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Preface

Forward-swept winged aircraft have long been considered because

of their aerodynamic advantages. However, until the advent of

composite materials, this configuration had been structurally infeasible.

Now that the forward-swept wing is practical, the critical failure

mode, which past research has found to be divergence, must be explored.

This thesis determines flutter speeds, depending on different aero-

dynamic models and compares them to ascertain the practicality of more

advanced aerodynamics.

I would like to thank Dr. Robert Calico, my thesis advisor, for

0 the time, help, and guidance that he gave me. Thanks are due Dr.

Franklin Eastep for the aid given me in the aerodynamic mcdeling and

also Dr. Wilhelm Ericksen and Mr. Thomas Noll for their assistance

in the actual analysis and computation.

William L. Shelton, Jr.
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List of Symbols (Ref 1)

a,O Torsional angular displacement of entire wing about its elastic

axis, in radians.

a(s),O(s) Laplacian operator of torsional angular displacement.

b Semi-chord of wing including chord of aileron and tab, in feet.

h,w Bending displacement of wing in direction perpendicular to
freestream velocity, positive being down for h and up for w,
in feet.

H(s),W(s) Laplacian operator of wing bending displacement.

I Moment of inertia per unit span about elastic axis, in slug-feet
2

per foot.

j=i V-1

K ,K Torsional spring constant.

K h ,K Bending spring constant.

7 L Total oscillatory aerodynamic lift acting on wing per unit span,
in pounds per foot.

m Mass of wing.

M Total oscillatory aerodynamic moment acting on wing about its
quarter-chord point per unit span, in pound-feet per foot.

t' Ratio of mass of wing to mass of cylinder of air circumscribed
)- about wing chord, both extending over equal lengths. Note;

m

r Radius of gyration of wing about elastic axis as fraction of wing
a semi-chord.

p Density of air, in slugs per cubic foot.

s Laplacian variable for characteristic equations.

0 d  Critical divergence speed, in feet per second.

• . . U Critical flutter speed, that at which wing system oscillations
* . f( occur at constant amplitude, in feet per second.

* iv



U Forward speed of aircraft or freestream velocity, in feet per
second.

W0  Uncoupled natural torsional frequency, in radians per second.

W h Uncoupled natural bending frequency, in radians per second.

x {2(center of gravity)/lOO)-l-a where center of gravity is given
in percent of total chord measured from wing leading edge. Note;

So
xmb

, Differentation with respect to time.
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Abstract

Flutter speeds for straight wings using quasi-steady and an

approximation to unsteady aerodynamics are determined. The same

procedure is then followed for both straight and forward-swept wings.

The equations of motion for a rigid-body aircraft with the proper

aerodynamics are nondimensionalized and the Laplace transforms are

taken. After solving the coupled equations simultaneously, various

velocities are chosen and the resulting characteristic equations are

factored. The roots are then plotted and the flutter or divergence

speeds determined.

It was found that flutter speed increased and divergence speed

decreased with increasing forward sweep as expected. Also, quasi-

steady aerodynamics do not accurately predict flutter and the

* approximation to unsteady aerodynamics does not accurately predict

divergence. It is necessary to combine these two methods in order

to obtain a complete analysis of the wing's aeroelastic instabilities.
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FLUTTER PREDICTION OF FORWARD-SWEPT WINGS

BY ASSUMED MODES AND STRIP THEORY

I. Introduction

Swept wings, both forward and aft, have numerous advantages.

Sweeping the wing reduces the velocity component of the freestream

that is normal to the leading edge, consequently, the swept wing

sees a reduction in drag and weaker shocks in supersonic flight

(Ref 11:1-3).

p Swept wings drew serious consideration back in 1947 when

Collar studied their aeroelastic phenomena at high speeds. Diederich

and Budiansky did the first comprehensive treatment of divergence

in slender swept wings during 1948. They found that the divergence

speed drops rapidly as the amount of forward sweep increases and that

wings with a moderate to large amount of aft sweep cannot diverge.

Pros and Cons of Forward-Swept Wings

The forward-swept wing is not a new concept. A four engine

jet bomber, the Junkers JU-287, with 15 degrees forward sweep, was

built towards the end of World War II. This aircraft actually flew

successfully jefore ' ig damaged on the ground. More recently, the

German Hambur6,r Flugzeugbau HFB-300 Hansa business jet was designed

with a swept-forwhrd configuration to create a more spacious fuselage

interior. General Dynamics, Grumman and Rockwell International have

W6.A



all researched the swept-forward wing and, in comparing it with the

aft-swept wing, found that it had a lower stall speed, permitting

higher manuverability at greater angles of attack and improved slow-

speed handling qualities. It exhibited much higher lift to drag

ratios in manuvering flight as well as lover trim drag, significantly

* . increasing aircraft range in the supersonic regime. A wing combining

these characteristics is one having a lover weight and therefore

produces a lower cost aircraft for the same high-performance missions

then for an aft-swept wing made of conventional metallic materials.

