well-conceived DA System

will provide a flexible and usable design tool solution for

the designer.

Background to the Solution

The objective of the solution is to provide the
design of a usable sct of tools that can be applied by the
designer for microelectronic design work. The designer
rmust be able to use the tools efficiently (little wasted

motion and time) and effectively (accurate design). "The

21




design community must perceive that use of the data automa-
tion tool will cost-effectively result in a tangible benefit
[5:5]."

Introduction to Elements
of the Solution

The problem background section discussed the exist-
ing problems in the absence of elements of the solution.
As previously mentioned, the elements which comprise the
solution are the use of Software Engineering, Data Base
Design Techniques and Tools, a Design Automation System,

and an Integrated Design Data Base.

Software Engineering. The author has noted a dis-

tinct lack of software engineering tools and techniques
used in the design and implementation of existing CAD soft-
ware (14:21,23).

The notion of software engineering was introduced
in 1968, to refer to the goal of applying traditional
forms of engineering discipline to the production of
software [16:43]).

The cause of the software engineering deficiencies, the
author believes, is because most of the software developed
up until the late 70s was written by the designers who only
wrote the program or software module to solve specific,
parochial design problems. Because software engineering

concepts are relatively new, the concepts were not used to

design incorporated design systems.

22
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Some of these inferior praciices include: insuffi-
cient documentation, hardware-dependent software scattered
throughout the program modules, and software modules which
are strongly coupled and have loose cohesion. Usually there
is no input/output interfaces to other programs, very few
standardized data formats, and difficulty in interfacing
most associated data bases.

Software engineering tools and techniques, while
relatively new, have proliferated because of the software
development industry. There is a critical need for a struc-
tured, engineering approach to software design and develop-
ment. Software is much too complex to design without
software "design rules." Using software engineering tech-
niques, the resulting software has become far easier to use,
debug, maintain, and comprehend. During the software
development, implementation, and verification phases, some
of today's software, such as DBMS and data base models, can
now be designed and analyzed with mathematical rigor.

Software engineering techniques are used in the
model design of the DA System and itc IDDB presented in this
report. Once the discussion of the design of the DA System
and its IDDB is complete, software enginecring techniques
are used to provide ways to comprehensively view these com-
plex designs. Thus, use of software engineering techniqucs
allows the complexity of the design to be minimized and the

informational content of the design to be maximized.
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Data Base Design. An integrated design data base

used by a DA System does not normally evolve out of the
presently used diverse data bases existing within an
incorporated CAD System. Therefore, the IDDB was carefully
designed using Data Base Design techniques. These tech-~
niques are a subset of software engineering techniques.
Essentially, general software engineering techniques are
applied to specific data base design problems. Thus, a
structured engineering approach was taken during the design

of the Integrated Design Data Base model.

Integrated Design Data Base. One of the goals of

an IDDB is similar to that of a DA System. The goal of a
DA System is to reduce the impact of software, hardware,
and data base changes to existing AP. This is similar to
the IDDB goal, which is to isolate the logical and physical
data structures from the AP, or logical and physical inde-
pendence.

The design of the IDDB must begin with the design of
the information structure as the first step. This informa-
tion structure is an abstraction from the complexity of the
real world into a logical structure consisting of informa-
tion needed for the IDDB. The second step is to reduce the
information structure into a data structure suitable for
management by a DBMS (4:113). While using the IDDB, the

designer's design data will not be under personal control.

24




Lo
.

]

»:‘
=

aE e
3

r L
L

TF [T

IR 2 FL AL SR IN

LS Aliee 43

P—

-

. A T ml A B

However, the data integrity and redundant data problems
previously experienced with diverse data bases will dis-
appear through use of an integrated design system. The
designer will find an added plus with the maintenance,
update, and validation procedures that will now be avail-
able for use. Thus, using the proper software engineering
techniques, and designing the DA system in concert with the
IDDB, should provide designers with the design tools that

they have needed.

DA Systems. As previously discussed, there are
many problems concerning the usability of a DA system. Good
DA Systems have been built, but the majority of these
design systems described in the literature, still have
designer complaints concerning usability, as previously
discussed. These problem areas are improved by the work
provided in this report's models. Physical and logical
independence is "designed-into" the system and provides a
flexible schema (data base model) design.

Air Force Institute of Technology (AFIT)
Implementation Plans

The Department of Defense and the Air Force are
very active in implementation requirements in the field of
microelectronics, Design Automation (DA), military design
for the following reasons. All major wecapon and support

systems are very dependent on microelectronics; the special
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needs of these systems must be recognized and designed into
military microelectronics; and the expertise required for
these tasks must be resident within the DOD and the AL

(3; 16).

The Air Force Institute of Technology (ArFIT) is a
logical place to both introduce the military officer to
microelectronic capabilities and design, and to prepare the
of ficer for the design and implementation of microelec-
tronics. A plan has been outlined at AFIT to conduct
research into DA and to support the operational design needs
within the Institute (30:1-2). The proposed DA capabilities
needed at AFIT will attempt to:

1. Perform.research in selected topics in design
automation,

2. Develop an environment to support design automa-
tion research at AFIT, and

3. Develop a capability to assist digital systen

design and fabrication in-house at AFIT (30:4].

AFIT's future DA System design plans provide an
excellent opportunity to design both the DA System and its
IDDB. This project will provide numerous opportunities in
research. These opportunities include the potential for
designing and implementing the different levels of a DA
system, data bases, application programs, algorithm develop-
ment, artificial intelligence research, and other related
areas of microelectronic design, development, and analysis.

Probably the most important aspect of this develoupment

project is that the fruits of the labor can and will be
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used to upgrade commercial, DOD, and educational facili-
ties.

Many DA Systems have been developed from an exist-
ing design. This is because business considerations
usually require that the system can partially be imple-
mented at the beginning of the design. The design and
implementation of a completely new DA System requires a
lot of time and resources. The DA System being designed
and developed at AFIT will be a completely new system.
This report is a component of the overall AFIT DA System
plan. The results of this report will provide a model of
the DA System that is physically and logically independent
of hardware and software concerns, with the designed-in
flexibility to allow for the growth and changes that are

characteristic of design systems.
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CHAPTER III

DESIGN OVERVIEW

Techniques Used

Introduction

There are five major software engineering and data

base design techniques that are used for the design require-

-y Y YT VYW
-A Ritfhda

ments of this report. These techniques help to design and
describe the IDDB, from the internal data requirements to
the data activity in the DA System. The techniques used
are:

1. Design Task Data Diagrams,
Design Cycle Activity Diagrams,
3. Third Normal Form,

4. Canonical Data Structures, and

|+ QEAERA TGS~ ASUBSOIMOS NN
. PR e - . . .
N
.

5. Structurea Walkthroughs.

The following sections of this chaiter describe

R B0 ANR 4L a4

each technique. The final section discusses how these five
- techniques are used together to describe the design of the
DA System and the IDDB models. The diagrams used, pesign
Task Data Diagrams and Design Cycle Activity Diagrams, are
. used similarly as the DMata/Activity Diagrams are used by
SofTech. Hpwever, in this report, the functions are

reversed to stress the usage of the diagram. Thus, the

REPL
I 4

data diagram is used to identify the data requirements

28
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of a design task; and the activity diagram is used to

describe the activities of the design tasks.

Design Task Data Diagrams

Design Task Data Diagrams consist of the funcﬁion
of the design task that the diagram is representing, the
input data used, and the output data generated by the
design task. The input consists of a task's actual input
data and its control data. The input data is categorized
and described by two generic terms: Input Design Data and
Control Data. The outputs generated by the design task
are:

1. Output Design Data,

2. Warning and Error Diagnostics, and

3. Execution Summary.

Figure 1 shows the input data on the left, control data
above, output data on the right, and in the middle box the
task being represented. The Data Diagrams show the spe-
cific and generic I/0 data requirements for a design task,
and these are expressed in two levels. These two levels
can be seen in Figure 1. The first level contains only
generic data descriptions, and the second shows the speci-
fic data descriptions. Only selectced examples of the
specific 1/0 data requirements of a design task are shown
in the lower level Data Diagram. The specific data

requirements are grouped into categories, the resultant
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 RELATIONS (GENERIC CONTROL DATA) ,

RELATIONS (GENERIC TASK RELATIONS (GENERIC
INPUT DATA) OUTPUT DATA)

SPECIFIC INPUT TASK | SPECIFIC OUTPUT
DATA DATA-RESULTS
Figure 1. Examples of Design Task Data Diagrams

generic I/0 data requirements are seen in this upper level
of Design Task Data Diagrams.

Design Task Data Diagrams are also useful in under-
standing the conceptual schema. The conceptual schema is
made up of relation schemes, and the GENERIC data that each
relation scheme contains is denoted by the relation scheme's
name. The conceptual schema defines and views the system's
data organization at a high level. The SPECIFIC I1I/0 DATA
REQUIREMENTS, in the Data Diagrams, view the data at a low
level. Conceptually, these two lecvels (GENERIC and SPECIFIC)
define the relation scheme and the relation occurrences.

It is also no coincidence that the GENERIC 1/0 DATA
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REQUIREMENTS are also the names of the Relation Schemes
that specify the design task's specific I/0 data require-
ments. The relationship of the Data Diagrams to the data
represented in the conceptual schema exists as a many-to-
one mapping. The specific data requirements of many design
tasks can be and are represented as a single occurrence of
several relation schemes in the conceptual schema. This
provides the mapping function (M:1), as illustrated in
Figure 1 and Figure 2. Figure 2 shows how the entire IDDB
is made up of the Specific I/O Data Requirements and that

these are contained in the Generic Data Requirements.

Integrated
Design
Data Base

seneric
Data
Requirements

Generic
Data’
Reqiirements

Specific
/0
n.no.

Figure 2. Data Hierarchy
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Design Cycle Activity Diagrams

Design Cycle Activity Diagrams are similar in
representation to Design Task Data Diagrams, except instcad
of showing how the data 1s transformed by an activity
(design task), the Activity Diagram will show the flow of
the different activitics and their effects on the design
data. Input, control, and output activities will be repre-
sented as arrows to/from the (design) data box.

The purpose of the Activity Diagrams 1s to graph-
ically describe the changes that the design data goes through
as the design evolves. The activities are represented by
labeled arrows, and the box represents the effects that the
activities have on the data. In cther words, the arrowed

-7 activities transform the design data. Design tasks are
grouped and represented as design phases. Each phase con-
tains a set of design tasks that perform transactions on
the design data. The Activity Diagrams shown are high level.

Lower levels would be required for further implementation.

Activity Diagrams are useful in showing trans-
& actions on the desiyn data by describing the design cycle.
The diagrams show the data affected by design task activi-

ties. The Activity Diagrams will also show the point of

-

return in the design cycle, to begin redesign, after modi-
fications or corrections to the design have been made.

Thus, in case of dosign corrors the diagrams will show whnt
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data has been changed by a task, so the erroncous data can

be corrected.

Third Normal Form

This normalization technique prescribes ways to
find the best grouping of the data, which will minimize
the probability of future data basc disruption. Without
discussing the theory behind it (see Reference 25 for a
complete discussion), the normalization process will bLe
described. The following three steps will process data
structures into Third Normal Form (3NF).

1. Decompose the data structures into two-
dimensional tables, which describe relations between items.

2. Reduce the tables, so there is full functional
dependence of the non-prime attributeson all the keys.

3. ECEliminate the transitive dependencies of the
non-prime attributes on all the keys.

The advantage of using 3NF is that the resulting
relation schemes are now in a normalized form (3NF), that
will resist common data integrity problems. These problems,
which occur as a result of bad data base design, will be
avoided through the use of 3NF. These data integrity prob-
lems include deta basce redundancy, potential inconsisten-
cies (update anomalies), and insertion and deletion

anomal ies.
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Another advantage of this form is that it allows
a relation scheme to be decomposed and then joined, and the
resulting scheme will be lossless. Also, functional depen-
dencies cf a relation scheme in 3NF are preserved after
decompositions. These two characteristics (lossless decom-
position and preservation of functional dependencies) are
important because they provide proof that manipulations on
the relation schemes will not lose information on data or
data relationships. These proofs are important to guarantee
integrity of the 1DDB for each of the individual designers

and for the overall data base (25-28).

Canonical Data Structure

A canonical data structure is used to represent the
conceptual schema and the resulting representation is a
canonical schema. The canonical schema is a normalized
model of the I/0 data requirements of the users (designers,
tasks, DA System) of the design data. The importance of
the normalization aspects of this model cannot be ignored.
The normalization is obtained by requiring that all rela-
tions in the canonical schema be in Third Normal Form. This
Third Normal Form normalization of the model precludes the
possibility of the anomalies previously listed. This model
of the data, canonical schema, represents the inherent
structure of that data and also satisfies (by definition)

the logical and physical independence goal of this thesis.

34




viv<vl‘_.4l

Canonical Schema. The particular format used to

express the conceptual schema in this report is called a
canonical data structure, and the result is a canonical
schema. Usage of the terms, conceptual schema and canoni-
cal schema, will be consolidated into canonical schema.
This is because a conceptual schema is a general represen-
tation of a canonical schema. The canonical schema will
be used as a data organization and management reference
tool to help in the.implementation and maintenance of the
data base. It will be designed and built using the
canonical data structure technique which will be described
next.

The following paragraphs describe developing, read-
ing the graphics of, putting into perspective, and, finally,

understanding, the canonical schema.

Development of the Canonical Schema. The next eight

steps describe how to develop a canonical schema, which
includes the 3NF normalization process (paraphrased from
Reference 25:248-289).

1. Define a single task's view of the data,
graphically showing the type of association (1 or M). The
"task-views" in this case are the design task's view of
the data.

