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PREFACE

With the development of advanced Army Ballistic Missile Defense systems

there arises the requirement for increasingly sophisticated guidance and

control techniques and systems. Fundamental to this area is the competitive

situation wherein a target vehicle is attempting to avoid an intercept

vehicle or to say the same thing another way an interceptor is attempting

to hit- an evasively maneuvering target. This competitive situation is

referred to in the technical literature as the differential game problem.

Results developed for this fundamental problem area obviously have

applicability to a wide variety of situations not only military strategic

but other competitive situations as well. This report is one of a companion

set of reports issued on this broad research effort and it deals with

continuous time differential games in a stochastic environment. One of -*

its purposes is to develop techniques which can result in the simplest

possible thoroughly effective systems.
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. - -.



ABSTA.CT-

An examnation is made of some problems encountered in the optimal

control of a Linear dynamic system by two independent controllers with

noisy state observations, the controllers having either conflicting or

concurring objectives. The question of what form the optimal controls

should take is also discussed. By restricting consideration to linear

forms, it is shown that the computational complexity of a general

optimal linear strategy is considerable. Attention is further

restricted to a particular linear form for the optimal controls: a

matrix transformation of a vector vhich Is the solution of a lnear
...

differential equation forced by the observations. Properties of

certain forms of this type of control are analyzed, and It is shown

that the parameters of these forms may be expressed in terms of solu-

tions to a set of nonlinear differential equations vith split boundary

conditions. It is also demonstrated that these forms reduce, in a

oneinput case, to those specified by the separation principle of

one-sided optimal control.
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Chapter 1

INMIODWCTION

1.1 Preliminary Renarks

A wealth of practical problems arise out of natural engineering

situations in vhich the control of the "system" is in the hands of more

than a single controller. Such multiple controllers may have varying

objectives, and these objectives may be holly or partially conflicting

Uor concurring. As examples we dight cite pursuit and evasion situa-

tions with two vehicles, rendezvous in space of two vehicles, and

control of an international economic system by several state govern-

ments. In many of these natural engineering situations the controllers

are required to act ith imperfect information ae to the true state of

the system; thus, In such cases the question of how to control in a

manner which is in some sense optimal is usually difficult to answer.

For this reason control theorists have often chosen to analyze abstract

mathematical models which are thought to retain some important charac-

teristics of their real-world counterparts, since such models yield

more readily to analysis than the actual situations.

It is the object of this research to investigate the nature of a

specific type of two-input control problem: one in which the con-

trollers have conflicting objectives, the state of the system is

described by a system of linear differential e'uations, the criterion

functionel Is quadratic,, an the contr.lers have availe.obe only sta"

observations which are obscured by white Gaussian noise. This is a

stochastic differential game situation. It is thought that a thorough

-4
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analysis of this problem may reveal some interesting facts which will

contribute to a greater understanding of more complicated 
problems.

In the realm of optimal control theory, systems which are

described by linear differential equations and quadratic cost func-

tionals have become classic objects of analysis. This is' partially

because they have the pedagogical advantage of yielding with relative

ease solutions which illustrate theoretical principles in a simple

framework. It is also because many real-world optimal control prob-

lom can be fitted into the linear-quadratic mathematical framework;

hence we gain insight into the behavior of practical systems by

studying the linear-quadratic models.

In the area of stochastic optimal control similar statements

- apply. Here the so-called "separation theorem" (9,15] enables us to

combine our knowledge of the deterministic optimO, control for linear-

quadratic systems with the results of Kxaman and Buoy [17,18) in the

area of estimation and prediction of the state of stochastic dynamic

systems to produce a control which is stochastically optimal in the

Ssense that it minimizes the expected value of the cost functional.

Specifically, the theory of deterministic optimal control when applied

to linear-quadratic systems shows that the optimal control function

can be expressed as linear state feedback; i.e., if we denote the

control signal by U(t) and the state of the system by X(t), then

" ult)ot . I(t)x(t)

opt 2



* wheroe K(t) is a feedback gain matrix determined by the parameters of

the system. The separation theorem then shows that vhen the state is

not directly observable the stochastically optimal control signal is

UW A
stoc. opt "0O(t)

where X(t) is the conditional mean of the state, based on all available

- knowledge and measurements, and K(t) is the deterministically optimal

feedback gain. This result is iptuitively satisfying in that we simply

use the best (mean square) estimate of the state in place of the actual

value of the state to obtain the best realizable control function.

Differential games are natural objects for the application of

optimal control theory, since in many cases the formulations of these

problems are only slight modifications of ordinary optimal control

problems with provisions for an extra control input to the plant.

Indeed, differential games described by linear differential equations

and quadratic payoff functionals yield under mild restrictions solu-

tions which are not greatly different in nature from those of the

analogous one-sided optimal control problems. To be specificy the

optimal strategies for both players are linear state feedback control

functions.

A natural conjecture then is that in the stochastic version of

the linear-quadratic differential game, where the players are unable

to observe the state direct.Y, the stoeastically optime., strategy

would be to e lploy the conditional mean of the state in place of the

taue - t. lnear feedback. Unfortunately, this conjecture is false,

3
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as is easily seovn by simple counterexaaples. We shall, therefore,

proceed to inquire about the nature of the optimal dtrategies and to

aalyze in particular the special cases vhere the controllers are

restricted to the use of computationally feasible (practical)

strategies.

To begin the development, ve shall formulate the stochastic

differential game problem vhich vil be the underlying object of analy-

sis for the remainder of this work.

1.2 The Deterministic Game Formulation

The differential game described by the system equation

... (t) . (t)x(t) -ol(t)ul(t) + 2(t)U2(t).1.1

(wher x~o = X0  * o!, andi CoNV{Xo XO)
[-

with peyoff functional

Auls (t tQ (t d + M . 1~t

1  T } (1.2)

(Vhere Q() %(t), a are positive definite symmetric matrices,

w .the asterisk denotes vector or matrix transpose)

4t
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and observation equations

Zl(t) - H(t)x(t) + M

(1-3)
z 2(t) . Vt)x(t) + n2(t)

(where 1l1 and 112 are zero mean white Gaussian noise, vith

:' ,,{111.,),j(',. -} R1((. ),oc-,, E{1 2 .,.(r) = R,(t)6(t-'..,

E{1i1 (t)1(T)} -

and vith R1(t), R2 (t) continuously differentiable, O! T) may be

described in more efficient and general terms. First, note tt since

:i I' 21 and Q3are positive definite and symmnetric, they may be

Qii"Q 1  i -1,2,3

vhere Q is triangular and non-singular. Then by the transformations

X -Q .x

Ul (t) U. (1.5)

S2I.6)
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the system equation becomes

p~~~~~~ i'(t = FtQXt (t)Q- 1 (t)U,(t)
':,~ 117

+ ( (t)U 2 (t)

S Or, defining new matrices

SF4;) = Q ¢3 (i.8),
G1 (t) - Q IG1 t)Q(t) (1.9)

G2 (t) G Q G2 (t)Q2I(t) (1.10)
2tQ,2

*the system equation becomes

'(t) = F (t)x (t) -Gl(t)Ul(t) + G2 (t)U 2 (t) (lo3A)

the payoff functional becomes

T

(i.()J(lu) 2X (T) + U(t)u '(t)at
~E{X(T)*0

T (1.2AL)

U. 2 (t)u2(t)dt}

and the observation equations are

,_..z z(t ) =Hl(t)4.xelt) + 711(t) a= .(t4)xe(t) + iii(t;) (.

11 3A

2(t) - 2(t3 (t) + 12(t)il ~I"-
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In view of the possibility of making these transformations, we may

consider (1.3A), (1.2A), and (1.3A) to be a general problem formula-

tion. Further generalization is possible, however.

Note that the solution to (1.1A) may be written (dropping the

"prime" subscripts) as

xMt W (),c0  f I~ ~-()lTU(~'
0

o (1.11)

+1 4(t) 1-'(T)G2 (T)U2 (T)dT

0

If we now define the integral operators T 1 and Ta 2

t

0 "

(T2u 2)t) f *(t)r 1 (T)G2( )U2(idT (1.13)
0

then equation (1.11) may be written as

x(t) - *(t)x o - (T3lu)(t) + (T2u2)(t) (1.14)

or

x(T) t *(T)x o - (TU 1 )(T) + (T2 u2)(T) (1.15)

Note that O(T)X is the predicted miss distance under the condition of

0,0

no control being applied by either player.

7
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We shall henceforth drop the argument T whenever t =T, so it will

be understood that when we write

X(T) = 4X0  T1Ul + TU 2 (.6

this is equivalent to (1.15),, and when the argument t is Intended, we

shall use the form (1.14).

The first term in the payoff functional (1.24) may thus be written,

x(T*xT) (~c 0 - ~u 1 + 2P2, *X0  T1Ul T2 U2 ) (1.17)

(where (,)here denotes the inner product in Euclidean space.) The

other terms in the payoff functional way similarly be expressed as

inner products in the Hilbert spaces formed as finite copies of the

space L2(T). Hence, the payoff functional may be written as'

VTu1 , 2) = E{( X0 - T1U1+ T2U2 , *X0 - T&U + T2j2)

+ (Ul1 ,Ul) -(U 2 1 -(.8

We wish to find the U1 and U2 which miniu-aximize J(u1 1 2 .W

require that these be functions of only the observables Zand Zand

the known statistics of X,11 1, with the specific functional forms

to be determined.



To acquire some insighit into the nature of the problem, we first

solve the deterministic version; i.e., we assume both players know

precisely the initial condition XO. We also assume both players are

-*~able to monitor the state continuously during the progress of the

game. We may drop the expected value notation for the tilne being, and

thus express the payoff as

J(ulu2) = ''u. 2u2, #X0JX 1U1+T2U2 )

+ (U11Ul) - 1) (1.19)

To minimaximize this quantity with respect to U1 and U2 , we form the

functional deivative of J(U1 ,U2) with respect to U1 and U2 and set

these derivatives equal to zero. Thus

T*TU T*T U 0(.0

SU J(-U 2) U1 - TIX 0 - 172U2 + Ul 0 (1.)

:' 2)T- - Xo - T2T1 l + TU 2  0 (1.21)

&U2

(where the asterisk here denotes the adjoint operator.) We see that

for these equations to be true U. must be in the range of Ti, and so we

may write UI - T ii. Substituting these expressions into the original

equations (1.20) and 1.21), we have

'g,

me derivation given here is due to Porter (221.

r 9



T mX T .X. + .T2 U2 - Tl.U. (1.22)

TT +T 2 T2U - T Ul (1.23)2 2 2' ].o 2(,,.2 2

These equations vill be satisfied if

1 = 4X0 +T 2U2 - . ('"-2i)

which implies

) -- " Xo + T T- T *, (1.25)
1 *x 2T2 X'1  T 1 1

Thus

L11 A2-2 J "I o..

or

X, [I + T1T* -T 2 T 2 ]* x (1.27)

when the indicated inverse exists. Thus we may vrite

U1  = T + TT -TT 2  Xo (1.28)

U2  2 2 I + 1  T 22 ] *0 (.

We note that the form of (1.19) is quite general and that the results

-- above are valid for any abstract Hilbert space functional of this

fo-m".

10



When Tand T are given by (1.12) and (1.13), then

-+ 01t) (Tpt)

l~l-TA+

T

-L (Tjs)G (s)G(s)e(T.,S)ds] (1.30)

and

TI+TFT1JJT1 -;(t

K1(~tT) 0t)*(T)[+ f(T,s)j()G(s)*(Ts)ds

- *T,)G(T5)G(s) *(s)ds (T,) (1.32)

If defn

K2(t;t, r) 0 0(t)4 (T,t)[ +T t(Ts) (s)G(s)e~(T,)ds

-~ f(T, 9)G 2 G() Tjos)dJ *(T~t) (1.33)

'*1~~~~2s **-(... . .. .. .. .

.. . . . .. . . . ... . . . . . . .
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then we may write

U1 (t) a K1(t;OT)X0  (1.34)

U 2 (t) - K2 (t;O.,T)X0  (1.35)

Here the arguments 0 and T of X1 and K2 indicate the initial and final

times t - 0 and t = T, respectively.

