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PREFACE :';;

:.:J

With the development of advanced Army Ballistic Missile Defense systems s

there arises the requirement for increasingly sophisticated guidance and s

control techniques and systems. Fundamental to this area is the competitive HJ

situation wherein a target vehicle is attempting to avoid an intercept

vehicle or to say the same thing another way an interceptor is attempting

to hitt an evasively maneuvering target. This competitive situation is :'

referred to in the technical literature as the differential game problem. 1

Results developed for this fundamental problem area obviously have ‘
applicability to a wide variety of situations not only military strategic

but other competitive situations as well. This report is one of a companion E‘:

set of reports issued on this broad research effort and it deals with _‘

continuous time differential games in a stochastic environment. One of :f'

its purposes is to develop techniques which can result in the simplest :j:

possible thoroughly effective systems. :;
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An examination is made of some problems encountered in the optimal ;2
control of a 11?ear dynamic system by two 1ndependen? controllers with ?é
noisy state observations, the controllers having either conflicting or ééi
concurring objectives. The question of wvhat form the optimal controls §;
should take is also discussed. By restricting consideration to linear &
forms, it is shown that the computational complexity of a general ﬁ%
optimal linear strategy is considerable. Attention is further ;é;
restricted to & particular linear form for the optimal controls: a ff
matrix transformation of a vector vhich is the solution of a linear 5;
differential equation forced by the observations. Properties of ;;
certain forms of this type of control are analyzed, and it is shown ;?
that the parameters of these formé may dbe expressed in terms of solu- g;

tions to a set of nonlinear differential eqnaﬁions with split boundery

conditions. It is also demonstrated that these forms reduce, in a

onerinput case, to those specified by the separation principle of R

one-gided optimal control. : P

41,},....',;,’;
W v e ']
PO NN

A

-

. I-. e ey Lt e e
. IR N R I P P
. e u e ST e LR A
S e s S IR X

.
ad s




..............

CONTENTS

m )l — INTRODUCTION:.cocesscocsocescssasncssccsconscsssaoscscnccone l
1.1 Preliminary RemarkS.cceccecoccvesoconssscscssssee
1.2 m mteministic Game Fomlationo.ocooonﬁoooooo h

-

CBAPTER 2 — THE STOCHASTIC GAME PROBLEM..ccecssccsccsscocscscccces 17
2.1 Prenm1m1'y RemarkS.ceeosevsccsscossscsnssnsccnse 17

2.2 A Hueristic Justification for the Assumption of
Linear stmmgies......ll.'.........I............

2.3 Minimum Variance EstimatioDeccccccedecccccccansnes
2.4 A Stochastic Optimal RegulAtOr..eececccescccssccce
2.5 A Stochastic Differential Game — Special Case....
2.6 A More General Stochastic Differentisl Game......
E.7 A SIUNPLe KXAMDPLCcecssesscsscnrsssasssssssscssssss

EBRER B

CHAPTER 3 — PROBLEMS OF STATE ESTIMATION IN TWO~INPUT COOPERATIVE
m COWEIHIVE commll smﬂlom.........ll......... h?

301 Digcrete-Time CaBC.cccvevcvsstsccosrcscsrsscccsssss ~7
3.2 cuntimmqme cue....’......0................. 53
3.3 Control Applications of the State Estimation

Pmced“reQ........................‘........l...'.

3.4 A Suboptimal Estimation Procedure...ccceecccscces

e 8

CEAPTER 4 - THE DIFFERENTIAL GAME PROBLEM WITH DIMENSIONALLY
wmmm COMmL STRATmIm-..........l....'...'... 77

,‘01 Introduction.ceceececcvccesccscecrcsccosscessnsesne 77
h.a The Dimensiomuty constmint.................... 77
h.3 A Specimzed Rentionship....................... 78

L.} Generalized Relationships for n-Dimensional
contml strategies.....'......................... 80

.’-: ‘-5 Aaing\lla.r SUrfacCe.ccoccccoccsssssssssecssscosane 88
1y
N l..s Specifying the A MatriceBececccccovsssaccoccccone 9




b.7 Relationships With the One-Sided Case and the
separauon Principh.'.................'.........

4.8 The Matrices 31, 32, Kl, Qndxa ecescs0s0ccscaccoe

CHAPTER 5 — OBTAINING PAYOFF BOUNDS FOR CONSTRAINED STRATEGIES«...
S.1 Removing Constraints on One Controller..c.ccccsecee
5.2 Obtaining Worst-Case Bounds on Payoffeccecccocces

CEAPTER 6 — CONCLUSION:cosccccccceosscssonccsssssccscvscssscvacocce
6.1 SUMATY.ccessccccscsssscccsssssssccsssssscasccnce
6.2 Results Of ReeArch.cccceccsssscsssccscsssssccsce
6.3 Suggestions for Further InvestigationS....cecccee

Bmlmmm........'......‘0............l..'......C.........Q....

mmn.....‘..............O......lO.....'...'.l.l.....‘.........

95
98

101
101
102

105
105
106
107
109

113




Chapter 1
IRTROTUCTION

1.1 Preliminary Renarks

<, : A vealth of practical problems arise out of natural engineering
situations in vhich the control of the "system” is in the hands of more
than & single controller. Such multiple controllers may have varying
e objectives, end th;se objectives may bé vholly or pa;£ially conflicting
!I or concurring. As examples we.ﬁight cite pursuit and evasion situa-
tions with two vehicles, rendezvous in space of two vehicles, and
control of an internationel economic system by several state govern-

< * ments. In many of these natural engineering situations the controllers
. are required to act with imperfect information as to the true state of |
the system;'thus,.in such cases the question of how to control in a
manner vhich is in some sense optimal is usually difficult to ansver.
For this reason control theorists have éften c?osen to analyze abstract
iaxhﬁmaxical.models vhich are thought to retain some important charac-

teristics of theif real-world counterparts, since such models yleld

more readily to analysis than the actual situations. ’

It is the object of this research to investigate the nature of a
specific type'of two-ipput control problem: one in which the con-
trollers have conflicting.obaectives, the state of the system 1s
described by a system of linear differential e~uations, the criterion
functionsl is quadratic, an’ the contrellers have avaiiab:e only sta*~
observations which are.obscured by vhite Gaussian noise. This is a

stochastic differential game situation. It is thought that a thorough
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analysis of this probtlem may reveal some interesting facts vhich vill

contribute to a greater understanding of more complicated problems.

In the realm of optimal control theory, systems vhich are
described by linear differential equations and quadratic cost func-
tionals have become classic objects of analysis. This is partially
because they have the pedagogical advantage of yielding with relative
ease solutions which illustrate theoretical pfinciplee in a simple
framewvork. It is also because many real-world optimal control prob-
lems can be fitted into the linear-quadratic mathematical framework;
.; l hence we gain insight into the behavior of practical systems by

ﬁ studying the linear-quadratic models. .

o In the area of stochastic optimal control similar statements

apply. Here the so-called "separation theorem" [9,15] enables us to
combine our knowledge of the deterministic optimal control for linpear-
quadratic systems with the results of Kalman and Bucy {17,18] in the
area of estimation and prediction of the state of stochastic dynamic
systems to produce a céntrol which is stochastically optimal in the
sense that it minimizes the expected value of the cost functional.
Specifically, the theory of deterministic optimal control vhen applied
to linear-quadratic systems shows that the optimal control function
can be expressed as linear state feedback; i.e., if we denote the

control signal by U(t) and the state of the system by x(t), then

i u(t) opt " X(t)x(t)

C L . . A L R I . . .
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vhere K(t) is a feedback gain matrix determined by the parameters of

iZ; the system. The separation theorem then shows that when the state is
! R not dii-ect_.ly observable the stbchastical]y obtima.l control signal is

2 . N A

i “(t)stoc. opt = x(v)x(t)

-l A . .

= vhere X(t) is the conditional mean of the state, based on all available

knovledge and measurements, and K(t) is the deterministically optimal
feedback gain. This result is iptuitively satisfying in that we simply
use the best {mean square) estimate of the state in place of the actual

value of the state to obtain the best realizable control function.

Differentiel games are natural objects for the application of
optimal control theory, since in many cases the formulations of thgse
problems are only slight modifications of ordinary optimal comtrol  °
prodlems with provisions for an extra control input to the plant.

Indeed, differential games described by linear differential equations

and ciuadratic payoff functionsls yield under wmild restrictions solu-
tions vhich are not greatly different in nature from those of the
analogous one-sided optimal control problems. To be specific, the
optimal strategies for both players are linear staté feedback control
functions.

A natural conjecture then is that in the stochastic version of
the linear-quadratic differential game, where the players are unable
t0 observe the stad'f.e direcily, the stochastically optimel strategy
would be to e ploy the conditional mean of the state in place of the

stawe "3t : linear feedback. Unfortunately, this conjecture is false,
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...........................
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as is easily shown by simple counterexamples. We shall, therefore,
proceed to inquire about the nature of the optimal dtrategies and to
analyze in particular the special cases where the controllers are
restricted to the use of computationally feesible (practical)

strategles.

. To begin the development, we shall formulate the stochastic
differential game problem which will be the underlying object of analy-

sis foi the remainder of this work.

1.2 The Deterministic Game Formulation

The differential game described by the system et.;uation

X(t) = P(t)x(t) - 6, (£)U,(¢) + G (LU (L) . (1)

[vhere x(0) = x, r.{xo} - X, ama COv{xo} - txo)
vith payoff functional

T
Hupu,) = 3 RX (TRX(T) + fo u3(£)R, (£)u, (t)at

T
- f U;(t)Qe(t)UZ(t)dt (1.2)

o

(vbcrc Ql(t) ? Qz(t) , and Q3 are positive defin!te symmetric watrices,

and the ssterisck denotes vector or matrix tranapoce)

...........
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and observation equations

2,(t) = B ()X(t) + 1(¢)
| (2.3)
Z,(t) = Hy(t)X(t) + Ny(¢)

(vhere 1]1 and 1']2 are zero mean white Gaussian noise, with

BN (T(1)]} = B(£)6(tr), E{I(0)T5(1)]} = Ry(£)6(xr),
{0, (0131} = o,

and with Rl(t) ’ Ra(t) continuously differentiable, O < T) may be
described in more efficient and general terms. First, note that since
Ql, Q2’ and Q3 are positive definite and symmetric, they may be

Lfantored ae

o 3 ~
Qi = Qi Qi 1 = 1,2’3

vwhere Q " is triangular and non-singular. Then by the transformations

X - Qfx' ' (1.4)
v, ~ Ql(t)'%v;_ (1.5)
u, - ,(4) %, (2.6)
(]
5
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the system equation becomes

() = afradx’®) - oo (eriuye)

+ @ do,(1F (tuy(e)

O;, defining new matrices
P () = afr(tied
6, (1) = afe (nate)
Gy(t) = Q3%62(t)a'2%(t)

the system equation becomes

X'(8) = P(OX'(8) - 6 (L8] + Gh(tIux(e)

the payoff functional becomes

. T ] 1 ]
J(U;,U;) = %E{x'('r)*x'('r) + f U () (t)at
o]

T
- j; u;*(t)u;(t)dt}

and the observation equations are

n

2(6) = E(6AFX'(8) + T(e)

"

2,(t) = Ha(t)a’;}x'(t) + Tx(t)

By ()X (£) + My (t)

Hy(£)X (£) + To(t)

B Y PP, L

(1.7)

(1.8)

(1.9)

(1.10)

(1.14)

(1.2a)

(1.34)




In view of the possibility of making these transformations, we may
consider (1.1A), (1.2a), and (1.3A) to be a general problem formula-

tion. Further generalization is possible, however.

Note that the solution to (1.1A) may be written (dropping the

"prime" subscripts) as

t
x(t) = $(t)x, -_/- ¢(t)¢'l(T)Gl(T)Ul(T)d1
o

& (1.11)
+ jo’ D))o (ru (T )ar
Ej If we now define the integral operators Tl and T2 by’
3 . t | .
(7,0,)(¢) = f ()9 Hr)6, (T)u (r)ar (1.12)
. 0o -
’ t
(T 0,)(t) = f $(E) )G (U7 )ar (1.13)
[+
then.equation (1.11) mey be written as
xX(t) = §(t)x, - (T,U,)(t) + (T 0,)(¢) (1.14)
or
X(1) = $(OX, - (T0,)(T) + (2 P,)(T) (2.25)

Note that Q('.r)x° is the preiicted miss distance under the condition of

no control being applicd by either player.
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We shall henceforth drop the argument T whenever t = T, so it will
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be understood that when we write

X(T) = q:xo - U, + T U, " (1.16)

this is equivalent to (1.15), and when the argument t is intended, we
shall use the form (1.1h4).

The first term in the payoff functional (1.24) may thus be written

X(T)*x(1) = <¢x - T, + T, $X) - TV +T02> (2.17)

(vhere (.,.) here denotes the inner product in Euclidean space.) The
other terms in the payoff functional may similarly be expressed as
inner products in the Hilbert spaces formed as finite coplies of the

space La(T). Hence, the payoff functional may be written a=
= 1 { -
3(,,U,) 5E <¢x° T,U,+ TV, X - T,U; + 'r202>

* ("1'"1> - <"2'U2>} | (1.'18)

We wish to find the U

and U, vhich minimaximize J(Ul,Ua). Ve

and Z2 and

1l
require that these be functions of only the observables 2

1
the known statistics of xo, “1' “a’ with the specific functional forms

to be determined.

....................................
...........................................
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To acquire some insight into the nature of the problem, we first
solve the deterministic vers:lon;l i.e., we assume both players know
precisely the initial condition xo. We also assume both players are
able t0 monitor the state continuously during the progress of the
game. We may drop the expected value notation for the time being, and

thus express the i:ayoff as

17
J(Uu;) = §L<¢xo"1'1”1*1'2"2' 4”‘o"l'lul"""'a"a>

d (v,,0, ) - <u2,02>} (1.19)

To minimaximize this quantity with respect to Ul and’ Uz, we form the

functional derivative of J(Ul’Uz) with respect to U, and U, and set
these derivatives equal to zero. Thus

- d * * *

2 | 50, J(uu,) = u, - 'r1¢x° - T,7 U, + T,TU; = O (1.20)

. * * -
30 JOU,) = U+ 'r2¢x° - TTU, + T, ) (1.21)

(vhere the asterisk here denotes the adjoint operator.) We see that
*

for these equations to be true IJ1 must be in the range of '1‘1, and so we

may write U1 = T:)\i. Substituting these expressions into the original

equations (1.20) and 1.21), we have

‘l‘-:l‘-.l'. -:I‘- :l!t. l.;~-_' '1

-

]’.l'he derivation given here is due to Porter [22].

R |
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T, Ay T, ¢x° + T, T, - T, T,U) (1.22)
* * * *
ToA, = T, ¢x° + Ty T, - T, TU) (1.23)

These equations will be satisfied if

Ay = X+ T, -TUL = A, (1.24)
vhich implies
* *
SR SRR 7. SO WEY X Ao W (1.25)
Thus
rv+mm* mm ¥, - hv ' (1.268)
Lt 0101 ‘2.2 J 'sl deo - Fl
or
5 VN ETT X AREY A ' | (1.27)
. 1 = [I+0T, =TT, %o .
». vhen the indicated inverse exists. Thus we may write
i
"Q
r v HE R X A *Tl¢x (1.28)
X5 R W e L W I B y
" v 1+rnt ']-1¢ 3 (1.29)
_ 2 = To[I+TT, -7, X ’
We note thats the form of (1.19) is quite general and that the results

above are valid for any abstract Hilbert space functional of this

form,

10




When T, and 7, are given by (1.12) and (1.13), then
r;[xvrl'r;-'rg;]'l = a(t) §7(n,t) -

T
[I +f° ¢('r,s)Gl(s)G1(s)¢*(T,s)ds

, ' -1
"jo ¢(T,s)62(s)(};(s)&('ﬁl‘,s)ds} (1.30)

and
rlxﬂ'lm}mzrg'l - 6y(t) (1) - .
T
[I + j; Q(T,s)cl(s)s’{(s)tb(r,s)ds
T -1
- f ¢(T.8)G2(8)G;(s)¢*(T,s)ds} (1.31)
o
If we define

T
K, (t;t,T) = o;(tw*(w,t){: + ft $(z,5)6,(8)6) (834" (T,8)as

T -1
- j 0('1‘,B)Ga(-)G;(s)¢*(‘r,8)ds] é(T,t) (2.32)
t

and

T
Ke(t;t,’;l') - c;(t)f('r,t){z + ft O(T,e)ol(S)G;(s)V('r,s)ds

T 1-1
- f ¢(w.-)c2(-)c;(-)¢*(r.-)as} b(r,e)  (2.33)
t

S e T T T e e e e T T e e e e e e T e A e e e e L4 ea o e s e e e
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then wve may write

Ul(t) = Kl(t;o,',l‘)xo | (1.34)
Uy(t) = xz(t;o,r)xo _ (1.35)

Here the arguments O and T of Kl and Ka indicate the initial and final

times ¢t = 0 and t = T, respectively.