No hidden transitive dependencies.
No redundant prime attributes.
(This essentially defines the Thixd Normal Form).
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2. Define the next design task's view of the data,
as above. Merge it into Step 1l's result. Remove any
synonyms and homonyms.

3. Denotece the primary keys.

4, Add the inverse association between any keys.
If an M:M association is created, remove it either by
adding a concatenated key, or by dissolving one side of
the association, if it will not occur.

5. Remove genuinely redundant associations.

6. Repeat steps 2 to 6 until all task views are
merged.

7. Resolve isolated attributes and intersecting
attributes.

8. Plan for future growth of the data base.

Check if other relationships should be added, to prepare
for future growth (new task-views). Remember, the canoni-
cal schema will easily accept data base growth, if properly
planned for, so new tasks nced not affect or, more impor-
tantly, invalidate the data base or the DA System design.
9. The canonical schema will be accurate so verify

that all task views exist and are still in 3NF.

Definitions. The following terms define the symbols

represented in Figure 3.
A Non-Primc Attribute is a data item or a piece of

descriptive data. Non-Prime Attributcs will be pointed at
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Arrows: single arrow, unique directional mapping (1).
double arrow, multiple, directed, mapping (M).

For example:

1:1 conventional marriage

1:M polygyny (1 husband-M wives)

M:1 polyandry (1 woman-M husbands) m @ @
M:N group marriage » W

Figure 3. Canonical Schema Diagram
Symbol Explanation
by only one single arrow, its "ovwner," and Non-Prime Attri-
butes will point at no other attributes.

A Prime Attribute is an attribute which is a member
of a ke, and cannot uniquely identify data (tuple). Prime
attributes will be pointed at by single arrows, and will
point with a double arrow. They can usually identify many
occurrences of a data item, rather than uwiigue occurrences.
The prime attribute(s) constitutes a key and uniquely
specifies data.

A key has two properties: unique identification and
nonredundancy. The value of the key uniquely identifies

the tuple. No attribute of the key can be discarded without
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destroying the property of unique identification. Also,
keys can uniquely identify their "owned" data attributes
(details or assignments) and their prime attributes.

A Relation Scheme can represent an Association or
"Details,"” which describe a relation or an occurrence. An
"associative" relation scheme is made up only of prime
attributes (called an association). A relation schemc that
is made up of the key and its associated data attributes
specifies a relation's Details. An cxample of an associa-
tion in this report is the Signal-Pin Assignment, where
each signal is associated with the pin of an electrical
component. An example of a Detail would be the descriptive
data for each component's pin, such as location on a board,
pin function, impedence, etc.

It should be noted that a key that is subsequently
used as a prime attribute will be shown graphically as a
key function. An example of this occurrence would be when
a Model is specified (i.e., Model Details), and then the
data concerning the model's pins is required. The Model
specification, which contained a key, is now a prime attri-
bute (other prime attributes required for the key) because

more information is nceded to specify the Pin Detaiils.

Putting the Canonical Schema Into Perspective. For

future design and implementation of the IDDB, the next step
would be to create the logical schemas and the physical
schema of the data base.
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Logical schemas are made up of the simple, task-
specific, data associations that describe how the DA System
users view their data requircments (task-views). Logical
schemas are logically dependent on the AP. The specific
data is input data, control information, and output data,
along with the specific data formats required. Any informa-
tion required for a specific AP (task view) must be pro-
vided in the logical schema.

The physical schema defines the physical location
and characteristics of the data. It must take into account

the access methods, read and write procedures, data formats,

and other implementation considerations. The DBMS must be
chosen and implemented before the physical schema is imple-

mented.

Understanding the Canonical Schema. Each relation

scheme must first be analyzed, and as the individual com-
ponents of the design become familiar, then the entire
design will be easier to comprchend. The associations that
are used to describe the tasks' views are an invaluable

aid in understanding the canonical schema. One task-view
after another should be analyzed, to gradually become
familiar with the data organization in the canonical schema.
Once the design task's I/0 data requirements (task-view)

are understood (from the Design Task Data Diagrams) then

the design phases (from the Design Cycle Activity Diagram)
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should be analyzed. This will put the broader design objec-
tives and data requirements into perspective. The Rela-
tion Schemes should also aid in describing both the data
requirements and the data organization.

Some of the task-views in the DA System are repre-
sented in the Design Task Data Diagrams of Appendix A.
The data requirements of several tasks are shown in these
diagrams. These data requirements, as listed in the Data
Diagrams, are defined via the Relation Schemes and the
Details Sections which describe the canonical schema. The
data items, which comprise the non-prime attributes may be
contained within a group of other related data items, which

will make up a section of data called Details.

. Structured Walkthroughs

f; Structured Walkthroughs were used to verbally

ii describe various aspects of this report to an audience con-
s sisting of potential users of its results. These presenta-
3

&; tions were used to ensure that the potential users under-
E; stood the thesis design, its interim results, and that the
t" design work being done was correct. It provided an inter-
&t active, dynamic forum for the design of the IDDB and the DA
&i System. As a result of these meetings, many changes were

F made to the design.

3
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Technique Interactions

This section will describe how the five previous
software engineering and data base design techniques have
been used to design and verify the canonical schema. As
previously mentioned, the structured walkthroughs were used
to validate the design results. The Data Diagrams are
expressed at two data levels: specific and generic. The
generic data names used in the Data Diagrams are also the
names of relational schemes used in the canonical schema
description. There are many occurrences of the tasks's
generic data {in the Data Diagram) which maps onto a single
relation scheme; this is a many-to-one mapping). Many
tasks may require the same generic data, which is specified
through one relation scheme. The canonical schema is a
complex structure, but is constructed of relation schemes
which are in 3NF. The Data Diagrams show how the data fits
into the canonical schema, making it understandable.

The Activity Diagrams show, at a high level, how
the data is affected by the different tasks in the design
cycle. These diagrams will become more important, and will
have to be done at a lower level, during further implementa-

tion of the design of the DA System and its IDDB.

Data Abstraction Hierarchy. Design projects

describe inherently complex systems, with a tremendous

variety of information. Because of this complexity, therc
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is a need to conceptually and hierarchically organize the
design data, which makes up the IDDB, is required by the DA
System, and will be used in the design cycle. A Data
Abstraction Hierarchy, Figure 4, consists of the data that
is contained in the IDDB and which redundantly shows this
data at different levels of detail and in different forms
of representation (1:1259).

The Data Abstraction Hierarchy is shown in Figure 4.
It shows the IDDB decomposed. The diagram shows how the
data requirements of the Design Cycle, starting at the
bottom, are redundantly specified as Specific I/O Data
Requirements (Specific I/O D.R.) of the many APs that are
contained ir the Design Cycle. Each of the Specific I/0
Data Requirements is logically dependent on the APs. The
data of several APs may be the same and is grouped into
Generic Data Requirements (Generic D.R.). Thus several
specific I/0 Data Requirements may be represented by a
single Generic Data Requiremenct. Figure 4 shows that data
abstraction occurs between the Generic and the Specific I/0
Data Requirements. It also shows that the entire data

requirements of the Design Cycle are contained in the IDDB.

Design Approach

Introduction
The design approach taken during this report is

composcd of frar steps:

42
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Design
Data Base
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Data
Requirements
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1/0
D.R.

Specific
1/0
D.R.

@ Task

Desipgn Cycle

Figure 4. Data Abstraction Hierarchy
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L Step l--collect the user's design requirements;
i& Step 2--collect the total system requirements;
Step 3--build the canonical schema; and
Step 4--document the data organization, in terms
cf the requirements for both the users' and the system's

views.

Step 1--Collect User's Design Requirements. This

first step of the design approach is made up of two sec-

tions: (1) identification of the task-views, and (2) charac-

terization of the data required for each task-view. A

questionnaire was used to gather the information required

to characterize the data. Many of the results of Step 1
‘k#. are presented in Appendix A which contains the Design Task
Data Diagrams.

1. Identification of the Task Views. First, the

different design tasks to be used in the DA System must
be identified. (Later additional tasks may be added, but
an init:al group of tasks must be used for the specifica-
tion requirements of the D/A System.) As soon as a task
has been identified, the Input/Output Data Requirements
(I/0 DR) nmust be listed and defined. All of the task
requirements together define the data requirements of the
DA System.

2. Characterization of the Data Required for Each

Task-View. Generally, the questionnaire was used to
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identify the data required for the design of the 1DDB and
the DA System. Specifically, the purpose of the question-
naire (see Appendix C) is to ascertain various facts about
the data items to be used in a task and the associations
that exist among the data items. The data item's name,
definition, attributes, known dependencies, and unique
identifiers are heilpful in characterization. Associations
between two data items require an association name, the
data items involved, the mapping property (1:1, 1:M, or
M:M), the implication or meaning of the association, and a
list of any unused but meaningful associations. The final
results of an answered questionnaire will be a "task-view"
of each design task.

The questionnaire was originally intended to be
answered by microelectronic designers; however, the tech-
nical level of the questionnaire required too much knowl-
edge of data base design. Also, the short time frame of
the thesis report prevented the questionnaire's use as
intended. Instead, the author used the questionnaire as a
guideline to follow in researching the many design tasks

that designers need to have performed.

Step 2--Collect System Requirements. This second

step in the design approach is made up of two sections:
(1) definition of the data basc environment, and (2) charac-

terization of the interactions of the design tasks. This

45




A P

.
.
L!_
3

3

A an SIS L el S UD o) SN o 4 JEn LA
. . . - .

?
-_“

[l A e 4

Y

T ——,—

P ——— RN

step satisfies the solution to the second goal, as
stated in Chapter I: Design the DA System, and use the
design as a model environment for the IDDB.

1. Definition of the Data Base Environment.
The data base environment, as defined in this paper, is
the DA System that will generate and use the data that is
in the IDDB. The approach taken in defining the environ-
ment is to break the DA System into its component parts,
describe each part, describe the interactions between the
parts of the DA System and, finally, show how the IDDB will
be organized and used in this environment. This definition
of the environment will be found in the DA System descrip-
tion.

2. Characterization of the Interactions of the
Design Tasks. To characterize the interactions of the
various design tasks to be used in a DA System requires
describing the precedence ordering of the different tasks,
including tasks that can be performed independently or con-
currently, the data changed per task, the restart point
for error rccovery, and the control loops. Two levels of
this resultant characterization can be seen in the Design
Cycle Activity Diagrams.

The results of Step 2 are presented in Chapter 1IV.
The data base environment is described as in the DA System,
its organization and use. The interactions of the design
tasks are described in the Design Cycle Activity Diagrams.
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Step 3-- Build the Canonical Schema. This third

step in the design approach entails integrating and mini-
mizing the results of the previous two steps (Collection of
User and System Requirements). A canonical schema is pro-
duced from this effort. The canoni:al schema is a model
that represents the entire information content and organiza-
tion of the Integrated Design Data Base. As previously
stated, the design of a canonical schema implies that there
will also be logical schemas (made up of each design task's
view, specific data requirements), and a physical schema
(the physical implementation design of the data base).
Chapter V describes the design process and the resultant

model of the IDDB.

Step 4--Document the Data Organization. The data

organization must be documented for both the task and the
system in terms of the canonical schema requirements. Some
of the task-views are described in the Data Diagrams in
Chapter IV. The specific input and output data require-
ments of these views are mapped into generic data categories
and then respecified into relational terms as seen in
definitions of the Relation Schemes and the Detail descrip-
tions of Chapter V. The data base environment is described
in the DA System scctions, Chapter IV, and the interactions
of the design tasks are found in the Design Cycle Activity
Diagrams of Chapter IV. Tinally, the canonical schema is
completely documented in Chapter V.
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CHAPTER IV

DESIGN OF THE DA SYSTEM MODEL

Introduction

This chapter is divided into three sections. The
first section discusses the general assumptions concerning
the DA System, the second discusses the organization of
the DA System (which contains the IDDB), and the third
discusses how the DA System will be used. The individual
and grouped assumptions that follow should help clarify
concepts affecting the DA System design. (Note: the DA
System is represented in Figure 5 and the reader will find

it a useful reference during its discussion.)

General Assumptions

Definition of Terms

While reading this thesis, there may be some con-
fusion as a result of term usage. It has not been possible
in this report to use normal terms from only one area of
study because the report's subject is interdisciplinary.
The author has attempted to make the meanings of words
clear and to use words consistently in the generally
accepted sense of their meaning. To help, a Glossary of

Terms (Appendix B) has been provided. It is suggested that
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the glossary be skimmed to verify and recognize the dif-

ferent definitions before reading on.

Design Model Representation. A design may be imple-

mented using many technologies and models. Physical imple-
mentation of the design may be postponed for gquite awhile
during the design cycle, because specific technology desig-
nation may not be immediately required during the logical

design tasks.

Project ID. Each design project is assigned an
identification number, ID#, which uniquely identifies a
particular design effort. If the effort is broken into
teams, then a multi-value identifier may be used. The
identifiers used may be: Team # and Designer #. This will
prevent data integrity problems such as when several
designers working on the same design are independently
designing the same segment of the design. The important
point is that the identifiers can be lumped under one iden-

tifier key: ID#.

Project Independent and Project Dependent Data.

Any data items that can be assessed without an ID# as a

part of its key is Project Independent (PI) data. Project
Independent data is data that is used for references by the
designer and is not changed by design work. PI data values

are independent of any particular or individual project.
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PI data is used for reference only, and values of each PI
data item can only be changed by the DBA, not the user,.

Project Dependent data is data that is generated
specifically for a particular design and is changed by
design work. Any data items that must be accessed with an
ID# in the key is Project Dependent (PD) data. PD data
values are dependent on a particular, individual project.
PD data can be dynamically changed during design tasks.