Until recently, the aerodynamic advantages of forward-swept

wings could not be exploited due to its aeroelastic instabilities.

When a forward-swept wing is subjected to aerodynamic load, the angle

of attack increases. This in turn increases the wing loading and

bending, which leads to divergence. To combat this problem of

divergence, the wing must be stiffened. However, this solution is

prohibitive in that the required stiffening produces a weight penalty

which negates any aeroelastic advantages. This problem was studied

by Krone (Ref 6:126-127). His report "clearly shows that the

detrimental effect of divergence on swept-forward airfoils can be

controlled by use of advanced composite materials" (Ref 6:126-127).

Thesis Objectives

This thesis examines the forward-swept wing, using quasi-steady

and an approximation to unsteady aerodynamics, to determine the wing's

critical.'flutter speed. The.e cases are compared and the difference

in flutter speed noted. The magnitude of this difference determines

whether both types of aerodynamics are used to ascertain the forward-

2



swept wing's critical flutter speed. Once flutter or divergence

speeds are obtained, the zeros of the characteristic equations are

traced in an effort to gain some insight into future flutter

compensation.

Solution Approach

The solution approach is a straight-forward one. The equations

of motion are written and the proper aerodynamics substituted in.

Then, using strip theory and assumed modes, the resulting coupled

lift and moment equations are applied to the wing of interest. The

coupled equations are nondimensionalized, then solved simultaneously

through Laplace transforms and matrix techniques. The coefficients

of the resulting characteristic equation are functions of velocity

only. Varying the velocity generates new characteristic equations,

the roots of which are plotted in a root locus technique to determine

the wing's critical flutter speed.

0"
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II. Theory

Flutter, a dynamic instability, is a self-excited vibration

of a body that is moving in a fluid stream. Classically, this is

a mechanism involving the coupling of at least two degrees of free-

dom of the system. These degrees of freedom are stable when

uncoupled such that they sustain an oscillating motion. They are

critically coupled when there is a phase difference in the

oscillatory motion and a time difference between the aerodynamic

loads and the system's resulting motion. Flutter occurs at the

lowest airspeed and corresponding circular frequency that the

system, flying at a prescribed atmospheric density and temperature,

exhibits sustained, simple harmonic motion. The forces necessary

to produce this motion are simply those present when an elastic

structure is deflected from its undeformed state (Ref 2:527).

Divergence differs from flutter in that divergence is a zero

frequency or static aeroelastic instability of an airfoil in torsion

4 and twist. This occurs when the torsional stiffness of the airfoil

is exceeded by the aerodynamic twisting forces acting upon it (Ref

10:298).

Consequences of Instabilities

These aeroelastic phenomena, when encountered unknowingly,

can have drastic consequences. Divergence can shear a wing ,off an

aircraft with little or no warning. Flutter can result in complete

structural failure within a matter of seconds or a few oscillations.



One of the more famous and spectacular examples of flutter is

the Tacoma Narrows Bridge in the state of Washington. The bridge

was constructed between two cliff faces, funneling the air between

them. When the wind velocity reached 42 miles per hour, flutter

occurred. This concrete and steel structure underwent displacements

of approximately 40 feet, behaving as though it were rubber.

Finally, on 7 November 1940, the bridge totally destroyed itself

after undergoing half an hour of oscillations (Ref 7:66).

Causes of Instabilities

Aeroelastic phenomena in straight wings is dependent only

on the twist about the elastic axis. When the wing is swept in

either direction, wing bending becomes very important and greatly

complicates matters. Flax and Broadbent at the Royal Aircraft

Establishment indicate that for swept wings, the rigid body motions

are potentially dominating. Flutter coupling will be between the

first normal elastic mode and rigid body pitching. In this case,

* - the flutter circular frequency will be lower then the fundamental

normal mode frequency. British investigators recommend that, in

flutter analysis of swept wings, the first two or three elastic

- normal modes and two rigid body modes, pitch and translation for.

symmetric modes and pitch and roll for antisymmetric modes, be

used (Refs 3 and 5).