Having seen this solution, we may state the problem somevhat

differently: if we require that Ul and 02 be of the form Ul = leo’

then vhat are the transformations Kl and I(2 which minimaximize the
[]

functional J(U

J‘,112)? In other words, ve wish to find K, and K, vhich

nin max J(K..K.) & 1{ OX_ T K. X_+TK.X_,0%_ P K. X_+TKX_)
x K P 4 C N\ VWV A 4w - e W Ve oh W - - Wy
1 "2 :
+ <x1xo’xlxo > - <x2x°,x2x°>} (1.36)

Now Kl and K, are linear transformations from the Euclidean space
containing xo to the Hilbert spaces which are the domains of Tl and '1'2,
respectively. We form the functional derix.ratives of J(Kl,xa) with

* respect to K; and K, as follovs: let A, and A, be arbitrary linear
transformations which have the same domains and ranges as» xl and x2,
respectively, and let '1A1 and '2‘52 be variations q.bout Kl and xa,
respectively, where '1 and s, are scalars. Then, remembering the

predicted miss distance = ¢('1‘,0)x°,
‘
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I(Ky*810K,) = 3 <l.¢"rl(x L 8y8)) + TK K
[¢"I'1(K1" s]_A],) + sza]xo>

+ <(K1+ 8,8,)%,, (Ky+ ‘1A1)xo>

- <K2X°,K2X°>} (1.37)

and, upon first expanding the sbove expression and then subtracting

J(Kl,xa) , We have

Iy apykp) - I(KKy) = -s[mK e b, Ty8 %o )
1.2
+ 583 (T X o Ty X o>
+ 8y (KXoobyX,)

1 2
t3 31<A1X°,A1x°> (1.38)

Dividing this expression by 8, and letting s 1 approach zero, we have

the functional derivative of J(K]_’Kz) with respect to K,, which is

aJ(xl,xz)

K <[¢-'I' +T2Ka o’Tllo> <K 1X0787 o> (1.39)

1l

vwhich may be written, using the properties of the adjoint operator

'1‘1* and combining terms, as
3J(K x' )
172 *
5%, = -(('rl [6-'rlxlvr2x2] - xll Xgs8.X, (1.%0)

13
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A necessary condition then, that Kl be a minimizing transformation, is

((Tl'[¢-'rlxl+'r21<2_ - xl)xo,Alx°> = 0 (1.41)

Now, since Al was taken to be an arbitrary linear transformationm,

(1.41) implies that the vector

(Tl*[¢"rlxl+T2K2.1 - Ky X, (2.42)

is orthogonal to any linear transformation of X o’ which in turn implies

that the transformation

Tl*[¢-mlxl+'.r2x2] - xi (1.43)

is The nuli transiformation. ‘L'NUsS ror any vecuor Lo

RLEAREEN S XS . (1.44)

This can be true only if le o is in the range of '1.‘1*; hence, we write

» »
leo - Tl )‘1 for some xl in the domain of '1‘1 .

Followving a line of reasoning similar to the above, after
differentiating J(K,,K,) with respect to K,, we are led to

AL A @)

»
2 .

*
We write xaxo = T2 )‘2' Substi-
xo a.t.1d szo, respectively, in the above h

'
Hence, sz o is in the range of T

» »
tuting '1‘1 xl and '1’2 K2 for K

1
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pair of equations gives
o, - T A .5 (1.46)
T, % "1 * TeTa e ! .
*b T . (1.47)
To xo‘T2T1T1"1* 2“'2"2 2 = Tody | T
which can be written
L
¢x, = 7T "1 - Tl Ap * Ay | (1.48)
% *
¢x, = TyTy Ay - TToAp* A (1.49)
If Ay = Ay we have
»*
¢, = l':tvrlvrl* - 7%, ] Ay (1.50)
or
EEX N JB x (1.51)
1Ty T2 I ¥ . .

if the indicated inverse exists. Then, since xlx = Tl kl’ we have

-1 .
L, ®$ *
XK, = Ty [1411'1'1'1 - 'r2'1'2] ] (1.52)
and similarly
| » L Q ')
Ko = To(Bnm -7 ¢ 153
15
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These expressions are vhat we expected: knowing that the overall
optimal strategies are linear transformations of xo; ve are not
~ surprised that vhen we ask which linear transformations of xo are
optimal we get as an answer cthe same (the overall optimal) transforma-
tions. However, the technique Just employed can provide 9pt1ma1 linear
strategies even vhen the form of the overall optimal strategies is not

known.

Expressions (1.52) and (1.53) are open-loop opﬁimal control
strategies. Since we have temporarily assumed that the players are
both able to monitor the state continuously, we may convert (1.52) and
(1.53) to closed-loop or feedback type strategies by, replacing ¢x° vith
M'l(t)x(t), K,(¢;0,T) with K,(t;¢,T), and K,(t;0,T) with K,(t;t,T).
In this case, as the game progresses, the players constantly regard the
present instant as the initial time of a new game and formw their control

functions accordingly.

..........
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Chapter 2
THE STOCHASTIC GAME PROBLEM

2.1 Preliminary Remarks

In some cases the players are not able to monitor the state
continuously, but are able to make noisy observations of the state in
the form given by (1.3A). If they are given only statistical informa-
tion (1.1A) about the initial state X,» then presumably they will be
able to take advantage of their ndisy measurements to improve the
quality of their play over that of strictly open-loop strategies.

Thus, we must find stochastically optimal strageties, — methods by which
the players process tﬁeir observed data so that the expected value of
the payoff functional is minimaximized with respect to the data
processing methods. The players must find strategies which are optimal
within the constraints of their limited information. This information
includes the mean Xo and covariance *xo of the initial state R p}us the
observations described by (1.3A). These quantities must be combined
functionally to form the strategies U, and Ua. What the functional

1l
form should be will be determined by certain criteris of desirability,

one of which is the so-called "certainty-coincidence" principle dis-
cussed by Willman [28). This is simply a requirement that the
stochastic strategies coincide with the deterministic strategies when

. the noise variances go to zero.

Other criteria are simplicity and physical realizability. Accord-
'

ingly, we will require that the functional form of the stra%egies be a

linear combination of the known quantities and the observables.

Ehhiae e MG SRR £ = (7 g= i 2= oo oo, B alihiacihesediig s A9
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2.2 A Heuristic Justification for the Assumption of Linear Strategies

An interesting aspect of the selection of the form of the strate-
gles for discrete-time games has been developed by K. Bley (6] and is
extended here to the continuous-time case. We have hypothesized a

i criterion function of the form

L~

SR N T

» » »

.:.-;. 5 = e X + ft . (v, ufp,)at) (2.1)

%
: )
o v .

and a system equation which may be rewritten

'] | :
. | & = FXat - G,U,dt + ¢ U dt .(2.2)

& We define

€ = win max J

U, (£)u,(t) (2.3)

tosts'.l‘

For a given set of noise statistics and for minimax control strategies,

the payoff will depend on t = O and x(to) = X ; call this payoff

f(x(to),t). We write the minimax payoff as

s

o] QT

g = E{r(x(to), to)} (2.4)

.
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Breaking the time interval [0,T] into two sub-intervals [0,A] and

{a,T], ve may then write the criterion functiopal as

A
g = min max E{ f (U3U, U, )at + X (T)xX(T)
0

V1Y
Y Y

T— e

R v oe e %
Tl Le N

i. et teataall

* %
+ _/; (Ulvl-Uava)dt}

A
j (U* < jat
= min max E lU]. 2Ya

u, U, 0
T »
+ min max E{x*(a')x(m) + f (UIUl-U;lJa)dt} (2.5)
U, U, b

Now

T
min max Lx*(T)x(T) + j; (U§U14J;U2)dt} = n{r[x(o)mx,a}}

U, Y%
(2.6)

We expand f in a Taylor series about (x(o),o)
o
= ar af
: £(x(0) + ax,a] = £{x(0),0] + 38+ 5 ax (2.7)
: o
: \

g,= min max n{f (vl ju,)at + £(x(0),0] + 2 s+ 3 ax}
X Ul U, (o] . °
i
; (2.8)

19
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Since min max E{f(x(o),o)} = g, we may write the above as

U, Uy
0 = min max z{ A(u*u v ae + 2L s é-‘1c1x} (2.9)
11 V2% 3t 5X .
U, U 0 (] _
1 Y2
Then, writing dX = FXA - GlulA + GZUé and sucstituting in the above,
0 = min max E { A(u"u v )at + 2 a
v v o 11722 5t
[+]
1 Y2
af
+ 55 (FX-G U +60,) A} (2.10)

*
Approximating the integral by (UU,-U;U,) 4, ve have

* * Ar of
0 = sm ;mx E{(“l"l"’a"a) A+ 5_‘: A+ S‘i(”"’l"f“auz) A}
+ € (2.11)
Dividing both sides by A, we have
- I L S 1 4
1 "2

,Binc,e min max E{f(x(o),O)} = g,

Ul 02

g-g; - S%: gin g:x E{f(x(o):o)} = ;in :‘:‘ E{g’% (x(o),o)}

(2.13)




-------

................
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Therefore,

2% (o oty + 2
3t~ 3“‘ o E{U U, V05 *+ 5%

1 "2

(Fx-clulmaua)} (2.1

We nov must make an assumption about the form of £(X,t); therefor

we choose some general form, such asl

£(x,t) = x*xo(t)x + U;kl(t)x + U;}.a(t) + &(t) (2.3¢

vhere the A, (t) i = 0,1,2 are unspecified matrices. Thus,

o

f

o = Xhg(t) + U;ll(t) + U;Xa(t) (2.17

Utilizing this expression for 3}; in (2.14) we have

\san

Q.L * * * % .
3T, ~ 31‘ g E{Ul"l“’z"a + (XAGHA HUA )
1 Y2
(Fx-c;lu1 + 0202)} (2.1

After collecting terms, the right-hand side of (2.17) mey be rewritten
as
» » »* *
sin gax E{X QOX + UlQlul + UZO?U2 + X Qh"l
1 "2

* »* I3
¢

l?or a detailed examination of this subject see the dissertation of
K.Bley (6] where the discrete-time version of the problem is analyz-...

21
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Q - sm{x-x’lc]}
Q, = r*x:_ - A8y
*
5 2

L )
Q. = F A +x0¢;2

%%
Qg = A6, - Gy ' (2.19)

and vhere SYM{A} 'denotes the symmetrized version of the positive
definite matrix A. When differentiating the expression in brackets

with respect to Ul’ since U, is a winimizing control, we have

1

E{U;Ql +Xq, + U;QZ} = 0 (2.20)
Similarly,

e{ule, + x'q, + uiagl = o | (2.21)

Now because U, is player 1l's control, U, must be based only on the

1l 1l
observation zl; similarly, U2 must be based solely on Za. And since
it is a property of conditional expectstions that E{x} = s{e{x | Z}}
for random variables X and Z, we may write the above equations (2.20)

and (2.21) as

(X3 * % _*
e{lle, + x"q, +uleg | 2.} = o© (2.22)

22
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E{ana + X Q5 + U Qy | ze} = 0 (2.23)

Furthermore, since U, = Ul(zl) and U, = 02(22) and because the taking of

1l
conditional expectations is a linear operation, ve may write

S el n) g -0

g+ ol 12 450 ol 5} g - o (2
or |

v, = Q% E(x (2} - qu; 2{u, | 2}, (2.26)
m |

u, = ;% x| z,} ;qglqz U, |z} (2.27)

Nov';r ve denote by '1‘1('-) the linear operation

7,(¢) = 1-:{ | 21} (2.28)
and sinilarly for 'r,‘,( *)
1 ) - o 12
:“
;f the equations then read
'
i Uy = Q7REX - Qg (2.30)
23
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- -]l %
U, = -Qzlqsrax - Q, QT (2.31)
and, substituting the second equation into the first,
-] - - - -1
v, = Q)X+ qllq6rlcz2’n5r2x + ailogr o iy (2.32)

The expected value operators commute with the matrix operators Q:I.’

1 = 1,2,...,6, 80

- -1 % - =)l | *
(1o R egr m v, = o{e; e, apr ] x (2.33)

If the norm of the operator QistQé 2’1‘1'1‘2 is less than unity, a '

Reumann expansion gives the inverse of I - Q;lQéQ?Q;TlTa, 80

u, = (1Q7RgQzegr )™ QI{%Q;‘ISTJ,%‘?:TJ x  (2.34)

The above expression gives U, in terms of conditional expectations of

1l
the state vector X. A similar expression exists for Ua. Ve have con-
sidered only the starting point, but any point may be considered the

starting point of a new game.

These expressions for the ininimax strategies in terms of condi-
tional expectations of the state indicate that when the process statis-
tice are Caussian the optimal atrateg';lea are linear (affine), since the
conditional expectation of the sta’g.é is a linear tx;msfoxmation of the
observationa.. We might interpret this to mean that, when pitted against
an opponent who is known to use linear strategies, the optimal counter-

strategy is itself linear. However, the proof makes such essential use

2u
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of the Gaussian character of the process statistics that it becomes
invalid vhen either player at any instant uses a nonlinear control
vhich would destroy the Gaussian probability distridbution. When the
Gaussian aistribution is thought to be a reasonable approximation to
the true distribution, the restriction to linear strategies is perhaps
Justifiable. PFurthermore, since the solution to the deterministic
problem is known to involve linear state feedback as control strategies,
it is intuitively reasonable to believe that for small uncertainties in
the state information the linear certainty-equivalent strategies cannot
be too far from optimal. Thus, the class of general linear control
strategies must contain lti-ategies which, if not ove;all optimal, are
at least bounded by the certainty-equivalent strategies in payoff. 1In
practical situations, if the system designer has some confidence that
& linear strategy will give nearly opti;nal performance, he can justify
restriction of his design to linear strategies on the basis of computa-
tional feasibility considerations. '

A final word about the form of the strategies: since any strategy
vhich minimizes the expected value of the payoff must in some way
depend on the probability distribution of the state variables, the task
of selecting & strategy vhich is éenerally optimal against any form of
opposing strategy is rather hopeless, since that opposing strategy may
alter the probability distribution of the state variables in such a way
as to give each player a different notion of what that probability
aistribution is. It 18 vith & viev to the futility of searching for
the pcrtocth.r optimal strategy that we gladly restrict our attention to
the task of finding an optimal linear strategy. We shall soon see that
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even this restriction is not sufficient to insure that the relultiné
control functionals are computationally feasible.

