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ABSTRACT

The system consisting of the series connection of a

i frequency-hopper, channel, and frequency-dehopper is modeled as a

fading channel. The effect of a detuning factor between the hopping

patterns of the hopper and dehopper is investigated. Both slow-frequency-

hopped and fast-frequency-hopped systems are studied for cases when the

fading channel is nonselective and selective. The ability of the

frequency-hopped system to overcome frequency-selective fading is considered.

Limits are found on the spacing between frequency slots in order that the

*- fading in different slots is independent.
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1. INTRODUCTION

, Fading channels can cause severe degradation in the performance of

digital communication systems. Many times this fading is due to multipath

5 interference; that is, when a communication signal is transmitted, a super-

position of several signals with different amplitudes and delays is

received. Multipath interference arises in beyond-the-horizon communica-

tions when the transmitted signal is reflected from the tropospheric or

.7: ionospheric layers of the atmosphere [2]. It may also occur in communi-

cations when there are surrounding structures that become reflecting

surfaces for the signals. If the relative delays of the received signals

are long enough, i.e., longer than the duration of one data bit of infor-

mation, the fading is frequency-selective.

IAnother type of fading comes about when either the transmitter or

receiver are in motion or when the medium from which the signals reflect

is moving. If the motion is rapid enough, i.e., faster than the duration

S. of one data bit of information, the fading is time-selective.

Spread-spectrum communication systems offer aid in combatting the

type of selective fading due to multipath. Spread-spectrum modulation

L. achieves this by increasing the signal bandwidth so that it is greater than

the coherence bandwidth of the fading channel. The coherence bandwidth of

the channel is the separation between frequencies necessary for the fading

at these frequencies to be independent [141.

In frequency-hopped (FH) spread-spectrum communication systems, the

spreading of the signal spectrum is achieved by hopping the signal over a

set of frequencies. The bandwidth of the FH system depends mainly on the

spacing and the number of frequency slots to which the carrier is hopped.
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For most systems of current interest, the bandwidth does not depend on

the hopping rate. One reason the system tolerates rapid frequency-

selective fading is that not all portions of the spectrum fade simultane-

*' ously (10]. Even though the fading may be selective across the frequency

band used by the FH system, it may be nearly nonselective over each narrow-

band channel. In this way, the FH system provides a form of frequency

diversity. The FH system has total bandwidth much wider than the coherence

bandwidth of the fading channel, but the system uses a smaller portion of

the bandwidth at one time.

Probability of error analyses have been done for FH communications

over fading channels. An analysis is presented in [9] for noncoherent

binary-frequency-shift-keyed (FSK) slow-frequency-hopped (SFH) communica-

tions over fading channels. Both nonselective and selective fading is

considered along with multiple-access interference. The system performance

is shown to improve with coding. Coding for a binarv-phase-shift-keyed

(BPSK) system that operates over fading channels is studied in (11]. In

[7] and [8], analyses are done for noncoherent differential-PSK/SFH commu-

nications over time-selective and frequency-selective channels, respect-

ively. Various pulse waveforms and various channel correlation functions

are considered and comparisons are made among the resulting communication

systems. The irreducible error probability due to the fading channel is

found.

The purpose of this work is to look at a noncoherent FH communication

system from a different point of view. We model the system consisting of

the series connection of a frequency-hopper, channel, and frequency-

dehopper as a fading channel seen by an FSK receiver. We analyze the role

o

-
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that the FH system plays in either adding to the time-selective fading of

the channel or in combatting frequency-selective fading. Both SFH and

fast-frequency-hopped (FF) systems are considered.

The frequency hopper and dehopper are each random time-varying systems.

3They are random because of a random phase introduced in each subsystem.
They are time-varying because the frequency modulation in each changes with

time. The fading channels we study may be described as linear systems whose

impulse responses are time-varying random processes. Thus, the impulse

response of the system consisting of the three systems in series may be

described by some function that is a time-varying random process [3], [13],

[19]. A model of the communication system is shown in Figure 1, where the

impulse response g(-,.) is a time-varying random process. In Section 2, we

discuss the characterization of a system in terms of linear time-varying

impulse responses and define a second-order characterization for responses

that are random. We discuss the model for the FH system in Section 3 and

find the time-varying impulse response for the frequency-hopper and frequency-

dehopper.

The characteristics of the FH system operating over an ideal channel

are investigated in Section 4. From this analysis we see that the FH system

is a wide-sense-stationary (WSS) system that introduces time-selectivity.

In Section 5 we analyze the system operating over nonselective channels. In

Section 6 we study the fading channel that results when we have a frequency-

Ihopper, a WSS uncorrelated-scattering (WSSUS) channel, and a frequency-

dehopper in series. We investigate whether or not the composite system

maintains the WSSUS property. Although we consider cases when the channel

is either purely lime-selective or purely frequency-selective, the purely

o................................
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frequency-selective channel is of greatest interest [5], [81, [9], [111,

[151, [18], [21]. We investigate the ability of the FH system to overcome

frequency-selective fading.

Several papers consider frequency spacing between adjacent slots to

3be wide enough to assume independent fading from slot to slot [11], [15].

For example, the assumption is made in [11] that the spacing between adjacent

frequency slots is large enough so that signals occupying different slots

fade independently. In (15], the behavior of the overall channel is simu-

lated by a group of independent narrowband channel models. The validity of

this assumption is not established in previous investigations. In Section 7

we find the correlation in fading between frequency slots. This analysis

finds limits on the spacing between frequency slots in order that the fading

in different slots is independent.
U

I



2. CHARACTERIZATION OF LINEAR TIME-VARYING SYSTEMS

We describe our FH system using functions that are time-varying random

processes. Bello [3] discusses a set of functions that are related to one

another by Fourier transformations and a set of functions that are time-

frequency duals to the first set. Any one of these functiins can be used to

describe a linear time-varying system as a fading channel. They are each

derived from one of what Bello calls system kernel functions -- functions

usually found in linear system theory (i.e.,. [24]) called time-varying impulse

response and time-varying transfer function. We use the input delay-spread

function g(t,E), (see (3]) derived from the time-varying impulse response

H(t,), to describe each of the three subsystems, frequency-hopper, channel,

and frequency-dehopper.

The function H(t,E) is defined as the response at time t due to an

impulse applied at time E. All the signals are assumed to be narrowband

signals. A signal is narrowband if the spectral components of the signal are

restricted to a band that is small compared with the center frequency of the

band. Given that the input to the system is the narrowband signal

z(n) - Re{w(n)} - Re{v(n) ej 2 f f c n }

where v(n) is the complex envelope and f is the carrier frequency (spectral
c

components of v(rn) are small compared to f ), the system output is the real
C

part of

d(t) fw(n)H(tn) dn (2.1)

Unless indicated otherwise, the lower limit on all integrals is and the

upper limit is + . The causality condition is that H(t,n) 0 for n < t.
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To show that H(t,C) is the correct impulse response, let w(n) 6(n -)

U in (2.1) and find

d(t) - (n - E)H(tn) dn = H(t,&)

Once we have the kernel function for each of the three subsystems, we find

the kernel function for their series connection. For example, if we have

a system consisting of two time-varying subsystems in series, say system A

followed by system B, we find the overall time-varying response using the

result [24]

HBA(t,E) f- HB(tn)HA(nC) d • (2.2)

Noting which subsystem is first and which is second is important since in

general the subsystems are not symmetric with respect to delay; i.e.,

fHB(t~n)H A (nt)) d .JH A(t'r)HB( ) di

The results for two subsystems in series are readily extended to three

systems in series.