In a forward-swept wing the center of gravity is generally

aft of the elastic axis. This produces a nose-up torsional moment

about the elastic axis due to the amount of lift produced by the

5



airfoil at its aerodynamic center. As the wing of Fig. I is deflected,

notice that line segment AB is level while line segment CB is canted

upwards; point C is higher then point B. Therefore segment BC

produces a positive increment of lift. This in turn amplifies the

torsional moment already existing about the wing's aerodynamic center.

An unstabilizing influence, the nose-up twist shifts the center of

pressure outboard. The possibility of divergence increases, but

the potential for control reversal diminishes. At speeds below what

is to be called the critical divergence speed, these increments of

lift and twist become smaller and smaller so that an equilibrium

condition is attained. However, above this critical speed, the

process is decidedly unstable.

- Typical Sections

For typical multispar, thick skin structures, it has

been found that design stress considerations in the vicinity of the

wing root results in a root section so stiff that the wing behaves as

a beam clamped perpendicular to its elastic axis (Ref 10:347).

Theodorsen and Garrick used representative sections specialized for

torsion and bending degrees of freedom (Ref 2:533). The authors

suggest that, for purposes of flutter prediction, the typical section

can be made to fairly well represent a straight wing of large span

by giving this section the geometric and inertial properties of a

station that is three-quarters of the way fom the wing's centerline

to its tip. This -is demonstrated in Fig. 2.

(
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Figure 1. Streamwise and chordvise segments of a forward-swept wing.
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Figure 2. Springs K tand Kb restrain airfoil from bending and twisting
motion tn e freestream.



Flutter Prediction

Assumed Modes. In predicting flutter, the continuous aircraft

wing is typically modeled using assumed modes. This procedure

assumes a solution of the boundary-values associated with a conservative

system of the form

n
w(x,t)= r 0 (x)qi(t) (1)

i=l

where G.(x) is an admissible function, that is one that satisfies

only the geometric boundary conditions of the differential equation

of the system, and qi(t) are the generalized coordinates, to be

determined, which measure the contribution of each of the admissible

Q I functions to the total displacement of the wing surface.

There are two basic guidelines to be followed when selecting

functions to be used as assumed modes. They are;

1) Assumed modes should satisfy the geometric boundary

conditions and,

2) they should be linearly independent of each other.

It is not absolutely necessary for the assumed modes to satisfy

the free-edge natural boundary conditions because the process will

tend to satisfy them in the final result. Linear independence

requires that it is impossible to express one function as the super-

position of the other functions.

Once assumed modes have been selected, the kinetic and potential

energies can be determined. It can be shown that the kinetic energy

is

- 9



n n
T(t)=E Z Z M (t) (2)i~=l J=li

and the potential energy is

n n
v (t)-- E I Kjq (t)q i(t) (3)

i=l J-1

where Miare the constant symmetric mass coefficients and Kij are the

constant syetric stiffness coefficients, both of which depend on

the mass and stiffness distributions, respectively, and the admissible

functions, G i(x). The potential energy generally contains spatial

derivatives of G. (x) that are of orders as half as large as the orderi

of the differential equation of the continuous system that is being

considered. Vote that the natural boundary conditions are of no con-

cern because they are accounted for automatically in the kinetic

and potential energies. Consequently, Gi(x) needs to be an admissible

function only.

Lagrange's equations may now be written and are given by

- -1 BT= 0, r=l,2,...,n (14)

where the qr represent the non-conservative forces present. Using

Eqs. 2 and 3, the equations of motion become

n n
Z MrJ j(t) + I Kr qj(t) = 0, r=l,2,...,n (5)

j -1 rj=1 j

which, in matrix form, is
I

ImI{4(t)) + Ikl{q(t)) {o) (6)

These linear constant coeficient equations can now be solved for the

10



qi(t) and hence, along with the assumed modes Gix), form v(x,t)

(Ref 8:266-268).

Strip Theory. Strip theory is used to find the approximate

solutions to two dimensional theoretical aerodynamic problems. It

assumes that the loads of each spanwise station along the wing is

dependent only upon the motion of that station at any given time.

This theory also assumes that there is no spanwise flow along the

wing.

The wing is divided into "strips" and the aerodynamic forces

upon each "strip" are calculated. The aerodynamic loads are based

on the two dimensional coefficients evaluated at the centerline of

each section.

This estimation is well-suited for the evaluation of aerodynamic

loads on a straight wing. When this procedure is applied to a wing

with sweep, an approximate correction, cosA, must be applied, where

A is the quarter-chord sweep angle (Ref 9:17.5-8 -17.5-9).

