"AD-R124 397 SPARSE MATRIX METHODS IN OPTINIZRTION(U) STANFORD UNIV i1
CR SYSTENMS OPTIMIZATION L P E_GILL ET AL. DEC 82
SOL-82-17 ARC-18424. 9- HR NBBB.M 75-C-0267

UNCLASSIFIED F/G 1274 . AL

....... -

funen

i ‘ad - T i e i e el
TN T VTR T Lyl are i~ olh el Sy AL AN I S e e NS ."‘ ,'.' P i RS _J. el '-‘..'.s IS
Pt LT S L e s e I T S LT PO UL, T TR TR, SOV SOV Vil St gl YHat SMAR SRUE RN AL S8

4
RICRL RIS

)
b_a? s

E

Hed
L]

=

m

L2 Tl s

} S
]

esoreEEEER
EEEE
ong
o

©

|' .UICROCOPV RESOLUTION TEST CHART
7 ATIONAL BUREAU OF STANDARDS-1963-A
[e
o . |
3 -

-

A,Qo 14424, 9-r

Systems
Optimization
Laboratory l

Ll
a v '
e
xt
(N
<
\l
ot
)

o
)
<
X
vl .
-«
:

S——;)

by

Philfip B. Gill, Walter Murray,
Michael A. Ssunders and Margaret H. VWright

TECHNICAL EEPORT SOL 82-17
December 1982

LA GRS

> LR

OTE FiLE copy

5N LS

Department of Operations Research
Stanford University
Stanford, CA 94305

:
:

$3 02 0/5(06’5___“ |

R ‘}“hk

= PR

N - v 7- & LR . kL LIl Lo T - \' '- ---------- "' - T T ‘.— ".' », '_ 'I-'| -;"":— .“‘1‘ S " w|
SO RIS g B R

-
. A, e . » - e - - > -t .
MU B A I R Sy SRR U S S St S S, A A R Y N LI N L A L WL APNE N

-

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

oTIC

(r\‘..a'CT BTN
FEBA 183

) .
\)

..

.

SPARSE MATRIX METHODS IN OPTIMIZATION @
by

Philip E. Gill, Walter Murray,
Michael A. Sasunders and Margaret H. Wright

TECHNICAL REPORT SOL 82-17
December 1982

Research and reproduction of this report were partially supported by
the Department of Energy Contract AM03-76SF00326, PA# DE-AT03-76ER72018;
Office of Naval Research Contract N00014-75-C-0267; National Science
Foundation Grants MCS=7926009 and ECS-8012974; Army Research Office
Contract DAA29-79-C-0110.

Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author(s) and do NOT necessarily
reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the
United States Govermment. This document has been approved for public
release and sale; its distribution is unlimited.

- e e e - et e, =

e ey g myea e Al e o e cmemy ey - e e e m e
PO TN BN B NI I SR ¢ PRI, PP P R I, W ST RS, LA T CT SE

L7 eidbiliia 20 Sl AL fall ORI N LIPSO O TR i §

.,.h?. s

-l "l k)
-y e ~d
N L

iy

The e

\5
\\
co da._ccou:nt

~,

/

” -

—

"or

SPARSE MATRIX METHODS IN OPTIMIZATIONt "NT1S

by

Philip E. Gill, Walter Murray,
Michael A. Saunders and Margaret H. Wright

Systems Optimization Laboratory
Department of Operations Research
Stanford University
Stanford, California 94305

vb ABSTRACT

ically require the solution of many systems of linear equations
i constraints are present, these linear systems

Both direct i i tion solvers are needed in\practice. Unfortunately, most of the

hundreds or thousan

jterative method, it is essential to note that ‘B, is related to Bx—1.
J"ﬁ’m review various spars iceg that arise in optimization, and discuss compromises that

e currently being made in dealing wit. . Since significant advances continue to be made
with single-system solvers,f% give special atten to methods that allow such solvers to be used
repeatedly on a sequence of modified systems (e.g.,"the product-form update; use of the Schur
complement). The speed of factorizing a matrix then
eficiency of subsequent,,gl’ s ng_l very many right-hand sides.

At the same t.ime,’we:ZoSe that future improvements to linear-equation software will be
oriented more specifically to the case of related matrices

/
This research was supported by the U.S. Department of Energy Contract DE-AC03-765F003

26
PA No.'DE-AT03-76ER72018; National Science Foundation Grarits ﬁ’é@ and"i!'.csJ
arch

. 8012974; the Office of Naval Research Contract N00014-75-C-0267; and the U.S. Army Rese
Office Contract DAAG29-79-C-0110. '

{ Presented as an invited paper at the Sparse Matrix Symposium, Fairfield Glade, Tennesses, October 24-27, 1982,

B Y N R R Y L e G A Y A R AN AT Y AN SO R TN L T e T N T W e T M T T T T T T T

! Accessiog won

g M) S N Sin N W an T TATN TS OO &
LFO DAL R G S L ATR L R Sl A e R T S N

v T eV T e - c L. v . e e

1. Introduction 1

1. Introduction

1.1. Background. The major application of sparse matrix techniques in optimisation up to the
present has been in the implementation of the simplex method for linesr programming (LP) (see,
e.g., Dantsig, 1963). In fact, commercial codes for large LP problems seem to have predated codes
for sparse linear equations (even though solving a sparse LP problem requires solving many sparse
linear systems). In the commercial world today, more sparse matrix computation is probably
expended on linear programs than on any other type of problem, and linear programs involving
thousands of unknowns can be solved routinely. Because of the great success of the simplex
algorithm and the wide availability of LP codes, many large-scale optimization problems tend
to be formulated as purely linear programs. However, we shall see that this limitation is often
unnecessary.

Before considering particular methods, we emphasise that methods for large-scale optimiza-
tion have a special character attributable in large part to the critical importance of linear algebraic
procedures. Since dense linear algebraic techniques tend to become unreasonably expensive as the
problem dimension increases, it is usually necessary to compromise what seems to be an “ideal”
strategy. (In fact, an approach that would not even be considered for small problems may turn
out to be the best choice for some large problems.) Furthermore, the relative cost of the steps of
many optimization methods changes when the problem becomes large. For example, the perfor-
mance of unconstrained optimization algorithms is often measured by the number of evaluations
of the objective function required for convergence. Although simplistic, this is a reasonable gauge
of effectiveness for most problems of low dimension because the number of arithmetic operations
per iteration tends to be small, and the amount of work required for storage manipulation is
negligible. However, as the size of the problem grows, the “housekeeping” (cost of arithmetic and
data structures) becomes comparable to, and may even dominate, the cost of function evaluations.

Most optimization methods are iterative; we shall consider algorithms in which the (k< 1)-th
iterate is defined as

Zr41 = Zx + axpy, (1.1)

where a; is a non-negative scalar, and the n-vector p; is called the search direction. One of
the primary applications of sparse matrix techniques in optimisation is in solving one or more
systems of linear equations to obtain p,.

It is usual for thousands of iterations to be required to solve a single large optimisation
problem, and hence it might appear that the computation time required would be enormous, even
with the best available sparse matrix techniques. Fortunately, the linear systems that define px 4.1
are usually closely related to those that define p; (and the degree of closeness can be controlled
to some extent by the choice of algorithm). In addition, the sequence {z)} will often converge
to the solution with only mild conditions on {p;}. Consequently, there is a certain flexibility
in the definition of px. The design of algorithms for large-scale optimisation problems involves
striking a balance between the effort expended at each iteration to compute p; and the number
of iterations required for convergence.

1.2. Summary. The three main subdivisions of optimisation are discussed in turn (unconstrained,
linearly constrained, and nonlinearly constrained). A common denominator is the need to solve
many systems of linear equations, and the need to update various factorizations in order to
deal with sequences of related equations. We indicate situations where off-the-shelf software can
be applied. Symmetric positive-definite solvers are mainly useful for unconstrained problems,
while unsymmetric solvers are essential for dealing with linear constraints. There is an inevitable

¥

RIS

E

Lt ¥

o

24000, :;'-.‘o,o':,"l'

s . IO N
RS, WS .'L-'ll\ ," "-'u“. W

i

SR N TR A S LA O A A I SR A U I A S RN P A g

R R N i R R T A s e S A R TSI o

3 Sparse Matrix Methods in Optimisstion

emphasis on the latter because most large optimisation problems currently being solved involve
sparse linear constraints.

The principal updating problem is that of replacing one column of a square matrix. However,
there exists only one generally available package for updating sparse factors in situ. We therefore
focus on methods that allow an off-the-shelf solver to be used repeatedly on the same matrix with
different right-hand sides. Such methods facilitate more general updates to sparse matrices. In
one instance, a sparse indefinite solver is needed.

The final section on nonlinear constraints covers methods that solve a sequence of simpler
subproblems, to which the preceding comments apply.

2. Uneconstrained Optimization

2.1. Methods for dense problems. The unconstrained optimisation problem involves the mini-
misation of a scalar-valued objective function, i.e.

minimize F(z).
sER®

We assume that F is smooth; let g(z) and H(z) denote the gradient vector and Hessian matrix
of F.

Many techniques are available for solving unconstrained problems in which n is small (for
recent surveys, see, .g., Brodlie, 1977; Fletcher, 1980; Gill, Murray and Wright, 1981). The most
popular methods compute the search direction as the solution of a system of linear equations of
the form

Hypy = —, (2.1)

where g, is the gradient of F at z,, and H; is a suitable symmetric matrix that is most often
intended to represent (in some sense) H(z,). If H, is positive definite, the solution of (2.1) is the
step to the minimum of the local quadratic approximation to F at z,:

1
. 3] T - T
mgn‘w“ue gip+ 3 p Hyp. (2.2)

The major distinctions among algorithms involve the definition of Hj.