Having seen this solution, we may state the problem somewhat

differently: if we require that U1 and U2 be of the form U1 - KXo_

then what are the transformations K1 and K2 which minimaximize the
1S

functional J(u1,*u2)? In other words, we wish to find K1 and K 2 which

min max J(K..K2,) fe4 4X.. -T,-T XX-,'X+, .
K1  K2 L C. V A, A. V . 4. %0 %0 . Pw

+ (Y-X0 ,KjX0 . - (1c2x0,K2 x0)} (1.36)

NoW K1 and K2 are linear transformations from the Euclidean space

containing X0 to the Hilbert spaces which are the domains of T1 and T20

respectively. We form the functional derivatives of J(K1,K 2 ) with

respect to K1 and K2 as follows: let A1 Ind A2 be arbitrary linear

transformations which have the same domains and ranges as K1 and K2#

respectively, and let ld l and s'2 be variations about K2 nd

respectively, vhere a and a are scalars. Then, remembering the
1 2

predicted miss distance - (T,0)Xo,

12
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J('Yc1 1 *,K2) 2 {([-',1+3 B1 Ai) +TC]

[~.r1 ( 1 +se.l) + T2K] 0

- (2XIKX0 Z (.

and, upon first expanding the above expression and then subtracting

J(K.. 2)-,we have

J(1c-i- s~tl 1 ,K2 ) - J(K1 ,IK2 ) a 8 ([ 1 -K+T 2 ]X.0 T1&1Xo)

+ 1, 8 2(T,NX0 ,T1 &1 X0 )

+ ~5( 1 0 ~X)(1.38)

Dividing this expression by al and letting 81 approach zero, we have

the functional derivative of J(1cK 2 ) with respect to K1, which is

aJ(K V1 K2) - [4-TI!K+T2X 0,Ti1X) +(KlX0 ,&1X0) (1.39)
1J

which may be written, using the properties of the adjoint operator

T and combining terms, as

BJ(K1 , 2
102 ) ~(T 1 *[6-T3r 1KlT] -K 1)X0 ,tAZX) (.4&o)

P ~ 13



A necessary condition then, that K1 be a minimizing transformation, is

((IT 1  .T 1K1+T2Kl - K1)X0,.1X0) U (1.41)

Now, since A1 was taken to be an arbitral, linear transformation,

(1.41) implies that the vector

(T 1*[$.TK 1+T, 21 - K1lx o  (l.42)

is orthogonal to any linear transformation of Xo, which in turn implies

that the transformation

2, T1 JK1 - 2K]- K1 (1.43)

is te nujL ransrormatLon. 'nus ror any vector Ao

T1 O-TrKl+T2K2lX0  K K1Xo. (1.44)

This can be true only if KIXO is in the range of T*; hence, ve write

S- T1 *) I for some X in the domain of T1 .

Following a line of reasoning similar to the above, after

differentiating J(KIK 2) with respect to K2, we are led to

Hence, KX2 O Is in the range of T 2.0 We write K2XO = T X2 . Substi-

tuting T X and T *2 for Y O and K respectively) in the above

14
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pair of equations gives

- + Tz~o * .3. . .. 46)T.f - 'T, Tj l X, T, T202 '2 "Tz Iz X1

-O * T** = T2 '2  (1.7)
-T T2 XX T T- L72z "2z 2

which can be vritten

OX " T2T2 X2  1

2 x - 1  - 2T2  2 2

SIf 1X 2  ve have

41. - T~l ~(1.50)

4x- [ * -TT,*.
=_ L J. ..

or

X3 -IT~ T2 T2  * 0  (.1

if the indicated inverse exists. Then, since K1X - T1 X1, ve have

T Tl#E+T371 T2 * 4 (.2

• .and similarly

X24 =TI+T31  T 2 T 2 4(.3

15
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These expressions are what we expected: knowing that the overall

optimal strategies are linear transformations of Xo; we are not

surprised that when we ask which linear transformatlons of X0 are

optimal we get as an answer The same (the overall optimal) transforma-

tions. However, the technique just employed can provide optimal linear

strategies even when the form of the overall optimal strategies is not

known.

Expressions (1.52) and (1.53) are open-loop optimal control

strategies. Since we have temporarily assumed that the players are

both able to monitor the state continuously, we may convert (1.52) and

(1.53) to closed-loop or feedback type strategies byreplacing X0 with

44-1 (t)X(t), KI(t;O,T) with KI(t-tT), and K2(t;0,T) with K2(tltT)o

In this case, as the game progresses, the players constantly regard the

present instant as the initial time of a new game and form their control

functions accordingly.

16
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Chapter 2

THE STOCHASTIC GAME PROBLEM

2.1 Preliminary Remarks

In some cases the players are not able to monitor the state

continuously, but are able to make noisy observations of the state in

the form given by (I.3A). If they are given only statistical informa-

tion (I.A) about the initial state Xo, then presumably they will be

able to take advantage of their noisy measurements to improve the

quality of their play over that of strictly open-loop strategies.

Thus, we must find stochastically optimal strageties- methods by which

!* the players process their observed data so that the expected value of

the payoff functional is minimaximized with respect to the data

processing methods. The players must find strategies which are optimal

within the constraints of their limited information. This information

includes the mean 1 and covariance #XO of the initial state, plus the

observations described by (1.3A). These quantities must be combined

functionally to form the strategies U1 and U2. What the functional

form should be will be determined by certain criteria of desirability.,

one of which is the so-called "certainty-coincidence" principle dis-

cussed by Willman [28). This in simply a requirement that the

stochastic strategies coincide with the deterministic strategies when

the noise variances go to zero.

Other criteria are simplicity and physical realizability. Accord-

j Ingly, we will require that the functional form of the strategies be a

linear combination of the known quantities and the observables.

17
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2.2 A Heuristic Justification for the Assumption of Linear Strategies

An interesting aspect of the selection of the form of the strate-

gies for discrete-time games has been developed by K. Bley [6] and is

extended here to the continuous-time case. We have hypothesized a

criterion function of the form

T:, • - )x( ),(uu 1-u2 )d(t.
J + {*(T)X(T) + f U* t (2.1)

an a system equation which may be rewritten

SX - FXdt -GOUdt + G2U2dt (2.2)

We define

g min max J

U ( t)U2( t) (2.3)

.:.: to :9 t :9 T
:--.T

For a given set of noise statistics and for minimax control strategies,

the payoff will depend on to - 0 and X(to) =X ; call this payoff

f(X(to),t). We write the minimax payoff as

f18 t

...........,.,o =



l71.

Breaking the time interval [OT] into two sub-intervals [O&] and

[ATJ, we may then write the criterion functional as

n mmax E )dt + X*(T)X(T)
U U 0
1 2

TL (uu 1-U2U2)t

min max E (UjU1-U2 2)dt

U 1 u2 Uo

T

+ Mirt ax $X*(T)X(T) +1 (u 1 . )dt}} (2.5)
U1 U2

NW

T
lain max L x*(T)X(T) + fU }X(O)d )

SU 1 U2 A

(2.6)

We expand f in a Taylor series about (X(O)p0)

44-

f x(o) +X,A f r x(o),o + + dX (2.7)

so

A

S" {fo (uU,-U;,,dt + f (x(o so) + + Mf dU U U1U t°  a'

(2.8)
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Since min max Ef (X(O),0 - g, we my write the above as
U1 U2

af A + M d~} (2.9)
0 - min max Ef (U1U,2U2)dt + r'o (

U1 U2  0

Then, writing dX - FYA - G1U1A + G2U and substituting in the above,

0 mi ma E (fu u~u)dt +f
U 1 U 2  0 -2 at

+ (rxc41u1, 2 , 2) 4 (2.10)

Approximating the integral by (AU 1 -UU 2 ) A, we have"

:.. o - inw Et (Ull-U2 U2 ) . -

U. U2 .. A + aj(FX01 U1+G 2U2 ) Aj
I e.(2.11)

Dividing both sides by A, we have

0 -min max IUU 1-UU 2  L ' (Fx- 1U 2U2 ) (2.12)
Uo u. .1 , 1X

Since win wax Ett([X(0),0fl -g
U1 U2

* -g~-winwa E{t(X(0),Ofl mi mm ax Rot* (x(o),o)}
0 0U 1 U2  U 1 U2  0

(2.13)
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Therefore,

r . (f.}1'
"*l% = in max E IU 1U-U U 2 + X (FX.01U1+G2U2) (2.2

Sto U1 U2

We nov must make an assumption about the form of f(X,t); therefor
! m 1

we choose some general form, such

f(X,t) = X*)(t)x + U*1 (t)x, ux(t), (t) (2.3,

where the Xi(t) i = 0,1,2 are unspecified matrices. Thus,

a f (2 a,",
• -X Xo(t)+ UlXl(t) + U 2 (t)

Utilizing this expression forar, in (2.14) we have

-min max Et 1 4JU lu
ato U1 U2  1

(FX= - 1 + G2U2)} (2. Y!

After collecting terms, the right-hand side of (2.17) may be rewritten

Win max L X
U1 U2  + + UQ2 2 +

X"Q5U)2 + U1Q6 U (.

'For a detailed examination of this subject see the dissertation of
K.Bley [6) where the discrete-time version of the problem is analyz ..
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vhere

%.r

Q, SYM{14 103}

Q2  I SyMI+ 2G

Q +

SF)2 + OG2

Q6 " G2 -GI 2  
(2.19)

and where SYMJA} denotes the symmetrized version of the positive

definite matrix A. When differentiating the expression in brackets

with respect to UI, since U1 is a minimizing control: we have

+. . uQ = 0 (2.20)

Similarly,

E{Q XQ UQ}-0 (2.21)

Nov because U1 is player l's control, U must be based only on the1 1

observation Z1 ; similarly, U2 must be based solely on Z2 . And since

it is a property of conditional expectations that E{} - xI Z}}

for random variables X and Z, we may write the above equations (2.20)

and (2.21) as

"019 1 + X*Q4 + Z 0(
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{U2Q2 + X Q + U I6 z - o (2.23)

Furthermore, since U1 = U1 (Z1 ) and U2 = U2(Z2) and because the taking of

: conditional expectations is a linear operation, ve may vrite

+ oE{X1Z 2 }Q4 + E{U2 Z} (2.24)

UiQ2 + E{X* ZJ Q5+E{U~lZ 2  Q6  -0 (2.25)

or

U1  'Q~3 ~ I Za Ci} -Q E{U 2 IZJ (2.26)

and

U2~ 25 E{X Zal -~k QQ E{ fZJ (2.27)

Nov if we denote by T 1 (.) the linear operation

Tl E{- zj (2.28)

4and similarly for T2 (")

= E{. I z (2.29)

the equations then read

U1  %tl (2.30)
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Qu2  .Q- 5T - Q2 T2 U1  (2.31)

and, substituting the second equation into the first,

UQ * 1 T-X + Q 6T1Q T2X + QlT 1 2 T2U (

*'-.The expected value operators commute with the matrix operators Qis

i -1,2...6,so

(I Qk6Q2 4TT 2)U = QQ T1T2 -QT]X (2.33)

If the norm of the operator QlkQ k T 2 is less than unity, a

Neumann expansion givea the inverse of I - Q 6 Q2 1 T2 ' so

U (1.-~ 6 jQTT)- QiI 6_'TT 2  J X (2.34)

The above expression gives U1 in terms of conditional expectations of

the state vector X. A similar expression exists for U2 . We have con-

sidered only the starting point, but any point may be considered the

starting point of a new game.

These expressions for the minimax strategies in terms of condi-

tional expectations of the state indicate that when the process statis-

tics are Gaussian the optimal strategies are linear (affine), since the

conditional expectation of the state is a linear transformation of the

observations. We might interpret this to mean that, when pitted againstq

an opponent who is known to use linear strategies, the optimal counter-

strategy is itself linear. However, the proof makes such essential use
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of the Gaussian character of the process statistics that it becomes

Invalid when either player at any instant uses a nonlinear control

which vould destroy the Gaussian probability distribution. When the

Gaussian distribution is thought to be a reasonable approximation to

the true distribution, the restriction to linear strategies in perha p

justifiable. Furthermore, since the solution to the deterministic

problem is known to involve linear state feedback as control strategies,

it is Intuitively reasonable to believe that for small uncertainties in

the state information the linear certainty-equivalent strategies cannot

be too far from optimal. Thus, the class of general linear control

strategies must contain strategies vhich, If not overall optimal, are

at least boumded by the certainty-equivalent strategies in payoff. In

practical situations, if the system designer has some confidence that

a linear strategy vll give nearly optimal performance, he can justify

restriction of his design to linear strategies on the basis of computa-

tional feasibility considerations.

A final vord about the form of the strategies: since any strategy

which minimizes the expected value of the payoff must in some way

depend on the probability distribution of the state variables, the task

of selecting a strategy vhich is generally optimal against any form of

opposing strategy is rather hopeless, since that opposing strategy may

alter the probability distribution of the state variables in such a vay

as to give each player a different notion of vhat that probability

distribution is. It is vith a view to the futility of searching for

the perfectly optimal strategy that ve gladly restrict our attention to

the task of finding an optimal linear strategy. We shall soon see that
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even this restriction is not sufficient to insure that the resulting

control functionals are computationally feasible.

We have required that the strategies be simple, linear, and

p1~sical3yr realizable. A pair of general expressions Emeting these

requirements is

U1 * (2.35)

A (2.36)
U2 -M 2 2 +N 2

A straightforward approach to the game problem might be to assume

strategies of this form, to substitute these expressions in the payoff

functional, and to proceed with the optimization over the class of

linear fucin~ MV '- M2, an" N2 . Then, if the certainty-equivalent

strateg vere optimal, we would expect to find that M1 - X, and

U2-*~ while N, an N2. are zero. While the proposed approach Is In

fact a poor one if useful solutions to the game problem are desired#

some revealing facts are brought to light by tating it, and ye shall

therefore do so.

But before proceeding, we point out two facts:

A
1) We have tacitly assumed tbat the conditional means Xl

A
and 2 are computable by the players, but we have not

specified how the computation would be done.