The designer can change an incorrect part of the design or
the AP can change the PD data during the design task. All
data items are either PI or PD data. Once classified as
either PI or PD, this classification is fixed, although the
DBA can make PD data into PI data stored data.

The design tasks in this report, the APs and their
associated data requirements, are not defined or described
exhaustively. However, these design tasks and data require-
ments are representative of the techniques and design data
that designers arc using to design microelectronic systems

today.

DA System Organization

A conceptual view of the DA System's organization
shows the three separate data areas of the IDDB which
consist of:

1. Project Independent (reference data),

2. Project Dependent (designer's design data), and

50
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;} o 3. Execution (task Data).

: The DA System which contains and uses the IDDB is also
K‘ made up of:

- 4. A Data Dictionary,

h 5. An Executive,

: 6. Application Programs,

; 7. Application Program Interface,

h 8. A DBMS,

9. A DBMS Interface, and

10. The Users (called designers) of the DA Systemn.

This DA System organization can be seen in Figure 5, and

will be helpful for the following discussions. By defini-

tion, the data is an integral part of the DA System. The
following subsections discuss each of the above elements of

the DA System.

Data Areas of DA System Model

The IDDB permanently stores two logically different
data bases. Thesc are stored as the Project Independent

(PI) and the Project Dependent (PD) data areas. Each

v r}vhw—‘ﬁ ety

designer has his/her own PD data area. During actual design

work, using the DA System, a third data area is created,
which is the Execution data area. This is wherc the design
data required for a task, from both the PI and PD data
areas, 1s generated for use during a design task execution.

. According to some authors, these three data areas could
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also be called "work files," where

i! . . . portions of the main data base are extracted
. to form work files, which can then be customized by a
- set of applications to provide efficiency and to

. eliminate data contention problems at the central data
- files [7:94].

E! These three data areas are now described.

: 1. Project Independent (PI) Data Area. The PI
data area is made up of reference data. This is data that
3 the designer and the design tasks reference and use, but
Q. cannot change. Examples of this are Model Details,
Defaults, and Macro Nets. The DBA controls the maintenance

Tﬁ of this data area.

2. Project Dependent (PD) Data Area. The PD

Fi ) data area holds each designer's design data. This is data
a7 that is defined/changed dynamically during design tasks or
interactively by the designer. Examples of this data are

the Design Net, Default Changes, Design Details, and

logical and physical designs. The designer controls the

maintenance of this data.

3. Execution Data Area. The Execution data area

is the scratch data area into which the PI and the PD data

e Son sk AN B SN o gt il et o
N L T

are written at execution time for use by a specific task.
Each task views data as it is defined in the canonical

‘ schema; therefore, the data sources, PI and PD, are irrele-
vant. The data that will exist in this Execution data

area during task execution is the data speccified by the

S, Input Data Requirements Relation (to be discussed),
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and any internal data created during the design task's
aoxecution. After inspecting the resultant data, the
designer will have the option to save it in a PD data area
or delete it from the Execution data area.

Functional Components of
DA System Model

The following components of the DA System are the
"functioning" components and provide services to the
designers and the design data.

4. Data Dictionary (DD). The Data Dictionary
contains the definitions of all the data items, where they
are used, data types, etc. The DD also contains the
logical location of each data item. The logical location
essentially defines the DBMS query to generate the rela-
tion that a data item belongs to. The Data Dictionary 1is
an important DBA tool, also.

4. Executive (EXEC). The DA System's Executive
is the software interface that the designer interacts with.
The designer tells the EXEC what design task is to be exe-
cuted and the EXEC performs those tasks. Any pertinent
questions, data error checks, or other person-machine
interaction is coordinated by the EXEC. For example, when
a designer's design data is insufficient for a particular
task to execute, the EXEC is notified by that task and the

designer is requested to provide/correct the data. Note
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the design data contains the stored data (previously
defined or generated), and the input data (designer input
for this task). This is an important characteristic,
since the design data that was correctly generated by a
previous design task and verified by the designer is the
same design data used in the next design task.

The data is not stored redundantly in the differ-
ent data format required by the different AP, but rather
is stored in a single implementation of the canonical schema.
Also, the next design task used will need only small amounts
of additional data for its input and control data require-
ments.

The EXEC knows which APs make up the functional
requirements of a particular design task. The EXEC will
provide the designer access to the PD data area, which
allows the design data to be viewed or changed. The P1
data can also be reviewed, and the default values of a
design task should be checked by the designer through the
use of the EXEC.

The EXEC should manage the desian data thus
demanding less of the designer's time. These functions
will lessen the burden on the designer by providing a
single, flexible, casy-to-learn interface to the DA Systemn.
Thus, the EXEC will allow the designer morec time to con-
centrate on the formidable tasks: to design better
microelectronics in less time.
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6. Application Programs (AP). There are many
Applications Programs that make up design tasks that are
used by a DA System, and new ones are constantly being
replaced and added to the system. These APs are the
software packages that perform the calculations and
manipulations of the design data. For instance, an AP may
be a component placement program for gate array layout. An
AP may make up an entire design task, a part of a task, or
an AP may contain several tasks. An important point is that
each task is defined to be one task-view as far as the
logical schema is concerned. Thus, several APs, using
different data formats and data item names, may have to be
executed to perform one task.

7. Application Program Interface (API). Each AP
has an Application Program Interface which is made of a
subset of two Relation Schemes: Input Data Requirements
(input data required to run the AP} and Task Results (out-
put data from the AP). (These relation schemes are com-
pletely defined in Chapter V.) The APIs, which represent
the APs used to make up a task, provide the relation scheme
subsets that are to be JOINed, and the result is the com-
plete relation scheme. For example, the design task may
include placement and route functions. The Input Data
Requirements of both of the APs will be specified by the
APIs which will allow the needed data for the design task

to be generated for use by the APs.
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An API also stores the actual format of the data
required by both an AP and the Data Dictionary. As implied
by the previous discussion, the complete relation scheme
defines the upper-level description of the logical schema.
Thus, when the relation scheme subsets are joined, the
resulting complete relation scheme contains the logical
scheme. The Data Dictionary transforms the data provided
by the DBMS, and gives it to the AP, and when data is
generated that is to be stored by the DBMS, the Data
Dictionary transforms it and gives it to the DBMS (via the
DBMS Interface). This interface function should be
transparent to the designer.

8. Data Base Management System (DBMS). The DBMS
is the software that must handle all access to the IDDB.
This single interface to the IDDB provides for consistent
data operations, reduced data redundancy, shared data,
secure data, and enforced standards. There must also be
control mechanisms to protect users of the data from com-
promised data (data integrity).

9. DBMS Interface. The DBMS Interface receives
the logical locations of the data and transforms them into
DBMS queries. The DBMS Interface transfers the queries
and querxy results to the appropriate DA system component.
The frequently-used DBMS queries can be optimized, and this

would be the location of the query optimization routine.
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10. Designers. 1In a DA System, the designer is
the most important component. It is the designer's exper-
tise that the design system must be capable also of incor-
porating into the design. It is the designer's time and
the amount of data manipulations to be performed that must

be minimized (24:286).

DA System Use

The description of the usage of the DA System will
be in two parts: the designer's point of view and the

internal interactions of the DA System's software.

Designer's Point of View

Basically, the designer will only interact with the
EXEC. When a designer first logs into the DA System an
initialization procedure is executed which identifies the
designer and the design tasks to be run. Any extra data
that must be provided by the designer will be prompted by
the EXEC. Questions concerning any design tasks, data
required by a task, and even questions concerning the
present design are all handled by the EXEC. The EXEC will
facilitate changes to the design data, and will coordinate
changes to program default values. In summary,
the designer will only interact with the EXEC and the EXEC
will remove or reduce many mundane design tasks.

The function of the EXEC and the resultant view of

the DA System that the designer sees provides a simple, but
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flexible interface for the designer. While the design of
the EXEC is original, similar concepts have been used in
other systems such as the Computer Aided Design and Design
Automation System (CADDAS) at the Advanced Technology
Laboratories, RCA Corp. Reportedly,
. . . [they] designed a system which executes appli-
cation software through the use of control executives.
These executives automatically gather the appropriate

data, perform any necessary manipulations, and cause
the execution of the application program [24:285].

Internal Interactions

These interactions are described in three phases:
(1) Execution Data Generation, or preprocessing; (2) Task
Execution, or processing; and (3) Task Completion, or
postprocessing. (Note: the numbers in parentheses will
indicate their location on the DA System diagram (Figure 5).)

1. Execution Data Generation. At the beginning
of a design session, when the designer requests the EXEC
to run a design task, the data required to run this task
must be gathered into the Execution data area. The EXEC
determines the series of actions to accomplish the
designer's request. The EXEC calls (2) the APIs that arc
required to run the APs that make up a design task. The
partial Input Data Requirements (IDR), specified in the
APIs, for cach AP are JOINed by the Data Dictionary (DD)
to form the full Input Data Requirements (IDR) Relation.

The IDR specifies all of the design data required by the




task. (Further discussion on the IDR relation is given in
Chapter V.) The DD then specifies (4) tche logical loca-
tions of the data to the DBMS Interface. The DBMS Inter-
face converts the relation's logical specification into
DBMS commands (relational gqueries) that will be submitted
to (5) and executed by the DBMS.

2. Task Execution. Before task execution is begun
there are default parameters to be verified and approved
or changed by the designer. The EXEC coordinates (17)
the default specifications of each task. The designer is
provided (18) with the task Defaults for inspection, so
that any changes (Default Changes) can then be inter-
actively made. The Defaults to be "Changed" are flagged
(7) during the interactive session because the Defaults
are PI data, and then the Default Changes are stored (6)
in the PD data area. These Default Changes cause changes
(8) to be made in the Execution data area also. Any design
data (9) that has not yet been provided by the designer,
for use by the task, will be requested (1l8) from the
designer by the EXEC and will be added to the designer's
design data. Once all the design data has been completely
loaded and verified, (9, 10, 1l1) task execution can begin.

3. Task Completion. During the task execution,
Task Results data is generatced. When the task execution
is complete the new design data must be evaluated. This

data, called Task Results, will bc placed in the PD data
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area, but only after the results have been checked and
approved by the designer.

Often the resultant data (11) (Task Results),
will be error messages and execution diagnostics. The
designer will need to reference them to help correct the
design data. While these messages may not be important
design data, they may be critical to evaluation, redesign,
or data correction activity required by the designer.

Once the corrections have been made to the design data the
error messages can be discarded or saved.

For the resultant data to be saved the designer
must approve the Task Results data for storage. When
approved for storage the API will notify (3) the DD, which
in turn will provide (4) the logical storage location for
the data to the DBMS Interface. The DBMS Interface issues
the retrieval (5) (from the Execution data area), and the
storage (to the PD data area), commands (8) to the DBMS.
The DBMS then proceeds to execute the commands to complete

the storage operation.

DA System Model

The following is a more detailed description of the
DA System functions at each critical point (numbered
arrows in Figure 5) in the DA System.

1. The designer provides inputs, commands, ques-

tions, and responses to the DA System, via the EXEC.
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2. The EXEC selects the APs to execute, which

together constitute a design task. This is also where the
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EXEC responds with the additional data from the designer
required by an AP to execute or with the disposition com-
mands concerning the Task Result data.

3. The partial IDRs Relations are joined in the DD
to specify the full data requirements of the design task.
The IDRs request information fromthe DD that is needed by
the APs to execute.

4. The DBMS Interéace receives the logical loca-
tion from the DD of the data needed (to read or write) and
converts it into the DBMS commands rcquired to process the
data.

w 5. The DBMS receives the commands from the DBMS
Interface and executes the commands against :he PD, the PI,
ard the Execution data areas.

6, 7, 8. These are read and write commands that
the DBMS executes against the three data areas.

9, 10, 11. The results of the previous DBMS

! commands are generated by DBMS command executions. A

result can be a successful read (thereby transmitting the
data), a write (changing or adding data), or an unsuccess-

@ ful read. 1In the case of an unsuccessful recad the EXEC

is notified (12), (13), then (20). The EXEC determines
what data must be added to correct the situation. This

¢ » decision is the result of a query against the APIs to
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find the needed data. If additional PI data is needed,
the DBA must be notified. That would mean that the
required system data is missing. If additional data is
needed for the PD data area, the designer is requested
(18) to provide the appropriate design data.

12. This is the receiving side of the pipeline
that exists between the DMBS and the DBMS Interface. All
the information that is requested by the DBMS commands
(5) is funneled back through the DBMS Interface (12).

14, 20. The requested data is passed to the DA
System component that originally requested it (14 or 20).
If the data is to be used by the APs, it will be passed to
the APIs by the DD and then passed to each respective API
(14). Each API will in turn provide the needed information
to its associated AP (15). If the information was
requested by the EXEC (see #19), then it will be sent to
the EXEC (20).

16. As a task executes, the resultant data,

Task Results, will be transferred (16, 3, 4, 5) to the
Execution area (8) as the data is generated. (This may not
be efficient, but it has no detrimental effects on the DA
System as a data base environment.)

17. The EXEC is notified when the proper data is
not available for a design task execution. The EXEC is
also queried as to the disposition of the Task Results

3}
after a task's execution.
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18. The designer receives the queries and respon-
ses from the EXEC.

19. There are circumstances in which the EXe&f
must query the data base. These include times the
designer wants to see parts of the design data, PD or PI
data area. The designer may also wish to change parts of
the PD data when Default Changes are made to the PD design

data.

