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Preface

Forward-swept winged sircraft have long been considered dbeceuse

of their aerodynamic advantages. However, until the advent of

3 composite materials, this configuration had been structurally infeasible.
:‘ Now that the forward-swept wing is practical, the critical failure
mode, which past research has found to be divergence, must be explored.
ﬁ; This thesis determines flutter speeds, depending on different eero-

&! dynamic models and compares them to ascertain the practicality of more

5 advanced aerodynamics.

;; I would like to thank Dr. Robert Calico, my thesis advisor, for

b 0 the time, help, and guidance that he gave me. Thanks are due Dr.

Franklin Eastep for the aid given me in the aerodynamic mcieling and

» also Dr. Wilhelm Ericksen and Mr. Thomas Noll for their assistance

in the actual analysis and computation.

William L. Shelton, Jr.
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List of Symbols (Ref 1)

Torsional angular displacement of entire wing about its elastic
exis, in radians.

a{s),6(s) Laplacian operator of torsional angular displacement.

b

Semi-chord of wing including chord of aileron and tab, in feet.

h,w Bending displacement of wing in direction perpendicular to

freestream velocity, positive being down for h and up fer w,
in feet.

H(s),W(s) Laplacian operator of wing bending displacement.

I

J=1

K_.K

Moment of inertia per unit span about elastic axis, in slug-feet?
per foot.

T

0 Torsional spring constant.

Kh,Kw Bending spring constant.

L

Total oscillatory mserodynamic 1lift acting on wing per unit span,
in pounds per foot.

Mass of wing.

Total oscillatory aerodynamic moment acting on wing about its
guarter-chord point per unit span, in pound-feet per foot.

Ratio of mess of wing to mass of cylinder of air circumscribed

about wing chord, both extending over equal lengths. Note;

hor}

¥ npb!

Radius of gyration of wing ebout elastic axis &s fraction of wing
semi-chord.

Density of air, in slugs per cubic foot.

lLaplacian variable for characteristic equations.

Critical divergence speed, in feet per second.

Critical flutter speed, that at which wing system oscillations

occur at constant amplitude, in feet per second.
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{ 4] Forward speed of aircraft or freestream velocity, in feet per

N ®

. second.

. w, Uncoupled natural torsional frequency, in radians per second.

hl Wy Uncoupled natural bending frequency, in radians per second.

N x, {2(center of gravity)/100}-1-a where center of gravity is given
L in percent of total chord measured from wing leading edge. Note;
- Sa

ji * *mv

2 s Differentation with respect to time.
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Abstract

Flutter speeds for straight wings using quasi-steady and en
approximation to unsteady aerodynamics are determined. The same
procedure is then followed for both straight and forward-swept wings.
The equations of motion for a rigid-body eirecraft with the proper
aerodynamics are nondimensionalized and the laplace transforms are
taken. After solving the coupled equations simultaneously, various
velocities are chosen and the resulting characteristic equations are
factored. The roots are then plotted and the flutter or divergence
speeds determined.

It was found that flutter speed increased and divergence speed
decreased with increasing forwsrd sweep as expected. Also, quasi-
steady aerodynamics do not accurately predict flutter and the
approximation to unsteady aerodynamics does not accurately predict
divergence. It is necessary to combine these two methods in order

to obtain a complete analysis of the wing's aeroelastic instabilities.
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FLUTTER PREDICTION OF FORWARD-SWEPT WINGS

BY ASSUMED MODES AND STRIP THEORY

I. Introduction

Swept wings, both forward and aft, have numerous advantages.
Sweeping the wing reduces the velocity component of the freestream
that is normsl to the leading edge, consequently, the swept wing
sees & reduction in drag and weaker shocks in supersonic flight
(Ref 11:1-3).

Swept wings drew serious consideration back in 1947 when
Collar studied their aeroelastic phenomena at high speeds. Diederich
and Budiensky did the first comprehensive treatment of divergence
in slender swept wings during 1948. They found that the divergence
speed drops rapidly as the amount of forward sweep increases and that

wings with a moderate to large amount of aft sweep cannot diverge.

Pros and Cons g{_Forward—Swgpt Wings

The forward-swept wing is not & new concept. A four engine

Jjet bomber, the Junkers JU-287, with 15 degrees forward sweep, was

built towards the end of World War II. This aircraft actually flew

successfully .efore * .g damaged on the ground. More recently, the
Germaen Hamburg.r Flugzeugbau HFB-300 Hansae business Jet was designed
. L with a swept-forward configuration to create a more spacious fuselage

interior. General Dynamics, Grumman and Rockwell International have
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all researched the swept-forward wing end, in comparing it with the
aft-swept wing, found that it had & lower stall speed, permitting
higher manuverability at greater angles of attack and improved slow-
speed handling gualities. It exhibited much higher 1lift to drag
ratios in manuvering flight as well as lower trim drag, significantly
increasing aircraft range in the supersonic regime. A wing combining
these characteristics is one having a lower weight and therefore
produces a lower cost aircraft for the same high-performance missions
then for an aft-swept wing made of convertional metallic materiels.
Until recently, the aerodynamic advantages of forward-swept
wings could not be exploited due to its aeroelastic instabilities.
When a forward-swept wing is subjected to aerodynamic load, the angle
of attack increases. This ir turn increases the wing loading and
bending, which leads to divergence. To combat this problem of
divergence, the wing must be stiffened. However, this solution is
prohibitive in that the required stiffening produces a weight penalty
which negates any aeroelastic advantages. This problem was studied
by Krone (Ref 6:126-127). His report "clearly shows that the
detrimental effect of divergence on swept-forward airfoils can be

controlled by use of advanced composite materials" (Ref 6:126-127).

