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ABSTRACT

A new formulation of the trajectory sensitivity problem

is developed to reduce the effects of modeling errors in optimal

control systems. Necessary conditions for minimum sensitivity
are obtained from a measurable quasiconvex family of direction

fields. These techniques are applicable to a large class of non-

linear systems that could not be handled previously by standard

sensitivity methods.

The priﬁcipal result is a complete theory for the prac-
tical design ;>f minimum sensitive linear feedback compensators.
Sufficient conditions are developed from new theorems relating
conjugate points to the positive definiteness and controllability
of the accessory minimum problem. The advantages of the min-
imum sensitive compensator relative to least square parameter
estimators are discussed. An example illustrates the improved
sensitivity characteristics of the compensator as compared to

model following and regulating controls,
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Chapter 1

Introduction

1.1 Problem Statement

The dynamical behavior of many physical processes can be des-
cribed by differential equations. The ability of such a description
to correctly predict the actual system response is directly related
to the accuracy of the mathematical model. Errors in the model can
result from unsatisfactory initial approximations and from
actual component variations after the model has been produced. When
a differential equation is used for controller design, the resulting
contro] may greatly depend on various parameters in the model. If
these parameters remain at their design values, the control input to
the actual process will produce the desired output. However, if the
actual system deviates from the model, the desired output may not
be realized.

Modeling accuracy is particularly important in the practical
application of optimal control theory. Here it is assumed that the
system dynamics are described by

[Radd

=_f_(t’ X, U, ) &(t'l)'&l (1.1)

where x is the n dimensional state vector representing the process
variables and n(t) is an m dimensional vector of uncertain parameters.
The problem is to choose an r dimensional control function u , assum-
ing that n = n_, such that over the time interval (t]. tz) the cost
functional ’
J= ¢
Y

L(t, x, u) dt (1.2)
is minimized subject to state and control constraints of the form

¢ (t, x,u) <0 . (1.3)




.....................
......

|I A terminal region may or may not be specified. The solution of this
problem yields a time varying control, u = gn(t), such that, when
applied to (1.1) with the parameter vector at its nominal value,

n = Nps the optimal trajectory, 5n(t)' is obtained. There are many
quantities related to the optimization problem, such as the cost funct-
ional, constraint boundaries and terminal manifold, which are effected
by parameter variations. However, all of these are related to the

L basic objective of generating the desired system output 5n(t).

!l The problem examined in this dissertation is the realization

i of gn(t) when the actual system deviates from the design system through
changes in the parameter vector n. The trajectory sensitivity problem
is thus defined to minimize or reduce variations in the system output
AX = X - %, caused by variations or uncertainties in the modeling
parameters, &n = n-n.

- . I
- L TP T T
[ ST

1.2 Previous Work

During the past few years there has been much interest in the
sensitivity of control systems, particularly those which are optimal in
some sense. The following paragraphs contain a short description of
the major results which have been obtained thus far.

Classical Sensitivity Techniques

Standard methods of solving the trajectory sensitivity problem
for linear systems are described in reference [1] through [4]. The
methods basically employ feedback as a second degree of freedom to
reduce output errors as shown in Figure 1.1

Un X

Figure 1.3: Closed Loop Control System

...................................................




The first degree of freedom determines the nominal plant transfer
function or operator P such that

X, (t) = Py (t)) (1.4)
This is obtained, for example, from the solution to an optimal control
problem. The feedback operator H is then determined to minimize or
reduce sensitivity to plant parameter variations 6P with G determined
such that the overall (closed loop) transfer function is nominally

equivalent, i.e., X=X for &P = 0. The closed loop transfer function
is thus

=[1-PGHI PGy (1.5)

X

It is therefore seen that, through the use of feedback, the structure
of the original transfer function or operator is changed. In effect,
two separate trancfer functions P and D could be respectively determined
to realize the original design objectives and to reduce trajectory
sensitivity. The synthesis problem would then be to compute from

these the operators G and H. To date,no practical design techniques
.had been determined to generate a physically realizable feedback
operator, H, which minimizes the trajectory sensitivity.

i{ Sensitivity Operators

f‘ The original definition of the sensitivity operator (references
% (1] - [4]) for single input, single output systems, relative to a

3 scalar parameter n, is given by

" &P/

) P . P

N where P is the nominal plant transfer function (1.4). The operator

relates normalized changes in the transfer function to parameter
variations. Sensitivity is reduced by causing SPn to be as small
as possible.
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A generalization of this to multivariable systems described by
linear operators was given first in [5] and later in [6] through [9].
It is assumed that the actual plant operator is given by

Pa =P + 4P (1.7)

where SP is an additive parameter variation. Referring to Figure 1.2
the closed loop output error, 65c =X, - X is related to the open
loop error, 650 = Pa Uy = X, 5 25 follows

5x_ =N 650 (1.8)

Xe
where :
N=[1- Pa GH]
but reduces to
N=[I+PH]

when 6P is small. The compensator is then

G=[I+HP]
for nominal equivalence. It was shown in [5] - [9] that a sufficient
condition for sensitivity reduction defined by

hex b SUo8x i

was that the operator N be such that

[I-N"N] 20 (1.9)
when N' is the adjoint of N, or that N be a contraction. Some
stability conditions have been obtained for 1inear feedback gains in

[8] and [9] such that (1.9) is satisfied. In general, (1.9) is
difficult to use as a design tool.

Closed Loop Optimal Systems

Consider a general optimal control problem such as that given

PV R S TE WP Y BosttnThivte M stvoecinasor Sl
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by equations (1.1) through (1.3). One method of generating a feedback
solution is to seek the optimal control as an explicit function of the
initial state, x(t;). Then t, can be treated as the present time with
5}t]) the present state. This has been done in references [10] and
[11] for linear systems with quadratic cost functionals. The feedback
gain matrix was shown to satisfy a matrix Riccati equation.

Since feedback does not necessarily imply sensitiyity reduction
or even stability, it is of interest to examine the sensitivity
characteristics of optimal systems. The steady state regulator was
considered in references [12] and [13] with nonlinear optimal systems
being investigated in [14]. It was shown in [14] that for relatively
smooth nonlinear systems
:t: 6.2 6x_ dt < {c: o 2 6x, dt (1.10)
where Z is positive definite and t' is any point within the optimization
interval. For linear quadratic problems

Z=-KRK

where K is the feedback gain and R is the control cost weighting matrix.
In addition, it was shown in [12] and [13] that for steady state linear
quadratic problems (1.10) is equivalent to (1.9) and the classical
return difference function [2] is greater than one.

In most cases, the optimal control cannot be obtained as an
explicit function of the initial state and the above results then do
not apply. Also (1.10) only states that a sensitivity reduction occurs
and gives no indication of the actual amount of the reduction.

Sensitivity Functions

One method of reducing sensitivity in optimal control systems is
to include sensitivity terms in the original cost functional. If the
resulting control is implemented at a function of time (open loop),




:!’ then a tradeoff can be made between the original design and sensitivity '
T objectives. This was done in reference [15] however, in order to |
achieve a significant sensitivity reduction, the original design
objectives had to be considerably relaxed. This method also does not
yield nominally equivalent solutions, i.e. the original (no sensitivity
constraints) optimal control will not result when parameters are at
their nominal values.

For the linear regulator problem, attempts were made to generate
feedback controls with sensitivity terms in the cost. In order to do
this, higher order sensitivity terms were neglected in references
[16] and [17]. This approximation was avoided in [18] by treating
control sensitivity terms as additional control functions. The result-
ing feedback control is linear in the state and the first order
sensitivity vector, which is of the same dimension as the state.
Therefore, the implementation of this requires the generation of the
sensitivity terms by a dynamical system which is approaching the
complexity of an optimal filter. In addition, since the regulator
solution alone reduces sensitivity by (1.10), it is possible that the
sensitivity reduction resulting from the augmented system could be
simply obtained by adjustment of the terms in the original cost
function, :

Model Reference Adaptive Control

A particular solution to a control problem results in a nominal
input to a plant with a specific transfer function. For this input,
a model of the plant can be constructed which gives the desired
output. The model reference technique [19] compares the actual output
with the desired output and then adjusts certain control parameters
such that a measure of the output error is minimized. Gradient and
steepest descent procedures are used to determine the control parameters.
This method has inherent stability problems in addition to being
difficult to implement due to its complexity.

- - - . > - - . " 1 M
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Linear Estimation and Control

Assume that for the system defined by equation (1.1), an optimal
control function gn(t) has been determined with n = n,- Using the
re;ulting optimal trajectory, 5n(t), as the nominal, the perturbation
equation of (1.1) is

: of of of
A = 50 Ax + =m AU+ = A (1.11)

where all partials are evaluated along the nominal and the A quantities
represent off nominal errors. Let some linear function of the state
error '

& = M s + d (1.12)
represent the measurements where d is Gaussian noise with zero mean
and known variance. Then, assuming disturbances of known statistics
on (1.11) and the linearized dynamics for An, the Kalman filtering

techniques described in [20] - [22] can be employed to estimate Ax
and An. This will require a dynamical system of dimension (n+m).

The control error, Au, can be determined such that a quadratic
functional in Ax and Au is minimized. In this case, references [10]
and [11] indicate that Au will be a linear function of Ax and An.
Because of the separation theorem ( [23] and [24] ) for linear, quadratic
problems, the optimal filter and control can be combined to yield a
dynamic feedback control, Au = H (4y). This is a good solution to
the first order sensitivity problem except for its complexity and
corresponding implementation difficulties. One other problem is the
choice of state noise on the parameter error equation to keep the filter
from becoming over confident (see reference [19] ).

Feedback Operators and Controls

One technique of generating feedback controls from a given
optimal control is to break it up into functions of time and state, e.g.

SN S T LT PN S S S ey
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u(t,x) = u (t) + h(t.,x) , (1.13)

where hﬂt,gﬂ) = 0 along the optimal trajectory. This type of control
has been termed "partially closed loop" since u(t,x) is not an explicit
function of the initial state. It was used in reference [25] to

combat the singularity problem in final value control systems. Controls
of the type (1.13) were also employed in reference [26] to reformulate
the combined optimal control and sensitivity problem discussed in the
section on sensitivity functions. The formulation basically consider-
ed gn(t) and [ an/ax ] as control functions to be determined by
minimization of a coupled state-sensitivity cost functional. Reference
[26] did not carry the problem further than the formulation.

Some interesting results have been obtained by Porter in [27]
where the sensitivity problem was formulated using Functional Analysis.
It can be seen from (1.8) that for small parameter variations,and when
the compensator is H = ) P'1 with A a scalar, the sensitivity operator
becomes

N=(1-2)1

Thus as A = 1 the closed 1oop sensitivity approaches zero, however, the
forward 1oop compensator gain (G) then becomes unbounded. The major
drawback is that when P represents a differential equation, H is a
differential (unbounded) operator and thus is difficult to implement.
Also proposed in [27] is the following problem. Determine the operator
H such that

J = [UR&x i* + IQH 6x 2]
is a minimum where Q and R represent appropriate design matrices and

the 6x terms are as defined for (1.8). Using Hilbert space techniques,
the solution is

H=afl +ap P71 P
G=[I+aP P]

.................

.............




where a is determined from R. When P represents a linear differential
equation, the control error is given by

Yt 1
[ { ¢ (tes) ax(s) ds
where ¢(-) is the transition matrix of P and te is the final time.
The feedback control thus requires knowledge of future values of the
state and is therefore unrealizable. It should be noted that this
result can also be obtained using methods of variational calculus.

1.3 Scope of the Dissertation

The principal objective of this dissertation is to develop a new
formulation of the trajectory sensitivity problem which is applicable
to general nonlinear systems. As in classical sensitivity methods,
the use of feedback as a second degree of freedom plays a large role
in the theoretical development. To this end, the original system
(1.1) with the control and parameter vectors at their design values
(u = Y, s = nn) is considered as the nominal. A closed loop system
function g(t, x, n) is then sought such that the solutfon to

i =g(t, x, n) L(t1) =X (1.14)

remains close to the desired output of (1.1), x (t), when n differs
from D The system equations (1.1) and (1.14) are related through a

nominal equivalence condition, 1i.e.
. alt, x, n)) = £(t, x, upu ),
% ' An additional relationship can be obtained if the functions g(-) are
- generated by applying feedback controls to (1.1) as follows
ﬂ(to X D,) = i(tn X !_(t’l): ﬂ)
@ This 1s one possible solution to the synthesis problem.
. 9
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In Chapter 2 the problem of determining the system function g(-)
which exhibits minimum output sensitivity to parameter errors is
formulated as a direction field problem in the calculus of variations.
Then, from a general class of measurable, quasiconvex, nominally
equivalent system functions, necessary conditions are obtained for
extremality. The extremal function effectiveiy results from a trade-
of f between reduced output error and increased deviation from the
nominal (design) system. These results are then shown to be applicable
when the class of system functions is generated from feedback controls
applied to the original system.

