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This report investipgates the idea of utilizing Luenberger's minimal-order
observer as an alternate to the Kalman filter for obtaining state estimates in

I

» | linear discrete-time stochastic systems. lMore specifically, this dissertation
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presents a solution to the problem of constructing an optimal minimal-order
observer for linear discrete-time stochastic systems where optimality is in

the mean-square sense. The approach taken in this dissertation leads to a

completely unified theory for the design of optimal minimal-order observers and {s i
applicable to both time-varying and time-invariant linear discrete systems.
The basic solution to the problem is first obtained for that class of systems

having Caussian white noise disturbances. The solutior is basel on a s»ecial

linear trans@ﬁrmation which transforms the given time-varying Zdiscrete-tinme
state equations into an equivalent state space which is extremely convenient
fronu the standpoint of observer design, Design of the observer is based on a

special observer configuration containing a free gain matrix, Ki, whicl is choser

to minimize the mean-square estimation error at time "i." The solution obtained
is optimal at each instant "i" and therefore is optimal both during the transient
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period and in tlie steady-state. Computation of this optimal gain matrix is
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recursive as in the Kalman filter algorithms, however, computational._y the
solution 1s much simpler than for tlie Kalman filter. In the special case of no H
measurement noise, the observer estimation errors are identical with those of thJ S
corresponding Ealman filter. When measurement noise is not excessive, estimatior G
errors comparable with a Kalman filter are obtained. ﬁ
Next, the basic observer solution is extended to the class of systems for ?
which the noise disturbances are time-wise correlated processes of the Causs- ™
Markov type. In considering the correlated noise inputs, the basic observer ﬁ
“|. structure 1is used difectly, i.e., it is not necessary to augment the plant state E
equations as is done in the usual Kalman fil*ering theory. The observer free i
| cain matrix, Ki’ 18 modified appropriately to account for the time-wise correlatjon h

of the noise inputs and is chosen again to yield mininum mean-square error

estinates of the state vector.
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the proposed optimal observer design technique.
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To illustrate the theory and application of the observer designs develope. p

in the dissertation the problem of desiening a radar tracking system is considerdd. ;
Examples are included which illustrate clearly the practicality and usefulness of %

J a

Finally, a host of topics for future research is presented in the hope of
stinulatinc further research in the domain of observer theory.
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ABSTRACT

This report investigates the idea of utilizing Luenberger's minimal-order
obgserver as an alternate to the Kalman filter for obtaining state estimates in
linear discrete-time stochastic systems. More specifically, this dissertation
presents a solution to the problem of constructing an optimal minimal-order
observer for linear discrete-time stochastic systems where optimality is in
the mean-square sense. The approach taken in this dissertation leads to a
completely unified theory for the design of optimal minimal-order observers and is
applicable to both time-varying and time-invariant linear discrete systems.
The basic solution to the problem is first obtained for that class of systems
having Gaussian white noise disturbances. The solution is based on a special
linear transformation which transforms the given time-varying discrete-time
state equations into an equivalent state space which is extremely convenient
from the standpoint of observer design. Design of the observer is based on a

special observer configuration containing a free gain matrix, K,, which is chosen

to minimize the mean-square estimation error at time "i." The :olution obtained
is optimal at each instant "i" and therefore is optimal both during the transient
period and in the steady-state. Computation of this optimal gain matrix is
recursive as in the Kalman filter algorithms, however, computationally the
solution is much simpler than for the Kalman filter. In the special case of no
measurement noise, the observer estimation errors are identical with those of the
corresponding Kalman filter. When measurement noise is not excessive, estimation
errors comparable with a Kalman filter are obtained.

Next, the basic observer solution is extended to the class of systems for
which the noise disturbances are time-wise correlated processes of the Gauss-
Markov type. In considering the correlated noise inputs, the basic observer
structure is used directly, i.e., it is not necessary to augment the plant state
equations as is done in the usual Kalman filtering theory. The observer free
gain matrix, Ki’ is modified appropriately to account for the time-wise correlation
of the noise inputs and is chosen again to yi€ld minimum mean-square error

estimates of the state vector.
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To illustrate the theory and application of the observer designs developed
in the dissertation the problem of designing a radar tracking system is considered.
Examples are included which illustrate clearly the practicality and usefulness of

the proposed optimal observer design technique.
Finally, a host of topics for future research is presented in the hope of

stimulating further research in the domain of observer theory.
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R 1. INTRODUCTION AND OUTLINE OF RESEARCH

‘E. .

Y 1.1  INTRODUCTION AND PROBLEM STATEMENT

3 The geﬁeral state estimation problem to be considered in this
dissertation is described simply as follows. Given the linear stochastic

- ] discrete-time dynamical system characterized by the equations

A

X1 = A TY a.h
3 Y =Hx +y (-2
s ! :

'l

- where

2 X; is the n-dimensional state vector

P

y; is the m-dimensional measurement vector

W, and v, are, respectively, n-dimensional and m-dimensional

-~

*
[ I e S
s

1.! M

independent Gaussian white noise sequences having zero means and

»

Q

covariances Q; and Ri

and x , the initial state, is an independent Gaussian vector with mean X

and covariance M e It is desired to find an estimate of the state vector X at

time "i" along with its associated error covariance Pl /i The notation

AIEAS IF GO N

gi /i impiies the estimate is to be based on all the measurements obtained

v SV M

up to and including y, obtained at time "{." Itis, of course, also desired

e ; 3

that this estimate gi /1 be optimal in some sense, i.e., with respect to some

given performance criterion. There are many performance criteria which

e kit

have been presented in the literature pertaining to estimation theury,

¥

however, from the standpoint of mathematical tractability the quadratic

L)
Ll

/
“.f B
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performance criterion is most appealing and it was this performanc-
critérion which was used quite successfully by Kalman [14]. Ifitis
desired that the estimate gi /i be optimal in the mean-square sense, which
implies that the estimate X, /i Minimizes the quantity E {hx, /i'ﬁiigz}

then the solution to the estimation problem is the well-known Kalman filter

and the defining equations for the optimal Kalman estimator are

- Xip1/ie = Ziar/i T R~ HipXin i) (1.3)
- " ' ’ -1

Kip1 = Pii/tHinn HigPi/itlin Y8540 1.4
I ) , -
= Pirii = APt Q0 (1.5)

P (1.6)

i+1/i+1 = @~ KiHig) Pigyy

where X /i'= Ai—’fi /" To initialize the Kalman filter at time "i=0" we take
50/0 =% and Po/o = Mo'

RN A B A " S
i TR BT L MO Y * . .'_ S

Although in theory the Kalman filter completely solves the problem
of s...e estimation in the mean-square sense for linear systems with
Gaussian statistics, its inherent complexity and implementation have

discouraged widespread application. Building the Kalman filter esseatially

Car; b v et Tl Bt
[ S e e
' . A R R e

requires the simulation of the entire n-dimensional system being observed.

Equally important, the Ricatti equations (1.5) and (1.6) which must be

solved at each time instant "i" to obtain the optimal Kalman gain matrix, K,
have been the source of much trouble in the real-time mechanization of
‘Kalman filters, especially in the case of large dimensional systems. These
numerical and computational problems associated with the real-time

implementation of Kalman filters have led many reseaxchers to seek out

B e, PUN S S TR
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simpler, less optimal solutions to the minimum mean-square state
estimation problem.

Early work in this area was done by Luenberger [20-22] who showed
that when the system (1.1) and (1.2)is time-invariant anc no noise distur-
bances are present, the state vector X; may be reconstructed exactly with a
stable linear system of order "n-m" which he called a minimal-order
observer. Luenberger's basic idea in the development of his minimal-order
observer is the notion that since there are "m" independent measurements
already available it should be possible to reconstruct the entire n-dimensional
state vector of the system by generating only "n-m" additional quantities and
combining them appropriately with the “m" already existing outputs. Of
course, Luenberger's basic assumption that the system inputs are free of
noise is not always satisfied in practice and this comprises a fundamental
limitation to his originel work.

Next, Aoki and Huddle [3] extended Luenberger's work to include the
effects of noise disturbances Wi and A7C However, their work was restricted
to time-invariant systems and as a result their technique is not directly
applicable to tke more general time-varying system modeled in (1.1) and
(1.2). The technique presented in Aoki and Huddle [3] was essentially to
construct a minimal-order observer which minimized the steady-state mean-
square estimation error. However, their optimization technique is compu-
tationally formidable, even for the simplest of systems, and as a result does
not appear to have been used to any large degree in the design of minimal-
order observers for practical engineering systems.

Attempts to construct optimal observer designs based on a purely

deterministic point of view also appear to have been fruitless. Newmann [23]
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has investigated the standard optimal control problem w..a a quadratic cost
function for the case of linear time-invariant systems using an observer in
the feedback path when some of the state variables are not measurable. By
counterexample, he clearly demonstrated that if nothing is known about the
initial conditioﬁs of the state vector then there is no way of designing the
observer so that the cost of control will be minimized. In fact, if nothing

is known about the initial conditions then high cost may result from the use of
an observer in the feedback path.

Dellon [10] also studied the deterministic feedback optimal control
problem with the standard quadratic cost function from the standpoint of using
a minimal-order observer in the feedback to reconstruct the state vector x;.
Dellon considered the more general time-varying discrete system in the
absence 0. noise disturbances and has indicated similar findings. Restricting
his observer design to that class of ubservers having constant and equal
eigenvalues he concluded that the relative degradation in cost from the
optimal (i.e., when all the states are available for feedback) cannot be made
arbitrarily small by proper choice of observer eigenvalues but the relative
degradation depends upon the original optimization problem.

More recently, Ash [4, 5] developed a sub-optimal minimal-order
observer estimator design applicable to both discrete and continuous time-
varying stochastic systems, His main goal was to develop a stable minimal-
order observer which provided "acceptable” mean-square estimation errors.
Ash himself staied that his work comprises an engineering solution rather
than a mathematical solution to the problem. The design procedure of Ash
is a "trial ané error” technique which, if judiciously applied, may result in a

relatively good sub-optimal estimator in comparison to the corresponding
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1

optimal Kalman filter. However, in the utilization of Ash's "trial and error"

technique it is not at all clear how to achieve acceptable performance without

trying many designs and selecting the best design out of those which were

tried out,

To review the precceding paragraphs, we have introduced the
fundamental problem of minimum mean-square estimation for linear discrete
stochastic systems and havc indicated Kalman's optimal solution under the
assumptivn of Gaussian noisc processes. After describing Kalman's filter
and its inherent problems of computation and implementation in real-time
systems, we next considered the idea of using Luenberger's minimal-order
observer as an alternate to the Kalman filter. The evolution of Luenberger's
basic observer theory is then presented through a discussion of the attempts
of various researchers to design observers which are optimal in some sensc,
both from a deterministic control theory point of view as well as from a more
general stochastic estimation theory point of view. Through this evolutivnary
discussion we have attempted to provide the reader with a smooth transition
from Luenberger's original cuncept of a minimal-urder observer to the
ultimate topic of this dissertation, It should be clear from the historical
cvolution that the solution for an optimal minimal-urder observer has
importance not only from a theuretical standpuint but also from the standpoint
of designing optimai and suboptimal enginecring systems. For these reasons,
we have considered, in this dissertation, the problem of constructing an
optimal minimal-order observer for discrete-timg stochastic systems and, in
the spirit of Kalman, have chusen the mean-square estimation error as our

performancc criterion.,

. . e . . o . o . . . - i
LW R ey A VDR gy g Y W ¥ " I - - SRS AT S LT W a3 . - e A 1 . Y I3




| A A A R R e Aar SR ie A ML et e it eshe Shdta SN L S Jiuie - At Jban Jh A bl b of i
- AR AN . - . A - W e e R

AR e i A DT B A S s St |
R Rl . AT TE

1.2 OUTLINE OF THE DISSERTATION
Chapter 2 is a presentation of some of the morc important basic

results of ubserver theory as related to deterministic discrete time-varying

systems. Chapter 2 has been included mainly for completeness and is
intended to introduce the reader to the basics of observer theory. Thousc
familiar with the material may skip Chapter 2 without loss of continuity.

~

New theoretical results are given in Chapter 3, in which is presented

the fundamental solution for the optimal minimal-order observer in the

case where the noises Wi and y; are Gaussian white noise sequences., Also, in
Chapter 3 the éomplcte generality of the optimal minimal-order observer
design is discussed and the equivalence of this observer and the Kalman
filter is demonstrated for the special case in which the measurement noise,
A is identizally zero. Chapter 4 treats important new extensions of the
basic minimal-order observer design to the class of systems in which the
noise disturbances w;, v; are time-wise correlated processes of the Gauss-
Markov typc.

A comprehensive and comparative study of several observer designs,
including the Kalman filter, the optimal minimal-order observer, and
several equal cigenvaluc observer designs, is presented in the examples of

Chapter 5. The computer simulations of Chapter 5 treat the practical

problem of designing a radar tracking system of reduced complexity based on
the optimal minimal-order observer solutions developed in the previous

l chapters 3 and 4 of the dissertation.

‘ The final conclusions and recommendations for further research are

presented in Chapter 6.
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2. SOME FUNDAMENTAL RESULTS OF DETERMINISTIC
OBSERVER THEORY
2.1 MINIMAL-ORDER OBSERVERS FOR DETERMINISTIC SYSTEMS
The purpose of this chapter is to review some of the moure important
fundamental results of deterministic observer theory which have been
obtained by various researchers to date. We begin by defining the concept of
a minimal-order observer for linear discrete-time dynamical systems.