We have required that the strategies be simple, linear, and
physically realizable. A pair of general expressions meeting these

requirements is

U, - "1Q1 + N2, | : (2.35)
. v, = “292 + N2, (2.36)

A straightforward approocﬁ to the gsme problem might be to assume

'. strategies of this form, to substitute these expressions in the payoff

" functional, and t0 proceed with the optimization over the class of

linear functionals M), Ny, My, apd N,. Then, if the certainty-equivalent -
strategy were optimal, we would expect to f£ind that M:I. - x1 and

M, = K, vhile N, and "2' are zero. While the proposed spproach is in
fact a poor one if useful solutions to the game problem are desired,

some revealing facts are brought to light by taking it, and we shall
therefore 4o so.

Buf before proceeding, we point out two facts:

kP SRR

a8
i
a

A
1) Ve have tacitly assumed that the conditional means X,

y . /if:: N

A
and x,‘, are computable by the players, _but we.h-m not
specified how the computation would de done.

11)_. We have asked that the "certainty-coincidence principle”
be satisfied. Thus, in terms of the forms we have

assuned, we require
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M=K My = Ky
N, =0 N, =0 (2.37)

as the observation noise covariances go to zero. In view of this

requirement, we may rearrange (2.35) and (2.36) into a more convenient

foru. We write,

" A )4 e
1 = MXp ¢ NpZy = (MpaEH) X) + Ky (Z)-HX)

= xl[Qle(zl-nl?(l)]
A A
n x][fol(zl-zl)] . (2.38)

A A
vwhere Kl = ?(1 + nlnl, Zl = Hlxl, and KlLl = Nl. Similarly, we write

vy .
f'Tf.T.Y.'-!.r. IR ———
e ritLtLtL L P U

U, = xi?czﬂa(za-'z\a)] (2.39)

and require xl and x2 to approach the deterministic feedback gain as
the observation noises go to zero. Thus, our assumed strategies have
the fom of linea.i transformations of the conditional mean plus linear

operations on the residuals. The payoff functional becomes
-1 r A rs 5.y]
J(K,,L,,K,,1L,) 5 E{ ¢x-rrllexl+Ll(zl-zl)] + T Ky Xo*Lo(25-25) 1
r
éx - Tlxl[ﬁlﬂ‘l(zl'gl)] * Tz“al_Qa*Le(za‘Qa)]

: v xR 2, 40)] x[Ren (2 4))]

- 'K&r?‘zﬂ‘a(za"z\‘zﬂ’ K?.[Qe““l‘a(ze'ga)']} (2.40)

.............
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and we wish to find Kl, I‘l’ xz, and La, vhich provide a saddle point of
the functional (2.40). ‘

However, before proceeding further, it is desirable to pause and
develop the techniques we will need for handling such problems, i.e.,
finding functional derivatives of expected value functionals. To illus-
trate these techniques, we will derive some well-known relationships

vhich will be found useful later in this exposition.

2.3 Minimum Variance Estimation

The first example we treat is that of minimum-variance estimation.
We vish to estimate a vector X on the basis of our observation of
L]
another vector Z. We assume knowledge of the mean X and the variance

of X and of the covariance of X and Z, We also assume know-

ledge of the mean Z and variance V.- of Z. We ask that our estimator

be linear and realizable and that it obey the certainty-coincidence

principle. We thus assume the estimator has the form

Ql - X +1(2-Z) (2.43)

A
vhere xl denotes the estimate and L is a linear operator. The estima-

tion error is

¢ = X- 91 =X - X - L(2-Z) _ (2.42)




and the variance of the error may be written as a functional of L

) = % E{<x-ic'-L(z-Z), x-i'-n(z-i))} (2.43)

Forming the functional derivative of this functional with respect to

the operator L and setting this equal to zero, we have

E{(x-i'-x.(z-z , A(z-Z)>} =0 (2.44)

vhere, as before, A 1s any arbitrary linear operation on the observa-

tion Z2-Z. We interpret (2.44) to mean that the expression

X ~-X -1(z-2) (2.45)

12 ctatictinally

-
3
'y
]

3

3
‘0
j=*

to any 1inear tranafnarmation of the observa-
tion Z-Z. In order for this to be true, Z-Z must be uncorrelated with

(2.45); 1.e.,

r{ [x-’x‘-L(z-mIz-'z']*} = ¥4y ~Ligy =0 (2.46)

This is an abstract form of the Wiener-Hopf equation describing
the linear estimate which is optimal in the mean square sense. It is
wvell known that vhen the random variables are normally distributed the
linear estimate is over-all optimal. Furthermore, since the optimal
mean square estimate is the conditional mean of the random variable to
be estimated, we see that (2.41) provides us with the conditional mean

of X vhen X and Z are normally distributed and L satisfies (2.46). We

..............

........

........




note that when the form of L is specified as

t

1(z2) = f W, [2(r) - B(m)) (2.47)

-0

then the Wiener-Hopf equation takes its familiar form

t
'XZ(t’o) = L w(t,T) 'zz(t,c’)d'l’ (2.48)

2.4 A Stochastic Optimal Regulator

We next treat a more complicated problem: the stochastic optimal
regulator. This is the one-player version of our stechastic differ-
ential game. We first look at the deterministic case, which when .cast

in abstract Hilbert space form appears as the following minimization

problem:

uin J(u) = %{@x-fm, dx-ru) + <U,U>} (2.49)

Differentiating J(U) with respect to U and setting the derivative equal

to zero, we have

X+ W +U = 0 (2.50)

*
This equation has a solution only if U is in the range of T , or

»*
U =T\ for some A\ . Substituting this into (2.50), we have

]
X+ TN+ T = O (2.51)




..........................................................

Equation (2.51) will be satisfied if
|

['m'* + I] A o= ¢x (2.52)
[m" + 2]
or A =|TT + I| ™ ¢X, if the indicated inverse exists, which would
1mply : '
U = T’[Tr* + 1]'1 ¢x (2.53)

When the system under consideration is a continuous-time dynamical

system described by the differential equation

X(t) = F(t)x(t) + ¢(t)u(t) x(0) = X, (2.54)

then TU takes the form

T
™ =f é(T) ¢-1(T)G(1')U('r)d-r (2.55)
0

and

T *
T . j O(1) §(r)6(r) 6" ()P (1) (v)ar (2.56)
‘ o

This is recognized as the controllability matrix of the system. Thus,
. %*
if the system is controllable, TT 4s positive definite and the

x =1
existence of ['.l'.l‘ + I] is assured.

31
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We might nov ask the question: "Of all controls of the form

U = KX, vhich linear transformation K minimizes the functional J(K)

vhere

IHK) = %{(((b-rrx) X, ($-T)X) + (kx,00)} 17 (2.57)

By & procedure similar to that used with the differential game, we

would find that the optimal K has the form

K = 'n'['rr* + I]'l ) (2.58)

This is not a surprising ansver in view of the previous result.

We may now consider the stochestic version of this problem.
Assume that we do not know X exactly, but do know its conditional mean
Ix\‘ and its conditional covariance "xx’ these quantities being conditioned
on the observation of a cg:';rrelated randon varisble 2. The correlstion
between X and Z is denoted txz. Mm variable Z has conditional mecan
2 and conditional covariance ’zz’ these quantities being conditioned on
the observed history of Z. We imvoke the certainty-coincidence
prineiple and the criter;ta of simplicity and realizability to postulate

the form of U as

U = x[ﬁ + :.(z-?)] (2.59)

Lo
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We thus ask for the values of K and L which minimize the functional

J(K,L) = %E{<¢XJD{Q+L(Z-Q)1, ¢x - '1'1{901-(2-%)])
»(1{§+L(z-%)], KEQ-&L(Z-Q):D} . (2.60)

Forming the derivative of this functional with respect to L and setting
this equal to zero, we have

& Jk,1) = K't'md Br(z)] - K'Mex + KK Sz )] = o
3T KK |

P

. (2.61)
which will be satisfied if

[x"r + I x[?m.(z-ﬁ)] -t'x = o (2.62)

We interpret this to mean that the expression (2.62) above is orthogonal
A
to any linear transformation of the quantity Z - Z. In particular,

(2.62) is orthogonal to [(T*T+I) X - T*¢1 L(Zi%), and we may express
this by

n{(['r"ru] x[')}ﬂ.(z-ﬁ] - T9x, [(T*T+1) X - T*ﬂ L(Z-Q))} = 0

(2.63)
We may also differentiate (2.60) with respect to the transformation K

and set this equal to zero. Doing this, we have

%]-(- J’(K,;.) - m’n{%x,(z-ﬁ)] -hdx + K[Qu.(z-ﬁ)] - 0 (2.64)

33
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7Again ve interpret this to mean that (2.64) is orthogonal to any
linear transformation of the quantity Q4 L(Z-Q) , in particular to
[(T"rﬂ) X -7%] [Q+L(z-ﬁ)]. This we express as

s{[r"rer] Rz ] - 1x,[(r"en) x - {2z} - o
(2.65)

Combining (2.63) and (2.65), we have

E{([T*Tq] x{%n(z-ﬁ)] - 'r*tbx,[('r*-ru) X - 'r*¢] Q)} - 0 (2.66)

A .
We may write X = X + ¢; and then, using the fact thar. estimation error
is orthogonal to any linear transformation of the conditional mean (for

normal random variables), we rewrite (2.66) as

e[r'rex] dRe(zD)] - 28R [("mem) & - 1%6) D} = 0 (267

or, defining A = (T T+I)K, ve write (2.67) as

n{((A-'r*¢)')\c + m(z2), (") D - o (2.68)

Proper interpretation of (2.68) implies that

s(Raad] -t mad)) -0 (2.60

or, again writing X = Q + ¢ and noting that the esfimtion error is

orthogonal to all linear transformations of the observables (for normal

3h
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rendom variables), we may write (2.69) as

{' : (1" & + mizd), b)) - o (2.70)

Subtracting (2.68) from (2.70), we have

{(nd), med) - (a0 R D} - 0o (27

Now, since the first term on the left depends only on the covariances
of observation moise and initial values of X and the second term depends

on the mean initial value, for (2.71) to be satisfied we must have

A-T% = ('MI)K-T6 = O (2.72)

which implies

A = (TT+I)KL = 0 ' (2.73)

Equation (2.72) is the relation which described the feedback gain K for

the deterministic regulator problem, so the solution of (2.72) is knowo

to be
vh *or® 4 72 2.7h)
- K = 7|77 +I| ¢ (2.7
v .
:' Substituting this expression into (2.73), ve have after scme
= panipulation
«
i T = O (2.75)
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This wi)ll be satisfied if L = 0. Thus the stochastic optimal controller
m 1s
‘ #_ -1

- Uspoc opr = B =TT I] &R (2.76)

F ) We have obtained a weakened version of the separation theorem; 1.e., we

assumed a control function of the form

P | U = K[Q‘D-L(Z-Q)] H Q = Best 1linear estimate of X (2.77)

& and found that L = 0, and K is equal to the feedback gain matrix of the

deterministically optimal control.

2.5 A Stochastic Differential Gome — Special Case

We now return to the stochastic game problem, ﬁavins developed
some techniques and insights which will prove useful. The functional

we wish to minimaximize is given by:

I(K)sLyKpLp) = %E{<¢quxl[91ﬂ‘l(zl'%i)] * Tz"iﬁa*l'a(za‘ga)],
¢x - Tl‘cl[?‘f"l(zl‘%l)] * sza|:§2+x.2(z2-ﬁa)]>
* -<K1[Q1*L1(21'21)]’ -’(1[91*1'1(21’21)1 )

- <xar”}2”‘2(za‘%2)]' "2[92*.‘*2(22’22)]» (2.78)

............
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In some special cases it is possible to simplify this problem by
decoupling, so that each player solves an independent stochastic optimal
regulator problem. .Therefore, before proceeding to the general problem,

ve examine one of these special cases. By making the following changes

of variables,

T, = (I+'1'1'1';)'1'; (Iw;*'rlrzas; -4 (2.79)

xl.[ﬁlﬂ'l(zl'glﬂ - x]'.[Qle(zl'gl)] * T;Tz;"iﬁa’“l'a(zz'ga)]
(2.80)

K, ~ (Io'r:rlm’l’wé)%x; - (2.81)

the payoff functional becomes

E{<¢x"rl‘cl'£§lﬂ‘l(zl.%l):" * -r_,;_x:,,[?(2+1.2(z2-?.?)],

=

(K, L, Knsly) =
o - 7R (2,2 ]+ xR (e, 2,)])
o (x Rz 207 kTR enyz 3]
¢ xRtz 20 ], xRz 401)
+ 2% 01,2, )], T Rornaz,4)])
- (et xRz, 8],

. (zw;'ml'r;'r;)i Kz;[az*“z(za&a)b} (2.82)

"
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Differentiating this functional with respect to Ll and La and setting

the results equal to zero, we have

3J " ® A " %
a—I‘J: = KT TK x1+1.1(z1-ﬁ1)] - X rlq:x

+K:K;[Q1+L1(Z];-Q1)] = 0 | ' (2.83)

g-g-; - xa*ra*rexa[ﬁe»fr,a(za-ﬁz)} + Ky T X

. x;xlﬁan.a(za- 2)] = 0 (2.84)

¢
landxz,whave .

Differentiating with respect to K

3:: - atr R (2, 8] - P+ xRz, 0] = o (285)

o ' ¢ A A ] ] A A ]

;;.- = Tz"e“ixe*“a(zz'za) + 'r,‘,ox - "a[xe*"z(za'za) = 0 (2.86)
2_ .

These equations are seen to be independent and identical in form to

those of the stochastic optimal regulator problem. Thus, the two

players play the transformed game using minimum-variance type state

f“ estimators, transforming their strategies back to the original game by
3 use of the transformation equations. However, this solution is limited
L: in usefulness in that it requires player 1 to knov the quantity z2 - Qa,
:‘ his opponent's observation, a circumstance vhich would rarely be true.

This result is essentially that of Behn and Ho [3] but is a slight
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generalization in that neither player need have exact knowledge of the
initial state.

2.6 A More General Stochastic Differential Game

In the case of the general stochastic differential game, it can be
shown by techniques similar to those used in equations (2.61) through

(2.74) that the minimax values of K, and K, are given by
% * #7=-1
K, = Tl[I*Tle’l'zTa] ¢(T, to) (2.87)
»* #-1 '
X, = '1‘11@1'1'1-'1‘2'1‘2] ¢(T,t0) (2.88)

These are seen to be the deterministically optimal feedback gains.
Analogous to (2.75), but considerably morz cowplicated, are the equa-

tions describing Ll and I.z
o1 + -7 Y v X, ¢ ' (2.89)
[ 2“2}'1 2.2, - T2 2,2, 2 Yoz,
MY g ¢ [¢Jrlxl] Latz2, = Tbez, (2.%0)
The above equations are necessary conditions which must be satisfied by

linear operations on noisy state observations which make up part of the

strategies assumed in (2.38) and (2.39). The derivation of equations

(2.87) through (2.90) is given in the Appendix.
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We may make the following observations at this point:

1) L, =L, = 0 18 not a solution to this set of equations;
hence, wve see that the optimal linear strategy is not

a certainty-equivalent strategy.
11) As § ' ] Ve and §, , become small,
)%y’ T2y T2y €%
L, =L, = 0 tenas to more nearly satisfy (2.89) and

(2.90); hence, our solution satisfies the certainty

coincidence prineiple.

We may illustrate the use of thg theory just developed by a simple
example due to Willman [28].

2.7 A Simple Example

Example: Discrete-time, one-stage scalar game

Transition equation: Y =X +U -V

Payoff functiopal: J = %E{ayz s . vz} c>a>0

Observation equations: z1 = X+ 1]1_‘ —

22 = x+T|2

LN o’l R, O
n, is normal; OJ, o R, ; X is normalf' (o,P)

Making the following definitions and changes of variables,

M=V B T L - ox
_ |
Up =yfeV T, = - o Y
ko

.........................




under these transformations the problem statement becomes:

"-‘. IR

Transition equation: Y = X+U

1"1“2
Ve

S

3

N Payoff functional: - E{(¢x-'r 1TV 2) + Ui ug}
X .

g5 Observation equations: Zl = X+ 111

N Zp = X+,

»

A

k! is normal; ° , RIE ; X is pormal; (O,P)

- 112 0 0 R2

s We first derive expressions for the feedback gains Kl a.nd.l(2

W .