To alleviate the synthesis problem, further specialization
is made in Chapter 2 to the class of linear, time varying gain feed-
back controls, small plant parameter variations and quadratic cost
functions. The necessary conditions thus obtained explicitly determine
the feedback gain matrix which minimizes the mean square and final
value first order trajectory sensitivity, independent of the parameter
errors. In Chapter 4, sufficiency conditions are determined using
some new results on conjugate points derived in Appendix B. It is
shown that the minimum sensitive (MS) gain function is determined,
when it exists, from solutions to linear differential equations.
Existence problems are removed through the addition of cost penality
terms and linear approximations to the modified problem are then
proposed. The theory developed in Chapter 4 gives, for the first time,
a practical method of designing 1inear feedback compensators which
minimize trajectory sensitivity.

The remaining chapters correlate presently known sensitivity
reduction techniques to those of Chapter 4. Some new sensitivity
relationships are derived in Chapter 3 for model following, regulating
and stabilizing controls. A comparison example is presented in Chapter
5 which shows the superior sensitivity characteristics of the MS
gain function relative to the controls discussed in Chapter 3. In
addition, relationships between the MS compensator and classical
sensitivity techniques for 1inear systems are derived in Appendix A.
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It is shown that the feedback compensator of Chapter 4 is similar in
structure to classical input compensators and that the closed loop
system error, which 1is employed in Chapter 2 to 1imit the amount of
applied feedback, can be corresponded to the transfer function for
measurement noise. The latter is the 1imiting factor for classical
sensitivity reduction techniques.

Least square parameter estimators are compared to MS controllers
in Appendix C. It §s shown that both have similar structures when
_ the number of parameters equals the state dimension. The MS controller,
b however, is applicable to a much larger class of problems than the
estimator and also is computationally simpler to determine.
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Chapter 2

Direction Field Formulation
of the
Trajectory Sensitivity Problem

2.1 Introduction and Problem Statement

The solution of an optimal control problem over the time
interval [t], tZ] can be described by the following differential
equation

_X_n = i(to !_ny l_‘_no T_]n) ’ Eﬂ(t]) = éﬂ] . (2.])

where x, u and n are of dimensions n, r and m respectively. The
function f(-) is assumed to be locally integrable in t and of class C
(continuous partial derivatives) in x, u and n. It is also assumed
that the parameter vector n(t) evolves according to

1

n=2t,n) ; nlt) =n (2.2)

where 2(-) is a fixed function that is locally integrable in t and C]
in n. The solution of (2.1) is givén by

xy(ts n) = %, (t) (2.3)

which is the desired optimal trajectory. Assuming that all initial
condition errors are accounted for in gn(t), variations in the
modeling parameters, &n = n(t) - ﬂn(t)’ result in the open loop system

50 = i(t! 509 !ﬂ’ D) H !o(t]) = 5"1 . (2-4)
The corresponding open loop trajectory is thus
x,(t, n) = x,(t) ‘ (2.5)

1

which is absolutely continuous in t and C" in n.

12
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Feedback can be employed as a second degree of freedom by
defining the closed loop system as

ig Q.(to X ﬂ_) H i(t]) = (2.6)

Xn1

where g(-) is a member of a certain class of functions G to be
specified in the next section. Each gjo) € G satisfies the nominal
equivalence condition

alt, x, n) = £(t, x, uo» ny) . (2.7

Therefore (2.6) defines a class of direction fields about f() which
is parameterized by n(t). In order to solve the trajectory sensitivity
problem defined in Chapter 1, a function g{+) € G must be chosen such

that the solution of (2.6), x(t, n), minimizes some function of the
error

ax(t, n) = x(t, n) - x (t) (2.8)

over the original optimization interval [t], t2]. For practical
reasons such as system noise and original design constraints, g(-) must
also be chosen to 1imit some function of the system error

Ag.(t' LD.) = S,(t, X n_) = _f_(t, _X_, !ﬂ’ I]_) R (2.9)

This represents the deviation of the closed loop system from the open
loop system. The trajectory and system errors, (2.8) and (2.9) can
be combined into a general cost function

t
3tp 00) = ¥lty ) + 4 2 (¢, ax, ag) dt
)

or equivalently

t
J= 5 21(t, X, N, g(°) ) dt (2.10)
t
1

13
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where I(+) is assumed to be locally integrable in t ¥ g(-) € G and

¢! wRt X, n and g(+). The above cost effectively trades off trajectory
sensitivity for closed loop system error. The problem is thus to
chooseg(+) € G such that (2.10) is minimized subject to (2.6).

2.2 Necessary Conditions for Minimum Sensitive Closed Loop System
Functions
In the following paragraphs, the class of admissible functions
G will be defined along with a general concept of an extremal. Then
necessary conditions will be derived for the closed loop system
function which minimizes trajectory sensitivity.

Admissible Class of Functions

Let G be an n dimensional family of functions g(t, x, n) where

t €T - a bounded interval
X € R, - an open subset of R"
n € Rn - an open subset of R"

It is assumed that the following hold for each g(-) € G.

a) Each g(t, x, n) is measurable in t € T for each
x € Rx, ne€ Rn :

b) The functions g(<) are in class c'wRT x and n.

c) To each g(+) € G and compact subset S C R, X Rn’ I an
integrable function m(t) on T st ¥ x,n€S

W g(t, x, n) I <m(t)
g, (t, x, n) I <m(t)
llgn(t. X, n) I <m(t)

where the norms are the standard vector and matrix norms in

Euclidean space. b
d) Define P° = { a€R%: ;> 0, T o = 1)
i=1

[G] = convex hull of G

14




h . h b
[G]‘{S_ -Q_(tol.n)=12]a19_ (tolnﬂ)o

s ,gleq

% Then to each set { g' €6 } i =1,...,b, a € P®, and
_ . e>0 3 g% € G st the function

b
_'l(t’ X N 0.) = 121 a.i g_i(t’ Xy ﬂ) - &a(t- X, n_)
! satisfies the following conditions

dl) 3 an integrable function m(t)st
i h(t: X, nya) ll < m(t)

“hx(t’ X, N G) I < E‘(t)
"‘h'ﬂ(t’ Xs Ns 0.) I < ﬁ.‘(t)

¥x,n€S ; t€T; g€pP

d)) 1552 Bt x.msa)dti <
t’
1

¥x,n€S ; a€P’ ; ), t,ET
dy) For each sequence{g‘j yerd st aJ-’QG pb

as j *» and each § > 0,
p{t: 1h(t, %o n3 o9) - h(t, X, n, @ 1 > 8} = 0

as j* = ¥ x, n €S where y is a Lebesgue measure
on T.

e) Each g(+) is nominally equivalent WRT n, i.e.
a(t, x, ng) = £(t, x, u,» n,) .

.
-
:
.
.
-
.,
:
~
1
el

LAYt
o

Assumptions a), b) and c) are basfcally minimal requirements for the
differential equation (2.6) to have a unique solution (reference [30]).

,i'_fqafr{-'. A
N Jedadatal.
.

15

B 1* + SUEACIER




The quasiconvexity assumption d) is employed to assure that enough
functions are in G for the extremal problem to be meaningful.

Definition of Extremality

For some element g(+) € G, the system differential equations are

(2.11)

where %(+) is defined by (2.2) and satisfies the same conditions as
each g(<) € G WRT t and n, although it is a fixed (or given)
function. The solution to (2.11) is

x(t,n) , n(t) ;: te€T

where both are absolutely continuous a.e. in t and clwRT n with

boundary conditions either implied or explicitly stated

'LX

x(ty) =% 5 x(ty)

D‘t]) = ﬂq H n‘tz) ne

Let
RZ(n+m+l)‘ (2.]2)

% = (B0 tpe Xp0 mys X0 ) €
Define a set Q C Rz("ﬂnﬂ) as that containing all points q, corres-
ponding to all solutions of (2.11) for all g(+) € G. An extremal will
be defined in terms of a given differentiable manifold NCRZ("'""”)
with boundary M as follows.
Definftion: The solution X, n of (2.11) for some g(+) € G
is a G - N extremal if %A € M and if 3 an open heighborhood

L e T Loy, '
" . * h N S
AMARRAFRERTIG B s,

U3 gz st UNNNQCHM.

The above implies that at qiﬁ the sets N and Q are separated in some
sense. a

16
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The manifold N can be defined in terms of the sensitivity problem
by considering the cost function J given by (2.10). Adjoin to the
state vector x(t) the quantity x(n+];t) defined from

;‘(nﬂ)(t) =1 ({tsx, 0, 90:) ) 5 xppuy(ty) =0 (2.13)

and extend Q to include all points
_ 2(n+m+2)
U = (810 t20 X0 X(pq)(t)s Bye Xou Xy (1) ump) € RV
Using the fact that the optimization interval is fixed along with the
initial state and parameter vectors, define the differentiable mani-
fold N CRE(M™™2) o¢ the set of points

(vis va, E1s Tas Y3 B2 T2 Y2)

given by
vi=t, , va=1t,
(2.14)
£_l=,x_l ’ Clzosllzﬂl
which are fixed quantities and by
5 g2 € R,
- , € .
g Y R (2.15)
b,
2 Ca < X(n+])(t2)
I -
5 where x(n+1)(tz) is the minimum of J. Thus N is a subset of at most
? dimension (n+m+1). The boundary M is given by all relations defining
d N except that the one involving g, is replaced by

2 = i(n+])(tz) ) (2.16)

17




Necessary Conditions

Let G be an (n+m+1) dimensional family of functions given by

g(toz) =[g(thxon) » Mty xomagl+) ), £1(ts ) T

where
2(t) = [xT(t, 1) x(pyy(8), 0T (8) I

with g(+) € G and 2(°) a function previously defined satisfying condi-
tions a) through c). The cost integrand I(-) is assumed to satisfy

; a) through d) ¥ gq(-) € G. Thus each g(-) € @ is an admissible

b function. The quasiconvexity condition carries over for 2(-) because
it is fixed. Define the Hamiltonian as

- H(t, 2z, ¥) = 9T (t) ¢ (t. 2)
where y(t) is an absolutely continuous (n+m+1) dimemiional vector
function. Note that H(-) is completely determined by the choice of
g(-) € 6.

As previously stated, the sensitivity problem is to choose
g(+) € G such that (2.10) is minimized subject to (2.6). The follow-

ing theorem gives necessary conditions for the minimizing closed loop
system function.

Theorem 2.2: Let the function g(+) € G and corresponding
solution x(t, n) of :

x = g(t,x, n) s x(t) = xy (2.17)

] with n(t) given by (2.2) minimize the sensitivity cost (2.10) over the
"‘ interval [t]. t2]. Then 3 a nontrivial absolutely continuous vector
[0 y(t) on [t]. t2] st with Z = [ ZT, —n+1' ET]T the following holds

T (L LW /oy =T (L T)

ge- o (t, Ty /oz=-yl(t) Tylt, D
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where T (¢, D =[ T (t, X D, Ht, & & &) )» & (6, D 1

and W (t,Z y) =y (t)T(t, D .

In addition ¥ ¢ (:) €@

t, _ t, B
J© F(t,z,9)dt> 5 “H(t,z,y) dt .
4 4

If ¢ (t, z) is continuous in t at t, and t,, then the transversality
condition is that

[ F (t-lo z; y)_)s - ."T (tZ’ Zo &); - w_T(t])n !P_T(tz) ]

be orthogonal to the boundary M at the poiht 9z -

Proof: The above conclusions are similar to those of Theorem
2.1 in reference [29], the statement and proof of which are given in
sections 2 and 3 of the reference. The theorem differs in that [29]
assumes that for a particular ¢ (-) € G, the solution z(t) of

-7 (t.1)

on the inverval [ ts t, ] is a G - N extremal. It therefore remains
to show that the hypotheses of this theorem imply a G' - N extremal.

To this end, let the manifold N with boundary M be as defined in the
previous section. Since the cost (2.10) is a minimum and is represent-
ed by ;kn+1)(t2)‘ any point in Q will be such that

X(ne1)(t2) 2 X(pne1)(tp) .