When H, is the exact Hessian at z, or a finite-difference approximation, the algorithm
based on solving (2.1) for p, is called a Newton-type method. Newton-type methods tend to be
powerful and robust when properly implemented, and exhibit quadratic convergence under mild
conditions. However, certain difficulties arise when H; is indefinite, since the quadratic function
(2.2) is unbounded below and the solution of (2.1) may be undefined. Numerous strategies have
been suggested for this case, and often involve defining p) as the solution of a linear system
with a positive-definite matrix that is closely related to the Hessian. These techniques include
the modified Cholesky factorisation of Gill and Murray (1974) and various trust-region strategies
(see, e.g., Moré and Sorensen, 1982).

When an exact or finite-difference Hessian is unavailable or too expensive, a popular alterna-
tive is to use a quasi-Newton method (see Dennis and Moré, 1977, for a survey). In a quasi-Newton
method, the matrix H, is an approximation to the Hessian that is updated by a low-rank change
at each iteration, based on information about the change in the gradient. The hope is that the
approximation will improve as the iterations proceed. Quasi-Newton methods typically display a
superlinear rate of convergence in practice, and are often more efficient (in terms of computation
time) than Newton-type methods.

2. Unconstrained Optimisation 3

When n becomes very large, two related difficulties can occur with methods that solve (2.1)
directly: excessive computation time and insufficient storage for the n X n matrix H. Fortunately,
the Hessian matrices of many large unconstrained problems are quite sparse, and density tends
to decrease as n increases. Large problems can thus be solved eficiently using techniques that
exploit sparsity in H, to save work and/or storage, or that do not require storage of H,.

2.3. Newton-type methods. When the Hessian is sparse and can be computed analytically,
a Newton-type method can be implemented by applying standard sparse procedures to solve
Hypx = —g¢x. In particular, when H) is positive deflnite, any eflicient technique for computing a
sparse Cholesky factorisation may be applied in this context (for a survey of available software, see
Duff, 1982). Although many linear systems may need to be solved before the method converges,
all of them have the same sparsity pattern, and hence the structure needs to be analyzed only
once.

Indefiniteness in a sparse Hessian may be treated using the procedures mentioned for the
dense case. The modified Cholesky factorization (Gill and Murray, 1974) has been adapted in
a straightforward fashion to treat sparsity (see Thapa, 1980). One advantage of the modified
Cholesky approach is that indefiniteness can be detected and corrected while constructing the
factorization of the positive-definite matrix to be used in computing px; hence, only one sparse
factorization needs to be computed at each iteration. With trust-region methods, px may be
obtained using off-the-shelf software for a sparse Cholesky factorisation; however, these methods
typically require more than one factorisation per iteration.

When the gradient is available, but the exact Hessian is not, a finite-difference approximation
to the Hessian may be used as Hx. In the general case, this requires n gradient evaluations.
However, if the sparsity pattern of the Hessian is known a priori, it is possible to choose special
vectors that allow a finite-difference approximation to H(z) to be computed with many fewer
than n evaluations of the gradient.

For example, suppose that H(z) is tridiagonal:

HiEz)=| ™77,
Consider the vectors 1
= oo hz) — , $=1,2,
%= 3l (oza + hes) — g(2a)), §=1

where 2; = (1,0,1,0,...)T, 23 = (0,1,0,1,...)7, and A is an appropriate finite-difference interval.
Let y;,; denote the é-th component of y;, and similarly for y3. The vectors y; and y; are
approximations to the sums of odd and even columns of Hj, respectively. Therefore,

s?—zi—" s o°F ; S o°F <+ oO°F ; and soon
¥i1 83z,’ 2.1 8z, 623’ ia 02,022 ' Oz302;s’)

Thus, for example,
93F

V1,2 — V2,1 & m-

........

L2

3
®

e
%

)
Bl
3’":

4
»
N

- .

Ps

@ B g
LRLX IRTRNE RN

Yo RO
PRI L WA

.‘ ‘v,
s
ales l.v‘.!.".-. (LR

¥ s

AN,

.
=l N KL AR)

2 O

LI g b -,
14 L7 4 LI YF L))

- Nyl .
313 Fo AP

o,

DR T

‘R
2alsa

-

S

4 Sparse Matrix Methods in Optimisation

In this fashion, all the elements of Hy can be approximated with only two evaluations of the
gradient, regardiess of the value of .

The idea of analysing the sparsity pattern of the Hessian in order to determine suitable finite-
differer~e vectors has been the subject of much recent interest. An algorithm for finding suitable
finite-difference vectors for a iparse (unsymmetric) matrix is given by Curtis, Powell and Reid
(1974), and is based on grouping together columns in which there are no overlapping elements.
The problem of finding a minimal set of vectors can be viewed as a graph coloring problem in
the directed graph that represents the sparsity pattern. A proof that finding the minimal set is
NP-hard is given in Coleman and Moré (1981), along with practical algorithms (see also Coleman
and Moré, 1982a).

A similar relationship with graph coloring can be developed for the case of a symmetric
matrix; imposing the requirement of symmetry on the sparse matrix transforms the associated
graph into a undirected graph. Although the problem of finding a minimal set is NP-complete (see
McCormick, 1981), effective algorithms have been developed based on graph-theoretic heuristics.
The algorithms are based on principles similar to those for the unsymmetric case, but are
considerably complicated by exploiting symmetry.

A finite-difference Newton-type method for sparse problems thus begins with a procedure that
analyses the sparsity pattern in order to determine suitable finite-difference vectors. Algorithms
for finding these vectors have been given by Powell and Toint (1979) and Coleman and Moré
(1982b). Once a sparse finite-difference Hessian approximation has been computed, a sparse
factorization can be computed as with the exact Hessian.

2.3. Sparse quasi-Newton methods. Because of the great success of quasi-Newton methods on
dense problems, it is natural to consider how such methods might be extended to take advantage
of sparsity in the Hessian. This extension was suggested first for the case of sparse nonlinear
equations by Schubert (1970), and was analysed by Marwil (1978). Discussions of sparse quasi-
Newton methods for optimisation and nonlinear equations are given in Toint (1977), Dennis and
Schnabel (1979), Toint (1979), Shanno (1980), Steihaug (1980), Thapa (1980), Powell (1981),
Dennis and Marwil (1982) and Sorensen (1982). In the remainder of this section we give a brief
description of sparse quasi-Newton methods applied to unconstrained optimisation.

In quasi-Newton methods for dense problems, the Hessian approximation H; is updated at
each iteration by the relationship

Hyy = Hy + Us.

The update matrices U, associated with many dense quasi-Newton methods are of rank two,
and can be shown to be the minimum-norm symmetric change in H,, subject to satisfying the
quasi-Newton condition

Hyp10 = Wi, (2.3)

where 83 = 2341 — zx a0d yp = gy41 — gi (see, e.g., Dennis and Moré, 1977). By suitable
choice of the steplength a; in (1.1), the property of hereditary positive-definiteness can also be
maintained (i.e., Hy41 is positive definite if H) is). However, the update matrices U, do not
retain the sparsity pattern of the Hessian.

The initisl approach to developing sparse quasi-Newton updates was to impose the additional
constraint of retaining sparsity on the norm-minimisation problem (Powell, 1976; Toint, 1977).
Let N be defined as the set of indices {(¢,) | Hij(z) = 0}, so that N represents the specified
sparsity pattern of the Hessian, and assume that Hj has the same sparsity pattern. A sparse

RV G I WD R SRR T O v S A S AT AP SRR R N N N R AL R T R)

T A L LINE LA T R G e S A A A R N R R AN AR

AN

A

Py
.

B ¥ A DNy

" J A

v n

Tttt

ey F

t
!
-'F

AR A RN R NA Y

2. Unconstrsined Optimisstion 5

update matrix Uj is then the solution of

minimise (L4
subject to (Hx + U)sx = (2.9)
U=UT

Ui =0 for (§,/)EN.

Let o(?) denote the vector s; with the sparsity pattern of the j-th column of Hj imposed.
When the norm in (2.4) is the Frobenius norm, the solution is given by

U = zn: Aj(ejoT 4 oWe]), (2.5)

j=1

where e; is the j-th unit vector and A is the vector of Lagrange multipliers associated with the
subproblem (2.4). The vector) is the solution of the linear system

QN =y — Hya, (2.6)

where

n
@ = Y_ (5% + [loW1Ze;)e].
J=1
The matrix Q is symmetric and has the same sparsity pattern as Hy; @ is positive definite if and
only if o] > 0 for all 5. (The sparse analogue of any quasi-Newton formula may be obtained
using & similar analysis; see Shanno, 1979, and Thapa, 1980).

Thus far, sparse quasi-Newton methods have not enjoyed the great success of their dense
counterparts. First, there are certain complications that result from the requirement of sparsity.
In particular, note that the update matrix U (2.5) is of rank n, rather than of rank two; this
means that the new approximate Hessian cannot be obtained by a simple update of the previous
approximation. Second, an additional sparse linear system (2.6) must be solved in order to
compute the update. Finally, it is not possible in general to achieve the property of hereditary
positive-definiteness in the matrices {H)} if the quasi-Newton condition is satisfied (see Toint,
1979, and Sorensen, 1982); in fact, positive-definiteness may not be retained even if H) is taken
as the exact (positive definite) Hessian and the initial z, is very close to the solution (see Thapa,
1980).

In addition to these theoretical dificultics, computational results have tended to indicate that
currently available sparse quasi-Newton methods are less effective than alternative methods (in
terms of the number of function evaluations required for convergence). However, hope remains
that their eficiency may be improved — for example, by relaxing the quasi-Newton condition
(2.3), or by finding only an approximate solution of (2.8) (Steihaug, 1982). For a discussion of
some possible new approaches, see Sorensen (1982).