=T;[I+T T, -T ] ¢=- a[l+a-5."1ﬁ‘-- ac
2T2 ¢ e 1+af-g
-1
- ’1‘114'1‘ l'TQTZ.] ¢ - "\/—1[1 ta- —] '\[-' c!l-l-a.f—a
Then
T K .'\/;ac ,O_TK"\/:c-a

3 1M c(1+a)-2 ’ 1"1  c(l+a)-a

3 ox, = VE_ 4.4 V.(—_j_(.;i*'_ll

' 2K2 c(l+a)-2 Ko = c(l+a)-a

-
TS

The filter equations then become

¢
Wit

clatl)-a I‘1*z,\zl - H(e+i)a I"z‘zaz.;l = - elerl)s ’eazl

'\/—'c a+l V
‘ c!ul;-a. clzl

Ve c(as1) Vea Vea

L ¥

............




..........
.........

Ya ac R . \C‘ -a) L4 '\/-' asc _ .
c(a+l)-a 1 zlz2 c(at+tl)-a "2 zzz2 cla+1,-a clza

‘\Za gc-a.z
+ c(a+l)-a 'czze

vhich eimplify to

+c(asl) ¥,

c(a+l) L -al.} = -ay
( 1*2_121 2’22y €2y €%
acl, 'Z1Z2 + (c-a) L, _'2222 = ac "122 + (c-a) "222

We must now derive expressions for the conditional means and

covariances: d
4 P A . P Ry
5 o= P—+R—lzl’zl'Ql’zl'al'zl'ﬁR—lzl'ﬁTl'zl
P . ) : P Ra
Q2 " PR, 2, 22'&2 ; za-é,‘,-za " R, Z, = PR, Z,
S x-m
) S !
© =X- Q P+R1 (x+1,) "R
RX - P1,

P
2 F x'ﬁe'x'wn ("”‘2)'-_??@—

g
Y22 *© E{(zle)z} n{(xml)z} p+n

1%
A A
22, " E{(zl'zl)(za'za)} ﬁ%ﬂ%-)' Et(x”'l)(x*“?)}
PR R,
(ﬁ")(pm y * 2.z

K2

L T T T P P
.ot K . P S A U PO
- » .« BTt T T e T e e e T T T T e

- P AP AR S S P I P Pt




-------

2 2
R R
2 2 2
5 ) = E{(2 2.8 . —E— E{(x+1,)%) =
\ ‘A A R,X - PTy Ry
S Yez, -~ E{(x'xl)(zl'zl)} - &{ Ry PRy (xen,)}
' .R2P - PRi
& g'-l———-j =0
i (P+Rl)
: RX -PI, R
(1o A A r 1, 2
"17‘2 = E<L(X-Xl)(Z2-2.2)} =By (P+R;) (P*R,) (X+“2)}
PR,R,

= (P+Rl)(P+R2)

A A f(sz 'P'ne) (X+Tll)' _ PR,Ry
Ve, = 2{(x%,) (2,2} - BmRy IP_H?_J} " (P+R,)(P+R,)

A A RX -Pl, Ry \

gngp-mg .

(PeRR)?

Substituting these expressions into the equations describing Ll and L2’

: we have 2
3 R PR.R -aPR,R
; o(8+1) L, 5= - a L 12 = 12
1 P+R, 2 lP+RIHP+R2) (?+Rl)(P+Ra)

2
PR.R R PR R,
172 2 1
acL, (P+R, ) (PR R,) + (c-a) L, T ac (PR, )(P+R)

vhich simplify to

ch(a+l)(P+R2) L, - sPRL, = -8PR,
[]

o.cPRlLl + l!,‘,(c-a)(1='+R_.L)I.2 = acPR,




...................................

which have solutions
L - aP[acPR, - (c-a)(+Rl)32]_

cnl[Pmi) (P+R2) (a+1)(c-a) + a%’a]

aP PR, + (a+l)(P+R2)cR1]_

L,

Rof (B+R, ) (P+R,)(a+1)(c-a) + aP%)

We may now derive expressions for the control functions:

A A -
Uy = x).[xl * Ll(zl'zl)] = (c(—a:_ri )
[P aP[a.cPRl - (c—a.)(P+Rl)R2] R,Z,

2
PR LT LR (Pory) (ar)(ca) + a2] TR0 |

-ap L a[acPRl -( c--a.).(P«-Rl)R2
= + —————
ﬁ’ﬂ!l)(c(a#-l) -e) [(P+R,)(P+R,)(a+1)(c-8) + a292]_‘ 1

After some manipulation, this becomes

-aP{(c-a) (P+i\2) + oP)
U, = Z
1 [(per,)(P+R,)(a+1)(c-a) + a%P7) 1

Similarly,
A -ac
U, = KZ[QZ + La(za'za)] = c(a+l)-a

P, aP[aPR, + (a+1)(P+R,)cR,) Rz,
. Bn + ——— ¢
PRy "2 " R (PR )(PsRy)(a41)(c-a) + a2P2)  PRD) |

YA [1+ alaPR, + (as1)(P+Ry)eR,] ]

- ﬁinz)l.'C(Bﬁl)‘&] [(P+Rl)(P+R2)(a+l)(c-a) + 321,2]-

vhich after some manipulation becomes
SPE(PR, (esd) - 8]
[(P+R)(P1R,)(a%1)(c-a) + a°P°]