Equations of Motion. When a wing is represented by an elastic

surface that is thin compared to its span and chord, the equations of

motion can be found through the use of influence functions. The

M wing is also assumed to be rigid in the chordwise direction and is

then taken to be straight and to have no structural discontinuities

so that the existence of an elastic axis may be assumed. This eliminates

4 the elastic coupling between the integral equations of motion, leaving

* - them only inertially coupled. Elimination of this inertial coupling

can occur only if the center of gravity of each chordwise section lies

11



on the axis (Ref 2:102-105).

It is more convenient: to utilize the differential equations for

the case described above. These can be derived by setting the

system to its equilibrium conditions, then balancing its forces and

moments. Fig. 3 illustrates the applied and inertial forces acting

on the previously described straight wing. From this, the force per

unit length is

Z(y,t)=Fz (y,t) m(y)s(y)e(y,t)-m(y)w(y,t) (7)

and the torque rate of change, with respect to y, about the elastic

axis is

T'(y,t)=-t(y,t)+s(y){m(y)s(y)"(y,t)-m(y)W(y,t))+Icg(y)e(y,t) (8)

as seen from Fig. 4 also. Because this is a thin wing, rotary inertia

and shear deformation may be neglected. Therefore, these results

may be substituted into

~~~{ Elw" (yt ))"1=Z (y ,t )(9

{GJe'(y,t))'=T'(y,t) (ao)

Consequently, the partial differential equations of motion are

m(y)w(y,t)-S y(y)e(y,t )+{EIw" (y,t))"=Fz(y,t) (1)

I (y)e(y,t)-S (y)w(y,t)-{GJe'(y,t)) 't(y,t) (12)
y y

- where S is the static mass moment per unit length about the elastic

axis and I is the mass moment of inertia about the elastic axis (Ref

12
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Ft(Y,t

x sy
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Ax is

y

I (y)EO(y,t) C

m(y)w(y,t)-s(y)rn(y)EO(y,t)

- Figure 4. Airplane wring with straight elastic axis.
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describe a beam under generalized loading. Substituting the aerodynamic

loads into the right side, and taking El, GJ, m, etc. to be constant,

produces

"-" ~mw (y, t )Sy Iyt)+ _ny- (y ,t )=L( y,t) (13)

y ay

I Cye t)S -G(y,t)=My*w(y,t) (14)

where L(y,t) and M (y,t) are the aerodynamic lift and moment. These
y

are the equations of motion used in this thesis (Ref 2:546).

Solution Approach. Once the equations of motion are obtained,

several substitutions are necessary to put them in a convienent form

S to use. Notice that there are fourth and second order partial

derivatives in the lift and moment equations, respectively. To

simplify these partial differential equations, the expression for a

beam in bending (Ref 8:209),

EI-4 W(yt)-mWw(yt)=0 (15)

and, in torsion (Ref 8:194-195),

S2GjaV yt+ 2e(y,t)-o (2.6)
G (y~t)+y a

* is used. This yields the sim-lified the partial differential

.(

15



76,

wL~y~t)
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Figure 5. Uniform, restrained wing deform~ing in bending under
aerodynamic load, LMy,t).
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aerodynamic load, M. (y,t).
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equations of motion, namely

m(y,t)-S e(yt)+mW2w(y,t)=L(y,t) (17)

y h

and

I 0(y,t)-S W(y,t)+l W2e(yt)-M (yt) (18)
y y y a y

Using the following expressions for static imbalance, Sy

K. moment of inertia, I, and mass ratio, v,, y

S =mbx

I =mb 2r2
y a

~m

irpb

the equations are nondimensionalized. Then the proper aerodynamics

for each case are inserted into the right hand side. When assumed

mode methods are used, the bending mode is represented by

w(y,t)=C1 (b )2w(t) (20)

and the torsional mode by

* e(yt)=c sin 2 (yt) (2.)
2 2b 1

where C and C are dimensionless amplitudes and (y/b)2 and sin b
1 2 2 b

were prevously G.(x) and w1 (t) and el(t) were qi(t). The lift and
i

moment equations are then weighted by mu2 ipi.ying then each by

(



C ( .)2 (22)
I b

and

Csin Zb (23)

respectively.

Strip theory is then used to evaluate the aerodynamic loading

on the right hand side of the equations of motion. The wing is

divided into five sections of width 0.2b, where b is the half-span