2.4. Conjugate-gradient methods. The term conjugate-gradient refers to a class of optimisation
algorithms that generate directions of search without storing a matrix. They are essential in
circumstances when methods based on matrix factorisation are not viable because the relevant
matrix is too large or too dense. We emphasise that there are two types of conjugate-gradient
method — linear and nonlinear.

AR, 0 kU el LI I D RIS A A A A I I M A A A T R e 3 N Rt e A A

e) Sparse Mairix Methods in Optimisation

* The linear conjugate-gradient method was originally derived as an iterative procedure for
‘;} solving positive-definite symmetric systems of linear equations (Hestenes and Stiefel, 1952). It

’ has been studied and analyzed by many authors (see, e.g., Reid, 1971). When applied to the

AL positive-definite symmetric linear system

, Hz = —e¢, (2.7)
3 it computes a sequence of iterates using the relation (1.1). The vector p; is defined by

o P = —(Hzx +) + Fr—1Ps—1, (2.8)
o and the step length a; is given by an explicit formula. The matrix H need not be stored explicitly,
o since it appears only in matrix-vector products.

o With exact arithmetic, the linear conjugate-gradient algorithm will compute the solution of
o (2.7) in at most m (m < n) iterations, where m is the number of distinct eigenvalues of H.
»:‘. Therefore, the number of iterations required should be significantly reduced if the original system
:" can be replaced by an equivalent system in which the matrix has clustered eigenvalues. The idea
¥ of preconditioning is to construct a transformation to have this effect on H. One of the earliest
i references to preconditioning for linear equations is Axelsson (1974). See Concus, Golub and
“ O’Leary (1976) for details of various preconditioning methods derived from a slightly different
Z?:: viewpoint.

_" The nonlinear conjugate-gradient method is used to minimize a nonlinear function without
R storage of any matrices, and was first proposed by Fletcher and Reeves (1964). In the Fletcher-

i - Reeves algorithm, p; is defined as in the linear case by (2.8), where the term Hzj ¢ is replaced
2 by g», the gradient at z;. For a nonlinear function, a, in (1.1) must be computed by an iterative
- step-length procedure. When the initial vector p, is taken as the negative gradient and ay is the
o) step to the minimum of F along py, it can be shown that each p; is a direction of descent for F.
: Many variations and generalizations of the nonlinear conjugate-gradient method have been
- proposed. The most notable features of these methods are: §; is computed using different
= definitions; p, is defined as a linear combination of several previous search directions; po is not
b always chosen as the negative gradient; and a, is computed with a relaxed linear search (i.e., a)
::I’-f is not necessarily a close approximation to the step to the minimum of F along p;). Furthermore,
. the idea of preconditioning may be extended to nonlinear problems by allowing a preconditioning
= matrix that varies from iteration to iteration.
It is well known that rounding errors may cause even the linear conjugate-gradient method to
foi converge very slowly. The nonlinear conjugate-gradient method displays a range of performance
_ﬁ' that has not yet been adequately explained. On problems in which the Hessian at the solution
o has clustered eigenvalues, a nonlinear conjugate-gradient method will sometimes converge more
""" quickly than a quasi-Newton method, whereas on other problems the method will break down, i.e.
v generate search directions that lead to essentially no progress. For recent surveys of conjugate-
;o gradient methods, see Gill and Murray (1979), Fletcher (1980) and Hestenes (1980).
lj'-;:f 3.5. The truneated linear conjugate-gradient method. Much recent interest has been focussed on
W an approach to unconstrained optimisation in which the equations (2.1) that define the search
ham direction are “solved” (approximately) by performing a limited number of iterations of the linear
s conjugate-gradient method.
e Consider the case in which the exact Hessian is used in (2.1). Dembo, Eisenstat and Steihaug
Tt (1982) note that the local convergence properties of Newton's method depend on px being an
e .

..

3. Linearly Constrained Optimisation 7

accurate solution of (2.1) only near the solution of the unconstrained problem. They present
a criterion that defines the level of accuracy in p; necessary to achieve quadratic convergence
as the solution is approached, and suggest rystematically “truncating® the sequence of linear
conjugate-gradient iterates when solving the linear system (2.1) (hence their name of “truncated
Newton method”). (See also Dembo and Steihaug, 1980, and Steihaug, 1980.)

This idea has subsequently been applied in a variety of situations — for example, in computing
a search direction from (2.1) when H) is a sparse quasi-Newton approximation (Steihaug, 1982).
We therefore prefer the more specific name of truncated conjugate-gradient methods. These
methods are useful in computing search directions when it is impractical to store Hj, but it
is feasible to compute a relatively small number of matrix-vector products involving Hy. For
example, this would occur if Hy were the product of several sparse matrices whose product is
dense (see Section 3.3.1). Truncated conjugate-gradient methods have also been used when the
matrix-vector product Hxv is approximated (say, by a finite-difference along v); in this case,
the computation of p, requires a number of gradient evaluations equal to the number of linear
conjugate-gradient iterations (see, e.g., O’Leary, 1982). In order for these methods to be effective,
it must be possible to compute a good solution of (2.1) in a small number of linear conjugate-
gradient iterations, and hence the use of preconditioning is important.

With a truncated conjugate-gradient method, complications arise when the matrix H) is not
positive definite, since the linear conjugate-gradient method is likely to break down. Various
strategies are possible to ensure that p; is still a well defined descent direction even in the
indefinite case. For example, the conjugate-gradient iterates may be computed using the Lanczos
process (Paige and Saunders, 1975); a Cholesky factorization of the resulting tridiagonal matrix
leads to an algorithm that is equivalent to the usual iteration in the positive-definite case. If the
tridiagonal matrix is indefinite, a related positive-definite matrix can be obtained using a modified
Cholesky factorization. Furthermore, preconditioning can be included, in which case the linear
conjugate-gradient iterates begin with the negative gradient transformed by the preconditioning
matrix. If the preconditioning matrix is a good approximation to the Hessian, the iterates should
converge rapidly. Procedures of this type are described in O’Leary (1982), Nash (1982), and Gill
et al. (1983).

Further flexibility remains as to how the result of a truncated conjugate-gradient procedure
may be used within a method for unconstrained optimization. Rather than simply being used as a
search direction, for example, px may be combined with previous search directions in a nonlinear
conjugate-gradient method (see Nash, 1982, and Gill et al., 1983).

8. Linearly Constrained Optimization
3.1. Introduction. The linearly constrained problem will be formulated as

LCP minimise F(z)
ZER®
subject to Az =D
I1<z<u

where the m X n matrix A is assumed to be large and sparse. For simplicity, we assume that the
rows of A are linearly independent (if not, some of themn may be removed without altering the
solution).

The most popular methods for linearr ranstre’ .u optimisation are active-set methods, in
which a subset of the constraints (the work~_ set; .s used to define the search direction. The

8 Sparse Matrix Methods in Optimisation

working set at 2, usually includes constraints that are satisfied exactly at z,; the search direction
is then computed so that movement along p, will continue to satisfy the constraints in the working
set.

With problem LCP, the working set will include the general constraints Az = b and some of
the bounds. When a bound is in the working set, the corresponding variable is fixed during that
iteration. Thus, the working set induces a partition of z into fixed and free variables.

‘We shall not be concerned with details of how the working set is altered, but merely emphasize
that the fixed variables at a given iteration are effectively removed from the problem; the
corresponding components of the search direction will be zero, and thus the columns of A
corresponding to fixed variables may be ignored. Let A, denote the submatrix of 4 corresponding
to the free variables at iteration k; each change in the working set corresponds to a change in the
columns of Ax. Let n, denote the number of free variables, and the vector p; denote the search
direction with respect to the free variables only.

By analogy with (2.2) in the unconstrained case, we may choose p, as the step to the minimum
of a quadratic approximation to ¥, subject to the requirement of remaining on the constraints in
the working set. This gives px as the solution of the following quadratic program:

minimize y,’;p + % pTHyp
P

subject to A,p =10,

(3.1)

where g, denotes the gradient and H) the Hessian (or Hessian approximation) at z; with respect
to the free variables.
The solution px and Lagrange multiplier A\, of the problem (3.1) satisfy the n, -+ m equations

(&)2)-(3) 02

which will b. .alled the augmented system.

One convenient way to represent p, involves a matrix whose columns form a basis for the
null space of Ax. Such a matrix, which will be denoted by Z;, has n, — m linearly independent
columns and satisfies A;Zy = 0. The solution of (3.1) may then be computed by solving the
null-space equations

ZiH\Zyp, = — 230y (33)

and setting
Pr = Zips. (3.4)

Equations (3.3) and (3.4) define a null-space representation of p; (so named because it explicitly
involves Z;). The vector ZJg, and the matrix ZTH,Z, are called the projected gradient and
projected Hessian.

3.2. Representation of the null space. The issues that arise in representing Z, when A, is sparse
illustrate the need to compromise strategies that are standard for dense problems. In the rest of
this section, we shall drop the subscript k associated with the iteration.

In dense problems, it is customary to use an explicit LQ or some other orthogonal factorisation
of A in order to define Z. If AQ = (L 0), where the orthonormal matrix @ is partitioned
8s (Y Z) and L is lower triangular, then AZ = 0. In this case, Z has the “ideal” property

DeEt ik ANt

3. Linearly Constrained Optimisation)

that its columns are orthonormal, so that formation of the projected Hessian and gradient does
not exacerbate the condition of (3.3) and (3.4). Unfortunately, for large problems computation of
such a factorization is normally too expensive. (Some current research is concerned with efficient
methods for obtaining sparse orthogonal factorizations; see George and Heath, 1981. However,
the need to update the factors is an even more serious difficulty; see Heath, 1982, and George
and Ng, 1982.)