11) We have asked that the "certainty-coincidence principle"

be satisfied. Thus, In term of the forms we have

assumed, we require
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1 KM 2  K2

N o N2 - o (2.37)

as the observation noise covariances go to zero. In view of this

-;0 requirement, we may rearrange (2.35) and (2.36) into a more convenient

* fora. We write

A A A

U =M1 1 + 1 Z1  ( 1 NHl) X, + NJ AZ_ xxl z(z 1-' x1 )

X K1 X+ 1 Z A 1) (2.38)

A A
where K, M, + Nli1Z, Z= Xl, and Kl = N!. Similarly, we write

U 2 . K2XeL2 (Z2 -Z2 )j (2.39)

and require K1 and K2 to approach the deterministic feedback gain as

the observation noises go to zero. Thus, our assumed strategies have

the form of linear transformations of the conditional mean plus linear

operations on the residuals. The payoff functional becomes

J(K,L,K.L 2 ), ) = g E{ 4X4 L 1(z-Z)_ + T2K[ X 2,L(Z -Z ,

OX- T1K1 [~1+L(Z 1 -~1)] + T2 C[+L(- 2)

6 *+ K1 [ +L (Z 1 -4 K1 [~1 +L1(Zl-9 1 )]

K XF+L (Z-) KJ+ (Z~l (2.140)
2.. 2 2 22 J P.2222k1 .I
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and we vsh to find K1 , L1 , K2 , and L2 , which provide a saddle point of

the functional (2.40).

Hovever, before proceeding further, it in desirable to pause and

develop the techniques we will need for handling such problems, i.e.,

finding functional derivatives of expected value functional. To illus-

trate these techniques, we will derive some well-known relationships

which will be found useful later in this exposition.

2.3 Minimum Variance Estimation

The first example we treat is that of minimum-variance estimation.

We Vish to estimate a vector X on the basis of our observation of

another vector Z. We assume knowledge of the mean K and the variance

of X and of the covariance of X and Z, *XZ. We also assume know-
"xz

ledxe of the mean Z and variance *.. of Z. We ask that our estimatorLe"

be linear and realizable and that it obey the certainty-coincidence

principle. We thus assume the estimator has the form

-1 - L(Z-) (2.41)

A
were denotes the estimate and L is a linear operator. The estima-

tion error is

SXx- X- L(Z-Z) (2.42)
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and the variance of the error may be written as a functional of L

J(L - L{XX-f-L(z-f), xJi-L(z-f))} (2.4.3)

Forming the functional derivative of this functional vith respect to

the operator L and setting this equal to zero, ve have

E{(X-X-L(Z-z-), A(zZ))} 0 (2.4.4)

where, as before, A is any arbitrary linear operation on the observa-

tion Z-9. We Interpret (2.44) to mean that the expression

X - - L(Z-z (2.45)

tion Z-Z. In order for this to be true, Z-Z must be uncorrelated vith

(2.45); I.e.,

' Z [ -4 (2.46)

This is an abstract form of the iener-Hopf equation describing

the linear estimate which is optimal in the mean square sense. It is

Vell known that vhed the random variables are normal3l distributed the

linear estimate is over-all optimal. Furthermore, since the optimal

pF. mean square estimate is the conditional mean of the random variable to

be estimate, ve see that (2.41) provides us vith the conditional mean

of X when X and Z are normally distributed and L satisfies (2.46). We
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note that when the form of L is specified as

L(Z-Z-) - ~ .- ) Z (2.47q)

then the Wiener-Hopf equation takes its familiar form

t

=x~tU f W(tPr) * ZZ(t..c)d-r (2.4.8)

2.14 A Stochastic Optimal Regulator

We next treat a more complicated problem: the stochastic optimal

regulator. This is the one-player version of our stochastic differ-

ential game. We first look at the deterministic case, which when .cast

in abstract Hilbert space form appears as the following minimization

oroblem:

min J(U) =T -T{Ux)u x.i)+ (UPu)I (2.149)
U 2

Differentiating J(u) with respect to U and setting the derivative equal

to zero,, we have

-T + T T ~U - 0 (2.50)

This equation has a solution only if U is in the range of T ,or

U T% for some X .Substituting this into (2.50), we have

-T* +T*TT*X+T* 0 (2.51)
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Equation (2.51) will be satisfied if

- (2.52)
r-"L

or + 1 1X, if the indicated inverse exists, which would

imply

U -TTT* + I]' (2.53)

When the system under consideration is a continuous-time dynamical

system described by the differential equation

i(t) = F(t)X(t) + G(t)U(t) X(O) XO  (2.54)

then TU. takes the form

-'; T
" fT 4(T) "1 (r)G(r)U(r)dIT (2.55)

and

T? - fT (T) 0"()G(,T) G*(r)e(T)l*('r)dT (2.56)

This is recognized as the controllability matrix of the system. Thus,

If the system is controllable, TT* is positive definite and the

existence of TT + T' is assured.

31
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We might nov ask the question: "Of all controls of the form

U = KX, vhich linear transformation K minimizes the functional J(K)

vhere

.r(c) - j ((w ~) x,Qb-wr)x) +(Kx,YX)} 1" (2.57)

" By a procedure similar to that used vith the differential game, e

vould find that the optimal K has the form

K T[T* + ( (2.58)

This is not a surprising ansver in viev of the previous result.

We msy now consider the stochastic version of this problem.

Assume that ve do not know X exactly, but do know Its conditional mean
A
X and Its conditional covariance *XX9 these quantities being conditioned

on the observation of a correlated random variable Z. The correlation

" betveen I and Z is denoted *Xz. Random variable Z has conditional mean

and conditional covariance #Z70 these quantities being conditioned on

the observed history of Z. We invoke the certainty-coincidence

principle and the criteria of simplicity and realizability to postulate

the form of U as

U - i [X + L(Z'Z)] (2.59)
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We thus ask for the values of K and L which minimize the functional

J(KL) = E(K4)X-M{DL(ZA~)I, ~X- KL+L(Z-t)

+L(z-A)], K+Lz)]}(2.60)

Forming the derivative of this functional with respect to L and setting

this equal to zero, we have

. J(KL) = K*TT 9+L(Z-)j KT x + +L(Z)j 0

* (2.61)

which will be satisfied if

T*T + I] XL(Z)] - T*x = 0 (2.62)

We interpret this to mean that the expression (2.62) above is orthogonal

A
to any linear transformation of the quantity Z - Z. In particular,

(2.62) is orthogonal to L(T T+I) K - T 1 L(Z-Z), and we may express

this by

Z [*T+I1 4+L(Z. :]- T*,X, [(T*T+.,.K ,-T+] L(Z.))} 0

(2.63)

We may also differentiate (2.60) with respect to the transformation K

and set this equal to zero. Doing this, we have

-TQL(A TJ + Q+L(Z-t)] 0 (2.64)
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"Again ve interpret this to mean that (2.64) is orthogonal to any

linear transformation of the quantity + L(Z-t)o in particular to

(T*T+I T~fl [+L(z-Ai1. This we express &a

.,1

EK--T*T+I! , '.1--)] - € IA,[(,T', ) ) K - 0

(2.65)

-. Combining (2.63) and (2.65), we have

E{([*T+I] ,O+L(Z )] - T*,,(T*T,,) K - T*f] 0 (2.66)

A
We may write X = X + e; and then$ using the fact that estimation error

"-"2 is orthogonal to any linear transformation of the conditional mean (for

normal random variables), we rewrite (2.66) as

E.-T*T+ K+L(ZA) - T*O; [(T T+I) K - T*0] X} 0 (2.67)

or, defining A = *T+I)K, we write (2.67) as

.. + AL(z-),(AJ-*f) 0\1 0 (2.68)

Proper interpretation of (2.68) implies that

A T* X, AL(Z. ))} - 2.9

or, a an writing X = + € and noting that the estimation error is

orthogonal to all linear transformations of the observables (for normal
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random variables), we may write (2.69) as

-Z+ AL(Z- ))} 0 (2.70)

Subtracting (2.68) from (2.70), we have

Z{(AL(Z-Z), AL(Z4)) -((A. ) (A4*) 0 (2.71)

Now., since the first term on the left depends only on the covariances

of observation noise and initial values of X and the second term depends

on the mean initial value, for (2.71) to be satisfied we must have

!e

A -T* - (T*T+I) K -T* " 0 (2.72)

-hich implies

AL =(T T+I)n YV 0 (2.73)

Equation (2.72) is the relation which described the feedback gain K for

the deterministic regulator problem, so the solution of (2.72) is known

to be

K T [T+1j4 (2.74)

Substituting this expression into (2.73), we have after some

manipulation

T OL =0 (2.75)
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This will be satisfied if L *0. Thus the stochastic optimal controller

USTOC OPT ,, ,, I 2,

We have obtained a weakened version of the separation theorem; i.e., we

assumed a control function of the form

U = I{+L(Z-A)] Best linear estimate of X (2.77)

and found that L 0 0, and K is equal to the feedback gain matrix of the

deterministically optimal control.

2.5 A Stochastic Differential Gome - Special Case

We now return to the stochastic game problem, laving developed

some techniques and insights which will prove useful. The functional

we wish to minimaximize is given by:

3X -T K rX +.(zl + T2 -
J+ (K1[l 1 +L1 (z1-) ILA I 1[*1 +L1 Z1 -_t2)])

- T. XFi. L -) K + (78

1 X 12121 2.2 2 222
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In some special cases it Is possible to simplify this problem by

decoupling, so that each player solves an independent stochastic optimal

regulator problem. Therefore, before proceeding to the general problem,

ve examine one of these special cases. By making the folloving changes

of variables,

,T (I+TITIj)T2 (I+ 2 'TITIT2 ) (2.79)

A tlz ll Ki 1 +Ll(Zil-) + A2K + 2 (Z2 -~)

(2.80)

- 2  +- (T 2 fT T2) IK2 (2.81)

the payoff functional becomes

A'A A-
J(K ,, LL,)= ($x-'r,K,[x,+L,(z,-z,). + _ _o o_ _:)

a - -%. -

1 j- TK ,X'1+L(Z.-1 ) + T 2[X+L(Z-tO))

+ . ,(Ki%,.(z1 -. 1 ], TXjXLL((Z- -)]OX (TT 2 L 1 1  1 TTK Y*L 2(Z-2)1)

+ (ej3[ +L (Z-A1 ), T1TKJ%+ 2 (Z-t)])

( 2r* 2(Z2+ A'2

(,T2**?)2 KIJjT+L (Z 2 - 2 ) (2.82)
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Differentiating this functional vith respect to Land L2 and setting

the results equal to zero,* we have

* CTTK1 X1 L(Z1 1) - o*

+KK-,11(-1) 0 (2.83)

K2 T2 T 2  2~) 2 +J K2 T#~

TOK2'K 2+L(Z2 2) o (2.81.)

2 2 2k)]

Differentiating with respect to K and K2 , we have

-~ ~ + TTK[1 L(Z1. 1 ]-T~ + K1 jlL 1(Z 1 -~1)] -0 (2.85)

T2 2 T2 2 2 X+ 2 Z-Z2) + T#4X KlX2 +L2 (Z2 -Z2 )] - 0 (.6

Trhese equations are seen to be independent Man identical in form to

those Of the stochastic optimal regulator problem. Thus., the two

Players Play the transformed gams using minimum-variance type state

estimators, transforming their Strategies back to the original gome byv

use of the transformation equations. However, this solution is limited

in usefulness in that It requires player 1 to know the quantity Z2

his opponent's observation,, a circumstance which would rarely be true.

This result Is essentially that of iBhn and No [3] but Is a slight
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generalization in that neither player need have exact knowledge of the

initial state.

2.6 A More General Stochastic Differential Game

In the case of the general stochastic differential game, it can be

K shovn by techniques* similar to those used in equations (2.61) through

(2.74) that the minimax values of K1 and K2 are given by

K T 1 T4-TITI ] 4(T,to) (2.87)

T2  - 4I4 41 Tj 2]2 T] 4(T,to) (2.88)

These are seen to be the deterministically optimal feedback gains.

Analogous to (2.75), but considerably more complicated, are the equa-

tions describing L. and L.

i1.
1I~c7IL z~z - ~C2 2  2~ ~22 ~(2.89)

TKL*z + [.tz 1 K1  L2* TK~ t (2.90)

The above equations are necessary conditions uhich must be satisfied by

linear operations on noisy state observations which make up part of the

strategies assumed in (2.38) and (2.39). The derivation of equations

(2.87) through (2.90) is given in the Appendix.
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We ma make the following observations at this point:

1) L1  L-0Is not a solution to this set of equations;

hence, we see that the optimal linear strategy is not

a certainty-equivalent strategy.

it) As * il *Z2Z2 I* s 1 Z 2 jad* becomze small,

L- = 2 0 tends to more nearly satisfy (2.89) and

(2.90); hence, our solution satisfies the certainty

coincidence principle.

We may illustrate the use of the theory just developed byr a simple

example due to Willman 1283.