U,

bl




......

~~~~~~~~~~~~~~~~~

These ansvers are the same as those obtained by Willman when they are

retransformed to the original problen.
We note that the problem was solved in three parts:
1) ‘The feedback gain was derived.

11) The conditioual means and covariances were derived.
i111) The expressions for L, and L, vere derived.

Of these steps, (i) is relatively straightforward and would be done in
the course of solving the deterministic game. Furthermore, the
procedure is not altered essentially vhen higher-dimensional multi-
stage or continuous-time games are considered. Stepg (ii) and (1ii)

are simplified immensely when one-stage discrete-time games are con-
sidered, because the problem of obtaining the conditional statistics

is isolated from that of obtaining L, and L,; i.e., steps (11) end (411)
may be taken separately. In multi-stage or continuous-time games the
covariance of the state depends on Ll and L2, and vice-versa. The
result of this is that the conditional statistics and I‘l and I.2 nust be

obtained simultaneously.

No attempt to perform this computation will be made, since the
ensuing analysis will show that no computationally feasible solution
exists. In Chapter 3 the problem of computing conditional statistics
is taken up under the simplifying a.asﬁmption that Ll = L2 =0, Itis
shown there that, even under this assumption, computation of the con-
ditional mea.x.z of the state requires that each controller retain the

entire past history of his observations. This data storage requirement




.........

g 18 impractical; thus, in Chapter 4 a different approach is taken which

{ requires that the strategies be optimized over a set of computationally
2 feasible control functionals.
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Chapter 3

PROBLEMS OF STATE ESTIMATION IN TWO-INPUT COOPERATIVE
AND COMPETITIVE CONTROL SITUATIONS

3.1 Discrete-Time Case

To illustrate the various considerations affecting the problem of
estimating the state of a linear system controlled by two or more inputse
derived from independently made state observations, we begin with a

discrete-time example.

Suppose we have a system described by the difference equation

X(1+1) = ¢(1+1,1) x(1) - G,(1) U (1) + G;(i) u (1)  (3.1)

vhere X(+) is an n-vector; E{x(o)} = i’o; Cov {xo} = vxo and &(1+1,4)

is a state transition matrix and thus satisfies relations such as

$(4,4) =1I ; I = Identity Matrix

6(1+1,1) = F(1) &(4,1) (3.2)

It was pointed out at the end of the previous chapter that the condi-

tional statistics and the optimal L. and 1‘2 must be obtained simultane-

1
ously. Since here we are primarily interested in providing an
expository development, we initially treat a simplified version of the
prob’-m: we shall assume that Ll and 1[.2 are known by both players, so
that we have only to deal with the state estimation problem. Further-
more, ve shall assume that controller number 2 is restricted to 1‘2 = 0,
Thus,

U(1) = Ky(1) Rp(1) (3.3)

.....................




vhere
(1) = B{x(1)]z,(1)} (3.5)
2p(1) = 2,(0), 2,(1), ---, Z,(1) (3.5)
1,0 = B9 K() ¢ () 5 3§ =01, —ony N (3.6)

vhere Ha(J) is an myxn matrix and 7, is vhite, Gaussian, and

5 ={1,(2) ()} = Ry(1) 8, (3.7
and vhere § 13 18 the Kronecker delta. The problem t}:en is to campute
X C R = ey} (3.8)
'- wvhere

‘;‘ ’1(1) = 21(0), zl(l), =< zl(i) (3'9)
- 2,(3) = B () x(3) + 0, () (3.10)
7, vhite, Gaussian, E{Tll(i) ﬂ;(d)} = Rl(i) 5“ (3.11)

and 'ﬂl and T|2 are independent ‘
v The following relations hold
X (‘1+1) : E{x(1+1)|z (1)} = §(1+1,1) 1)
1 1 1) Xy
b '
& + Gy(1) Ky(1) Ry (1) - 0,(2) U (1) (3.12)
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vhere
Ror(1) = E{R(1)]2 (1) (3.13)

We know that X(i+l) and Zl( i+1) are correlated Gaussian random vectors,
that X(i+1) has conditional mean )Tl(m.), apd thet Z,(i+1) has condi-
tional mean ul(1+1) X(1+1) ¢ 2(i+1). Thus, by a well-known property of

Gaussian random vectors {8, p.32], we may write

;\:1(1+1) = f1(1+1) + A(3+1) [zl(1+1) - 'z'1(1+1):] (3.14)
vhere

M) = by (141) 'lel.l (142) (3.15)
vhere

ey (140) = 2{ [x(143) - R(142)] [2,(302) - T(11) Y} (3.26)

qzlzl(iu) = E{ [zl(1+1) - 'z'l(i+1)] [21(14-1) - Zl(1+1)]'}
(3.17)

Al( 1+1) is conventionally given in another form. If we define the

error covariance matrix Pll by the equation
Pﬁ(iﬂ) - E{ {x(1+1) - 9(1(1+1)] [x(1+1) - ?c(1+1)]'}

‘ - 1{:1( 1+1) e;_( 1+1)} (3.18)
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where

estimation error (3.19)

cl( i+1)

then since

x(1+1) - ?c( i+1)

¢, (1+1)
= X(1+1) - X(i+1) - L1(1+1) u[z(1+1) -.2'(1+1)]
= X(i+l) - X(141) - Ll(1+i) [Hl(i-!-l)
. (x(1+1) - )?(1+1)) + nl(1+1)] (3.20)

and because 7, (1+1) 1s independent of X(i+l) - X(i+1), ve have

* -1
P (141) = 4o (441) - 4, (1+2) B (142) Y22, (341)
. 1(14-1) yxx(i-u') (3.21)
Furthermore, since Zl( 1+1) = 31(1+1) X(1+1) + 'ﬂl(i*’l): ve have

2 (842) = 1(341) 45 (141) By (142)" + R (142) (3.22)

]
Z,:

We may thus write
Ri(392) =ty g (141) - B(142) 4ye(te1) H) (1+1)

=V zl(“l)[’: "V

1
1 (1+1) B)(1+1) y,o((1+3:)

1%

' . n;(m)] | (3.23)
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vzlz;l(i»fl) - [1 - 'zlz;l(u:.) 31(14-1) qxx(u-l) n;(1+1)]

. nl( 1+1) -1 (3.24)

M) = b (140 4, z;l(mn
R CORACEY EREMPRCER S

(1)) B RN ae)

= [1gg(142) = 4 (242) E(142) 1212;1(1+1)
. nl(1+:|.) ')0((1+1)] n;(1+1) R;1(1+1)

- Py (s02) B (142) R 141) (3.25)

Combining (3.12), (3.14), and (3.25), we have

Ql(i'fl) = $(141,1) Ql(i) + P, (142) n;(m.) R7Y(141)

— p——
A ‘1}'1- LA A

Pl s

. [zl(1+1) - B,(141) fl(ul)] + G5(1) Ky(1) ?(21(1)

e

- 6,(1) U, (1) | (3.26)

Q0% P
,

A A
This equation involves the quantity le( 1). To compute xa(i), let

us initially asnime that controller number 2 uses a state estimate vhich

51
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has the form

i .
R,(1) = 6(1,0) %(o) +;w(1,a) 7,(3) . (3.27)

with no restrictions for the moment on the matrices 8(1,0) or W(i,J).
However, we do assume that these matrices are known to co:itro].ler

number 1. Since X(0) is known to both players, we may write

i
Rp(1) = o(1,0) f(0)+;'vt(1,a) Bz (Nle(0)}  (3.28)

and because 22(,1) and 2.(1) are correlated Gaussian random variables,

2y
we may vwrite »

B{z ()12, (1)} = E{z,(3)]2(1-1)} + M3, 0)[2,(1) - Zy(0)]

{3.20}
vhere _
-
M(J,1) 1,2, (H1-0) g 57 (1) (3.30)
gz (1) = B [2,00) - e{z(0)1z,0-0}] [2,00) - Z (00T}
(3.31)
TAC IR {EXOREACHENCREEACH) (3.32)
zZ,(1) = H (1) X (1) : (3.33)




....................
...........................................................
...........................................................

Notice that (3.29) is a difference equation whose solution may be

written

4
e{z, ()12, (1)} = E{z()) + Zb M(3,) 2, () - 2,(6)]

(3.3%)
Thus, (3.28) may be written
1 ~
Rep(2) = 0(1,0) () + J; W(1,9) E{z,(9)
1 4
+ ; w(i,J) 1; M(J,k) [Zl(k) - Zl(k)] (3.35)
Let us assume that E{Zz(.j)} = D(J) ¥(0) | (3.36)

Ww(4,3) D(3), ve may vrite  (3.37)

g

Then, defining T(1,0) = 6(1,0) +

L=
[}
<

i i
':‘ta(i) = T(1,0) x(0) + ;wu.a) Zb M(3,k) [zl(k) - il(k)]
(3.38)

A
We observe at this point that in order to calculate xl( 1+1) one must
knov X, (1), which in turn requires the preservation of the observations

zl(k),x = 0,1,---,1.

3.2 Continuous-Time Case

We are interested mainly in the continuous-time version of the

equations so far derived. The continuous-time equations are obtained
¢
by the femiliar process of writing $(1+1,1) as $(t+s,t) and expending

6(t+,t) in a Taylor series as

53
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B(tea,t) = O(%,t) + F(t)a + 0(a2) = T + P(t)a + 0(a®) (3.39)

Ve also modify the forcing terms in (3.1), so that this equation

becomes

X(t+a) = [1 + P(t)a + O(A)2] x(t) - Gl(t) Ul(t)A + .Ge(t)Ua(t)A
(3.%0)

After we have subtracted X(t) from both sides, divided both sides by 4, |

and taken the limit as A approaches zero, (3.40) becomes
X(t) = F(t) X(t) - Gy(t) U () + Go(t) U (t) (3.42)

By a similar procedure, (3.12) becomes, upon substit\;ting (3.39) and

modifying the forcing terms,

) = [T+ 26 + 0(6®)] Ry (e) + 05(0) K,(8) Ry (e0a

- Gl-(t)Ul(t)A : | (3.42)

Letting A approach zero, we see that X(t) - Q(t) . Likevise, (3.26) way

be written

d(ws) = [1+ 70+ 0] Ql(t) + Py, (t+8) E)(t48) RI(t4a)
[2,(t48) - B (tra) Ey ()] 8 + 6p(8) Ky(t) Ry (D

- 6,(¢) U (t)a (3.43)
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Subtracting Q(t) from both sides, dividing both sides by A, taking

1imits as A approaches zero, and using (3.43), we have

2,0 = 20 R0+ (0) ) B [2,00) - my(0) Ry

+ B(t) Ky(8) Roy (8) - 6y (8) U (8) | (3.48)

Here the spectral properties of ‘nl(t) pust be modified so that over a
unit time interval the additive noise has the same corruptive influence
as in the discrete-time case. Specifically, ‘nl(t) is taken to be a

vhite noise process with spectral density

E{ﬂl(t) 1];(1')} = R,(t) 8(t-r) o (3.45)

vhere 5(t-r) is a Dirac delta function.

Using these same techniques, (3.29) becomes

2z, )z ()} = B{zyry)lzy (600} + Miry )2y () - Ey(6) ]

(3.46)
Subtracting E{Za(t)lzl(t-A)} from both sides, dividing by 4, and
taking limits as A approaches gero, we have
Szl ) = ez - Z(v)] (3.47)

Equation (3.47) bhas solution
t

Bz (t)]z,(0)] = E{z,(+)} + fo M(t,0) 2, (a) - Zy(0) ]

t
= D(t)X(0) + '[o n(t,c)[zl(c) -zl(c)]do (3.48)




The similarity to (3.34) is obvious.

o If we assume that coatroller number 2 uses a state estimate of the

- form

A % :

N Xa(t) = 08(t,0) X(0) + f w(t,r) Z2(-r)d'r (3.49) 4

. 0

then the continuous-time analog of (3.38) is

t t
Qa(t) = T(t,0) X(0) + fo w(t,T) J; M(1,0)
+ [2,(0) - Z)(0)] avar (3.50)

A
Thus, calculation of xal(t) appears to require storage of Zl(°)’ Oso <t.

a4 We now prove this to be true; i.e., (3.50) can be obtained in no

simpler form.

To this point we have made no restrictive assumptions about W(t,T)

or 6(t,0). We shall now do so, showing that in order for each con-

Lot ..

troller to compute E{x(t)lzk(t)},k = 1,2, he must store all past

observations.

We first assume that W(t,r) is of the form
W(t,7) = c(t) Q(t,r) N(t) (3.51)
where Q(t,r) is a p x p matrix which satisfies

Q(t,7) =1 (3.52)

g;.Q(t,'r) = T(t) a(¢,7) : (3.53)




and N(t) s a p x w, matrix. We also assume that 8(t,0) is of the form

O(t,O) = C(t) Q(t,O) Y(O) (3-5“)

where C(t) is a differentiable n x p matrix. These assumptions are

A
equivalent to requiring that xe(t) be given by

R() = c(e) alt) (3.55)

vhere q(t) satisfies the pth order differential equation

& at) = T(t) at) + N(t) 2,(t) (3.56)
q(0), - y(0) X(0) ' (3.57)

A
Ve call xa(t) a "p dimensional atate estimator." Under these assump-
A » . . . "
tions, we see that xalu:), given vy (3.5V), can pe vritten

t
Ry = [ett) ate0) o) + [ ee) atem) ae) atwda +] K0

t t
‘ fo o(t) a(t,7) fo M(r,0) [2,(0) - Zy(0) ] acar
(3.58)
Defining a new variable a( t) by
t
e) = [a(t,0) v(0) + fo a(t,7) B(r) p(r)] %(0)
t t
K j; Q(t,7) N(r) j; M(r,0) [2,(0) - 2 (e)] a0 a(; .
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ve see that Qal(t) - c(t) 4(¢) (3.60)
and that Qa(t) satisfies the integro-differential equation
Lt = [Hw]aw « o Faw (3.62)

& A(r) = T(r) Ge) + N(t) D(t) K(0)

t
+ N(t) j; M(t,o)[zl(a) - Zl(c)] ao

t
+ f Q(t,7) N(r) M(r,t) {zl(t) - -z-l(t)] ar
0 o * (3.62)

At this point we define a new matrix

-t
n(t) & J Q(t,T) N(1) M(7,t) ar (3.63)
0

Also, ve note that because of (3.48),

t .
j; M(t,0) [2,(0) - Z,(0)] ag + D(t) X(0) = E(Zy(t)lzy(t)}
(3.64)
and because of the independence of ‘na(t) and Zl(t) ’
B{z,(t)|2,(r), os v = ¢} = B (t) B{x()z,(1), o5 7 < ¢}
RO AC I (3.65)
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We may thus write (3.56) as

T A0 = e A + me) B (e) {y(e)
+ m(e) [2,(4) - Z,(¥)] (3.66)

and (3.61) becomes

X = (Lo + cle) 1(0)] Ae) + Kw) my() Ry(0)
+ n(t) [2)(4) - Z(v)] (3.67)
Repeating (3.4l4), we have .

TR = o) {0+ pe) B(e) &)
. [Zl(t) - H,(t) Ql(t)] + Gy(t) Ky(t) Qal(t)

- Gy(t) U, (%) (3.68)

Equations (3.66), (3.67), and (3.68) taken together constitute a system
of n+p first order differential equations whose solution gives the state
estimate 9(1(1:) . This result is intuitively reasonable: if controller
number 2 is constrained to use a "p dimensional" state estimator, then
controller numdber 1 must use an "n+p dimensional" state estimator.
Furthermore, because of the restrictive assumptions we have made, we
are actually able to solve the game problem, i.e., obtain I‘l’ This is
done as £0lldws: since we have assumed L, = 0, ve may write

Up = Ky(t) Rp; ustng (3.55), this may be vritten U, = Ky() C(t) q(t);

%9
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and so (3.41) becomes

§oX = F(t) X(t) + 6y(t) Ky(t) C(t) alt)

EAORAD (3.69)

These equations may be written

. '6.X,CY r rG '
X F__"22°11X Q hp i
[é] = {Nna LT j[q]+ tn}"e* to} Y (3.70)
_255 3.3 Control Applications of the State Estimation Procedure

The original criterion functional may be written in terms of this

augmented system &s

. |
J = Ej [’5532]* [z g] [xgg] + f ul(e)u (t)at

(RS RCRI IO
T *
x(t)" [o o 1 x(¢)
) f 0 [Q(t)] [o c*x',}czcj [Q(t)] & (3.12)

This is a classical one-sided stochastic optimal control problem of the

linear-quadratic type, and the solution is well known to be of the form
A
X
U, = K } (3.72)

A
We have alreedy observed that X, satisfies (3.44), which may be com-
bined with (3.60) to read

8" = Ry + Py (oRloR 2 (0 - B (0 Ry(0)]

+ 6,(t) Ky(t) C(t) Q(t) - 6,(t) U(e) (3.73)

S Loa P LI WP PR W W > el ot - e a o m AT ata




. T
B
a

v - .
—— e
‘i; et

LI A

r~r:v,'xY J AR e
’ .

(]
atstaa

Furthermore, 4 1e given as the solution of (3.66), vhich is

Q= rAw xR ente) 200 -B 0] G

Behn and Ho [3] have solved this problem for the case in which

T]l = 0, and their result is that

U, =X [fa] (3.75)

vhere K may be written X = [Kl H DP] and Kl is the deterministic

optimal feedback gain derived in Chapter 1. Since we may write

€, = X - Cq, Beln and Ho's solution may also be written

no [ment ace](T] e

Then if.we fix controller number 2's strategy, i.e., require that he
continue to play as if 1\1 = 0, the problem ié eimply a stochastic
optimal control problem. We may apply the separation principle to

obtain
I |
U, = [Kl+nP= 'Dpc] &1 L CGm

Thus, for this special case we have solved tﬁe game problem., The result

may be written
A A
Uy = K X DX D 04

= Ky [Ql + Ll(zlf'z\l)] | ' ‘ -~ (3.78)

61

........ S . .
. R . .~ . N . . - . M
PPN, . TWPNY TR Wy PPN S L . : L 1 A L N NP Y




Therefore, L. satisfies

1
KL (z2) = n, [} -cd] (3.79)

From a computational standpoint, such a requirement is unreasonable;
thus, a game strategy which incorporates the conditional mean of the
state, the conditioning being done on all past observations, is not
satisfactory from an engineering viewpoint unléss the opposing qtrategy
is known to be dimensionally restricted. If the opposing strategy is in
fact dimensionally restricted, the resulting game situation is

unsymmetrical.

3.4 A Suboptimal Estimation Procedure

An interesting suboptimal state-estimation procedure has been
developed ﬁy Rhodes and Luenberger [2h], the significanée of which will
be shown in Chapter 4. The method uses state estimatea generated by
differential equations which'are of the samelorder ag the controlled
system. This procedure is a compromise betﬁegn estimation error and
coﬁputational difficulty. We have already de;eloped.a differential

- . X ) A
equation (3.44) descriving the conditional mean X, of the state:

5‘:1 = F(t) 9(1(1-.) + P, (%) H;(t).ail(.ti
8 . [zl(t) - 1, (t) 'x’l(t)] + 6, Ky Qzl(t)

-cl(ti U, (t) - | (3.80)

= 62
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VWe recall that the problem of dimensionality enters the picture in the
A
calculation of Qal(t). As a simplifying assumption, let us take xa(t)

to be approximated by some linear transformation of &l(t); i.e., let
A A
X5(t) = a,(t) X,(t) (3.81)

vhere Ql(t) is to be chosen according to some criterion of optimality.
For reasons which we shall see later, & desirable criterion is mean

square error; i.e,, we choose 01 to minimize

1 A A 1 A _ATA A T ]