Design Cycle

Introduction

The Design Cycle presented here uses general terms,
called generic descriptions, to describe the different
design tasks. The Design Cycle or Design Cycle Accivity
Diagram, presentation also represents the transformation of
the design data during the Design Cycle. These design
tasks in the Design Cycle are grouped into six phases
which make up the design cycle:

1. Input Design Specification,

2. Logic Design,

3. Logic Design Verification,

4. Physical Design,

5. Physical design Verification, and

6. Final Artwork and Documentation.

64




Y 4

- . - e

Design Cycle Phases

The following descriptions will discuss these six
phases as they are represented in I'igure 6.

1. Input Design Specification Phasc. This phase

includes both logical and physical designs. Initially,
the design is logical in nature. The design will gradu-
ally evolve into a physical representation during the
course of the design cycle. The techniques used to
specify these design representations are varied. They can
vary from graphical (using interactive graphics systems),
logic design languages, hardware description languages,
stick diagrams, block diagrams, functional specifications,
register transfer languages, and behavioral specifications.
Design languages, in general, are either structural (define
logic elements and their interconnections), or behavioral
(define how each element functions logically and timewise).
Usually the physical design specifications use the
verified logical design and transform the logical design
into the physical design. But before the physical trans-
formation is done, the logic design must be verified.
Also, because the logical design is general or non-
specified, it can be physically implemented using many

technologies and electronic "parts," ("silicon," DIP com-
ponents, hybrid circuits).

2. Logic Design Phase. Once the initial logic

design has been specified, the Logic Design Phase consists
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of the analysis performed by the designer on the results
of the Logic Design Verification Phase. There is a cycle
between the two phases that continues until the logical
design is verified. The Logical Design Phase is performed
by analyzing the results of the Logical Design Verifica-
tion Phase. The cycle among the two Phases entails itera-
tions of simulations and other analyses, which make up the
Verification Phase. Then the designer analyzes the results
of the verification tasks, changes the design; this is the
Logical Design Phase. Then the Logical Design Verifica-
tion Phase can begin another cycle.

3. Logical Design Verification Phase. This phase

includes Logic and Fault Simulations, Controllability/
Observability (C/0) tests, and Timing Verification tests.
Logic design verification allows the designer to verify
that the computer representation of the design will
logically function precisely as envisioned by the designer.
These different verification tasks exercise the design,
attempting to find certain design problem areas such as
signal faults, timing errors, and internal C/0 weaknesses.

4. Physical Design Phase. This phase includes

those tasks that transform the present design into a
physical implementation of the logical design. Often
these design tasks are iterated with the next Phase,
Physical Design Verification. This iteration within the

design cycle allows the physical design problem arcas to
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be flagged before the design goes too far. The design may

also be segmented, and then designed and verified in sec-
tions.

Because a logical design can be physically imple-
mented using different technologies, approaches (IC, PCB,
Gate Array, etc.), design rules, and geometries, it is
important for a designer to be able to explore the effects
of many implementations of the design. Thus, the designer's
goals for the design can critically affect the course of
this Phase of the Design Cycle. For instance, optimizing
for hardware or software speed, physical size, reliability,
maintainability, cost, testability, or a combination of

several of these factors, affects the design cycle and the

ﬁ. A 14 results of the design tasks. These factors also influence
?: the actual design tasks to be used within the design cycle.
iﬁ 5. Physical Design Verification Phase. This phase
!- includes tasks such as design rule checks, electrical rule
;‘ checks, and specification rule checks. As previously noted,
3 these tasks often interact in a cyclic manner with the

F‘ Physical Design Phase. This phase can be used to par-

' tially or completely verify the physical design early in

- the Design Cycle. The rule checks entail physical geo-

:. metric checks, electrical constraint tests, and verifica-

f tion on the logical and physical designs' equivalence.

f A. R. Newton (12:1189), provides support for these
¢f . phases when he discusses different techniques used for
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verification. These techniques are factored further into
functional and physical aspects of the design cycle. The
logical symmetry of the design cycle provides the symmetry
seen in this upper level Design Cycle Activity Diagram.

It should be noted that the tasks within the
Design Cycle define a structure of data dependencies.
These data dependencies exist as a result of precedence
ordering among the design tasks that generate or change the
data. To ensure data consistency and design integrity,
these data dependencies must be kept valid. Some design
systems only allow a fixed design cycle, with the depen-
dencies defined only in the forward direction which pre-
vents data dependency problems. However, designers find
this restrictive. A design system with a fixed or a "dis-
ciplined design methodology" is described in Reference 5.
This system achieved all its design goals. However, the
designers were not consulted concerning the fixed design
process, and consequently rejected the system (5).

The DA System model designed in this report allows
iterative loops, which are at the designer's discretion.
Design Cycle Activity Diagrams, at different levels, will
provide useful documentation showing affected data for
cach design iteration.

6. Final Artwork and Documentation Phase. Once

the design has been completely satisfied, Phases 1-5
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completed, the artwork required to physically fabricate the

design must be generated.

Extended Data Abstraction
Hierarchy

The Extended Data Abstraction Hierarchy (Figure 7)
shows the conceptual and logical models which present two
representations of the IDDB's data. This previously dis-
cussed data hierarchy shows the way that the different
APs, Tasks, Phases, and the Design Cycle view their data
requirements. Note that an AP requires several Specific
I/0 Data Requirements to provide the data needed. Figure 7
also shows how descriptions of the models and their com-
ponents are related. These components include the Canonical
Schema (Figure 8), the Relation Schemes and their defini-
tions, prime and non-prime attributes, the two levels of
data requirements (Generic and Specific) of the Design
Task Data Diagrams, the Design Cycle Activity Diagrams and
its six Phases. The canonical schema and the IDDB are
pictured as parallel representations with the dashed line
betwcen the two signifying the shared names of the Generic
Data Requirements and the Relation Schemes. Figure 7 also
shows the relationship of the keys, relation details (non-
prime attributes), and the definition of the relation

schemes.
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CHAPTER V

DESIGN OF THE CANONICAL SCIHEMA

Introduction

This chapter describes the design of the cancnical
schema of the IDDB. The chapter is broken into three parts:
Assumptions, Elements of the Canonical Schema Design, and

Meaning of the Canonical Schema.

General Assumptions

The following section describes assumptions made
prior to the design of the Canonical Schema.

1. Data Item Types. Data items are categorized

into groups of "types." The data items are grouped by the
way of Application Programs (design tasks) use and data
items. Thus a data item may be used in several "type"
categorices. For example, signals to be used in a design
would be a data item. Each Signal is named in the design
and has signal values. Depending on how the Signal is
used, will specify how the different Signals are grouped
into "Types." There may be scveral "types" of Signals:

a. Fault (signals to be faulted),

b. Sample (signals to be sampled and used in

a timing diagram),
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c. Undefined (signal values presently
undefined), and
d. Case Analysis (signals to be used in several

types of analyses).

This "Type” concept is expanded in the next set of assum-
tions.

2. Model Specification. During the physical

design phase, the technology and the models used for Cell
Pattern (CP), Component (COMP), Macro must be specified.
In other words, a logical design may be physically imple-
mented in many ways and, as such, additional data is
required to specify the physical implementation of a design.
A Model specification will require, as explained below, the
Element Type (COMP, CP, Macro), Model Type, and Technology.

There are many possible rcpresentations of a COMP,
CP, or a Macro. These different representations are classi-
fied as Model Types. Model Types are the different forms,
in a logical sense, that a COMP, CP, Macro can assume. For
example, a COMP #, 7400 (maybe a NAND gate package) may
have many representations (Model Types). These Model Typces
may include a physical outline, an internal schematic,
internal physical descriptions, a C/0 model, a Timing model,
a Cost/Reliability model, a lcat Dissipation model, or any
other model.

A COMP, CP, or Macro can also be implemented using
different technologics. This is the third and final primc
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attribute (the first two are Element Type and Model Type)
required to uniquely identify the model to be used. A
Model Type has a different representation for each Tech-
nology. Thus, a NAND gate COMP may be represented by ECIL,
TTL, CMOS, or some other technology. While some Model
Types of different Technologies may be the same (such as
the COMP Outline of a package), proper data base design

techniques (3NF) demand that these (presently) identical

-;"i»-‘.‘_ﬂ'."‘ HT'-T-'r"-' L i -

models be kept separate.

3. COMP and Macro. No attempt will be made to

r! rigorously define the distinction between CPs and Macros.
The assumed definition states that Macros are made up of

CPs, and that, logically, Macros are high level while

‘1§ CPs are low level.

The value ranges that COMP#, CP#, Macro# can assume
are mutually exclusive. A CP# uniquely specifies a CP, and
no COMP or Macro will have the same identifying number.
Relations #7, #8, #9 (Element to Macro, CP, COMP Assign-
ments, respectively, to be described later in this chapter),
may seem redundant because they are mutually exclusive.
However, it is important to keep their individual designa-
tions to aid the designer's and DBA's understanding of a
design specification.

4. Relation Schemes and Attributes. Relation

Schemes either (1) define an association among data

. items (prime attributes), or (2) define a data item and

74

e AT U U ) P UL P R _____i




o

-

-~

S

v
b
-
b
E
:

]

AR
'll ’ 2 .

v v s

T

S

TTYTW YWV VSV YISV VW
. f} . O

R vt e g
K-',.. ) e

" T e

its "Details" (non-prime attributes). The Details cate-
gory consists of the non-prime attributes that describe a
specific relation, and the descriptive data is only rele-
vant for a uniquely defined occurrence of a relation scheme
or a relation. For example, Details can include descrip-
tions of the following types of design information:

a. physical (# of pins, # of gateé/pack,
design rules, pin type, X/Y offsets of pins, etc.);

b. electrical (power rating, resistance,
tolerance, load current of a signal pin, etc.);

c. logical (truth tables, boolean equations,
symbolic representation, etc.); and

d. control (issue #, vendor #, company part #,
approved prnject usage, etc.).

Relation Scheme Details consist of all the accumu-
lated information concerning a particular Relation. To
belabor the point, the Relation Scheme Details' definition
consists of a generic description. But, in actual usage,
when the key values have been specified for an occurrence
of a Relation, then the actual values of the uniquely
specified Relation will be generated. Examples of these
Details and their two levels (generic and specific) can be
seen in the Design Task Data Diagrams (Appendix A).

5. Generic Data. There is an important, inherent

characteristic that is defined in the canonical schema and

its different rclation schemes. The data required by a task




to perform a wuser's design activities can be generically
identified and defined. This means that, regardless of the
APs used to perform the design tasks, programs doing

smaller functions refer to the same (generic) data, but in

a different format. That is, different APs performing the

same design tasks need the same (generic) input data.
r7: Different tasks use much of the same generic data,
ii but the tasks will use different names and formats for this
t design-specific data (specific data requirements). Examples
of the specific design data required for a task are pre-
sented later.
In fact, it may be surprising to the reader to see
the same generic data that is required for different design
i;; tasks in a DA System. The generic data occurrences will be
described with the canonical schema and its relations
schemes. There will be a reduction in the designer's work-

load as a result of the generic data concept. This is
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because data will not have to be redundantly provided to
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the design tasks. Thus, typing errors that would normally
occur will be avoided.
This concept does not define data in specific terms,

such as where it is used, what is its value, its specific

name, data type, or other AP format requircments. Data
items have many characteristics, but each individual AD
expects to see only a subset of them. Generic data allows

the data items to have many characteristics, and each AP

..1’ ’
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will only see the characteristics that it expecis to see.

! Generic data is defined conceptually and data independent,
ﬁ; so it has no physical or logical dependencies. Thus, cach
55 AP sces its data as it expects to sce it. The generic

Ei data must be mapped and transformed for each AP to provide
E data independence. This mapping and transformation func-

[

tion (performed by the API) is trivial in comparison to
the required techniques of a non-integrated data base, and
is essential for data independence of the data base.

The concept of generic data is a fundamental
premisc to this thesis. Constructive ways to organize and
use this organized data to help design the IDDB is pre-
sented later. The use of generic data in designing an

if" IDDB is important because the amount of data normally
required for the design cycle is enormous. This report

provides an organized view of design data which will facili-

tate the reduction of the designers' workload on the DA

A

[~ Systoem.

é; Canonical Schema

L Figure 8 shows the canonical schema represcnting
the Integrated Design Data Base. It has becen constructed

using canonical data structures as described earlier in
this report. This data organization model of the IDDB

contains a unique characteristic. The data items in this

canonical schema are generic in nature. This simplification
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characteristic provides the physical and the logical inde-
pendence required of the design and allows the structure to
represent complex relationships.

The design and organization of the canonical

schema is discussed here using relational terms and tech-

‘i niques. A description of the canonical schema design

' will entail the canonical schema, the relation schemes,

E‘ the information carried within the relation scheme's

? attributes, and the prime attributes of these relation

EJ schemes.

%ﬂ There are two ways that can be used to address the
?: canonical scheme which will minimize the complexity. The
&: first way is to understand the relation schemes, their

p T

E. w7 non-prime attributes (Details and Associations), and the
;‘ prime attributes of these relation schemes that are con-

L tained in the canonical schema. The sccond way is to look
I' at the data required for the different design tasks, which
Ev arc secen as task-views of the IDDB. Thesc are described

£ in the Design Task Data Diagrams. Referring to Extended
H Data Abstraction Hierarchy from the end of Chapter 1V,

'} Figure 7 should help the recader visualize how the differ-
-

g; ent views, conceptual and logical, interact to provide a
g coherent description of the DA System's data requirements.

MY 4
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Understanding the Canonical
Schema

Prime Attributes. The following section defines

the various prime attributes that will be used to specify
the relation scheme keys.

1. 1ID#. A number that uniquely specifies a desiygn
project. This value identifies, in part or in whole, any
data that is unique to a particular designer's design.

Thus any design input data that specifically applies to the
design will have this ID# concatenated with other keys.
Referenced data that may be used, but is not design speci-
fic, will not need an ID# to uniquely identify it.