We use the system kernel function to obtain g(t,E); this is the

response at time t due to an impulse applied C time units in the past.

We use g(t, ) to characterize the system as a fading channel [3], [13].

Let ni t - E in (2.1) to find that the system output is equivalently given

as the real part of

d(t) fw(t C)H(t, t-,) d'

and define

it.:g(t, ) H (t, t-F,) (2.3) '
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To check that this is the correct response, let w(n) = 6 (t - n-

in (2.1). The signal out is d(t) - g(t, ).

We can give the integral

d(t) - (t - E) g(te) dE (2.4)

a physical interpretation so that the system appears to be a fading channel.

We say that the channel consists of a continuum of scattering layers

with elemental thickness that produces a complex modulation g(t,&) d& and

causes delays in the range (, F+dg). The input signal is first delayed

and then multiplied by the differential weighting function. The output is

a sum of all the contributions. The delay parameter E measures the age

of the input. The causality condition is that g(t,F) = 0 for < 0 and

reflects that the channel cannot weight portions of the input that have

not yet occurred. The overall input delay-spread function for two systems

in series, A followed by B, is

S BA H BA (t, t- ) B (t, t-n)gA (n,-(t- )) dn

We first find HA(t,g) using (2.2) and then use the relationship between

g and H in (2.3) to find gBA(t,&).

The function g(t, ) is a random process if the system it describes

has some random parameter. As we see in the system model description in

Section 3, this is the case for our frequency-hopping communication system.

Thus, to describe the system further, we need some characterization of the

* .system's random behavior. We use the autocorrelation function (3]

R (t,s; &,C) - E{g (t, )g(s,c)} (2.5)

-,g
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-i which is a second order characterization. In dealing with fading channels,

there are two things we look for when examining the system's autocorrelation

function. If the function depends on time difference K = s - t only, then

we write

R (t. t+K; ,)=R (K; ,),(2.6)
g g

and the system is said to be wide-sense-stationary (WSS). If the channel

is characterized by uncorrelated-scattering (US)--that is, delays and

modulation produced by one layer of scatterers are uncorrelated with delays

. and modulation produced by any other layer of scatterers--then there is a o

corresponding mathematical form for R ; i.e., there is a function P that
g g

satisfies

~~R (t. t+¢; ,)=P (t, t+K; )6(Q- ) (2.7)
g g

This says that g(t, ) and g(t+;C) are uncorrelated whenever C # '. The

frequency-hopping system itself cannot exhibit the US property in the

physical sense since there are no real scattering layers that reflect input

signals. However, the mathematical form for an US channel may be useful.

If the channel is WSS and US then

R (t, t+,; ,i) Pg(K; )6( - ) (2.8)
g g

It is possible to classify WSSUS fading channels into four groups:

*" time-selective, frequency-selective, non-selective, and doubly-selective

[31, [141. If P (K,g) can be written as

P (K;&) P (K,)6(F) , (2.9)
g g

-A
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then the channel is time-selective (frequency-dispersive). Time-selective

fading means that a signal sent over the channel is attenuated by a time-

varying gain and the spectrum of the signal is spread according to how

fast the attenuation changes. This may give rise to different signals

having overlapping spectra.

Define the Fourier transform,

V(f) P() e - j 2 7fi dK (2.10)

where we let P(W) P (K;O). This is the power spectrum for the system
g

function g that we use to calculate the channel mean Doppler shift m ,
p

the shift of the center or maximum of (f) from the f - 0 axis, and the

channel mean Doppler spread Dp, the spectral "width" of the power spectrum.
p

A calculation for mean Doppler shift is [41, (18]

S (f) df
m J7

and for mean Doppler spread we may use a measurement such as 3 dB bandwidth,

defined as the smallest interval between frequencies at which 9(f) drops

to half its maximum value. If O(f) has well defined nulls, we may use the

null-to-null bandwidth defined as the width of the main lobe of P(f) [2],[5].

The dual to the time-selective channel is the frequency-selective

(time-dispersive) channel. Then P (K;&) is written as

P (K;&) P (0;) A Q() . (2.11)
g g

A frequency-selective fading channel attenuates certain frequency compo-

nents of a transmitted signal so that the signal is spread in time. The
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problem of intersymbol interference may be introduced by the channel for

successive signals sent. Using Q(E), called the delay density spectrum,

we calculate the channel mean path delay mQ and the channel mean multipath

spread M using definitions dual to the time-selective calculations.
Q

3 Nonselective fading can be described completely as a multiplicative

complex process. It does not introduce pulse lengthening which can cause

intersymbol interference nor does it introduce Doppler spreading which can

cause overlapping spectra for signals in adjacent frequency slots. We

consider slow fading; i.e., fading that can be regarded as constant over the

,' duration of several data bits [211. In this case we have

P (K,,) = P (0,0)6(Q) . (2.12)
- g

If P (K,E) is a function of both K and that cannot be written in any

of the above forms, then the channel is doubly-selective [14]. A signal

sent through this type of channel is spread in both time and frequency so

that in data communication there is danger of overlapping spectra as well

. as intersymbol interference. The mean Doppler shift and mean Doppler spread
_ .1

* are calculated using the power spectral density

0(f) -fig(KO) e-j2rfK d (2.13)

where
lej (7,PE

Pg(z) U-( 2) e d-

As before, Q(Q) = P (0,E), and we use this to measure the mean path delay
g

and multipath spread.

II

.I -
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3. SYSTEM MODEL

We consider an FH system with one transmitter and one receiver. The

transmitter is the same as in [9]. The input to the hopper is an FSK signal

with carrier frequency f co

z(n) - Re{u(n) eJ2nb(n )An ej21rfcn} Re{w(n)}

where b(n) is the data signal which is a sequence of rectangular pulses each

with amplitude +1 or -1 and of duration T. The constant A is one half of

the frequency spacing between the two FSK tones. The complex envelope u(n)

is due to a phase introduced at the FSK modulator that depends on the value

of the data pulse at time n. Note that the complex envelope of the input

signal v(n) - u(n) e 2 71b( n )A n is to be slowly varying when compared to i c

for the signal to be considered narrowband. The bandwidth of a sequence of

pulses is approximately 2(A + c/T) where c is a constant depending on what

bandwidth measurement we use; e.g., c - 1 for the null-to-null bandwidth,

so that the FSK signals are narrowband if f C 2(A + I/T).

The FSK signal is frequency hopped according to a hopping pattern

which is a sequence of frequencies (f) - ,f-1 fg fit .... We define

the frequency hopping function fh(n) such that fh(n) - f for JT I n <

(J+l)Th where Th is called the dwell time. For SFH Th is an integer mul-

tiple of the data bit duration, and for FFH T is an integer multiple of

Th. We assume that the hopping sequence is synchronized with the data bit

sequence so that for SFH the start of a hopping interval is also the start

of a data bit interval and visa-versa for FFH.