Thus the intersection of any open set about 9; with Q and N will result
in gy = x(pe1)(tp)= X(n+1)(tz) which is by definition in M. The
solution z (t) is therefore a G - N extremal which completes the proof.

19




----------------------------

e I . .
R - B AR R )
‘ N 3 S ,“ . ! " LI

P

‘7""“:\‘."';'7 el
&

L
T
R
PR
A

It should be noted that the nominal equivalence condition, e),
is not explicitly required to obtain the above necessary conditions.
It 1s a synthesis requirement which will become more explicit in later
sections of this chapter where the class of system functions is gener-
ated by nominally equivalent feedback controls.

1f the cost function (2.10) is sufficiently convex, certain
bounds can be obtained on the minimizing closed loop system (2.17).
For example, when no restriction is placed on the system error
ag(t, x, n) given by (2.9), then the output error and equivalently
the cost J can be made zero over [t], tZ] by choosing

)

E_(t’ Z_’m=f_(t’ Xy Eﬂ’nﬂ .

This not only requires knowledge of the parameter n(t) but controli-
ability as well. If no restrictions are placed on the output error,
then zero cost will result from

g(t, x, n) = f(t, x, up, 0)

which is the open loop system. It is therefore seen that particular
choices of the cost functional (2.10) can not only alter the closed
loop system function but also the synthesis problem.

2.3 Generation of System Fdnctions Using Feedback Controls

The standard technique of producing closed loop systems is by
applying feedback controls, u(t, x), to the original system (2.1) in
place of the open loop control, gﬂ(t). Thus (2.6) becomes

I

—

= f(t, x, u(t, x)n) 5 x(ty) = x| (2.18)

If u(t, x) ts nominally equivalent, i.e.
ult, x) = u(t) (2.19)

then (2.1) will be realized when the parameters are at their nominal

20
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values, gﬂ(t). In this section, the explicit problem of determining
a feedback control law which minimizes (2.10) subject to (2.18) will
be considered. Therefore, let Gu be an n dimensional family of
functions defined by
6, = { g(t, x, n) : glt, x, ) = £(¢t, x, u(t, x), n) ; u(-) €U}
| (2.20) |

where the set U of admissible controls is defined below and f(:) is the
; original system function given by (2.1). If the class G, can be shown
{' to be admissible, which implies satisfaction of conditions a) through
f e) of section 2.2, then Theorem 2.2 can be applied to determine the
minimizing control.

. Let U be the set of all control functions

tq u(t, x) : TxR =Y

where T and Rx are defined in section 2.2 and Y is a fixed set in R".
u It is assumed that for each u(-) € U the following conditions hold,

m) Each u(t, x) is measurable in t € T for each x € R, .

2 n) The functions u(-) are in class ¢! wrt X.

= o) For every u(t, x) € U, f(t, x, u(-), n) measurable in
p ) t and C] WRT x, u, n. and compact subset S C R x Rn'
3 an integrable function m(t) possibly depending on

Ny S, f(+) and u(-) st ¥ x,n€S

7

4 I £(t, x, ult, x), n I <m(t)

3 Hf, (s x, ult, x), n) 1 <m(t)

. . -
- 1f,(t, x, ult, x), n) -y, (t, x) I <A(t)
i NE (t, x, u(t, x), n) I <m(t)

o -

" where Il I represents the Euclidean norm.

e
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p) The control function

u' (¢, x) , tET,

u(t, x) = u? (L, x) , t€ T]

is in the class U where u'(+), u*(:) €U and T, CT.
q) The control functions are nominally equivalent, 1i.e.

ult, x)) = u (t) |

Conditions m) through o) are included to assure unique solutions to the
differential equation (2.18). Property p) guarantees that control
perturbations such as those used in [32] are admissible.

The next Theorem extends the results of [29] for time varying
controls to include feedback control functions.

Theorem 2.3: The class of system functions G, defined by (2.20)
using controls u(t, x) € U is admissible, i.e., the functions satisfy
conditions a) through e) of section 2.2.

Proof: From the assumptions on the original system function
given by (2.1) and conditions m) through o) defining U, it is seen
that conditions a) through c) are satisfied for each g(:) € G- Also,
by definition of nominal equivalence, q) implies e). It therefore re-
mains to show that condition d) holds.

Let the functions { gf(-) €6,}, 1 =1,...,b be given along with
, compact subset S C Rx X Rn and scalar ¢ > 0 where

DA I St e ol
. B R
. [P R S

EEPb

g f;’.'."’.".'.q DA
" |;--x‘lq.-.-:
: L e LN

gt x, n) = £t x, u'(t, 0, 0) Wiy e . (2.21)

It is desired to show that 3 a control u*(t, x) € U such that the
function

b
h(t, x, nia) = 121 ay ai(t. x, n) - f(t, x, w*(t, x), n) (2.22)

a2




satisfies condition d), in particular the quasiconvexity condition dz).
In what follows the control will be shown to be of the form

Ua(t, X) = uf(t’ x) ; te Eij j = ]’ooo’K

where the Eij are disjoint, x € S and 1L5 Eijc T. The method of proof
is similar to that of Lemma 4.1 in [29];however, the structure is much
less complex.

It was shown in [29] that there exist continuous functions on TxS
arbitrarily close to g_(t, X, n) in the topology defined by dz) Thus
for the remainder of the proof, the g'(+) will be assumed continuous in
t for fixed x and n. Partition T = [ t;, t, ] into disjoint sub-
intervals Ij, J = 1,...,K, and choose K sufficiently large st ¥ x, n€S

and i = 1,...,b, the following holds

gt x, ) - g (P, x, ) h< 2T (2.23)
b .
I fT T oo g'(t, x, ) dt - AGK) 1 < F72 (2.24)
i=1
where K b )
AK) = T I q g’(tj, X n) 1 (2.25)

Jj=1 i=l

and t', tj € Ij. It is possible to do this by definition of the
integral and of continuous functions and since S is compact. Now
further divide each Ij into b disjoint sutintervals

Egg=ogly = anb (2.26)
Note that b b
U E,. = .= 1,
RALTRILILTR TR T
Thus (2.25) becomes
K b
i
A(Ky = £ = g (t,, x,n)E,.
j=1 41 b

23
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Define the control function as
!a(to l) = Ei(t’ 5) ; t€ Eij (2-27)
and note that u*(:) € U by condition p). From (2.21)

S_Q(t, X, !],) = _f_(t; X !a(t’ ﬁ)s ﬂ) . (2-28)
Thus ¥ x, n€S

I { h(t, x, n; a) dt i

b
i a
=05 ZToag'|(:)dt-ys g>)dtu
T om0t Tt

<1y T g'(+) dt - ALK+ A(K) - ! () dt |

K b K b

<€2+0 £ £ g (tix,n)E-Z I f  gl(tx,ndt
j=1 i=1 = 3 421 4e1 £, g (t.xn)
€ K b i i
<%/2+ Z T IS (g(t;»x,n) -9 (t, x,n) ) dti
=14 Ey

K b

<f2+C%021 ¥ Eyj
j=1 i=

< ¢

Since the above holds on a subset [t'I’ t'Z] CT, condition dz) is met.
Also the fact that h(:) in (2.22) is generated directly from f(-.)
implies that d]) and d3) hold. Conditions a) through e) of section 2.2
are satisfied,and therefore the class Gu is admissible. This completes
the proof. '

Using the above theorem, it is possible to compare the problem
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ﬁi formulations of references [29] and [31]. Gittleman formulates an

¥ extremal problem in which the system functions must satisfy a condition
similar to property p). The above theorem implies that functions which
satisfy this prbperty are quasiconvex. Therefore to this extent,
Gittleman's formulation is included in that of Gamkrelidze.

2.4 Specialization to Small Parameter Variations, Linear Feedback
Controls and Quadratic Cost

The problem of synthesizing from the class U defined in section
2.3 a feedback control such that the necessary conditions of Theorem
2.2 are satisfied is in general a difficult task. The difficulty
occurs because the theorem gives no conditions for the structure of the
minimizing control function, u(t, x). In what follows, further
specialization of the sensitivity problem will be made such that the
synthesis question is resolved by the problem formulation.

In addition to the conditions imposed on the admissible class of
system functions G and on the control set U, the following assumptions
are made.

51) The unknown parameter n is a scalar constant, i.e. &(*) = 0
in (2.2). (Multiple parameter variations will be con-
sidered in Chapter 4.0).

sz) The parameter error,aAn = n - Mo is sufficiently small such
that only first order terms are required to describe the
system behavior relative to the nominal.

53) The closed loop system functions are generated by the family
Gu defined in (2.20) with the control class U restricted to
contain elements of the form

ult, x) = uy(t) + K(t) x(t) (2.29)

v
-

T&7 v =l

where g4(t) and the (rxn) matrix K(t) are essentially
bounded functions ( [33], [34] ) with gq(t) determined
for nominal equivalence.

s4) The cost functional J given by (2.10) is quadratic in

25
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ax(t, n) and ag(t, x, n), i.e.

Jd = %‘A!T(tz: n) D Aé!tzQ n)

t

+%{z[A3_TQA£+Ag_TNAg_]dt (2.30)
1

where D and Q are (nxn) positive semi-definite matrices

and W is a positive definite (nxn) matrix. Also, Q is

assumed to be integrable and W essentially bounded.

Using the above, explicit expressions can be obtained for the cost
(2.30) and system differential equations (2.6) which involve only
first order trajectory sensitivity terms.

The error expressions in (2.30) are evaluated as follows. Since
the solution of (2.6) is C]NRT n, assumptions s]) and 52) imply that

ax(t, n) = x(t, n) - x (t, n)

{
a!ﬂ‘t’ nn)

= ——g—— [n-n,1 . (2.31)

>

s(t) &n

where s(t) represents the first order trajectory sensitivity. To
determine ag(t, x, n), note that from s;) and s,)

- of ax of
..f_(t' X !n”\) i(ts Eﬂ' !ﬂ’ nn)+[ﬁ- rﬂ +rn] An

- |
6 g(t, x,n) = g(t, x.u ny) + [ g—g— g—: + g%] an :

where all partials exist because f(-) and g(-) are C'WRT x and n. Thus
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ag( t, x, n) = g(t, x, n) -~ £(¢t, x, u,, n)
ol S A U e L (2.32)

since by assumption e) g(+) is nominally equivalent. From s3) and
(2.20)

Equation (2.32) thus becomes

af 3w x

Aﬂ_(ts X, n) = 3 3x o An

which yields, from (2.29) and (2.31)

ag(ty x,n) = 3 (e, x u,n) - K(t) s(t) an | (2.33)

"Using (2.31) and (2.33) in (2.30), an expression for the cost is

T
3
J = TsT(t)os(t2)+-§—fZ[sos+sT”fw f ks at .
1
It is assumed that (t, X,s Uos M) is essentially bounded in t and

of rank r. Then since the parameter error An is uncontrollable and

T
the matrix [ 31 W 3L 7 s positive semi-definite of rank r, it is
sufficient to minimize over K(t)

t
JersT(t,)Ds(t,) +3s2[sTQs+sK RKsIdt  (2.34)
72 () Dslty) + 34 " Ls

where R is positive definite, essentially bounded and of rank r.
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It remains to determine a differential equation for s(t). From
(2.18) the system dynamics are given by

|

= i(t9 X, y_(t, ﬁ)m); L(t]) = En] (2.35)
where u(+) € U is defined by (2.29). From s]) and 52)’ the first
order expansion of (2.35) is

. of of
= S° 4»W

X =

Q

s+ 2f

f
e (2.36)

Qo
3
I

where all partials exist by definition of f() and u(-) and are
defined relative to the nominal x (t), u (t) and n . Also since
the solution of (2.35), x(t, n), is continuous in t and n, L s.

=
From 53), (2.36) thus becomes

_of of of . .
% S50 K(t) s + 5 : g(t1) 0 (2.37)
of

where 3% and %% are integrable in t and by is essentially bounded
(in L”). HNote that for the product %& + K to be integrable,
Holders inequality ( [33], [34] ) implies that at least one of the
functions must be in L™. Since (2.34) is quadratic, it was necessary
to assume L~ for both.