Huddle [13]_ has shown that a completely observable n-dimensional system

Xi1 = A% TBY, @.h
with m independent outputs ‘ ;

Y = H.x. (2.2

i=i
can be "observed” with an (n-m)-dimensional system

Zi41 = Fi2 + O + Dy, 2.3
such that the vutput of the observer is of the form

z = Tiii t+& ’ (2.4)

where

i-1
;é( ! J) @, - T, (2.5)
J =0

-t . TR e e e e e L - :
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If the observer initial condition is chosen such that z o = ToX, then
from (2.4), (2.5) it is seen that z = Tifi for all "i"" 20 and in this case it
is possible to reconstruct x; exactly from Y; and 2,. Thce observer is chusen

so that the rows of [—H-l-] are linearly independent and the estimatc of x, is
i

taken as
PS Tl -1 .z.l
X == (2.6)
R >

If;_zo = To)_Lo then (2.6) will give the true value of the state X
Huddle also proved that for the system (2.3) to be an observer of the
state x; in (2.1) it is both necessary and sufficient that the following matrix

relations be satisfied

T, A; = T, + DH, 2.7

G =T

i i+lBi @.8)

H,
i

Huddle postulated the inverse to be partitioned in the form [PiIVi] and

T. 71
. ie 3 fo s 1 .
Further, since it is necessary that the matrix inverse [-—-—] exist,

obtained the solution of (2.7) to be

Fi = TiaAh (2.9

D, = T, ;A (2.10)

where P, T, +VH, =1,

By using a clever coordinate transformation Dellon [10] next
extended the work of Huddle by proving that the eigenvalues of the observer
matrix F, arc completely arbitrary provided the system (2.1) is completely

uniformly observable. To do this Dellon assumed the measurement matrix
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to be of the form
1 2
H, = [Hi( dEA ’] (2.11)

where l-li(l) is an m x m full rank matrix at each "i"". Then using thc
linear transformation

-

-1
(O R )
I, I -H; H,

9 =

i n-m J

Dellon obtained an equivalent state space where the measurement matrix was

in the form

H, = [Hi(l) | o ] (2.13)

Without loss of generality the system (2.1), (2.2) was assumed to be already

in this desired form and the observer matrix Ti was taken to be

T, = [KiII] (2.149)

where K, is a free (n-m) x m gain matrix, From (2.9) it is shown that the

observer matrix Fi is of the form

L i
Fi=4Ay *Kinln 2.15)

where Azzl and Alzi are respectively (n-m) x (n-m) and m x (n-m)
partitions of the matrix A in (2.1). Invoking the dual of Wonham!s result
for controllability, [33] Dellon argued that if (A,,', A} ,") is an observable

pair then there exists a matrix K, such that the eigenvalues of

R ] . . . . - . .
taan e R e e tania Tanlwela s e s
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A22 + Ki+1A12 may be arbitrarily assigned. But (Azzi, Alzl) is an

observable pair at every "i" provided the system is completely uniformly

observable. Thus, the eigenvalues of F, are completely arbitrary at each
instant "i",

Returni;xg to the idea of state reconstruction, we note that since the
entire state X is not directly accessible it is unlikely that the condition
z,= To’fo can be achieved. This implies that the observer error (2.5) will
in general be non zero and the estimate 31 in (2.6) will be in error. However,
since the observer eigenvalues were shown to be completely arbitrary, it is
therefore possible to reduce the observer error to zero as rapidly as

~
desired. Thus, we have forced the estimate X, to approach the truc state x;

as rapidly as desired,

2,2 OBSERVERS OF ORDER "n"
Williams {31] has considered non-minimal order observers and has
approached the observer design problem with the idea of achieving suboptimal

Kalman filtering., Consider the n-dimensional observer given as

Ziy1 = FiZ v 68+ Dy (2.16)
Here the observer output is defined by the relation
Z=Tix*g .17

where Ti is an n x n nonsingular matrix. In this case the state estimate

gi is taken to be

s -1
=T z (2.18)

10
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Williams has shown that the system (2.16) is an observer of the state x; in

(2.1) if and only if the following matrix relations arc satisfied

TinAi = FiTy + DiyHi 4 2.19)

TinBi = G + DB (2.20)

The corresponding estimation error is given by the expression

i-1
€= Ti-l( 1 Fj) @, - ToX) (2.21)

j=o
One obtains an interesting solution to (2.19) by taking

T. K

Diy1= T 2.22)

i+l
where l<i +1 is an arbitrary n x m gain matrix, With this choice for Di +1 the

observer equations become

F.T.=T,.
ii

i1~ KiaHip) 4 (2.23)

Gi = Tipr - KipgHipp) By (2.24)

An interesting observation concerning (2.23), (2.24) is that the special case

where T, = I and K j is taken to be the Kalman filter gain matrix, the observer

obtained is identical to the Kalman filter, That is, the observer equations

become
Fy=@- K H ) A (2.25)
G, = (- K, H ) B, (2.26)
Dit1 =K (2.27)

11
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Substituting (2.25), (2.26) and (2.27) into the observer system equation (2.16)

gives the result

Zip1 = A B Ky (Y iy (B2, +ByY)) (2.28)

which clearly shows the observer to be identical to the Kalman filter, If the
designer picks the gain matrix K i+1 according to some other criterion, the
observer then may be viewed as a suboptimal Kalman filter. (For example,
the gain matrix might be chosen to give some arbitrary set of eigenvalues.)
Therefore, a Kalman filter is an n-dimensional observer for which the
weighting matrix Di +1 has been chosen to minimize the mean square
estimation error, It is also interesting to note that in the more general case
where the transformation Ti is a k x n rectangular mawix (k < n), the
solution of the fundamental observer equation (2.23) is an aggregation in

the sensc of Aoki.[ 2 J We shall not pursue this idea any further since our
interest in this observer formulation will be primarily the desizn of n-
dimensional observers based on the selection of eiger;values.

By a judicious choice for the observer transformation Ti' Williams
has shown that it is possible to obtain completely arbitrary eigenvalues at
each instant "i" for an observer of the form (2.16). He considered a
completely uniformly observable pair (Ai’ Ei) and took as the transformation

’I‘i the following matrix product




...............

l 0 8 o0 0 20 008 aooe 0 o
At oy 0 2t on Ait;
n .
.. 1
: : LU jEO Ay (2.29)
- ‘;-1 ' ..l 0 : n‘_l
a7t bt ] e JEO Aiyj
| |

Observab?lity Matrix
where for the purpose of simplicity we have considered a single output system.
The results are easily extended to the multiple output case. For the
particular transformation Ti chosen the observer system matrix F, isin

column companion form and has arbitrary eigenvalucs.

Anl 1 0eeenena x 1 0 0 ... 07
A D0 1.......0 x
n-1
F, = : . =1 (2.30)
Azi 1 .
i
Al 0 0'...'. 0 x
[ g N -, [ L, R J
V-l . 4 -1
AT T.. K h ., AT

Ti+1 iti i+l i+l =1+l
Since the gain matrix Ki+l is completely arbitrary and the matrix Ti+1 is
nonsingular, from (2.30) it is apparent that any desired set of observer

cigenvalues may be obtained.

2.3  APPLICATION TO OPTIMAL CONTROL
One of the fundamental applications of observer theory is in the

design of feedback controllers for the linear regulator problem where some

13
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of the states are inaccessible and. must therefore be estimated using an
observer. For example, assume it is required to obtain the control b in
(2.1) which minimizes the cost function

N
J= X x'Qx +y Ry, (2.31)
1=0

where Q, and Ri are respectively n x n and p x p symmetric positive definite
matrices for all "i" in the interval [0,N]. The feedback law which minimizes

J is known to be a linear state feedback of the form [30]

u, = f\.l_)_(_i (2.32)
where

A é _ 2 -1 ’~

A= R B 0B B4 (2.33)

and Fi is the n x n symmetric pusitive definite solution to the discrete

Ricatti equation

-1 -
B, A +Q

~ _ a fin NGE
D= At AT Vil

1~
i i (Ri + Bi !

i+lBi '1+lBi)

with (2.34)
I'N=Cn

Applying the optimal feedback control results in the minimal cost
)*=x, T (2.35)

By assumption the entire state vector x; is not directly available for measure-
ment and therefore the optimal feedback control can not be implemented.

The alternative considered here is to use a minimal-order observer to

14




construct an estimate x of the state x, and apply the suboptimal feedback

control

=A (2.36)

.3
iXj

ie»

It is of interest to determine the effect of the observer upon the control law.
Substituting (2.6) into (2.36) and using the fact that PiTi +V il—li =1 itis
easily verified that the suboptimal control law is given by the expression

4 = Ax +AP (n F)Lo T x,) (2.39)

j=0
It is clear from (2.37) that gi is the sum of the optimal control plus an
additive term due to the incorrect observer initial condition. The obvious
conclusion is that introducing an observer in the loop generally results in an
increase in cost from that obtained when the optimal control law is
implemented. Further, this increase in cost has been shown by Dellon [10]

to be of the form

J=)*+zg Vg (2.38)

where the positive definite matrix wi satisfies the recursive equation

= In
Vi = By ¥ Py #P TRy B B)AP

with (2.39)

=0

To determine the effect of an observer on the stability properties of a closed

loop control system in which it is used we assume it is desired to control

the linear system (2.1) by the linear feedback law

»

“v.-F
-
]

(R}
.
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»
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Presumably l<i will be chosen by the designer such that the closed loop system,

defined by

X1 = (A TBKIX
(2.41)

¥i = Hix

achieves some desirable response properties, which will always include
stability. However, the actual state vector X, is not directly available and a
discrete time-varying minimal-order observer is used to generate an
estimate ﬁi of the state X+ The estimate gi is secn from (2.6) to be of the

form

Xx; =Pz, +Vi)£i (2.42)

where z, is the output of the minimal-order observer and y; is the plant

output vector. Applying the control law (2.40) with the state estimate 2_1

(2.42) gives the closed-loop state equation

- %41 = (A +BK.V.H) x, + BK Pz, (2.43)

Also applying the same input to the vbserver gives
= Ti+1(Ai + BiK i)P-lgi + Ti+1(Ai +BK)) viHifi (2.49)

Zit1

- , Combining (2.43) and (2.44) results in the following state equation

241 Ay +BKViH, L BKR [
] [ R et Bt l—--J (2.45)
2141 T Ay +BRYVH | Ty (A +BKPP ] 1 2

16
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The stability properties of the overall closed-loop system become apparent

when the system is viewed in a different state spacce. With this thought in

mind, we perform the coordinate transformation [ 5]

X. I I 0 X.
=i n =i
= ] (2.46)

&) [ milmlla |

This nonsingular transformation results in the equivalent state space

representation
%41 ARy | BRE T
SRS R [P (R | (2.47)
Zit1 0 Fi Zi

In the special case of time-invariant systems it is clear that the eigenvalues

of the overall system are the eigenvalues of A + BK plus the eigenvalues of the

Nl A2l ki A Rt o . . ! ey -

~- observer system, F. By assumption the closed-loup system A +BK has
stable eigenvalues and since the observer is designed to have stable eigen-
_ , values then the overall system is obviously stable. Hence in the time

invariant situation it is clear that the observer does not affect the optimal

. closed-loup poles at all, it merely adds some poles of its own {20].

E Intuitively onc would expect this same result to carry over to the more

: . general time-varying case. However, although it is true that at any fixed

. instant "i" the eigenvalucs of the system matrix (2.47) are the eigenvalues of
? ’ Ai +BiKi plus the eigenvalues ¢i F i this does not imply stability of the overall
system (2.47) in any rigorous fashion. To prove stability in the more

' general case a more careful consideration of the state equations must be

> taken.

"
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It is, of course, assumed that the designer has constructed a stable
time-varying observer. Hence the observer-error is bounded and to prove
boundedness of the closed-loop state vector (2.47) it is sufficient to prove

boundedness of the subvector x;. From (2.47) we have

X = (A +BK)x - BKP.E (2.48)

which has the solution

i-1
- L. K .P.€.
AT TS B A S

§i=wi,o§o . B.K.P (2.49)
J=0
where
i-1
=\ 0 F,-) 25 ToXy) (2.50)
J=0
and the transition matrix D j is defined as
?
A i-1
cpi.j:: k[} (A  +B.K)) (2.51)
=)
Taking the norm of (2.49)
' i-1 , ‘
Ix." £ 'y iIx_! i Y IBK.P. F, i e i .
= Ty Ml il + ) DR IBjK Py LF; i higyl (2.52)

j=o

Since by assumption Yo and Fi o are uniformly asymptotically stable we
» 14

: have [10]
”(01’0” s c:"Bi1 for some ¢, >0 and0 <f) <l (2.53)
and
Fy ol = c,8) for somec,>0and0 <8, <1 (2.54)

18
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b Let !fBiKiPiET fcg<® and (2.52) becomes
8 Ix. ' =c B lix i +¢coc l-zl o1 gl ile 55
- A ECPR RN T F=a 2 & (2.55)
P Evaluating the sum in (2.55) gives
'? o L6
liX;: £¢)8) 30‘ +tcjcacy T .Eo' (2.56)
1 "2

Thus ;'x;" is bounded for all "i" and since lim’x; ' ~0 for all finite £  then the

closed-louvp system (2.45) is uniformly asymptotically stable.