2.7 A Simple Examle

Example: Discrete-time, one-stage scalar game

Transition equation: Y X + U - V

P-offtfuntinl: J E + {5 2 CV Cc~ c>a> 0

Observation equations: Z x + 11

r~lJ Is normal; [0 ol oRJ X Is normal; (O,P)

Making; the following definitions and changes of variables,

U 2 U TU 2F2 t U2

1 11. A 4x'4i0



-.9 under these transformations the problem statement becomes:

Transition equation: y = X + I U2

Payoff functional: T . 1 (4 U TU)2 + U2 U

2 Z{LT !2 2  U

Observation equations: Z1 - X + 1i

-z, Z2  M X + 112=1

[!;]is normal; [0], [R ] ; X is normal; (O,P)

We-first derive expressions for the feedback gains K1 and.K2

Xl TfI+T -I * 7 . [ . + a - a]_(l+a) -a

" T I+Tf ",- + a ai,._"___
X2 a.. 11 2 '= c -T 4i e ar c c(+a) -a

Then
+(l++-+ ; T " + +'r (c-a)

"ll Tl+7 - 1 "'-'-a)-a
T1K1 ras + ~~a T 1K2

V~ 2  T;*++ YK --- a

The filter equations then become

"re c(a~l) - aa L 'a
C(a+l)-a- L 1 Z c(a+l)a 2Z 2Z 7 1 i(a+l)-a c2Z1

. (a.+ 1) -a exzi

.+
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1~z 4.Z Cii L2*z2Z -CT&l- 1I2

c(a+)-a Z2

which simplify to

C~~)L*Z~ 2Zg I a *2l + c(a+1) gz

* We mnust now derive expressions for the conditional means and

covariances:

A P A- Ri
XP+R 11  1 1 1 1 P.R 1  FiR1 I

2 -P+R 2  Z2 '~ ' 2 Z2 P-+-72 PhZ2

X P _________- "

'1~~R' -X.PXF-X1)12

2 - 2  PX -i(X+l12) P+R222

12 j 
2

11 E{(x111  1

z -Z -Z

z(Z Al "1 R2  EX1 1)(X+112)1
(Z12) (P+R 1 )(P.R 'E ) X

PR3R2

(p+Rl (PR 27 '-~
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R22 2

Y2 E1 '+t2)

A2Z E1 Z2 3i2 i P1 113 (X)Xt

*6 z - (X-X )(Z -Z)}-E - T 1  R

2 2
R -PR1

z 9 Ell(L-X 1 )( 2-Z 2)1 Ei (R TP111 (X+i1)1
1 2 (PR) + 2 )

PR1R2

(CP+R1) (P4- 2

A A (R(X~llPR 1R2

-~(-X)(Z -Z1) 1 j(LxrI2 P+RQ}, = +R )P+R2

C9-A 2  1 2 )J-Jj PiR)R2) )*(xr 2 )

P2

(P+R2 )2

Substituting these expressions into the equations describing L3 andL2J

we have2

C(&+3.) L R - a PR1R 2  -ePR ? 2

P+R1  L2 +R )(P+R2 )T = (P+R )(P4-T

PR1R R 2 PR1R2
ac(P+R )(PRj T + P+ ) L2  ) -+-

which simplify to

c~t1(a41) (P+R ) L1  PRL -APR 2

acPR1Lj + R 2( c-)(P+R1)L2  &CaPR,
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which have solutions

-l sPIacPR 1 -(c-a)(+R 1 )R2)

cR1EP+Ri)(PR 2)(a+i-)(c-a) + &2P2]

aP!aPR2 + (a+l)(P+R jcR,)

L2 2((P+Rl) (P+R2 )(a+l)(c-a) + p2

We may nov derive expressions for the control functions:

1 il + i'ii'zlJ M (c(a+1)-a)

B 1  R)(+ 2 )(a+l)(c-a) + a2prj

[~~.zi+ aP~cPR1  (c-a)(P+R )R

-SF 1
= (F+L~2)(&a+1)-aa [+ a~p j -

After som manipulation, this becomes

1 [(P+R 1 )(P+R 2 )(a+l)(c-a) + a2P2J Z1

Similarly,

U2  2L 2 2(Z2-~)

2 PaR + (a+l)(P+R 2)cRjj R2Z2 ]
[+2 R2((P+R 1 )(P+R )al(-a) + a'PP')

F SPB + (a+l)(P+It )cRJ 1
(P+2)[(B~)S~ L (P+R )(P+it)al)ca + &2pJJ

which after some manipulation becomes

-avc(P+R )(a+l) - a?)

2 - (P+I1t)(P.1R 2)(A+1)(c-a) + a2 P2 )



These answers are the same as those obtained by Willman when they are

retransformed to the original problem.

We note that the problem was solved in three parts:

i) The feedback gain was derived.

ii) The conditio,Al means and covariances were derived.

iii) The expressions for L and L2 were derived.

Of these steps, (i) is relatively straightforward and would be done in

the course of solving the deterministic game. Furthermore, the

procedure is not altered essentially when higher-dimensional multi-

stage or continuous-time games are considered. Stepq (ii) and (iii)

are simplified immensely when one-stage discrete-time games are con-

sidered, because the problem of obtaining the conditional statistics

is isolated from that of obtaining L1 and L2 ; i.e., steps (ii) and (IIi)

may be taken separately. In multi-stage or continuous-time games the

covariance of the state depends on L and L2, and vice-versa. The

result of this is that the conditional statistics and L and L2 must be

obtained simultaneously.

No attempt to perform this computation will be made, since the

ensuing analysis will show that no computationally feasible solution

exists. In Chapter 3 the problem of computing conditional statistics

is taken up under the simplifying assumption that L1 a L2 = 0. It is

shown there that, even under this assumption, computation of the con-

ditional mean of the state requires that each controller retain the

entire past history of his observations. This data storage requirement
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is impractical; thus, in Chapter 1 a different approach is taken which

requires that the strategies be optimized over a set of conputationally

feasible control functionals.

.!i
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Chapter 3
PROBL OF STATE ESTDMION IN TWO-INPUT COOPERATIVE

AND COMETITIVE CONTROL SITUATIOUqS

3.1 Discrete-Time Case

To illustrate the various considerations affecting the problem of

estimating the state of a linear system controlled by two or more inputs
derived from independently made state observations, we begin with a

discrete-time example.

Suppose we have a system described by the difference equation

x(i+l) = 0(i+l,i) x(i) - Ol(i) u1(i) + G2(i) u2(i) (3.1)

where X(-) is an n-vector; E{X(O)} - X0 ; Cor {Xo = #X .

is a state transition matrix and thus satisfies relations such as

* (ii) - I ; I - Identity Matrix

.+1i)= F(i) k(i,i) (3.2)

It Vas pointed out at the end of the previous chapter that the condi-

tional statistics and the optimal L1 and L2 must be obtained simultane-

ously. Since here we are primarily interested in providing an

expository development, we initially treat a simplified version of the

prob"'u: we shall assume that L and L2 are known by both players, so

.4 that we have only to deal with the state estimation problem. Further-

more, we sha3l assume that controller number 2 is restricted to L2 0.

Thus,
U2(1) 2 X ( )(1) (3.3)
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where

X2 (i) -E{X(i)1z 2(i)} (3.4&)

z2(i) = Z2(o), Z2 (i), --- , z2(i) (3.5)

z2(j) = E2(j) x(J) + 12() ; j = ,1, ---, ( (3.6)

where H2(j) is an m2xn matrix and q2 is white, Gaussian, and

K{ *(i )l) - R() 1  (3.7)

and vhere 6 is the Kronecker delta. The problem then is to compute

= ) - .{IX(i)IZ-(i)} (3.8)

where

2 () =z(O)v Z (1), --- Z (1) (3-9)

z10)- I(a) x(j) + %.() (3.10)

"l white, Gaussian, E ll(i) q(j)l - 1 .6i(11)

and 111 a I2 are independent

The rolloving relations hold

(i .,1E -j A l A .. . r ..

+ o2(i) K2(i) )2(i) -o1(i) ul(i) (3.12)
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where

A ,, (3.13)

We know that X( i+i) and Z ,( i+l) are correlated Gaussian random vectors,

that X(i+i) has conditional mean f(i+i), and that Zl(i+l) has condi-

tional mean H1(i+l) f(i+l) S Z(i+i). Thus, by a wel-known property of

Gaussian random vectors £8, P.3A), we may write

Alil f- ii + (i~) [z1ii.) - i(i+3.)1 (3.14)

wbere

A.J(i+l) -*X7. (i.+i) (i+i) (3.15)
1 ll

whre

* *,(i+1) = f{ [X~i+l) - (i+l)] [Zl(i+l) - (i+lfj} (3.16)

and

(3.17)

&~(1i+1) is conventionally given in another form. *if we define the

error covariance matrix Pll by the equation

- d rrA i

6n(~) E L {1(i~) - (+) (31
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where

91(1+1) -estimation error (3.19)

then since

A

1(1+1) =x(i+i) -x(i+i)

-X(±+i) - E(i+l) L L1(i+1) [z(+)-

*(xci+i) - f(1.+i)) + T1(1+1)1 (3.20)

* and because 11~(i+i) is independent of X(1.+l) - (i+j.), we have

P (i+l) - ,(i+1) - ,(i+i) 4l(i+i) *

Furthermore, since Z ( i+i) E ( 1+l) X(1+1) + Ii +1), we have

(1+1) - 1(i+1) *XX(i+l) 91(i+l)* + Riy1+1) (3.22)

We may thus write

*~t t- -zz 1[~ 1 ~( ±+i) H1(i+1) tx(±+1)

* 4(+1)](3.23)
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So

z~~~~~ 1(i+l) * 1i1)N (i+l) ,(~)E~(i+l)l
11z * 1 1

R .l(i~l) - (3.24)

and

-11

- .(i) *iz(inl iziz( *l

11

- xx(i+i) H14(4-l)[R1 (i1 (- 25)l)1(I

- 01(i) u1 ( 1 (3.26)
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has the form

X2()- 9(,0) '(o) + w(i,,a) Z2(J) (3.2)

with no restrictions for the moment on the matrices 9(1,0) or W(i,J).

However, we do assume that these matrices are known to controller

number 1. Since f(O) is known to both players, we may write

X21(i) 9400i~) f(o) + W(±j (3-28)

and because Z2 (J) and Z1(i) are correlated Gaussian random variables,

we may write

,{z 2( ) z1 (.)- - E-z2(a)",("-")} ' M(a,)[Z('") ('-)I

where

,,,.).) (3.30)

*z 2- ( ,i-1) - ,{ [Z2(J) - ,{z 2(),z 1 (-1)}] [Z(-) f.(.)-I

(3.31)

i'. , €) . _i) f€a) (3.33)
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Notice that (3.29) is a 4lifference equation whose solution may be

written

(3.34)

Thus, (3.28) may be written

~21i)= ('-,o) 5[(o) + w ILZ)

+ A w(ipj) k M(Jpk) [zl(k) E-k~ (3.35)

Let us assume that ijZ2(i)} D(J) F(o) (3.36)

Then, defining T(i,O) - G(iO) + W W(ifj) D(J), we may write (3.37)

A 1 ) - T(i#O) X(O) + W(i.- ) Mi..jk) [zl(k) - 9 1(k)]

(3.38)

A
We observe at this point that in order to calculate XI(i+I) one must

know 21(1), which in turn requires the preservation of the observations

,~ (k),.k =a,,--I

3.2 Continuous-Time Case

We are interested mainly in the continuous-time version of the

equations so far derived. The continuous-time equations are obtained

by the familiar process of writing 0(1+1,1) as 0(t+At) and expanding

6(t+bt) In a Taylor series as
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Rt ( -t) *(tst) + F(t)WA + () | I + .(t) + 0(&2) (3.39)

We also modify the forcing terms in (3.1), so that this equation

becomes

X(t&) [I + F(t)A + 0(,) 2] X(t) - o1(t) U1(t)a +. 2(t)U2 (t)&

(3.40)

After we have subtracted X(t) from both sides, divided both sides by A,

and taken the limit as A approaches zero, (3.40) becomes

F(t) - (t) x(t) - ol(t) ul(t) + G2(t) u2(t) (3.41)

By a similar procedure, (3.12) becomes, upon substituting (3.39) WA

modifying the forcing terms,

1 (h)-[.T. + (tA. + o(A2j1 k(t) + 02(t) K2 (9) 'X21(t)&

- Gl(t)U1 (t)h (3.42)

.- Letting A approach zero, we see that f(t) -(t) - Likevise, (3.26) may

be. written

[- [ + F(t)& + 0(A2). )(t+6) R,1(t+&)

[z1(t.&) H n(t.A) f1(t+A)] A + G() Wht ~()

- G(t) u1 (t)a (3.43)
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Subtracting (t) from both sides, dividing both sides by A, taking

limits as A approaches zero, and using (3.43), we have

+ t(t) 0 (t) kl(t) - Gf(t) u1(t) (3.44)

Here the spectral properties of 71 (t) must be modified so that over a

ait time interval the additive noise has the same corruptive influence

as in the discrete-time case. Specifically, '1(t) is taken to be a

white noise process with spectral density

E~1(t) 1r,(.r)} R1(t) 6(t-r) (3.45)

where 6(t-T) is a Dirac delta function.

Using these same techniques, (3.29) becomes

zz(r)1z 1 (t)} - EIZ2('r )Is1(t-&)} + 14(-r,,t)rzl(t) y 1 t)] A

(3.46)

Subtracting E{Z2 (t)Izl(t-A)} from both sides, dividing by A, and

taking limits as A approaches zero, we have

EqUation (3.47) has solution

t

Z{Z2(t)J)} . Zf(t)) + Jo Mt)[ 1(u

t

- D(t)f(o) + fo w(ta)zl() - z1(0)] (d.o;8)

m' '. .v ,, , , % ° ', . . " , ' .' . • '. . -. " " • . -" . " - .. - . . . . .". - -. ". ,



The similarity to (3.34) is obvious.

If ve assume that controller number 2 uses a state estimate of the

form

A t
x2(t) = (to) I(O) + J W(t, ) Z2(.r)d (3.19)

then the continuous-time analog of (3.38) is

-21(t) -T(t,0) i(o) + f (t,) f m(r,O)

[z1(O) - Elm~] WTd (3.50)

A
Thus, calculation of X21(t) appears to require storage of ZI(O), OS st.