Thesis Objectives

This thesis examines the forward-swept wing, using quasi-steady
and an approximation to unsteady aerodynamics, to deterzine the wing's
critical flutter speed. The e cases are compared and the difference
in flutter speed noted. The magnitude of this difference determines

vhether dboth types of serodynamics are used to ascertain the forward-

e s b S S B < A la m. 4 s e o




swept wing's critical flutter speed. Once flutter or divergence

;5{ speeds are obtained, the zeros of the characteristic equations are

traced in an effort to gain some insight into future flutter

compensation.

Solution Approach

The solution approach is a straight-forward one. The equations

of motion are written and the proper aerodynamics substituted in.
Then, using strip theory and assumed modes, the resulting coupled
?i' 1ift and moment equations are applied to the wing of interest. The
‘ coupled equations are nondimensionalized, then solved simultaneously

through Laplace transforms and matrix technigues. The coefficients

of the resulting characteristic eguation are functions of velocity
only. Varying the velocity generates new characteristic equetionms,
the roots of which are plotted in a root locus technique to determine

the wing's critical flutter speed.
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II. Theory

Flutter, a dynamic instability, is a self-excited vibration
of a body that is moving in a fluid stream. Classically, this is
a mechanism involving the coupling of at least two degrees of free-
dom of the system. These degrees of freedom are stable when
uncoupled such that they sustain an oscillating motion. They are
critically coupled when there is a phase difference in the
oscillatory motion and a time difference between the aerodynamic
loads and the system's resulting motion. Flutter occurs at the
lowest airspeed and corresponding ecircular frequency that the
system, flying et a prescribed atmospheric density and temperature,
exhibits sustained, simple harmonic motion. The forces necessary
to produce this motion are simply those present when an elastic
structure is deflected from its undeformed state (Ref 2:527).

Divergence differs from flutter in that divergence is a zero
frequency or static aeroelastic instability of an airfoil in torsion
end twist. This occurs when the torsional stiffness of the airfoil
is exceeded by the amerodynamic twisting forces acting upon it (Ref

10:298).

Consequences of Instabilities

These aeroelastic phenomena, when encountered unknowingly,
can have drastic consequences. Divergence can shear a wing off an
aircraft with 1ittle or no warning. Flutter can result in complete

structural failure within a matter of seconds or a few oscillations.
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One of the more famous and spectacular examples of flutter is

the Tacoma Narrows Bridge in the state of Washington. The bridge
was constructed between two cliff faces, funneling the air between
them. When the wind velocity reached 42 miles per hour, flutter
occurred. This concrete and steel structure underwent displacements
of approximately 4O feet, behaving as though it were rubber.
Finally, on 7 November 1940, the bridge totally destroyed itself

after undergoing half an hour of oscillations (Ref T:66).

Causes of Instabilities

Aeroelastic phenomena in straight wings is dependent only
on the twist about the elastic axis; When the wing is swept in
either direction, wing bending becomes very important and greatly
comrlicates matters. Flax and Broadbent at the Royal Aircraft
Establishment indicate that for swept wings, the rigid body motions
are potentially dominating. Flutter coupling will be between the
first normal elastic mode and rigid body pitching. 1In this case,
the flutter circular frequency will be lower then the fundamental
normal mode freguency. British investigators recommend that, in
flutter analysis of swept wings, the first two or three elastic
normal modes and two rigid body modes, pitch and translation for.
symmetric modes and pitch and roll for antisymmetric modes, be
used (Refs 3 and 5).

In a forward-swept wing the center of gravity is generally
aft of the elastic axis. This produces a nose-up torsional moment

about the elastic axis due to the amount of 1lift produced by the

s PRy - - . . . . . . .
P YT Y PP Y W . S S U . R N o T T ;4
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airfoil et its aerodynamic center. As the wing of Fig. 1 is deflected,
notice that line segment AB is level while line segment CB is canted
upwards; point C is higher then point B. Therefore segment BC

produces a positive increment of 1lift. This in turn amplifies the
torsional moment already existing about the wing's serodynamic center.
An unstabilizing influence, the nose-up twist shifts the center of
pressure outboard. The possibility of divergence increases, but

the potential for control reversal diminishes. At speeds below what

is to be called the critical divergence speed, these increments of

-, 1lift and twist become smaller snd smaller so that an equilibrium
i condition is attained. However, above this critical speed, the
E . process is decidedly unstable.