Equatiors (2.34) and (2.37) define a subsidiary minimization
problem which determins the optimal gain function K(t) relative to
assumptions s1) through s4). The advantages of this formulation are
that the problem is linear and quadratic and that it is independent
of the actual parameter values. From (2.29) the desired control
input to (2.18) is

u(t, x) = yy(t) + K(t) x(t) (2.38)

I(ﬂo

of

or, by application of the nominal equivalence condition on gq(t),

u(t, x) =y (t) + K(t) [ x(t) -x (t)] | (2.39)
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:‘ . It is shown in Appendix A that compensators of this type are related
to classical input compensators for linear systems.

In summary, the problem has been reduced to that of minimizing
. the cost functional (2.34) subject to the system equation (2.37) over
] - a1l (nxr) matrices K(t) of essentially bounded functions. If, in
. section 2.3, the elements of K(t) are corresponded to u(t) and simi-
larily s(t) to x(t), then it is easily seen that conditions m) through
p) are satisfied. Theorem 2.2 thus gives necessary conditions for
the minimizing gain K(t). It should be noted that a solution to
this problem cannot be obtained by application of the maximum
principle [32] or standard variational techniques [30]. For these
methods to be valid, the system and cost matrices must be continuous
instead of being essentially bounded or integrable as assumed above.
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Chapter 3
Reduced Sensitivity Solution

3.1 Introduction

The problem of minimizing (2.34) subject to (2.37) will be
deferred until Chapter 4. In this chapter the main consideration is
the sensitivity equation '

IU'lo

=As + BKs+g ;s(t) =0 (3.1)

where the A, B and g coefficients respectively correspond to those of
(2.37) and are assumed continuous in time. Two gain functions K(t)
will be examined which in some sense reduce the closed loop sensitivity
§c(t) given by (3.1) relative to the open loop sensitivity §°(t) given
also by (3.1) but with K(t) = 0 on [t],tz]. One function is a de-
coupling control and the other is the regulator gain.

3.2 Madel Following Control
Sensitivity Bounds

Rewrite equation (3.1) in the following form
s=Hs+g ;s(t) =0 | (3.2)
where the (nxn) system matrix H is given by
H=A+BK . (3.3)
It is desirable to choose K such that
H = -a".. 1 ay >0 (3.4)

0 '-an

for then (3.2) can be analyzed as n uncoupled scalar equa;ions. If
the control dimension r is greater than n and B i{s at least of rank '
n, then K can be realized by

k=8 (B8] [H - A]
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But if r < n, as is usually the case, techniques such as decoupling
[35] or model following [36] must be employed. A simple model follow-
ing technique is described in the next section.

.In what follows, it is assumed that H has been decoupled as in (3.4)
with the positive scalars oy being constant. Also, to obtain realistic
bounds on the sensitivities, a disturbance term will be added to (3.1),
i.e.

S=As+BKs+g+BKd ; s(t)) =0 (3.5)

where d represents measurement errors. State of system disturbances
are included in g. Thus (3.5) becomes

S=Hs+g+[H-Ald ; s(t)) =0
or

S, = %5y - A, + g, - (Ad), . (3.6)

Then for i = 1,...,nand t € [t], t2]

si(t)] <M, (¢, o) (3.7)

where

M (t, o)) = —;—i—[ 1 - eoyltty) [b; +a; 4]

- sup . sup

For a fixed t' € [tl’tZ] the bound behaves as follows relative to
variations in 4

Tim , . ' 1im ' _
It is thus seen that the sensitivity bound approaches that of the
measurement noise for large system (feedback) gains. For a fixed a}

and t2 unbounded
b

. . i
vy 1im vy 1
M(t’ 0.1) = O and t - o M(t; ai) = . ai + ai R

1im
t - t]
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Thus, depending on the length of the interval [t], tzJ,'a1 can be
determined from a tradeoff between the relative magnitudes of the state,
by, and measurement, &i, disturbances.

Optimal Model Following

The problem considered in this section is that of determining the
feedback gain K such that the system given by (3.1) performs as (3.2)
with a fixed system matrix H. Treating the parameter variation term
g(t) as a disturbance, it is desired to choose a control function
u(t) = K(t) s(t) such that

S=As+Bu s(ty) = 5 (3.8)

performs as

"
x
w

H ps(ty) =5y (3.9)

To this end the following cost functional is employed
t
Ju) =5 5 2[(5-Hs)T Q5 - Hs) + u'Ru ] dt (3.10)
t
1

where Q and R are positive definite weighting matrices and s(t) is
given by (3.8). Letting E = A-H, (3.10) becomes

t
Ju) = 5 7 2[(Es + Bu)T Q(Es + Bu) + u'Ru] dt, (3.11)

7
t

The minimization of (3.11) subject to (3.8) is similar to the regulator
problem discussed in [10] and [11]. Using standard variational
techniques, the optimal control is

u(t) =RV BT [p-0QEs] (3.12)

where R = [ B’ Q B + R] with p(t) and s(t) satisfying

32




p=[-AT+E QBRVBIp+ef1+QBRTEBIQES
(3.13)

R~ A
-

$=[A-BR'B QE]s +8R' B p

b - sy =0 5 oplt) =0

‘ Setting p(t) = K(t) s(t) in (3.13) a Riccati equation can be obtained
E; for R as described in [11]. Thus the desired model following gain is

K(t) = [BT q B + R]™ BT [R(t) + Q(H - A)] (3.14)

3.3 Regulator and Stabilizing Controls

In this section the sensitivity problem discussed in section 2.4
will be slightly restated such that a standard solution technique can
be employed to obtain the feedback gain. The cost functional will
remain unchanged, i.e.

S
> .
9
.
%

J = 7s(t,) Ds(ty) + % ;:2 [sTqs + s K R K 5] dt (3.15)
1

where all matrices are assumed continuous. The first two terms represent
final value and mean square sensitivity measures whereas the last term
limits the amount of feedback. In the sensitivity equation (3.1) the
parameter error forcing term, g(t), will be treated as a disturbance
which effectively produces initial condition errors along the tra-
Jectory. Thus (3.1) can be replaced by

s=As+BKs ; s(t) =5 (3.16)

where s, is arbitrary. This method of treating disturbances has been
used in [37] to generate linear feedback controls for optimal nonlinear
systems. The minimization of (3.15) subject to (3.16) was discussed

» in [11]. The solution is

3
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1

K(t) = -7 8T p(t) (3.17)

where the (nxn) matrix P satisfies

T 1.7

-$=PA+AP-PRRT B P+Q ; P(t) =0.(3.18)

The remaining question is what effect does the approximation of
the parameter error forcing term by the arbitrary initial condition
vector have on the first order sensitivity given by (3.1)? Let the
open loop sensitivity, S be given by

So=As e i os,(ty) =0 (3.19)

and similarly the closed loop sensitivity by

Sc=AS +BKs. +a;is.(ty)=0 (3.20)
where K is computed from (3.17) and (3.18). The following theorem,
which is similar in structure to that of [14] for linear optimal
systems, states that a sensitivity reduction does take place with the
use of the regulator gain.

.'

Theorem 3.3: The regulator gain defined by (3.17) and (3.18) when
employed as a feedback control (2.29) causes a sensitivity reduction as
follows:

LA
t, °© t
1 1

1 4 T,.T
RK S dt < ¢ 5o K' R K 5o dt (3.21)

where the open loop, So° and closed loop S¢» sensitivities are given
by (3.19) and (3.20) and t'€ (t]. tz).

Proof: Integrating (3.19) and (3.20), it is seen that

. s, (t) = 5.(t) + mt) (3.22)
"' where m(t) = - {: o(t, 1) B K s, de (3.23)

ks M




and ¢(t, t) is the transition matrix corresponding to A, 1i.e.

d=Ao ; of(t,t)=1 | (3.24)
Let N = K’ R K, an (nxn) positive semi-definite matrix, and form using
(3.22) :
T T I T
So NSo-sc Mg = 2 Ns +m Na

Thus a necessary and sufficient condition for (3.21) is that

S l2n Ns +n Nmldtz0 | (3.25)
4
Substituting (3.17) into (3.23) gives
m(t') = 1% a(t, 1) C(x) P(x) s (1) dr (3.26)
t
1
where C = B R™) B . A differential equation for m(t) can easily be

obtained from (3.26) as
m=Am +C(t) P(t) s (t) 5 mt))=0 .  (3.27)

Also multiplying (3.18) by m'

and then m yields

- mem= 2n PCPs -mMPCPm+m Qm

b

-
»
"
»
LY
.

where (3.27) was substituted for A m. Now the above can be integrated
- between t, and t' to give
() P(E)mt) =~ sS[2n pcps_ +m PCPm] dt
Y
+ sV nlQmat .
Y
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!’ But since P(t') is positive semi-definite ¥ t' € (t], tz) and Q is
S positive definite, the above implies that

;YL 2m pePs +m PP m] dt >0
t, ¢

(3.28)

Also by (3.17) and (3.26)

T

K 1

RK=PBRRR!

RRTBTP=PCP
and thus (3.28) implies (3.21) which completes the proof. Note that
when m(t) is nonzero on (t], t' ), (3.28) and consequently (3.21) are
strict inequalities. This will usually occur for nonzero g(t) if
(3.20) is controllable.

An interesting corollary can be obtained from Theorem 3.3 which
explicitly relates stability and sensitivity reduction. To this end
assume that the system matrix A in (3.1) is constant and stable

(negative eigenvalues). Then it was shown in [38] that the equation

S1=ATY +YA (3.29)

has a unique solution Y which is symmetric and positive semi-definite.
Define the feedback gain by

", 36
.
Y

k=8Ty . (3.30)

e
- Corollary 3.3: The use of the gain defined by (3.30) and (3.29) as a

' feedback control causes a sensitivity reduction as follows:

- A I ¢ t _T.T
& '2% Kk%dt<i s, K K, dt (3.31)
X ; 1 1
;;i where the open loop, Sq and closed Toop, S¢» sensitivites are given
?Q by (3.19) and (3.20) with A a constant, stable matrix and t'€ (t], tz).
-

S A B il B




Proof: The method of proof is similar to that of Theorem 3.3
and will thus not be repeated.

It should be noted that Porter obtained similar results in [8]
using frequency domain techniques; however, it was necessary to assume
that the time interval (t1, tz) of control was unbounded. Thus
Corollary 3.3 effectively extends those results.
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Chapter 4
Minimum Sensitive Gain Feedback Control
4.1 Introduction

In this chapter the explicit problem of determining a feedback
gain matrix which minimizes (2.34) subject to (2.37) will be considered.
An additional assumption of continuity in time will be placed on the
original system functions so that standard second order conditions
can be applied. The minimization problem examined in the remainder
of this chapter is for completeness restated below.

The closed loop system dynamics are described by

= f(t, x, ul(tx) L n) s x(ty) = x, (4.1)

where x ,u(-) and n have dimensions n, r and m respectively and f(-)
is continuous in t and C] WRT x, u(+) and n. The control function is
given by

u(t.x) = uy(t) + K(t) x(t) (4.2)

where u,(t) is determined such that

L
HOLRS PPN

-

_U_(t, -x'ﬂ) = !ﬂ(t) - (4'3)

>

with 5n(t) and gn(t) being the nominal solution of (4.1) for the
parameter n = n, . The problem is to determine the (rxn) gain matrix
K(t) such that, for small variationsan from the nominal parameter n ,
the actual trajectory x(t) remains close to 5ﬂ(t) over the original
optimization interval. It will 1n1tiallyﬁbe assumed that n is known
to within a scalar constant, i.e. n = n, N where n, is an unknown
magnitude operating through a known direction n . The results will
later be extended to multiple parameter variations. From section 2.4,
o the first order sensitivity vector s(t) relative to n, is described by

) L)

LA 2% 25l S a8 S v N
AR R TRK
P wati e Tttt
PRI rateT T
B R N - DR R

P TS cea e ege

.

g

+

.
~

EL.
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$=A(t) s +B(t) K(t) s +g(t) 5 s(t))=s, (4.4)

where A, B and g represent the partial derivatives of (4.1) WRT x, u(-)
and n respectively evaluated along the nominal. The initial value of
the sensitivity vector, 5o will normally be zero since the parameter
will usually not affect the initial state Xn1- In what follows it

is assumed that the original problem (4.1) is defined over a fixed
time interval [0,T].