of the wing. Once this is accomplished, the loads on each section

are integrated over the section's width and the terms summed,

generating the expressions for lift and moment. Each term on the left

hand side of the equations is also integrated across the half-span.

Geometric and inertial values that are constants for the wing,

straight or swept, are substituted into the weighted, integrated

equations of motion. The Laplace transforms of these differential

equations are then taken and put in a matrix of the form

[A(s)]x=b (24)

and solved simultaneously by setting the determinant of [A(s)] to zero.

The resulting polynomial in s has coefficients that are functions of

velocity only. Varying the velocity produces new characteristic

equations V'hihhwhen factored, produce roots for a root locus plot

* similar to Fig. 7.

Because flutter, by definition, occurs as simple harmonic

* motion, the critical flutter speed occurs as the root locus crosses

19
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Figure 7. Example of root locus plot to deter~wne flutter anid
divergence speeds.
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" the imaginary axis. When the real roots eros5 the imaginary

axis, divergence occurs because this is the zero frequency

instability. Details of these calculations are shown in Appendices

A through D, depending upon the case of interest.
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III. Results

Using the methods described in Appendices A and C, flutter and

divergence speeds were found for straight and swept wings using

quasi-steady aerodynamics.

The roots of the characteristic equation, resulting from the

quasi-steady analysis for a straight wing, are plotted in Fig. 8.

From this root locus plot, the flutter speed, Uf, and divergence

* speed, Ud, can be found. They are the value of velocity at which

the high frequency branch crosses the imaginary axis for flutter and

the low frequency branch crosses the imaginary axis for divergence.

Therefore, from the root locus, it can be seen that Uf is 62.5 ft/sec

and Ud is 217.8 ft/sec. Notice the inordinately low flutter speed.

Because this is an invalid value, as explained later, root locus

plots will not by done for the cases of 15 and 30 degrees of forward

sweep. The constant term of the characteristic equation is solved

for velocity in the above two cases and the divergence speeds are

found to be 157.7 ft/sec for -15 degrees of sweep and 109.2 ft/sec

for -30 degrees of sweep.

The exceptionally low flutter speeds are a result of the quasi-

steady analysis being inadequate for use at higher reduced frequencies.

Guidelines for use of the appropriate aerodynamics with their corres-

ponding frequency ranges can be ascertained through the use of reduced

frequency.

The reduced frequency is

22
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k4r (24i)

To find the flutter reduced frequency, use the flutter speed and

frequency. For quasi-steady aerodynamics, k must be less than 0.2.

This reduced frequency restriction is rather strict and is rarely

met by typical systems at subsonic speeds. As seen in Table 1, none

of the quasi-steady aerodynamic cases are near this value, therefore

these are not valid flutter analyses. Because divergence is a

zero frequency instability, quasi-steady aerodynamics predict this

phenomena quite well. Therefore the divergence speeds are valid

values and are plotted in Fig. 9 as a function of sweep angle, A.

The methods of Appendices B and D utilize an unsteady aero-

dynamic model to find the flutter and divergence speeds for a

straight wing and ones that are swept forward 15 and 30 degrees.

The unsteady aerodynamics utilized an approximation to the comp-

licated Theodorsen functions. This was Jones's approximation and

is valid only at higher reduced frequencies. The roots of the

characteristic equations for each of these three cases are plotted

in Figs. 10, 11 and 12, respectively. From Fig. 10, Uf is shown

to be 165.3 ft/sec. For 15 and 30 degrees of forward sweep, Uf

is 181.2 and 201.1 ft/sec, respectively. Note that the divergence