' (. Typicel Sections

; For typical multisper, thick skin structures, it has

been found that design stress considerations in the vicinity of the
wing root results in a root section so stiff that the wing behaves as

8 beam clamped perpendicular to its elastic axis (Ref 10:347).

Theodorsen and Garrick used representative sections specialized for
torsion and bending degrees of freedom (Ref 2:533). The authors
suggest that, for purposes of flutter prediction, the typical section
can be made to fairly well represent & straight wing of large span
by giving this section the geometric and inertial properties of a
< station that is three-quarters of the way fom the wing's centerline

b to its tip. This .is demonstrated in Fig. 2.

CEPNE WO V- v alatoad

...........




Figure 1. Streamvise and chordwise segments of a forward-swept wing.
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Figure 2. Springs K_and restrain airfoil from bending and twisting
motion in the freestream.
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Flutter Prediction

Assumed Modes. In predicting flutter, the continuous aircraft

wing is typically modeled using assumed modes. This procedure

assumes a solution of the boundary-values associated with a conservative

system of the form

n
w(x,t)= ¢ G, (x)q,(t) (1)
i=1 i i

wvhere Gi(x) is an admissible function, that is one that satisfies
only the geometric boundary conditions of the differential equation

of the system, and q.(t) are the generalized coordinates, to be
, and q,

LA N D kS v
- e AN o
L P A L e e .

determined, which measure the contribution of each of the admissible
functions to the total displacement of the wing surfeace,

' There are two basic guidelines to be followed when selecting

AurSidans 2 o RTT

T, P

RO e
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functions to be used as assumed modes. They are;

1) Assumed modes should satisfy the geometric boundary

conditions and,
2) they should be linearly independent of each other.

It is not absolutely necessary for the assumed modes to satisfy

the free-edge natural boundary conditions because the process will
- tend to satisfy them in the final result. Linear independence
i’ requires that it is impossible to express one function as the super-
position of the other functions.
Once assumed modes have been selected, the kinetic and potential

_! ‘ energies can be determined. It can be shown that the kinetic energy

is

- _" l . _-".‘ ',. . “'-- '»..'--
0
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n n
™Mt)s% r I M,,q,(t)q,(t) (2)
iel §=1 ij=i i

and the potential energy is

n n
vit)ss I I K, ,q.(t)g,(t) (3)

1=1 3=1 i3%i i
where Mijare the constant symmetric mass coefficients and Kij are the

constant symmetric stiffness coefficients, both of which depend on

the mass and stiffness distributions, respectively, and the admissible
functions, Gi(x). The potential energy generally contains spatisl
derivatives of Gi(x) that are of orders as half as large as the order
of the differential equation of the continuous system that is being
considered. Note that the natural boundary conditions are of no con-
cern because they are accounted for automatically in the kinetic

and potential energies. Consequently, Gi(x) needs to be an admissible
function only.

Lagrange's equations may now be written and are given by

_alaT l ST AV L4 ye1,2,..u0m (4)

8 9
atlag | " 3q P
where the 9. represent the non-conservative forces present. Using

Eqs. 2 and 3, the equations of motion become

n n
351 MrJqJ(t) + 3:1 Krjqj(t) = 0, r=1,2,...,n (5)

which, in matrix form, is
lm]{g(t)} + |x]{q(t)} = {0} (6)

These linear constant coeficient equations can now be solved for the

10
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qi(t) and hence, along with the assumed modes Gi(x), form wix,t)

(Ref 8:266-268).

Strip Theory. OStrip theory is used to find the approximate
solutions to two dimensional theoretical aerodynamic problems. It
assumes that the loads of each spanwise station mlong the wing is
dependent only upon the motion of that station at any given time.
This theory also assumes that there is no spanwise flow along the
wing.

The wing is divided into "strips" and the aerodynamic forces
upon each "strip" are calculated. The eerodynamic loads are based
on the two dimensional coefficients evaluated at the centerline of
each section.

This estimation is well-suited for the evaluation of aerodynanic
loads on a straight wing. When this procedure is applied to a wing
with sweep, an approximate correction, cosA, must be applied, where

A is the quarter-chord sweep angle (Ref 9:17.5-8 - 17.5-9).

Equations of Motion. When a wing is represented by an elastic

surface that is thin compared to its span and chord, the equations of

motion can be found through the use of influence functions. The

-4 wing is also assumed to be rigid in the chordwise direction and is

then teken to be straight and to have no structural discontinuities

;o that the existence of an elastic axis may be assumed. This elimirates
i the elastic coupling between the integral equations of motion, leaving

‘ them only inertielly coupled. Elimination of this inertial coupling

( can occur only if the center of gravity of each chordwise section lies

11
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on the axis (Ref 2:102-105).