2.4 ADDITIONAL COMMENTS
It should be emphasized at this time that the design procedures of

Huddle, Dellon and Williams involve little more than the statement that the

1 designer is free to chouse the observer eigenvalues in any Jesired fashion.
[ The fundamentally important problem of where to place the observer eigen-
i values has not yet been solved and remains a perplexing problem to the
[ designer. It is, of course, uscful to know that one may design (n-m)-
X
] dimensional observers or n-dimensional observers with érbitrary eigenvalues
E at cach instant "i""; however, without the added information of where to
: optimally place the cigenvalues, the design of the ubserver remains at best an
” ad hoc proccedure.
Ei - In contrast to the idea of artifically picking the observer eigenvalues
E- to provide acceptable system performance, we shall base our observer
‘:: design on the more fundumental objective of minimizing the effects of system
E noise disturbances upon the observer derived estimate gi. It formulating the
E ' observer design problem in a more general stochastic setting, the resultant
4




observer errors will be dependent upon the plant noise disturbances and from
a consideration of the noise induced errors an optimal observer design will be

obtained. We shall obtain a solution for the observer matrices F;,T; and D,
which not only satisfies the fundamental observer equation Ti +1Ai =

F iTi + DiHi’ but results in an observer system which is also optimal in the

mean-square sense.
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3. OBSERVERS FOR DISCRETE TIME-VARYING SYSTEMS WITH
WHITE NOISE INPUTS

3.1 INTRODUCTION

In this chapter we shall focus vur attention upon lincar, discrete-time

stochastic systems for which the dynamic behavior can be characterized by

the following set of equations.
X4y = A% TBY W (3.1

y; =Hx ty 3.2

where X is the n-dimensional state of the system at time "i%, u, is the p-

am -~ A

dimensional known control vector which acts upon the system at time "i", and

Y; is the m-dimensional measurement vector. The initial state x  is a

- Gaussian random vector with known mean and covariance

51, 55 - M,

Further, the noise sequences w; and v, are assumed to be Gaussian random

vectors with known means and covariances

LY R Y

Dl %3 1

E{w,}=0 for all "i"

i E{_\_r.l} =0 for all "i"
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where 6ij is the Kronecker delta. In general, the cuvariance Ri will be con-
sidered to be positive definite whereas the covariance Q, will be positive
semi-definite. The various random vectors are also assumed to be mutually

uncorrelated so we have the relations

Elx w,'J=0 for all "i"
E{x v,"} =0 for all "i"
E{w v, ‘Y=0 for all "i,j"

Thus it is assumed in this chapter that the noise sequences W, and y; arc time-
wise uncurrelated sequences which shall be referred to as Gaussian white
sequences. In the interest of simplicity, at this point we have assumed a
model for the white nouise sequences in which the cross-covariance matrix of
w; and v, is zero. Later in this chapter we shall extend our results to include
the special case whereby W, and v; are Gaussian white sequences which arc
crosscorrelated at time "i." Also, in the next chapter we shall consider the
more general situation in which the noise sequences Wi and v, arc time-wisc
correlated sequences of the Gauss-Markov type.

3.2 DEFINITION OF THE DISCRETE OBSERVER FOR STOCHASTIC
SYSTEMS

Loousely speaking, for stuchastic systems an obscrver is defined tu be
a system whose output vector, Z;,)» is an estimatc of the quantity Ti+1§i+l
with an estimation error, & +1° depending only on the previous estimation

error, -E-:i’ and the plant and measurement noises WV To be more precise

22




the discrete time-varying system
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is called an observer of the state X of the system

X = Ak B Y @.7

11=H13‘-i+!i (3.8)

if at each instant "i" the following relation holds
Z,=Tx, +¢ (3.9

where the observer estimation error, £,» evolves according to the recursive

equation

L= Fi& DY - T 3.10)

l In order that the above relations hold, it is both necessary and sufficient

that the following matrix equations be satisfied at each instant "i"

T,

w414, = F;T; + DH; (3.11)

G =T, B (3.12)

Necessity is proved as follows. Assuming (3.6) and (3.9) to hold, one obtains
the result
(Ti1A - FiTy - DH) X + (T B - Gy,

3.13)

+&41 " Fi& Dy T W =0

Since (3.13) must be satisfied for all state vectors x, and for all control

>
hd
as
B
&
..
-

o
.
.
k -
..
»

vectors u,, take x; = 0 and u, = 0. This implies the following result.

LA
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Siv = Fi& DY - Ty @3.14)

Hence, (3.13) reduces to the following

(Tip14i - FiTy - DHp 2 +(T

i+18 "GPy =0 @.19)

But (3.15) must hold for all state vectors X; and for all control vectors y;, so
take u, = 0 and x, arbitrary. This implies the following result,

T4 = F,T, + DH; (3.16)
Also in (3.15) we may take x; = 0 and u; arbitrary. This implies the following
result.

G, = T B, (3.17)

Conversely, assume equations (3.11), (3.12) to be satisfied at each instant

"i". Then from (3.6), (3.7) and (3.8) we obtain the following.

Zip1 " TipXin = Fig 76y + DX, +v)
(3.18)
" Tigp (A% +By; +wy)
Substituting (3.12) into (3.18) gives the following result.
Zip1 " TigaZip = Fiz * O, - T Ap x5+ Dy, = Ty B-19)
Next, since FiTi = '(DiHi - ’I‘i +1Ai) from (3.11), we obtain the result
Zist ~ TiXn = Fi@ - TP + Dy, - Ty 3.20)
Clearly, (3.20) implies the following relations
z =T +€ (3.2))

24




S =F& Dy - T,W (3.22)

From (3.22) it is seen that the observer error €, ., at time “i+l" depends
only upon the previous observer error £ at time "i" and also on the noise

disturbances w;, v;.

3.3 AN OPTIMAL MINIMAL-ORDER OBSERVER DESIGN

The discrete time-varying system described by the equations

1= F

Zi, + G;Ei + DiXi (3.23)

&1
h z=Tx +§ (3.29)

where Z; an (n-m)-dimensional vector, is called a minimal-order observer

of the state X of the system (3.1), (3.2) if at each instant "i" the following

matrix relations are satisfied

Ti+1Ai = FiTi +DH; (3.25)
G, = Ti+18i (3.26)
exists 3.27)

B

Equation (3.25) is the fundamental observer equation relating the observer
system matrices F i and Dl to the observer transformation matrix Ti‘ In

the design of a minimal-order observer the additional constraint (3.27) must

also be satisfied at each instant "i". Using this fact, a general solution to

- the observer equation (3.25) may be obtained. Rewriting (3.25) in

ﬁ partitioned form
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T, -
T A = |Fi|Di| A (3.28)

and postulating the existence of the matrix inverse to be of the form

T. 7!
[ﬁi_] AN (3.29)

where Pi is an n x (n-m) matrix and Vi is an n x m matrix, one obtains upon

multiplying (3.28) from the right by the above inverse, the solution

F, = Ti+1AiPi (3.30)

D, = T, AV, (3.31)

From (3.30), (3.31) it is secn that the design of the minimal-order observer
has been reduced to the selection of the single matrix Ti' This is seen from
(3.29). Specification of the matrix T;, together with the known measurement
matrix Hi uniquely defines the matrices Pi and \l.l and from equations (3.30)
and (3.31) is scen to uniquely define the observer system matrices Fi and Di'

The observer error, & was shown previovusly to satisfy the following
difference equation.

=Fg +Dy, - T (3.32)

Ein i+1%i

Using the solution (3.30), (3.31) together with thc error difference equation

(3.32) one obtains the observer error covariance given as (3.33).

':..__ ’ - a7 [ 4 7 ’ [ ’
SipSiel = T WSS PUA FAVRVIATTQ T, G.39)

We shall define the matrix ﬁl to be the following.
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Q= APE: P A +AV1RIV‘A +Q (3.39)

It will be useful at this point to partition (3.33) as follows.

‘. T

i+l T’ (3.35)

Ei+1Zin

where 0’11 is mxm, Qizz is (n-m) x (n-m) and Qilz = Oi21’ is m x (n-m). The
submatrices (0, 11° ﬂlzz and 0 o 8re obtained as partitions of the matrix Qi
defined by (3.34).

Equation (3.35) plays a fundamental role in the optimal observer
design to be developed. We shall next obtain the covariance matrix of the
overall estimation error. The estimate ii 41 ©f the state vector x; ., is
obtained as follows. (The notation Si +1 Shall be used to distinguish between
the optimal Kalman filter estimate and the observer derived estimate.)

Combining the observer output z,, with the measurement y, ., gives the

i+1
following.
€
Ziq1 Tin —i+l
Yi+1 i+l Yi+1

Using the matrix inverse postulated as equation (3.29), we obtain the estimate

~

Zi41*
X i+l
B = B * [P | Vi (.37
Yi+1

The resulting estimation error is found to be

27
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Y A )
Ciy1 T X4 "X T IP i+1 lVi+1| y
Yitl

Finally, the error covariance Cit1%it1 ’ may be obtained as follows.

e _— ’
) “i+18i+1 ' 0 ,
Cit1€iel = IP i+l |Vi+1] | [P i1 | Vigy '
0 Rit1
H (3.39)

where from (3.32) it may be shown that €, = 0.

To proceed further, some necessary assumptions must be made about
the form of system (3.1), (3.2). It is, of course, assumecd that the measure-
ment matrix be of maximal rank at each instant "i" in the interval of interest.
In the absence of measurement noise, if Hi did not exhibit this characteristic,
then some of the measurements would be linearly dependent and, hence,
redundant, so that the measurement vector could be reduced to a linearly
independent set without any loss of information., In cases where the system
outputs are corrupted by measurement noise, there may however be important
reasons to consider all the system outputs, including any redundant oncs.

We shall not, however, treat this case but shall consider only matrices Hi of
full rank.

More specifically, it is assumed that the first "m' columns of H, (with
a possible renumbering of the states) are linearly independent for all "i" in
the interval of interest. This is a reasonable assumption in view of the fact
that usually the system outputs are affected by the same state variables even

though the gaips involved may vary with time. In many physical systems Hi
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will actually be a constant matrix even though the matrices Ai’ B, are time-

varying. Therefore H, may be partitioned as follows.
H, = [Hfl)lugz)] | (3.40)

“i"

1). . . . . .
where HS )I.S nonsingular at each instant in the interval of interest. Next

we shall assume that Hi(z) is identically zero since the linear transformation

-1 -1
Hgl) I-Hgl) H(iz)

X = . 9; (3.41)

0 n-m

will transform the original system to the desired form shown in equation
(3.42). Therefore, without loss of generality, it will be assumed that the

measurements are of the form

y; =0 101x +y, (3.42)

To complete the basic observer design, it remains only to specify the
T. 1-1
observer matrix T;. Since the matrix Hl_ must exist at each instant
i
"i", the most logical choice for the matrix 'I‘.l is given below as (3.43).

T, = Kk 11 _ ] (3.43)

l(i is an arbitrary (n-m) x m gain matrix which will be chosen to minimize
the overall estimation error. With this choice for the matrix Ti' the

matrices Pi and Vi are found to be the following

0 m

P=|— |, Vi=|l— (3.44)
1 -K
n-m i
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Substituting (3.44) into (3.39) gives the following result.

- -

- 4
Riw Rit1Kig1
—_—, .
Si+18i41 = ) ' (3.45)
KipRinn [ &n&Gn YRR K ]
Also, substituting (3.43) into (3.35) gives the result
—_— i / i i ‘L
EnGn T KK Kt Bk + 0, (3.46)

The optimal gain matrix Ki +1‘ may now be determined. From (3.45) and

(3.46) one obtains

———
trace &ir18i41 = trace Ri+1
(3.47)
/' 7 i i ’ i
+race (K () +R DK K0, + 0K, 40y

"Completing the square" in (3.47) gives the result

4 -—

trace g, 1€;., =traceR,

+wrace {[K,,, +0b @ +R )7k +R K+
i+l " 21011 i+l 11 " il 7

(3.48)

P -1, A -1
+0@) +R )] "‘“izz (@) R ) 0y )

The desired optimal gain matrix, K; +1.’ is obtained by minimizing the

. , . .
trace e, €., » By assumption the measurement noise covariance R, , is
positive definite. Clearly, the submatrix Qin is at least positive semi-

. H -1
definite so that the matrices (ﬁfll + Ri+l) and (Q11 +Ri+1) are positive

definite. Therefore the matrices

o




“1lqrat =14
+ 0 + Ry 00 Ry K+ @+ R, )7
(3.49)
and
. 1
1O +Ryyp) O, ©.50)

must have positive diagonal elements. The minimum of the diagonal

elements of g, €. +1' must therefore be attained when
K., + @ +R..)" (3.51)
i+l 21 V11 i+l *
Clearly the optimal gain matrix l('; +1 is given by the expression
*
Kiv1” = 0121(01 + R1+1) (3.52)

The minimal estimation error obtained when K i +1* is taken to be the observer

gain matrix is found by substituting equation (2.39) into equation (2.35). Thus

it is found that

min trace e,

————— -1 i
Ei+1€ +1 Q;Z]

= trace R, + trace [0'22 f" R

(3.53)

Design of the optimal minimal-order observer is essentially complete at this
point; it remains only to specify the resulting observer dyn- mical structure.
Previously it was shown that the observer matrices were of the form

F, = ’I'i +1AiP and D 'I'i +1Aiv . Straightforward substitution of the observer

transformation matrix T, , [equation (3.43)] and the corresponding matrices

i+l
P, and V, [equation (3.44)] results in the following




......

i i
Fi=Axp+Kinhp (3.549)
D =ab -al k +k. (al -al k) (3.55
i =821 7 A0 TR T AN -39)

'Also, the matrix Gi is defined explicitly in terms of the observer transfor-

mation Ti +1 and the plant matrix Bi according to the relation

Gi = Ti+lBi (3.56)

A block diagram of the basic observer structure is shown in Figure 3.1 along
with the appropriate defining equations and the algorithm for obtaining the

optimal observer gain matrix.