There is a phase shift a(n) introduced when the hopper switches from

one frequency to another [9, p. 9971. We consider it to be a random process

°.
.- -~~ - -. -;
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such that during each hopping interval it is a random variable uniformly

Udistributed on [0,2w) independent of a(n) in any other hopping interval.
The bandpass filter removes the unwanted frequency components present at

the output of the multiplier. We assume that only the difference frequency

U is passed.

The output signal of the hopper is

x(n) - Re- w(n) e-j2wfh(n)n- Ji ( n) }  (3.1)

To find the response HA(ne) of the frequency-hopper at time n due to an

impulse applied at time , let w(n) - 6(n- ) in (3.1). The resulting output

complex envelope is

H1 6n e-j 2wrfh(n)-JQa(n)(32HA~n, ) = 1 ( - )e lf~)ilr) . (3.2)

If the complex input signal is w(g) M v(Q) eJ21fcc then the output signal

from the frequency-hopper is

x(n) - Re{fH A (n)w(&) d }

The frequency-dehopper model is also in [9]. The received signal is

frequency hopped according to the frequency hopping function fd(t). That

is, for all t, fd(t) - fh(t) + e, where e represents a frequency offset

that we call the detuning factor. The detuning factor e is zero except in

Sections 4.2 and 4.3. The phase shift 8(t) is introduced at the dehopper

and is analogous to a(t). We consider modulo 27r addition of the phases a

and 8. Since there is a random phase introduced by the FH system at the

start of each hop, the system is noncoherent. The bandpass filter is

centered about f and has a bandwidth W that is greater than 2(A + l/T),

. .. ... - o . •
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but less than the smallest spacing between hopping frequencies. (see

[9, p. 998].) We call the time-invariant impulse response of the bandpass

filter hW(t). For example, the response of an ideal bandpass filter is

hW(t) - 2W sinc(Wt) cos(2rf ct) (3.3)

where sinc(x) - sin(nx)/(wx). We assume that the bandpass filter is

ideal or that it has frequency response that is nearly flat over the

passband W. The impulse response of the dehopper is

H 6 (V-'r) eJ 2 fd(V) J(V) tc(t,T) 2 b dv

S1 eJ2 fd(t)T+J() w(t-T)

Su4

V



-. -" '., *- . " . .. . *-" - - . . .- ".. . ".- -"- .. "  . .. ." - . -" - ." . - -" -" . -: " - .-

W4

15

4. NONFADING CHANNEL

Suppose that the FH system operates over an ideal (infinite bandwidth,

nonfading) channel. The input signal enters the hopper and after trans-

mission it is received at the dehopper without additive or multiplicative

interference. The overall system impulse response found by using (3.2)

and (3.4) is

. HCA(t; ) =fHC(t,n)HA(n, ) dn

-ej2 fffh(0)E-ja(Q) e J 2 1fd(Q)+ J O( )

The response at time t due to an impulse applied time units in the past is

gCA(t,) - H CA (t, t-&)

U
1 -j2fh(t-)(t-)-ja(t-) j2fd(t)(t)+j(t) ().(41)

4.1 Zero Detuning Factor

In this section we assume that the hopper and dehopper patterns are

synchronized in time and frequency so that fd(t) = fh(t) for all t. Then

(4.1) becomes

' 1 e-ji (t)+j3(t) (4.2)

where we have used the fact that

:( - f(0)() , (4.3)

where f(&) is a function that is continuous at E - 0 and where we note

that the expression containing the delta function is inside an integral

," .. .
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when we calculate the system output. Namely,

s(t) = Ref (tE) w(t-E) dE1

The form for gCA(tE) is one of the simplest for a time-varying

system since it can be written as

g(t,E) - 6(E)

This type of impulse response is characteristic of a complex amplitude

modulator. The FH system is a phase modulator since the output is given

by

s(t) = Re{gcA(t)w(t)} (4.4)

where
g (t) -jca(t)+JB(t)

Ag(t) -4e

is the modulation. The autocorrelation function of the system is

,d"" (t~s , )= 6 ( )6() E~ j a ( t ) - WS t ) - j CI( s ) + j a ( s ) }

i CA 1

The expectation is found by making the following assumptions:

(i) The quantity e(t) a (t) - 8(t) is uniformly distributed on (0,2r)

in each hopping interval and is independent of 6(t) in any other

hopping interval.

(ii) There is a random starting time for the hopping patterns. Call this

to0 and assume that it is uniformly distributed on [0,Th) and is

independent of O(t).

.............
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Other assumptions are possible for a(t) and 6(t), but assumption (i) as

5 stated is a property of a noncoherent FH system and is of most interest.

If a(t) and 0(t) are independent, each uniformly distributed on [0,2w) in

each hopping interval, and if the difference a(t) - s(t) is taken modulo 2w,

U then note that (i) follows.

After solving for the expectation, we have

[1 IstI6 h Is Th
R (t,s;

. gCA

0 { otherwise

The product Q( )6() is interpreted as a unit mass at the point (0,0).

It is non-zero only when both F = 0 and - 0 [16]. An equivalent expres-

*sion is

• . ( ) ( ) =  6( ) ( - ) =  ( )6( - )(4.5)

where we remember that when using R (t,s; , in calculations, say for
,-. gCA

calculating the autocorrelation function of the system output, the product

of delta functions always appears under a double integral taken with

respect to and i. Thus, the system autocorrelation function may be written

as

- hi] st T

R (ts; , = (4.6)gCA

0; otherwise,

which depends on t and s only through the difference < = s - t; it is a

correlation function for a WSSUS channel. In addition, the system is purely

time-selective since

.~q
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P (C;) - CA (K)gCA;

where

PCA(K) - (4.7)

0 ; otherwise

So, from the point of view of the FSK transmitter and receiver, the FH

system operating over an ideal channel looks like a purely time-selective

WSSUS fading channel. This is a reasonable result since purely time-

selective implies that impulses applied to the system far enough apart in

time will have uncorrelated fading. This time separation is called the

correlation duration for the fading channel and for our system it is the

dwell time Th . The uncorrelated fading of signals sent at times separated

by more than Th is a result of assumptions (i) and (ii) on e(t) and to.

Thus, it is the noncoherent nature of the system that causes the time-

selectivity.

The channel model we have discussed does not indicate the effect

that the relationship between the dwell time and the bit duration has on

the time-selectivity of the system. Also, it does not separate the case

when the hopping sequence and the FSK data sequence are synchronized from

the case when they are not. If the sequences are not synchronized, time-

selectivity is introduced by the FH system. The spectrum of the sequence

at the output of the channel is spread in frequency since, as we can see

mathematically, the output spectrum is the result of a convolution of the

input spectrum with the channel power spectral density. The operation is

convolution, because as in (4.4), we see that the channel is a time-varying

'"
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complex multiplier in the time domain. The spectrum bandwidth of the

output of the dehopper demodulator is less than

S + S+ 2A

Th T

where c is a constant that depends on what definition of bandwidth we use.

Thus the Doppler spread is less than c/Th. (A more exact calculation may

be made by convolving T sinc 2(Tf) with Th sinc 2(Thf) and finding the

resulting bandwidth.)