It is more convenient-. to utilize the differential equations for
the case described above. These can be derived by setting the
system to its equilibrium conditions, then balancing its forces and
moments. Fig. 3 illustrates the applied and inertial forces acting
on the previously described straight wing. From this, the force per

unit length is
2(y,4)=F, (v, +m(y)s (y)8(y,t)-nly w(y,t) (1)

and the torque rate of change, with respect to y, about the elastic

axis is
T (y,)=-t (3, }+s(y) {n(y)s(y)8 (v,8)-m(y)wly £ )41 (1)8(y,8) (B)

as seen from Fig. 4 also. Because this is a thin wing, rotary inertia
and shear deformation may be neglected. Therefore, these results

may be substituted into

{EIw"(y,t)}"=Z(y,t) (9)

{6Je' (y,t)}'=T"(y,t) (10)

Consequently, the partial differential equations of motion are
m(y);(y,t)-sy(y)g(y,t)+{EIw"(y,t)}"=Fz(y,t) (11)
Iy(y)g(y,t)-sy(y)Q(y,t)-{GJe'(y,t)}'=t(y.t) (12)

vhere S is the static mass moment per unit length about the elastic

axis and I is the mass moment of inertia about the elastic axis (Ref

12
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[ Fz(y,t)

Elastic
Axis

oly,t)

Figure 3. Airplane wing with rigid chordwise segments.
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Figure 4. Airplane wing with straight elestic axis.
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2:102-106).
Referring to Figs. 5 and 6, Egs. 10 and 11 can be used to

describe a beam under generalized loading. Substituting the aerodynamic

loads into the right side, and teking EI, GJ, m, etc. to be constant,

produces

: - . [
E? mi(y,t)-50 (y.t)+EI%§uw(y,t)=L(y,t) (13)
E; .- o 32

Iye(y,t)-syw(y,t)-GJ3§7 (y,t)=M&(y,t) (1k)

where L(y,t) and My(y,t) are the aerodynamic 1ift and moment. These

are the equations of motion used in this thesis (Ref 2:546).

Solution Approach. Once the equations of motion are obtained,

several substitutions are necessary to put them in a convienent form

to use. Notice that there are fourth and second order partial
derivatives in the 1lift and moment equations, respectively. To
simplify these partial differential equations, the expression for a

beam in bending (Ref 8:209),

"
s

y
EPQ'uV(y,t)-mwzv(y,t)zo (15)
3y h

! and, in torsion (Ref 8:19L4-195%),

GJézye(y t)+I_w? 6(y,t)=0 (16)

Y ’ Y a ’

|
- iz used. This yields the simplified the partial differential
I
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equations of motion, namely
mw(y,t)-sye(y,t)mwflw(y.t)ﬂ.(y,t) (17)
and
“ e o 2 ) :
Iye(y,t) Syw(y,t) Iywae(y,t) M&(y,t) (18)

Using the following expressions for static imbelance, Sy’

moment of inertia, I _, and mass ratio, u,
Y
S =mbx
y o
I =mb?r} i)
U"“ST

the equations are nondimensionalized. Then the proper aerodynarmics
for each case are inserted into the right hand side. When assumed

mode methods are used, the bending mode is represented by
=c_ (£)2
wly,t)=C (£)%w, (¢) (20)
and the torsional mode by

=0 sin o ,
e(y,t)-v251n > %61(3,t) (21)
where Cland Czare dimensionless amplitudes end (y/v)? 8and sin E-%

vere prev- ously Gi(x) and wl(t) and 6,(t) vere qi(t). The 1ift and

-

moment equations are then weighted by multiplying them each by

[ ]
o
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Cl(b) (22)
and

C.sin (23)

[STE
ok

respectively.

Strip theory is then used to evaluate the aerodynamic loading
on the right hand side of the equations of motion. The wing is
divided into five sections of width 0.2b, where b is the half-span
of the wing. Once this is accomplished, the loads on each section
are integrated over the section's width and the terms summed,
generating the expressions for 1ift and moment. Each term on the left
hand side of the equations is also integrated across the half-span.

Geometric and inertiasl wvalues thet are constants for the wing,
straight or swept, are substituted into the weighted, integrated
;quatiOns of motion. The Laplace transforms of these differential

equations are then taken and put in a matrix of the form

[a(s)]}{x}={p} (24)

and solved simultaneously by setting the determinant of [A(s)] to zero.
The résulting polynomial in s has'coeffi;ients that are functions of
velocity only. Varying the velocity produces new characteristic
equations which,when factored, produce roots for a root locus plot
similar to Fig. T.

Because flutter, by definition, occurs as simple harmonic

motion, the critical flutter speed occurs as the root locus crosses

19
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the imaginary axis. When the resl roots cros: the imaginary
axis, divergence occurs because this is the zero frequency
instability. Details of these calculations are shown in Appendices

A through D, depending upon the case of interest.
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III. Results

?i Using the methods described in Appendices A and C, flutter and
» divergence speeds were found for straight and swept wings using
i quasi-steady aerodynamics.

il The roots of the characteristic equation, resulting from the

p

quasi-steady analysis for a straight wing, are plotted in Fig. 8.