If an orthogonal factorization is unacceptable, a good alternative is to reduce A to triangular
form using Gaussian elimination (i.e., elementary transformations combined with row and column
interchanges). This would give an LU factorization in the form

PIAPg(U ‘;’)=(L 0), (3.5)

where P; and P, are permutation matrices, U is unit upper triangular, and L is lower triangular.
The matrices P; and P, would be chosen to make U well conditioned and ||W]| reasonably small.
The required matrix '

()

would no longer have orthonormal columns, but should be quite well conditioned, even if A if
poorly conditioned.

Unfortunately, it is not known how to update the factorization (3.5) efficiently in the sparse
case when columns of A are altered. However, (3.5) indicates the existence of a square, nonsingular
submatrix drawn from the rows and columns of A. We shall assume for simplicity that this matrix
comprises the left-most columns of A, i.e.

A=(B 8), (3.1

where B is non-singular. (In practice, the columns of B may occur anywhere in A.) It follows
from (3.7) and (3.5) (with P; and P; taken as identity matrices) that BW 4+ § = 0, so that
W = —B™1S. Thus, Z has the form

zZ= (_BI_IS) (3.8)

As long as B in (3.7) is nonsingular, the matrix Z (3.8) will provide a basis for the null space of
A. In the absence of the ideal factorization (3.5), the aim must be to choose a B that is as well
conditioned as conveniently possible, since this will tend to limit the size of ||W/|| and hence the
condition of Z.

The partition of the columns of A given by (3.7) induces a partition of the free variables,
which will be indicated by the subscripts “8” and “s”. The m variables z, are called the basic
variables. The remaining s free variables (s = n, — m) are called the superbasic variables. For
historical reasons, the fixed variables are sometimes called the nonbasic variables.

An advantage of the form (3.8) for sparse problems is that operations with Z and ZT may
be performed using a factorization of the matrix B; the matrix Z itself need not be stored. For
example, the vector Z7g required in (3.3) may be written as

ng = —STB-Tﬂn +'ge. (3.9)

ot e, et Tt "Bt B W S P RO It I MM Sustn D A Tl I e AL St A EAC) s A it ek aarn T N TN T T AT T LYYW
ol Nl \.(,."c\n_'.‘s',-.'..“-.k'.ql’n'._-'--'_ Tt e B PR e e SRS AR A N A AN
PR -t JCRR B " a e P T PR

10 . Sparse Matrix Methods in Optimisation

(The vector on the right-hand side of (3.9) is called the reduced gradie~t; note that it is simply
the projected gradient with a particular form of Z.) Thus, Z7g may be obtained by solving
BTy = g,, and then forming g, — STv. Similarly, to form p = Zp,, we have

(5 (T,

Bps = —Sp;.

With the reduced-gradient form of Z (3.8), the problems of representing a null space and
computing the associated projections reduce to the familiar operations of factorising and solving
with an appropriate square B.

F '} 3 -

which gives the system

3.3. Solving for the search direction. At each iteration of an active-set method for LCP, the
search direction p with respect to the free variables solves the subproblem (3.1). We have seen
that there are mathematically equivalent representations of p; the way in which p is computed
for sparse problems depends on several considerations, which will be discussed below.

3.3.1. Solving the null-space equations. For sparse problems, it will generally not be possible to
solve (3.3) by explicitly forming and then faciorizing ZTHZ. Even if H and B are sparse, the
projected Hessian will generally be dense. Thus, if a factorization of the projected Hessian is to
be stored, the number of superbasic variables at each iteration must be sufficiently small (i.e., the
number of fixed variables must be sufficiently large). Fortunately, for many large-scale problems
there is an a priori upper bound on the number of free variables. For example, if only g of the
variables appear nonlinearly in the objective function, the dimension of the projected Hessian
matrix at the solution cannot exceed q.

Furthermore, even if the dimension of ZTH Z is small, forming the projected Hessian may
involve a substantial amount of work; when Z is defined by (3.8), computation of ZTHZ requires
the solution of 2s systems of sise m X m. For this reason, a Newton-type method in which the
projected Hessian is recomputed at each iteration is not generally practical. By contrast, quasi-
Newton methods can be adapted very effectively to sparse problems in which the dimension of the
projected Hessian remains small, by updating a dense Cholesky factorization of a quasi-Newton
approximation to the projected Hessian; this is the method used in the MINOS code of Murtagh
and Saunders (1977, 1980).

When the projected Hessian cannot be formed or factorized, the null-space equations may
be solved using an iterative method that does not require storage of the the matrix, such as a
truncated conjugate-gradient method (see Section 2.5). In order for this approach to be reasonable,
the computation of matrix-vector products involving Z and H must be relatively cheap (e.g, when
H is sparse); in addition, a good approximation to the solution of (3.3) must be obtained in a small
number of iterations. Even when the Hessian is not available, a truncated conjugate-gradient
method may be applied to (3.3) by using a finite-difference of the gradient to approximate the
vector HZv; an evaluation of the gradient is thus necessary for every iteration of the truncated
conjugate-gradient method. Note that this is one of the few methods in which H is not required
to be sparse. Some experience with a truncated conjugate-gradient approach in this context is
described in Gill, et al., 1983.

. Each of the above methods for solving the null-space equations can be adapted to allow for
5 changes in the working set (Section 3.5).

I
»

.'a'-l.-}‘i‘ BANI
LI LY T I

kY

¥ ASRSA T O 3
e LR A i

"1’ &...,‘._..-‘..._.._..._.“

e v

3. Linearly Constrained Optimisation 11

3.3.2. Solving the range-space equations. The null-space equations provide one means of solv-
ing for p in the augmented system (3.2), by eliminating A\x. When H is positive definite, a
complementary approach is to solve for)\ first, via the range-space equations

AH'AT) = AH™ Yy,
Hp=AT\—g.

This method would be appropriate if H were sparse, and if A had relatively few rows. The
application of a range-space approach to quadratic programming is discussed by Gill et al. (1982).

3.3.3. Solving the augmented system. An alternative method for obtaining p involves treating
the augmented system directly. (Variations of this idea have been proposed by numerous authors;
see, e.g., Bartels, Golub and Saunders, 1970). The most obvious way to solve (3.2) is to apply a
method for symmetric indefinite systems, such as the Harwell code MA27 (Duff and Reid, 1982).
In order for the solution of (3.2) to be meaningful, the matrix ZTH Z must be positive definite.
Verifying positive-definiteness in this situation is a nontrivial task, since of course the matrix
ZTHZ is not computed explicitly. However, the result may sometimes be known a priori — for
example, when H itself is positive-definite.

Both H and A change dimension when the working set is altered. Updating procedures for
this case are discussed in Section 3.6.2.

3.4. Factorising and solving a square system. The linear systems involving B and BT are typically
solved today using a sparse LU factorization of B. Surveys of techniques for computing such
a factorization are given in Duff (1982) and Duff and Reid (1983). The analyse phase of a
factorization consists of an analysis of the sparsity pattern alone (independent of the values of
the elements), and leads to a permutation of the matrix in order to reduce fill-in during the
factorization. The factor phase consists of computation with the actual numerical elements of
the matrix.

'We shall mention a few features of certain factorization methods that have particular relevance
to optimization (see Duff and Reid, 1983, for more details). Since active-set algorithms include
a sequence of matrices that undergo column changes, the factorization methods were typically
developed to be used in conjunction with an update procedure.

The P* algorithm of Hellerman and Rarick (1971, 1972) performs the analyse phase separately
from the factor phase, and produces the well known “bump and spike” structure, in which
B is permuted to block lower-triangular form with relatively few “spikes® (columns containing
nonzeros above the diagonal). This procedure is very effective if B is nearly triangular. Also, the
factor phase is able to use external storage, since it processes B one column at a time. Column
interchanges are used to stabilise the factorization. (Row interchanges would destroy the sparsity
pattern.) If an interchange is needed at the ¢-th stage, it is necessary to solve a system of the
form L{_,y = ¢; and to compute the quantities v"aj for all remaining eligible spike columns a;.
This involves significant work and also degrades the sparsity of the factors. Thus, a rather loose
pivot tolerance must be used to avoid many column interchanges (e.g., [4| < 10%, where u is the
largest subdiagonal element in any column of L divided by the corresponding diagonal).

The Markowits algorithm (Markowits, 1957), on the other hand, performs the analyse and
factor phases simultaneously, and hence must run in main memory. It computes dynamic “merit
counts” in order to determine the row and column permutations to preserve sparsity and yet
retain numerical stability. The Markowits procedure can achieve a good sparse factorisation even
with a rather strict pivot tolerance (e.g., ju| < 10).

Ml

PLTRi

334

SR

LA

»

-
Y I

i
i

12

Sparse Matrix Methods in Optimisation

Table 1
Summary of Problem Characteristics
Stalr 1 Stair 2 Stair 3 OPF 1 OPF 2
B rows asT 745 1170 1200 3400
B nonzeres 3500 3600 7100 9000 20000
P* blocks 1 5 13 1 -_
P* spikes s 101 157 715 -
Table 2
Number of Nonseros in initial LU factorisation and after k& updates
Stalr 1 Stair 2 Stair 3 OPF 1 OFF 2
LoUo with P* (MINOS) 9400 16200 32000 30400 -
LoUg with Markowits (L.AO5) 5400 4700 18500 13800 75000
k 50 50 50 30 40
LUy with LAOS 7800 6000 17100 15300 83000

In order to indicate how these factor routines perform on matrices that arise in optimisation,
we give results on five test problems. In the first three problems, the matrix B has “staircase”
structure (see, e.g., Fourer, 1982); constraints of this form often arise in the modeling of dynamic
systems, in which a set of activities is replicated over several time periods. The fourth and fifth
problems arise from the optimal power fiow (OPF) problem (see, e.g., Stott, Alsac and Marinho,
1980). In this case, B is the Jacobian of the network equations of the power system, and has a
symmetric sparsity pattern (which is not at all triangular!) Table 1 shows some of the relevant
features of the problems described, including the results of factorisation with the P* algorithm.