3.4 INITIALIZATION OF THE DISCRETE OBSERVER
In the case of the recursive Kalman filter equations, the a priori
statistics Zo and M of the initial state x are assumed to be known. This
a priori information is needed to initialize the Kalman filter. Since the
optimal observer equations (3.35) and (3.52) are also recursive, this same
information is needed to initialize the observer. We shall therefore assume
that the a priari statistics zo and Mo are available to the observer system.
Initialization of the observer proceeds as follows. Letz, = lel be
the observer initial condition, where _7_(1 is the "expected value" of the state

vector x,. Since €, =z, - T;x,, then

Elf]_'"‘ TIGI'ZI)Q&{ZQ'TI' 3.57)
But x)- X, = A (x -X ) +w_ hence (3.57) becomes

= ! ’ 4

515 = TIAMA, +QY T, 3.58)

To initialize the observer, define the covariance matrix Qo to be

= /
f=AMA'+Q, (3.59
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and take the optimal gain matrix K 1' to be

Ky = -, +R ) (3.60)
3.5 SPECIAL CASE: CROSS CORRELATED PLANT AND MEASUREMENT

NOISES -

In the interest of simplicity we have assumed that the original model of
the Gaussian white noise sequences is one in which the cross-covariance
matrix of w, and v, is zero. We shall now treat this important special case in
which the cross-covariance matrix of w, and v; is non-zero and we shall show
that the observer design technique described in the previous sections of this
chapter is directiy applicable to this special case with only minor modifications

to the theory. At this point we shall assume that the zero-mean Gaussian white

sequences W, and y; are characterized by the covariance relations:

1 -
Efww,'}= Qb5

r " -
Etxi% } -Riéij

' -
E{V_viy_j } = 5,85

We begin by computing the observer-error covariance matrix. From the

basic observer-error equation (3.10) we obtain the result

e - el | ’ T— 4 —— ¢
Eplivn =F&& Fp +Dy ' D +T ww, " Ty

(3.61)
I rreny JUNY A —r
D% T - Tin%Ys Dy

But since F, = T, AP, and D, = T_,A,V,, substituting these relations

i+l
into (3.61) gives

34

NG P SRR I SARINEE

- L Al ) e - H P WS VAT o . PIPNE S U Y W Y ey |




T Ty

>

d

v A A . Cult
. R TR UL IR
GRS TR T e
R R R i
-— -
. [
.

&

(AP P A +AV.R.V. A +Q)T

€ €, '=
=i+l~i+l i+1 i—l-l iiii

' ! ’ ]
T, (A VS +8, 'V, /A ) Ty (3.62)

Hence, the same general form of solution is obtained as in the previous
uncrosscorrelated noise case. Defining the matrix Qi to be
- = 1, 7 v ‘A’
= AP ES Py A FAVRYV AT
(3.63)
. Qg 1yt
Aivisi S; Vi A

and partitioning (3.63) as before we obtain the result

T, ..’ (3.64)

It is immediately obvious that the observer design developed previously in
this chapter applies without modification from this point on. For the sake of
brevity we shall state only the final results. Taking the observer trans-

formation matrix 'I‘i +1 to be of the form

Tiy1 = Kip “n-mJ (3.65)
The optimal gain matrix K, +1‘ is found to be
L
Kigy" = "0y + Ry (3.66)

where the matrices ﬁ’l ) and Qiz ) are obtained from the partitioned Qi matrix
as indicated in (3.64). The cross-covariance matrix, Si’ alters only the

computation of the 01 matrix as indicated in (3.63).
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3.6 EFFECT OF COORDINATE TRANSFORMATION ON OPTIMAL GAIN
MATRIX, K;*

Up to this point it has been tacitly assumed that "without loss of
generality"” the given system (3.1), (3.2) was alrcady in the desired canonical
form. However, the phrasc "without loss of generality” needs to be justificd
since for many dynamical systems the desired canonical form cannot he
obtained directly by merely renumbering the statc variables. We do, however,
assume that the system measurement matrix, Hi’ can be put into the form
(3.40) and then the linear transformation (3.41) applied to obtain the desired
canonical equations. If this transformation need be used, then there will
be a modification to the optimal gain matrix, KH-I*' due to the linear trans-
formation (3.41). We shall now consider the effect of this linear trans-
formation upoun our optimization technique and, in particular, we shall derive
the optimal gain matrix taking into account the cffect of the linear

transformation (3.41).

Assume it is necessary to apply the linear transformation X = Migi’

where Mi is defined in (3.41). Upon performing this transformation we have

the measurements

e e r
IR R A

yi=l_l0lg+y, (3.67)

i

Let the observer be defined by the system (3.6) where now we take the

observer output to be

r‘ . 2= (K 11]g +¢ (3.68)
ii'l Combining (3.67) and (3.68) together with the fact that x; = Migi we get the
result

L

&
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(1) (2
I N &
= | x+|— (3.69
¥ 1] o o |1__ v,

From {3.69) thé overall estimation error covariance is found to be the

following:
B -1 -1 ir -
(T BETR ¢ T ) . ’
. l-li Hi l-li Rl R1Ki
"e'i~e-i = -—_
: €€,
0 ln-m -l(iRi [ ==
. <L +K.R.K.' J
iii

-

-

! -1
A l-H.(l) TR
1 1 1

(3.70)
0 r -

Equation (3.70) is simply the statement that the error in the X coordinate

system is M, times the error in the g; coordinate system. That is,

@& - X) = Mg, - §) (3.73)

Performing the matrix multiplication indicated in (3.70) and taking the trace

gives the result

bl J c e ! ’
trace ¢, = trace {E€ ‘+K.RK, ‘]

-1 -1 !
1 2)) == 1 2)
+urpce|(ﬂi“ H,{ )) =, (Hi() H,{ ) (3.72)

’

y -1 -1 -1 -1
. 1 1 (2) 1) (1) (2)
+ (Hi( ) +Hl( ) H, Ki) R, (Hi +H) H, "1)
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where the observer error covariance is of the form

— 1,1 -1 11 -1
CCh _=Kinl11 Ki +K, 0 + 05 K]+ 0 (3.73)

Setting the gradient of (3.72) (with respect to the free gain matrix, K ;) equal
to zero gives the first order necessary conditions for a minimum. Since
(3.72) is quadratic in Ki, these first order necessary conditions are also
sufficient conditions for a minimum. To obtain the gradient of (3.72) one

first substitutes (3.73) into (3.72) and expands the trace e.e; ‘ as follows.

— -1 ' -1, -1,
trace S, "?“‘i(du +ROKJ+2er (1K, T (0]

+e il COKAK T2 I ) K,

‘ +tr[(~)'(-)fé.21}

, ol
+u {(+)'()KRK ‘T2 )HY RK;

+tr

) )

(3.74)

-1
where (-) & H(M) "0,
Using the formulae given in Athans [ 6 ], the gradieut of (3.74) is

IR " AROASIURSL AN §

evaluated and set equal to zero giving the result:

(l (' ))K,(ﬂ‘;,‘ +R)

_ -1
.-(14-(-)'(-)):1'21‘-(.)'H?’ R, (3.79)

AL AN I TR

TR,
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i But since the matrices (l +(-)'(- )) and (.’2‘1-1l +Ri) are pousitive definite

:‘;', ) (hence invertible) we obtain from (3.75) the result

X i-1 i-1 -1 .

i K.*=- (dn +[+ () +R) (3.76)

i where

. S , ry (7t ;
[+ T={I+()'C)) ()’ B R; (3.77)

Finally we note that for the special case where Hi(z) is identically zero, the
term { « lis identically zero and the optimal gain (3.76) reduces to the

result (3,52) obtained previously.

3.7 GENEQRALITY OF THE TRANSFORMATION T, = [K, lln_mi
At this point vne might ask if the consideration of a more genceral
observer transformation, Ti’ could result in a further reduction in mean-

square estimation crror. To be more specific, can the mean-square

estimation error be reduced ceven further by taking Ti = fki(l) 'Ki(z)L instead
of using the less general transformation Ti = [Ki(l) “n-m 1?2 The answer to

this question is an uncequivocable '"no'™ and in this section of the thesis we

shall present a proof of the claim. The proof is straightforward.

[

We assume that the measurements are already in the desired

I' i l'

\ g
a

NENDRY J.'-.“-.‘. P

canonical form, that is:
y; = 107x +y, (3.78)

We consider the most general possible observer transformation, Ti' which is

of the form
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z= KDk PIx + ¢, (3.79)

where Ki(l) and Ki(z) are (n-m) x m and (n-m) x (n-m) partitions of the
' H, -1

matrix Ti’ Since the matrix inversc [i.—] is required to exist at each
‘ 1

instant "1" then we have the result

(3.80)

and therefore we consider all transformations Ti = [Ki(l) lKi(2 )] wherc Ki(l)
and Ki(z) are arbitrary and Ki(z) is full rank at each "i." We shall now provc

"i"

that at each step there is no loss of generality by taking l\'i(z) =1 and

n-m
this is because the minimum achievable mean-square estimation error is,
in fact, independent of the elements of the partition K l_(2) .

In the first step of the proof we treat the initialization of the observcer.,

Computing the mean-square estimation error at time "i=1" we obtain the

result

trace ¢ye,’ = trace R,

1

-1 -1 -1 -1
— . (2) 2) . () (1., 2) ",
51;1 l\l +Kl }\1 RIKI Kl

(3.81)

+ trace{K 1(2)

. T2 ' __é ‘
But the observer error covariance is €€, TIQUT y Where Qo AM A
+ Qo' su expanding € 11 ’ in (3.81) into quadratic terms involving the

appropriate partitions of the matrix {« gives the result (3.82).




o, o v d * .l +

1 ), .. Q1 2), . . (2 1),
=k )k 04k el B 4k B ¢ B

+k g x B (3.82)

Substituting (3.82) into (3.81) and “completing the square” gives the

expression

trace e,e

’—
e, =traceR,

-1 -1
+ trace’[l( B Wy (9,6, + Rl)'l][ﬂ‘f LR 1] [l\' @ k@

+rtz’1(n‘1’1+al)"] + 65, - B R +r) D $ (3.83)

Clearly, to minimize trace ¢ ¢, ' we take
@l @, 0,0 -1
KDk Waed @ +r)7 =0 (3.84)

and the minimum attainable mean-square error is given by the result

. _—_ . o "
min trace e e, ‘= trace R, + trace {ﬁgz 921(00 +R)) (‘;1 J

(3.85)

We note at this point that the optimal error (3.85) is attained independent
of the particular choice of K 1(2) . Hence, the minimum attainable mean-
square error is independent of the partition K 1(2) and we may without loss of
(2
generality take K N 1 a-m
For all cases n=2,3,...,1, i+l the solution proceeds as follows. At

time "i+1" the equations of interest are the following:




Yy = O 103X +viy)

- e (2) -
ki K 12+ & (3.80)

Also,

'é-_'_ ' = I
i€l = T T

where
G B2APTE'P A" +A VRV ‘A +Q (3.87)
LS APSES R A TAVRY AT .

Repeating the procedure described for "i=1" we find the mean-square

estimation error at time "i+l1" to be

trace ¢, € +1 = trace R, ,
- see @@ ] [ ]
+trace 3 [h i+l Kx—i—l + QZI Ql +R1+l) 1+l
/
: @ " ) ' -1]
[K1+1 Ki+1 +“z (“lu'*Riﬂ)

v -

}'r'rv N

-y
P

+(£22-0i21 (¢l *Rm)l"‘iu'i (3.88)

) ——'l

- Clearly, to minimize trace ¢, €,, " we take

‘@

k@ + (cd +r ).1=o (3.89)
i+l i+l 1711 i+l *

:‘.. The minimum attainable mean-square estimation error at time "i+1" is

given by the result

............................




min trace el+1 i+1 = trace Ri+1
i 14
+uace{n‘22 (9, +RH_1) o, } (3.90)

and this optimal result (3.90) is attained independent of the particular

(2
choice of K i+l

- (2) _
of generality, we may take l(i 1= ln-m‘

Therefore, at each step n=2,3, ...,1i,it+l, ..., without loss

3.8 EQUIVALENCE OF OBSERVER AND KALMAN FILTER WHEN
R.,=0
i

Up to this point it has been a basic assumption that the measurement
noise be non-zero and, in fact, it was more strongly assumed that the
measurement noise covariance, Ri’ be positive definite at each instant "i
This corresponds to the case where cach measurement component is
contaminated by an independent white noise disturbance. A special case of
particular interest is the opposite extreme where the measurements are
completely noise-free, that is, Yy, =0 for all "i." We shall next treat this
important special case.

Rather loosely stated, in the absence of measurement noise, "m"

of the system states are known exactly and it is only necessary to estimate
the remaining "n-m" states. In this particular situation it is clear that the
Kalman filter is degenerate in the sense that it reduces to an "n-m" dimen-
sional filter. Noting that the minimal-order observer is of dimension "n-m,"
one questions whether or not in this situation (i.e., in the absense of
measurement noise) the optimal minimal-order observer is equivalent to the

Kalman filter in the sense that both filters provide identical mean-square
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estimation errors. We shall demonstrate that this property is, in fact, true.