The sensitivity cost function employed in this chapter is similar
to that given by (2.34). Two measures of trajectory sensitivity are

mean square %- IT §T Qs dt
o

final value %- gT(T) D s(T)

where Q and D are positive semi-definite matrices which are continuous
in time. The system error is limited by restricting the amount of
feedback K(t) x(t) or equivalently K(t) s(t). This restriction

can be included in the cost by the addition of one of the following
functions

F1=%JT[§ z Rys K2 42 1dt
o =1 g1 WY
Fo=1 [T [ §T KR K s ] dt

272 1 s

where Rij >0 Vi,j and R is an (rxr) positive definite symmetric
matrix, both of which are continuous in time. The term F1 restricts
each state feedback component whereas F2 restricts each control
component. The use of either F] or F2 depends on the number of unknown
parameters and will be discussed further in the sequel. For scalar
parameter variations, F1 can be combined with the trajectory sensitivity
measures to yfeld the following cost functional
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n
Ryy Ki? 5.2] dt (4.5
j=1 g=1 W 1T )

LAV
seoga 9’

o which effectively trades off the cost of feedback for reductions in
trajectory sensitivity. The problem is thus to determine K(t) such
that (4.5) is minimized subject to (4.4).

The following sections contain necessary and sufficient conditions
for the existence of the minimum sensitive feedback gain. In addition,
the relationships between minimum sensitive control and least square
parameter estimation are discussed in Appendix C.

4.2 Necessary Conditions for Minimum Sensitivity with State Feedback
Cost
Necessary conditions for the problem posed in section 4.1 can be
obtained by straightforward application of variational methods given
in [30] and [40]. The Hamiltonian is defined as follows:
o I A | 1 ron 2 . 2
= Mt Ko =g 8087 3 0 Pkl
; (4.6)

+p [As+BKs+g]

The adjoint equation is given by

n
[ z z RiJ 1j jzl p_A - E.BK (4.7)

. 1
2=-VH=Q£ —
s | 25 =1 j=1

with p(T) = - D s(T)

The optimal gain K(t) is found by

oH, \ n

which yields for 5§ $#0
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Kio ® = >

y (4.8)

Py By

RS s AR
A PAEREN
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The general form of the canonical equations can be found by substitut-
ing (4.8) into (4.7) and (4.4). The jth component of (4.7) is as
follows

n r n
D, = I + I 25. = Z p.A,
Pj g=1 sz S =1 Ros Kaj Sj §=1 Pi A1j

n r .
- % I K

j=1 gey 1 LR
n n

T et G PRy

r K

+ ¢z A

2. g
2=1 Sj =

[ sz sz 55 R Py By 55 ]

where the bracket term is zero from (4.8). Thus (4.7) becomes

B=-Ap+Qs ; pM=-0Dsr) (4.9)
| Similarly the jth component of (4.4) is
»": n r n
- §.= T A,.s, + T I B, Ko.s.*g.
? g W g M
'i' i=) j" S,' + =1 Bj!, j= R_R.'l_m*] pm me gJ
R
= .
x s . )
- Defining V, = ¢i= Roi L=y (4.
" y
3 The above becomes 0 Lty
" 4
q
W' o e TR R L e o {
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Cius )
_________

r r n
§, = S, + z +
A T A A 2 AL R
or in vector notation
§_=A§+BVBT2+9_ ; s{0)=0 (4.11)

Thus the canonical equations (4.9) and (4.11) are time invariant when-
ever the sensitivity equations and cost matrices are independent of
time. The linearity therefore allows a closed form solution for the
gain terms given by (4.8). Note that since N 0 any value of K(0)
will satisfy the optimality conditions. In practice, however, an
fnitial bound must be determined for K(t).

The Legendre condition is obtained from (4.6) as

32H1 2
=L = -Ry;st <0 (4.12)
aK 2 j j
iJ
2 .
_a—th_.' = (0 ‘[’ j # L, m
Ky Koy .

The Weierstrass necessary condition is implied by (4.12) when the
extremal is nonsingular (reference [30]).

It should be noted that even though a solution to the canonical
equations (4.9) and (4.11) may exist ¥ t € [0, T], the gain given
by (4.8) may not exist as a solution to the optimization problem. This
is because the sensitivity vector (4.11) may be such that sj(f ) =0
for some j and t' € (0, T]. When this occurs the extremal becomes
singular, ' '
3%H,

det
3“13 asz
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and sufficiency conditions are not satisfied. This will be discussed
in greater detail in section 4.5.

4.3 Necessary Conditions for Minimum Sensitivity with Control Feed-
back Cost

In a manner similar to that of the previous section, necessary
conditions cam be obtained for the problem of minimizing (4.5) with
F] replaced by F2. The Hamiltonian is

Hy(t, s, K, p) = - %.s_T Qs - %—_s_TKTng
(4.13)
+[As+Bks + gl p |
The adjoint equation is
B=-VH,=0Qs+KRKs -A p-KB p (4.14)
with p(T) = - D s(T) .
The gain K(t) is determined by
- E'k'_z [ r n ]
".: ®,.=[ £ £ R,K_5s - I p B s, =0
% iJ g=] me1 12 MM Ly moTmi J
¥ or in vector form when 55 # 0 for some j
n T
> -RKs +B'p=0 . (4.15)
&% Substituting the above in (4.14) and (4.4) results in the following
T canonical equations,
- p=-ATp+as ; BT) = -D(T) (4.16)
- s “1oT , .
i s=As+BR Bp+g; s(0)=0 (4.17)
| a3

-7,




§ which are easily solved when the system and cost matrices are time
5§ tnvariant. Equation (4.15) however does not explicitly determine the
fg optimal gain K(t) since only r conditions are given for the (rxn)
ii matrix. This occurs because the cost function weights only the r

dimensional control elements. Thus additional conditions are required
to completely determine the gain matrix. It should be noted that
S equations (4.15) through (4.17) with g(t) = 0 and s(0) # O are equiva-
< lent to the solution of the regulator problem described in [11].
!l The additional condition imposed on that problem to uniquely determine
the gain function is that the differential (Riccati) equation satisfied
by K(t) must hold for all So° This cannot be done when g(t) # 0 since

(4.16) and (4.17) then generate a particular sensitivity vector s(t)
from s(0) = 0.

4.4 Extension to Multiparameter Variations

It will initially be assumed that the original system equation
(4.1) is linear with a single input and in phase variable canonical
form (reference [39]). Thus (4.1) and (4.2) become

Xx=Ax+BKx+Bult) (4.18)
) where
- 01.0..0 0
o A = : .0 B =
- 0 01 0
7= ™ al 1 .
e
B The dynamics are therefore a function of n parameters n,,...,n,.
[fi Corresponding to each parameter ngs @ sensitivity equation can be
:2 determined as follows:
Eﬂ} where ng =[ 0,...,0, xi] with X the ith component of the nominal
fﬁz solution of (4.18). Also, a control feedback cost function (section
?!! 4.3) can be formulated to minimize the effects of the parameter ny.
a a4
L
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The optimal gain must then satisfy
ks, =R} 8" p, (4.20)

where S5 and'p_1 are determined from equations similar to (4.16) and
(4.17). Define the sensitivity and adjoint matrices S and P as
follows: '

KS=P | (4.21)

If the sensitivity vectors 54(t) are linearly independent ¥ t € (0,T],
the multiparameter minimum sensitivity feedback gain is given by

K=ps) (4.22)

Since s,(0) = 0, K must be bounded at t = 0.

The above analysis need not be restricted to single input linear
systems in phase variable canonical form, although at least n parameters
must be involved and the sensitivity vectors must be 1inearly independ-
ent. If the number of parameters is less than n, a combination of the
feedback costs Fi and F2 can be employed to determine the optimal gain.

The existence of the optimal gain (4.22) is determined by “he
1inear independence of the sensitivity vectors §#(t). This is because,
‘rom section 4.3, the gain equation (4.20) holds if only one component
of gi(t) is nonzero. Thus if the matrix S is nonsingular ¥ t € (0,T],
(4.20) holds ¥4 .
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4.5 Sufficient Conditions for Minimum Sensitivity with State Feedback
Cost

The possibility of nonexistent solutions to the minimum sensitiv-
ity problem with state feedback cost was briefly discussed in section
4.2. In this section, the material in Appendix B is used to strengthen
the necessary conditions to obtain the following existence theorem.

Theorem 4.5: The gain matrix K(t) given by (4.8), (4.9) and (4.11)
exists on (0,T] as a minimum of (4.5) subject to (4.4) if

sjz(t) >0 ¥#te (0, t] (4.23)
where sj(t) is the jth component of the solution to (4.11).

Proof: From Appendix B the existence of a weak minimum requires
satisfaction of conditions 1), 2), 3) and 5). Since (4.8), (4.9) and
(4.11) are the extremal equations, condition 1) is automatically
satisfied. In addition, (4.12) and (4.23) imply conditions 2) and 3)
and thus it remains to check for conjugate points. The (nxm) matrix
elements of (B.5) are determined from (4.6) through (4.11) to be

H
ps PP (4.24)
sS sp .

From the definitions of the cost function (4.5) and of the (rxr)

matrix V (4.10) the matrices ﬁpp, 'ﬁss and D are positive semi-definite
on (0,T]. Thus by Theorems B.1 and B.2, no conjugate points exist and
the proof is complete.

From the above theorem, the existence of the minimum sensitive
gain 1s determined mainly by (4.23) which is a somewhat strong condition
and definitely not satisfied for arbitrary cost parameters D, Q and
R in (4.5) and arbitrary functions g(t) in (4.11). This is, however,
the price of achieving linearity of the canonical equations (4.9) and
(4.11). For a given system, cost function and nominal trajectory,
these equations can easily be solved to determine 1f (4.23) is
satisfied. If not, the nonsingular approximate problem formulated
in the next section can be employed to obtain the optimal gain.
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In some cases when (4.23) does not hold, the canonical equations
(4.9) and (4.11) can be adjusted such that (4.23) is satisfied. The
form of these equations closely resembles that of the canonical
equations for the regulator with g = 0. Since the regulator gain holds
for arbitrary initial conditions, it is plausible that the magnitude
of the initial sensitivity vector in (4.11), s(0), could be increased
from zero such that the effect of g(t) becomes increasingly less
important in the solution for K(t). In order to do this the sign of
s(0) must be consistent with that of the trajectory generated by g(t).
The initial sensitivity vector s(0) is thus treated as a parameter in
the optimization problem which may be adjusted such that sufficiency
conditions are satisfied. This method was successfully employed in
the example discussed in Chapter 5.

5, EAa)

W S 4
A C s .
.

4.6 A Nonsingular Sensitivity Problem
Necessary Conditions

The results of the previous section indicate that singular
solutions of the minimum sensitivity problem with state feedback cost
are the major cause for failure of the existence conditions. The
problem will be reformulated in this section such that all extremals
are nonsingular. As a consequence of this, the canonical equations
become nonlinear and must be solved either by approximation or
iterative techniques.

Examination of (4.23) and (4.8) reveals that singularities in
the optimal gain are synonymous with singular extremals. The cost
: function (4.5) will therefore be modified to include a penality
- term for large feedback gains as follows:

L}

JK) = F s D s() + 5 57 [ s'qe + 6] at
) 0
with (4.25)
r
G= 2 g (R K 2 S.‘: + E K 2 )
i=]  j=1 LN B B iJ ™
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and Eij >0 ¥1,jJ. The Hamiltonian for the problem of minimizing
(4.25) subject to (4.4) is

Hy (t, 5, K, p) = -5 Qs -G +p' [As+BKs +g 1.(4.26)

The adjoint equation is

B=-UHy=0Qs+ 576 -pA-pBK (4.27)
with

p(T) = - D s(T)
The 4th component of the feedback term in (4.27) is evaluated as

K2

1 r
z 3%, 5 R fesy

1 iz

Equation (4.27) thus becomes

p=-CA+BkI p+[Q+ X(K)1s (4.28)
with the (nxn) matrix X defined as
r

Z R
i=1

2
iz Kig

0 L#m

The optimality condition is obtained from equation (4.26)

9H,

n
= - 2
Loy Rij Kig 53 Eig Kig * [ PaByysy , (4.29)
Setting the above to zero and solving for Kij yields
s n :
© Ky = - « I p,B (4.30)
i R1J SJY + E1J g=] b o4d
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The above equation can be used to eliminate the gain variables in the
canonical equations as follows. From (4.28), define the n dimensional
vectors

M=-KB p + X(K) s

or componentwise
n r r

M,=- X I p,B,, Kiy + I R, K?s,
I s AR g Y

Substituting (4.30) into the above yields

E.. s n 2
M= - ‘123 \ [ z p, B“] (4.31)
[Rygs4° * Eyy) 21 :
Thus equation (4.28) is
p= -ATE + Qs + M(s, p) (4.32)

with p(T) = - D s(T) and M given by (4.31). Using (4.30) and (4.4),
the jth component of (BKs) is

r n
, = z z
(BKs) 4 L Big Kem Sn
r n sm2 n
Z B, I —_—— + I p. B
= Je = 2 = i e .
=1 1 %msm +Em i=1

Define the (rxr) matrix Z as
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n s 2
z T L=y
m=1 Re,. S,.° + E
- tm “m m
Zzy (4.33)
0 Lty

Then

r r n 7 BT
(BKs)j B R:] yil 121 BJJ?. Ly © yi Py

and (4.4) thus becomes

(4.34)

= As + BZ(s)BTg + g ; s(0)=0

The canonical equations given by (4.32) and (4.34) are thus nonlinear
in s and p.