2. Element#. Within a design, the Element number
is a unique number that specifie: ~ach individual occur-
rence of a CP, COMP, or Macro. Thus, for ecach NAND gate
used, a unique Element# will reprcsent all of the elements'
occurrences in the design.

3. Element Type. An element type identifies the

specific type of element use or category that the element
belongs to. Some of the categories include: circuit,
gencrator, and memory. Circuit elements make up the actual
design circuit. Gencrator elements are used in simulations
to generate input signals; they do not become part of the
actual design. Memory elements arc a special case of ele-
ments that often require initialization prior to design

simulation.
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4. Node#. The node number uniguely specifies each
signal within the design. Even though several elements
may have the same signal (Node#) as an input each signal
is the result (output) of only one clement. A node may be
represented in two ways: logilcally (signal) or physically
(interconnect-signal) .

5. Signal Type. These are categories that differ-

ent signals belong to, but the signals contained in the
Signal Types are not mutually excluded. Some of the cate-
gories include Inputs or Outputs, Samples (signal used

in timing diagrams), Critical Path desionations, Faults
(signals to be faulted), and Case Analysis (signals used
in timing analysis).

6. Clock. This defines the system time during
some analyses. It also provides clock assertions, skew,
and general time delays. The time delays are used to
calculate interconnect time delays, provide gate delays,
and many other time related data items.

7. COMP#. The COMP# (component) uniquely identi-
fies a component type that will be used to fabricate a PC
Board. This COMP will have one function, and it may be
used several times in the design.

8. CP#. The CP# is a unique number that identi-
fies a Cell Pattern for use on an integrated circuit. A
deslgn may use several, one, or no occurrences of a Cell

Pattern for IC design. An example of a cell pattcrn would
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be a NAND gatc. The NAKND gate may be represented in
several ways, using different models and technologies.

9. Pin#. Iach CP/COMP/Macro occurrence has pins
that are connected to signals. These pins are usually
labeled and these nonunique pin#s must be associated to a
CP#/COMP#/Macro# to acqguirc meaning and uniqucness.

10. Tech. Technology defines the particular tech-
nology that will be used during a design implementation.
Specification may occur late or early in the design cycle,
depending on design requirements. Examples may be CMOS,
CMOS/S0S, PMOS/GahAs, TTL, etc.

11. Model Type. Every CpP/COMP/Macro has scveral
ways that it can be represcented and used during the dcsign
cycle. These include an outline or interior description,
a C/0 model, a Timing model, a Cost model, a Circuit model,
a Thermal model, and even a model functionally representced
as softwarec (Subroutine). This prime attribute must be
uscd in conjunction with a CP#/COMP#/Macro#, and a Tech to
uniquely specify a model to usce in the design.

12, Macro#. The Macro# is a unique numbor that
identifies a specific upper level function. A Macro is
composed of CPs. The Macro is implemented using different
Technologies, it has different Model Types, and it also has
a Macro Net that defincs the speciitic design, interconnec-

- ins. The Macro Net is

&

tions, and internal and oxtcernal

described as a Macro Model Type. Becausce Macros are mado
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up of CPs, the Macro Model Types are named, for example,

C/0 Macro versus C/0 Model.

13. Interconnect Model Type. A model that repre-

sents an interconnect structure that is used to implement
the design signals used in the Physical Design Phase.

14. Tname. Task Name (Tname) specifies which
design task is to be used. Tnames represent task functions
in the design cycle, such as: logic simulation, fault
simulation and verification, circuit analysis, IC place,
route and artwork, PCB place, route, and artwork, C/O tests,
design rule checks, timing verification, pattern genera-
tion, and many others. Each Tname has its own set of
requirements for input data requirements, and task results
as defined by relations of the same names.

15. I/0. This prime attribute defines whether
input or output data requirements are needed when specify-

ing the data needed for a design task.

Relation Schemes and Non-Prime Attributes Defined.

The following subsections will describe the contents of
each relation scheme, its definition, and the non-prime
attribute definitions (Details and Association) that arc
specified by the relation scheme. The relation scheme
specification (as seen in Figure 9) consists of the
relation scheme name and, within parcnthescs, the prime

and non-prime attributes. The prime attributes are uin
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"Relation Scheme Name (PRIME ATTRIBUTES..
Non-Prime Attributes..)
Relation Scheme: definition..

Non-Prime Attributes: definition.."
Figure 9. Format of a Relation Specification

capital letters, and the non-prime attributes are not.
Also the non-prime attributes are not on the same line as
the prime attributes. The descriptive attributes will
either be a group of Details or an Association of data
items. A definition will then follow of the relation
scheme and its attributes.

A relation scheme name is the same as a generic
data item used in the Design Data Diagrams. Thus, the
recader can easily relate the prime attributes and other
information contained in a relation scheme to the informa-
tion that a design task requires.

1. INPUT DATA REQUIREMENTS (TNAME, ID#, I/0,

Design Data Requirements (DDR},
Control Requirements (CR),
Default Changes (DC)).

Input Data Requirements:

This relation identifies the data required as
input to a design task. The data needed is in three

categories: DDR, CR, DC. These requirements are unique
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for each task. The data requirements are defined generi-
cally in terms of relations. However, these requirements
are expanded into specific data requirements as shown in

Appendix A.

Design Data Requirements (DDR):

These requirements define the design data, from
the designer and design tasks, that describe the actual
design for a specific design task. Examples of the design
data are: Element-CP Assignments, Design Net, ID Details,
Element Details, I-S Details, Signal Details, Signal Value
Details, Element I/O Signals, Element-Macro Assignments,
Signal~pins Assignments, and others that are more task

specific. The DDRs are different for each design task.

Control Requirements:

These requirements specify the control statements
needed to direct a design task to execute its design func-
tion. These statements control the design task's approach,
algorithms, functions to execute, default values, and

diagnostics and debug.

Default Changes:
The designer has the option to change the default

value of data items which are called Default Changes.
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2. TASK RESULTS (TNAME, ID#, OUTPUT,
Design Output Data (DOD),
Warning and Error Diagnostics,
Execution Summary).
Task Results:

This relation identifies the data that is produced
by a design task. The three main categories of results
are listed above as the attributes of the Details. These
Task Results Details are defined generically and examples
of the expanded forms are shown in the Data Diagrams
(Appendix A). The Task Results are unique for each

design task.

Design Output Data (DOD) :

The design results of a task as directed by the
Control Requirements are defined as the Design Output Data.
These results are dependent on the task execution. For
example, the DOD from a design rule checker task, includes
Design Rule Violations, Net Capacitance, Values, Net Check
Warnings, Net List, and a Stray Matter List. While the
DOD from a Timing Verification task includes a Timing Check
for control signals, Set Up and Hold Time Error, Minimum
Pulse Width Check Results, I/0 Signal Values, and the

Design Cycle Time.
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Warning and Error Diagnostics:

These diagnostics occur if the control parameters
provided are incorrect or there are errors in the design
data that prevent execution of a design task. The diag-
nostics are used by the designer to correct the input data
(design or control) to the task to get a valid task exe-

cution.

Execution Summary :

Execution summaries are provided after a design
task executes. These summaries often include a reiteration
of the input data (design and control) provided to the

design task.

3. DESIGN DESCRIPTION (ID#,

Design Description Details).
Design Description:

This relation specifies the Details describing a
particular design. It describes the specific design charac-
teristics that a designer or a design team has so far
designed. Note that all design-related information uses
the prime attribute, ID#, as a key, which specifies its

designer.

Design Description Details:
These attributes describe the design as it pro-

gresscs through the design cycle. Any relevant historical
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or descriptive data can be stored here. Some examples
include revision level of design, technology, designexr(s),
tasks, algorithms, approaches, processes within tasks used,
default changes, design data (verified logical/physical

designs), etc.

4. DESIGN NET (ID#, ELEMENT#, CP#/COMP#/MACRO#,
NODE#, SIGNAL TYPE, PIN#¥, TECH, MODEL TYPE).
Design Net:

This relation is often called the net list or the
connectivity list. It defines the connections among all
the elements (CP, COMP, and Macros) and pins. This net
defines an association of all the data items listed as
prime attributes. Therefore, there are no non-prime attri-

butes.

5. ELEMENT (ELEMENT#, ELEMENT TYPE, ID#,
Element Details).
Element:
This relation identifies the relationship of ele-

ment# and element type.

Element Details:

The characteristics of each element are described
by this relation scheme. The information is dynamically
updated during a design task execution or by the designer.

These Details can contain placement location, position in
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pertinent data related to an element. Note that an element

can be a COMP, CP, or a Macro.

6. ELEMENT I/0O SIGNALS (ELEMENT#, SIGNAL TYPE,

NODE#, ID#).
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Element I/0 Signals:

T

This relation specifies the Signals (Node#), and
the Signal Type associated with each element. Usually an
element will have several input signals and one output

signal. However, the signal types can also be Faulted

AP DR

Signals (stuck at 0/1), or others. There are only prime

attributes.

7. ELEMENT~-MACRQ ASSIGNMENTS (ELEMENT#, MACRO#,
ID#) .
Element-Macro Assignments:
This relation specifies an association (l:1 map-
ping) of an Element and a macro. This association is
specified by the designer. There are only prime attri-

butes.

8. ELEMENT-CP ASSIGNMENTS (ELEMENT#, CP#, ID#).
Element-CP Assignments:

This relation is a defined association (1:1 map-
ping) of an Element and a CP, as specified by the designer.

There arce only prime attributes. Note that Relations 8

89
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RN and 9 are represented as only one relation in the canoni-

cal schema.

9. ELEMENT-COMP ASSIGNMENT (ELEMENT#, COMP#, ID#).
Element-COMP Assignment:

This relation is a defined association (l:1 map-
ping) of an Element and a COMP, as specified by the
designer. There are only prime attributes. Note that
Relations 8 and 9 are represented as one Relation in the

Canonical Schema.

10. MACRO (MACRO#, MODEL TYPE, TECH,
Macro Details).

Macro:

This relation uniquely defines a Macro as specified

by its three keys.

Macro Details:
Macro Details contain information describing the
permanent and default information for each Macro. This

includes Controllahility/Observability (C/O) equations and

AR YR BRIAIN 1

parameters, Timing Values, Time Delay Values, Subroutine
Code and Parameters, Design Rules, and the Macro Net.

Macro Detail descriptions can encompass Macros constructed

T re
- v

7

of C/0 models, Timing models, Thermal models, Subcircuit

wodels, CPs, COMPs, Cost models, etc. The following

T v v

examples show how the relation may occur in practice:

Bairah S 4
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C/0 MACRO (C/O#, C/O, CMOS/S0S, details),

TIMING MACRO (TIMING#, TIMING VERIF., TTL, details),

SUBCIRCUIT MACRO (SUBCIRCUIT#, SUBCIRCUIT, PMOS,
details).
The details are not specified in the relation since they

are the data that is generated by the specification.

11. MODEL (MODEL TYPE, CP#/COMP#, TECH,
Model Details).
Model:

This relation defines specific information on each

_representation of a CP/COMP. This is directly parallel to

the Macro Relation as described above.

Model Details:

Each CP#/COMP# has several model representations.
Each pair of Model Type and Tech defines a different group
of CP/COMP Details. Some of these model's Details include:
outline and interior geometries, Design Rules, C/0 models,
logic symbol, cell heights, engineering revision level,
connection logic, timing models, circuit models (source,
gate, drain, etc.), Cost model, Thermal models, etc.

The following are examples of model occurrences or
relations:

C/0 MODEL (C/O, 7400, TTL, C/O details),

CIRCUIT MODEL (CIRCUIT, 25, GaAs, model equations,
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electrical characteristics, initial conditions),

CP OUTLINE DESCRIPTION (CP OUTLINE, 7954, ECL,

outline description, outline design rules).

12. PIN (PIN#, CP#/COMP#, TECH, MODEL TYPE,

Pin Details).

- Pin:

This relation defines pins that are on CP and
__ COMPs. Each CP/COMP has several pins and each pin has cer-
tain characteristics that are defined in Pin Details. Note

ij that it takes four prime attributes to specify these
ﬁ! Details.

Pin Details:

Pin details include pin type (I/0), pin impedance,
node capacitance, and physical characteristics, such as

thermal flexing and pin size.

E% Signal:

net.

13. SIGNAL (SIGNAL TYPE, NODE#, ID#,

Signal details).

This relation defines a signal used in a design

Signal Details:

These describe a signal's characteristics, before

it is physically implemented, used in the logical design

nets.
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14, SIGNAL-PIN ASSIGNMENTS (NODE#, PIN#, CPs#/
COMP# /MACRO#, ID#).
Signal-Pin Assignments:
This relation defines the association of CP, COMP,
and Macro's pins with their associated signals. This
association is specified by the designer. There arc only

prime attributes.

15. SIGNAL VALUES (MODE#, SIGNAL TYPE, CLOCK, IbD#,
Signal Value Details).

Signal Values:

This relation defines the value of a signal, at
; a particular time. These values have many ways that they

i can be calculated.
1

Signal Value Details:

The signal values and techniques to calculate them
are contained herein. Thus, these details contain the
values of each signal at specific clock time. Somctimes
these signal valucs are calculated according to combina-
tional logic tables (of which there can be sevcral), to a

formula, of listed, as in the Fault Simulation case.

AABAR A% o0 s B & o s g R a AR A
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Stable assertions (when control or data signals are stable

a4
v

and when they will change) arc defined. Other values arc

[

o also defined, such as Signal Skew, Values Width, Rise and
3 Fall Times, etc.
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16. INTERCONNECT (INTERCONNECT MODEL TYPE, TECH,
Interconnect Details).
Interconnect:

This relation relates an Interconnect Model type
with a Technology which specifies its details. Note that
there i1s a general interconnect description which is the
model that is to be used when implementing a signal. It

is not, however, the actual implemented signal.