From this root locus plot, the flutter speed, Uf, and divergence

speed, U., can be found. They are the value of velocity at which

d
the high frequency branch crosses the imaginary axis for flutter and
the low frequency branch crosses the imaginary axis for divergence.

Therefore, from the root locus, it can be seen that Uf is 62.5 ft/sec

A and U, is 217.8 ft/sec. Notice the inordinately low flutter speed.

i

Because this is an invalid value, as explained later, root locus
plots will not by done for the cases of 15 and 30 degrees of forward

sweep. The constant term of the characteristic equation is solved

.r".f'v s
CalEN .
. 2ty
S P T

for velocity in the above two cases and the divergence speeds are

found to be 157.7 ft/sec for -15 degrees of sweep and 109.2 ft/sec

v

tl

for -30 degrees of sweep.

The exceptionally low flutter speeds are & result of the quasi-

I ol e A od b o 4
AR .
b .

steady analysis being inadeguate for use et higher reduced frequencies.

e

|

: Guidelines for use of the appropriste aerodynamics with their corres-
2 ponding frequency ranges ctan be ascerteined through the use of reduced
'i fregquency.

R The reduced frequency is

22
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To find the flutter reduced frequency, use the flutter speed and

frequency. For quasi-steady eerocdynamics, k must be less than 0.2.

 Jul e o ot
CARAREN TS

This reduced frequency restriction is rather strict and is rarely

met by typical systems at subsonic speeds; As seen in Table 1, none
of the quasi-steady aerodynamic cases are near this value, therefore
these are not valid flutter analyses; Because divergence is a

zero frequency instability, quasi-steady aerodynamics predict this

phenomena quite well. Therefore the divergence speeds are valid

values and are plotted in Fig. 9 as a function of sweep angle, A

The methods of Appendices B and D utilize an unsteady aero-

dynamic model to find the flutter and divergence speeds for a
straight wing and ones that are swept forward 15 and 30 degrees.
The unsteady aerodynamics utilized an approximation to the comp-
licated Theodorsen functions. This was Jones's approximation and

is valid only at higher reduced frequencies. The roots of the

characteristic equations for each of these three cases are plotted
{; in Figs. 10, 11 and 12, respectively. From Fig. 10, Uf is shown

j:j to be 165.3 ft/sec. For 15 and 30 degrees of forward sweep, Uf

“i is 181.2 and 201.1 ft/sec, respectively. Note that the divergence
speed cannot be determined. In the unsteady case, the reducgd
frequency range changes, as seen in Table 1, and is above the lower
:i . limit of 0.2. Conseguently, the flutter speeds predicted by the

unsteady aerodynamics approximation are good values. The variance

(‘ of the flutter speed, as predicted by unsteady aercdynamics, is

4
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Ranges of Reduced Frequency

Reduced frequency, k

Sweep angle, A

-15°

-30

Quasi-steady
aerodynamics

1.11

0.95

0.90

Unsteady
aerodynamics

0.29

0.25

0.21
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! ' shown in Fig. 15. The same trend in flutter in flutter speed is
displayed here as it was in the quasi-steady eerodynamic cases.
Unfortunately, the approximation to the unsteady aerodynamics do
not do a good Job at predicting the critical divergence speed.

Again this is due to the discrepancies in the reduced frequency

range.
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JV. Conclusions

Flutter analysis, using essumed modes and strip theory, is a
straight forward process. To get valid results, however, the
proper aserodynamics must be used for each case.

Quasi-steady and the approximation to the unsteady serodynamics
are relatively easy to use and do not require the use of a computer.
Once the unsteady aerodynamics are sweep-corrected though, it is
impractical to perform the necessary algebreic manipulations by
hand. Even thcugh the use of the MAC Symbolic Manipulation System,
see Appendix D, reduces this tedious jJob significantly, it is
still highly inefficient. Therefore, unless it is unavoidable,
these expressions should not be used.

The two aerodynamic cases examined here are at the opposite
ends of the frequency spectrum. This leaves a gap which potentially may
be filled by the Pade approximation. This approximation represents
the transformed aerodynamic forces as & ratio of polynomials that
are a function of the Laplace transform variable s, as did the
Jones's approximation. The coefficients of these pclyncmiels are
found using a two step least squeres process. The generalized
aerodynamic forces are obtained from the Pade approximstion of
sinusoidal forces using doublet-lattice serodynamics (Ref L:885-88€).

The aercelastic instability of flutter occurs vhen et least
two degrees of freedom of the system coalesce. Typically, for aft-

swept wings, this is between the first bending and first torsion

32
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modes. When looking at forward-swept wings the short period pitching
of the aireraft combines with its low frequency mode, producing
flutter. The Pade approximation should be compared with the quasi-
steady analysis and that of the unsteady approximation to find the

theory that yields the most accurate results.

.Tﬁf*'n'......