Sufficient Conditions

In order to establish existence of the optimal gain (4.30),
conditions 1), 2), 3) and 5) of Appendix B must be satisfied.
Condition 1) is implied by the extremal equations (4.30), (4.32) and
(4.34). The Legendre condition is obtained from (4.29).

32H, ) - (Rij sj2 + Eij) i=2,j=m
§K1j skmn B (4.35)
0 otherwise

Since E,, > 0 ¥H,j, the extremal is nonsingular and conditions 2) and
3) are a{ways satisfied.

The determination of conjugate points using the methods of
Appendix B 1s, in general, extremely difficult. The second partial
derivative matrices in (B.5) are nonlinear in s and p which makes the

computation of the conditions for Theorems B.1 and B.2 a formidable
task.
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The existence of the optimal gain for the scalar case can, however, be
directly proven using Theorem 5 of [43]. With some manipulation, all
required hypotheses can be shown to apply. The most difficult is the
- determination of the constant C for the system and cost inequalities.
This can easily be obtained if the term

C il
wlg et

s 0
s
<

g = téu‘EO,T] | a(t) |

» is added to the cost J(K), noting that the minimizing gain will be
ﬁ- unaltered. Cesari's Theorem is also applicable to the vector case
lz when Ry, = 0, ¥i,j . In general Ryj > 0 for some i,j and then the
theorem cannot be applied since the gain and state terms are not
functionally separabl.. It is probable, however, that a slight
modification can be made to the theorem to prove existence for the
general case.

Solution Techniques

Two methods of solving for the optimal gain matrix (4.30) are
given in this section. One is an iterative scheme or gradient
technique as described in Appendix B. The other is an approximation

, " method that yields a set of linear equations for which an explicit
l.' solution can be obtained.

The gradient method outlined in Appendix B is directly applicable
to solving equations (4.4) with s(0) = 0 and (4.28) subject to the
optimality condition (4.29). Equations (4.4) and (4.28) correspond
to (B.13) and (B.14) respectively. The elements of (4.29) make up
the vector ﬂK used in computing the gain increment (B.17) and the
predicted cost error (B.18). The iterative method given by steps
a) through d) effectively generates a solution K(t) by forcing (4.29)
to approach zero ¥ t € [0,T]. The rate of converdence is directly
effected by the initial choice of K(t) and the step size matrix N.
These quantities must be intuitively determined for each problem
encountered.

v
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The objective of the approximation method given below is to
obtain an explicit, nonsingular solution to the minimum sensitivity
problem with state feedback cost described in section 4.2. The method
effectively generates an approximate solution to the canonical
equations (4.32) and (4.34) when Eij is small. Thus the cost (4.25)
will be close to that of (4.5) with the extremal being nonsingular.

In addition, it is assumed that the sensitivity terms in the cost have
sufficient weight such that the sensitivity vector s(t) is small.

An approximation to (4.32) and (4.34) can then be obtained by examining
the nonlinear elements M and Z. From (4.31) the components of M

are analytic at zero relative to Eij and Sy i.e.

Tim Tim Mj) L. 1im ( Tim Mj)' 0
Eij 0 sj-* 0 s:j 0 E.ij 0 .
Thus an expansion of Mj about zero results in

M(s.p,E)~0 .

Using this in (4.32) gives

b~ -ATp+Qs ; p(M =-0s(m) . (4.36)

It s seen from (4.33) that the matrix Z(s, E) is not analytic at zero
since

lim < im0, E)> -0

but
- o d
sJ 0 E1j 0
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where V is defined by (4.10). This is to be expected because, at

sj = 0, the gain given by (4.8) has a singularity whereas that given
by (4.30) is equal to zero. Since Ejy> 0 ¥i,jand s(0) = 0, (4.33)
indicates that Z(0, E) = 0. The sensitivity equation (4.34) therefore
initially runs open loop. As the magnitude of s(t) increases, the

matrix Z(s E) approaches V. Equation (4.34) will thus be approximated
as follows:

Sy =As +g ;50 = 0 ; 0<t<T,
: (4.37)
Sp= A+ BB prg 5 5Ty =5(M) 5 T<t<T

where T, € (0, T) is a design parameter
and

5(t) 0<t<T,
s(t) =
§2(t) T] <t<T .

Equations (4.36) and (4.37) can be explicitly solved as a coupled
system. From (4.30), the optimal gain K(t) is

A
RS

TAT TS

[ 0 o<t<T,
K'ij(t) =

« £ p, B, T, <t<T
2 o R ORi 1

1 s, n (4.38)
The relationship between the approximate solution given above
and that of the singular problem described in sections 4.2 and 4.5 is
as follows. The approximation effectively reduces the time interval
of optimization and, in doing so, generates an initial sensitivity
vector consistent with g(t). This was discussed in section 4.5 as a

R EEO G

. ' 53




..............................

possible means of satisfying existence conditions. The problem result-
ing from some components of s(t) approaching zero on (T],T] still
remains, although this in part dictates the choice of T1. When this
occurs, the approximation of W by V on (T].T] is no longer valid.
The choice of T1 is further complicated by the fact that the desired
trajectory sensitivity may not be attained if T1 is too large.

In summary, the use of the above approximation and the choice
of Tl is problem dependent and related to the behavior of g(t) and to the
desired trajectory sensitivity. If the time parameter T] can be
chosen such that

sjz(t) >0 %te (T1 ,T]

then equations (4.36) through (4.38) give the desired solution. If
not, recourse must be made to the gradient method.
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Chapter 5

Comparison Example

5.1 Problem Formulation

It is of interest to compare the reduced and minimum sensitivity
solutions discussed in previous chapters. The techniques outlined in
Chapter 3 for obtaining the feedback gain function effectively represent
the best of the known nondynamic methods presently used for sensitivity
reduction. The solution obtained in Chapter 4 minimizes sensitivity
relative to (2.34) and (2.37). The question examined in this
chapter is how much better does the minimum sensitive (MS) gain
perform relative to the regulator (RG) and model following (MF)
solutions? A first order example will be described below.

Let the original design system (nominal) be given by

>'<=anx +bu x{0) =10 (5.1)

with u, = kn Xn obtained from

mn LT e erur)at (5.2)
0
- where
E:' an = | b =1
a T=1 r=.2,1
r‘ .

The quantity a, was chosen positive so that (5.1) as an unforced
system would be unstable. This will accentuate the effect of any
variation in a. Also, two values of r were chosen to vary the form
of the nominal trajectory.

The feedback compensator is given by

u(t) = u(t) + K(t) [ y(t) - x (t) ] (5.3)
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E! where u. and X, are nominal solutions of (5.1) and (5.2). The actual
A (real world) system is assumed to be

y=1.2y + u(t) ; y(0) =10 : (5.4)

where the parameter was varied 20 percent in the unstable direction.
Note that if no parameter variations occur, then y = X and u = u
Two measures of the system error are

nu

] 2
Mean Square = f (y - xn) dt
o

(5.5)
Final Value = | y(1) - x (1) | .
The cost of using feedback is measured by
2
Feedback Cost = f' (u - up) dt .« (5.6)

0

Note that if (5.4) is run open loop, then u = un and no cost penality
is incurred.

The MS compensator is determined as a solution to the following
problem

"':(" [%d s2(1) + %— sV (qs? + Kk3s?) dt] (5.7)
4]

subject to

=
I
r
.
i

§ = as + bks +x (t) ; s(0) =0 (5.8)
which corresponds to that posed in section 2.4. The regulator gain is
also obtained from (5.7) and (5.8) but with xn(t) = 0 and s(0) # O.
For the first order case, the model following control is a constant
negative gain such that (5.4) is stabilized.

In this example, the gain k(t) is chosen either as a solution

18T
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to (5.7) and (5.8) for various values of d and q or as a variable
negative constant k(t) = - Ko - This determines the feedback control
(5.3) to be used in the actual system (5.4). Equation (5.4) is then
integrated to obtain the performance measures (5.5) and (5.6). A
comparison of the feedback cost required to obtain a given sensitivity
reduction can thus be obtained for the MS, RG and MF compensators by
varying d, q and ko.

5.2 Numerical Results

The problem posed in the previous section was programmed on a
digital computer with Runge-Kutta techniques used to integrate (5.4),
(5.5) and (5.6). The major results are shown in Figures 5.1 through
5.4. 1In each case an open loop trajectory was generated with k(t) = 0.
A suitable goal for error reduction with feedback was then taken as
10 percent of the open loop error.

Figures 5.1 and 5.2 present the comparison results for a
decreasing nominal trajectory, xn(t), obtained with r = .2 in (5.2).
It is seen that the MS and MF compensators respectively give the low-
est and highest errors for equivalent feedback costs. To achieve ten
percent of the open loop mean squared error, Figure 5.1 indicates that
the MS gain requires 30 percent less feedback effort than does the
regulator. The reduction of the final error is not as great in Figure
5.2, however, the final value sensitivity cost term, d, in (5.7) was
zero for those runs.

Similar results are depicted in Figures 5.3 and 5.4 for an
approximately constant nonimal trajectory obtained with r = 1 in (5.2).
To achieve 10 percent of the open loop mean squared error, the MS
gain requires 50 percent less feedback effort than does the regulator.
The MS gain did not always exist, as was discussed in section 4.5.
This situation was remedied by employing a nonzero initial sensitivity
term. The results are shown in the figures which indicate that the
MS gain still gives a significant performance improvement over that
of the regulator.
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5.3 Discussion

Some observations can be made concerning the MS and regulator
gains which are both time varying. It appears that the existence of
the MS gain is determined in part by the stability of the nominal
trajectory. Some cases were run with an increasing nominal trajectory
which resulted in greater existence problems than those of Figures 5.3
and 5.4. Also the inclusion of small final value constraints
(d >0 in (5.7)) for the MS and regulator gains gave no signif-
icant relative performance change. In addition. runs were made with
a stable nominal trajectory (an = -1 in equation (5.1)). Less
performance difference between the MS and regulator occurred than with
the unstable nominal. This is to be expected since stable systems
automatically reduce the effects of disturbances.

One possible drawback in using the MS gain over the regulator
is that the former is more susceptible to measurement errors. Since
the MS gain must initially be bounded, it will in general have &
larger average magnitude over the interval than will the regulator.
However, if the parameter variations are of significant magnitude and
adequate prefiltering is done, measurement noise should produce
negligable effects.
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Nom. Traj.: 10-2.9
Open Loop Error: 1.16
Parameter Values
MS: q =1-10,d =0
RG: q = 5-40,d =0
MF : ko = 2-15

--- 10% 0.L. Error

.3
§ .2
£l ws _.\
[}
s AN
g ] - e - an - -
: -
<
F: N
0
.2 4 6

Feedback Cost

Figure 5.1 Mean Square Error
Vs
Feedback Cost for Decreasing Nominal Trajectory
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Nom. Traj.: 10-2.9 .
Open Loop Error: 1.97 _
Parameter Values 1
MS: q=1-10,d =0
RG: q = 5-40, d = 0
MF: k, = 2-15 |

--- 10% 0.L. Error
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1.2

Final Error

B e N
NS |

Feedback Cost

1 Figure 5.2: Final Error

'
Feedback Cost for Decreasing Nominal Trajectory
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Nom. Traj: 10-12.3
Open Loop Error: 3.14
Parameter Values
MS: q=1-10,d =0
RG: q = 2-20, d = 0
MF: k° = 1-4

--- 10% 0.L. Error
- —= 5(0) =1

1.2

MS —’\ -— MF

Mean Square Error

0 .8 1.6 2.4 3.2

Feedback Cost

Figure 5.3: Mean Square Error

Vs
Feedback Cost for Approximately Constant Nominal Trajectory
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53 Nom. Traj.: 10-12.3
& Open Loop Error: 3.65
Parameter Values
MS: q=1-10,d =0
RG: q = 2-20, d = 0
MF: ko = 1-4

--=- 10% 0.L. Error
- =~ S§(0) =1

2.4

1.6 \\\‘

N
«— RG
"S\'\ \\
N
N N

- e om | ....?!_..ﬁ e -

4

N

Final Error

0 .8 1.6 2.4 3.2 4.0

Feedback Cost

Figure 5.4: Final Error
' Vs
Feedback Cost for Approximately Constant Nominal Trajectory
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Chapter 6
Conclusions

6.1 Summary

A major contribution of this dissertation is the formulation of
the trajectory sensitivity problem as a direction field problem in the
calculus of variations. This formulation is unique in that it is
applicable to a large class of nonlinear systems which previously
could not be handled by standard sensitivity methods. It also has the
desirable property of reducing, under certain conditions, to the
classical formulation of the sensitivity problem.