Interconnect Details-

These Details include specific electrical charac-
teristics and design rules that exist for a specific tech-
nology of interconnection. Other details include spacing,
maximum line length, line width, number of bends allowed,
technology, signal crosstalk, and reflection values, and

other design rules to be used in the implementation.

17. INTERCONNECT-SIGNAL (INTERCONNECT MODEL TYPE,
NODE#, TECH, ID#,
Interconnect-Signal Details).
Interconnect-Signal:
This relation requires four prime attributes to
specify it. It defines the actual implecmented interconnect

structures used to make a signal.
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Interconnect-Signal Details:

Ponaasd 2 odd Y

These details describe the specifics of the imple-
"mented signal, such as signal coordinate route, electrical

characteristics, line length, time delay, etc.

b
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18. CLOCK VALUES (CLOCK, ID#,
Clock Value Details).
Clock Values:
This relation defines the clock details which

describe the clock and time functions over time.

Clock Value Details:

3 These details contain clock-related information,
such as clock cycle time, basic time unit, minimum pulse

iﬁ, width, constraints, min/max propagation delay of a design,
set up and hold time constraints, gate delay, clock skew,

etc.

Meaning of the Canonical Schema

R MAAMO ~

The many component parts of the canonical schema

have been explained: the Relation Schemes, their Attributes,

h and the different levels of the data as represented in the
Design Task Data Diagrams and the Canonical Schema. Thesc
components provide important information concerning the
b data base, the data it will contain, and the relationships
among the data.

The Canonical Schema's purpose is to represent the
total view or the "map" of the data base. It is to be used
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S as a reference tool to navigate through the data base. As

seen in the Data Diagrams, specific data is not found in
the canonical schema, only a high level representation of
the data.

This high-level view of the data base is absolutely
necessary for the next two steps for the design and imple-
mentation of the IDDB. The Canonical Schema fits between
the results of these two schemes and provides a common map
to which they can both refer. The physical and the logical
views of the data are diverse; this map facilitates and
guides the required design and implementation procedures.

In summary, the Canonical Schema is essential to
the successful design of a data base model, especially the

< Integrated Design Data Base. It not only provides an excel-
lent map of the overall design and of the data, but is the
key solution to the critical goals of physical and logical
independence. Also, because of the normalization process
the Canonical Schema was designed with, the Canonical
Schema will avoid anomalies and will readily accept the

changes and growth of the data base over time.
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CHAPTER VI

CONCLUSIONS

This report has addressed the problem that is faced
by microelectronic designers when they find the computer
tools available to them for design work are difficult or
at least not easily used. The objective of the work that
has been described in this thesis report has been to
improve the usability of certain computer tools which,
in particular, are the DA System and its Integrated Design
Data Base. The overall goal of this thesis has been to
develop a conceptual-level model of a DA system including

an Integrated Design Data Base.

Six Goals Discussed

The overall gcal was broken into six individual
goals. These six goals and how they were achieved in this
thesis report will constitute the remainder of this chapter.

1. Discuss the background of the problem and the

essential elements of the solution. This was done in

Chapters T (Introduction) and II (Background). In Chap-
ter I some important concepts such as data independence,
logical and physical independence, and logical, physical,
and conceptual schemas were discussed. Also, design con-

siderations and the purpose of the report were discussed.
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Finally, the six goals that are now being summarized were
introduced.

In Chapter II a background is provided for the
problem areas that this thesis report addressed and the
elements of the solution that would provide the potential
techniques and concepts essential for completion of the
thesis objective. The essential components, techniques,
and concepts of the solution are Software Engineering and
Data Base Design Techniques, DA Systems, and an Integrated
Design Data Base. Thus, the first goal of the thesis has
been satisfied.

2. The software engineering and data base design

techniques and design approach must be described. This

second goal's results were described in Chapter III (Design
Overview). The main tcechniques used were Design Task Data
Diagrams, Design Cycle Activity Diagrams, Third Normal
Form, Canonical Data Structures, and Structured Walk-
throughs. Each of thesc techniques was discussed and the
process required to perform each technique was described
where necessary. In achieving this second goal, the Design
Approach uscd to perform the design work was also described.
The Design Approach consisted of four steps that when com-
pleted would satisfy all of the six goals of this thesis.
The four steps werce to:

a. collect the user's design reguirements;

b. collect the total system requirements;
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c. build the canonical schema; and

d. document the data organization, in terms

of requirements, for both the users' and the system's views.

As can be seen from Chapter III, the second goal has been
satisfied.

3. Present and characterize the important, known

design task data requirements of the DA System. The

results of this goal are the specifications of the require-
ments of the Design Cycle, design tasks, and the individual
data requirements of these design tasks. These requircment
specifications have been essential to the development por-
tion of this report. Some of the results can be scen in
the Design Task Data Diagrams and the Design Cycle Activity
Diagrams. Therefore, the results of this work are thec
foundations that the DA System and the Integrated Design
Data Base models have been built on. This is the area of
research that is logically and physically dependent on the
specific hardware and software that the design system is

to be constructed. Thus, when further design and implemen-
tation activitics are initiated, this will be the place for
these requirements specification activitices to begin.

4. Design the conceptual DA System model which

will be used as the model to describe the IDDB environment.

This was accomplished in Chapter IV (Design of thc DA

System model). This goal not only entails a high-level
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design of the DA System, but also a description of how the
IDDB will be used within this system design. The descrip-
tion of the DA System contains a group of general assump-
tions about the system, the organization of the system, and
how the system will be used. The organization of the sys-
tem lists and describes the components that will be used

in constructing the system design. A discussion of the
designer's point of view during the use of the system is
provided along with a more detailed description of the
internal interactions of the DA System components as they
perform their required functions. A final discussion is
included concerning the Design Cycle. The main purpose of
this discussion is to show the interactions of the designer,
the design data, and the DA Svstem during the long, complex
process of the Design Cycle. The discussion also shows how
certain characteristics of the DA System can be used to
satisfy the original objective that is being addressed by
these six goals: to increcase the usability of the computer
tools available for usc¢ by the designer. The fourth goal
has been accmplished and has laid the groundwork for the
fifth go»al.

5. Design the conceptual-level model of the

is physically and logically independent of hardware and

software considerations. This fifth goal's achievements

were described in Chapter V (Design of the Canonical Schema).
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This chapter describes the model, the Canonical Schema,
which represents all of the design data required by the
IDDB for use in the Design Cycle. The components of the
design are presentcd and discussed. These components are
represented in diagrams and in a relational data model
format. These relational represcentations include the rela-
tion schemes, prime attributes, non-prime attributes, and
descriptions of all these representations are provided.
After the clements of the Canonical Schema were discussed,
the meaning of the Canonical Schema was presented. These
discussions thoroughly presented the model of the IDDB and
described how the conceptual model can be used to map the
specific data requirements of these design tasks onto £hc
logical requirements of the IDDB. Because of the tech-
niques used during the design process of the Canonical
Schema, the results are physically and logically indepen-
dent of any hardware and software considerations. The
fifth goal has been accomplished as described in Chapter V.

6. Provide recommendations concerning the implemen-

tation and maintenance of the DA System and its IDDB. The

results of this goal were presented in the next chapter
(Recommendations) . These recommendations included a data
model choice and the justification of the choice. It also
provided a discussion of the required characteristics of
the IDDB and the DBMS that will manage it. The next scc-

tion discussed an implementation plan that provided a
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strategy of how to most effectively complete the design and
implementation of the models of the DA System and IDDB.
These "challenges" constitute the implementation plan and
are broken into segments that are the size (effort-wise)

of a class project or of a thesis. Finally, there is a
detailed discussion of the functions, activities, and tools
required of the Data Base Administrator. Thus, Chapter VII
provides a complete discussion that satisfies all of the
requirements of the sixth and final goal. Therefore, with
the completion of this chapter, the objective and the
overall goal of the thesis have been met and have been docu-
mented in this report for future use and constructive dis-

cussions.

Final Concluding Remarks

There are three reported accomplishments achieved
in this thesis report. The first two accomplishments are
the models that were developed: the DA System and the
Inegrated Design Data Base. While the author knows of no
flaws in the models presented, he does not totally reject
that possibility, since it is an untested model. At the
worst, the models can be used to stimulate interesting dis-
cussions and debates. However, thec author does feel that
these models do efficiently and effectively describe a

useful contribution for designers of microelectronics.
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The accomplishments of the two models are useful
to the DA field in general, but the third accomplishment
is relevant specifically to organizations, such as the
Air TForce Institute of Technology, who will implement the
models. Thus, the third accomplishment is f.ae implementa-
tion plan provided in Chapter VII. If the steps are fol-
lowed and the functions of the components are built and
tested as designed and described, then the result should

be an efficient, flexible, and user-friendly DA System.
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CHAPTER VII

RECOMMENDATIONS

Data Model Choice

The three major data models are the Relational,
Network, and Hierarchical data models. There are many
books written that describe these data models in great
detail; some of these are References 25 to 29. Several
factors were used when considering the data models and
their effects on the chosen data model for the implementa-
tion. The primary factors that were used were usage effec-
tiveness and implementation efficiency. As a result of

using these factors to choose a data model, the relational

data model was found to be supcrior and was chosen.

Usage Effectiveness

This factor measures thc ease in expressing a

[

D Ae AN ast oy
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query to operate against the data base. This factor also
measures the (data) manipulative ease. The term "manipula-
tive case" implies that there are a small number of oper-
ators and that there are high level operators available.

Thus, not only must the queries be easy to express, but

¥ ey vy

they must be accurate.
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Implementation Efficiency

This factor is used to consider implementation
difficulties and advantages concerning hardware and soft-
ware efficiency that is affected by a characteristic of
the data model. Storage space for the data structures and
computer time for processing queries are major factors that

dominate the implementation cost of a data base.

Justification of Choice

Disadvantages. The areas wherc the relational

model is weakest is in implcmentation efficiency. The rela-
tional data model does not presently perform well on large
data bases. However, the physical implementation of rela-
tions (tuples) 1is much less complex than tree and network
structures and access strategies. Therefore, it is slower
but less complex to design, implement, and maintain. Also,
the apparent inefficiencies mentioned above arc being
eliminated through research. For example, JOINs should not
usually be physically performed, but instead should simply
provide a logical view of the results of the JOIN. There
are many techniques being developed and implemented that
improve the present inefficiencies of relational DBMS.
One category of techniques that has a lot of potential is
query optimization.

Many of the efficiency problems that do not occur

in the other data models, but do occur in the relational
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data model, have been previously solved in the other
models. Research in the relational model area is proving
that there is reason for optimism for a relational data
model implementation that is comparable to the other models

in efficiency.

Advantages. The relational data model has many
good points to consider when evaluating its advantages.
As far as user effectiveness, the relational data model
uses only one construct, the relation. The query languages,
used in relational data manipulations, are rich, high-
level, and easy to use. Thus, the relational data model
scores very high in user effectiveness.

When representing the relational model in Third
Normal Form, there are many other advantages. Some of
these are listed below:

1. Ease of Use. Relational queries are very casy

to use for all levels of data base expecrtise.

2. Flexibility. Relatiocnal operators support

Ty,

flexible data base operations.

+
¥

3. Precision. "The precise results of relational

Ty

mathematics can be applied to the manipulation of rela-

\

tions [25:226]."

Y YT TS

4. Security. "Security controls can be easily

implemented [25:226]."
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5. Ease of Implementation. Tuples, or tables, are

easily implemented.

P
:, o4
P AN

6. Data Independence. Data independence has

;

been previously discussed.

7. Data Manipulation Language (DML). Provides the
flexible specification langquage used for queries. Can be
based on relational algebra or relational calculus.

8. Clarity. The relatiocnal data model is easily
understood, mainly because of the simplicity of the data
structure and the mathematical logic of its DML (25:226).

An example of a query optimization technique is a
program that will perform a logical optimization on a query,
breaking the query into several smaller queries. The

- result is efficient because huge parts of the tables that
would normally have to be constructed have been deleted by
proper query specifications. Frequently used queries
are usually the best choices for optimization. Another
example of an optimization technique is to physically store
frequently used relations so they are readily accessible.
This is often called data migration. As has been described
by these optimization techniques, there is a lot of poten-
tial for improved efficiency as a result of having queries
and data accessibility optimized.

Another advantage of the relational model is the
attention it is receiving from researchers. The cause

of the attention is for three main reasons. First,
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relational inefficiencies are le¢ss obvious in small and
medium sized data bases and most existing data bases range
in size from small to medium. Second, it has beoen dis-
covered that most of the inefficiencies of the relational
data model can be eliminated. The third reason is the most
important. The relational data model has a sound mathe-
matical basis that is rich in theoretical and applied
research topics. Improved optimization techniques and
other research into the potential of this mathematically
rigorous data model and its data manipulations all hold a
great deal of hope, 1interest, and progress for this area.

The functions and characteristics of the DA System,
using the IDDB, provides an excellent environment for a
relational data model implementation via a relational
DBMS. The inefficient part of the relational data model,
i.e., queries against a large data base, are minimized
because small to medium sized data bases are mainly used;
that is, Project Dependent and Execution data arcas are
not large. These smallcecr data bases will contain the data
that is manipulated most by the DBMS and used by the
Application Programs. The most frequently used data access
paths (for this report's design) have been identified:

1. reviewing the design data,

2. ygenerating the PD and LExecution data areas, and

3. storing new design data into the PD data area.
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The DA System's functions and characteristics are
idcally suited for the relational data model and especially
for optimizing techniques that can be implemented within the
system.