We nov prove this to be true; i.e., (3.50) can be obtained in no

simpler form.

To this point ve have made no restrictive assumptions about W(t,'r)

or (t,O). We shall nov do so, shoving that in order for each con-

troller to compute EjX(t)I7,,(t),k - 1,2, he must store all past.

observations.

We first assume that W(t,r) is of the form

.(t,r) - c(t) Q(t,r) NM(t) (3.51)

vhere Q(tr) is a p x p matrix vhich satisfieg

.Q(t,) - (3.52)

" Q(t,,) . r(t) Q(t,) (3.53)
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. .. . .. .. . . .. . . ... . . -. . -. * . . .. . "- : . . . . . . . . ..

and N(t) is a p x a matrix. We also assume that 9(to) in of the form

(tto) - Clt) Q(t,O) y(O) (3.5)

:here c(t) is a differentiable n x p matrix. These assumptions are

equivalent to requiring that X(t) be given by

A
X2(t) . c(t) q(t) (3.55)

where q(t) satisfies the pth order differential equation

q(t) = r(t) q(t) + N1(t) Z2 (t) (3.5)

q(o) . y(O) f(o) (3.57)

A

We call X2 (t) a "p dimensional state estimator." Under these assump-

A
tions, ve see that X(t), given by (j.ou), can e vri;tzen

!- t

t [C(t) Q(t#O) Y(O) + f c(t) Q(t,'r) N1(T) D('r)d Tr] f(o)! fo 3
+ 0(t) Q(t, ) J ?4( ,a) [Z1 (a) -d a d T

0 JO

(3.58)

* Defining a new variable q(t) by

Q(tTr) 11(T) D ( o) O
0L) Q(t,0)() + Jot 'I

t t

-+ (ti) N(-r) M(-rta) [Z,(a) - Zl(a)] a d

(3.-59)
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ve see that -,(t c(t) (t) (3.60)

a nd that X 2 1 (t) satisfies the integro-differential equation

d AFd A~ ) + c(t) L A t

d A A
Sq(t) -r(t) q(t) + N(t) D(t) f(o)

dtt

+ f Q(t,'r) N('r) ?4('rt) [Lz1(t) - l(t)] d~r
0 9(3.62)

At this point ve define a new matrix

n1(t) J Q(t,'r) N(Tr) Y(Tr,t) di (3.63)
0

Also, ve note that because of (3.48),
tf M~,) Z1(a) - 91(o)] do + D(t) f(0)

(3.64)

and because of the independence of 112(t) andM~t.

EiZ2(t) Z('r) os 1 T g -j %(t) Ejx(t) Z1(i), ag 1*

-X H()~(t) (3.65)
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WO May thus write (3.56) as

d A.. A.
*: a q(t)- r(t) q(t) + N(t) HR2 (t) X1~t)

+ .F(t) [z,(t) - ~)(3.66)

and (3.61) becomes

it X2.(t) -, +t

%+

Repeating (3.4), we have

,_,[ •Zllt) -Hl(t) k(t + G2(t) K2(t) 2(t)

- G(t) ul(t) (3.68)

Equations (3.66), (3.67), and (3.68) taken together constitute a system

of n+p first order differential equations whose solution gives the state

estimate Xl(t). This result is intuitively reasonable: if controller

nuber 2 is constrained to use a "p dimensional" state estimator, then

controller number 1 must use an "n+p dimensional" state estimator.

Furthermore, because of the restrictive assumptions we have made, we

are actually able to solve the game problem, i.e., obtain L1. This is

done as foll6vs: since we have assumed L2 - O, we ma write

U2 - K2(t) 2; using (3.55), this may be written U2 = K2(t) C(t) q(t);
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and so (3.41) becomes
.,

dX - F(t) X(t) + 02(t) K2(t) C(t) q(t)

- o(t) Ul(t) (3.69)

These equations may be written

-2r-0 [i] -E2  r I [Jqj t1 12 + jU U (3.70)

3.3 Control Applications of the State Estimation Procedure

The original criterion functional may be vritteq in terms of this

augmented system as

J ~ I fl E-i(, i + r 6U,(t)U.(t)dt
E L ,.. ., J  L U V J LU t . J  J O -

qT L (t)] . [x(t)] dt} (3.71)

fo q(t)] [ K0 2 I q0: c K2c

This is a classical one-sided stochastic optimal control problem of the

linear-quadratic type, and the solution is well known to be of the form

X 1
U1  K (3.72)

A
We have already observed that X1 satisfies (3.44), which may be com-

bined with (3.60) to read

,."' z. (t) lM + ( HIt)Rl LZ(t) t) M~

+ o2 (t) K2(t) c(t) (t) - O1(t) U1(t) (3.73)
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Furthermore, q is given as the solution of (3.66), which is

- (t)qt) +,t) i+ r(t) [.,(t) - E1 .,(t)] (3.74)

Beim and Ho [3] have solved this problem for the case in which

11, O, a their result is that

U1 = K [e21

Uhere K may be written K =[K 1  Dp] and K, is the deterministic

optimal feedback gain derived in Chapter 1. Since we may write

C = X - Cq, Behn and Ho's solution may also be written

,1. [Y-1  -D pc,]] . (3.76)

Then if.ve fix controller number 2's strategy, i.e., require that he

continue to play as if 1 - 0, the problem is simply a stochastic

optimal control problem. We may apply the separation principle to

obtain

Thus, for this special case we have solved the game problem. The result

may be written

UA A. •K 1 + Dpl Dp

,1 [ + L(Z 1)] (3.78)
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Therefore, L1 satisfies

( -A - Cq[] (3.79)

From a computational standpoint, such a requirement is unreasonable;

thus, a game strategy which incorporates the conditional mean of the

state, the conditioning being done on all past observations, is not

satisfactory from an engineering viewpoint unless the opposing strategy

is known to be dimensionally restricted. If the opposing strateg is in

fact dimensionally restricted, the resulting game situation is

unsymmetrical.

3.4 A Suboptimal Estimation Procedure

An interesting suboptimal state-estimation procedure ben been

developed by Rhodes and Luenberger [21],. the significance of which viU.

be shown in Chapter 4. The method uses state estimates generated by

differential equations which are of the same order as the controlled

system. This procedure is a compromise between estimation error and

computational difficulty. We have already developed a differential

A
equation (3.44) describing the conditional mean X of the state:

1i

[Z.(t) . (t) ,(t)] + G2 K2c )

-o(t Mu Mt (3.80)
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We recall that the problem of dimensionality enters the picture in the

calculation of 21 (t). As a simplifying assumption, let us take X2 (t)

to be approximated by some linear transformation of 1 (t); i.e., let

AA
x21(t) n(t) x1(t) (3.81)

where n1 (t) is to be chosen according to some criterion of optimality.

For reasons which we shall see later, a desirable criterion is mean

square error; i.e., we choose 01 to minimize

2 tr Cov (X 2"3 ) = tr )]-E{ [ x2 lX nl 1

tr [={X24r -O1X1X - X2XQ1r + nXXP}

a. a tr [E{X2" 2x2 4Z0n + oYX1nJ (3.82)

Taking the gradient with respect to 01 and setting the resulting

expression equal to zero, we have

A A* A A*

1+ -x (3.83)

or
:i rA A*) r r^/ -1

C) LNX 2X3J [E-LXlx} (3.84)

A, A
Now, If e- X- X and e2 X - X2 and e define the vector p by

* f:€] (3.85)
2 2
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and let
-o

S ~ j POO P01 P02.
F Cov P Et J P P1 P12L0a P21 22A (3.86)

then

V1 (X^^" -C (3.87)• :: x~I  (x-) (X-6i)*

where Cq is controller number 2's p-dimensional state estimator, which

is designed with the assumption that 1i = 0. Behn and Ho have shown

that under this assumption p = n and C I; i.e., controller number 2

needs only an n-dimensional state estimate, in this case generated by

a Kalman filter.

This problem is not, however, a true game problem, sirce all of

the parameters of controller number 2's strategy are fixed. But, since

the purpose of this chapter is to analyze the problem of state estima-

tion, with game theoretic considerations suppressed temporarily, we

proceed in that vein.

Because controller number 2's p(=n) dimensional state estimate is

based on erroneous assumptions, it is not certain how good a state

estimate it is. Even within the class of n-dimensional estimators, it

may not be optimal either as an estimator or as a strategic variable.

Clearly, from controller number 2's viewpoint, the "p-dimensional"

state estimate is inferior to a "2n + p-dimensional" estimator, which

he would use were he not constrained. Inductively, we conclude that no
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state estimates generated by finite-ordered differential equations can

make optimum use of all of the information contained in the

observations.

"* The reason for the difficulty encountered in making the state

estimates Is that the "state" of the system includes the "state" of

each controller's estimate. When a system is described by a differ-

ential equation, then its state estimate is also described by a

differential equation of the same order. When a system is described

by a integral expression, its state estimate is also an integral

expression; and to compute this integral, all past values of observa-

tions must be retained. So

rfA A*1 0  ~ 2 (3.88)

and

E E{(X l)} = E- 4* -E{e 01  (3.89)

It is a property of optimal estimates (8, pp 38-43) that Ee 1 j 9, 0.

For the moment, we shall assume this to be true for our estimate also and

verify the fact later. Thus, (3-.89) may be vritten

Af(390)LI ± I tI - ]CL(-lJ* %O Po 01P

Using (3.88) and (3.90), (3.84) may be written

I'l-O- P0 1 - P20* P21] [PO 01-1

a 1- [r2O- P21 [POO- P01 }-1  (3.91)

~******~ ~ '. - -- - -65-



Substituting this expression into (3.80)o we have

* : - o7(t) k . (t) 1 1(t) [(R1t 1Z ( o-

- o1(t) u(t) (3.93)

W~e have thus derived an "n-dimensional" state estimator for controller

number 1. This estimator is given in terms of the covariances P0

P2 1 , PO, P J and Pl , quantities which must be calculated separately.
Note that, as X, O l-I.

.. It is ilmpossible to calculate these covariances, however, unless

:.=" we have some knovledge of the tore of 9
2 (t). We therefore assume that

We tus a n-dimenslao"a, estimator of the same for. as co(t) r

thus described by the differential equationNot tha [ant oo 0 2 t 2 t]-o 1 t 1 t

a o(t) u(t) (3.914)
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Again, we approximate X (t) by 2( 2( and by an aalogous

manipulation obtain

0 2(t) = I- (P1o- P12 )(P0 "- P0 2 )
1  (3.95)

Thus, (3.94) becomes

d A ~ ~*jA,
at x2 () I~G1( 1 (t) L - (P 10 -P 1)P 02) IX 2(t)

2+ P(t)H*(t)R2 (t)L2(t) - H2(t)X2 (t)
1 + 2(t) U2 (t)

(3-96)

We are nov in a position to calculate the covariances. We begin

with system equation

d tA t| t

at, X(t) = F(t) X(t) - Gl(t)K1(t)X1 (t) + G2(t)K2 (t)K2(t) (3.97)

This may be rewritten, dropping the "t" argument, as

i [- GjK + XG2 X + GIK1e1 - G 2"2  (3.98)

A
We may express = X , iby

1 ,G2 K2 (P20- P21)(Poo- Po)
1 x

+4 (P20-P21)(Poo-Po1) -' PllH1R1 1H1  €

S

02 1COe- P ER (3.99)
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similarly,

-a~ 1 r 0 '12(P0O P02' X rV01

+[N - 1K3 I -(P 1 0 - P12)(P0 0 - P02) 1

-p22 2 2 ' 2  222~ (3.100)

*We may write a differential equation describing the vector P - 9 as

follow:

p-rp +Bn (3.101)

Vhere

* (3.102)
L *'J

0 0

B - B (3.103)

-G41K102K2 :GA~ -2 -- -

-P

* 41 x1 ~(P1 1 2 -P 1

'0XI1 1 'I r0:-1(pOp2

L (3 104))
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Then P -Coy (p) satisfies the differential equation

P ? + FPf+ *3f* (3.105)
4%

*" vhere

R+I 1 (306
::~ R 13.2o1

Denoting the sub wtrices of r and B by

lr 01 r02
r . r10 r. r. (3.3107)

:r2o ra r22

001
B -B 0 (3.3.0),. -B2,

and expanding (3.105), vs have

.o 01 P02  roo rol F02  ?00 Pol

10 0 0I 1 1 3.0 3 12

, 20 P 21 "22 r2o rn r 2 R 2J 1 P22J

0OO P (P 09) o r P
+ Po P * '

' . !UU*. . .

10 'n 12' rol 11 ral

.0 0 [it 0 [0 -B:l
S+ "B1 0 0 R2  B

|',,,6 9

,.~~~~~~~~ .' .' - , - .- .- -. . .. .. .... . - .. . .. . . .. .. .. . ....