The number of nonseros in the initial LU factorisation of B is shown in the first two rows
of Table 2. The P* algorithm is as implemented in the MINOS code of Murtagh and Saunders

&l
)
»
.
"
1,
‘.-'
51
4
e,
4 .

.....

'''''''

e

P)

i At
P L S

L WPe

3 Linearly Constrained Optimisation 18

(1977, 1980); the Markowits procedure is the Harwell code LAO5 (Reid, 1976, 1982). Note that
the large number of spikes in the first OPF problem is bound to cause difficulties for the P*
algorithm.

8.5. Column updates

For problems of the form LCP, each change in the working set involves changing the status of
a variable from fixed to free (or vice versa). When a previously fixed variable becomes freed, a
column of A is added to A; this poses no particular difficulty, since the new column can simply
be appended to S. When a free variable is to become fixed, a column of A must be deleted,
and complications arise if the column is in B. Since the number of columns in B must remain
constant (in order for B to be nonsingular), it is necessary to replace a column of B with one of
the columns of S.

Assume that we are given an initial By, which thereafter undergoes a sequence of column
replacements, each corresponding to one of the free variables becoming fixed on a bound. Let /x
denote the index of the column to be replaced at the k-th step, ax denote the [4-th column of B,
vy denote the new column, and e;, denote the l;-th column of the identity matrix. After each
replacement, we have

By =By, +(vi —ay)e,. (3.10)

‘We shall consider several ways in which systems of equations involving B, can be solved following
a sequence of such changes.

3.5.1. The product-form update. The standard updating technique used in ail early sparse LP
codes was the product-form (PF) update (e.g., Dantsig and Orchard-Hays, 1954). It follows from
the definition of By that

By = By—1Th,

where
Byyyx=vx and T, =I+4(y, — c,.)c,’;. (3.11)

Note that 7} is a permuted triangular matrix (with only one nontrivial column); equivalently, T}
is a rank-one modification of the identity matrix. The matrix T; can be represented by storing
the index l; and the vector y;.

After k such updates we have

By = BoTiTa- - Th. (3.12)

Given a procedure to solve systems of equations involving By, (3.12) indicates that solving Byv =
b is equivalent to solving the k - 1 linear systems

Bovo = b, Tivy=v, ..., Ty = V43, (3.13)

where the systems involving T; are easy to solve. As k increases, the solution process becomes
progressively more protracted, and the storage required to store the updates is strictly increasing.
Therefore it becomes worthwhile to compute a factorisation of By from scratch. Most current
systems use an initial triangular factorisation Bo = LoUp (see Section 3.4), and recompute the
factorisation after k& updates (typically ¥ < 50).

The PF update has two important advantages for sparse problems. First, the vectors {y;}
may be stored in a single sequential file, so that implementation is straightforward. Second, any

i ety S

L
¥y
ik o

\ .‘Z‘:'.&‘:"- o

T
PP g
Ll 'l.‘..,.:.~_"

A R leh

s

v

« NCEA LA W
R

ey . LY«
I . ' 0
s e .
:";'l:':l".' AL

14 Sparse Matrix Methods in Optimisation

advance in the methods for linear equations is immediately applicable to the factorisation of By,
since the update does not alter the initial factorisation. Thus, By may be represented by a “black
box” procedure for solving equations (involving both B, and BY).

Unfortunately, the PF update has two significant deficiencies. It is numerically unreliable if
le{;y,,l is too small (since T} is then ill-conditioned), and the growth of data defining the updates
is significantly greater than for alternative schemes.

8.5.2. The Bartels-Golub update. The instability of the PF update was first made prominent
by Bartels and Golub (1969), who showed as an alternative that an LU factorisation can be
updated in a stable manner (see also Bartels, Golub and Saunders, 1970; Bartels, 1971). Given
an initial factorisation Bg = LoUp, the updates to L are represented in product form, but the
sparse triangular matrix U is stored (and updated) explicitly. Thus, instead of the form (3.12)
we have

By = LoT1 T3 - - TUy = Ly U, (3.14)

where each T; represents an update whose construction will be discussed below.
At the k-th step, replacing the i;-th column of By, gives

By =Ly—,U,

where U is identical to Ux—1 except for its [y-th column. Since Uy_, is stored as a sparse matrix,
it is desirable to restore U to upper-triangular form U, without causing substantial fill-in. To
this end, let P denote a ‘ ¥::lic permutation that moves the {;-th row and column of U to the end,
and shifts the intervening rows and columns forward. We then have

<
[

, PIlUP=

The nonseros in the bottom row of PTUP may be eliminated by adding multiples of the other
rows. However, it follows from the usual error analysis of Gaussian elimination (e.g., Wilkinson,
1965) that this procedure will not be numerically stable unless the size of the multiple is bounded
in some way. Hence, we must allow the last row to be interchanged with some other row.
Formally, the row operations are stabilised elementary transformations (Wilkinson, 1985), which
are constructed from 2 X 2 matrices of the form

M=(’1‘ 1) or A?=(1 ,1‘) (3.15)

(Note that the transformation M includes & row interchange.) Each such transformation is
represented by the scalar s, and is unncessary if the element to be eliminated is already sero.
Numerical stability is achieved by choosing between M and M so that the multiplier u is bounded
in sise by some moderate number (e.g., |u| < 1, 10 or 100). The matrices {7} in (3.14) are
constructed from sequences of matrices of the form (3.15).

3. Linearly Constrained Optimisation 15

Unfortunately, elimination of the nonseros is “easier said than done” in the sparse case. Any
transformation of type M amounts to a form of fill-in, since the location of nonseros in the
interchanged rows is unlikely to be the same. A complex data structure is therefore needed to
update U, without losing efficiency during subsequent solves. (Holding individual nonseros in a
linked list, for example, would not be acceptable in a virtual-memory environment.)

The implementation of the BG update by Saunders (1976) capitalises on the “bump and
spike” structure revealed by the P* procedure (see Section 3.4). Each triangular factor is of the

form I E
— x
U (Fy)'

and flll-in can occur only within F. If Up contains s spikes, the dimension of F; will be at most
8 + k. Storing F) as a dense matrix allows the BG update to be implemented with maximum
stability (|u| < 1 in (3.15)), and the approach is efficient as long as & is not unduly large (say,
8 < 100). This implementation has been used for several years in the nonlinear programming
system MINOS (Murtagh and Saunders, 1977, 1980). During that period, the number of spikes
in Up has proved to be favorably small for many sparse optimization models. However, two
important applications are now known to give unacceptably large numbers of spikes: time-period
models (for which B has a staircase structure) and optimal power-flow problems (for which B has
a symmetric sparsity pattern). Some statistics for these problems are given in Table 1 (Section
3.4).

Another implementation of the BG update has been developed by Reid (1976, 1982) as the
Fortran package LAO5 in the Harwell Subroutine Library. It strikes a compromise between dense
and linked-list storage by using a whole row or column of U, as the “unit” of storage. Thus, the
nonzeros in any one row of U, are held in contiguous locations of memory, as are the corresponding
column indices, and an ordered list points to the beginning of each row. To facilitate searching, a
similar data structure is used to hold just the sparsity pattern of each column (i.e., the row indices
are stored, but not the nonseros themselves). This storage scheme is also suitable for computing
an initial LU factorization using the Markowits criterion and threshold pivoting — a combination
that has been eminently successful in practice, particularly on the structures mentioned above.
Table 2 (Section 3.4) shows the small increase in the number of nonzeros using LAOS.

We note that in the context of column updating, the stability test in the initial factorisation
should ideally be performed along the columns of Lo, rather than along the rows of Up as in
the existing LAOS, in order to ensure that Lo in (3.14) is well conditioned. (This is necessary to
achieve the following desirable property: the factorisation of B, is likely to be well conditioned
if By is well conditioned, even if By is not.) For efficiency the data structure for computing Uy
then needs to be transposed. This and other improvements will be incorporated in a new version
of LAO5 (Reid, private communication).

In the meantime, the sparsity properties of LAOS are unsurpassed, and the numerical properties
are excellent as long as By is not extremely ill-conditioned. The package should therefore find
increasingly widespread application.

8.5.3. The Forrest-Tomlin update. The update of Forrest and Tomlin (1972) was developed as a
means of improving upon the sparsity of the PF update while retaining the ability to use external
storage where necessary. In fact the FT update is a restricted form of the BG update, in which no
row interchanges are allowed when eliminating the bottom row of PTUP. This single difference
removes the fill-in difficulty (but at the expense of losing guaranteed numerical stability).
Algebraically, a new column w; is added to Uy_—,, the i;-th column and row are deleted, and
the transformations M are combined into a single “row” transformation Ry = I+ ¢;,(rx —e1,)T.

F P L S TR O N S S L U

Pae
ALV
.

- o ‘a e

L L

-
)
.

I gt &
A AT

DA -
USRS
P APPSR AP &

v s -
. .‘l '.‘. ." .‘f.\ 'l .‘

r

-

...................

"
i R % Ot DA IR A i .
= % . L S - ~) e et e tuven - .
RO R T VA R I ST ., L e s s, .