Also, the flexibility of relational queries will
be available for use with the small data bases in the PD
and the Execution data area. Generating the data in the
Execution data area requires data queries against a large
data base. These gqueries against the large (Project
Independent) data base are prime candidates for optimiza-
tion techniques. Thus, with careful planning and implemen-
tation of optimizing techniques, the DA System users can
enjoy the usability and flexibility advantages of the
relational data model without being negatively affected by
its present incfficicencies.

A final selling point in the favor of the rela-
tional data model is that it naturally supports a High Level
Language (HLL) which is crucial for future engineering tcol
developments. The relational model can support such a HLL
because it has a sound theoretical basis, presents a simple
interface (one data type), and has a natural language-like
navigational language (versus record-at-a-time). The rela-
tional data model is important for future development of
engineering applications because it will allow interaction
betwecn the data basc, the artificial intcelligence, and

the cnginecring community (36:866).
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Briefly, in summary, the relational data model is
very effective to use, but the other two data models at
the prescent time are more efficiently implemented. The
many advantages of the relational data model and rela-
tional DBMS outweigh its minor inefficiencies. TFinally,
the characteristics of the IDDB environment will favorably
use the relational data model to great advantage.

Characteristics of an Integrated
Data Base and Its DBMS

Objectives

The ultimate objective of an integrated data base
is to make application program development (i.e., I/O data
manipulation) and systems integration (with the data base
the kernel) easier, cheaper, faster, and more flexible.
The system must be usable; therefore, it should simplify
the designer's Qork. Reliability 1is an important considcra-
tion also. The system should be available when it is nceded
and should not fail while it is in use.

An integrated data base contains the data necded
for the system's data processing. That data should be
accurate, secure, maintained, and protected from misusc
and unauthorized change. The data organization should
help users with different applications which have differ-
ent data requirements. The overall data organization
should allow different APs and designers to have differ-

ent views of the same data. This is especially important
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for these two cases of changes: (1) when existing APs may
be changed to process the data differently, and (2) when
new APs will be integrated into the DA System which
require new views of the data. The costs to make these
changes should be minimized, and the changes should not
affect other logical views of the data or the physical
view of the data.

To achieve the above objectives the data base and
the DBMS must have certain characteristics. When thesc
characteristics are designed into the implementation of a
data base organization and DBMS, then its ultimate design
objective can be met. It is also important that the data
base and DBMS characteristics define a dynamic and flexible
system that will absorb change and be able to be used

efficiently and cffectively.

Characteristics

The organization of an integrated data base and the

functions of its DBMS should provide certain desirable char-

acteristics. These characteristics are briefly described.
1. Ability to represent the inherent structure

of the data and define abstract data types. The rela-

tional data model and its DBMS implementation contain thesc

charactcristics.
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2. Simplicity in describing the overall logical
structure of the data base. (A canonical schema is an
ideal description.) |

3. Integrity for data items and associations
between them must be maintained. Data integrity should
be provided during storage of data, data updates, data
insertion, and system failurcs. Thus, integrity implies
that all calculations should be carried out properly and
produce correct results. If the relational DBMS is cor-
rectly designed, implemented, and tested, then all of
these characteristics will be satisfied.

4. Interface with the future. In the future the
data, its storage media, and its usage will change. It
is critically important to design the data base such that
these changes will not require changes to other data or to
the APs that use the data. Data independence is the key
in providing a physical and logical buffer against change.

Thus, physical and logical data independence will help pre-
clude the possibility of such drastic effects on the data
or AP's. This characteristic (data independence) is the
most subtle error possible, during the design and implemen-
tation phases of the data base, but the most obvious after-
wards. The models described in this report are data inde-
pendent.,

5. It is important to minimize redundant data

storage to help prevent anomalies that can occur with
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redundant data used in data manipulations. The relation
schemes contained in the Canonical Schema which are in
Third Normal Form and by definition are minimized and
normalized.

6. The system's performance should exhibit accept-
able efficiency in carrying out the desired computations
and provide reasonable response times which are appropriate
for the person-machine dialogue. Response time will usually
depend on the traffic volume, the data base physical organi-
zation, the query, and the hardware capabilities.

7. It is also important to minimize the cost of
operations through data migration and tuning the system to
the individual regquircments of the system users. Trade-
offs exist to minimize the storage regquirements, while
maximizing data accessibility. The DBMS must take data
migrsation into account (difference in frequency of use of
data items) and, in response to data migration, tunability
of the system (adjust physical view or optimize queries),
when attempting to minimize the cost of data base opera-
tions.

8. Data security and privacy are important con-
siderations.

Data security refers to protection of data against
accidental or intentional disclosure to unauthorized
persons, or unauthorized modification of destruction.
Data privacy refers to the rights of individuals and
organizations to determine for themselves when, how,
and to what extent information about them is to be

transmitted to others [25:38].
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9. A powerful user language including a search capa-
bility, is needed. A powerful and flexible user language
will allow easy access to and manipulation of the data
base. This will be a great help in the development of the
EXEC, AP interfaces, and the DBMS Interface. The query
language is usually built into the DML of a relational
DBMS.

(Characteristics 1-9 are from Reference 25:34-47.)

10. The DBMS should provide an interface to an HOL
(Fortran, Pascal, AdA, etc.).

11. The DBMS should support multiple design
representations.
For the DA System being designed, the most important charac-
teristics of the data base's design arc physical and logi-
cal independence. These characteristics will allow the
data base and the APs that use the data to evolve and
change without affecting the overall data base organiza-

tion or the APs in the DA System.

Implementation Plan

There are five "challenges" that exist to be
addressed and resolved to be ablc to implement the DA
System and its Integrated Design Data Basc. These chal-

lenges are described in the following paragraphs.
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Challenge 1

First, several APs must be chosen that will be
initially integrated into the DA System. It would be help-
ful and logical if these APs made up one of the six phases
of the design cycle previously discussed in Chapter 1V.

Second, the task-views, or logical schemas, of the
chosen APs must be designed, which will include the input,
output, control data and data formats. These results will
be defined as relations and will be subsets of the Input
Data Requirement and the Task Result relation schemes
(which have been previously described in Chapter V).

Next, an AP Interface for each of the APs to be implemented
must be written. The API will contain the relation defini-
tions. The API must also contain handlers which “parse"
the control commands issued from the EXEC and the Data

Dictionary.

Challenge 2

A Relational DBMS must be chosen and implemented
that satisfies the characteristic functions of a good DBMS,
previously listed. There should be effective tools for
the DBA to use (DDL and DML) to create, load, and change
the integrated design data base. The Project Independent
(PI) data base must also be loaded with the minimum
required data required to run the chosen APs. After the

APs are chosen and the APIs are complete, then the Data
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Dictionary must be written. The DD contains the logical
location, definition, and organization of all the data in

the IDDB.

Challenge 3

The DBMS Interface must be developed which will
issuc commands to the DBMS and pass responses back to the
Data Dictionary. It must be able to:

1. Receive relation specifications from the Data
Dictionary:

2. Convert these relations into acceptable DBMS
commands;

3. Issue commands that create, find, read, write,
test, and change the Project Dependent data area; and

4. Issue commands against the Execution data arca
that find, crecate, rcad, write, and delete from Execution
data area.

In particular, the test operation queries the PI
and the PD data areas if required design data is available;

the read operation allows the new design data to be shown

to the designer; and the write operation allows the design

data to be written into the PD and the Execution data arcas.

¢ Challenge 4

The Executive must be designed and implemented.
First, thc design requirements of the EXEC should be speci-

fied by the DBA prior to the EXEC desiyn effort. These
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design requirements will describe the DA System capabili-
ties, present and near-future, that should be supported by
the EXEC.

The initial design should be modular and hardware
independent. The design implementation of the EXEC should
also be very modular. The exceptions of the hardware
independence requirement must be carefully modularized and
m&st be documented. The EXEC code written that is not
hardware dependent shall be written in a common stan-
dardized HOL, so it can execute on other computer systems
that support a compiler in that language. Thus, the EXEC
will be able to run on different hardware with only the
hardware dependent modules having to be rewritten.

Some of the functions to be implemented into the
EXEC should be:

1. The EXEC should be able to identify which APs
are to be run and who (i.e., designer ID#) will run them.

2. The EXEC should also be able to query the data
areas (i.e., PI, PD, and Execution) through use of the Data
Dictionary, and allow the designer to verify the design
data and thce default parameters of the design tasks.

3. The EXEC should permit the designer to be able
to save data generated by task executions and route it from
the Execution into the PD data area.

4. The EXEC should also permit the designer to

be able to delete data from the Exccution area, change
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data in the PD area, and make Default Changes through the
use of the EXEC.

5. The EXEC must provide "automatic management of
precedence ordering” to control data dependencies (1:1254).
As previously discussed in Chapter IV, there must be some
way to implement the required control ot the data depen-
dencies, as implied in the Design Cycle Data Diagrams.

One approach is supportcd by Charles DBastman who discusses
the use of transaction graphs which seem to have potential
to help monitor data dependencies (1:1254-1255). The
information contained in low-level Activity Diagrams can
be directly translated into the required transaction
graphs. Then the graph must be compiled into a form
usable by the EXEC. Once these steps are done, the
resultant process will monitor and control the data depen-

dencies.

Challenge 5

The goal of this challenge is to provide a continu-
ous update of the previous four challenge activities and
coordinate these changes so that the system is maintained.
Thus, this is a continuous challenge to design and imple-
ment the capability to manage the growth and modifications

of the DA System.
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Summary of Challenges

Challenges 1, 2, and 3 can be performed simultane-
ously if designed carefully and the results of each are
coordinated. The second challengc needs to receive the
subsets of the relations that define the Input Data Require-
ments and Task Results from the first challenge. So,

a modular, standardized interface must be defined between
the API and the Data Dictionary. Also, a modular, stan-
dardized interface must exist between all the DA System

components in Figure 5 at points:

Designers/EXEC 1/18
EXEC/AP Interface 2/17
AP Interface/Data Dictionary 3/14
Data Dictionary/DBMS Interface 4/13
DBMS Interfacc/DBMS 5/12
Data Dictionary/EXEC 19/20

The overall objective of the design and implecmenta-
tion of the DA System and its IDDB is to provide a flex-
ible, usable design tool for the designer to use, that will

allow growth and change of the components of the DA System.

Data Base Administrator (DBA)

The term DBA is being used loosely in the follow-
ing discussion. Instead of just managing the data and the
DBMS, the DBA functional description is also managing the
entire DA System. So the term uscd would more properly
be a Systems Administrator, but DBA will still be uscd.
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DBA Qualifications

The DBA must be able to understand the problems of
the users of the system, the designers. The DBA must also
be able to evaluate, through software engineering tech-
niques, the efficiency and effectiveness of software
design and code that will become the DA System. The DBA
must be technically competent to understand the present
use and ‘mplementation of the DA System, and to plan for
future growth and changes to the System. The DBA must have
the authority to handle designer's and system problems.
This implies that the DBA must be able to obtain or allo-

[ cate data collection, programming, computing, and communi-
cation resources (26:596-698).

ii if;' It may be obvious to the reader that a DBA is
usually not one person, but is a team and the DBA is often

- referred to as a DBA Function, thus allowing these qualifi-

cations to be spread among several people. The following
paragraphs will discuss the various functions and responsi-

bilities that make up the DBA Function.

The following two sections will describe the
= typical DBA functions and then the DBA functions that arc
- required during the system design and implementation will

] be separately discussed.

ey

LEa

DBA Functions

The DBA maintains the overall structure of the

ha e a3 a1
- . "
4

data. The DBA is the custodian of the data, but does not

Ty

120

L

N

S S I e e T e - » i [ NP R SIS D N s A s e e a_a_a - _-)LA..,LA;._._.L_AJ




Aq.r

w

v

T W — DT

own the data. For this report, the DBA controls the PI
data and maintains the organization of the PD data. The
DBA must guide and plan the course that the data base will
take in the future. Therefore, the DBA must have a com-
plete understanding of the data base, its organization,
its economics, its design criteria, its change and growth
patterns, and the needs and requirements of the designers
and the design tasks that use the data.

Figure 10 shows the DBA location within the DA
System's environment. The users arc the designers using
the DA System. The Programming, Computational, and
Communication facilities are somec of the resources that
the DBA function manages. The DA System is not shown, but
the IDDB component 1s represented as the "Database Content."
The "Management of the Enterprise" for this report repre-
sents the needs of the AFIT educational and research com-

munity (26:596) .

Responsibilities. The DBA's responsibilities

include generating the information content, the storage
structure, and access strateqgy of the data base. The
required information content has been defined at the
conceptual-level by this report. The DBA must decide, by
choosing APs which will be integrated into the DA Systecm,
the final dcsign data to be integrated into the IDDB.

The storage structure and access strategy have already
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Figure 10. "A Place for the DBA" (352596)

been partially specified because the relational data model
has been recommended, the conceptual schema has been
defined, and an implementation plan provided for the
logical and physical schemas. The DBA functicn is respon-
sible for designing and implementing data independence and
data integrity into the data base. Data independence is
achieved when the requirements of a design task (locgical
schemas) are revealed to the designer and the storage
representation (physical schema) used in the implementation
is hidden. This also implies that any changes to the
physical schema or to the logical schema will have no
effect on the other schema.

The DBA must define a strategy for backup and
recovery. A backup schedule must be identified and
enforced by the DBA. The recovery strategy must describe
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the actions to minimize damages caused by human error, or
hardware and software failures. The system and data should
also be repaired with as little effect as possible on the

rest of the system.

Sct Goals. The DBA should also set goals (i.e.,
policies, standards, and procedures (32) for the system.
For example, these may include:

1. Response times--i.c., 90 percent of single-
element queries should take less than five seconds between
query entry completion and beginning of response.