This thesis has laid the groundwork for this comparison and

an analysis, such as the one described above for a swept wing,

R |

would be a logical follow-on.

vr;z-. "
f C
o

LA

.

e e g oin o
e :

7




T -

QRN S S/ Aacaae
SRR 4 & )

.u7.

Bibliography

'l. Air Corps Technical Report 4798, July 19k2.

2. Bisplinghoff, Raymond, L. Aeroelasticity, Reading,
Massachusetts: Addison-Wesley Publishing Co., Inec., 1955.

h 3. Broadbent, E. G. "Some Considerations of the Flutter Problems
1 of High Speed Aircraft," Second International Aeronautical

. Conference, published by Institute of Aeronautical Sciencecs,

- Inc., New York, 1947,

L. Eastep, Franklin E. and K. E. Griffin. "Active Control of
Forward-Swept Wings with Divergence and Flutter Aeroelastic
Instabilities," Journal of Aircraft, Vol. 19, No. 10, October
1982,

5. Flax, A. H. "Aeroelastic Problems at Supersonic Speed," Second
International Aeronautical Conference, published by Institute
of Aeronautical Sciences, New York, 1949,

1 6. "Forwerd-Swept Wing Potential Studied," Aviation Week and Space
Technology, Vol. 29, January 1979.

T. Fung, Yuan-chen. An Introduction to the Theory of Aeroelastiscity,
New York: John Wiley and Sons, Inc., 1955.

8. Meirovitch, Leonard. Elements of Vibretion Analysis, St. Louis:
McGraw-Hill Book Co., 1975.

9. NASTEAN Theoretical Manusl, Washington, D. C.: Scientific and
Technical Information Office, NASA, January 1981.

b
y
h

10. Scanlan, Robert H. Introduction to the Study of Aircraft
Vibration and Flutter, New York: The MacMillan Co.,1951.

11. Uhuad, G. C., Capt., USAF. "A Wind Tunnel Test of Half-Span
Forward-Swept Wing Model with Variable Canard Location,” AFWAL-
T™-82-189-FIMM, May 1982.

3k




T Ty

Appendix A

Flutter enalysis of & straight wing using quasi-steady
aerodynamics is a straight-forward process. The equations of motion

are (Ref 2:5u46)

L
m¥(y,t)-5_6(y,t WEREw(y,t)=L(y,¢) (1)
3y
.o 2
Iuﬂ(y,t)-s w(y,t)-ch-ze(y.t)zm (y,t) (a2)
a 3y Yy

The equations for a beam in bending and in torsion, respectively, are

(Ref 8:209, 194-195)

Y

2
EIQ-ﬁV(y,t)—mwhw(y.t)=0 (a3)
oy
2 2
6320 (y,t)+T v 68(y,t)=0 (k)
ay aa

Substituting the expressions for guasi-steady aerodynamic lift and

moment (Ref 2:279),

L(y,t)=2npUb{U8(y,t)~v(y,t)} (A5)

My(y,t)=L(y,t)b(a+%) (A6)

and Eqs. A3 and A4 into Egs. Al and A2, recpectively, results in

35
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X mQ-Sae+mmhv=2npUb(U8-w) (AT)
o . 2 2 .

E I,6-5 W+I w 8=2mpUb (a+%)(U8-w) (A8)

To make use of the method of assumed modes, each equation of motion
must be weighted by its generalized coordinates. The functions

2 in TL ; -
Cl(b) and C251n Sy were chosen to weight the 1lift and moment egquations,

respectively, because the bending of the wing is closely approximsted

it g BAEAL AR SR o

raac

by a parabolic and the twisting by a sinusoidal function.

For similar reasons, the assumed mode shapes of bending and

torsion are taken to be

wly,t)=c, ()2, (1) (89)
. 8(y,t)=C sine., (t) (A10)

When Egs. A5 and A6 are weighted and mode shapes substituted in, Egs.

All and Al2 are the results.

2 4 2 . 2 2 L
X AP A =
Cm(g) #3C;Co8, (%) 51“5%61*01“‘%(1:) vy
4 .
Cl21rpb(%) U(Us-w) (A11)
. 1 sinIa _c.c.8 (£)25in"w 4021 w2 sin2e =
e 27654" 27171 2% ' b1 2 0% 2b° 1
C,2mpUb2 (a+k)sim(UB-w) (A12)
¢

Bmploying strip theory requires that the right hand sides of

1@
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Eqs. All end Al2 be divided into "strips" end integrated over that
strip. Strips of width 0.2b were chosen. The left hand side must
also be integrated, but this is done only across the semi-chord, b,
and not divided into strips. Once this has been accomplished,

Eqs. All and Al2 are nondimensionalized using the quantities,

WSTT (A13)

Once this has been accomplished, the weighted, integrated

equations are

>
1 b
ot

i

Phdian ue o
e s
L. . .

v C S v0.2u2%1e
0.2;1- C1(0.295)xu61+0.2mhb1—

2

MEIRARE g,
8;- -cc-;( 0.589 )§2%1+w:61=
‘ %%2*‘40.&9&(%)291-%;(0.295)% £ (A1)