In the system model (Section 3), we assume that the hopping sequence

and the modulated data sequence are synchronized. Assume that T h/T is an

integer and that the beginning of a hopping interval is also the beginning

of an FSK data bit. Within any given hopping interval, the FH system does

not look time-selective. Each data bit signal is multiplied by a random

complex multiplicative factor that remains constant for the dwell time.

However, over a longer period of time than Th, some time-selectivity is

3exhibited. This is because of the random phases introduced by the FH
system, which give rise to a Doppler shift on the order of I Hz. That is,

each bit is multiplied by a complex factor ejen causing a Doppler shift

of n /2w Hz. All the FSK data bits within the nth hopping interval have

this same complex modulation, but the spectra of bits in other hopping

intervals have different shifts. The output spectrum of the sequence of

FSK data bits is spread on the order of 1 Hz since it is the superposition

of many individual spectra, each shifted to slightly different frequencies.

The mean Doppler shift is 0 Hz.

In fast-frequency-hopping, when T > Th, the fading due to the

hi



20

frequency-hopping does not remain constant for the duration of an FSK data

bit. With respect to each input signal of duration T, the FH system looks

like a time-selective channel. Its spectrum is spread and its waveform is

distorted due to several random phase shifts being introduced during its

transmission. For example, if the hopping sequence and bit sequence are

synchronized in the sense that the start of a data bit is also the start.

of a hopping interval and T/Th is an integer, then the spectrum of the

output envelope of one bit will be about T/Th times as wide as the spectrum

of its input envelope. (If we assume that the FH system is coherent--that

* is, no phase shifts are introduced by the system--then the spreading of

the signal spectrum does not occur. In [10] it is found that the prob.

bility of error of the noncoherent system increases viinn T/T -4.creases,

but in the coherent system, the probability of error does not depend on

T/T .) If the Doppler spread is interpreted to be the difference between
h*

the bandwidth of the output spectrum of one FSK pulse and the bandwidth of

the input spectrum of one FSK pulse, then

D . C c h

p T T T T
hh

There is an additional spread on the order of 1 Hz due to the values of

the several random phases introduced within each data bit. Larger hopping

rates may introduce larger additional spread than slower hopping rates,

but the spread is still on the order of I Hz. Also, each data signal has

.- a Doppler shift that is an average of the shifts caused by these random

phases. When we look at the spectrum of a sequence of many data bits, we

4I see that the mean Doppler shift is zero, while the additional spread of

about 1Hz remains.

°-1

...

; .
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Thus, in general, when the sequences are synchronized in one of the

manners discussed above, the Doppler spread of an input FSK data sequence

caused by the FH system may be written as

D max + 0( Hz) (4.8)

where by 0(1 Hz) we mean, on the order of 1 Hz.

The spacing between frequency slots and the frequency spacing A

between two FSK tones must be larger for FFH systems than for SFH systems

to accommodate the spread of signal spectra.

4.2 Constant Detuning Factor

Suppose that fh(t) and fd(t) are synchronized in time, but that there

is some frequency offset between them. That is, fd(t) f fh(t) + c where e

is the detuning factor. In this section we consider when the detuning

factor is constant. The input delay-spread function becomes

1 -j27ct-jP(t)CA(t,E) 6() e

Using the noncoherent hopping assumptions from Section 4.1, we find that

the autocorrelation function is

RS ) (tS; e,) - Th ; Is-tl< Th

R C ts (4.9)

0 ;otherwise.

Again, the system looks like a purely time-selective WSSUS channel in the

same way as the system with zero detuning factor, but now,
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CA
0 ;otherwise

so that there is a mean Doppler shift

-f P (f) df

m -E -e -fd

where

-h 2
-(f) T6 sinc Th(f +

Thus, a constant detuning factor between the hopper and dehopper frequencies

causes a constant Doppler shift equal in magnitude to this factor.

4.3 Frequency Dependent Detuning Factor

More realistically, the detuning factor between fh(t) and fd(t) is

a function of frequency. For this analysis, we let fd(t) + fc W (fh(t)

+ f )[1 + X] so that the magnitude of the frequency offset is a fraction X
c

of the instantaneous frequency of the signal. That is, the offset is a frac-

tion of the hopping frequency plus the center frequency. (However, we can

let fd(t) - f (t)[l + X] where f is incorporated in the hopping frequency

functions. That is, we can let f (t) = fh(t) + fc.) The fraction X is a
- r c

random process, independent of 0(t) and the random starting time t0 , but

we assume that it varies slowly so that it can be thought of as constant

over several hopping intervals. The input delay-spread function for the

FH system is

;II

. o
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1 6(e) exp[-j 2wX (fh(t)+fC)t - je(t)]
C

and the autocorrelation function is

R (t,s;&,z) - T S( )6( -) E ej2 r (t)fn E{PT (t-t0-nTh)pT (S-to-nTh))'
gCA nf- h h

where pTh (t) is 1 for t E [OTh] and is 0 otherwise. The expectation is

(n+1) Th
1 T (t-x)p (s-x) dxi:: Th T, nTh

inT

t~nhPT-I.tlu + min(O,s-t) du ; st S Th
"f2::-n Th

The integral for the expectation is non-zero for at most two consecutive

values of n. Thus, R consists of at most two terms and X is nearly
:. gCA

constant over the two hopping intervals involved because of our assumption.

Let k-l and k denote the values of n when the expectation is not zero.

Then, we find that the autocorrelation is

6 6 ( ) 6 ( _ )~- __(s-kTh)e-j 21fk(s-t)+ (t 2s+(k+l)Th)

•ej 2 'fk-l(s-t) ]; 0<s-tiT and 2s-t-Th < k <
Th Th T - h

SR (t,s;,) = - J2fk(s-t)+ (s-2t+(k-l)Th)

gCA Th
• -j2wA fk-l(s-t); -Th<s-t<O and 2t-S-Th k < t

e; e Th Th

0 ; otherwise (4.10)
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We note that if - Xf for all n, then (4.10) reduces to the autocorre-
n

lation function for the constant detuning factor in (4.9). We notice from

(4.10) that when the detuning factor is a function of frequency, the system

is no longer WSS. At the start of each dwell time, a new frequency offset

is introduced. For each value of s and t such that Is-tI < T h there is

an integer k that falls in one of the intervals noted in (4.10) such that

the autocorrelation function is non-zero. At most two adjacent frequencies

are involved in (6.10) for any t and s (when Is-tI. < Th). That is, we can

vary s and t (so that Is-tI remains less than Th) and consequently find the

autocorrelation function involving any two adjacent hopping intervals.

We now impose a probability distribution on f that makes the systemn

WSS. Assume that the hopping frequencies are independent, each uniformly

distributed on the set of q available frequencies {Xi M f + V IV E {V19
i. c \i viE{l

v2, "'.. q )I. Note that this assumption makes it possible for f n f n+l;2--.q n n+

i.e., frequencies in adjacent hopping intervals may be equal. We also

assume that the frequencies are independent of 6(t) and tO . Then we have

that
q.- E{e-J2 Ifk(S-t)1 E{e-j 2 Xfk.l(S-t)l 1 i -J2irX(S-t)

'" q i-l

and the autocorrelation function is

q1i [ -ti 1 q  -j21rX((s-t)
16 (~) ~[ -T q ~e i; Is-ti I Thi~i i .  1 h qi-1

0: R (ts;E,) =
" ' gCA

0 ; otherwise.