We assume the system equations are in the form

. L Sy
e e e
- Ao

*

) (1) i i (1) (1)
3 X+l A | SUVREES hud
= + | — (3.91)
! 2 i | i @) @)
= X+l Agr | A2z | |3 ¥
s‘_:_--
;‘ y= 0 lolx (3.92
-

For purposes of simplicity the plant nbisc covariance is assumed to be:

o | o

(3.93)

Using the <alman filter algorithms (sce Chapicer 1, equations
(1.3 ) through (1.6) it is easily verified that for the system defined hy

(3.91), (3.92) the mean-square error for the Kalman filter is

trace P.

l+l/|+1

;-:::; . (2) 5 2
= tracc% ( 2ZPI/, Qi )
Fe
B -1
g (2) I 5(2) i ¢ (1) ;A1 5(2)
o AR AL (A RA Q) AP AL 899
"‘ . where the covariance P, i+1/i+1 is partitioned in the furm

Piy1/ier = ( (3.93)

0 Pi-i-l/i+1
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. Next, from the observer error covariance €. +1 i+l !, which is
- i ' A (1) iy
€, €
, A& tQ AL EE Ay
- . ’
EimSr T Tin T T D Tit1
€.¢ £ <
Azsi& A A&E A tQ
(3.906)
it is found that the optimal obscrver estimation error is
traceg; 1€
trace (Ai CN +Q(2)) | g /Al '(Ai Te’al ¢
22—i—i 22—1 -i 12 12—i4 12
Wy io— i
+QV) Al zeral, 2 (3.97)

Equivalence of (3.94) and (3.97) follows dircctly from the result that in the ‘

2 . . .

casc of no measurement noise, ei-‘-'i (/)1 . This result is obtained by
|
inspection ol the observer estimation error covariance ¢, i+1€i+1 ! and the 1
. orre ing rclati . 1., for the Kalman filer. -
Tx corresponding relation P|+1/1+1 f e K C
=
& !
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4. OBSERVERS FOR DISCRETE SYSTEMS WITH
GAUSS-MARKOV NOISE INPUTS

4.1 INTRODUCTION

In the previous chapter we have limited oursclves to estimation
problems in which the system disturbanccs werc modeled as purely random
additive white sequences. Clearly, in many estimation problems the system
noises will be modeled more accurately as additive Gauss-Markov sequences
(time-wise correlated noise sequences). Sequentially correlated plant noises
can, in principle, be treated by introducing shaping filters driven by purely
random white sequences resulting in sequentially correlated sequences.[29 ]
However, in the design of the Kalman filter for systems with sequentially
correlated noise inputs it is necessary to increasc the dimension of the state
vector to be e¢stimated. This is inconvenient for real-time filtering and,
equally important, the computation of the Kalman filter gains is very likely
to be ill-conditioned. Thus it is desirable to seck better ways to handle
sequentially correlated plant disturbances in estimation problems.
4,2 OBSERVER DESIGN FOR SYSTEMS WITH GAUSS-MARKOV PLANT

NOISE

We shall now extend the results of the observer theory developed in
the previous chapter to the problem of estimation in the presence of time-
wise correlated plant disturbances. This problem shall be treated in a
straightforward manner, that is, the state equations of the plant will not be

augmented as must be done in the Kalman filtering theory. Taking this
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direct approach will result in an observer of minimal dimension. To be morc

precise, the dimension of the minimal-order observer will be the same as
for the case whe;n the plant noises are purely random Gaussian white
sequences. The order of the observer will therefore be independent of the
dimension of the linear system required to generate the Gauss-Markov
sequence. The resulting observer is not designed to provide estimates of

the extra states which model the plant disturbance; only the original system
states are estimated. This is highly desirable since, in practice, one usually
is only interested in estimating the original system states. We shall first
consider the problem of estimating the system state vector, X;» Where the
noise term w; is a Gauss-Markov sequence.

Again we consider the discrete system

Xy = A B Y, (4.1

y=Hx ty, 4.2

The measurement noise, Vi is taken to be a Gaussian white sequence with

covariance

’ -

However, in the present case we model the plant disturbance, W;, as the out-
put of a linear discrete system driven by a zero-mean Gaussian white
sequence. The plant disturbance, W,, is therefore a zero-mean Gauss-

Markov sequence generated as the output of the following system.

Wit (4.3

where Disa Gaussian white sequence. The covariance matrix of the noise
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Vector, W, . )» denoted as Qi 410 is propagated sequentially according to the
relation
_ t LT

Q1 = QL + Iy (4.9)
As was done in the previous chapter, we will design a minimal order observer
of the form

2= Fiz 1CGu; + Dy, (4.5)
where 2, is an (n-m)-dimensional vector and

z= T,x +E; (4.6)

As before, the observer error evolves according to the recursive equation

St = Fi&i DY - T .7

In this case, from the basic observer error equation (4.7), we obtain the

observer error covariance

— _.
Sntin =T AP EEPUATHAVRV AT QYT
(4.8)

(AP w+w€PA)T

1+l i i—i—i

P and D T+1A1V1°

At this point it is noted that the error covariance (4.8) is similar in form to

In obtaining (4.8) we have used the results that F = Tl +14i
the correspondi'ng expression obtained for the white noise problem considered
in the previous chapter [see equation (3.33)]. This suggests the possibility of
applying the same observer design technique developed in the previous
chapter to the present problem with sequentially correlated plant noise.

However, when the plant noise is sequentially correlated, the observer error
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covariance (4.8) contains extra terms due to the fact that the observer error
at time "i" is correlated with the plant noise at time "i", Before proceeding
with the observer design we shall digress momentarily to evaluate the cross
correlation_e—i\i/i_' needed in the solution of the observer error covariance
(4.8).

From (4.7) we have

i-1
£ =F i,15 +21 Fl jHl 3—] ;1 F,]+1Tj+lj i=2,3, ...

4.9

where we shall use the notation

and F i &1 for all "i". Initializing the observer as described previously
]

in Chapter 3, the initial observer error becomes
£1= TAE) - Ty, (4.10)
Next, using the relationships

E{(x,-x)w;"}=0 for all "i"

(4.11)
E[!'.j“_"i'J =0 for all ", j"
One obtains the result
5%y = - 2 Fl.)+l jtl J 1 i=1,2,... (4.12)

J=0

From the solution to (4.3) which is
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St etet e wess e
et s 't

wi =T, 5% Z i, k1 Dk b=l (4. 13

one obtains the result

ww'=ww'7 ‘=Q" '/ 4.1
WM EWN T Y (4. 19)

where the covariance Qj is obtainced from (4.4). Substituting (4.14) int,

(4.12) gives the expression

i-1
— L, )
Sw'= J§ Fioitt T @i, (4.13)

An extremely dcsiral?le prouperty from the sténdpoinl of filtering and
processing of measurement data is the recursive nature of the filtering
equations as, for example, in the Kalman filtering technique. Although
(4.15) characterizes the cross correlation ZE_' , it is not in the desired
recursive format, To obtain a recursive equation for _E:E" , consider
expanding (4.15) as follows

i-1
.- S -
SnYin T E Firr, i1 Tj1 Qi Tin Qi (4.16)

Using the properties of the transition matrix, F.l i and the fact that
]

F =T +1A P. it may be shown that (4.16) is of the form
—_— i
S i = TP 5% - Q)1
where 4.17)

‘" _ . s
—Clwl - TIQo'o




y; = O_lolx +y, . (4.18)

T

Thus, the same observer structure used previously in Chapter 3 will be

employed here. The observer output is therefore taken to be following

T - ~ v
T T TN Y T T

= Kl lx t g (4.19)

where again we seek the optimal gain matrix, K; , to minimize the overall
mean square estimation error. Following closely the approach of Chapter 3,

we begin by partitioning the observer error covariance (4.8) as follows.

€ ’ =
Stin =T

T...' (4.20)

where the partitions of the matrix {, are conformable with the partitioned

matrix Ti+l' In the present case, the matrix :“i is defined by (4.21) below,

c - ta ? ) P,
.8 AP TETP A +AVRYV AHQ

- =t _ Tt p 1y !
AP, Ew’ - we P A (4.21)

The next step in the observer design is to obtain the overall
estimation error. From this point on the results are essentially identical
in form to the white noise case considered in Chapter 3., Omitting the

unnecessary details, we obtain the result

! Returning to the problem of designing an optimal observer for the
‘_?f ) system (4.1), (4.2), we again assume without loss of generality that the
. measurements are of the form

=:
3
b
F
4
9
1
r
b
f
1
A

----------
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(| trace &1 €41 = wace Ry,

(4.22)

+0,. % Y

. g B i [ i
+erace (Ky @) 4R DK H K 0y +8) K T+ )

Compaﬂson of (4.22) with (3.47) of the previous chapter leads to the
obvious conclusion that the optimal gain matrix is identical in form to that

obtained for the white noise case. Hence, the optimal gain matrix is given

by the expression

» - ol i . i. -1
Ki =Ty () +R,p) (4.23)

where in the caée of a Gauss-Markov plant noise the computation of the
matrix Ci is.modiﬁed to account for the cross correlation between the
observer error €, and the plant noise, w;.
4.3 OBSERVER DESIGN FOR SYSTEMS WITH GAUSS-MARKOV
MEASUREMENT NOISE
Next we shall consider the problem of sequential estimation of the

state vector x; of the plant (4.1), (4.2) using a minimal-order observer where

{ the measurements arce corrupted by a colored noise of the Gauss-Markov

type. The plant noise, w,, is taken to be a Gaussian white sequence with

couvariance
¥4 -
Siw.w. 1 =Q.0, . 4,24
b{_l_J }=Q ij (4.24)
However, here we model the measurement noise, Vi»8sa Gauss-Markov

sequence generated as the output of the discrete system

Vi =S4 tE (4.29)




& is a zero-mean Gaussian white sequence. The covariance matrix of the

denoted as Ri +1° evolves with time according to

measurement nqise. Vit
the relation
_ 1 LT
Ry = 0RO+ 55 (4.26)

We shall next optimize our canonical observer design-based upon the system
model described above. From the basic observer error equation (4.7) and
the fact that F, = T1+1A1P1 and D, = T1+1A1V' it is easily shown that the

observer error covariance is of the form

?—__—I_
S St = T AR EEPUA HAVRV A Q) Ty

+ T, AP X VA AV VETR AN T, (4.27)

Noting that the observer error covariance (4.27) is essentially in the same
form as (4.8), it is clear that the canonical observer structure used
previously may be again utilized for the problem of colored measurement
noise. Beforc proceeding with the observer design it will be necessary to
obtain a recursive solution to the cross-covariancc £V, needed in the
evaluation of the observer error covariance (4.27). From the basic observer
error equation (4.7) and the properties of the noises W, and Y (namely (4.24)
and (4.25) ] one obtains the result

2 )=:‘1 Fi, y1 Dy 3% 1=2,3,000 o (4.28)

Since the observer is initialized as in (4.10) we have that

£y, =0 (4.29)
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-the recursive expression

From the solution of (4.25) which is

yi=8,yt kz--: i,k 2k £>] (4.30)
A il ' 2
where 6. .= [1 6 _and 8, , = I for all "i" we obtain the result
i,] k=j k i, i
vv.'=vv.'6, .'=RS6. .’/ (4.31)

=Ho=F L) i)

and the covariance Rj is obtained from (4.26). Substituting (4.31) into (4.28)

gives the result

’
7y ): Fia, 51 DRi%41, 5 + DRy (4.33)

Next using the properties of the transition matrix Fi j and the relationships
’

F, Tl +1A1P1 and Di = '1‘i +1Aivi it may be shown that (4.33) is equivalent to

T ——— ' 7
Srvier = T AP, &V, " +A ViR 6

where (4.39)

Without loss of generality we shall again assume the measurements to be of

the form (4.18) #nd take the observer transformation to be of the form (4.19).

As before, the observer design is optimized by obtaining the free gain

matrix K i+l which provides minimum overall mean square estimation error.

The matrix 01, defined below, is partitioned as described previously .
(see (4.20)].
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U= AP SR A FAVRYVATHQ
(4.35)
TAP S Vi A HAV NE TR

-—_ 1
where € &in = Tin & Tina

Using (3.38), (3.44) the total estimation error covariance is found

to be F ]

— '
i+1 Yir1&iv - RiuKip

' 3
Sinsin T
—_—

S+ Si41

I4
Kit1

v DRIV 0% g PPy "
A S esh-Tale S A A [r ey .
N I AL PSP ER AN Sy e e e e e e T .
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S

it:'. . itv e v ! .
t’il estimation error we shall rewrite the quantity £i41Y41 1inamore useful
form. We partition (4.34) into the following form

-l

K., R
n i

£ v, . /-
—i+l~i+l i+l i+l - K TR
i+l ~i+1=i+l
[

+KinRinKin

L .
(4.36)
Before proceeding with the minimization of the mean square
11

’-
=Tin 1 (4.37)
22

S

where ™ 1‘ is thc upper m x m dimensional partition and "22i is the lower
(n-m)xm dimensional partition. With this definition it can be shown that the

mean square estimation error is given by
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l -
trace e, 1€, =traceR, .,
: SR is
+ trace lKi+1 (ﬁu ™1™ +Ri+l)Ki+1 (4.38)

R SO ¥ i i ' i
+Ky (g map ) + (3 gy ) K + 5! |
Setting the gradient of (4.38) with respect to the gain matrix l<i + equal to

zero gives the result

i i is i i
(‘ - - - -
l(1+1(“11 11" +Ri+1)+<021 “22)'0 (4.39)

The minimizing solution is given by the following expression [1,12,24]

._ . i_ i i_ i_ is +
Kit1' = (“21 22 )(911 1" +Ri+1) (4.40)

+ . .
where ( ) is the Moore-Penrose pseudoinverse.
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5. EXAMPLES ILLUSTRATING THE THEORY

S.1 INTRODUCTION

In this chapter we shall illustrate the application and utility of the
observer design techniques developed in the precceding chapters 3 and ¢ of
the dissertation. Toward this end we shall consider an important practical
problem, namely the design of a radar tracking system (sumetimes

referred to as a track-while-scan radar system) based upon the previously

developed theory of optimal minimal-order observers. In particular we

L;-'. treat two special cases and these are presented in the following sections of
3 this chapter as examples 1 and 2, The purpose of these examples is to

’ : demonstrate in a clear and straightforward maaner the usefulness of optimal

minimal-order observer theory to an actual and realistic design problem. In

: a the interest of simplicity we have sclected target models for our examples
which are sufficiently simple so that the resulting observer design equations
are not too unwieldy and cumbersome. However, the target models will be

sophisticated enough so that the results of this design study are realistic and

provide useful design information in a real tracking situation.