Sorting out the expressions for P31anid Plop we have

n . + r22 + P10r10 l + 1+ 1

+ (3.11B0 n)

i - jp~ + r1 P1  + r 2 0~ + + 1 r0 (3.111)
3- 0 1 I.O Plo 10

Then, subtracting (3.111) fromn (3.110), we have

P 3- P1 r1 (P 0 1 -PQ 0) r311(P31-P1O) + .2P 2O

+ B1R1B, + P10 (r 10 -r0O)* + lrlrl*

+ 12(r12  0 2) U2~)

**ow r 1 2 m4- 2 s nd 02  4G~2 ,2 so the last term of (3.11) maY be

dropped. Also,

r 0x( p)pp ) F + GK1 -GK (3.113)

ad

-~ r - F - G~c(~- 21 ( 0 - 0 f - 1  HRH

+ 0- - G1K1  -(r 1 0 -r0O) - BjH1  (0.114)

So the fifth ad sixth termas of the right side of (3.112) may be written
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so (3.112) may be written

-" 10  
=  r (P -P1o) + (P -P1 o)(ro'roo) (3.117)

Since

P { 1 X } X {) A(

we may, by choosing = P10(O) - Coy [X(O)], insure that pll(t)

P10(t) for all time; this forces

'{il} - 0 for all time. (3.119)

This condition vas assumed in the derivation of n1(t). and is now

verified. A parallel development will show that, by choosing

P = P2(O) = Xowe can guarantee that
* 0

P 2 2 (t) P2(t) for all time; (3.120)

E{ } = 0 for all time. (3.12-)

A
Note that (3.319) is true regardless of the form assumed for X2 .

A
Thus far, we have assumed a specific form for X2. We winl nov

relax this assumption and assume that 2 is obtained by an arbitrary

function of the observed data Z2 . Then (3.100) becomes

2 2Y2 [ jl + ollG X + GKi 2 Gt X (3.122)
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* ..- * - . . . ... .*" .'" % "- ~ ' '' .t''' '" -' o"- " - "- .

and (3.101) becomes

-p +BI1 + CX2  (3.123)

vwhere r is the same as before except for the third row, which becomes
-a

r2 [~F - G1Kl + G21(3. 124)

F22 2K. (3.125)

:?! r = -02 (.

and vhere

00

:... B -P 2 R,

and

" 0 i

... (3.128)

Now P - p~ satisfies the differential equation

P ? T + l +BRB + CX2  + Me(3-29

Since CX2P is of the form

0 00

*A A4 _X201 -X32 (3.130)

~2X
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and pZ2C is of the form

=i0 022

IA*

.. PX2C = 0 0 "€l 2'
0 0 (3.131)

the equations for and P are unchanged from (3.110) and (3.111);

thus equation (3.119) is valid regardless of the form of 2" In order

to calculate kI, however, player number 1 must make some assumption

about the foZU of 2"

One need be no more general in his assumptions about the form of

2 than to assume that 2 is generated by a 2nth order differential

equation, because from player number 2's viewpoint the system is

describcd by the set of differential equationo

A %.$ ,% z (3.1.32)
X X - 1 K1Xl + G02U2 (312

- F G2 2 (I (20"2)(P_)) C; 1

" R - r. - (3.133)
L1Y1 Z l 111k

and observation equation

H2X 134)

73



We note that (3.132) and (3.133) may be vritten

- A + B1Q1 + Cu 2 (3.135)

vbere

F 'A -G~

(3.136)

0 G2

B -P G (3137)

and that (3.134) may be vritten

Z2- [ N [ ]+ 112  (3.138)

The problem of estimating X then becomes a standard linear stete

estimation problem. Thus, 2 satisfies

. 0 I 2  (3.139)

.here

y * [~](3.1140)
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and satisfies

AY + (Z 2 -H01 (3.141)

.(o) L ) (3.142)

and

K -P 2 QR (3.143)

"2

vhere

P2  . Coy (- ) (3.144)

and

! A1 + P + +• PWH P (3.145)

Furthermore, the separation principle asserts that the optimal
A

control is given by U2 - KA 2 . This points up an important fact about

the game problem: if one player is constrained to using an

n-dimensional control strategy, the opposing player's unconstrained

optimal control strategy, if it exists, is no more than 2n-dimensional.
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Chapter 4
THE DIFFERETIAL CAME PROBI26 WITH DD4EnSIONAILY

CONSTRAINED CONTROL STRATEGIE

4.1 Introduction

In Chapter 3 it VMs shown that when the two controllers were not

constrained dimensionally they could not generate the conditional mean

of the state with finite dimensional computing methods. In Chapter 2

it was shown that the optimal linear strategies can be written in terms

of a conditional mean of the state plus some additional terms. It

would thus appear that an overall optimal linear control strategy could

not be generated unless the controller retains all oi' his past observa-

tions for use in computing the control. In many real engineering

situations, however, such a requirement may not be practically met.

*Thus, ve may wish to specify control strategies which are, first,

computationally practical and, second, optimal within the class of

strategies satisfying whatever computational efficiency criterion ve

select.

4.2 The Dimensionality Constraint

We shall examine here the nature of control strategies which are

optimal within the class of strategies which can be written in the form

U (t) K 1l(t) kl(t)(.)

u2 t) 2 ic(t) X2(t) (4.2)
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A

where X(t) and X2 (t) are in some sense n-dimensional "estimates" of the

state which satisfy the differential equations

' (A -K 1 ) + B (Z ; (0) "0 (4.3)

x (A2 4cyc2 ) X2 + B2(z2 "X 2 ) X2 (0 ) = (4.4)

where Ki(t), Ai(t), and Bi(t), i = 1,2, are unspecified and must be

chosen in a manner which will optimize the criterion functional. A

restriction of this problem which we may also wish to consider is that

in which part of the parameters are specified and only the remaining

unspecified quantities must be selected.

This approach has been considered in problems of both state estima-

tion and stochastic optimal control £14). In these cases its appeal is

in its potential as a computationally efficient suboptimal estimation/

control scheme. In the two-input situation the dimensionality con-

•straint appears to be motivated more by necessity than by mere economy.

4-.3 A Specialized Relationship

Rhodes and Luenberger £23] have taken the above approach to a

problem closely related to the one under consideration here and have

derived the following result, presented here without proof.

Theorem 4.3a

For the stochastic differential game problem described by (l.IA),

(1.2A), and (1.3A) with controls given by
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. i:,o - A
U. K1 X1  (1.5)

u 2 x2  (4.6)

( where K1 and K2 are given by (1.52) and (1.53), respectively, 
and

A
and X2 satisfy equations of the form (4.3) and (4.4), with

B(4.9)-:.~ ~ G . j- + G 8

-P,, B (4,.9)

B2  =P22 R2  (4.o10)

and with P as defined in Chapter 3, the following inequalities hold:
ii

L 1  2

El(uo, U*) I'X a: qj (ul, 2~IJ(1.)

This result appears to be stronger than it is: (4.1) and (4.12)

* merely say that if the state estimate derived in Chapter 3 is used then

the control strategy which optimizes the conditional expected value of

the payoff functional is the certainty-equivalent strategy when the

conditioning is done on the value of the state estimate. Equations

(4.11) and (k.12) do not imply that the certainty-equivalent strategy

optimizes the conditional expected value of the payoff when the
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conditioning is done on a3n pat observatiohis, nor do they say anything

about the overall (unconditional) expected value.

44Generalized Relationships for n-Dimensional Control Strategies

We wish to derive some necessary conditions for control strategies

of the form described by (4.1) through (4.4) to satisfy the following

saddle point conditions:

4J(Uo, uO-)} s uJ(U1, uo)} (4.13)

U{(~ ~}~zJU~u) (4.14)

In order to put the problem In a format more suitable to our

needs, ye shell reformulate It somewhat. First, ve define the state

* ~~ ~ ~ 1 -2e4 ...

A

X A-x (4.16)

where 1 ~a 2 are generated by estimators of the form (4.3) and (4.4).

Then, using (4.1), (4.2), (4 .15),wAd (4.16), the system equation (1.3A)

-. mayv be revritten as

o (-o 1K1 + VI 2) X G31 e1 - 2 ~(4.17)

Combining (4.17) with (4.3). (4.4)p (4.i5), (4.16) and (1.3) ve see

* that the estimation errors *l and e2 satisfy
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61 " (F- 1e0 2 2 )x + (A " 1)" 2 c2 - BI 1, (4.18)

92 (F-A2 -olK1 )X + GiI3ii + (A2 -"0 2 )e2 - B202 (4.19)

Therefore, (4.17), (4.18), and (4.19) taken together may be vritten

= rp + BI (4.20)

where

Ii2l (4.21)

,I I~oir 0  -01K+ K 2 GK -V22__

rF -0 r3BF'-+V2G;~
r t 10 r r 2  F -Al +GV 2  A I- BIl G

r20 r21 r22J F -A2 - G1Kl G1K, A - -BI

(4.22)

B - 1 0(4.23)

Note that the quantity Umay be ritten in terms of the

vector p as

U 1 U~- 2 U 2  p~p(4.*24)

81

"" " " "I " ' '' ' '* """ ' ''- , . ' "" " ',_.- - - -"-- -"," " '-' " "" """ " " ' " . " "- " " ". .. , - ' . ,.:- ';



where

x *f .- 4 I

'2 - ..- (4.25)

Note also that X (T)X(T) may be written in terms of the vector p as

X (T)x(T) . p*(T)QP,(T) (4.26)

-bere

0T 0 (4.27)

In view of these relationships, we may vrite the payoff functional as

~0

- tr (T) p*(T) QT + (p4)p(r)Q(T)dTr (4.28)

And, defining P(t) by

p~t)a Ej(t)P*(t)} - 10 Pi P12
P20 P21 P22J (4.29)

(4.28) my be ritten

ir P(T) + f P(r)(r)d r (.30)
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Thus the stochastic game problem has been converted to a deterministic

game to which classical deterministic optimal control techniques may be

:21 applied.

In applying these classical techniques, ye first note that the

matrix P(t) satisfies the differential equation

i(t) = r(t) P(t) + P(t) r(t) + B(t) R(t) B*(t) (4.31)

where

R(t)t)
"nl R2(t) (4.32)

We then form the Hamiltonian corresponding to the payoff functional

(4.30) and the differential equation 'constraint (4.31), which is

N(A.,A2, 'B,[P . tr + tr .x(rP+PFeBe)1 (4-33)

vhere Is a Lagrange multiplier matrix, which satisfies the canonical

Euler-Lagrange equation

, (T) . (4.14)

vhere the gradient operation is as defined in Chapter 1 and thus
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According to the Maximum Principle, we wish to select Al, BI, and K1

so as to minimize H and to select A2, B2 , and K2 so as to maximize H.

We shall see that the order of maximization and minimization does not

matter. Since A., A2 , B1, B2 , Kl, and K2 are incorporated in various

submatrices of r. G, and Q, we may partition the expression for the

Hailtonian in'order to isolate those submatrices of interest for

optimization with respect to a particular quantity. Thus, since the

matrix B1 appears as a part of r and G, we may write as a necessary

condition

r o o 1 i oo- tr ITF + X~ + )XBRB* --a-tr [xr+)XBRB*'

" tr 2P -BIH1 0 + X BjRjBl 01 0[ .L l0o ] 0o (].36)

It is convenient at this point to partition the P and X matrices

by

rPO-

P P1  -X oIx 1 (4.37)
- :" P2

Here P0, P1
3 , and P2 are n x 3n matrices, and 'X lI and X2 ar 3n x n

matrices . These matrices may be further partitioned when convenient;

e0g.,

[ 1

21 J
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where the X and P, , i1 0.1,2, are nI x n matrices.

Using this notation, we may write (4.36) as

m tr [-2P1X 1B1H. + )11 1R1B1J

*--2E1P1X1 + 2RBXlll 0

or

X -~ 'X1P1H1R1  (4.39)

Equation (4.39) is a necessary condition for minimization with respect

to the matrix B .Completely analogous arguments regarding the matrix

B 2 lead to the expression

B R (4.4)

The Hamiltcnian (4.33) is also quadratic in K1 , so we write

-r [.E + = +xL ]tr -PQ + 2PXrl=0

(4.41)

Equation (4.41) may also be written

j K 4K 1  0 -01 Kl G1K~. 0

tr -P -[.K :Kl -2 01  0K 0 -0

(4.42)
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" Now note that we =y vrite

KIj. 41 K1 0

tr P I KK 0 - tr(P-PO) I K (.3)

0 0 0 0

where P1 and PO are as defined In (4.37). Also note that we may write

f-GjK, G1 Kl 0

tr PX 0 0 0 - tr I(PI-PO)(),O+ 2 ) GK1 ] (14.144)

I-01 1  GfK1 0j

Substituting (4.43) and (4.44) Into (4.42), we have

i(;+xG-lI

- t Lo J

-2(P 1 -P) 1 .+ 2(P. 1-P)(X+X2 ) G1  -0 (4145)

or

(P1 40 ) (xo x2)o1 - (4 . 14.16)

Again, analogous arguments apply to the feedback matrix K2 and produce

the expression

-4(P (Xo Xz)o I X * 0 (4.47)
4.0-
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As opposed to the case for the B and K matrices, the Hamiltonian

i {is linear in the A matrices; consequently, the maximum principle

dictates in the case of the minimizing matrix A1

>0, aj ' =alij max

( { < o, a j = alij min (4'8)

where

A 1 l~l 122 - 'l~n(4.49)

For matrix A,
o2'

JH f >0 aOP '21j -2i, mn
Ba2 j I <0, a =a 2i 3 m '..

and an expression analogous to (4.49) defines the elements of A2.