3 tr [Cov (Xa-- lel)] = 3 tr [E{ Lxe- leusz- lel }

r ]
1 » * * % * ¥
= Fv LE{xaxa" 0% - xpxin) + axpol) ]

r 4
1 » * % * %
= 3 |B{xx3- 2xx]0) + olxlxln]_}J (3.82)

Taking the gradient with respect to (), and setting the resulting

1
expression equal to zero, we have

AAr A A

;- g{.xle + “1"1"1} = 0 (3.83)
. or

T ] a

: 0, = EX Ny [E{Ql?(* ] O (3.84)
<]

A A
Now, 1r¢1-x -xlandcasx -xaa.ndvedefine the vector p by
N .
X
| €2
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and let
. Poo For Poz |,
P = Covyp = E{pp } = PlO P11 P12
Poo Ppy Pop (3.86)
then
A Ax *
XX, = (X-ez)(x-el) (3.87)

vhere Cq is controller number 2's p-dimensional state estimator, which
is designed with the assumption that “1 = 0., Behn and Ho have shown
that under this assumption p = n end C = I; i.e., controller number 2

needs only an n-dimensional state estimate, in this case generated by

a Kalman filter.

This problem is not, however, a true game problem, sirce all of
the parameters of controller number 2's strategy are fixed. But, since
the purpose of this chapter is to analyze the problem of state estima-
tion, with game theoretic considerations supnressed temporarily, we

proceed in that vein.

Because controller number 2's p(=n) dimensional state estimate is
based on erroneous assumptions, it is not certain how good a state
estimate it is. Even within the class of n-dimensional estimators, it
may not be optimal either as an estimator or as a strategic variable.
Clearly, from controller number 2's viewpoint, the "p-dimensional”
state estimate is inferior to a "2n + p-dimensional” estimator, which

L
he would use were he not constrained. Inductively, we conclude that no
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state cstimates generated by finite-ordered differential equations can
make optimum use of all of the information contained in the

observations.

The reason for the difficulty encountered in making the state
estimates is that the "state" of the system includes the "state" of
each controller's estimate. When a system is described by a differ-
ential equation, then its state estimate is also described by a
differential equation of the same order. When a system is described
by a integral expression, its state 'estimate is also an integral

expression; and to compute this integral, all past values of observa-

tions must be retained. So . o

E{S\‘z"’\;} = Py = Fp ~Pp * Py - (3.88)
and

R4 = -}y - =lx &} - {5} (3.89)

It is a property of optimal estimates [8, pp 38-43) that E{cﬁ;} = 0,
For the moment,we shall assume this to be true for our estimate also and

verify the fact later. Thus, (3.89) may be written
E{QIQ;} - efx &} - r-:{x(x—el)*} = Poy - Boy (3.99)
Using (3.88) and (3.90), (3.84) mway be written
=1
s W [Poo" Poy- Pao* P2y [Poo™ Pou )

- 1-[ry- P21] [Po0- "01]-1 (3.91)
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Substituting this expression into (3.80), we have

e

L = F(t) Ql + Py, (t) H (1) R;]'(t) [zl(t) - B (t) Q,_(t)]

+ Gy(t) Ky(t) [I - [Poo "21] ["oo' "oJl] Ql(")

- l(t) ul(t) - (3092)

or
§1 - [F(t) + 6,(%) Kn(t) [T = (Bpy- Ppy) (Pog- 01)'1:]]91&)
+ 21, (6) By(8) R7He)Z,(8) - By(0) Ry(v)]
- G,(t) U (t) | (;-93)

We have thus derived an "n-dimensional” state estimator for controller
nurber 1. This estimator is given in terms of the covariances Pao,

P " POI’ and Pn, quantities vhich must be calculated separately.

21’ Poo
Note that as 1, =0, 0 = I.

It is impossible to calculate these covariances, however, unless |
we have some knowledge of the form of Qz(t). We therefore assume that
Qz(t) is an n-dimensional estimator of the same form as Ql(t) and is
thus described by the differential equation

%’e;\fg(t) = F(t) ?ta(t) + Pyo(t) H;(t) n;‘(t)
[za(t) - !a(t) Qa(t)] - ol(t) xl(t) Q 1‘?(t)

+ 0,(t) Uy(t) (3.94)

.....................
..................
........




A A
Again, we approximate xl(t) by Qe(t) xa(t) and by an analogous

manipulation obtain
‘ -1
Oy(t) = I - (Pyo- Py,)(Poy Poyp) (3.95)
Thus, (3.94) becomes

-g—t?(z(t) = [F(t)-cl(t)xl(t){:l - (Pyp- 912)(1?00- Poz)'I]]?{a(t)

+ B (DS RHE 2,(8) = By(6)X,(4) ] + Go(2) U(t)

(3.96)

We are now in a position to calculate the covariances. We begin

with system equation

L x(e) = F(£) X(t) - 6y (0K (00X (2) + Gpledkp()Rp(e)  (3.97)

This may be rewritten, dropping the "t" argument, as
X = [F - Gy * sza? X+ GKyey - GXpep (3.98)

. 4 A‘
VWe may express €, = X - Xl by

. "1
€y = 6K (Pyy- Py )Py~ Py) T X

+ [F * °2K2[I - (on'Pal)(Poo'Pm)-l} - Pn“;Rilﬂl] €
[ ]

* -1
- 6K ¢, - Py HIR Ty (3.99)

........................
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Similarly,

)L x + G.K. ¢

€, = 0,K (P)5- Po)(Poy- Byp 116

* [’ - 0T - (Pg- Pyp) (B Pp) ]

rgpiiny] o - votini, (3:30)
X
We may write a differential equation' describing the vector p= ¢, | es
follows: ¢
p = Ip + B . (3.101)
vhere ‘
LY
T -, (3.102)
L2d
o o
. -
B P, K 1“1 0 . (3.103)
0 Po R
- , i
F-G,K,+0.X, *°1“1 | 0o ]
+GK(PogPay) 1""'(z“ I-(Pyy-Ppy) ‘Gz"a
' = \
-1 . -1 .
AT *(Poo 01) : (Poo’_Pm) -] !
N | * . ‘
s . Pyl *n, .
. i L ...._-'- e e .
03Ky (PyoPyo) - 61Ky ¥ 1“1[1'“’10'?12)
: NI b e (PogPop) ]
i ‘ 00Fo2) | [ 00 Fo2
4 i .
-.""; L . l ! .P22H2R21n2
: (3.204)
4 6
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Then P = Cov (p) satisfies the differential equation
P = P +pr"+ o8 (3.105)
vhere .
R, ©
R =" & (3.106)
2
Denoting the submatrices of I' and B by
Foo Tor Toz
T2o Ty T2
(0 o ,
B = [B 0 - (3.108)
and expanding (3.105), we have
[« o . } ( Y ]
00 Fo1 Foz Too Tor Toz2||Poo Poy Poe
Po Pry Pra| = |Tyo Ty Typ 1Py Py Py
P20 P21 P2 |Too Tay Too)|Pagp P2y Pop)
Y[ % * »)
Poo Por Poz| |Foo Tio r':zo‘
* * %
+ P].O Pll P].Z 1‘01 !‘u r21
P.. P, P re r*r*
20 "2 T2z (fo2 12 Tep
o |k, 030 -
o lnl ] [ .
*
o B, (3.109)
[ ]
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Sorting out the expressions for f’n and 1510, ve have

. * * *
P11 = TyoPor * TiaP1 * TiPoy * Paglio * ByMan * PyoTho

+ 31“13: (3.110)

. - * . *
Pyo = TioPeo * M11P10 * TaoP2o * Paoloo * Paafon * Pyolpe (3-111)

Then, subtracting (3.111) from (3.110), we have

) +T

1

Py =P = ToPoaPoo 11F10) * T12(Ppy Ppp)

% % *
*+ B)R)B) + Pyo(Ty5Toe) + Pyy(Tyy-Toy)

*
+ Pla(rla'roa) (3.112)

Fow I, = GK, and Too = Xy, 80 the last term of (3.112) may be

dropped. Aleo,
-1
To "Too = *0Ko(PpyPp NPoyPoy) ™ = F + 6K, - GX, (3.13)
and

-1 * o
Py =Toy = F = 0K (PpyPpy (P Ppy) ™ - Pllnlnllﬂl

11

+ 0K, - G, = -(rlo-roo) - B,H, (3.114)

So the fifth and sixth terms of the right side of (3.112) may be written

% % o
(Pyy Pro)(Tyo o) = PyyBYRT By, (3.115)
Finally, note that
F10(PorPog) = OXa(Pag-Pay)) = Tyu(Py) Por) (3.16)
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80 (3.112) may be written

By -Byp = Tyy(P P )+ (pn-plo)(rm-roo)* (3.127)
Since
. * A * A¥ .
Po = {‘1"} - E{‘l(xf‘l) } - E{‘lxl} * Py (3.18)

we may, by choosing pn(o) = Plo(O) = Cov [x(o)-!, insure that Pn(t)
- Plo(t) for all time; this forces

x{clﬁ'l} = 0 for all time. (3.119)

This condition was assumed in the derivation of nl( t), and is now
verified. A parallel development will show that, by choosing

1’22(0) = on(o) = vxo,we can guarantee that

Poo(t) = P,(t) for all time; (3.120)

thus,
z{c,‘,)?;} = O for all time. (3.121)

A
Note that (3.119) is true regardless of the form assumed for X5

A
Thus far, we have assumed a specific form for x2. We will nov
relax this assumption and assume that Qe is obtained by an arb;trary

function of the observed data Z,. Then (3.100) becomes

2.

» a A
b = [F-ox vog)xeoge -0k - 5%, (3.222)
‘

n
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and (3.101) becomes

. A
p = W+B1ll+cx2

(3.123)

vhere T' is the same as before except for the third row, which becomes

Too = [F - Gk ¢ °2K2]
Ty = 6Ky
Top = 6XK;
and where
O .
PR R
B = | Py ARy
Lo
and
.
0|
c = |0 |
-1

Now P = E{pp*} satisfies the differential equation
l.’ . Pl‘* B* A = A«
= [P + BRl + cx21> + anc

A =
Since cxzp is of the form

. o o o
&29* = 0 0 o
Q * l,\( *# A =
(XX Xaey Xy

PRI

(3.124)

(3.125)

(3.126)

o~
w
]
3
e

(3.128)

(3.129)

(3.1230)

.........




A *
and pQéC 18 of the form
N\

( *
0O O -)&2
péZp* =0 o -X
¢ J
0 O . -¢
L ZQQJ

(3.131)

the equations for éll and ﬁlo are unchanged from (3.110) and (3.111);

thus equation (3.119) is valid regardless of the form of Qa. In order

to calculate Ql’ however, player number 1 must make some assumption

about the form of Qa.

One need be no more general in his assumptions about the form of

&2 than to assume that Qa is generated by a 2nth order differential

equation, because from player number 2's viewpoint the system is

described by the set of differential equations

A
X = FX - olxlxl + 6202

- [F + 0|1 - (PogPp)(PooP0y

-1 ’\]J
+ Pllnlnl [Z le - Gllel

) 1ﬂ

and observation equation

= H2x+'n2

13

..........................

(3.132)

(3.133)

(3.134)

P ‘-!L. PR AR R R S S P W D ISP S U U UL ThJP SURIE TR SO WSS IPESEUR P b |




We note that (3.132) and (3.133) may be written

2 X |
[QJ ) A[*J + Bl + @ (3.135)
vhere
F | 6,K)
A 2] «a a0 aa : B T T T T i - - -
| P ""1“1*“2“4:1'(?20'?21)(Poo'l’m)-1]’?11‘;";1“11
‘ | (3.136)
[ ) ) .
0 G,
B 2| =« = o o = ; G = -
* -1
| Pl ° (3.137)

and that (3.134) may be written

'
2, = [*‘z : °] ; + M (3.138)
1
The problem of estimating X then becomes a standard linear state

estimation problem. Thus, Qa satisfies

?:2 - [na 50]9 (3.139)
vhere
x.
Y = Q (3.1L0)
1
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and 9 satisfies

9 = AY + 1{22-11209] (3.141)
X(o
Qo) - _() (3.142)
- | x(0)
and
K = P R} (3.143)
vhere
* P, = cov(xd) | (3.244)
and
B, = AP, +PA" + BRB - PH R E P, * (3.145)

Furthermore, the separation principle asserts that the optimal
control is given by U, = Keﬁa. This points up an important fact about
the geme proﬁlem: if one player ié constrained to using an
n-dimensional control strategy, the opposing player's unconstrained

‘optimal control strategy, if it exists, is no more than Zn-dimensional.

15
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Chapter U

THE DIFFERENTIAL GAME PROBLEM WITH DIMENSIONALLY
CONSTRAINED CONTROL STRATEGIES

k.1 Introduction

In Chapter 3 it wvas shown that when the two controllers were not
constrained dimensionally they could not generate the conditional mean
of the state with finite dimensional computing methods. In Chaptler 2
it was shown that the optimal linear strategies can be written in terms
of a canditional mean of the state plus some additional terms. It
would thus appear that an overall optimal linear control strategy could
not be generated unless the controller retains all of his past observa.-
tions for use in computing the control. In many real engineering
situations, however, such a requirement may not be practically met.
Thus, we may wish to specify control strategies which are, first,
computationally practical and, second, optimal within the class of
strategies satisfying whatever computational efficiency criterion we

select.

k.2 The Dimensionality Constraint

- We shall examine here the nature of control strategies which are

optimal within the class of strategies which can be written in the form
U (t) = K (t) R (¢) (4.2)

Unbt) = Kn(t) X(t) (4.2)

bad. e P P W W S T P O P j




A A
vhere xl(t) and x2(t) are in some sense n-dimensional "estimates" of the

state which satisfy the differential equations

ﬁl = (A,6,K,) Ql + Bl(zl-nlﬁl) ; Ql(o) = X, (4.3)

we

42 = r(1».2«;21(2) 9(2 + 32(22-}129(2) Qa(o) = ’-‘o (4.0)

vhere Ki(t), Ai(t)’ and Bi(t), i = 1,2, are unspecified and must be
chosen in a manner vwhich will optimize the criterion functional. A
restriction of this problem which we may also wish to consider is that
in which part of the parameters are épecified and only the remaining

unspecified quantities must be selected.

This approach has been considered in problems of both state estima-

tion and stochastic optimal control [14]. In these ceses its appeal is
in its potential as a computationally efficient suboptimal esfimation/
control scheme. In the two-input situation the dimensionality con-

‘straint appears to be motivated more by necessity than by mere economy.

4.3 A Specialized Relationship

Rhodes and Luenberger [23] have taken the above approach to &
problem closely related to the one under consideration here and have

derived the following result, presented here withéut proof.

Theorem 4.3a

For the stochastic differential game problem described by (1.1A),

(1.2A), and (1.3A) with controls given by
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o A
U1 = Kl Xl (s.5)
o) A

' A
vhere K, and K, are given by (1.52) and (1.53), respectively, and Xy

A :
and X, satisfy equations of the form (4.3) and (4.4), with

Al = P -0K +CXIT = (PoyPp)(Peg;) ] (.7)
- r -1
A, = F - G K I - (Plo'Pla)(Poo'Poa) |+ 6Ky (k.8)
B, = P B R . (4.9)
B, = P, n; nél (4.10)
and with Pi 3 as defined in Chapter 3, the following inequalities hold:
E{J(U‘;, v3) IQ]} < E{J(u,, ug)lQJ (k.11)
A
B{J(Ui, u;)lxz} 2 B{J(u‘l’, uz)ﬁa} (k.12)

‘This result appears to be stronger than it is: (b4.11) and (4.12)
merely say that if the state estimate derived in Chapter 3 is used then
the control strategy which optimizes the conditional expected value of
E‘ the payoff functional is the certainty-equivalent strategy when the

Y conditioning is done on the value of the state estimate. Equations

- (4.11) and (4.12) do not imply that the certainty-equivalent strategy

:'5. optimizes the conditional expected value of the payoff when the




conditioning is done on all past observatiohs, mor 4o they say anything
about the overall (unconditional) expected value.

k.4 Generalized Relationships for n-Dimensional Control Strategies

. We vish to derive some necessary conditions for control strategies
of the form described by (U.l) through (k.4) to satisfy the following

saddle point conditions:
e{a(u, )} < o, v} (b.13)

{a(u3, u‘z’)} » e{acws, u,)} (k.14)

In order to put the problem in a format more suitable to our

needs, we shall reformulate it somevhat. First, we define the state

Aanddmaddan avnawe & and a T
WY VA Ymves woawew W — -~

¢ =X .'il (4.15)

« = x-% (4.26)

vhere Ql and Qa are generated by estimators of the form (4.3) ana (k.k).
Then, using (4.1), (4.2), (4.15),and (4.16), the system equation (1.1A)

may dbe revritten as
X = (1"-01x1 + 6 Ky) X + G,K &) - G K¢, _ (%.17)

Coabining (4.17) with (4.3), (k.4), (4.15), (4.16) and (1.3A), ve see
[
that the estimation errors € and ¢ satisfy
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Ll S ol i e = il aaramr

31 = (F-A4GK )X + (A -BH Je) - GXe,p - BTy (%.18)
32 = (F-A,GK,)X + G,K e, + (A,-BH )e, - B, (4.19)

Therefore, (4.17), (4.18), and (4.19) taken together may be written

p = Ip + BY (4.20)
vhere
p = |
[ S2. (k.21)
— 1 [
M = kt
T ]
¢ ! ¢ ' ]
Too Tor Fon| |FO)%; * 6Ky 1 GiK) 1 6K, i
- ! o pa 4 'a S BE " ox.
T o= TioTy Moo= |[FA +6K, A -BH) 6K
N L L T
Teo Toy Tez|  |[Fbp - 6K, 10K A, - B,
(4.22)
0o o
B - (B O (4.23)
0 B
Note that the quantity u;ul . u';u2 may be vritten in terms of the
vector p as
5% L ) *
ulu;l. - uaua = p Q (h.2‘6)
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where
% ¥* b
h‘1“3. 'Kz“a "" 11 | KX
Q = "‘1"1 xlx ' 0
{x,‘,xa g 0 :-x;xz‘ (4.25)

. .
Note also that X (T)X(T) may bde written in terms of the vector p as

X(TX(T) = o (T)Re(T) . (k.26)
vwhere
I O O
Q = |0 o o . (4.27)
'0 o o0

In view of these relationships, we may write the payoff functional as

T
= E{p*(T)Q.IP(T) + j; o*(‘r)Q('r)p('r)d'r}

T
-trl:E{P(T) P (T) & + fo o(v)p*(w)e(v)df}] (k.28)

And, defining P(t) by

Poo Poz
P(t) = E{o(t)o*(t)} -[Plo Py
P (4.29)
(k.28) may be written
[ ] jT
J = £r{P(T)Q, - P(7)Q(r)a 4.30
.r(Qrf o (r)a(r)ar (k.30)

..... A T R P s “ . B BN . . . . L. .
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Thus, the stochastic game problem has been converted to a deterministic
'( game to vhich classical deterministic optimal control techniques may be
applied.

In applying these classical techniques, we first note that the

matrix P(t) satisfies the differential equation

P(t) = TI(t) P(t) + P(t) T"(t) + B(t) R(t) B*(t) (4.31)
vhere