A §

In the first example we consider tracking targets having white noise

acceleration inputs, that is, the target maneuver is a white noise sequence.

The mancuver, therefore, at one sampling period is completely uncorrelated

08 =4 FEAAURMR
R

with the maneuver at a different sampling period. This sieuation prevails

T

¥

] B ¢ RNV

when the target exhibits constant velocity except for random disturbances.

Also, the measurement errors are assumed to be independent from measure-

ment to measurcment. Typically, ballistic missiles, orbital and suborbital

F -,
3
2
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targets are modeled in this way. Example 1 is intended to demonstratce the

basic optimal minimal-order observer design for systems having white noise
distrubances as treated in Chapter 3.

In the seque; we shall, of course, compare the resulting performance
of the best minimaf—order observer tracking system with the performance
obtained from the corresponding theoretically optimal Kalman filter tracking
system. Also, in our comparative study we shall investigate the constant
eigenvalue observer designs of Dellon [10] and Williams [327 anc we shall
compare the performance of these designs with the best minimal-order
observer design.

In the second example we treat a slightly more sophisticated (and
perhaps more realistic) target model, namely the case where target
acceleration is characterized as a time-wise correlated noise sequence.
Physically speaking, this is interpreted as the situation where if the target
being tracked is accelerating (maneuvering) at time instant "i" then it is
also likely to be accelerating (maneuvering) at the next observation time
instant "i+1."” Typically, manned maneuvering targets such as aircraft,
ships and submarines are generally modeled in this way [27]. The
maneuver properties of a particular target are characterized, therefore, Ly
two parameters, and these parameters are the target maneuver variance and
correlation time or time constant. In the second example we shall treat the
maneuver variance as constant and shall vary the maneuver correlation time
in parametric fashion. Hence the resulting tracRing accuracy of the best
minimal-order observer tracker and the Kalman tracker is, for the most

part, presented graphically. In this way a large class of manned

maneuvering targets is considered and the performance of the tracking system
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for any single particular target is obtained from the graphs by specifying its
particular manéuver properties. The purpose of example 2 is to demonstratc
the application .of our optimal minimal-order observer design technique for
the case of systems with time-wise correlated noise inputs as discussed in

Chapter 4 of the dissertation.

5.2 EXAMPLE 1

To illustrate the application of minimal order-observer theory
in a practical design situation we shall consider the following standard radar
tracking problem. For purposes of simplicity we shall treat only the special
casc of a single spatial dimension. In particular, the target motion is
confined to motion along the x-axis of the usual cartesian coordinate axes and
the radar is assumed to provide range measurements along this same x-axis.
Mathematically the target equations of motion for this simplified one-
dimensional radar tracking situation are given in state variable representation

by the following 28 1:

2
T
Xitl = 0 1 T X + 0 wl (5.1)
Xigl 0 0 1 X, 1
| g
X.,, = A X, + w

. P P S SRy ey . W T T Y ST U e o T




yy=[1 0 0]] x |+v; (5.2)

v

g | ¥ = Hyx ty,

g As indicated in (5.2), the position of the target along the x-axis is
I measured by the ground radar. The measurements contain observation noise

which is represented by an additive zero-mean Gaussian white sequence, Vis

having variance cv2 (measurement noise variance). Practically speaking, the
radar measurcment error would be range dependent. However, in this
simplified example we shall take the variance, ovz, to be constant. In (5.1),
the input w, represents the change in target acceleration from time "i" to
time "i+l" and for purposes of this example w; is assumed to be a zero-mean
Gaussian white sequence with variance ’7m2 (maneuver variance). The data
rate, T, is assumed to be constant so that target position is observed every
T seconds.

One additional comment concerning the observability properties of

this system is appropriate at this time. It is clear that the system (5.1),

(5.2) (defined by the pair of matrices (A, h)) is observable in the sense of

Kalman [16]. Chccking the rank of the observability matrix we obtain the

result
h s [ o o
Det|{mA | =Det|1 T T2| =711 (5.3)
ha? 1 2T 2r?




Hence the system defined by (A, h) is observable in the usual sense for all

data rates T > 0.

Kalman's filter for the system (5.1), (5.2) is a 3-state filter

defined by the following equations:

Xiri/itl = Zirrzi T R Qi ~ Big X0 (5.4) |
|
where Kalman's gain matrix is [
_ ) p) -1 - =
Kir = Pigryi B ®i Py Higy  HRy) (.5
and
X A X (5.6)

Ei+1/1= % Zigi

*~
T - . .., is the mini i i
he n-vector X4l /i+l minimum mean square estimate of 5i 41 Biven

measurements up-to and including time "i+!" (i.e., the filtered estimate)

&
LR -t v
R taf P o~

~ : . 3 . 3
and X, . /i 18 the minimum mean square estimate of x, ., given measure-
ments up-to and including time "i" (i.e., the one-step-ahead prediction).

The nxn matrices Pi+1/i+1 and Pi+1/i are the covariance matrices of the
filtered and one-step-ahead prediction errors, respectively. These matrices
satisfy the following recursive equations.
] Pire/i= AP A Q

.7

Piri/inn =0y "R Hid Py

Ta
;‘Lﬁ‘*

Design of Kalman's Optixﬁal linear filter is essentially complete at this point.

! The structure of the filter is given in equations (5.4) through (5.6) and

S P SORAIGE

initialization f)f the filter is performed in accordance with (5.7).
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Finally, following the approach taken by Singer and Monzingo (28,

we shall initialize the Kalman filter equations by taking as the initial statc

estimate
xo/o =Y
¢ _ 1 /3 _ 1 -
X0/0© T (5 Yo "W t3 y_2) (5.8)

1 .
ofo = 2 0y -2y, Y9 -

R

where Y. ¥ ) and y, are, respectively, the first, second and third radar
measurements received. The corresponding covariance initialization

equation for (5.8) is given by the following:

[ 2 1 3fw o i

v | 2 T | T2 )
T T
3 ovz Vo r'»vz TZle | 6’."v2 orznT . i

P27 + 2 2716 3 * 3 -9
T TSy [ -
!
f7v2 | 6:v2 + ('_mzi : v2 + Scm2
EAE e

Since Kalman's lincar filter provides the best attainable
performance in terms of minimizing the mean-square estimation error, it
will provide us with a useful upper bound to tracking filter performance.
Hence, our purpose in presenting the Kalman filter here is to provide a
reference against which the performance of our minimal-order observer may

be compared. We shall next present the design equations for the

minimal-order observer.




Design of the optimal minimal-order observer for the system
described by (A, h) is relatively straightforward and involves evaluating the
design equations derived in Chapter 3. We note at this point that the state
equations for th(é system considered in this example are already in the
desired observei‘ canqnical form (that is, transformation of the state equations
to a new coordinate system is unnecessary, and therefore the basic design
equations of Chapter 3 apply without modification. For convenience we

tabulate the appropriate design equations below.

- hi =
T, = [xiun_mJ (5.10)
0 I
Pi =17 v Vi=|X, (.11
n-m 1
Kooo=-b @ +R. )7} (.12
i1 = "l (G R 3.12)
F.=al +Kk. . Al 5.13
=M Ky A (5.13)
oAl Al , i _ i -
Dj=Ay; " Ay KK (A)) ~ A Ky (5.14)

We shall present next the solution to the minimal-order

observer equations given above., Since the system defined by (A, h) has n=3
state variables and m=1 output measurement, the dimension of the minimal-

order obscrver is n-m=2 and thercfore the observer transformation, Ti’

satisfies the relationship

z =T

=T x5+

€
-—f

where
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Ti = | (5.195)
|
kfz) ;0 1
K 1

Hence, Ti is a 2 x 3 rectangular matrix containing the arbitrary gain
elements ki(l) and ki(z). These arbitrary gain elements are adjusted in an
adaptive manner to minimize the overall mean-square estimation error at
each time instant "i." Computation of the corresponding P, and V. matrices

results in the following:

0o 0 1
p=| 1 0 .V = —ki(l) (5.16)
q 0 1 -k
1

The estimate of the state vector X; is, of course, given by the following

X =Pz, +V, y (.17

td
s,

DR 3 LARACACIn

with Pi and Vi as defined in (5.16). Next, the observer transition matrix,

Fi’ is found to he for this example

- 2
3 W T
3 ! T ki1 [T 3 ]
4 F, = + " (5.18)
0 1 )
. i
2 Ay Kit1 A2
§
5
604

NEARARA & 4 g

| SR
o
-

- « v T e - M
PR RS PR AR e e T, - R A o A . R . . .
e L P VP Y W SRS A SR T T PR - T .
— aa o et " .’




e

LS i L RS
e Rt et

LML "
. BN
-t-r (R LA

(1 1) (1)
oy T kMY , k|
D, = - + (11- [’l’ Iz_]
(2) (2) 2
ol lo 1]lKk kit1 ki
v' . . -
1 1 1 )
Ay Ay Ki K A A K
(5.19)

Since the three defining matrices (Ti’ Fi’ Di)have been specified uniquely in
terms of the unknown adaptive gain elements ki(l) and ki(z) [sce equations
(5.15), (5.18) and (5.19) ], design of the basic obscrver structure is
cssentially complete, It remains only to specify the computation of the
vptimal gain matrix Ki (that is, the optimal gain clements ki(l) and ki(z))
and to describe the observer initialization technique.

Dctermination of the optimal observer gain matrix, Ki-i-l’ is a
recursive procedurce which uses the covariance matrix

- l 4 i ! 7 s evrctes Fing .
Qi = AiPi _C.i_‘-i Pi Ai + AiviRivi Ai + Qi' For the system defined by

the state equations (5.1), (5.2) the matrix :‘i is found to be

T T2 T 1 0
. =
el DT S|,
o 1 T2 T 1
I [ -
AP, P, ‘A, (5.20)
i l‘_(2),1.2 b
1.k - &
i 2 L (D72
QY I ¥ 2 |, () __i AW (A (2)
+ k )ki( )t o |1k 5 kDT,
x (2
L. kl \ )
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0 0 0
+ 0 0 0 (5.20)
: 0 0 0m2 Cont.
——
Q

The gain matrix K i1 18 obtained from the relation Ki +1
i i -1 i i . -
= -0y, ) +R) where (" and (i, are the appropriate partitions of
the covariance (‘i and R, is the measurement noise covariance at time "i+l."”

Let the observer error covariance be the following

i R

. ‘11 €12
R i . (5.21)

€12 €22

L . A
u 2 13
- ————qm——————-
L}; ~ é , i H i . i S
» T 121 %22 23 (.22
- i
- i ! i i
4 | %13 |3 Y33
L . . . (1) (2) itten i
U Finally, thc optimal gain elements, k; ) and ki 41 ¢ can be written in
; cluscd form as follows
i
. w
() _ . 12 =
Kyt =TT, T . .23
'.!.11 +OV
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T N S (>.24)
w“ + Ov

where

4_ i

. T ¢
U N S | 3 i 22
"4 =T 5“ +T 6-12 + -3

2 2
+ 02 (1 N A k.(z))
v i 2 i

(5.25)
2, (2)

Tk,
B Y A N W VAT S
Sy (l 'l'l\i —5— )(ki + Tki )

2 i
e i+T622
1315t

4

T2 (2)

2 1 2
g (1 - Tk - —7‘—)(‘%( ))

Initialization of the observer requires the evaluation of the covariance

. A [ . .
matrix Qo = AoMoAb +Q0 where for this example, since Mo = PQ /o we

obtain the result:
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190 ° + 2 + m LA m
v p T 8 3 3
T
2102 7% 2 | 4902 2512, 2 1222 17 2
0 = v, m Y4 m v, m
4] T 8 2T 1 T3 8
102 312 % | 1222 1T 2 62 o9 2
v + m v + m v + m
B 3 3 8 S |
(5.26)

Finally, the optimal initializing gain elcments, kl(l) and kl(z), are found to

be:

(1)
k=

5.3 PERFORMANCE EVALUATION, EXAMPLE 1

We shall present next the fesults of a comparative study of several
tracking system designs for tracking targets as modeled in example 1. Among
those tracking filters evaluated are included the Kalman filter, the optimal
minimal-order observer, the optimal steady-state r;ﬂnimal order observer,

and the constant eigenvalue observer designs of Dellon [10] and Williams {327,

A comparison of the tracking accuracy for these several tracking systems

................




is presented graphically in figures 5.1 through 5.7. Before discussing these

computer results, the following descriptive comments are necessary:

1. The optimal steady-state minimal-order observer is identical in

structure to the optimal (time-varying) minimal-order observer design

developed in this: dissertation, with the exception that the observer gain

matrix is constant and equal to the steady-state gain matrix, l@m Ki"‘ ,

—~

obtained from the minimal-order observer algorithms. . l

2, Dellon's constant eigenvalue observer design is also identical in

structure to the optimal minimal-order observer.* However, in this design
" the observer gaih matrix is chosen to yield a fixed time-invariant observer

with two constant and equal eigenvalues, Hence, to design a Dellon-type

observer for this example it is necessary to determine the observer gain

matrix, K, such that thc observer F matrix, where F = A22 + KAlz, has the

characteristic equation P(N) = (A- Ao)z and Ao is the desired observer eigen-

value. This observer is therefore completely specified by its eigeavalue, A .

The solution is easily shown to be the following.