The Fourier transform of P CA(s-t) is the power spectral density

@CA
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16q E Th sinc
2 (Th(f + XXi))

i-i

which we use to calculate the mean Doppler shift and spread. The mean

"- Doppler shift for the system is

m ff q 2 q~fX~) 2

p -ThsincT df I Thsinc (Th(f+Xxi)) df

q

amq i-l

which is the average of the available frequencies multiplied by -X. The

mean Doppler Spread is the "width" of O(f). It is the spread as discussed

in Section 4.1 plus additional spread on the order of X times the differ-

ence between the maximum available frequency and the minimum available

frequency. The spread increases with X.

- -

4"
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5. NONSELECTIVE FADING CHANNELS

5.1 Rayleigh Fading Channel

A signal entering a nonselective Rayleigh fading channel is received

as undistorted except for a Gaussian distributed multiplicative factor [21].

Call this factor pe j 7 where p has a Rayleigh density

f (r) r r /2a 0 (5.1)

and y is uniformly distributed on [0.2w). For the FH system operating over

this channel, the input delay-spread function is

1 pe-i 2 (fh(t-E)-fd(t- )) (t-h)+J((t-))-j(t-)+jy )

Assume that fh(t) - fd(t) for all t and that p and y are independent of

a(t) and 0(t) where the same assumptions, (i) and (ii), are made on a(t)

and a(t) as before. The autocorrelation function for the system is

() Rg B(t,s;,) Jp ; s-t Th

R9(5.2)

0; otherwise

where E{p 2  2 2 using the density function for p. Note that the only

difference between this system and the system in Section 4.1 is the constant

2
multiplicative factor 2a in the autocorrelation function. As it should,

the FH system used over a Rayleigh fading channel exhibits time-selectivity

in the same that the FH system used over an ideal channel does. If

T I Th, the output spectrum has about the same bandwidth as the input signal

spectrum. If T > Th, the output signal spectrum has about the same band-

width as the FH system power spectral density.

",4
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5.2 Rician Fading Channel

In addition to the receiver seeing a nonselective Rayleigh fading

- signal, there may be a nonfaded or "specular" component present. If the

*difference in propagation times of the nonfaded and faded signals is

small compared with the minimum of the data bit duration and the dwell

time, the overall channel is nonselective. Let the sum of the two compo-

nents have amplitude S and phase 0. The joint density of S and 0 is

f2 2exp s2+A2 2 sAcos ;s a 0, 0 < (5.3)::: 27r 2  2a2 -

where A is the amplitude of the nonfaded component and 2a2 is the expected

value of the amplitude squared of the faded component (23]. The fading

channel is called Rician because the marginal distribution for S is given

by the Rician density

fs(S) - S/a2 exp[ -1 (82 + A2)/ 2 ] I0 (As/a
2); s _ 0 (5.4)

- 2,

where I0 is the zeroth order modified Bessel function. The output of the

hopper and input to the channel is

x(Q) - Re {ew( ) .

The channel output is then

y(&)= Re{(pe + A)w(Q) e

where

e + A -S e

Assuming that fh(t) = fd(t), the output of the dehopper is
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s(t) Re C(t,)w(t-&) dt

where

1 ej e-ja(t)+J(t) ( ) (5.5)-!: ~~gCBA~t 2) = g6( 55

The autocorrelation function is the same as in Section 4.1 except for the

2 2 2
constant multiplicative factor E(S I 2a + A

5.3 Two Path Channel

Now, suppose we have a two path channel defined in the following

manner. If the input to the channel is

x(t) Refr(t) eJ2wf o t

then the output is

y(t) = Re{Ar(t-r0) ej21rf0t + Br(t) eJ 21fOt (5.6)

where T0 is the delay of the first component with respect to the second

and A and B are complex numbers describing the amplitude and phase of the

two received signal components. There is also a nominal delay time of the

total signal which we ignore since it is only the relative delay that

enters into the analysis. If T0 is sufficiently small compared with the

minimum of T and Th, the channel is nonselective. (A phase is introduced

in the first component relative to the second component.) We examine

what occurs when the condition on T is not necessarily met.

If the input to the channel is the signal from the hopper, then the

output of the channel is

....................
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S(t) Re e-2rfh(t-O)(t-TO)-JQ(t-T0) e J2wfct v(t. 0)

+ B-J2fh(t)t-a(t) ej2nft V(t)

At the dehopper, the signal is demodulated and sent through the bandpass

filter with impulse response hW(t). As before, the filter bandwidth is

smaller than the smallest separation between any two hopping frequencies.

If we again assume that fd(t) - fh(t), we find that the output of the FH

system operating over the two path channel is

s(t) Re {f gCBA(t, )w(t-C) d }

where

A -j 27AB -J2rh(t-E) (t-&) J 2wfd(t-&+T0) (t-E+'T0) e-Ja(t-E)+j a(t-E+TO)

e, jB7fC W -r)+- Q e-ja (t-&)+j (t- r)(5744*eJ 2'fc 0 h( - 0) + B 6( )j(~)j~~ . (5.7)

To analyze this response, we need to consider the relationship between T

and the FH system dwell time. If T0 is greater than Th, the first term

of (5.7) is equal to zero since fh(t) # fd(t + T0) for any time t. That

is, the second term of (5.7) is the signal assumed to be synchronized with

the dehopper, while the delayed first term is delayed enough so that it

has no effect on the output. Thus, we have that

= B -ja(t)+j6(t)

and

{6 T hsti Is-ti Th

R g C B A ( t , s ; , ) = o e i
otherwise.-"

±.
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If we assume that -r is equal to some y that is nearly zero relative to

Th, then fh(t) - fd(t + TO) for nearly all t. The result is a phase intro-

duced in the first term of (5.7) with respect to the second term. The

input delay-spread function is

(t~) - 1 ~ jc(t)+JS(t) [Aei~)+B:::'i' CB~ t'  =  S () e ]  + B]

where

0 Z(t) (2nf + 2fdt))

We assume that *(t) is a random process analogous to a(t) and 8(t). That

is, we assume that *(t) is a uniformly distributed (on (0,27)) random

variable during each hopping interval independent of a(t) and B(t). Then

the autocorrelation function is

Rg~~(t4) MME;) 1 - ]; Is-tI:S Th

; otherwise

where crossterms have disappeared due to the assumption on 0(t). If

A - B, we see that the amplitude of the autocorrelation function when

T 0 Z 0 is twice that of R when T^ 0 Th" Both terms of the signal

received at the dehopper are specular terms that are synchronized with

the receiver. Note that if A and B are random variables, independent of

2 2the random starting time and the phases, then we can replace A and B with

their expected values in the expressions for the autocorrelation functions.

If Y < L 01 <Th for some y > 0 that is small relative to Th, then

for a portion of the hopping interval there is a contribution from the

first term since fh(t) fh(t + 'r) during part of each hopping interval.

h h
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In the remaining portion of the hopping interval, the first term is zero.