These equations must be solved simultaneously and to do so,
their laplace transforms must be taken. It is assumed that the initial

conditions are zero so consequently, the transformed equations are

37
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{0.252+ I—Eﬂ%% s + o.2w§} %1(5)

C 1,851 1,V
~g2(0.295 x,8% 2221 2238, (s)=0 (A16)
S110.589 % 1.18 L‘lff-)- 2 5} ¥a(s)

€2 Ta

s(s2eu2- 2210 (&) 230, (5)=0 (17)

For the wing being analysed,

wh=10 rad/sec

mc=25 rad/sec

x =0.1
a
- ra=0.5
" a=-0.2
:ﬂi b=3 ft
"‘ u=20
Using these constants in Eqs. Al6 and AlT,

e (5240.033Us+100)51-£2(0. 1475240, 01602 )6, =0 (A18)
N 1
T -%1(0.236s2~o.02ws )%14(52-0625-0.013112)91"0 (A19)
o 2
[
T vhich can easily be put into matrix form, the determinant of which

vill yield the desired characteristic equation:

-38
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ri;s

s4+0,038Us3+(751.06-0.018u2)s2
+21.561Us+(64746.71-1.36T02)=0 (A20)
u This equation has coefficients that are functions of velocity only.

- Varying the velocity produces new characteristic equations and the

':'V' roots of these are plotted in a root locus.
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Appendix B

Flutter analysis of a straight 'wing utilizing unsteady aero-
dynamics follows the same basic procedure as that for a straight wirg
with quasi-steady serodynamics, the basic difference being the more
complex aerodynamic expression. The same wing equations of motion,
generalized coordinates, and mode shapes from Appendix A are used.

The new aerodynamic expressions are

L(y,t)=npb2{U8 (y,t)-%(y,t)-bad(y,t)}

+2moUbC(k){UB (y,t)-w(y,t)+b(%-a)8 (y,t)} (1)

M (y,t)=-mob2 (bab(y, £ )+Ub(%-a )5 (y,t )12 (g+a2)0(y,t))

+2mpUb2 (a+})C(k ) {Ue (y,t )-w(y,t )+b(3-a)8(y,t)} (B2)

(Ref 2:272) where C(k) is a Theodorsen function that is dependent on
the reduced frequency, k. Therefore, substituting Egqs. Bl and B2

into Eqs. Al and A2 from Appendix A results in

% Clk){g8 - £ +04-2)8)  (83)

g-x.e.-t‘mzzﬂl[--'e-K-ag]-‘-zu
o ub b

)
2 _ ¥ 2200 2% U3 8 oL 4a2)s
r2 xub+ru‘°ae= ;-{ab+b(15 2)8 +(-5+a Yol

(a+14)p_

+22252) 3 c(k)(ge- £ +04-)) (BY)

Because Theodorsen functions are, in general, very corplicated, Jones's

approximation
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e L.5s2+ 0.843Us + 0.01ky2
i C(s)= = 5525 1.0370s + 0.01007 (85)
F (Ref 2) will be utilized instead.
3 Following the same procedure outlined in Appendix A, the
o
é; weighted, integrated equations of motion are
g- 0.2% . & o, 0295x_ 8,+0.2u2 ¥1= £0 0.295 2 % 0.2
- S hb " ¥ b1 %
g “® 0.205 2 5. + % 0.508 LBc(s) - 2t 3 U —c(s)—1
= 17 u 1 C1 : v b
+£ 0.598 € (3-2)c(5)6, (B6)
C1 b
o C v C a ¢
2 o = - 2,,2 —_— -
D.Sruel C; 0.2951ab1+0.5rawa918 C; 0.295 " bl
U fg-a! 9 -0.5 1/8+a ZE U«z a+§) (s )e
_%1 O.BQIMH C(s b (_;5‘_9'_.2 b (s) e (BT)
2 vob

Transforming Eqs. B6 and B7 and using the constant values of Appendix

A, yields,
E{ﬁ {0.h52+0.0067UC(s)s+20}%1
R ~%2{0.03252+(0.005#0.0069C(s))Us-0.0033UZC(s)}61=0 (B8)
‘.:j 1
&7 a§1{0.032s2+(o.oose-o.oossc(s)s}§1
. 2
y |
i +{0.129s82+(0.0058-0.0035C(s) )Us
. . - 112
T | +(78.125-0.0017U c(s))}el-o (29)
LI a
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: and solving them simultaneously produces Eq. BlO which is the

characteristic equation of the sy.tem:

s6+40,156Us5+(734.2-0.0031U2 )s%+(98.75-0.0013202 )Us3
+(60385+2, 62U2-0. 00062504 )s +(6953-0.089U2)Us

+(92.07U2-0.007U%)=0 (B10)

Again, Eq. BlO has coefficients that are functions of velocity
only. The results of varying the velocity are plotted in a root

locus.
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Aggendix g

Flutter anelysis of a swept wing does not differ greetly from
that of a straight one. The major difference occurs in the definition
of the variables that are dependent upon the spanwise axis. The
variables in question are the semi-chord, b, and the mass ratio, u.