16 Sparse Matrix Methods in Optimisation

It can be shown that the required vectors satisfy
Ly_yw,=v, ad Ul ,rn=¢, (3.16)

and the new diagonal of U} is r{w x- Most importantly, the multipliers u are closely related to the
elements of r;, and these can be tested a posteriori to determine whether the update is acceptable
(see also Tomlin, 1975). In practice a rather undemanding test such as |u| < 10® must be used to
avoid rejecting the update too frequently. The FT update is now used within several commercial
mathematical programming systems.

8.5.4. Use of the Schur complement. The work of Bisschop and Meeraus (1977, 1980) has recently
provided a new perspective on the problem of updating within active-set methods. Suppose that
for each update a vector v; replaces the /;-th column of Bp. A key observation is that the system
Bxz = b is equivalent to the system

(= *)2)=() 61

Vi=(viv2---m), L=(e e).

where

Note that the rectangular matrix J; is composed of k rows of the identity matrix corresponding
to indices of columns that have been replaced. Since the equations Jxy = O set k elements of y
to zero, the remaining elements of y and 2z together give the required solution z. Similarly, the

system By = d is equivalent to
(vy z) \d (3.18)

if d; and d2 are constructed from d appropriately (with the aid of k arbitrary elements, such as
sero).

The matrix in (3.17) may be factorised in several different ways. In the next two sections we
consider the simplest factorisation

(& *)=(2 X" 7) 629

BoYy =W,
Cry = —1L;}Y,. (3.20)

where

The k& X k matrix C, is the Schur complement for the partitioned matrix on the left-hand side
of (3.19). It corresponds to a matrix of the ubiquitous form D — WB~1V (e.g., see Cottle, 1974).

8.5.5. A stabilised product-form update. From (3.17) and (3.19) we see that the vectors y and ¢
needed to construct the solution of Byz = b may be obtained from the equations

Bow =, (3.21a)
Crs = —w, (3.21%)
y=w-—Y,s. (3.21¢)

L TR N A GG PR S AR LI T S A G L R P R L A S R A PR U Y 1

..................................

8 Linearly Constrained Optimisation 17

Similarly, the solution of BJy = d is obtained from the two linear systems

Cla=d,— Y4, (3.220)
Bly=d,— I]s. (3.220)

Assuming that Y, is available, the essential operations in (3.21) and (3.22) are a solve with By
and a solve with C). If k is small enough (say, & < 100), Cx may be treated as a dense matrix.
It is then straightforward to use an orthogonal factorisation Q:Cx = R (@7Q, = I, Ry upper
triangular) or an analogous factorisation LyCy = U, based on Gaussian elimination (L, squere,
U, upper triangular). These factorisations can be maintained in a stable manner as C, is updated
to reflect changes to B;. (The updates involve adding and deleting rows and columns of C;; see
Gill et al., 1974.) The stability of the procedures (3.21) and (3.22) then depends essentially on
the condition of By. In other words, if By is well conditioned, we have a stable method for solving
Byz = b for many subsequent k.

This method retains several advantages of the PF update. The vectors to be stored (columns
of Y,) satisfy Boyy = vy, which is analogous to (3.11). These vectors should have sparsity
similar to those in the PF update, and they can be stored sequentially (in compact form on an
external file, if necessary). A further advantage is that whenever a column of C; is deleted, the
corresponding vector y; may be skipped in subsequent uses of (3.21¢). This gain would tend to
offset the work involved in maintaining the factors of C,. Because of the parallels, the method
described here amounts to a practical mechanism for stabilizsing an implementation based on the
PF update.

3.5.6. The Schur-complement update. One of the aims of Bisschop and Meeraus (1977, 1980) was
to give an update procedure whose storage requirements were independent of the dimension of
Bo. This is achievable because the matrix Y3 is not essential for solving (3.17) and (3.18), given
V; and a “black box” for By. For example, (3.21¢) may be replaced by

Boy = b— Viz, (3.23),

and hence storage for Y3 can be saved at the expense of an additional solve with Bp. Similarly,
(3.22a) is equivalent to

Blw=d,
Cls=dy — V],

again involving a second solve with By. Note that the original data V; will usually be more sparse
than Y;, so that the additional expense may not be substantial.

The storage required for a dense orthogonal factorisation of Cx (§%3) is small for moderate
values of k. As with the PF update, any advance in solving linear equations is immediately
applicable to the equations involving By.

The method is particularly attractive when By has special structure. For example, certain
linear programs have the following form:

minimise T

subjectto (Bo N)z=1»>
I€z<Ly

..........

..................

O] g - AT . el ! T T N e ¥adl Nl C i TR A el « A A
e w PERTE RN TRl Pl S Y U D S . B s fan Tl T M e TNt Y [A NS TG A R A

LS o RSREL T o
0 R/ TN .

R

o

A

I o

4 ¢t

s &
A“A ’1" $

S

LA A ROk
l...‘t.‘ .‘l .l.- 'l' ‘ ...:'. -...:'..-..*A

4

- L P Patrs et
XAty I SR

PP AGAR S LA AN
.

18 Sparse Matrix Methods in Optimisation

where By is a square block-diagonal matrix:
Bo = block-diag(Do Dy ---Dn).

Assuming that the square matrices D; are well conditioned, By provides a natural starting basis
for the simplex method.

With the Schur-complement (SC) update, an iteration of the simplex method on such a
problem requires four solves with By, and hence four solves with each matrix D;. In certain
applications, the matrices D; are closely related to Do (e.g., in time-dependent problems), in
which case a further application of the Schur-complement technique would be appropriate. A
simplex iteration then involves only solves with Dy. '

This is a situation in which one factorization is followed by hundreds or even thousands of
solves (involving both Do and DJ). Thus, it is useful for black-box solvers to be tuned to the
case of multiple right-hand sides.

3.5.7. The partitioned LU update. Recall that the PF approach accumulates updates in a
single file, while the BG and FT methods seek to reduce the storage required for the updates by
updating two separate factors (one implicitly through a file of updates, the other explicitly). Here
we suggest leaving Lo and Uj unaltered (in effect, treating them as two “black boxes” for solving
linear systems), and accumulating two files of updates. In place of the block factorisation (3.19)

we can write (?: Vi) _ (}1,2: .)(Uo v;'u) (3.24)

with the same definition (3.20) of C). After the k-th update, the new column of W; and row of
R;, satisfy
Lowx = w; and Ug'r,, =ge,. (3.25)

The similarity of (3.25) with the equations (3.16) for the FT update leads us to suppose that the
storage requirements would be at least as low as for the FT update. Apart from the need to store
and update C,, all implementation advantages are retained (in fact improved upon, since Uy is
not altered). As with the PF and SC updates, the stability depends primarily on the condition
of By. We could therefore regard the factorization (3.24) as a practical and stable alternative to
the FT update.

3.5.8. Avoiding access to By. In active-set methods, it is often necessary to solve the equations
Bz = v, where v is a column of the matrix 4. Although v will not be a column of B, it could
be a column of By. If By were not stored in main memory, it would be desirable to access its
columns as seldom as possible. In this section we shall show that with the PF update or the
Schur-complement updates, the elements of By need not be accessed once the initial factorisation
has been comple’ed.

Assume that v is the /-th column of By, so that v = Bye; by definition. For the PF update
it follows by substituting the expression for v in (3.13) that

Ty---Tis =g,

which gives an equation for z that does not involve v or Bg. With the Schur-complement approach,
(3.21a) reduces to w = ¢;, while (3.23) can be rearranged to give Bo(y — ¢;) = —Vj 5. In either
case, when solving for £ we can avoid not only an explicit reference to the elements of By but
also s solve with By.

VELTODA PRI 1 5 Loty R A S GO T R A T Ay

P R

LY

. e
. [TCL PR Y
.. R 4

REREMAINRCE F ML

e X el

3. Linearly Constrained Optimisation 19

Similarly, it is often necessary to solve B{y = d and then to form 7; = y"vj for each column
v; that has been replaced in By. (The quantities 7y; are the reduced costs or reduced gradients
for variables that have been removed from By.) If t denotes the product Bg' , then by definition
of vj it follows that yTv; = t”e;,. With both the PF and the Schur-complement updates, ¢ is a
by-product of the procedure for computing y. Thus, ¢ and all relevant values 4; are available at
no cost.

These results confirm that Bo need exist only in the form of a “black box” for solving linear
systems.

3.6. Other applications of the Schur-complement update. Historically, the formulation LCP
has been used because it involves only column updates to B, which have appeared to be the
least difficult kind of update to implement for sparse problems. However, the Schur-complement
approach also applies to more general sequences of related square systems. As with column
replacement, the key idea is to solve a partitioned system that involves the original matrix.

3.6.1. Unsymmetric rank-one updates. Consider the case in which By undergoes a sequence of
rank-one modifications:
B, =B,_, +v,e{=B,+V,SI.

The solution of Bxz = b is part of the solution of the extended system

Bo s \(= b

(st 2)(2)=(2) (29

(Kron, 1956; Bisschop and Meeraus, 1977). Given factorizations of By and the Schur complement
Cx = —I — STBy 'V}, the solution may be obtained from

Ciz = —STw,
Boz = b— Vkl,

where Bow = b. An alternative that would require more storage but less work could be obtained
by using Bo = LoUp and storing the vectors defined by Low, = vx, UJry = sx. Let R, denote
the matrix whose j-th column is r;, and similarly for W;. In this case, the solution of (3.26)

would be obtained from
Crz = —R]v

Upz = v — Wie,
where Lov = b. Either approach is an alternative to updating a factorisation of B; itself (e.g.,
Gille and Loute, 1981, 1982), which is even more difficult to implement than the BG update.