The principal result obtained from the new formulation is the
development of a theory for the practical design of linear feedback
compensators which minimize trajectory sensitivity. With the assump-
tions of small parameter variations and quadratic sensitivity cost
terms, the general problem reduces to one for which an explicit
noniterative solution can be obtained for a linear feedback gain
function. The necessary and sufficient conditions developed for the
minimum sensitive gain effectively extend the regulator theory

. developed by Kalman to include unknown constant disturbances.

6.2 Extensions

There are at least three ways in which the results of this
dissertation can be extended. The first and probably the most fruitful
is to generate the linear feedback controls in section 2.4 from dynamic
systems. The possible advantages of this over pure gain feedback are
that the singularity problems could be removed by including rate
limiting terms in the cost and that the sensitivity to measurement
disturbances might be decreased. Also, in view of the advantages of
the minimum sensitive gain control over least square parameter estima-
tors, a comparison between dynamic minimum sensitive controllers and
dynamic parameter estimators (Kalman filter or observer) could yield
equivalent results.
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The direction field formulation of the sensitivity problem can be
extended to include system functions which exhibit convergence in the
mean on the parameter set instead of being continuously differentable
relative to the parameter vector. This will require a slight modifi-
cation to Gamkrelidze's proof of the necessary conditions for an
extremal.

The first order sensitivity problem derived in section 2.4 could
be generalized to include higher order sensitivity terms by relaxing
the assumption of small parameter variations. In fact, the problem
could be formulated in an infinite dimensional space to minimize all
orders of trajectory sensitivity. This would cause the general solution
to be completely independent of parameter errors.
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Appendix A

Functional Analysis Formulation
of the Trajectory Sensitivity Problem

This appendix explicitly relates the ideas and techniques
developed in Chapters 2 and 4 to classical sensitivity methods for
linear systems discussed in Chapter 1. The sensitivity reduction

-and disturbance rejection characteristics of forward loop and input
compensators are shown to be equivalent. It is also demonstrated
that the linear feedback compensator of section 2.4 is similar in
structure to classical input compensators. The most interesting
result obtained is the correspondence between the measurement noise
transfer function and the closed loop system error introduced in
Chapter 2 to 1imit the amount of applied feedback.

Let the closed loop system be represented by

d ds

4
u X3
—o | —
H

4

'\'_i'j]‘F'.."r\‘l'\:.:.. Rt ’-'a v

h, AN ! SO R

ar st d 2L TN, I I
) -

P
éx
—O-

Figure A.1: Combined Closed Loop System
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where the linear operators Po’ G, K and H are defined on appropriate
Banach spaces, the d,, i = 1,...,4 represent unknown disturbances and
6P is an additive 1inear variation in the nominal plant. The desired
or nominal output is given by

X3 = Po Yo . (A.1)

The open loop system, H = K =0 and G = [, yields
Xy0 = 43 + Pdy + Pdy + Py, (A.2)

where P = Po + 8P is the actual plant operator. If the sensitivity
operator is defined as

N=[1-PGH-PK]" (A.3)
then the output of the closed loop system is
X3, = N [ ga + Pd, + PGd, + PGHQ4 + PKg4 + PG_go 1. (A.4)

To make the above nominally equivalent relative to (A.1) when 94 =0,
i=1,...,4, and P = Po’ the compensator must be

6=[I1-KP J[I+HP 1 | (A.5)
Let the closed loop error be given by 65c T X3¢ " X3 and similarily

the open loop error by §x, = Xg9 - Xg,. Then from (A.1) through (A.5)
the following holds

gx. = N éx +[N-11(d-Pdy) (A.6)

The above indicates that when feedback is applied to make N a contra-
diction operator (approach zero) and thus reduce the effects of the
open loop system errors, a corresponding increase occurs in the output
error due to measurement noise. This result {is similar to that
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obtained in Chapter 3. Equation (A.6) also shows that input compen-
3. sation (H = 0) and forward loop compensation (K = 0) have identical
2 error rejection characteristics.

When input compensation is employed, the plant input is

Uy =Guy, + Kxg

where all disturbances are assumed zero. Using (A.5) the above becomes

up = [T-KPyluy+Kxg
or from (A.1)
HP=E°+K[_X.3'i3n] (A.7)

which is simjlaf in form to the MS compensator of Chapter 4.

The transfer function for measurement noise is obtained from (A.4)
as
(A.8)

Ty =NP[GH+K]

»

M

The closed 1oop system error, AS, as defined in Chapter 2 is given by
the difference between the closed loop and open loop transfer functions
when only parameter variations occur. Thus from (A.2) and (A.4)

AS=NPG-P . (A.9)

Using (A.3) and (A.5) the above reduces to

AS =NP{GH+K]6P . (A.10)

It is therefore seen that the closed loop system error (A.10), norm-
alized with respect to the parameter variations, is identical to the
transfer function (A.8) for measurement noise.
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Appendix B
Existence and Solution Techniques
for Variational Problems

B.1 Necessary and Sufficient Conditions for a Relative Minimum
Sufficient conditions are determined in this section which are

mainly applicable to the problems considered in Chapter 4. Some new

results are derived for the existence of conjugate points and their

relationship to controllability. The variational problem considered
is stated as follows:

I
m:(n T, s, K) = (T, ) + f L(t, s, K)dt (B.1)
]

subject to

|e

= f(t, s, K) , s(0) = So (B.2)
where the functions ¢, L and f are continuous in t and C? WRT s and K,
s is an n dimensional vector and K an (rxn) array. It is assumed that
the endpoint of s is free, the time intertval T is fixed and K is un-

constrained. Defining the Hamiltonian as

H(t, s, p, K) = - L(t, s, K) + QT f(t, s, K)

where p(t) is an n vector, the following conditions can be defined
concerning the solution of (B.1) and (B.2).

1) There exists an absolutely continuous vector p(t) which
satisfies

. TA : s -
p = -[oH/as;...aH/3s )" 2 - v H ; p(T) szlt-r

with

jore
L]
<1

o s(0) =5,
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and where K is determined from

BH Ay

=0, ¥1,j.
A solution of the above equations (§n(t), En(t), Kn(t)) is

called an extremal.

2) The extremal is nonsingular, i.e.,

2
DET I:——a—"——] 0
Kys Ky ]

3) Legendre - the matrix

el

is negative definite along the extremal.
4) Weferstrass - The function

E(t, Sy Koo K) = H(t, s, Koy P, - H(t, s.» K, p)

is such that € > 0 along the extremal ¥ K.
5) No conjugate points exist on the half closed interval (0, TJ].

From references [30] and [40], necessary conditions for a relative mini-
mum are 1), 3), 4) and 5) with 3) and 5) relaxed as follows. The
Legendre condition requires only negative semi-definiteness and conju-
gate points need be considered only on the open interval.

Sufficient conditions for a relative minimum in (t, s, $) space
(weak min) are 1), 2), 3) and 5). For a strong minimum in (t, s)
space, these conditions must be strengthened by requiring 3) or 4)
to hold in some neighborhood of the extremal. In what follows, only
weak minima will be considered. Since the existence of conjugate points
is somewhat difficult to determine, the next few paragraphs are included
to give a simple explaination of them along with necessary and suffictent
conditions for their existence.
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As in ordinary calculus, the existence of a minimum is directly
related to the positiveness of the second derivative or variation of
the function. The second variation of (B.1) subject to variations
6K about the extremal determined from 1) is

H.o H 55 |
20 = 7 657(T) [0%w/as?] es(1) + 3 17 [6s ok]| 55 K || = , dt
0 H K GK_J

Ks HK
(8.3)
where Ss(t) is obtained from
o of af , -
§5= =565 + = 6K ; &s(0) =0 (8.4)

and all partials and variations are defined relative to the extremal.
One method of showing that 62J >0 ¥ 6K # 0 is to prove that §2J
does not have a minimum WRT 8K. To this end, the necessary conditions
for a minimum of (B.3) subject to (B.4) yield the canonical equations

L LY % (B.5)
& Hss 'Hsp op
8s(0Q) = @ ; 6p(T) = -0 &s(T) (B.6)

where Sp(t) is an n vector and

H(t, s, p)

M H(t, s, p, K)

]

32y/as? .

If it can be shown that (B.5) subject to (B.6) does not have a solution
on [0, T], then the necessary conditions are not satisfied and 62J > 0.
Thus consider variations &s and 8p which satisfy only the terminal
condition of (B.6). A conjugate point will be defined relative to the
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final time as 1. [41],instead of the initial time,so that terminal
conditions can be more adequately accounted for.

Definition: A conjugate point occurs at tce [o, 7 if
3 a nontrivial solution (&8s, &p) to (B.5) on (tc. T]
satisfying p(T) = -D &s(T) such that 8s(t.) = 0.

If a conjugate point exists, then the nonzero variation,

6s(t), sp(t) t <t<T
6s’ (t), &p' (t) =
o , Ggo(t) 0<t< tc

where 6é° = 'ﬁsp 8p,, ; 8py(t.) = op(t.)

is a solution to (B.5) subject to (B.6).

The following theorem, which evolved from a definition of con-
Jugate points in [40] and [41], gives explicit conditions for their
nonexistence.

Theorem B.1: A necessary and sufficient condition for no con-
Jjugate points to exist on [0,T) relative to the problem defined by
(B.1) and (B.2) is that the (nxn) matrix 8(t, T) be nonsingular on
[0, T) where

o (t,T) = [ W”(t. T) - le(t- T) D] (8.7)
and
vpp(t, T) ¥1p(ts T)
(8.8)
V(L. T) Upp(t, T)

is the (2n x 2n) transition matrix of (B.5) with D defined by (B.6).
Proof: Using (B.8) the solution of (B.5) can be represented as
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8s(t) = wyp(t, T) 85(T) + wya(t, T) &p(T)

(B.9)
5ﬂ(t) = ‘Pz](t. T) 6_5.(T) + wzz(,to T) GE(T)
Then with (B.6) the above becomes
6s(t) = a(t, T) &s(T)
(B.10)

5p(t) = [ iy (ts T) - upplts T) D J6s(T)

It is therefore seen that any nontrival variation must result from a
nonzero 8s(T). To prove sufficiency, assume that 3 a conjugate point
at t_ € [0, T). Thus from (B.10)

0= e(tc. T) &s(T)

which, since e(tc, T) is nonsingular, implies that &s(T) = 0, a contri-
diction. To prove necessity assume that 3 a t'€ [0, T) st o(t' ,T) is
singular. Then 3 a nonzero vector g st

0=0(t,T)8.

Defining 8s(T) = 8, the continuity of 6(t, T) and the fact that
8(T, T) = 1 imply that és(t) # O for some t € (t', T) near T. Therefore,
by definition,a conjugate point occurs at t' . This contridiction thus
completes the proof.

Since the transition matrix for time varying systems is in
general difficult to obtain, its determination can be bypassed with
the following.

Theorem B.2: If the matrices R' g and D defined by (B.5)
and (B.6) are positive semidefinite on EO T] then no conjugate points
exist on [0,T).

Proof: Assume that 3a t € [0, T) such that e(t ,T) is not
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invertable. Then 3 a nonzero constant vector g st
0= e(t' N T) _B_ .