R() = Rl(t) 0
0 R,(t) (4.32)

We then form the Hamiltonian corresponding to the payoff functional

(4.30) and the differential equation constraint (4.31), vhich 1s

_f Ry By =t [R] e areerrtint)) (4.33)

X vhere )\ is a Lagrange multiplier wmatrix, which satisfies the canonical

'Euler-l.agrange equation ‘ _

. " L
A= -SE=AT-TA+Q
MD) = g S (k.34)

vhere the gradient operation is as defined in Chapter 1 and thus

kY ? '
{B_P]“ = 5%.11 | (k.35)

............................
.......................
............................




According to the Maximum Principle, we wish to select A.l, B].’ and Kl
80 ag t0 minimize H and to select Aa, 32, and K2 50 as to maximize H.
We shall see that the order of maximization and minimization does mot
matter. Since Al’ Aa, Bl’ Bz, Kl, and Ka are incorporated in various
submatrices of I', G, and Q, we may partition the expression for the
Hamiltonian in'order to isolate those submatrices of interest for
optimization with respect to a particular quantity. Thus, eince the
matrix Bl appears as a part of I' and G, we may write as a necessary

condition

oH d * *
2 e 2w aw s +mnn'|-——tr[zmr+mm

B, 1 By
o0 0 0 0 0
9
aBltrZPlO-Blﬂlo +2lo Bnlnl ofl=0
00 O 0 0 o (%.36)

It is convenient at this point to partition the P and A matrices

P = |P ;A = [Ao|11|A2] (4.37)

Here Po, Pl’ and P2 are n x 3n matrices, and 7\0, 11’ and A2 are 3n x n

matrices. These matrices may be further partitioned vhen convenient;

L‘ e.g.,

oy

- Mo = *11 ; [PJ.OE P13.31’12] (h.38)
Ay

. T *e .s- ‘. ‘. '- N Y. . B NN
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vhere the Ay and P i=0,1,2 aren x n matrices.

n ?

Using this notation, we may write (4.36) as

oH 9
1"1"111 117111

%
3—BI = a—B-;tr-ZP\BH + A BRB]

*
= -ZﬂlPlll + ZRllell = 0

or
» * % % 2]
A3By = AP HRY (4.39)

Bquation (4.39) is a necessary condition for minimization with respect

to the matrix B.. Completely analogous argtments regarding the matrix

1l

B, lead to the expression .

2

ApgB, = x}‘;n;n,‘;l (b.40)

The Hamiltonian (4.33) is also quadratic in K., so we write

1l

g-g—l - 5%1- tr[-PQ + AIP ;Axpr*] - a—?q tr[-PQ + mr] =0
' (4.41)
s@mm (k.11) may also be written
¢
(KK, <0k, 0) (6K, 6K O
-a—fq tr [P | XK KK, o+ |0 o o 0
| (© 0 g | €1K) 6%y O
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Now note that we may write

f  _* * ) ( . )
Ky KK o] (-1
twrlp |k, Kk o] = w|e,e)]| 1]k | 3)
L lo o o J J
4 .

j and P, are as defined in (4.37). Also note that we may write

¢ \

-Gixi 3131 0

tr |IPAl O 0 0 = tr [(pro)("o”"a) clxl] (b.uLk)

where P

CrKy 6Ky O

\ /

Substituting (4.43) and (4.44) into (4.42), we have

) |

I N |
5y trl-(_Pl-PG) I KK, + 2“’1"’0)“0*"2)61“1 =

0
-1
*
2(P,Pg) | I K, + 2(P, Pl (A y+r,) G, = 0 (h.L5)
0
or
-I]
(B, 20) | (\gtrpde, - | 1 Jx; =0 (4.46)
o

Again, analogous arguments apply to the feedback matrix K2 and produce
the expression

-I
(pa'-Po) [(xoﬂl)oa - |1 x; = 0 (4.47)

|7 L
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As opposed to the case for the B and K matrices, the Bamiltonian
is linear in the A matrices; consequently, the maximum principle

dictates in the case of the minimizing matrix Al

2 >0, anjsalidmax

—— (L.u48)
bana <0, "113 = a'liJ min

vhere

r‘"111 830 - ° "‘nnl
Ay o= By By - - By (4.49)
L"m ®n2 """ 8ypn

For matrix Aa "

_oH_ J > Or Bpqy = tpyy WD (h.50)
39‘213 l< o, 321,1 = a213 max

and an expression analogous to (L.49) defines the elements of Ay

Singular cases exist where neither inequality is satisfied in
(4.48) or (4.50), i.e., vhere the derivative 1s equal to zero. In
suck cases, if the condition can be sustained, some higher-order test,
such as the Kelley necessary condition [19], may be applied in an
attempt to determine the values of the elements. It will now be shown

and B, are satisfied, the

that, if the necessary conditions for Kl 1

entire trajectory lies on a singular surface for Al.

- RIS .
PIR SIR  - WY
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4.5 A Singular Swrface

It vas mentioned in section 4.2 that in some restrictions of the
game problem there defined some of the parameters might be specified
and thus not available for optimization. We shall see that it is only
under these conditions that the optimal A coefficient matrices would
be chosen by (h.hB) or (4.50), i.e., be bang-bang. Otherwise, the
g-adient of the Hamiltonian with respect to the A matrices is zero
during the entire interval [0, T]. This is shown for the case of the

Al matrix as follows:

0O O 0
a’q tzrzmr_]s—trzn A, A
0 O o]
= -é—tr[(l’ P )XA]=2(P-P)A (4.51)
AA ! I 70'M ]} 1770/M ¢
v 0
From the boundary condition given in (4.34), we see that A, ={0lat
0

t = T and, thus, a singular condition exists at thc boundary. We shall

novw show that

dt (P1 0)).1 E 0 O0OstsT (4.52)

vhenever the optimality conditions (4.39) and (4.L46) for B, end K,,

respectively, are satisfied.

Consider

a . s s
at (Py Py = (PP, + (BB (8.53)




Since the matrix \ satisfies (4.34), the submatrix \, satisfies

r ) ¢ )
Toa ‘K1K1
0 *
)\l = T )‘1 - l'n + KlKl
r (o}
Sl B N
= -I\
2 * ¥
= <T'Ay = My - (AgHAL)6K, + ) T KKy
o I
] A(T) = 0 (k.5k)
-
» Then, because of relationship (4.46), the expression (Pl-Po)):1 becomes

| . o
= -(Pl-Po)l"A (P PQ))\1 1 (%.55)

(Py Py

Since the matrix P satisfies (4.31), the submatrix Pl satisfies

B, = pr e[ 1y rpleefo BRpE 0] (k.56)

and the submstrix P, satisfies —

P, = Por* + [1‘00

. Fo) P  (ese)

oy

Thus,

. [] &% . .
Py =By = (P)PR)r + [rlo‘roo T Toa r12'r02] P

+ [o B,R B, o] (k.57)

89
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Now note that r12 = rba = -62x2 ; therefore,

To=Top = ©

Also note that

-T

r oo = =(Tj3-To)) - BE,

10

Substituting (4.58) and (%.59) into (4.57), we have
o * *
By =By = (PyPIT + (ry) Ty )(Py-Py) - BLH,PG
*
+ [o B,R,B) o] .

Therefore,

*
= By PyA, ¢+ [° ByRyBy 0}‘1

be written

%
[° B)RBy °}‘1 = B,H\P)}

80 (4.61) vecomes
. . *
(PyPoly = (Py2)Tay + (M) Tgy)(Py PO

+ ByH) (P) Py

(.58)

(4.59)

(4.60)

(4.61)

Using equation (4.39), we see that the last term of equation (4.61) way

(k.62)

(4.63)
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Adding (4.55) and (4.63) and combining terms, we have

a
at (ByPoly = =(PyPOA Ty + (T Ty + BiE)(P) P
(L.64)

8ince this equation is linear in (Pl-Po)l and 1s homogeneous, and since

(1>1-Po)x1 =0 at t =T, ve must have

.): S _ =
w (Pl P(.’)u1 0 0<st<T (k.65)
Similar relations apply for g%' « Thus, if we choose the B and K
2

matrices on the besis of the maximum principle, we must look beyond the

[ ]
maximum principle for help in specifying the elements of the A matrices.

.6 Specifying the A Matrices'

Equation (L.65) indicates thaf, if the optimal values for B, and K,

are employed, the state trajectory lies in a surface in sta_t.e-spe.ce'on

vhich the Hamiltonian is first-order independeat of variations in Al;

an analogous condition exists vith regard to A,. In some control situa-

tions of this type, we may make use of higher-order necessary conditions
on variations of A, or A,. A vell-known second-order necessary cond.i-l

tion is the lLegendre necessary condition, expressed as

1255 20 ' (4.66)
3A

]Thil section 18 based in part on material presented by Johansen [1l].
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' This condition is, of course, trivially satisfied for the game problem
%3 under consideration here because of (4.65). In cases where (4.66)

\t obtains with equality, another necessary condition, the Kelley necessary
\ condition, is sometimes applied. This condition is expressed as

ox .
k a-

% (-2) —ﬁg;{ 2 0 xe0,1,2,... (4.67)
1 dat

However, since the differential equation d.escri'bing gz is seen to be

. 1

- linear in gﬂ and is homogeneous, and since ;%— is zero on the boundary,
_ﬁ, all time deriva.tives or 2B 3 Al are zero on the singular surface and (4.67)
’ is also trivially satisfied.

% ' 4

= The reason for the apparent paradox is that the problem has been

, given too may degrees of freedom: if the B and K matrices are chosen
optmdlly, the peyoff is actually independent of the A matrices. This
N aspect of the problem is related to the mon-uniqueness of optimal

::- control strategies of the form given by (4.1) through (4.4). As an

illustration of this non-uaique characteristic, we may consider the

o strategy of controller number 1, vhich may be written in the form

-

&

% - R, + 32, 5 (0) = K (4.69)
2 1 = A GK BiE )Xy + ByZy 5 X5(0) = Xy y
_ Assume for the moment that Ay Bl’ and K, have been specified. As a

.';i preliminary step, for notational convenience, we shall define a new

o A, = A -CX, -BH (4.70)
i 0 B s W i | *

¥ %

R




Then (4.68) and (4.69) become

U, = .“1?‘1 | (k.12)
§ - ad emz; 0 -5, (4.72)

]
We shall now shov that we may arbitrarily change Ao to a new matrix Ao
and that, by adjusting the matrices B, and K,, we can obtain the same
control strategy Ul’
At
We first define a new variable xl by

A A
X, = X | (4.73)

vhere D is 'a differentiable nonsingular matrix to be specified. Then

(4.71) and (4.72) may be written

v, = k04 (b.7h)
é = (D+pa)pt X + 8.2, ; 2'(0) = p(o) % (4.75)
1 0 1t DBy% 5 X(0) = )

We then adjust the matrices Bl and Kl by the relationships

B, = DB (4.76)
' 51
K, = KD (4.77)

Next we choose the matrix D, requiring that

Depay = A (k.78)

T T I o O L Er U TR
..........




This may be done by defining two matrices §, and ¢, vhich satisfy the

differentiasl equations

-

4 = -011\; $,(0) =1 (4.79)

Then, by direct substitution into (4.78), we verify that

D = ¢;1 Dy b, - (4.81)

vhere Do is & nonsingular constant matrix, which we may choose in such

a manner that
X - % - (4.82)

Then from (4.75) we infer that

Do = I (h083)
Thus, the control strategy Ul may be written
[ ] |
U, = B 91 (4.84)
g e A% ez b - (4.85)
X) = KX +B 2,5 X000 = X y

We conclude that only in cases where special restrictions apply to the
form of the B or K matrices are we unable to arbitrarily specify the

A matrices. .

.....................................................................
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This is not to say that specification of particular values for the
A matrices can be done without concern over the implications, since
fixing these values also fixes the values of the B and K matrices and
way lead to excessively large or impractical values for them. In some
cases, careful selection of the A matrices can lead to considerable
simplication of the computation leading to the B and K matrices. A

case in point is the one-sided problem.

4,7 Relationships with the One-Sided Cese and the Separation Principle

When exemining (4.30) in detail, one observes a certain similarity

betveen it and the expression for the Kalman filter gain, which is

1 .
B, = pnnlnl SR | (4.86)

Upon expanding,

_ * # *_® *® *
. MP1 = Moy Pipt A3 Py YA Pyp
so (4.39) may be written ] o - .
* * * : -1 '
A1 B = ["01 Po? "11 ntia Plz] H R, (%.87)
Then, if x°1 10 "21 12 = 0, (4.87) would be satisfied by (L.86).

*
By examining the 'differentia.l equatiops desc;ibing 101 Plo and xal P12’

however, it can be seen that their sum is not identically zero,
0 < t<T. Thic is an example of the non-scparability of the problem:

the filter gain B, depends explicitly on the elements of the A matrix,

)
vhich in turn depend on the feedback gain Kl.

.................
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A similar situation is encountered when we examine (4.46),

describing xl. If a value for l(l could be found satisfying

-1
(ghhple, = | T (K] (4.88)
0

this value would also satisfy (4.46) and would be explicitly independent
of the elements of the P matrix. For (4.88) to be satisfied, however,
it would be necessary that ().20-!- xez)cl = 0; and this condition is not
generally true. Another condition wvhich would render Kl independent of

the P matrix is
- L]
Again, however, examination of the differential equations descridbing
P and )\ shows that (4.89) is not generally true.
Therefore, as a result of the above situations, the solutions to

(4.39) and (4.46) are

# 2] w1 #_= s _ %]l s
By = PRy A ["01 Pio * 21 P:LZ]BJ. ! (b.50)

-1
* * *
K, = 6 (ag*+2p) (Py-Pp) '[Poo- Py + Pyy” 1’01] (k.92)
assuning that the indicated inverses exist.

Nov notice that, since we may choose the A matrix arbitrarily, as

shown in section 4.6, a particularly good choice is A = F, vhich, as

can be cung demonstrated, results in

Py * P,y = Py (4.92)

-
.
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i.e., the estimation error ¢, is uncorrelated with the extimate &1'
Because of (4.92), we may make use of relationship (4.65) in a special
way: for the one-sided case we may discard the variables with "2"
subscripts; therefore, remembering that P1y= Py =0 (4.65) may be

written

(Py- Py = [P10° Poo P11° Pm] Mop | = (Pyp= Poo)r, =

My,
(k.93)
Then, because of (4.93),ve may write
. -1
Piodor = ProPro~ Foo) (P10~ Poolroy =© (b.94)
and thus (4.90) becomes
B, =P nl Rl (4.95)

i.e., the expression for the filter gain becomes explicitly independent
of the )\ matrix.

Similar things happen to equation (4.91) when (4.92) is satisfied.
Pirst, (4.46) becomes

.I *
[Pm o] . K| =0 (4.96)
This may be written as
(Pyg Poo) ["oo"l + x;] - 0 (4.97)

e PO P R . -
P S I S LI w RN N A S RS PRONTIAE P W SR S S S SOUE N WL SR A SR S SONE A RS Sy SR S T ISR NSNS \SUETIE S/NE G WL W SRS YRS




A T T e e L N B e A A N R N N N
b
N vhich will be satisfied when
*
: . _
X Ky = 6, Mg (k.98)
“
:‘ This is the deterministically optimal feedback gain, as can be seen from
)

the fact that the matrix AOO satisfies the differential equrtion
' . r r.) r.)*+ (4.99)
: ‘oo = ~(hooloo* 2oaTao) = (ooloo* 2oaTi0) + KoKy -9

8ince we have chosen A = P, l"lo = 0, 80 (4.99) reduces to
]
3 A = T ol )* + x* (%.100)
2 Yo = RooToo = (ooloo ™1 y
. Substituting (4.98) into (4.100) and remembering thet.To, = F - G,K,
s we have
> . * ¢ (.101)
> Ao(T) = I
-

This matrix Ricatti equation is the same as that satisfied by
. » » ‘1

¢ (T,¢) | T+1, T, | O(T,¢)
showing that (4.58) is identical to (1.52) and is thus the determin-
istically optimal feedback gain for the one-sided case.
k.8 The M-a.trices By, By, K,, amd K,
The Heniltonian is quadrstic in B,, By, K,, and K,, and it 1s thus
i . ]
N possible to obtain explicit expressions for these matrices in terms of
" the elements of the P and A matrices. This has been done in (k.90) and
: °
o8
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(4.91) for B, and K,, respectively; similar expressions may be obtained
for 32 and Ka. When these expressions are substituted into the I matrix
in equations (4.31) end (4.34), these two equations comstitute a non-
lineg.r two-point boundary value problem, Since both P and )\ are
symmetric and 3n x 3n, the total number of variables is 3n(3n+l). For
the simplest non-trivial example, n = 1; this implies that the nonlinear

problem has twelve variables.

Solution of nonlinear two-point boundary value problems by
iterative computational methods is a subject covered fairly well in the
literature [2,10,16,20] and will not be discussed here in any detail.

However, when such problems arise out of differential’games, two

' important aspects must be considered. The first of these is the number

of variables involved, large even by optimal control standards. Whereas
& one-slded stochastic optimal control problem with n = 1 involves
solution for two variables, the two-player case of the same dimensinn
involves solution for twelve variables. The second aspect is the
particular nature of the nonlinear equations: specifically, if the
elements of the I', G, and Q matrices in (4.31) and (4.34) were Xnown,
these equations would be linear differential equations with one-sided
boundary conditions. This fact suggests a fairly simple iterative

computational scheme:

1) Choose an initial set of values for P(t) and \(t).

11) On the basis of (1), compute the values of the elements
[}

of '(t), 6(t), ana Q(t).

..............
...........
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"’ 111) Using the values computed in (ii), solve (4.31) and