Thus, for Tin this range, the FH system introduces time-selectivity in

the sense that an FSIC signal entering the system sees one type of fading

over one portion of the hopping interval and another type of fading over

the remainder. For example, if the bit duration T is equal to the dwell

time Th, the time-selectivity introduced may cause the spectrum of the

incoming signal to be spread up to two times its original width. If the

system is a SFH system, the signals over the two paths interfere, possibly

both constructively and destructively, during the portion of the hopping

interval when both signals of the two path channel make a contribution.

That is, there is an overlap of bits from the first part of each hopping

interval with bits from the last part. The duration of each overlap depends

on the magnitude of rog and the position of the overlap within the hopping

interval depends on the sign of T 0 * We see, f or the two path channel, that :

the worst situation is when the delay of one path relative to the other

path has magnitude greater than zero, but less than the dwell time.

Instead of one component of the two path channel being a distorted

version of the output of the frequency-dehopper by a multiplicative factor

B, we may consider it to be a superposition of many signals traveling

different paths so that the resultant modulation is a time-varying random

process. We do this in the next section.
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6. WSSUS SELECTIVE FADING CHANNELS

In this section we consider the channel to be a WSSUS selective fading

channel. The general model is for an input

. j2irfot

x(t) - Re{r(t)e 
0 ,

the output is

J21fot j2nf t
y(t) - eAr (t- 0)e 0+ B(t,)r(t- )e 0d (6.1)

where gB(t,&) is a stationary complex zero mean Gaussian random process and To

is the delay of the first component with respect to the second. We consider

two possible values for A. If A - 1, then there is a specular component

present in the output and the channel is a Rician fading channel. If A - 0,

then there is no specular component and the channel is a Rayleigh fading

channel. Since we are considering a WSSUS fading channel, the autocorrelation

function for gB(t,) has the form

~RgB(t~t+K;&,C ) Pf Pg(K,)6(&-0) (6.2)

9" o

*S 6.1 Rayleigh Fading Channel

We first consider the case A 0 0. We have from (2.3) that

HB(tr n) - gB(,'T-n).

The composite time-varying impulse response for the FH system operating over

a WSSUS Rayleigh fading channel is

,~ ... . . ." . .. .
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HCRA(t,&) J (t,T)HB(Tn)HA(nh)dndT

1 j i27rfh (&)g-t(&) i 2 wf d (T)T+i 8 (T)
j fe HB(T,&)hw(tT)dT

and from (2.3)I
I -iJ21Tf h -) -)-(-) fJ 21f d (T)T+j (Tr)

SgCBA(t,) e "e gB(T,T-(t-))hW(t-T)dT.

(6.3)

To obtain the autocorrelation function of gCBA defined as

R (t,s;&, ) =E- g *(t,&)gC(S,01""gCBA B A

we make the following assumptions:

(i) a(t) is uniformly distributed on [0,2n) each hopping interval and

is independent of a(t) any other hopping interval.

(ii) 8(t) satisfies (i).

(iii) There is a random starting time to for the hopping pattern which is

uniformly distributed on (0, T)

(iv) a(t), 8(t) and g (tE),are mutually independent random processes

and are independent of the random variable to.

Also, given (6.2) we have

Eg*(- -- = P (v-;-(t-))(v-(s-l)-(-(t-))).

_ So the autocorrelation function for the whole system becomes

R (tls;ff (v-_ ;T-(t-&)d (v-(s-)-( -(t-&)))E{ }hw(t-r)hw(sv)dTdv(CBA6.

(6.4)
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where the expectation is

ME E{e e PT (t- -t0-nTh)
nw-~ m-o Th

hPT h(S- -t0-nTh)PT h(T-t-mTh)PTh ( v - t 0 - mTh ) "

If we assume that the hopper and dehopper frequency sequences are

synchronized so that m - n and that there is no frequency offset between them,

then f = fn . Using these assumptions and making use of the S-function in the
m n

integrand of (6.4), the expectation simplifies to

E{ =E T(t__v)ph(Sv)PT v) p (v-v) dv.
h h h Th Th

Let u -t-E-v and note that the product of the four rectangular pulses can be

simplified since

PT(u)PT(V T+u) = PTh _TI (u+min(O,v-T)); IV-TI < Th

and

PT (I (t-lU)pT (v-(t-c)+u) T (u+in(v,T)-(tE)); IV-T !Th

Th Th Th1-1h

If v-r > 0, the integral becomes

-1 r
E{ = I (u)P 1  (u+T-(t- ))duFh Th-vI T hI T V-TI

!::= 1 - lv-rI+lt-(t-<>l ; jt-(- )I <~ Th-jv-rj

Th

which is also the result when v-T 0. Finally the system autocorrelation

function in (6.4) becomes

.°4
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1 ---V- +_-(t-)I:"16ffgB T h JI
R (t,s;,)(t-)(s-v)dTdv; It-(t-)I+Iv-TI < Th
gCBA (6.5)

0 ; otherwise

U

This correlation function is doubly-selective since the fading channel is

doubly-selective. It is not clear from (6.5) whether or not the composite

- process g is WSSUS. We analyze the cases when the fading channel is

purely time-selective or purely frequency-selective next to see if the

resulting system is WSSUS.

6.1.1 Purely Time-Selective Fading Channel

Assume that the WSSUS channel is purely time-selective. Then,
U

P (v-T;'r-(t- )) P (v-r;0)S(r-(t-)) = PB(V-T)6(T-(t-))gB EB'-

so that the system autocorrelation function in (6.5) simplifies to

R T6s4~ =WtTh~-~~v
R (ts;, )=pB(V-T)6(T-(t-C))6(v-(s-) -'hjw !

:. CBA h

Iv_ < Th

- PB(S-t_(lO)) l- st (w)hw)s-t-(C) h, 16fB1T Th  -

0 otherwise . (6.6)

This result implies that the FH system using a WSSUS purely time-selective

channel is WSS since the autocorrelation function depends on the time

difference s-t only. That is, the series connection of the three indi-

vidually WSS systems, frequency-hopper, WSSUS time-selective channel, and

%
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frequency-dehopper, retains the WSS property. However, the system does

not have the mathematical form for the US channel. Thus, the complex

modulation gCBA(t,-) corresponding to different path delays are correlated

in some manner. We see that if the filter hW(.) has the form of an impulse

in time that the US property would be present. The loss of this property

is not of great importance because uncorrelated scattering has no physical

interpretation for the FR system itself. Note also that the system is no

longer purely time-selective. These results are a consequence of the finite

bandwidth of the bandpass filter.

Suppose the bandpass filter, which is assumed to have a transfer

function that is nearly flat over its entire bandwidth, has infinite band-

width. For example, if h.(W) is ideal as in (3.3) we see that

lim h ()h.( ) = lrm Wsinc(Wg)Wsinc(WC)cos(2fcg)cos(2wfcC)

W4MWO

where we have used properties of the 6-function in (4.3) and (4.4) adsuming

the 6-function product appears only as an integrand of a double integral.

Thus,
1 P (st) 1 I - 6(&)S(-C);Is-tI T

lim R (ts;&,) = (6.7)
W-- CBA

0 ; otherwise.