speed cannot be determined. In the unsteady case, the reduced

frequency range changes, as seen in Table 1, and is above the lower

*' limit of 0.2. Consequently, the flutter speeds predicted by the

unsteady aerodynamics approximation are good values. The variance

(" of the flutter speed, as predicted by unsteady aerodynamics, is
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", Table 1. Ranges of Reduced Frequency

J Reduced frequency, k

Sweep angle, A 0°  -15 -300

Quasi-steady 1.11 0.95 0.90

aerodynamics

Unsteady 0.29 0.25 0.21

aerodynamics

(

*o 2?



shown in Fig. 15. The same trend in flutter in flutter speed is

displayed here as it was in the quasi-steady aerodynamic cases.

Unfortunately, the approximation to the unsteady aerodynamics do

not do a good Job at predicting the critical divergence speed.

* Again this is due to the discrepancies in the reduced frequency

range.

ci3

4.

"4 '
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IV. Conclusions

Flutter analysis, using assumed modes and strip theory, is a

straight forward process. To get valid results, however, the

proper aerodynamics must be used for each case.

Quasi-steady and the approximation to the unsteady aerodynamics

are relatively easy to use and do not require the use of a computer.

Once the unsteady aerodynamics are sweep-corrected though, it is

impractical to perform the necessary algebraic manipulations by

hand. Even though the use of the MAC Symbolic Manipulation System,

see Appendix D, reduces this tedious job significantly, it is

still highly inefficient. Therefore, unless it is unavoidable,

these expressions should not be used.

The two aerodynamic cases examined here are at the opposite

ends of the frequency spectrum. This leaves a gap which potentially may

be filled by tht Pade approximation. This approximation represents

the transformed aerodynamic forces as a ratio of polynomials that

are a function of the Laplace transform variable s, as did the

Jones's approximation. The coefficients of these pclynomials are

*I found using a two step least squares process. The generalized

aerodynamic forces are obtained from the Pade approximation of

F.. sinusoidal forces using doublet-lattice aerodynamics (Ref L:885-886).

*The aeroelastic instability of flutter occurs VhEn at least

two degrees of freedom of the system coalesce. Typically, for aft-

swept wings, this is between the first bending and first torsion
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modes. When looking at fovward-swept wings the short period pitching

of the aircraft combines with its low frequency mode, producing

flutter. The Pade approximation should be compared with the quasi-

steady analysis and that of the unsteady approximation to find the

theory that yields the most accurate results.

This thesis has laid the groundwork for this comparison and

an analysis, such as the one described above for a swept wing,

would be a logical follow-on.

.
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Appendix A

Flutter analysis of a straight wing using quasi-steady

aerodynamics is a straight-forward process. The equations of motion

are (Ref 2:546)

:'.: mV Cyt )-S 'Cy,t )*EI (y,t )=LC y,t ) C(PI)

S a ay
2

The equations for a beam in bending and in torsion, respectively, are

(Ref 8:209, 194-195)

2EI- v(y't)-mw w(y,t )=0 A

By

G:.. G (y,t)+i W e(y,t)=0 (A)
" " y a OL

Substituting the expressions for quasi-steady aerodynamic lift and

moment (Ref 2:279),

L(y,t) =2-tpUb{UB(y,t)-w(y,t)) (A5)

M (y,t)=L(y,t)b(a+ ) (A6)
y

and Eqs. A3 and Al into Eqs. Al and A2, respectively, results in
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.. ( - .. 2.
mQ-Se+mhw2pUb (Ue-w) (A7)

2

mIa eS v +I W~ e-821rpUb (a+;) (ue-1;) (A8)

To make use of the method of assumed modes, each equation of motion

must be weighted by its generalized coordinates. The functions

Iqb2and C2 sin = were chosen to weight the lift and moment equations,

respectively, because the bending of the wing is closely approximated

by a parabolic and the twisting by a sinusoidal function.

For similar reasons, the assumed mode shapes of bending and

torsion are taken to be