We emphasise that column or row replacements are best treated as a special case, not as a
sequence of general rank-one modifications.

3.6.2. A symmetric Schur-complement update. It was observed in Section 3.1 that in some
circumstances the search direction can be computed by solving the linear system (3.2) involving

the augmented matrix
H, A}
M, = . (3.27)
A,
Within an active-set method, changes in the status of fixed and free variables lead to changes in

H and A. When a variable becomes fixed, the corresponding row and column of M, are deleted;
when a variable is freed, a new row and column of M, are added.

. e f .
...........

20 Sparse Matrix Methods in Optimisation

Instead of updating a factorization of M, we can start with some M, and work with an
augmented system of the form
(57)
sT)

If a variable is fixed at the k-th change, the k-th column of S is an appropriate coordinaie vector;
if the [-th variable is freed, the column is

(.)

8 = R

a

where A; is obtained from the /-th column of the full Hessian, and a; is the I-th column of 4. The

solution of the augmented system corresponding to the k-th working set can then be obtained
using a factorisation of Mo and a factorization of the Schur complement Cy = —S{MyS,.

3.7. Linear and quadratic programming. Two important special cases of LCP are linear and
quadratic programs. Since there are no user-supplied functions, the computation in linear and
quadratic programming methods involves primarily linear algebraic operations.

3.7.1. Large-scale linear programming. Large-scale linear programs occur in many important
applications, such as economic planning and resource allocation. Methods and software for large-
scale LP have thus achieved a high level of sophistication, and many of the techniques discussed
in Section 3 were designed originally for use within the simplex method.

Much research has involved linear programs with special structure in the constraint matrix —
for example, those arising from networks or time-dependent systems. It is impossible to summarize
methods for specially-structured linear programs in a survey paper of this type. However, to
illustrate the flavor of the work, we consider staircase linear programs (which were used in the
examples of Section 3.4). These arise in modeling time-dependent processes; the recent book
edited by Dantsig, Dempster and Kallio (1981) is entirely devoted to such problems. It has long
been observed that the simplex method tends to be less efficient on staircase problems than on
general LPs. To correct this deficiency, work has tended to proceed in two directions. First, the
simplex method can be adapted to take advantage of the staircase structure, by using special
techniques for factorizing, updating, and pricing (Fourer, 1982). Second, special-purpose methods
can be designed to exploit particular features of the problem. For staircase problems, several
variations of the decomposition approach (Dantsig and Wolfe, 1960) have been suggested. The
basic idea is to solve the the problem in terms of smaller, nearly independent, subproblems.

8.7.2. Large-scale quadratic programming. A general statement of the quadratic programming
problem is
1
aLs s T 1.T
m;nexglnue c'z 4+ 2: Hz
subject to Az =10

1<z<y,

where H is a symmetric matrix.

An early approach to quadratic programming was to transform the problem into a linear
program, which is then solved by a modified LP method (e.g., Beale, 1967). The most popular
quadratic programming algorithms are now based on the active-set approach described in Section
3.1 (for a comprehensive survey of QP methods, see Cottle and Djang, 1979), and the search
direction is defined by the subproblem (3.1). Efficient methods for sparse quadratic programs
thus involve specialising the techniques discussed in Section 3.3 for the special case when the
Hessian is constant.

B
.t
H
-
v
*
',
Ind

I'd

K 2

_ Yftre T YCEA e ol bk
IREKRS ARG YU o

4. Nonlinearly Constrained Optimisation 21

4. Nonlinearly Constrained Optimization
The nonlinearly constrained optimisation problem is assumed to be of the following form:

NCP minimise F(zg)
SEM®
subject to ¢(z) =0
t<z<wu

where ¢(z) is a vector of m nonlinear constraint functions. We shall assume that these constraints
are “sparse”, in the sense that the m X n Jacobian matrix A(z) of ¢(z) is sparse. For simplicity,
we shall usually not distinguish between linear and nonlinear constraints in ¢(z). However, it is
usually considered desirable to treat linear and nonlinear constraints separately.

Problems with nonlinear constraints are considerably more difficult to solve than those with
only linear constraints. There is an enormous literature concerning methods for nonlinear con-
straints; recent overviews are given in Fletcher (1981) and Gill, Murray and Wright (1981). In this
section, we shall concentrate on the impact of sparsity rather than attempt a thorough discussion
of the methods.

One aspect of NCP that is directly relevant to sparse matrix techniques is that any super-
linearly convergent algorithm must consider the curvature of the nonlinear constraint functions,
and thus the Hessian of interest iz the Hessian of the Lagrangian function rather than the Hessian
of F' alone. Let the Hessian of the Lagrangian function be denoted by W(z,\) = H(z) —
3 1wey MiHi(z), where H; is the Hessian of ¢c;. At first, it might appear unlikely that this matrix
would be sparse, since it is a weighted sum of the Hessians of the objective function and the
constraints. However, sparsity in the gradient of a nonlinear constraint always implies sparsity
in its Hessian matrix. For example, if the gradient of c;(z) contains five nonsero components,
the corresponding Hessian matrix Hy(z) can have at most 25 nonsero elements. Furthermore,
there is often considerable overlap in the positions of nonsero elements in the Hessians of different
constraints. Thus, in practice the Hessian of the Lagrangian function is often very sparse.

The usual approach to solving NCP is to construct a sequence of unconstrained or linearly
constrained subproblems whose solutions converge to that of NCP. Early methods included
unconstrained subproblems based on penalty and barrier functions (see Fiacco and McCormick,
1968). Unfortunately, these methods suffer from inevitable ill-conditioning; they have for the
most part been superseded by more efficient methods.

4.1. Augmented Lagrangian methods. Augmented Lagrangian methods were motivated in large
part by the availability of good methods for unconstrained optimisation. The original idea was
to minimise an approximation to the Lagrangian function that has been suitably augmented (by
a penalty term) so that the solution is a local unconstrained minimum of the augmented function
(Hestenes, 1969; Powell, 1969).

In particular, an augmented Lagrangian method can be defined in which 2541 is taken as
the solution of the subproblem

mi.nel.q.iu L.(2, s, P5)
subjectto £< 2<y,
where the sugmented Lagrangian function L, is defined by

Lu(£,),#) = Flg) — Melg) + Se(s)7el2). (4.2)

(4.1)

‘¢

oo
f aal

22 Sparse Matrix Methods in Optimisation

The vector)\, is an estimate of the Lagrange multiplier vector, and p, is a suitably chosen non-
negative scalar. Alternatively, it is possible to treat any general linear constraints by an active-set
method (Section 3.1), and to include only nonlinear constraints in the augmented Lagrangian
function. Whatever the definition of the subproblem, the algorithm has a two-level structure —
“outer” iterations (corresponding to different subproblems) and “inner” iterations (within each
subproblem).

The Hessian of interest when solving (4.1) is the Hessian of L, (4.2), which is W(z,\;) +
pxA(z)TA(z). If the only constant elements of the Jacobian matrix are sero, the sparsity patterns
of W(z,)\) and the Hessian matrix of L, are generally identical. Hence, techniques designed to
use an explicit sparse Hessian may be applied to (4.1).

The Jacobian matrix A(z) need not be stored explicitly in order to solve the subproblem (4.1).
If a fairly accurate solution of (4.1) is computed, an improved Lagrange multiplier estimate may be
obtained without solving any linear systems involving A(z). However, in several recent augmented
Lagrangian methods, (4.1) is solved only to low accuracy in order to avoid expending function
evaluations when \; is a poor estimate of the optimal multipliers; in this case, some factorization
of the matrix A(zx 1) is required to obtain an improved Lagrange multiplier estimate (by solving
either a linear system or a linear least-squares problem). The relevance of the storage needed for
the Jacobian and/or a factorisation depends on the number of nonlinear constraints and the
sparsity of the Jacobian.

4.2. Linearly constrained subproblems. The solution of NCP is a minimum of the Lagrangian
function in the subspace defined by the gradients of the active constraints. This property leads to
a class of methods in which linearizations of the nonlinear constraints are used to define a linearly
cunstrained subproblem, of the form

miznei;njze F(z) — M (¢(z) — Afz)

subject to Ag(z —_ z,‘) = —¢x (4.3)
t<z< y

where cx and A, denote ¢(z;) and A(z,) (Robinson, 1972; Rosen and Kreuser, 1972). With this
formulation, the Lagrange multipliers of the k-th subproblem may be taken as the multiplier
estimate A\z41 in deflning the next subproblem, and will converge to the true multipliers at the
solution. When ¢(z) contains both linear and nonlinear functions, only the nonlinear functions
need be included in the objective function of (4.3). Under suitable assumptions, the solutions of the
subproblems converge quadratically to the solution of NCP. A further benefit of the subproblem
(4.3) is that linear constraints may be treated explicitly.

One of the important conditions for convergence with the subproblems (4.3) is a “sufficiently
close” starting point; thus, some procedure must be used to prevent divergence from a poor value
of zo. Rosen (1980) suggested a two-phase approach, starting with a penalty function method.
In the MINOS/AUGMENTED system of Murtagh and Saunders (1982), the objective function of
the subproblem is defined as a modified augmented Lagrangian of the form

Luz, 2,) = Flz) — M ar(e) + Bare) () (44)

where

&(z) = e(z) — (ea + An(z — 24)).

s1ie Ve e s a
W A

.
e N,

e bt
SRS A

2=t

- T

4. Nonlinearly Constrained Optimisation 28

The sparsity pattern of 1, is identical to that of W(z,), irrespective of any nonsero constant
elements in the Jacobian matrix.