14 This is a correlation function for a WSSUS channel that is purely time-

selective. The loss of the purely time-selective property when the
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bandpass filter bandwidth is finite is not surprising. Notice that the

U bandpass filter adds frequency-selectivity to the channel since frequencies

of the signal that fall within the passband are "faded" differently than

the frequencies that lie outside the passband. Hence, frequency-selectivity

Iis evident trivially when we have a finite bandwidth bandpass filter and

we look at all frequencies. Locally, within the passband of the filter, the

channel can be considered purely time-selective. We use the autocorrelation

- function for the wideband system, keeping in mind that the signal frequencies

at the output of the frequency dehopper lie within the band of width W.

Examining (6.7), we see that there is additional Doppler spread of

the input signal due to the fading channel itself. If T S Th, the Doppler

spread is approximately the bandwidth of the Fourier transform of PB (K).

If the bit duration is greater than the dwell time, the output spectrum

has approximately the same bandwidth as the power spectral density

" OCBA f)h= PB(K) [1 - L..L e - j2 f di .Th

If the correlation duration of the channel is much greater than the corre-

lation duration of the communication system (the dwell time), then the system

causes most of the spread. Alternately, if the correlation duration of the

channel is smaller than that of the system, the channel is responsible for

most of the spread. In either case, when T < Th, the Doppler spread is Ih

less than the bandwidth of the Fourier transform of PB (ic) plus (c/T)[T/Th-1].
B!

Spreading of the spectrum degrades the total system performance independent

of the relationship between T and Th since energy is spread wider than the

passband W so that less signal energy is detected at the FSK receiver.
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6.1.2 Purely Frequency-Selective Fading Channel

Assume that the WSSUS channel is purely frequency-selective so that

P (v-;-(t-)) (-(t-)).

Then the autocorrelation function in (6.5) becomes

lf-Qs(x) [1 - ls-t-(C-ol + 1xi (

Qxj Th i IxI< Th -Is-t-(C-&)I

R (ts;E,) =  (6.8)gCM

0; otb.-:rwrise

where x - - (t-C). This autocorrelation function depends on the time

difference s-t only so that the FH system using a WSSUS purely frequency-

selective channel is WSS. We expect the system to be doubly-selective

since the channel is frequency-selective and the FH system is time-

selective. Again we let the bandwidth of the bandpass filter go to so

that the frequency-selectivity caused by the filter goes away. Then

lim R (ts;&,) = QQ(x) - ]st(c-ol + Wxl 6(-x)6 (-x)
W-' i CBA 16M B 1  Th J

[1 -I x I < Th-IS- T

6 [ - T hI 6(&-;); 1&1+ lu-ti Th

- "(6.9)

; otherwise
0

where we use the property

%4
.......
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ff (x) 8 (a-x)6 (x-0) dx f 606 )(as-0) (6.10)

The limit in (6.9) is a correlation function for a doubly-selective WSSUS

channel where the frequency-selectivity is introduced by the fading

channel rather than by the bandpass filter. We calculate the multipath

spread using

QCBA( ) -16 QB [1- ] ; ki TT (6.11)

obtained by letting s - t in P (s-t;E). Consider the delay density
,':; gCBA

spectrum QCBA(Q) when QB(t) is triangular with base 2TB. Fix the dwell

time and first consider when TB > Th. From (6.11) we see that the multi-

path spread is less than 2Th as long as no two consecutive hopping frequen-

cies are equal. If T a Th there is no intersymbol interference, but since

each bit received is spread in time, less energy per bit is detected at

the receiver. When T < Th intersymbol interference is produced among the

Th/T bits within a hopping interval, while bits from other hopping intervals

do not interfere. Thus, when the correlation duration of the channel is

larger than the dwell time, we see that the FH system limits the amount

of multipath spread to be less than 2T and it limits the occurrence of
h

intersymbol interference.

Next we consider when TB < Th with the dwell time fixed as before.

The multipath spread of the system is approximately the multipath spread

of the fading channel. Since this is less than 2Th, the performance of

the system is improved compared to that of the previous case. That is,

the performance of the system is better when the frequency-selectivity of

fading channel is limited. Note that the only time-selectivity introduced

. . .
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is from the FH system. Also, note the tradeoff between using a FFH system

versus a SFH system. E.g., a FFH system helps combat frequency-selective

fading, but it introduces time-selective fading. A SFH system does not

introduce time-selective fading, but it is not as effective against pre-

venting intersymbol interference caused by a frequency-selective channel.

6.2 Rician Fading Channel

In this section we consider when A = 1 in (6.1). The specular term

arrives at the receiver with a delay T relative to the faded term. If

this delay is much less than the minimum of T and Th, then the first term

of y(t) in (6.1) may be approximated by r(t) eJ2 f0t+J. For the FH

system operating over this channel, the input delay-spread function is

1 -j27fh(t-0)(t-0)-Ja(t-0 {eJ2 Wfd(t - )M(t-0)+JB(t-) eU hw( )SgCBA (t,.) e {e eeW

+ feJ2fd(T)T+J(T) gB( ,-(t-E)) hW(t-r) d)r •

In general, the autocorrelation consists of four terms, but we assume

•gB(tE) to be zero mean so that the crossterms are zero. Hence, we have

that the autocorrelation function R (t,s;g,C) for the FH system using a
g~CBA

WSSUS channel is the sum of the autocorrelation functions found in (4.1)

and (6.1). As in Section 5.2, when the magnitude of T is greater than the

dwell time, the specular term is zero. When Ir0I < Th , there is a contri-

bution from the first term since for a portion of each hopping interval,

fh(t-r0) = fd(t). Thus, a Rician fading channel introduces additional time-

selectivity because of the presence of two versions of the transmitted

signal at the receiver.

---------------------------------------------
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7. CORRELATION BETWEEN FREQUENCY SLOTS

In this section we investigate the correlation between signals trans-

mitted in adjacent frequency slots with separation A' and determine the

separation necessary to guarantee that the fading of these signals have

correlation less than some positive number 0. We assume that the fading

channel is purely frequency-selective.

Suppose that we have two transmitters each consisting of an FSK

modulator and a bandpass filter. We denote the carrier frequencies

f and f2' and assume that the filter passes only the difference frequency.

-p The transmitted signals pass through a fading channel with time-varying

impulse response gB(tg). The crosscorrelation function of the input

delay-spread function for the wideband system using (4.3) is

Rg (t,s;E,1) E{g *(t,&) gB (s,;))
9 :BAI BA2BB

1 2
i *j e 2vf 2 (s- )+J2wfl(t-) 6 ( -) (7.1)
=QB

where

S(t) - -2fi(t-) g(t,) for i = 1,2.
i2B

Define the frequency correlation function (See (2.47) and (2.75) in (6])

Rf2 (~) fffg~~ (t,s;&,r) eiI~st dE dC dt ds

1 2

-l2 f ff = ( ) u1 (t~) 2 (s-&) e-j2 (fs-tt) d dt ds (7.2); .,. = ~~fffB(4) Ul(t-e) u2(-)ddtd 72

where ui(x) - 1/2 e-j2Ifix when (7.1) is substituted into (7.2). Thus,

the frequency correlation function of the outputs of a purely frequency-

selective WSSUS channel when the input envelopes are pure frequency tones is.4

. . .
I . .
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Rf f (tf) - 6(f+f 2)6(x+f1) .lf() e-j2w(f1 f2)C d& (7.3)
1 2

Suppose Q Q) is of the form sin(wXg)/(g) with X 2/ so that the

Fourier transform is

1 21
( {TM-QB( ) e-j2w(f -f2 ) dg =

0 "2otherwise.