2. Backup--i.e., backup will be available for all
design data results that have becn saved for an hour and
all input design data entered at least four hours ago
should also be backed up. Also backup for all delcted
data up to two weeks ago.

3. Deadlock--i.e., therce should bce less than two
deadlocks per year.

4. Size--i.e., there should be the capability to
access a certain number of data items and be able to
process designs of certain sizes (number of active elements
approximatcly 100K, etc.).

There must also be documentation and configuration
control of the design data (PD and Pi1 data). The DBA must
make sure that the data base representations (conceptual,

logical, and physical) are well documented. This
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documentation is absolutely vital for the DBA's responsi-

bilities. Documentation of the standardized interfaces
between DA System components and the hardware dependent
code module documentation is essential to the life of the
data base and the system in which it resides.

The final point concerns the responsibilities that
accompany the role of the DBA. The DBA has access to all
of the data in the system and to all the software of the
system. These privileges provide the DBA with a view of
the system that the designer does not see. It is a total
system view, and it can be seen at all three levels: con-
ceptual, logical, and physical. While it is necessary that
the DBA have these views and capabilities, it is also
necessary to have some system of checks and balances among
the members of the DBA team. Trust of the DBA is neces-
sary, but it is also important that no one person has
absolute power. There are many ways to deter abuse, such
as preventing the DBA from writing application programs
against user data, or by partitioning the passwords and
access rights among the DBA team. These considerations
should not be extreme in the cducational environment of
this report. The important factor hecre is to prevent

accidental data corruption.

DBA Tools. The DBA has secveral specialized tools




DBA Function. Some of these routines include:

1. Loading routines, which create an initial
version of the data base.

2. Data base compaction routines, which arec use-
ful for reducing unused data or obsolete data in the
(PD) design data areas.

3. Journaling routines, for both the data base
operations and EXEC (designer) operations. These are good
for historical reference, data base reconstruction, and
statistical analyses.

4. Recovery routines that restore the data base
after hardware and software failure.

5. Statistical analysis routines provide the
performance evaluations of the software, hardware, DBMS
queries, and optimization techniques (27:27).

6. Report Generation provides routine and extra-
ordinary information required for use by the DBA function
(26:465-476) .

The Data Dictionary is one of the most uscful
tools the DBA can have. It contains the descriptions of
all the data in the data base. Also, the conceptual,
logical, and the physical schemas are stored here. (The
logical schema is actually implemented in pieces (par-
titioned) in the APIs, but the overall logical schema
description is in the Data Dictionary.) Each task vicw,

or partition of the logical schema, contains the data used
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and generated. It also contains *he format of the data
required for a design task. The Data Dictionary will also
contain a cross-reference listing showing which APs use
which relations and which specific data items.

The other tools that are used in conjunction with
the DBMS that the DBA uses are Data Description Language
(DDL) and bata Manipulation Language (DML) supplied with
commercial DBMS. These tools are used to create, load,
update, and change the data base, especially the PI data
area. The DDL provides the means to create the data
organization for use by the DBMS once it has been designed.
Thus, the DDL will be usced to specify the Canonical Schema
that has been described in this report. The DML provides
the mechanisms for retrieving records from the structure
that has been defined by the DDL.

DBA Functions During
System Implementation

The DBA function must (repeat must) use softwarc
engineering tools and techniques, during the design, imple-
mentation, and management of the entire DA System. Rele-
vant software engineering tools and technigques to be uscd
(as scen in Appendix D) can be classified according to the
system life cycle: Requirements Specification, Design,
Implementation, Testing, Maintenance, and Documentation.

The design requirements for the EXEC should be
specified by the DBA. The APs to be integrated into the
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DA System and the designer functions to be supported by
the EXEC also need to be specified by the DBA. The DBA
must verify and coordinate the design and implementation
of Challenges 1, 2, 3, 4, and 5. This includes planning
and coordinating the DA System changes and growth, as

described in Challenge 5. Two excellent references for
the DBA managing the devclopment and implementation of

these challenges are Productivity in a Data Base Environ-

ment (13) and Design Review Methodologyy for a Data Base

The DBA must maintain and update hardware and
software capabilities which includes: (1) acquiring new
hardware and software; (2) maintaining the contractual
activities of this procurement; and (3) monitoring the
student support of software research, development, con-
version, and update. (If there exists common hardware and
software cspecially operating system, among other DOD
agencies, universities, and research facilities involved
with microelectronic design, it would be especially help-
ful to form an alliance. Then software could be easily
shared, and updated software need only be changed once
and then distributed. There are many advantages to an
alliance such as this, not the least being interchange
of knowledge and shared resources.)

The DBA shculd analyze the performance of the DA
System and evaluate the physical schema to see if
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frequently used data can be¢ optimized (data migration).
For example, response time is a good first-cut evaluation
parameter. The DBMS querics and commands can also be
evaluated to find candidates for query optimization.

The DBA must, for each designer on the DA System,
issue an ID# and verify that a Project Depecndent data
area is crecated and available to the designer. Access to
the DA System must also be controlled through passwords
and/or ID#s.

Once the DA System is up and running, the designers
will notice a gap between expected and actual DA System
capabilities. 1In a prioritized manner, these insufficient
capabilities should be added or improved to minimize inter-
ference; all such additions and improvements should be
done in a background mode, which will be transparent to

the designers using the system.

n Analyses. Depending on the complexity of the DA
3. System, several analyses may have to be performed before
Ei and during system implementation. These analyses are
briefly described:

:% 1. Operational/Functional Shakedown, which shows
;; the actual capabilities that work is designed. Thesc

2 include validating the functions of cach component. It
é' is especially important to validatec the DBMS read, write,
F‘ and change functions, because if the system will not

3
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support reliable data operations it is worthless until
corrected.

2. Verification of Data Countent after the data

has been integrated. The desiyners using the DA System must
be able to be confident that the data stored in the IDDB
will retain its integrity. The data must also be reveri-
fied after several tasks execute, and thus use, store, and
generate design data. This will help ensure that the DA
System component actions are correctly integrated and thus
will maintain data integrity.

3. Monitor the System Performance by performing

systems analyses and performance evaluations. Statistical
analyses of data contents, system activity, response

times for queries, and data storage requirements should
also be generated. Query optimization techniques also neced
information concerning utilizations of devices, relation
schemes and relations. These evaluations will keep the

DBA alert for new designer needs, such as additional or
changed design tasks or EXEC function, and other evolutionary
effects on the DA System's environment. This monitoring
function aids the DBA in identifying and, thus, respond-
ing to changes in requirements of the system and the

designers who usc the systemn.
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Appendix A

Design Task Data Diagrams

The following Design Task Data Diagrams describe
design task-views. The descriptive data items used in
these diagrams are attributes of a Relation's Details.

The data is grouped into three categories:

INPUT (left); CONTROL (upper); OUTPUT (right).
The design task is labeled in the middle box.

As previously mentioned, because of the generic
data concept, many of the design tasks require much of
the same data. However, a closer examination showing the
specific data required by a design task, reveals the
unique specific data requirements of each task. The
detailed data descriptions are expansions of some of the
relations which provide good examples.

The design tasks included are the major, fre-
quently used design tasks. They are provided to aid the
reader in understanding the data requirements of the tasks,
the specific data, the generic data, and the relationship
of the specific and gcneric data. It also shows the
specification of the generic data into Relations, which are

the building blocks of the data organization of the IDDB.
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Appendix B

Glossary of Terms

Data Base--a collection of multiple record types, containing
the relationships between records, data aggregates,
and data items (24:13). Another definition of data
bases states that it is a collection of stored opera-
tional data used by the application systems of some
particular enterprise (26:4). Since, in most systems,
the term data base does not refer to all the record
types, but to a specified collection of them. There can
be several data bases in a system; however, the con-
tents of each data base are considered disjoint.

Data Base System—--a collection of data bases. There are
three ways that data is organized in a data base:
external, global logical data, and physical storage.

External Organization--concerned with the application pro-
o grammer's view of thce data. The programmer's view of
- the data is inherently defined by the application
program being used.

Global Logical Base Organization--the overall organization
or conceptual model for the data base from which
multiple external organizations may be derived. It is
the logical view of the data, entirely independent of
the physical storage organization. It will be
described in a data definition language which is part
of the DBMS.

Physical Storage Organization--concerned with the physical
representation, layout, and organization of the data
on the storage units. It is concerned with the indices,
pointers, chains, and other means of physically locating
records, overflow areas, and how data operations
(insert, delete, etc.) are perfrrmed on the storage

f{ medium.

E: Defaults—--data categories that belong to the Project

o Independent data area. Each Application Program has
[: default parameter values or Defaults.
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Default Changes--data categories that belong to the Project
Dependent data area. The uscr may make changes to
the Default values; these changes are Default Changes.

Key--a key has two properties: (1) it uniquely identifies
a data item or tuple, and (2) it is nonredundant.
This means that no prime attribute can be discarded
without destroying the uniqueness p:operty of 1.

Prime Attribute--an attribute that is a member of sevcral
other prime attributes that constitutes the key.

Non-Prime Attribute--an attribute that is not a member of
a key.

Schema-~the overall logical data base description is often
referred to as the schema, an overall model of the data,
a conceptual model, or a conceptual schema. The con-
ceptual model, then, is a view of the total data base
content, and the conceptual schema is a definition of
this view. The schema is a chart of the types of the
data used, the names of the entities and attributes,
and their relationships. Thus, the schema can be viewed
as a skeleton upon which the data from the enterprise
is attached.

Sub-Schema--simply one application programmer's view (i.e.,
an application program's data "expectation"). Many
different sub-schemas can be derived from one schema.
Two reasons for the sub-schema are to help avoid data
complexity, where possible, and to aid in data security.

Task--a group of small related processes to be performed
by Application Programs. Also a Design Task.

Task-View--the data requirements of a task. These require-

ments are the data, data format, and data type as
required for specific Application Programs. It can also
be a higher level view of the generic data requirements
of a design task. These two levels of views are seen

in the Design Task Data Diagrams of Appendix A.
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Appendix C

Questionnaire

This questionnaire was informally used by the
author to gather the data requirements of the DA System.
There are two categories of questions:

1. Data Organization, and

2. Data Processing Requirements.

The first category identifies the data and the functional
dependencies of the data. The second category identifies
what transformations that the data undergoes and other

data operations (33:147-151; 34:141-144).
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10.

QUESTIONNAIRE

A. Data Organization

What are the entities (data elements) of interest in
each application program? Names?

What facts (Attributes) for each entity are relevant?
Names?

What is the range of values for each attribute?

What are known dependencies between attributes of each
identity?

What are unique identifiers (Keys) for each entity
(if any)?

What are important relationships between entities?

What is the mapping property of each relationship?
(l:1, 1:N, N:M)

What is the meaning and implication of each relation-
ship?

What are the possible relationships, not used, but
still meaningful?

What combination of relationships make sense as separate,
identifiable relationships?

B. Data Processing Requirements

What transactions are required by each application
program? (What are the overall and segmented operations
done by the program?)

What kind of data access is required by each trans-
action?

At what frequency is the operation done?
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What entities, attributes, and relationships are
involved in each operation?

Is the processing of the operations priorized and/or
are some operations Jone conditionally?

Is there an important prerequisite sequence for any
transaction? Are they sequential or independent (can
be run simultaneously)? What is the impact of the
iterations, what data is affected, which transactions
are affectead?

How often are transactions done during a design cycle?

What is the output of each transaction; not the format,
but changed entities, attributes, and relationships
(include error codes).

What data, that has been retrieved or changed, must be
saved in a work area for the designer?

What type of input is required for the transaction?
(interactive, file, graphics, library (static), or
direct input from another transaction).

List FUTURE transactions and/or functions that may be

integrated into the system. Also, list which entities
and relations will be used.
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Appendix D

Software Engineering Tools and Techniques

Requirements

Requirements analysis, definition, and specification--
understanding the problem precisely, developing unambigu-
ous statements of system functions, decomposing the

problem into manageable subparts.

Management of software development--
Staff organization, budgeting, planning, system inte-

gration, personnel deployment.

Design

Software design--~

Use of well-defined methods for establishing the
logical structure of a software system, creation of

software "blueprint" and "breadboards."

examples:
- Structured Design (Yourdon-Constantine)
- Jackson Method

- Wernier-Orr Method

SADT (SofTech)
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- HIPO Charts

- Program Design Language(s)
- Decision Tables
-~ Flow Charts

- Design Walkthroughs

Implementation

Systematic Programming Methodology=--
Techniques for reliably producing programs that are
correct, including stepwise refinement and structured

programming.

Programming Tools and Environments--

Text editors, debugging tools, operating systems, pro-
gramming languages that support the programming process,
portability, standards enforcement, top-down implementa-

tion, code walkthroughs, and performance analyzers.

Testing

Program Testing and Verification--

Construction of test cases to determine program correct-
ness and performance characteristics, techniques for
selecting test data, formal mathematical proof that a

program meets stated specifications.
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examples:

- Static Analyzers

- Dynamic Analyzers

- Execution Analyzers
- Test Data Generators
- Assertion Checkers

- Test Coverage Analyzers
Software Performance--
Analysis of algorithms, prediction, evaluation, and

improvement of performance.

Maintenance

Viability--
System fit to requirements, adaptability, maintain-

ability.

examples:

Flow Chart Generators

Data Dictionary

)

Source Code Control

Interface Analyzer/Checker

Documentation

Formal and informal requirements definitions and
specifications, design representations, user manuals,

168
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program descriptions, program readability and commenting

practices.

examples:

§

Requirements Specification

- Design Specification

~ Unit Development Folders
r‘ - Test Plans and Procedures
: ~ Test Results

- - Maintenance Manuals

(Refs: 21:538-53%; 16:44)
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