Singular cases exist vhere neither inequality is satisfied in

(-4.8) or (4.50), i.e., where the derivative is equal to zero. In

suce cases, if the condition can be sustained, some higher-order test,

such as the Kelley necessary condition [19], may be applied In an

attempt to determine the values of the elements. It will now be shown

- that, if the necessary conditions for K1 and B1 are satisfied, the

entire trajectory lies on a singular surface for A1 .
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• .5 A Singlar Surface

It vas mentioned in section 4.2 that in some restrictions of the

game problem there defined some of the parameters might be specified

and thus not available for optimization. We shall see that it is only

under these conditions that the optimal A coefficient matrices would

be chosen by (4.48) or (4.50), i.e., be bang-bang. Otherwise, the

gradient of the Hamiltonian with respect to the A matrices Is zero

during the entire interval CO, T]. This Is shown for the case of the

A1 matrix as follows:

r ,t k - tr 2PX A 0

-0 0 0J

2- tr[(P -P0)X.,A,] = 2(P,-Pn)X, (4.51)
"I L J

From the boundary condition given in (4.34), we see- that X j at

t - T and, thus, a singular condition exists at the boundary. We shall

now show that

,- ( )X 5 m 0 o t !C T (4.52)

:henever the optimality conditions (4.39) and (4-46) for and K,

respectively, are satisfied.

Consider

-7p P)X - P V f h(.3
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Since the matrix X satisfies (14.34), the submatrix X satisfies

•o -- 411

::"" 'I= r 'i" 1"11 +  K.K,

,-r )I " -lr3 (x+' 2 )G1 K1 + K3K 1

::X: x(T) 0 (4.54)
t" o

Then, because of relationship (4.46), the expression (PI-Po )i becomes

-. -(P-P)r*x - (P -Po)x (1.55)

Since the matrix P satisfies (14.31), the submatrix P satisfies

Pa-P I+r1 0  r. r,2] P +L0  B31R1B 0] (4.56A)

and the submatrix PO satisfies

-,+ [r ro r0 2] p (4.56B)

Thus,

S 0 -p1 or * + [r 10 -r r1-r0  rl2-r02] rP

+ [0O..+ o D1  0] (1.57)

.4e
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Nov note that r12 r02  - G2K2 ;therefore,

r32.2 r 0 2  -0 (4.58)

Also note that

r10 - Fr = -(r3.-r. 1) -B 1H11  (4.59)

Substituting (4.58) and (4.59) into (4.57),. we have

~ P0  (P -P,)r (r311-r01)(Pl-P0) -B H1P0

+[o BR1  01 (4.60)

Therefore,

-1EP) 1 + o B1 1Bj 0 1 (4.61)

Using equation (4.39), we see that the last term of equation (4.61) may

be written

- 0  B1R1Bl y B1 H1 P~1  (4.62)

so (4.61) becomes

1 ( p0 )r 1 + 1

+ B 1 H3(P1-P0 )x1  (4.63)
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Adding (E -55) and (4.63) ad combining terms., ve have

' (P1-PO)A = -(P1-Po)Xlrn + (rn-rol + B1 l)(P 1-Po) 1

(4.64)

Since this equation is linear in (P 1 -Po). and is homogeneous, and since

,(P1-.PO))l - 0 at t = T, ve must have

ax (P -Po)X z 0 o o t !C T (4.65)

Similar relations apply for . Thus, if ve choose the B and K

matrices on the basis of the maximum principle, ve must look beyond the

maximum principle for help in specifying the elements of the A matrices.

4.6 SPecifying the A Matrices
1

Equation (4.65) indicates that, if the optimal values for Bl and K1

axe employed. the state trajectory lies in a surface in state-space on

Which the Hamiltonian is first-order independent of variations in kl;

an analogous condition exists vith regard to A2 . In some control situa-

tions of this type, ve may make use of higher-order necessary conditions

an variations of A1 or A2. A vell-knovn second-order necessary condi-

tiom is the Legendre necessary condition, expressed as

2a 0 (4.66)

'This section is based in part on material presented by Johansen 1143.
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This condition is, of course, trivially satisfied for the gme problem

under consideration here because of (4.65). In cases vhere (4.66)

obtains wvith equality. another necessary condition, the Kelley necessary

condition, is sometimes applied. This condition Is expressed as

k H d2k a0(
dt I

However, since the differential equation describing is seen to be
1Hl

linear in M and is homogeneous, and since L is zero on the boundary,

all time derivtives of - are zero on the singular surface and (4.67)

is also trivially satisfied.

The reason for the apparent paradox is that the problem has been

given too may degrees of freedom: if the B and K matrices are chosen

,optimally,, the payoff is actually independent of the A matrices.* This

aspect of the problem is related to the non-uniqueness of optimal

control strategies of the form given by (4.1) through (4.4). As on

illustration of this non-taique characteristic, we may consider the

strategy of controller number 1. vhich may be vritten in the form

4.

U, -s K1  (14.68)

A, - (Ag-GK-B 1H1)X 1  12 Bl ; 1(o) -(14.69)

Assume for the moment that A1 , BIs and K1 have been specified. As a

preliminary step, for notational convenience, ve shall define a new

matrix A0 :

A *A 0K 1 -H (4-70)0 1 "K ?
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Then (4.68) and (4.69) become

A
U1 -X~X (4.71)

-4 B121 ; l(O) f (4.72)

We shan nOW Show that Ve may arbitrarily change A0 to a new matrix A

and that, by adjusting the matrices B and X 1, we can obtain the same

1I

control strategy u 1 .

* As
We first define a new variable X, by

At A
X1 - II (4-73)

where D in a differentiable nonsingular matrix to be specified. Then

(4.71) and (4.72) may be written

U1  . KP1  (4.74)

A -1A,
X" (&DA.)D X, + 1 () =D() 

=  (4.75)

We then adjust the matrices B1 and K, by the relationships

Ee (4.76)

x1  KID-1 (4.77)

,.Next Ve choose the matrix D, requiring that

D A A (4.78)
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This my be done by defining two matrices and which satisfy the

differential equations

ti- 41 4() - (14.79)

02 - 42 O 42(o) (14.80)

Then by direct substitution into (4.78), we verify that

D -* D4 2 (14.81)

where Do is a nonsingular constant matrix, which we may choose in such

a manner that

-. ,o) ( 14.82)

Then from (1 .75) we infer that

. (-14.83)

Thus, the control strategy U1 may be written

Ul, - (14.84)

At 11+ lA(0

"-x " * 3Zz X( 0 (14.85)
- ,,

We conclude that only in cases where special restrictions apply to the

form of the B or K matrices are we unable to arbitrarily specify the

A matrices.

7
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This Is not to say that specification of particular values for the

A matrices can be done without concern over the implications, since

* fixing these values also fixes the values of the B and K matrices and

may lead to excessively large or Impractical values for them. In some

cases, careful selection of the A matrices can lead to considerable

simplication of the computation leading to the B and K matrices. A

case in point Is the one-sided problem.

4-7y Relationships with the One-Sided Case and the Separation Principle

When examining (4.30) in detail, one observes a certain similarity

between it and the expression for the Kalman filter qain, which is

B' P B *R -l(4.86)

Upon expanding,

so (4.'39) my~ be written

'ln B1 [101o P10 + .11 P1 1 + X 21 P 12} Hl Rj- (4.87)

Then, If Xo *l P * 2 + l X * o0. (4.87) would be satisfied by (4.86).
01 10 21 12

By examining the differential equations describing X0 P 1 0 and X 21 P 12"

however, it can be seen that their sum is not identically zero,

0 ic t ic T. Thic Is an exnple of the non-separability of the problem:

the filter gain B 1 depends explicitly on the elemonto of the X matrix,

which In turn depend on the feedback gain K1 .
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A similar situation is encountered when we examine (4..146),

describing l. if a value for K, could be found Satisfying

(Xe)')G1 K.,(4.88)

this value would also satisfy (4.46) and would be explicitly independent

of the elements of the P matrix. For (4.88) to be satisfied, however,

it would be necessary that (.26+ X22)0 = 0; and this condition is not

G eneraly true. Another condition which would render K1 independent of

the P matrix is

(P1 - o2)2(o+ k * 0 (4.89)

Asain, bowever, examination of the differential equations describing

P end ). shows that (4.89) Is not generally true.

Thereforep as a result of the above situations, the solutions to

(4.39) and (4.6) are

1 - P  1 + 0l lO + .21 , 2 (.90)
.5.

1- 1 O 1)V )L2) (Pl- PO)* . 00" P1 0 + P n- -ll 1 (4.91)

* -I rmsing that the indicated inverses exist.

Nov notice that., since we may choose the A matrix arbitrarily, as

shown in section 4.6, a particularly good choice is A = F, which, as

can be easily demonstrated, results in
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i.e., the estimation error e is uncorrelated vith the extimate
A 1 "

Because of (4.92), we may make use of relationship (4.65) in a special(

way: for the one-sided case we may discard the variables with "2"

* subscripts; therefore, remembering that P n- P0 1 - O, (4.65) may be

Written

(P 1 - Poh = 10 Po l-Pl011 B P1- Oh a0

(41.93)

Thens because of (5 1 .93),ve mwy write

P 10 X 01 aP 1 0 (p1 0 - Por (P10- ~01O =*0 (4.941)

and thus (51.90) becomes

B1  P n H1 R, (51.95)

i.6.# the expression for the filter gain becomes explicitly independent

of the X, matrix.

Similar things happen to equation (51.91) when (41.92) is satisfied.

* First, (41.56) becomes

0 [~l0- Poo oI IL'0 1G0 ] ; -0 (41.96)

mlo

This MY be Written as

(P o 0 oXo" + * (4-97)

*L .

......................

* hen 0 0 0. . . . .. (. 93 , -vrl
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IN hich vill be satisfied vhen

K1  a (01.X8)

This is the deterministic&fy optimal feedback gain, as can be seen from-4

the fact that the matrix X00 satisfies the differential equwtion

r . + 1K1  ( .99)
00 'o -("ooroo+ 1olrlo)  (koorod+ I'm r0o)*

Since ve have chosen A = F, rIO - 0, so (4.99) reduces to

- o -" (-ooroo)* + KIK (4.i'0)

Substituting (4.98) into (4.100) and remembering that.OO - F -OXl.

ve have

in An F - Fwo - X'00G 0  (4.101)

WoolT) - z

This matrix Ricatti equation is the same as that satisfied by

" (Ts, t) [I+T ] * (Ts t)

shoving that (4.58) is identical to (1.52) and is thus the determin-

Istically optimal feedback gain for the one-sided case.

i.8 The Matrices BI, B2 , K, and K2

The Hamiltonian is quadratic in B B2. K1, and K2  m i is thus

possible to obtain explicit expressions for these matrices in terms of

the elements of the P and k matrices. This has been done in (4.90) and
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(4.91) for B1 and Klp respectively; similar expressions may be obtained

for B2 and K2. When these expressions are substituted into the F matrix

In equations (4.31) and (4.34), these two equations constitute a non-

linear two-point botidary value problem. Since both P and X are

symmetric and 3n x 3n, the total number of variables is 3n(3n+l). For

the simplest non-trivial example, n = 1; this implies that the nonlinear

problem has twelve variables.

Solution of nonlinear two-point boundary value problems by

iterative computational methods is a subject covered fairly well in the

literature [2,lO,16,20J and will not be discussed here in any detail.

However, when such problems arise out of differentialo games, two

Important aspects must be considered. The first of these is the number

of variables involved, large even by optimal control standards. 'Whereas

a one-sided stochastic optimal control problem with n = 1 involves

solution for two variables, the two-player case of the same dimension

involves solution for twelve variables. The second aspect is the

particular nature of the nonlinear equations: specifically, if the

elements of the r, 0, and Q matrices in (4.31) and (4.34) were known,

these equations would be linear differential equations with one-sided

boundary conditions. This fact suggests a fairly simple iterative

computational scheme:

I) Choose an initial set of values for P(t) and X(t).

. ii) On the basis of (i), compute the values of the elements

of r(t), c(t), and Q(t).
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iii) Using the values computed in (ii), solve (4.31) and

(4.3) as linear equations with one-sided boundary

values.

iv) Using the solution obtained in (iii), update the

calculations done in (ii).

v) Repeat until solution converges.

Convergence In step (v) is not guaranteed, of course, and depends on

a ntelligent choice of Initial values in step (i) as well as

fortuitous conditioning of the equations by the physical parameters

of the system and by a proper choice of the A matrices.

-' As an alternative to solving the nonlinear problem, ve may consider

a direct approach to optimization by some gradient technique; hovever,

it.would seem that the convergence difficulties inherent in gradient

computational solutions of one-sided optimal control problems vould be

Increased enormously vhen tvo sets of variables are involved, one set

minimizing and the other maximizing. Thusj it appears that the indirect

approach to differential game problems described in this chapter is, at

least in some situations, the most promising method.
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Chapter 5

OBTAINING PAYOFF BOUNDS FOR CONSTRAINEM STRATMGIM

,.1 Removing Constraints on One Controller

In Chapter 4 it was indicated that the optimal coefficient

matrices could be obtained by solving a nonlinear differential equation

with split boundary conditions whose order is 3n(3n+l). It was also

pointed out that the computational difficulties of doing so are

potentially great. It is thus the natural question to ask what is

obtained in return for the effort required to solve the nonlinear

problem, particularly in view of the fact that the solutions obtained

give only control functionals which are optimal within a certain,

somewhat artificial constraint.