Then (7.3) becomes

Rf .f) 6(f+f2 )S(,+f) If-
1 2 1TM

t(f+f2)6(1+f1) ; a, <M

(7.4)

0; otherwise.

We note that if A' < l/T,, then the two transmitted frequency tones fade
M

in a correlated manner. If the spacing between the tones is greater than

the coherence bandwidth (1/TM ) , then the fading of the tones is uncorre-

lated.

oNext consider the fading of Aignals in adjacent hopping intervals.

.: Let

1 -j2wfit (t)
u (t) e p t)

(7.5)

ui(t) 1-j27rf2t PTh (tTh)

Substituting (7.5) into (7.2) gives

'. 1
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R (9'f) -- sincTh(f+f2)sincTh(t+fl)exp[jwTh(3(i+fl)-(f+f2)]

.- B(C) exp[-j21r(f-,)C] dE 76

for the frequency correlation function between the two adjacent signals.

We consider the magnitude of this in the following analysis so the complex

exponential containing the information of when the signals are sent does

not contribute anything. Thus, the following results give the correlation

in fading between signals sent in any two hopping intervals. For example,

the signals may be sent in two different hopping intervals by the same

transmitter or they may be sent from two different transmitters that form

part of a multiple-access system. The crosscorrelation function of the

faded signals depends on the dwell time, the two carrier frequencies

f 1 and f29 and the delay density spectrum QB of the fading channel. If

- we assume that QBQ) is a sinc function with first zero crossing at T /2,

then the magnitude of (7.6) becomes

I T2
-- IsincTh(f+f2) sincTh(2,+fl)I If-11 M

IR f f (1,f0 (7.7)

10 ; otherwise.

Note that as Th * -, (7.7) converges to (7.4). The correlation function

in (7.7) is zero if either of the quantities f+f2 or 1+f1 is an integer.

It is also zero when the two frequencies f and I are further apart than

I/T The frequencies f and X are the arguments of the crosscorrelation

function; we need to find what A' should be for the crosscorrelation

function to be zero for any f and L. If A' - 1-f21 >> 2/Th + I/TM , then

. * -: ..
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the frequency components of the signal centered at fl fade independently

of the frequency components of the signal centered at f This condition

may be difficult to achieve so we consider smaller differences between the

two frequencies. We find how large A' should be for the magnitude of the

2correlation (normalized by the factor T /4 ) between signals to be less

than some positive number 8. To do this, suppose that f = I and consider

when the condition

Isinc[Th(f + f1 + A')] sinc[Th(f + f1)1 8

is met. (Note that here we assume f2 > f1 so that f2 = fl - A'.) We

should have
.. : , > 1 + x

T M Th

where we find x > 0 from

Isinc[Th(f + f  + x] sinc[Th(f + fl)1J "

such that for all y > x

Isinc[Th(f + f) + y] sinc(Th(f + fl)]l <

In Table 1, we list x for given values of Th(f - fl) and 8. We note

that as Th(f + fl) increases, the necessary spacing between frequency

slots for signals in the slots to fade in an uncorrelated manner decreases.

Of course, as S, the largest (normalized) correlation allowed, decreases

the frequency separation necessary increases. See Figure 2 for a graph

of 8 versus x for f + fl equal to zero. The steps in the curve, corres-

ponding to jumps in the frequency separation necessary for normalized

.
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Table 1. Values of x for given values of Th(f +fl) and 8.

Th,(f +fl) B .5 8-m .2 8 - .05

0.0 .6034 1.5620 5.6523

0.1 .5973 1.5480 5.6428

0.2 .5780 .8155 5.6092

0.3 .5420 .8007 4.6735

0.4 .4810 .7769 4.5969

0.5 .3739 .7396 3.6442

0.6 .0745 .6792 2.6850

0.7 .0000 .5710 1.7346
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1.6-

6.8-

6.4-

6.2-

6I2 3 4

bigure 2. 8 versus x given that (f + f) 0.
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correlation in fading to be less than 8,are due to the lobes in the

magnitude of the correlation fuinction. Curves for larger T h(f + f 1) have

smaller amplitudes than the curve in Figure 2, and are shifted to the left

by -(f + f1) If we have that f 0 X, the separation 6' may be smaller

P by a fraction of lIT than the separation necessary when f Z 2. In otherM

words, if A' > l/TM + x/Th, then the normalized correlation in fading

between any frequency component of one signal and any frequency component

of the other signal is less than B
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* 8. CONCLUSIONS

The system consisting of a frequency-hopper, WSSUS fading channel,

and a frequency-dehopper in series was modeled as a fading channel seen

* by an FSK system. It was found that a noncoherent FH system can be charac-

terized as a WSSUS time-selective channel. The degree of time-selectivity

introduced by the system depends on the relationship between the dwell time

and the duration of a data bit. An FFH system introduces more spreading

of the spectrum of a signal than a SFH system.

A constant detuning factor between the frequencies of the hopper and

dehopper was found to introduce a Doppler shift equal in magnitude to this

factor. If the detuning factor is a function of frequency, the FH system

is no longer wise-sense-stationary (for a deterministic hopping pattern).

However, if the hopping pattern is random with a uniform probability dis-

tribution, the system is wide-sense stationary. Given that the detuning

factor is a fraction X of the instantaneous frequency of the signal, the

mean Doppler spread is X times the total system bandwidth and the mean

Doppler shift is -X times the average frequency of the signal.

The autocorrelation functions were calculated for the FE system

operating over nonselective fading channels. For the nonselective Rayleigh

and Rician fading channels, it was found that the system autocorrelation

functions are the same as the autocorrelation function for the FH system

operating over an ideal channel except for constant multiplicative factors.

FH communication over a two path channel was investigated.

The autocorrelation function was calculated for the FH system in

series with a WSSUS channel, and the system was found to no longer be
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wide-sense-stationary. Time-selective and frequency-selective fading

channels were considered separately. To obtain wide-sense stationary

systems, we let the bandwidth of the output bandpass filter of the frequency-

dehopper go to infinity. Both Rayleigh and Rician selective fading channels

were studied. It was found that a Rician selective fading channel intro-

duces time-selectivity (in addition to that introduced by a Rayleigh fading

channel and the FH system) if the relative delay between the two signal

components is greater than zero, but less than the dwell time. An FFH

system can tolerate frequency-selective fading better than a SFH system.

The effects of intersymbol interference introduced to a communication

system by a frequency-selective channel are reduced when a SFH system is

used. Intersymbol interference is eliminated when an FFH system is used.

A frequency crosscorrelation function was calculated for the two

output signals from a purely frequency-selective fading channel with two

" input signals at different carrier frequencies. This correlation function

:ias used to find the magnitude of the correlation between fading signals

in different frequency slots. The frequency spacing between adjacent

frequency slots necessary for the fading of signals occupying these slots

to have correlation less than some positive number was found. This was done

for a particular channel delay density spectrum. The necessary separation

depends on the hopping rate and the coherence bandwidth of the frequency-

selective channel.

7.

* . --..
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