' (k.34) as linear equations with one-sided boundary

28

g ‘values.

2 -] .

f iv) Using the solution obtained in (iii), update the

) calculations done in (ii).

w3l : ‘

2 v) Repeat until solution converges.

= Convergence in step (v) is not guaranteed, of course, and depends on
N5 an intelligent choice of initial values in step (i) as well as

N

:., fortuitous conditioning of the equations by the physical parameters
)

= of the system and by a proper choice of the A matrices.

,‘ As an altérnative to solving the nonlinear problem, we may consider
~ . i o
» a direct approach to optimization by some gradient technique; however,
e~ :

it would seem that the convergence difficulties inherent in gradient

eon'lmt.a.tionai solutions of one-sidéd optimal control prodlems would de

LERLAC ALY

-
_;..:h R

increased enormously vhen tvo sets of variables are involved, one set

'linimizing and the other maximizing. Thus, it appears that the indirect

&

approach to differential game problems described in this chapter is, at

*
rL

WA

least in some situations, the most promising method. *
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Chapter 5
OBTAINING PAYOFF BOUNDS FOR CONSTRAINED STRATFEGIES

5.1 Removing Constraints on One Controller

In Chapter h.it vas indicated that the optimal coefficient
matrices could be'obtained by solving a nonlinear differential equation
with split boundary conditions whose order is 3n(3n+l). It was also
pointed out that the computational difficulties of doing so are
potentially great. It is thus the naturel question to ask what is
obtained in return for the effort required to solve the nonlinear
problem, particularly in view of the fact that the solutions obtained
give only control functionals which are optimal within a certain,

somevhat artificial constraint.

Fortunately, this question is easier to answer than is that which
inquires as to the optimal control itself. Once the constrained prob-
lem of Chapter L is solved, the solution so obtained may be evaluated
by either player by comparing the payoff under the constrained solution
to the payoff which would result should his opponent be unconstrained.
This comparison is easily made, since the separation principle tells us
that if one controller uses a set n-dimensional control-generating
system, his opponent's optimal opposing strategy is generated by a

2nth order differential equation.

This fact allows eithcr controller, once he has estaoblished the
form of his qpntrol-gcncrating sy:icm and itc paramecters, to obtain a
vorst-casc bound on the payoff when he employs that strategy. He is

not able to obtain a best-case bound, because the besti-case payoff




depends upon how poorly the opponent chooses his strategy and may be
unbounded. He is able to solve, of course, for the payoff when his

opponent uses an optimal constrained control.

5.2 Obtaining Worst-Case Bounds on Payoff

When one playér, say number 1, specifies the parameters of his
n-dimensional control, the system from player number 2's viewpoint

may be described by the 2n-dimensional system of equations

M
: F-G.K G.K X 0 G
1o le b A el - L Ga‘! U2 (5.2)
1l 1 171 1 1l 2_'
’
Player number 2's observation equation remains
Z, = BX+ 0, (5.2)
which may be rewritten
[ r
2, = [Ha ,o]i:: 1+ (5.3)
' .

Thus, the payoff functional may be rewritten as

T
iy = B{[x"m) ()] [z o] [x('r) + £ ([x*(w).e‘{m]

00 el('l')j
KK, KK, [X(1) 7] - U(r)u(n))ar (5.4)
* *
XX, K1K1_J el('r)
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Equations (5.1) through (5.4) constitute a standard one-sided

stochastic optimal control m»voblem, the solution to which is given by

* A
U3 = G ()S(tN(t) (5.5)
vhere the matrix é(t) satisfies the differential equation
» %* W
S = Sli"o - FOS + SGOGOS - A . (5.6)
8(1) = Q,
and where Q satisfies the differential equation ’
[ » A
X = [ - o8s R+ Kz, - R (5
where
* -1
K = P ER, (5.8)
vhere P“ satisfies -
: * - *
Pee = FPee * Pecfo * P“HOR21H°P“ + BRyB, (5.9)
w O
P o
¢¢(0) 0 ¥
°
[)
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and vhere we make the identification

r~ -
r - !'-Gll(l GIKI B - 0o | . = X
o L(;-.A1 A-Blnl o 31J ‘1
!
. 2
G, = |g B, = [32 o] ‘ (5.10)
La
r1('{1(1 -x;xl I 0
A = - o Qr =
XK, KK | 0o o0

and Rl and R2 are noise covariances as defined previously.

The worst case bound is then obtained by inserting the optimal
. [ ]
opposing strategy given by (5.5) through (5.10) into the functional
(5.4) and evaluating it.

An interesting parallel to the development of Chaoter 4 is the
problem of choosing an optimum control strategy of the form
u, =k} (5.11)

A
where xl satisfies

§1 - (“1'°1K1)9‘1 + nl(zl-nl'il) (5.12)

and vhere controller number 2 is unconstrained and,therefore,uses a

strategy of the form (5.5) through (5.10).
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6.1 Summary

In Chapters 1 and 2 a general stochastic differential game
characterized by linear different:lé.l equations, a quadratic cost func-
tional, and additive white Gaussian observation noise was presented.
It was shown that the certainty-equivalence principle,valid for one-
player game situations, was not correct for two-player problems.
Spéciﬁca].‘ly, if one assumed a control form consisting of a matrix
transformation of the conditional mean plus a linear.operation on the
residuals, the matrix transformation was the deterministic optimal
feedback gain; however, the linear operation on the residuals was not

& zero operation, as was true in the one-sided case.

In Chapter 3 it was shown that in order to generate the condi-
tional mean of the state vector, each player was required to store all
past observations. néwever, since this was considered to be an
impractical requirement for many practical systems, a state estimation
scheme was developed which generated the estimate as a solution to a
differential equation forced by the observations. The order of this

differential equation was that of the controlled system.

Chapter U generalized this concept to that of optimal control
strategies within the class of strategies generated as solutions to
differential, equations forced by the observations. The order of these
differential equations was taken to be that of the controlled system.

This approach resulted in expressions for the control strategies given
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in terms of functions which are known only as solutions to a set of
nonlinear differential equations with split boundary conditions. A

computational approach to solving these equations is suggested.

In Chapter 5 it was pointed out thatyonce a set of dimensionally
constrained strategies is calculatedyeither player may compute a worst-
case bound on the payoff by assuming his opponent usece an unconstrained,
and therefore higher-dimensionsal, strategy. Formulas are given for
computing this bound.

6.2 Results of Research

Optimal dimensionally-constrained control strategies are of
interest in practical problems where computational capacity is limited.
A great deal of importance in choosing a control strategy is bound up
in the question of what one 18 willing to assume about his opponent's
strategy. Computation of an optimal unconstrained but linear strategy
is quite complicated, and so it is reaso:iable to assume that one's
opponent will impose some complexity constraint upon himself. As we
have seen in Chapter b, there are various ways in which such constraints
may be imposed, e.g., by specifying the order of the contirol-generating
differential equation. The specific form of the self-imposed constraint
of one player is unknown to the other player and may not reasonadbly be
treated as a random variable in most cases. For this reason it is of
interest to computg worst-case bounds on the payoff under varying:
assumptions about the player's strategies. These bounds may then be
used as & guide to making engineering decisions about the utility of &
particular strategy.
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6.3 Suggestions for Future Investigations

In this work we have analyzed a linear-quadratic-Gaussien problem
of a rather uncomplicated type. The natural extensions of this work
should follow the patterns established by investigators of one-sided
stochastic control problems: examinations of cases with plant noise,
colored noise, or no noise and cases vhere the payoff is described in

terms of non-negative definite rather than positive definite matrices.

Investigation should also be continued into the computational
aspects of the problem. The indirect approach described in Chepter &
resﬁlts in a set of non-linear equations with split boundary conditions.
These equations are of such a nature that when the control gains'are
fixed the equations may be separated irnto sets of linear differential
equations with one-sided boundary conditions. It may be possible to

exploit this property to simplify the computational problem.

It would also be of interest to investigate the problem of direct
optimization by some type of gradient method or local optimization
scheme and to determine how the two-sided nature of the problem affects

convergence.
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The general linear-quadratic-Gaussian stochastic differential

game functional is given in temms of L,, L,, K,, and K, by (2.78)

1’ Y2 Ty

Pl
R L Y]

R ¢ which is

I(LysLpyKy K,) = %E{(d»x-wlxiﬁlml(zl-ﬁl)] (A.1)
+ 'raxz[?cama(za-'z\a)], ¢x - T.X,

[Ryr1y2, 2] + 2Rz, 2,0 )

| +<xl['ﬁl+Ll(zl-Ql)], k%2, 2)])

'<k21':§2ﬂ'2(zz"%2)]’ K R+, ) T}

Differentiating the payoff functional with respect to L, and L, and

. 1 2
. setting the results equal to zero, we have

0 = ?L% = -x;'r;[¢x-mlx1[91+x.l(zl-ﬁl)] * sza[ﬁa"l‘a(za'az)-.!}

+ K‘;“1[4\‘1“"1(21‘%1)] | (A.2)

'_- | o = %%; . *T;{¢x-rrlx][§l+x.l(z1-ﬁl)] . Tz“z[ﬁe"“a(za'ﬁa)}]

' . x‘.‘;lcz[§2+1.2(za-'z\2)] - (A.3) |
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Thegse equations will be satisfied if

¥ | o= "’;["‘""1"1[91*‘1(21‘21)] » 1212, 2’]]

+‘ xl[Qle(zl-ﬁl)] . (A.4)

o = T;[Ox'%‘ﬁ[&fl'l(zl"z\'l)} * Tz"z["\‘a"“a(za"z\e)]]

- K X,11,(2,2,)] (A.5)

We interpret these equations in the usual manner; i.e., the right side

A
of (A.4) is orthogonal to any linear trancformation of Z, - 25, and the
right eide of (A.S5) is orthomonal to anv linear transformation of

A
22 - 22. We define the linear transformations

M = §-TK +TK, (A.6)
Ay = (T)T D)X (A.T)
Ay = (T20,-T)K, (A.8)

A A
and note that ve may write X, =X - ¢,, X; =X - ¢, . Thus (A.4) may
be written

° - - (TIMx,) X - Al[cl-t.l(zl-'z\l)]

+ ’;Te“a[‘z“'a(za'ga)] (r.9)

1%




T ™
}.“|
‘B

O

N

& . and (A.5) becomes

o

P~ 0 = (TMK,) X + TirK (e, L (2 2 )]

N %, 21 %

R A ep1y(2,2,)] 0)
'\:‘. .‘ 62- 2 2-z2 . (Aol
We may also differentiate the payoff functional with respect to

‘1:-

Kl and l{2 Doing this and setting the resulting expression equal to

i ] : zero, we have

3 _ )[A A

:~.?( 0O = 3K -'rl[¢x-vrlx x1+1.1(zl-zl)]

LY * .

e A A A - -J

i + 'rzxa_xau.a(zz-zaﬂ + x][xl+Ll(zl-Ql) (A.11)
i aJ %| A A ]

2 0 = 3K T, l¢x-mlxl[xl+1.l(zl-zl)

& A A AT A A
ceallnn ) e dy] o
i Again ve interpret these equations to mean that the right side of

-:. ) A A

, (A.11) is orthogonal to any linear transformation of [xl+1.1(zl-zl)-!

. and the right side of (A.12) is orthogonal to any linear tramsformats-n
X A A

T of (X2+L2(22-2.2)]. We note that (A.1l) and (A.12) have the same form

g

j as (A.4) and (A.5) and may be written as (A.9) and (A.10). Thus the

b\
il right side of (A.9) is orthogonal to any linear transformation of

- A A A

. 2, - %, or of [x -L.(2,-2 )‘], and these two relations imply that the

2 17 % 171 ™

- [

right-hand side of (A.9) is orthogonal to any linear transformation of
'7 A

-} xl. Analogous statcments apply to (A.10): the right side of (A.10)
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is orthogonal to any linear transformations of 92 or of 22 - % .

2
k ' : Because of the fact that for normal random veriables the error in the
;: conditional wean state estimate is orthogonal to all linear transforma-
5‘_ tions of the conditional mean and of the observations, we may rewrite

_ (A.9) and (A.10) es

3

0 = (TIM-KI)QJ_ + Alnl(zl-ﬁl) + T;T,‘,xz[zz-'z\a)] - Ayey (A.13)
0 = (T;"'Ka)?‘a + T;TIKl[el'I‘l(zl',z\l)] * Aa"a(zz‘ga) - Ay
2 (A.1k)
., : . *

Again, we recall thaf the right side of (A.13) is orthogonal to all

~.‘ linear transformations of 91 or of Z, - lz\.l and that the right side of
(A.1%) is orthogonal to all linear transformations of ’)}2 and of Z, - '2\2.
3‘ This is true for the particular transformation of /)\(1: (T;M+K1),)\{l .
Thus, from (A.13)

b

atal

»* A * A A * A \
0 = -<('.rlM-xl)x1, ('rlu-xl)x1>+ <A1L1(zl-zl), (TjMK, )X, )

+<(T:_'r21{2[e2-1.2(22-g2)], (X)X, ) (A.15)

o y A .8
e ‘.,\_*.-._-.a'.- W

It is also true for the transformation of z, - '2\.1: AlLl(Zl-ﬁl).

Therefore,

oty ' 9% A A A A
by 0= '(‘Tl“‘xl’xr "11’1(21'21)> + (AL (2, 2,), Al"l(zl'zl)>

:

7’

.‘f.

© el Oiws
wars?,
UL Ll oo

A AN
+<'r;_rexa[e2-x.2(za-za)], Alr.l(zl-zl) , (A.16)

.
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Adding (A.15) and (A.16), we have
0 = .-<('1‘;M-K1)I)\(1, (T;M-xl)§l> + (AlLl(zl-%l), AlLl(zl-'z‘l)>
*<T;Tz‘(a[°2’l'2(z2'ga)]' "1"1(21'%1) * (T;‘."“‘:L)l’\‘1>
(A.17)

Now the second and third terms on the right depend only on the
covariances of the noise and the initial state, while the first term on
the right is also dependent on the mean of the initial state. Thus,

for (A.17) to be satisfied for all values of the initial state, we must

have

%
T,M-K =0 (A.18)

This being true, equation (A.13) reduces to
A 3 A
0 = AL,(2,-2,) + 'rl'rzxiea-x.a(ze-za)] (a.19)

Furthermore, (A.18), (A.6), and (A.7) lead to an alternate representa-

tion of Al

A = 'n:[¢ + 'raxa] (A.20)

so that (A.19) may be written

0t= T:I:M?.KZ]L].(ZJ.'%I) * T;Tz“zl:‘a'l‘a(za'ga)] (A.21)
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vhich will be satisfied if

0 = [¢‘T2'<2]L1(z1‘%1) * szz["a'l‘a(zz"z\a)] (A.22)

Since (A.27) is interpreted to mean that the right side of (A.27) is

- él , We must have

orthogonal to any linear transformation of Zl

[d’*'rz‘{a‘h”ﬂzlzl " THFaly g = Tz (a.23)

where vzlzl = E{(Zl-él)(zl-%l)*} , etc.

A completely analogous manipulation starting with (A.14) leads us

first to the conclusion that ’
*
This then reduces (A.1lL) to
0 = TaTlxz["l' 1(zl-Ql)'_! + Azx.a(ze-éa) - Aty (A.25)

Then (A.24), (A.6), and (A.8) give an alternative expression for A
*
Ay = - 2L4"'1'1K1] (A.26)
80 that (A.25) may be written
* A ]
o = T2T1K1£‘1'L1(21'21)] - Ta":"‘mlxl}‘a(za‘éa)

e 7§k e, (A.27)
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which will be satisfied if

A A
0 = Tlxl[‘l'Ll(zl'Zl)] - [d"'rlxl., 2(Z225)

;" = . + [¢_Tlxlq!e2 . (A.28)

As before, we interpret this to mean that the right side of (A.28) is

A
orthogonal to any linear transformation of 22 - Zz; hence,

T.XK. ¢ + |61 x L% = PX.Y (A.29)
11'2,2, [ 11}'2 Z.7, 11,2,

We have in (A.18), (A.23), (A.24), and (A.29) a’set of four simul-
taneous linear equations describing Kl, K2, Ll’ and La. We mey solve

for K, end K, quite easily from (4.18) end (A.24). Using (A.6) and

1
(A.18), we have

& * »*
7,0 - TTE ¢ T, TK, = Ky {A.30)

Comparing these equations to (1.4h4) and (1.45), we see they are

. similar in form; thus, we have the solutions
K, = T’]'[1+TT*-TT*T1¢ (A.31)
1 171 T Tetal )
X, = 'TII-#TT* -'r'r*-].l¢ (A.32)
2 171 22 )
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These expressions may be substituted into (A.23) and (A.29), dbut for
notational compactness it is better to retain the equations in their

present form, vhich is

l:¢*‘r2xe-_‘1"1'z]z1 "XV, = tTHele g, (a.23)

T K.L.§ + | ¢-T.K, L % = TX. ¢ (A.29)
112,72, [‘b 1 1]‘2 2.2, 11%.2,

The above equations are necessary conditions which must be satisfied
by linear operations on noisy state observations which make up part of

the strategies assumed in (2.38) and (2.39).
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