Fortunately, this question is easier to answer than is that which

inquires as to the optimal control itself. Once the constrained prob-

lem of Chapter 4 is solved, the solution so obtained may be evaluated

by either player by comparing the payoff under the constrained solution

to the payoff which would result should his opponent be unconstrained.

This comparison is easily made, since the separation principle tells us

that if one controller uses a set n-dimensional control-generating

system, his opponent's optimal opposing strategy is generated by a

2nth order differential equation.

This fact allows either controller, ornce he has established the

form of his control-generating syt;tcm and its parnmeters, to obtain a

worst-case bound on the payoff when he employs that strategy. He is

not able to obtain a best-case bound, because the best-case payoff
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depends upon how poorly the opponent chooses his strategy and may be

unbounded. He is able to solve, of course, for the payoff when his

opponent uses an optimal constrained control.

5.2 Obtaining Worst-Case Bounds on Payoff

When one player, say number 1, specifies the parameters of his

n-dimensional control, the system from player number 2's viewpoint

may be described by the 2n-dimensional system of equations

" L -J [L-a1 A.BI,.[, ] [;I- l + [G]U2 (5.1)

Player number 2's observation equation remains

zP - I. (5.2)

which may be rewritten

7, rxl+-2 [H2  0] + ! I (5-3)

Thus, the payoff functional may be rewritten as

.(U2) - {[*(T) c ) X(T) ([x*),l(T )
c(T) 0 0 61 (T)j

[:: "1:K [X(2) - u(.)u2(T) }T (5.4)
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Equations (5.1) through (5.4) constitute a standard one-sided

stochastic optimal control rvoblem, the solution to vhich is given by

U -G*(t)S(t)A(t)

where the matrix S(t) satisfies the differential equation

S -SFo - FS+ SGGOS-A (5.6)
,.0

" S(T) . T

A

and vhere X satisfies the differential equation

- F0 -GOS +{ - (5,7)

vire.

K"-1  (5.8)

vhere P satisfies

P6* " F0P€€ + F +P H€Ro EP + Bo (5.9)PatFOPC Pcro+ Pe 62 oe cc Olo

00

p. c¢ 1o ) 0 X O X
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and vhere ve make the identification

F -[i°'lk. 0 [ 0j X 1

-[ IKI Ki][]

andaRd and R2 are noise covariances as defined previously.

TEhe vorst ase bound is then obtained by inserting the optimal

G° 2

oppsi GO [Ga~ give by (5.5 thog 5 1 int5te nti)a

and R 1 and evaluat i it. insa efndpevosy

Ain 1ntAmreat.naf ptaallel to the develoment of Chater i is the

problem of choosing an optimum control strategy of the form

"-U 1  - K1~1  (5.31

.here X1 satisfies

m-.* (A 1 _0 1 K 1 )A l + ( -E. K ) (5 .1 )

and where controller number 2 is unconstrained andtherefore,uses a

strategy of the form (5.5) through (5.10).
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Chapter 6

" CONCLUSION

6.1 sumary

In Chapters 1 and 2 a general stochastic differential game

characterized by linear differential equations, a quadratic cost func-

tional., and additive white Gaussian observation noise was presented.

*, It was shown that the certainty-equivalence principle, valid for one-

player game situations, was not correct for two-player problems.

Specifically, if one assumed a control form consisting of a matrix

transformation of the conditional mean plus a linear.operation on the

residuals, the matrix transformation was the deterministic optimal

feedback gain; however, the linear operation on the residuals vas not

a zero operation, as was true in the one-sided case.

In Chapter 3 it was shown that in order to generate the condi-

tional mean of the state vector, each player was required to store all

past observations. However, since this was considered to be an

Impractical requirement for many practical systems, a state estimation

scheme was developed which generated the estimate as a solution to a

differential equation forced by the observations. The order of this

differential equation was that of the controlled system.

Chapter 4 generalized this concept to that of optimal control

strategies within the class of strategies generated as solutions to

differentis, equations forced by the observations. The order of these

differential equations was taken to be that of the controlled system.

This approach resulted in expressions for the control strategies given
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in terms of functions vhich are known only as solutions to a set of

nonlinear differential equations with split boundary conditions. A

computational approach to solving these equations Is suggested.

In Chapter 5 it vas pointed out thatponce a set of dimensionally

constrained strategieR is calculatedveither player may copute a worst-

case bound on the payoff by assuming his opponent uses an unconstrained.,

and therefore higher-dimensional, strategy. Formulas are given for

computing this bound.

6.2 Results of Research

Optimal dimensionally-constrained control strategies are of

Interest in practical problems where computational capacity is liited.

A great deal of importance in choosing a control strategy is bound up

in the question of what one is willing to assume about his opponent's

strategy. Computation of an optimal unconstrained but lnear strategy

Is quite complicated, and so It is reasonable to assume that one's

opponent vill Impose some complexity constraint upon himself. As ve

.. have seen in Chapter 4., there are various vays in which such constraints

may be imposed, e.g., by specifying the order of the control-generating

differential equation. The specific form of the self-imposed constraint

of one player Is unknown to the other player and may not reasonably be

treated as a random variable in most cases. For this reason it Is of

interest to compute vorst-case bounds on the payoff under varying

assumptions about the player's strategies. These bounds may then be

used as a guide to making engineering decisions about the utility of a

particular strategy.
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6.3 Suggestions for Future Investigations

In this work we have analyzed a linear-quadratic-Gaussian problem

of a rather uncomplicated type. The natural extensions of this work

should follow the patterns established by investigators of one-sided

, stochastic control problems: examinations of cases with plant noise,

colored nolsej, or no noise and cases where the payoff is described in

terms of non-negative definite rather than positive definite matrices.

Investigation shoull also be continued into the computational

aspects of the problem. The indirect approach described in Chapter 4

results in a set of non-linear equations with split boundary conditions.

These equations are of such a nature that when the control gains are

fixed the equations may be separated into sets of linear differential

equations with one-sided boundary conditions. It may be possible to

exploit this property to simplify the computational problem.

It would also be of interest to investigate the problem of direct

op.timization by some type of gradient method or local optimization

scheme and to determine how the two-sided nature of the problem affects

convergence.
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APPENDIX

The general linear-quadratic-Gaussian stochastic differential

gum functional is given in terms of Ll. L 2 , Kly andI K2 by (2.78)

' ( vbich Is

J(L13L2 PKlJK2) = E{($X-T 1KA *1 L1 (Z 1 A 1)] (A. 1)

+ T A A 1j(2- 2), OX - jl

+ TL2( 2 KJ+ 2 Z2 Z2 ]

+(cjE+L 1 -YI X1 [ +L(z1  Q]

4(j 2Uc+L(Z 242)1 KjC+L2 ( z2.l)])j

Differentiating the payoff functional with respect to and L and

setting the results equal to zero, we have

0 ~- = -K1Tl 1 +jZ~~ +T
-VI[ 2K0[2+L2(Z2-t2)!1

K2 - X2 +L2(Z2 -Z2)1 A3

* 1n3



These equations vill be satisfied if

0 -T 4{X-TKjk1 L(ZA) h
+ ~ ~ ~ ~ ) +3~.1 ( 1 ~) (A.3.)

and

0 -T4*fXJ1T 1L(7,1 93)] + T C2 +L(-Z 2 )]]

-4 I 2 +L2 (Z2 -ZA) (A.5)

We interpret these equations in the usual manner; i.e., the right side
A

of (A.4.) Is orthogonal to any linear tranctormtion of Z1- z .end the

riukht side of (A. 5) Is orthoxonal to any linear transformation of
A

- Z2- We def ine the linear transformaati~ons

14 - *TK 1 + T2 2  (A.6)

A1 3. (T37l 1 I)I 1 A-7

A2  = T--)K (A.8)

A A
andnte tatve ay vrIte X, -X 6,~m - Thus (A.4.)way

-* be written

,( 

A

0 m-(TI4-Kc 1 ) x %j- L11-

+ T 4s 2 L2 Z2 A) (A-9)."
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" and (A.5) becomes

0 m(TJ4-K2) ;* X TTK 3  -L(Z-j

.%4 - .(A.lO)

We my also differentiate the payoff functional with respect to

K1 and K2 . Doing this and setting the resulting expression equal to

zero, ve have

0 -T l2[f_ -)

+ TC2:LXeL 2(Z2 -z2 )1] - KJX2 L2 (Z2 -k)] (A.11)

_A/ai we interpret these equations to mean that the right Bide of

_., (A.1l) Is orthoonal to any linear transformation of X+l
=* r A A

-, ~~~ ~~ Ta 2he riI+2(h%2) s(eo 1)i rh~na oaylna rnfrA.12)n

Of L (Zt-Z2 )e Wete that (A.o) and (A.12) have the same form

as (A.4) and (A.5) and may be vritten as (A.9) and (A.10). Thus the

right side of (A.9) is orthogonal to any linear transformation of
Z r X-LJ.-Z', and these two relations imply that the

z or of rL 1(Z''-lJ

right-hand side of (A.9) is orthogonal to any linear transformation of
A
X1 . Analogous statements apply to (A.1O): the right side of (A.1O)
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is orthogonal to any linear transformations of or of Z

Because of the fact that for normal random variables the error in the

conditional mean state estimate is orthogonal to all linear transforma-

tlons of the conditional mean and of the observations, we may rewrite

(A.9) and (A.1O) as

0 a (TjM-K 1 )x1 + A .L(z1 -Z1) + T - A 1  (A.13)

* A .7A ) A0 .TM ,-K2 )x 2 + T* 1KI 1 L(ZIz) + A4 2 (Z2  2 ) " A2"2

(A.14)

Again, we recall that the right side of (A,13) is orthogonal to all

A Alinear transformations of X1 or of Z1 -Z and that the right side of

AA(A.l1) is orthogonal to all linear transformations of and of Z- Z2

This is true for the particular transformation of Xl: (T1M+K1)x 1
4.Thus, 

from (A.13)

: .. /. . A . A Az z _z) -. .^01., 0 "T--KIX (TP-K),)+ AL(Z1 1) (TMK1 )1 /

T3 ((T12 .- 2 z 2  (Tp-K ), (A.15)

It is also true for the transformation of Z z :LIZ-

-II

* -' o , -(Tx~1 ~ 1 , 1L^Z1 ~ 1 )+ L(z 1z 1) , AL ( 1 )

.,.
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- Adding (A.15) and (A.16). we have

0 - -((TP-K )X3.-. (T- 1)X1)* ( AiL(zi- 1)p A1 L1(Z1 -A1 ))

+ (~T 2JC 2 -L(Z-~2 ],AlL1(Z1 -Al) + (TMK 1 )

(A.r17)

* 1Now the second and third terms on the right depend only on the

covariances of the noise and the initial state, while the first term on

the right is also dependent on the mean of the initial state. Thus,

for (A.17) to be satisfied for all values of the initial state, we must

have

T M -K1  0 (A.18)

This being true, equation (A-13) reduces to

0 a A L(Z -Z ) + T T2 K e -L 2 ( 2 ~) (A-19)

Furthermore, (A.18). (A.6)9 and (A.7) lead to an alternate ropresenta-

tion of A1

A, Tj + T21(2] (A.20)

so that (A.19) may be written

0 J+g21Z Al) + Z2- T1J6.. 2 Z 2) (A.21)
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which will be satisfied if

0. + T2Ke 2 -L,(Z,-z (A.22)

Since (A.27) is interpreted to mean that the right side of (A.27) is

orthogonal to asy linear transformation of Z - i we must have

[.+T 21L1*.J - = -T 2K4 (A.23)

where #Z z,1k(lk etc.

A completely analogous manipulation starting with (A.14) leads us

first to the conclusion that

T2M- (A.2)

This then reduces (A.14) to

0 = T2T 3e1c.-L3(Z-..)]+AL 2(Z2- 2) -A (A.25)

Then (A.24), (A.6), and (A.8) give an alternative expression for A2

A2  " - T *'TK 1] (A.26)

so that (A.25) may be written

0 - T-T 1 Kicl-L 1 -Z 1 -

.+ -T1 K1 ] 2  (A. 27)'.I
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which will be satisfied if

le_ ^Z Al]
0 T1KIi-L(Z-Zi) [" 111 2(Z2 -Z2)

+ - -1C (A.28)

As before, we interpret this to mean that the right side of (A.28) is

A
orthogonal to any linear transformation of Z2 - Z2 ; hence,

Ti i*z I + [64T 1Ka] 2 1Y2 - T1Klte IZ (A.29)

We have in (A.18), (A.23), (A.24), and (A.29) a'set of four simul-

taneous linear equatioas describing KI, K2, Ll, and L2. We may solve

for K1 and K2 quite easily from (A.18) and (A.24). Using (A.6) and

(A.18), we have

"j- - TIT3 1 + TIT2K2  = l kA.30)

*Comparing these equations to (1.44) and (1.45), we see they are

* :imilar in form; thus, we have the solutions

K -TJI +T* -TT*l_ A.1
11 - TT 1  2 2.JA.1

2 TIT - T2 2] ( A.32)
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These expressions may be substituted into (A.23) and (A.29), but for

notational compactness it is better to retain the equations in their

present form, which is

[- T 2K 2 4Y = - T2 K2A 2 (A.23)

T-iK iizz + [ -TKI}2 z 2  = TiIciz2 (A.29)

The above equations are necessary conditions which must be satisfied

by linear operations on noisy state observations which make up part of

the strategies assumed in (2.38) and (2.39).
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