With some manipulation, the following equation can be obtained from
(B.5)

T T t T T
8p (t) ss(t) = &p (T) 8s(T) +.¥ (sp prﬁg -6 H o 8s) dt |

Let 6s(T) =g and t = t', then from (B.6) and (B.10)

0=-65(T) D os(T) -4 (5p" A 6p+6s' (-H._) 6s)dr .
t PP SS

Since D and "nss are positive semidefinite,the above implies that

- (ap_TiT ép) dt > 0 .
t PP

But then

Fpp6g=0 ¥Ytelt, 1)

because of the positive semidefiniteness and continuity of Fpp. The
6s term in (B.5) is thus uncoupled from &p and

6s(t) = o(t, T) &s(T)
holds ¥ t € [t', T] where ¢(t, T) is the transition matrix for

8s = H-ps &s .

Att =t', 8s(t') = 0 which by the fnvertability of ¢(t , T) implies

that &s(T) = 0, a contridiction. Therefore 6(t' , T) must be invertable

and by Theorem B.1 the proof is complete.
Since the minimization problem defined by (B.1) and (B.2) has
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variable endpoints s(T) and fixed time interval [0, T], controll-
ability as introduced in [11] does not play an important role in the
conditions for an extremal. However, if the endpoints of (B.2) are
fixed (s(T) = 52). then there is a direct relationship between
controllability and conjugate points as shown below.

With fixed endpoints,the canonical equations for the accessory
minimization problem are given by (B.5) with (B.6) replaced by
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5s(0) =0 ; &s(T)=0 . (B.11)

Conjugate points can now be defined relative to the initial time t = 0,
which is the classical definition [30].

Theorem B.3: If the (nxn) matrix wlz(t. 0) given by (B.8) with
T = 0 1is nonsingular, then no conjugate points exist on (0, T] relative
to the problem defined by (B.1) and (B.2) with s(T) fixed.

Proof: This 1s similar to the first part of the proof of
Theorem B.1 and will therefore not be repeated.

Theorem B.4: If the matrices pr and -H;s of (B.5) are positive
semidefinite on (0, T] and if (B.5) is completely controllable, i.e.
the matrix

MO, t) = 1€ 600, ©) Mp(e) 470 ) dr

is positive definite ¥ t € (0, T] with ¢(:) the transition matrix for
Rbs’ then no conjugate points exist on (0, T] for the fixed endpoint
problem.

Proof: Using Theorem B.3, the proof reduces to showing that if
#(0, t) is positive definite then wlz(t, 0) is nonsingular. This was
shown in reference [42] which contains existence theorems for
solutions of linear two point boundary value problems.

It should be noted that when (B.2) is linear and (B.1) quadratic,
such as (4.4) and (4.5), the controllability of (B.5) is implied by
the feedback controllability of (B.2).
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B.2 A First Order Gradient Method for the Solution of Nonlinear
Optimization Problems

The gradient method described below is a standard first order
technique for solving nonlinear problems (reference [44]). The method
is simple to apply although convergence in some cases can be extremely
slow. It is, however, quite applicable to the unconstrained minimiza-
tion problem defined in section B.1.

Adjoining the sensitivity equation (B.2) to the cost (B.1) with
multipliers p(t) results in

J=y(T,s) +sT [Lt, s, K) +p ($-f)]dt .
]
Using the Hamiltonian defined in section (B.1), the above becomes
_ T Te
J"J’(Ts_s_)*f ['H(t’E,E.K) "‘Ei]dt
0

or integrating by parts

T T T
J=w(T._S_)*g§| - S [H(t, s, p, K)+p's]dt,  (B.12)
(o] 0

The gradient method basically consists of choosing an initial
value for the optimal gain K](t) and then using it to integrate the
canonical equations

y
H
»
H
s
'

(B.13)

s=vH , s(0)-=

P
p=-9H, p(T) = -9y

56
(8.14)

A new gain Kz(t) 1sAdeterm1ned to minimize the predicted error in the
cost (B.12). The process is then repeated until the cost error is
near zero.

The perturbation of (B.12) relative to &s and &K is
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&J =[VI vls(T) + p' 6s(T)

r n

TeeoT 3H = o7
S [[v_Hlss + = £ 8K, . + 8s ] dt
[V M 1 g1 Ky TH TR .

Using (B.14) to define p(t), the above becomes

d=-fT[ % z g{}—akuldt
o i=1 j=1 ij
or
_ T T
8J = -{) ﬂK 8K dt (8.15)
where H, and 6K are r-n dimensional vectors with elements oH and

GK” respectively. In order to 1imit the size of 5K, a quadratic term
is added to (B.15) as follows:

IS A | 1 T .7
GJT- {) ﬂkdgdt-é— {) 6K' N 6K dt (B.16)
where N is a symmetric, positive definite, (ner x ner) dimensional

“ matrix. A necessary condition for a minimum of GJT is
= He + N 8K = 0
& or :
E“ 6K = - N Hy . (8.17)
‘* Using (B.17) to compute the new gain as
& Kig “Kig* Ky .
-

The cost deviation is
so=f Mg N1 opoat (8.18)
o
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The gradient method of computing the optimal gain is thus composed
of the following steps:

a) Choose an initial gain K(t) and step size matrix N.

b) Integrate (B.13) forward from So and then (B.14)
backwards to obtain s(t) and p(t) on [0, T].

c) Determine the new gain from (B.17) and the predicted
cost error from (B.18).

d) Repeat the above steps until the predicted cost
error is approximately zero.
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:ﬂ APPENDIX C

;3: Least Square Parameter Estimation and Minimum Sensitive Control

- C.1 Introduction
2

}

}

As stated in Chapter 1, one solution to the sensitivity problem
-+ is to first estimate the values of the unknown parameters and then use
- the estimates to control the system output near the nominal. The
1" standard technique is to include the parameters as part of the state
and to obtain the augmented state estimates using a Kalman filter.
o Then the regulator solution can be used for feedback control (section
%ii 1.2.5). If it is assumed that initial condition errors are included

in the nominal control and that the total state, x(t), can be measured,

a nondynamic least square estimate of the parameters can be obtained
[ from x(t). The combined estimator and controller is thus given by a
h linear gain function.

In this appendix the feedback control obtained with the least
square parameter estimator will be compared to the minimum sensitive
gain function derived in Chapter 4. It will be shown that both feed-
back gains have similar structures when the number of uncertain
parameters is equal to the dimension of the state, i.e. m = n. However,
when m < n the least square (LS) gain must be determined by a nonlinear
set of differential equations with time varying coefficients,and when
m > n the LS gain doesn't exist. Neither of these problems occur with
the MS gain. Other advantages which result from employing the MS
control will also be pointed out.

C.2 Least Square Controller

Assuming that the closed loop system dynamics are described by
(4.1), the 1inear perturbation equation is given by

O = 228X + xo M +aoan ;5 Mx (0) =0 (c.n)

——
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where all partials are evaluated along the nominal and the A quantities
represent off nominal errors. Any initial condition error is assumed
to be included in g"(t). If the parameter influence matrix is defined

by

G=[%§]=[g;|.---.9m] ’

then the above equation becomes,

Ax =AAx +Bau +Gan ; ax(0)=0 . (C.2)

—

Since it is desired to reduce the trajectory error, Ax(t), the
following cost -functional will be employed
g

) 1 T
=3

gT(T)D ax(T) + 5 ;T ( AiTQ aAx + Au'R au )dt (C.3)
0

where D, Q and R are as defined in Chapter 4. The control error term
is included in the cost to 1imit the amount of applied feedback. The
minimization of (C.3) subject to (C.2) results from [11] in the
following control

bu = R']BTP1 x4 R"BTP2 an (c.4)

where the (nxn) and (nxm) matrices P, and P, satisfy

LN
‘.'
,

T 1T

-#] = APy + PA+ PIBR' B'Py -Q ; Pl(T) =D (c.5)

- oy 1,7 i -
P, = AP, + PG + P;BRT'B'P, v P(T) =0 (c6)

The zero initial condition on the system equation allows an estimate
of An to be obtained as follows. Using (C.4) in (C.2) and defining

H = BR'1BT, the closed loop system error is described by
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Bc= (A+HP) &x + (6+HP)) an 5 &x(0) =0  (C.7)
or
ax(t) = £ y(t,x) [ 6+ WP,y 1 an dr
0

where y(+) is the transition matrix for the free part (4n = 0) of
(C.7). Since An is assumed to be constant

Mx(t) = W(t) an (c.8)
where

W(t) = o y(t,0) [G+HP, Jdr
0
Differentiating the above results in
ﬂ=[A+HP]]N+[G+HP2] ; W(0) =0 (C.9)
Assuming that the state error can be measured as

Ax(t) = W(t) an +d ,

where d represents zero mean Gaussian noise, the least square estimate
of the parameter error is given by

an = W(t) & (c.10)

where

whie) = L ww W €.1)

For the above inverse to exist, the number of uncertain parameters
cannot be greater than the dimension of the state, i.e. m < n. When
m > n, the technique described in this section for obtaining a feed-

€

— back control is not applicable. Thus, using (C.10) in (C.4), the

T control becomes '

weRTBT P M T . (c.12)
.

e

N

A

¥ 84

i




at.
W WP

......................................

The least square (LS) feedback gain is therefore
K (t) = RT'BT [ P+ P " ] (C.13)

where P]. P2 and W' are determined from the nonlinear system of
equations defined by (C.5), (C.6), (C.9) and (C.11). From (C.12), the
LS feedback control is

ult,x) =y (t) + K (t) x(t)
with (C.14)
y () = up(t) - K (t) x (t) |

C.3 Comparison with ... ~imum Sensitive Feedback Controller

In order to compare the least square feedback gain with that
derived in Chapter 4, it will initially be assumed that the number of
uncertain parameters is equal to the dimension of the state (m = n).
The results of sections 4.3 and 4.4 then apply when the cost functional
is given by (4.5) with F, replaced by F, and with the same weighting
matrices as (C.3). In particular, for each component parameter error
An, and corresponding column of [ af/an ]i é=g_i(1;) , 1 =1,....m,
the MS gain satisfies (from (4.15) - (4.17)),

- RKy 5; + 8 p; = 0
with i = 1,...,m and
§,=As; +BR 1B  p, +g, ; 5(0) =0

é‘l = A7 p; +Qs; s 2,-(7) =-D i-l(T) .

These can be combined as in section (4.4) to yield

RK S+B P=0 (C.15)

where the (nxn) matrices S and P satisfy
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S=AS+HP+G ; S(0)=0 |, (c.16)

B=-ATp+qs ; P(T)

-0s(T) , (C.17)

with H and G as previously defined. When S(t) is invertable, the
minimum sensitive (MS) gain is given by

pst . (C.18)

The remaining problem is to correlate the MS gain (C.18) with the
LS gain given by (C.13). Since m = n, W'(t) = W '(t) and (€.13) can
be written in the form

-1.T -1
KL(t) =R B [ le + P2 Iw' . (C.19)

Note that this is only valid for m = n. When m < n,W wh %I in general
and (C.19) doesn't hold. Let

PL=Pyu+P, . (C.20)

Then from (C.9)
W=AW+H P +G ; W) =0 , ' (c.21)

which corresponds in form to (C.16). By differentiating (C.20) and
using (C.5), (C.6) and (C.21} the following holds

= T L3 -
ﬁL -A" P +QW 3 PL(T) = - D W(T). (C.22)
Thus from (C.19) and (C.20) the LS gain becomes
K (t) =RT BT p W, f (C.23)

It is easily seen that by corresponding PL and W with P and S
respectively, the MS and LS feedback gains have similar structures when
m = n. However, the linear structure of defining equations is a direct
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result of the solution for the MS problem whereas some manipulation
is required to obtain this form for the LS solution. The type of least
square parameter estimator described in this appendix has been previous-
1y used in [28] to obtain neighboring optimum solutions to the cost
sensitivity problem, although the existance of the linear solution was
not recognizeéd. An additional advantage of the MS gain is that
different cost terms corresponding to each parameter error component
can be employed as in section 4.4.

The strength of the techniques discussed in Chapter 4 is particular-
ly apparent when mx n. If m <n, the LS gain must be determined
from a nonlinear set of matrix differential equations involving a
pseudo-inverse. In contrast, the MS gain is determined from a set of
linear matrix differential equations resulting from the minimization
of a combined state and control cost function (section 4.4). When
m > n, the LS solution doesn't exist. The MS gain is directly computed

from (C.18) with 571 replaced by

st=sTrss'g?
which exists if the (nxm) matrix S is at least of rank n. It is
therefore seen that the results of Chapter 4 apply to a much larger
- class of problems than does the least square estimator. In addition,
the MS gain is always determined from a set of linear differential

equations and, because of the variational formulation of the problem,
sufficiency conditions can readily be obtained.
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