i (y~t)=Cl(Y-)2wl(t) (A9)

1 lb 1
, e(y,t)= s lPe (t) (AI0)

When Eqs. A5 and A6 are weighted and mode shapes substituted in, Eqs.

All and A12 are the results.

2 .4lm ,, 2 s v 2 2 . 4
r icY VC C S ( n)2 sin l +ChMW ( ) w-
I. b II A b 2b 1 1 h b 1

C12ipb(y) U(Ue-w) (All)

2

c21 sin 1 -CCS snsinw iC21 w2  2 =
2 b l-12 a b 2b 1 2 aa 2b1

C 2 ,pUb2(a+ )sin=-(U6-w) (A12)

Emtploying strip theory requires that the right hand sides of
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Eqs. All and A12 be divided into "strips" and integrated over that

strip. Strips of width 0.2b were chosen. The left hand side must

also be integrated, but this is done only across the semi-chord, b,

and not divided into strips. Once this has been accomplished,

Eqs. All and A12 are nondimensionalized using the quantities,

S =mbx
a a

m
11_vpb2(A13)

I -mb2r2
a a

Once this has been accomplished, the weighted, integrated

equations are

0.2- 1- -1(0.29) 6 I 0l*whbl
b 2 a n

1.257 Uw 1 .851 C2 I U
t -i!2 6.b1 (A14)

CxV4 (0. 589)-u 2 e
1 C2  b1

14 (a 44(.') -- 1025L C4

a 2 1C b b A5

These equations must be solved simultaneously and to do so,4

their Laplace transforms must be taken. It is assumed that the initial

conditions are zero so consequently, the transformed equations are
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-1.257 1 s + 0.2, ; (S)
•~ b"

Sxc 2  1.851 -1(!)21e (s)=0 (A16)
1C it~ b 1

r I{ 0.589 xg, .1 8 (a+ k ) 4.1-(s)

C2  Ot OL

cx ~ r~b 1

For the wing being analysed,

wh=1O rad/sec

w =25 rad/sec
C1

x =0.1
Ox

a=-0.2

b=3 ft

4. j=2 0

Using these constants in Eqs. A16 and A17,

* (s2 0.033Us+100)1lC2(0.1i7s2+0.016U2 )e1=0 (A18)_.. b C1

C1

_ so(0.236s2_0.024Us)Xl (s2+625-0.013U2 =0 (A19)
C2  b

4
which can easily be put into matrix form, the determinant of which

will yield the desired characteristic equation:(.
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Ss+0.38Us3+(751.06-0.0i8U2)s
2

+21.561Us+(64746.71-l.367U2)=0 (A20)

This equation has coefficients that are functions of velocity only.

Varying the velocity produces new characteristic equations and the

roots of these are plotted in a root locus.
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Appendix B

Flutter analysis of a straight wing utilizing unsteady aero-

dynamics follows the same basic procedure as that for a straight wing

with quasi-steady aerodynamics, the basic difference being the more

complex aerodynamic expression. The same wing equations of motion,

generalized coordinates, and mode shapes from Appendix A are used.

The new aerodynamic expressions are

L(y,t )=wpb2 {ue(y,t)-V(y,t)-bae (y,t) )

+27rpUb C ( k ) ue(y,t )-w(y,t )+b (3-a)e (y ,t ) ( BI)

, ~~My (y,t)=-Tpb2 {ba (y,t) +Ub (;-a)e (y,t)+h
2 ( ( 2 )e (y ,t )

i +21TPUb2 (a+ -) C(k)(Ue (y,t)-w(y,t)+b ( -a) (y,t) ) (B2)

(Ref 2:272) where C(k) is a Theodorsen function that is dependent on

the reduced frequency, k. Therefore, substituting Eqs. BI and B2

into Eqs. Al and A2 from Appendix A results in

[.+W2-=.!(e - V -a) +2  C(k){be -+( -a61 (B3)
b M hb Ibi p b b

V-- r2 r-x 8= - 1Q U +( -)

_x R + r2w2e - 1 -a- + - ( -a) +a2 ;
a b at Q b b7

- b C(k){- +( -a)& (B4)

Because Theodorsen functions are, in general, very complicated, Jones's

approximation
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L.5s 2+ 0.843Us + 0.014U
2

9s2+ 1.037Us + 0.014U
2

(Ref 2) will be utilized instead.

Following the same procedure outlined in Appendix A, the

weighted, integrated equations of motion are

0.2" - 22 0.0295x el+0.2w -K-2 0 295 1 u-20 .
b C a l h b C 1 I b 1 b

C.-2 a C Ucs)
C1 0.295-e + 0.59 -SM

cl 0.598 g ( -a)C(s)41  (B6)

a' 0.5r :-.1 0.295x PO. 5rw2 W .. E-1 0. 295a
CL 1 C2  a a 1 C2

2° 2

lo (I/8+a2)- ,,. (a+lj),

U ( -a) 2) __

-tl 0.591. 2 Ca+ b l + (-) C(s) (B7)
-2 C(.) b b b I

Transforming Eqs. B6 and B7 and using the constant values of Appendix

A, yields,

{0.4s 2+0.oo67UC(s)s 2o}!b1

SC 0(.05+0.o069C(s))Us-0.0033U2C(s) e81= (B8)

':" ~ ~ ~ ~ ~ ~--.Ol(O.O32s2 oos-.O ~~)-C1

?l.32 2 (0.0058-00035C(s )s}-il

2 b

+(0.129s 2+(0.0058-0.0035C(s) )Us

'(78.125-o. OO17U 2c(,)))elo (B9)

I41
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* and solving them simultaneously produces Eq. B10 which is the