1T Yt T3]
F = + (5 L) 28)
0 1 k(2
————— ——————
Az K Ay

with

*Dellon's work is discussed in Section 2.1, Chapter 2.
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3. Williams' constant eigenvalue observer design is identical in

structure to a Kalman filter except instead of implementing Kalman's

gain matrix the observer gain matrix is chosen to yield an observer with
three constant and equal eigenvalues.* To design a Williams-type observer
for this example it is necessary td determine the triple of matrices (T, F, D)
satisfying the fundamental observer equation TA = FT + DHA s‘uch that the
observer F matrix has the characteristic equation P(A) = (A- Ao)s and )‘o is
the desired observer eigenvalue. Hence, the Williams' observer is also
completely specified by its eigenvaluc, Ao. For the system (A,H) of

example 1 the solution is found to be the foliowing.

37\0 1 0

2
-3 o
3
7&0 0 0
(5.29)
3-3A
- 2_ -
5 D= 37\0 3
= 3
H 1-%;

*Williams' work is discussed in Section 2.2, Chapter 2.
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Having described each of the observer designs considered in this
comparative study we are now ready to discuss the computer results
presented graphically in Figures 5.1 through 5.7. In this study, the following

typical radar and target model parameters were used:
1. Radar range measurement accuracy, c, =10 (ft.)
2. Target maneuver variance, cm2 = 100 (ft./sec.z)2
3. Data Rate, T = 1 second

Presented in Figures 5.1 and 5.2 is the total mean-square estimation
- error versus the discrete time index "i" (that is, the trace {()_(i'l_'ii) .
~
(x,-X;) '} versus time "i"). Figure 5.1 demonstrates the results

Dellon's design for observing eigenvalues of A= .3, .4, .45 and .5 and also

demonstrates the results of the Kalman filter, the optimal observer* and
the optimal steady-state observer. With reference to Figure 5.1, it is clear

that the overall steady-state estimation error of the optimal observer is

NN |

v

increased from that of the Kalman filter by approximately 5.9% whereas for

Gt S 1 i

the best possible equal eigenvalue design (A, = .45) the corresponding

-

*For the sake of brevity we shall refer to the "optimal minimal-order
observer' as the "optimal observer."
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degredation is on the order of 16.5,(. Therefore it is concluded that the
stcady-state performance of the optimal ubserver is superior, by far, to the
vest equal eigenvalue observer design. Inspection of the transient behavior
also shows this same general trend to be true, as seen in Figure 5.1.

(Note also, in this example, that the optimal steady-state observer provides
excellent tracking performance, not only in the steady-state but during the
transient period as well).

Another interesting comment can be made concerning the results of
Figure 5.1. In viewing the results of Figure 5.1 it is secn that the best
steady state performance is achieved with AU = .45, however during the
transient period the design with Ay = .4 performs best indicating that to obtain
acceptable tracking performance (during both the transient period and in the
steady-state) based on selection of observer eigenvalues it is perhaps
necessary to select the eigenvalue in an adaptive manner. This idea was first
proposed by Bona [ 7 ] where it was suggested that the response time could be
decreased by using one cigenvalue during the transient period and after a
given time the eigenvalue could be increased to improve steady-state estima-
tion accuracy.

Similar comments can be made about the performance of the
Williams' 3-state observer design as seen from Figure 5.2. To achieve the
best steady-state tracking performance in this casc¢, one takes the observer
eigenvalue to be J\o = .35. However, itis seen in Figure 5.2 that Ao =.3
provides much better tracking accuracy during the transient period. In
regards to steady-state tracking performance it is seen that for the best
eigenvalue (A = .35) the overall mean-square error is increased by

approximately 10.7% from that of the Kalman filter.
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Figures 5.3 through 5.7 provide a breakdown of the overall mean-
square estimation error into target position, velocity and acceleration errors.
Figure 5.3 shows the mean-square error in the position estimatle versus

discrete iume "i" for each of the obscerver designs being evaluated. Since
Williams' observer is a 3-state filier, it provides some improvement in the
cstimate of target position whereas the minimal-order observer designs
(including the optimal observer, the optimal steady-state observer and
Dcllunts equal eigenvalue obscrver) do not improve the accuracy in target
position. This is no great loss however, since even the Kalman filter only
improves the accuracy in target pusition from its initial value of 10 feet
r.m.s. to approximatcly 9 feet r.m.s. in the steady state. From the stand-
point of good tracking system design this slight improvement in position
accuracy is hardly worth the cffort. Reduction in the size of the tracking
filter from 3 states to 2 states will result in significantly reduced computer
proucessing requirements while yielding only a slight loss in position
accuracy.

Figures 5.4 and 5.3 present the corresponding mean-square error in
the estimate of target velocity., From thesc curves one obtains the relative
degredation in the velocity estimate (ft./sec .)lfrom that of the Kalman filter
to be, in the steady-state, 3.3 for the optimal observer, 6.2% for the
Williams observer with Ao = .35 and 11,2% for the Dellon observer with
A = .45, Similar comments can be made concerning the mean-square

0

2rrors in the estimate of target acceleration shown in Figures 5.6 and 5.7.
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5.4 EXAMPLE 2

We shall next consider the important problem of radar tracking of
manned maneuvering targets as recently studied by Singer [27]. In this
example the target acceleration is modeled appropriately as a time-wise
correlated noise sequence of the Gauss-Markov type. The fundamental state
equations describiﬁg the system in one dimension are again given by (5.1),
(5.2). All the basic definitions and assumptions of example 1 are therefore
assumed to hold with the exception that in example 2 the state driving noise,
w., is taken to be a scalar Gauss-Markov sequence. Hence, w; is obtained

1

as the output of the discrete-time linear system

Wiyl = Pwi-l-'r*.i (5.30)

where % is a zero-mean scalar white sequence with variance oMz(l-pz) and

P is the correlation between successive maneuver samples. Since w; in (5.30)
is a non-white sequence, the Kalman filter equations cannot be directly
applied and it is necessary to "whiten" the input noise before the Kalman
equations can be used. The usual solution to the "whitening' approach is to
augment the state equations (5.1), (5.2) using the relation (5.30).

When this is done we obtain the following "augmented” state equations.

o T - - r -
(%41 ] 1 T o [ x, 0
X, o 1 TJ]o X. 0
LA L S " (5.31)
%41 0 o0 1 |1[l% 0
LLWH'IJ -0 1] 0 DJ_wiJ -1‘_,
() _ (@ (3, (a)
Xl = A Xty
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(| E
T y;=0 o ofol], |+y (5.32)
X.
1
Vi)
» —_——— —

y @ u@ @

It is clear that Kalman's filter for the above augmented

3% system is a 4-dimensional filter and to obtain the solution for Kalman's
! optimal weighting matrix it is necessary to solve recursively the augmented
3 Kalman algorithms
S
- @) _a@z@ @ @ @) ,(a)xa)
F : Xipdsinr = A0 X TR O T Higd A7)
P
(@) _p(@ @), (a) p@) .(a), -1 5
‘ Kird = Pigryi Bigl Migg Pigy/i Higy " HR)) (5.33)

(@) | 2@ p@) @ , @
Pi 'Ai)Pi/iAi +Q

o

i+l/i

. (5.34)
(a) _ _ (@) (@), (a)
itl/il = o ~ Ki Hig) gl

The superscript “(a)” implies the augmented system as defined in (5.31),

O T“.T"ET."Y.J

(5.32). In the defining equations for the augmented Kalman filter the co-

variance matrix for the augmented error vector is

3 ¢

A ~ a ’ - -
P ﬁ)l/m = E{(ﬁi(i)l/m - 5?3’@?1/&1 - ii(a%) } (5.33)

ot N J N a4
L et L
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: Using the approach of Singer and Monzingo [ 28 J we iniualize the
’ augmented Kalman filier equations by taking as the initial state estimate
s
b for the augmented state the following:
I ¥o/0 = Yo
s . 1 /3 i
o X0lo °T (i Yo < . +2y_2)
N (5.36)
. A& 1 ]
I . *o/0 © T2 o = 2y *y.))

.- Wo/o " 0

where againy _,, y_, and y, are the first, second and third radar measure-

ments received. The corresponding covariance initialization matrix for the

o augmented filter is
_ 2 .2 -
[ .2 3 v . v '
Vo 2 T l T2 |
S R R
| | i
. 2 2 1 L2, T 2 1
éfv_l_léc_v_a,lzpz' v T8%m '32_%2
2 T 1 2 'T‘Z 16 'm | . 2 Il 4 “m
. | I ""':T° |
R S R
L [ | [
- 2 2
~ P - I T T M S S B
u/o -2 + - t — 450 I PC
.l | T3 8§ m | T4 4 'm | m
2 | | | 2
5 T 2 p 2
. i £T 2 | + £0 I + o]
\ ' +5 o | m | Z "m
1, il R = - ———— - -
| [ 2 {
: | p2To 2 i "m |
m 2
: 0 | 3 { 2 N om
L i I 2 | -
+ho,
(5.37)
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The two cquations in (5.34) constitate the Ricatti equations that st

X ) " o
‘- IR A .
_‘.‘-ﬂ'- eala

be solved at cach discrete time fnstant to obtain the Kabman weighting wato,

@)
Kitl*

significantly duc to the addition of the extra state variable introduced by way

Y )

ALITAT

For this simple example the Kalman filter computations are increasced

ey
ool

of the augmenting procedure. For example, Williams [32] has shown that the
& number of multiplications or additions required to solve the Kalman equations

is given by the result

N-= 3n3 + Zmn2 + 2m2n + 2m3 + n2 + 2mn (5.38)

where x; is an n-vector and Y; is an m-vector. Whereas the non-augmented
system (5.1), (5.2) originally required a total of N = 122 multiplications or

additions (since n=3, m=1), the augmented system defined in (5.31), (5.32)

ROAURINELFG

P

requires N=258 multiplications or additions (since n=4, m=1). Clearly the
Kaiman filter computational requirements have been significantly increased
due to the mere addition of a single state variable.

Design of thc minimal-order observer for this example uses
directly the "non-augmented" state equations (5.1), (5.2) together with the
relation (5.30). The design procedure is described in detail in Chapter 4.
Since the state equations (5.1), (5.2) are already in the desired observer
:' canonical form, the basic observer structure for this example is identical
) with that obtained in the previous example 1. [See equations (5.10) through
: . (5.14). ] However, computation of the observer gain matrix, K i+1°

is modified appropriately to account for the non-zero cross-correlation

term 51‘11 ‘e Thatis, the optimal gain, K i+10 18 obtained recursively

AP A

using the covariance matrix.

L X3 A0 Y MY

).,l




C =T (AP Ew - Q)L ’. We shall omit the unnecessary details since the

_ oy 1 p 1y 1 - el e T O
= AP GETPUATHAVIRVIIA THQ, - AP G, - wE P A

where the crouss-covariance Ei‘ﬁi’ is computed recursively as Sir1Yitl !
Ew

solution of the gain matrix K i+ is quite similar to that obtained previously

+1
in example 1. Using the notation of the previous example we obtain the

optimal gain elements, k.(‘l) and k‘z)l . in closed form as follows.

i+l i+
y
W oo 12 (5.39)
i+l w l+0
11 v
2 w3
1 .
k§+)1"‘ i3 (5.40)
‘”11 +cv
where
iq2e b3 1, T
) 11 1277 "22
2 2
2f{, . ()_T (2))
+°V (1 Tki —f- ki
. 2 B
i_ i, 3T i, T i
L2 =Te + 55 € + 7 €5
(5.41)
2
a2 (D) TD L (2) 1 (4]
o, (1. Tk, 5 ki )(ki + Tk,
i i 'rzcx, 2{,. (1).1‘2(2) (2
3 = T2+ 7 %22 " O (‘ CLAM S
2
i i T i
Tewg - 7 W3
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In ubtaining the above results we have used the notation

€w“‘ €w12l Ew ,l

13

w2 i i i (5.42)
W, = D.

—i= W1 Wy EWyg

where for this example only the elements f:wml and €w23l are non-zerv and

propagate according to the rciations

2

i+ _ . i, T° i i i
w4 'p[k1+l(T€w13+ 3 €w23)+ w4 +T€w23]

(5.43)
i+l _

. 2 .
(2) i T° i i_ 2
Wiz = F [“m Tewjg+7 Wag )+ a3~ "
Initialization of the obscrver proceeds as follows. The initial observer
error covariance matrix is of the form €€, ' = T (L T, ’ and it is easy to

show that for this example

~

_ ’ - ’ Y ’ =
ﬁo-AoMvo +A (X, _o)\y_o W, - X)A, ‘i—Qo (5.44)

- .0 .2 ‘7 ~ . . . - Sy
where MU =E {Q“o _Jgo)Qco _150) ! andg_co is defined in (5.8). Evaluating Mo

yiclds the result

- " a 1
1'2 3 V l—
‘v 27T T2
2 2
2 2 2.2 (% T
M= |3 B, ™ 8 5.45
ClZT | TRt 10 2 (5.45)
+1—r—n-
c 2 6-2 To 2 oT- 2|60’
> Y4 By V3, 2, 2
3 3T g T4 4 " 4°m m
T T T |
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Also, the cross-covariance (x, - X )W~ is found to be

-

v ———— Ti R T v v PR
P e T e e T T
S Lt PELPE N
. T o - L . . -
R BRI S

.