They are defined as

““cosA (c1)
;',;‘__
npUD2 (c2)

vwhere A is the sweep angle, positive being aft. The redefinition of

the semi-chord, b, also affects the mode shapes:

v=C, (L)2v, (c3)
b
8=C,sin = £ o (cu)
2 23 1

The quasi-stea&j éerodynamic expressions for lift and moment

are

T(y,t)=r pp{UFcosMUésinA-Uga-.rsinA}
+2npbUcosA{-w+UgcosA+UssinA

+b(%-a){B8+UrsinA)} (cs5)
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My(‘;'l't )=-npb3{U(%-a)8cosp+}sU2rcosAsinA
-UaéSinA+SY%+e2)U;sinA}

+2npb2Ucosh (%+a) {-w+UBcosA

+Uosinp+b(%-a) (B+Ursinp)} (c6)
where o=_a+" end 1= a—_ .
3y oy

Egs. C5 and C6 are the unsteady aerodynamic expressions that
are simplified by the quasi-steady assumptions, namely small disturbances
thereby eliminating the accleration terms and C(k) is one (Ref 2:398).
Because divergence is :a zero freguency aeroelastic instability,
only the constant term of the characteristic equation, which has been
greatly complicated by the sweep correction, is of importance.

This term of the weighted, integrated, transformed equation is set to O:

U2(0.0007sin2Acos2A-0.995in22A+0, 4sin2A-0.3cosA)
+U{0.000Tsin2A)

+(-0.00025in22A-0,.1sinA-2.195in2A+15625)=0 (cT)

Selecting A to be either =15 or -30 degrees and solving for U will

give the divergence speed for that case.
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Appendix D

This calculation was greatly complicated by the addition of
the sweep-corrected unsteady aerodynamic terms. The new expressions

for 1ift and moment, respectively, are

—— — - Y -— Sk e 'S
L(y,t)="pb2 {-w+UBcosA+UssinA-bab-balUtsinA}
+2mpbUcosAC(k ){ ~w+UBcosA+UosinA+b(%-a ) {8+Ursini}) (1)
My(}Qt)=—wps?{U(%-a)3505A+%U215inAcosA+aﬂ—Ua&sinA+SY%*az)
+{6+UtsinA} }+2mpb2UcosA(+a )C(k ) {-w+UBcosA+UssintD

e (35-a){6+UtsinA}} (D2)

where

(¥4

- Q
] ]
]
Q Q) (%)
Io S ERTE

(Dp3)

@
P!

- cosh

I<

cosh

L

(Ref 2:398).,
Following the procedure of Appendix B, the nordimensionalized

equations for lift end moment are
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~4#+UBcosA+Uos inA-D ua.e -baU'rsinA}

2 e
5 l,,

-l-'-g— UcosAC(k ){~w+UBcosA+UosinA+Db (3s-a ) {B+UrsinA}}
ub

)
a')

ool»—»

M .
- é {U(%-a)BcosA+};U2tsinAcosA+att-UaosinA+b(
mb? Hb

ke IS -—
+{84UtsinA}}+ -;‘?—Ucosl\ (342 )C{k){-w+UBcosA+UosinA
ub

+b(%-a){8+UrsinA}}
The equations are weighted and integrated using the same
constants and equations of motion as before, then taking their

Laplace transforms, resulting in

c§{1.05s2+(o.03550(s)-o.ohlstanA)Us
+(100-0.01ksin2AC(5))UY ¥1 (s)
b

011)52+(o 018+0. 023¢( 5 )+0.006tanA )Us

-c.C {(o 11+ 2

+(0.0033c052A+O.007)02C(s)+0.0029Usin2A}el(s)=0

-C 03{(0 107-—-ii-) 2.(0.0235inA+0.01C(s))Us

~(0.0114s1n2AC(s) )} 21 (s)
b

+c§{(o.25+-9;§) 24(0.0116-0.055tanA-0.007C(s) )Us

+(156.25+0.0112s1n2A0U2-0.0034U2c0s2AC(s)

-0.001231n2AC(s)}91(s)-0

(D)

(D35)

(p6)

(D7)
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vhere C(k) is the Theordorsen function that i approximated by
Eq. BS.

Solving these complicated expressions by hand would be very
difficult, if not impossible. Therefore, this was accomplished by
using the MAC Symbolic Manipulation Syatem (MACSYMA) that was

developed by the Massachusetts Institute of Technology Math Leb.

I RN - s

This system is an interpeted computer language for algebraic

manipulations.

When Eqgs. D6 and D7 are solved using MACSYMA, the expression
is gquite long and complicated and will not be shown here. This
eguation is a function of sweep argle and velocity, which, when the
velocity is varied for angles of 15 and 30 degrees of sweep, produces

i characteristic equations. The roots of these are plotted on a

root locus.
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