characteristic equation of the sy~tem:

S64O.l56Us5+(734.2-O.OO3lU2)S4+(98.75-O.O0l32U
2)US3

+(60385+2.62U2-O.000625U4)S +(6953-O.089U 2)US

*(92. 07U2-O.0OO7tJ)=O (Blo)

Again, Eq. B10 has coefficients that are functions of velocity

only. The results of varying the velocity are plotted in a root

locus.



Appendix C

Flutter analysis of a swept wing does not differ greatly from

that of a straight one. The major difference occurs in the definition

of the variables that are dependent upon the spanwise axis. The

variables in question are the semi-chord, b, and the mass ratio, v.

They are defined as

ib
U -- (Cl)
cosA

- m
(C2)

where A is the sweep angle, positive being aft. The redefinition of

the semi-chord, b, also affects the mode shapes:

V=c ()2w (C3)
b

e=c 2sin ! _. e1 (c4)
2b

The quasi-steady aerodynamic expressions for lift and moment

are
I

S(V,t )=rpb-2{UcosA+UcsinA-UbaTsinA)

+2,rpbUcosA {-w+U8cosA+Uas inA

S+( -a ) (6+Us inA) (C5)

4s3
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M (y,t )=- p 3 {U( -a OsA+ U2TcosAsinA

-Ua;sinA+b a2 )UsinA)

+2rpb2 UcosA ( +a) {-+UcosA

+UsinA+b( -a) (T+UTsinA)) (c6)

where o=-- and -= .

K Eqs. C5 and C6 are the unsteady aerodynamic expressions that

are simplified by the quasi-steady assumptions, namely small disturbances

thereby eliminating the accleration terms and C(k) is one (Ref 2:398).

Because divergence is:& zero frequency aeroelastic instability,

only the constant term of the characteristic equation, which has been

greatly complicated by the sweep correction, is of importance.

This term of the weighted, integrated, transformed equation is set to 0:

U2 (0.0007sin2Acos2A-0.99sin22A+0.4sin2A-0.3cosA)

+U(0.0007sin2A)

+(-O.O002sin 22A-O.isinA-2.l9sin2A+15625)=O (C7)

Selecting A to be either -15 or -30 degrees and solving for U will

give the divergence speed for that case.

4
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Appendix D

This calculation was greatly complicated by the addition of

the sweep-corrected unsteady aerodynamic terms. The new expressions

for lift and moment, respectively, are

E(7,t )=-.pb- 2 {-V+UecosA+UasinA-ba-baUsinA}

2iroUcosAC(k){-w+UecosA+UasinA+b( -a){+UTsinALY (D1)

M (,t)=-Ynp;3 {U( -a)ecos^ u2 s in^ cosA+aV-Ua s in^4- +a2

{+U; sinA} 1+2wp"2 Uc osA ( +a) C(k) {-w+U osA+ UjsinL )

"• ( -a){T+UTsinA} (D2)

where
2w

ay (D3)

e
COSA

Y
y= cosA

(Ref 2:398).

Following the procedure of Appendix B, the nor dimensionalized

equations for lift and moment are
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-= -.1-V.UecosAUsinA-'ae- aUrsinA)
mb Vib

+-2-. UcosAC(k){-w.U76cosA+UosinA+b(-a){e+UTsinA)I (D4~)

M

Mb 2  7ib

'{8+Utsinh)I+ -cosA(+a)C(k){-+ecosA+UasinA

+( --a ) {+UT sinA)i T (D5)

The equations are weighted and integrated using the same

constants and equations of motion as before, then taking their

Laplace transforms, resulting in

C2{1.05s2+(0.0355C(s)-0.OI4l5tanA)Us
1*

-c C {(o .11+ ~.~)s2.(0.018+0.023C(s)+0.0o6tanA)us
1 3 cosh

+(0.OO33cos2A+0. 007 )U2 C( s)+0. OO29Usin2Ale1 (s)=0 (D6)

-C C (o.:L07-2-o-l-s2-(o.D23sinA+.OIC(s))Us

-(0.0lJJ4sin2AC(s) )1X.(s)

+C~f 0 0082*{(0-2- )s 2 (.0016-055tan-0007C(s))Us3 coshe

d *(i56. 25.0. 0112sin2AU2 _0.003I4U 2cos2AC(s)

* (.-O.O0l2sin2AC(s))9 1 (B)MO (D7)
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where C(k) is the Theordorsen function that i . approximated by

Eq. B5.

Solving these complicated expressions by hand would be very

difficult, if not impossible. Therefore, this was accomplished by

using the MAC Symbolic Manipulation Syatem (MACSYMA) that was

developed by the Massachusetts Institute of Technology Math Lab.

This system is an interpeted computer language for algebraic

manipulations.

When Eqs. D6 and D7 are solved using MACSYMA, the expression

is quite long and complicated and will not be shown here. This

*, equation is a function of sweep argle and velocity, which, when the

velocity is varied for angles of 15 and 30 degrees of sweep, produces

characteristic equations. The roots of these are plotted on a

root locus.
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