»
Lo
g
"\
o
o
he)
| )
E
B N

(5.46)

+ pom

Substituting (5.43) and (5.46) into (5.44) yields the initialization matrix ﬁo.
Omitting the unnecessary details, the optimal initializing gain elements kl(l)

and kl(z) are found to be

2102 70 %10
. @ _ T + 8 (1 +0p)
) 2.4
1902 m ! (L+p) +c 2
(5.47)
100v2 c,mz 2

_ 57— + 53— G +50+2¢7)

L@ T

1 2.4

8 19c:2+0mT (L+p)+02

- v 2 v
F— Finally, the elements lei and N23i given in (5.43) are initialized as
i follows:
5 12, 2 ,

) v 2 %m , 2. 3., () 2./(.2,3

L ewy = —= (P + ko T (o +3¢°)
} Tzo 2 @ ) 2 3 (49
iﬂ:Z- -tw —T—-(P +p)k +0 (P+D +T)
&
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5.5 PERFORMANCE EVALUATION, EXAMPLE 2
. In this example we have assumed the radar range measuremeats are
d independent from sample to sample and the accuracy of the range data is

o, = 10 ft. r.m.s. For the target model we have taken the target maneuver

2

m = 100 (tt./sec.z)2 and the maneuver time constant

. variance to be ¢
(correlation) has been varied in parametric fashion. More specifically,
maneuver correlations of 0, .2, .4, .6 and .8 were evaluated in the study and
. the tracking data rate, T, was assumed to be 1 second. Im each case
considered, the tracking performance of the 4-state Kalman filter and the
2-state minimal-order observer was evaluated. We shall next present the
computer results shown graphically in Figures 5.8 through 5.11.

The total mean-square esﬁmation error versus discrete time "i" for
both the Kalman filter and observer is shown in Figure 5.8. Note in this
figure that we have plotted traceE {(xi - :‘ii)(xi - ii)’ } versus "i" and there-
fore the Kalman filter curves do not contain the error coatribution in
estimating the augmeated state variable, w;. Referring to Figure 5.8 it is
seen that the total steady-state mean-square estimation error for the observer

is increased from that of the Kalman filter by 5.9%, 5.17%, 5.0%, 6.6% and

16.5Y, for target maneuver correlations of 0, .2, .4, .6 and .8 respectively.

These results indicate that the overall tracking performance is dependent

o

:Z-;- upon £, the maneuver correlation, as is expected. From the viewpoint of
.o

{.':f; tracking system design, however, it is more meaningful to consider the
E! ] individual accuracies in target position and velocity estimates since these
=

two quantities are the critical design quantities.” For this reason we have

éhown in Figures 5.9 and 5.10, respectively, the mean square errors in

target position and velocity. From Figure 5.9 it is seen that Kalman filtering




improves the initial measurement accuracy of 10 ft. r.m.s. to, at best,
about 9 ft. r.m.s. in the steady state. As stated previously in examplc 1,
this slight improvement in position accuracy is hardly worth the increasc in
numerical and computational complexities associated with mechanizing thc
4-state Kalman filter. The corresponding mean-square errors in target
velocity are shown in Figure 5.10. From these curves it is detcrmined that
the steady-state accuracy loss in the velocity estimate (ft./sec.) incurred
in using the 2-state obscrver instead of the 4-statc Kaln’uan filter is
approximately 3.3%, 3.1%, 3.2%, 3.69, and 6.9% for maneuver correlations
of0, .2, .4, .6 and .8, respectively. For completeness, we have also
included, in Figure 5.11, the corresponding mean-square error in the

estimate of target acceleration,

Table 1 shows the parametric *:havior of the optimal observer gain
elements, ki(“ and ki(z), versus discrete time "i" for each of the maneuver
correlations considered. The purpose of including Table I in this example
is to point out the time-varying nature of the optimal observer solution which,
of course, is also a fundamental property of the Kalman filter. After an
initial transient period, the error covariance matrices settle down and remain
constant and likewise the corresponding optimal observer gain elements
remain constant. This same phenomenon occurs in Kalman filtering theory
for problems where the system matrices (A, H) are time-invariant and the
noise inputs are stationary stochastic sequences. In examining Table 1 it
is interesting io note that, generally speaking, the magnitude of the observer
gain increases as the correlation increases from < =0to ¢ = ,8. Also,
from Table 1 it is seen that the observer settling time tends to increase as

the maneuver time constant increases. The settling time of the observer

89
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is comparable, however, with that of the Kalman filter, as can be seen

in Figurcs 5.8 through 5.11.




Trace b2 {@' 'Ei)(ﬁi -En) ‘i

v T T T

L, ey w e N
DO LA - PRRETAL

: . . Paramcters
' Range Mcasurement Accuracy % = 10 ft.

' . 2.2
Maneuver Variance cmz = 100 (ft./sec.”)

Manecuver Correlalion = variable

Data Rate T = 1 second
800 \ | | | ;
\\ N Observer |
== —= = p= - Kalman Filter

|
!
l
J
f

700

-
F, correlation -

bl

6
.8

i=1 2 3 4 5 6 7 8
Figure 5.8 Total Mean-Square Estimation Error vs. Time "i."
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Figurc 5.10 Mcan-Square Error in Velocity vs. Time "i."
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- 6. SUMMARY AND SUGGESTIONS FOR FURTHER WOR K

0.1 SUMMARY AND CONCLUSIONS

KR
[

AN
=

This dissertation has considered the problem of estimating the state

R
AN
PRI
R

of a lincar time-varying discrete system using an observer of minimun;

"
28,

dynamic order. In Chapter 3 of the disscrtation we consider systems for

which the plant noisc w; and measurement noise v, are modcled as

g

A

Gaussian white sequences. The effects of these nvise disturbances upon the

rh
..

estimation error are considered as an integral part of the fundamental
dcvelopment. The solution of the ubserver design uses a special linear
transformation which transforms the given state equations into an equivalent
state space which is extremely convenient from the standpoint of observer
design. Design of the observer is then bascd on a special observer config-
uration containing a frec gain matrix, Ki’ which is chosen to minimize the
muan-squdre estimation error at time "i." The solution obtained is optimal

at cach instant "i" and therefore is optimal both during the transient periud

MR
[

and in the steady state. Computation of this gain matrix is done

Ty
«

.
a0a ¢ 0

recursively as in the Kalman filter algorithms, however, computationally the

ve 1 r
.

solution is much simpler than for the Kalman filter. In the special case of

-

LR

no measurement noise, the observer cstimation errors are identical with

AR
PR RY)

that of the corresponding Kalman filter. The main contribution of Chapter 3

is, therefore, the development of a completely unified theory for the design

o

RURTEY AT

of uptimal minimal-order observers applicable to both time-varying and time-

o« Jd-

G

n:

""
(x4

invariant discretc systems for which the plant noise V; and measurement

noise v, are modeled as Gaussian white sequences.
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In Chapter 4 we have extendcd the basic optimal minimal-order
observer theory to cover that class of systems for which the noise
= disturbances w,, v, arc time-wise corrclated and are modeled adequately as
o * Gauss-Markov processes. The usual approach to this estimation problem
is to augment the state vector and design the estimator (be it a Kalman filter,
N observer, etc.) to provide estimates of the total augmented state. In
Chapter 4 we have utilized the basic observer structure developed in Chapter 3

and have modified the observer gain matrix appropriately to obtain minimum

‘.“'
LI

mcan-square estimates of the plant states without an increase in the

YL NG
P

dimension of the observer (i.e., the observer dimension remains "n-m").
Along similar lines, we have also considered the special case whereby the
plant noises w; and y; are white sequences which are crosscorrelated at

time "i" (that is, E {!i!j '} = $,0,.) and have modified the observer gain

ij
" matrix appropriately to provide optimal performance in the mean-square
o SeNSC.

3 To illustrate the typical application of the observer designs developed

in this dissertation we have considered, in Chapter 5, the design of a radar

tracking system. In the first example we treat the situation where the noises

W; and v, are white sequences. In this example, the performance of the

PSSO ATRTYN

optimal minimal-order observer is compared with that of other estimators

. including the Kalman filter and also several equal-eigenvalue observer

4 Kt -'.: . _“-_ .(.1:' . ._' » 4“

designs. It is shown that for a typical set of radar and target model para-
meters the optimal observer provides extemely good tracking performance and
is superior by far to the equal eigenvalue designs of Dellon [10] and

. Williams [32]. / example ” we treat the situation where the target

acceleration is mo~-.:d as a time-wise correlated noise sequence. Here the

...........................
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[ 2-dimensional optimal observer is compared with the corresponding 4-statc
“ Kalman filter and it is shown that the observer provides acceptable tracking
",

'L. performance over a wide spectrum of target maneuver time constants. The
t{:: e‘xamples of Chapter 5 clearly illustrate the practicality of the observer

i,

.;'t
o e

design techniques devcloped in the dissertation.
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6.2 TOPICS FOR FUTURE INVESTIGATION

During the course of performing this research several clusely
associated unsolved problems of an extremely fundamental nature have been

uncovercd and these problems might form the basis for further research. In

this dissertation we have considered only observers of minimal dynamic
order. That is, the dimensioun of the dynamical portion of the estimator is

"n-m" where "n" is the dimension of the state vector to be estimated and "m"’

is the number of independent available outputs. Since it has been demonstrated
quite vividly that the Kalman filter is an observer of dimension "n" and since
the Kalman filter provides the best performance in terms of minimizing the

mean-square cstimation error, the idea of considering non-minimal order

obscrvers is appealing. (A non-minimal order observer has dynamic order
greater than the minimal order observer but less than the Kalman filter.,)

It is conjectured that through the use of nun-minimal vrder observers
the estimation error can be reduced even further from that attained with
the optimal minimal-order observer developed in this dissertation. However,
the improvement in estimation accuracy is undoubtedly accomplished only at
the cost of increased complexity. This non-minimal order observer would
have important application in the class of systems where some of the outputs

are relatively noise-free while the remaining outputs are rather noisy and

" “a "--. P "'. '"."-'-. ". - -q",, -" - -', ‘1._. PR S S S . . . . . . . - - . . . . Y .
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must be filtered. In this propusced domain of rescarch the literature is

completely lacking and therefore it is recommended that further work be done

along these lines,
. Another arca of rescarch which appears to be relatively void of
invcsugation; 1s in the arca of super low-order observers. When an estimate
of sume fixed linear combination of states is required, it is well known 217
that such an estimate can be obtained using an observer of order less than
the minimal order, "n-m." A consideration of the effects of system noisec
inputs upon the performance of these so called super low-order observers
may lead to an optimal design similar to the optimal minimal-order observer
developed in this dissertation.

Aﬁother possible topic for future research of a more practical nature
is the design of observers via the selection of observer eigenvalues. To
date, most of the literature pertaining to the design and optimization of
observer systems has been concernced with the ability to specify, with
cuomplete freedom, the choice of observer eigenvalues. In fact, numerous
researchers have been able to demonstrate through the clever use of special
canonical forms that it is possible to design observers with completely
arbitrary eigenvalues provided the plant equations satisfy the observability
criterion. However, it is clear that without a thorough analysis of the
effects of noise the question of wherc 10 optimally place the observer eigen-
values for reasonable performance is still unanswered and remains a per-

plexing problem to the systems designer. It is one thing to be able to design

g observer systems with complete freedom in the choice of observer eigen-

- values, but it is another to be able to specify what the eigenvalues should be.

Very little has been written about this latter aspect.




In the design ol an observer for any gaven fixed plani, une possitile

approach to this ecigenvalue selection problem might be to nest investigutc
L v
‘ the eigenvalues of the corresponding s alman jilier in oraes 10 eatablish ~on.c
, - guidclincs'for selecting the vbscrver cigenvalues., I restricting e clu-- o
h admissible obscrvers to be investigated, some fundaimental rules might
t developed for the optimal chuice of observer cigenvalues, Resaits 0 a
t fundamental nature are also lacking in the dumain of adaptive observer uesizn
b whercein the choice of observer cigeivalues 15 modified with time in ai
. optimal fashion according to the noisc statistics, signal to noisc ratio, or
; sume other criterion, Much rescarch remains to be done in the domain of

observer cigenvalue sclection where the minimization of noise cffects upon
system pcerformance is of prime importance.,

Finally, it should be mentiuncd that the design of the optimal micimal-
order obscrver for time-varying conminuous-time systems is still an unsoived
problem. This problem was investigated by Ash _4, 5. who consiuered Ui

design of @ minimal-order obscerver for continuous time-varying lincar

systems (i.e., the continuoustime analog ol tile discrete-time proviciu

treated in this dissertation) with the goal of obtaining an obscrver avsign

which minimized the effects of noise upon the estimation accuracy oi the
observer derived estimates. Ash proposed a suboptimal trial-and-crror-type
solution to the problem and hence the results of his work are an "engincering”
rather than a "mathematical’ solution to the design problem. He was unable to
select the free gain matrix K(t) (analogous tu the free gain matrix K, of the
discrete observer) to absolutely minimize the overall-mean-squarc

estimation error. It is conjecturcd that an optimal-observer gain matrix,

K*(t), does exist for the continuous time-varying minimai-order observer
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and the solution of this problem would be an important contribution to the
theory.

One possible approach to the solution ot this problem might be to
discretize the continwous time-varying state cquations obtaining a model for
the plant which is valid at discrete inervals At seconds apart. Then the
theory developed in this dissertation for discrete-time systems may be
applied to the discrete representation of the plant and the optimal discrete
minimal-order obscrver derived. Taking the sample interval At sufficiently
small one would obtain a reasonably good approximation to the continuous
time prublem. Of course, it is of interest to obtain a closed form solution
for the optimal vbscrver gain K*(t) analogous to the gain Ki"‘ of the discrute
time obscrver. In [ 157 Kalman was ablc to obtain the continuous-time
Kalman filter solution from a considcration of the discretized model by
taking the limit as At ~ 0. But ¢ven Kalman himself questioned the rigor of
this approach and in [ 18] Kalman touk a more rigorous approach and solved
the Wiener-Hopf equation directly to obtain the continuous time version of
the Kalman filter. It is recommended that further work be done in the area of
minimal-order observer design for continuous-time equations with the goal of

determining the optimal time-varying solution.
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