Methods based on solving (4.3) have several benefits for sparse problems. The ability to
treat linear constraints explicitly is helpful for the many large problems in which most of the
constraints are linear. As noted in the Introduction, it is often a feature of sparse problems
that the cost of evaluating the problem functions is dominated by the sparse matrix operations.
The superiority of SQP methods (Section 4.3.2) for dense problems results from the generally
lower number of function evaluations compared to methods based on (4.3); for sparse problems,
however, the function evaluations required to solve (4.3) may be insignificant compared to the
savings that would result from solving fewer subproblems. If an active-set method of the type
described in Section 3.3.1 is applied to (4.3), only the projected Hessian needs to be stored (rather
than the full Hessian). Thus, methods based on (4.3) will tend to be more effective than augmented
Lagrangian methods for problems in which the Hessian of the Lagrangian function is not sparse
and the projected Hessian can be stored as a dense matrix.

4.3. Methods based on linear and quadratic programming. We now consider two classes of
methods in which the subproblems are solved without evaluation of the problem functions (in
contrast to the methods of Sections 4.1 and 4.2).

4.3.1. Sequential linear programming methods. Because of the availability and high quality of
software for sparse linear programs, a popular technique for solving large-scale problems has been
to choose each iterate as the solution of an LP subproblem; we shall call these sequential linear
programming (SLP) methods. They were first proposed by Grifith and Stewart (1961); for a
recent survey, see Palacios-Gomes, Lasdon and Engquist (1982).

One crucial issue in an SLP method is the definition of the linear functions in the subproblem.
A typical formulation is

e e e

minimize gx (2 — 2)

subject to Ax(z — zx) = —cr
t<z<u.

With some formulations, the LP may not be well posed — for example, there may be fewer
constraints than variables. The usual way of ensuring a correctly posed subproblem is to include
additional constraints on the variables, such as bounds on the change in each variable. In general,
the latter are also needed to ensure convergence.

SLP methods have the advantage that the subproblems can be solved using all the technology
of sparse LP codes. They tend to be efficient on two types of problems: those with nearly linear
functions, particularly slightly perturbed linear programs; and those in which the functions can
be closely approximated by piecewise linear functions (e.g., the objective function is separable and
convex). Unfortunately, on general problems SLP methods are at best linearly convergent unless
the number of active constraints at the solution is equal to the number of variables. Furthermore,
the speed of convergence critically depends on the technique that defines each subproblem.

Recently, some of the techniques used in SQP methods (Section 4.3.2) have been applied to
the SLP approach — such as the use of a merit function to ensure progress after each outer
iteration. Such techniques cannot be expected to improve the asymptotic rate of convergence of
SLP methods, but they should improve robustness and overall effectiveness.

St Il A A AT L LT A AL TR L S Rt S L P T T S T T U
et . . =~ et At e, e St e, [P PN N P N TS
20 R I I Y A AL P AR TR A, T TR N LR ST WU AL AT PRIV A

t 7} Sparse Matrix Methods in Optimisation

Beale (1978) has given a method that is designed to make extensive use of an existing LP
system. The nonlinearly constrained problem is assumed to be of the form

minimise ¢(z)7y

s,y

subject to A(z)y = b(z) (4.5)
{<z<u
v<y<w

A special nonlinear algorithm is then used to adjust z; for each value of z, a new estimate y is
determined by solving an LP.

4.3.2. Sequential quadratic programming methods. The most popular methods in recent years for
dense nonlinearly constrained problems are based on solving a sequence of quadratic programming
subproblems (see Powell, 1982, for a survey). At iteration k, a typical QP subproblem has the

form
minimize lp"H;,p +glp
ZER" 2
subject to Ayp = —c;

b—z, S pS u—zx,,

where H) is an approximation to the Hessian of the Lagrangian function. The solution of the
QP subproblem is then used as the search direction p, in (1.1). The step a; is chosen to achieve
a suitable reduction in some merit function that measures progress toward the solution. In the
dense case, the most popular method is based on taking H) as a positive-definite quasi-Newton
approximation to the Hessian (Powell, 1977). However, the many options in defining the QP
subproblem have yet to be fully understood and resolved (see Murray and Wright, 1982, for a
discussion of some of the critical issues).
Further complex issues are raised when applying an SQP method to sparse problems (see, e.g.,
Gill et al,, 1981). The general development of methods has been hampered because methods for
sparse quadratic programming are only just being developed, and are not yet generally available
for use within a general nonlinear algorithm. However, Escudero (1980) has reported some success
— with an SQP implementation in which a sparse quasi-Newton approximation is used for H, (see
also Section 3.7.2).

LARME AN AL oy "
RS PN NI . .
. . . - .

el e . . .

- . P S T LS R R TS M .
A R AP Vo S tes L
P SR TN S [V VDN, S W SR S YR WD ,J‘A;__;‘,L;_,;‘;_‘J.A;_hAi

References 25

Refarences

Abadie, J. and Carpentier, J. (1969). “Generalisation of the Wolfe reduced-gradient method to
the case of nonlinear constraints®, in Optimisation (R. Fletcher, ed.), pp. 3749, Academic
Press, London and New York.

Axelsson, O. (1974). On preconditioning and convergence acceleration in sparse matrix problems,
Report 74-10, CERN European Organisation for Nuclear Research, Geneva.

. Bartels, R. H. (1971). A stabilization of the simplex method, Num. Math. 18, pp. 414-434.

A Bartels, R. H. and Golub, G. H. (1969). The simplex method of !inear programming using the
i, LU decomposition, Comm. ACM 12, pp. 266-268.

. Bartels, R. H., Golub, G. H. and Saunders, M. A. (1970). “Numerical techniques in mathematical
-0 programming”, in Nonlinear Programming (J. B. Rosen, O. L. Mangasarian and K. Ritter,
’ eds.), pp. 123-176, Academic Press, London and New York.

Beale, E. M. L. (1967) “An introduction to Beale’s method of quadratic programming”, in
Nonlinear Programming (J. Abadie, ed.), pp. 143-153, Academic Press, London and New
York.

b Beale, E. M. L. (1978). *“Nonlinear programming using a general mathematical programming
system”, in Design and Implementation of Optimisation Software (H. J. Greenberg, ed.), pp.
259-279, Sijthoff and Noordhoff, Netherlands.

Bisschop, J. and Meeraus, A. (1977). Matrix augmentation and partitioning in the updating of
the basis inverse, Math. Prog. 13, pp. 241-254.

Bisschop, J. and Meeraus, A. (1980). Matrix augmentation and structure preservation in linearly
constrained control problems, Math. Prog. 18, pp. 7-15.

Brodlie, K. W. (1977). “Unconstrained optimisation”, in The State of the Art in Numerical
Analysis (D. Jacobs, ed.), pp. 229-268, Academic Press, London and New York.

Coleman, T. F. and Moré, J. J. (1981). Estimation of sp=r=e Jacobian matrices and graph coloring
problems, Report ANL-81-39, Argonne National Laboravory, Argonne, Illinois.

Coleman, T. F. and Moré, J. J. (1982a). Software for estimating sparse Jacobian matrices, Report
ANL-82-37, Argonne National Laboratory, Argonne, Illinois.

Coleman, T. F. and Moré, J. J. (1982b). Estimation of sparse Hessian matrices and graph coloring
problems, to appear.

Concus, P., Golub, G. H. and O’Leary, D. P. (1976). “A generalised conjugate-gradient method
for the numerical solution of elliptic partial differential equations”, in Sparse Matrix Comp-
utations (J. R. Bunch and D. J. Rose, eds.), pp. 309-332, Academic Press, London and New
:' York.

Cottle, R. W, (1974). Manifestations of the Schur complement, Linear Algebrs and its Applics.
8, pp. 189-211.

Cottle, R. W. and Djang, A. (1979). Algorithmic equivalence in quadratic programming, J. Opt.
Th. Applics. 28 pp. 275-301.

Curtis, A. R., Powell, M. J. D. and Reid, J. K. (1974). On the estimation of sparse Jacobian
matrices, J. Inst. Maths. Applics. 13, pp. 117-119.

Dantsig, G. B. (1963). Linear Programming and Extensions, Princeton University Press, Prince-
ton, New Jersey.

.h-' SO A I I A S SR IO A I AR IR S L AN e et e e o e e e e e e .t
o2

? 26 Sparse Matrix Methods in Optimisation

%;-3 Dantsig, G. B., Dempster, M. A. H. and Kallio, M. J. (eds.) (1981). Large-Scale Linear Program-

ming (Volume 1), IIASA Collaborative Proceedings Series, CP-81-51, IIASA, Laxenburg,

Austria.

i Dantsig, G. B. and Orchard-Hays, W. (1954). The product form of the inverse in the simplex

Py method, Math. Comp. 8, pp. 64-67.

*L:j Dantzig, G. B. and Wolfe, P. (1960). The decomposition principle for linear programs, Operations

Research 8, pp. 110-111.

Dembo, R. 8., Eisenstat, S. C. and Steihaug T. (1982). Inexact Newton methods, SIAM J. Numer.
Anal. 19, pp. 400—408.

Dembo, R. S. and Steihaug T. (1980). Truncated-Newton algorithms for large-scale unconstrained
optimisation, Working Paper #48, School of Organisation and Management, Yale University.

' Dennis, J. E., Jr. and Marwil, E. S. (1982). Direct secant updates of matrix factorisations, Math.
Comp. 38, pp. 459-474.

Dennis, J. E., Jr. and Moré, J. J. (1977). Quasi-Newton methods, motivation and theory, SIAM
Review 19, pp. 46-89.

Dennis, J. E., Jr. and Schnabel, R. B. (1979). Least change secant updates for quasi-Newton
. methods, SIAM Review 31, pp. 443-469.

Dufl, 1. S. (1982). A survey of sparse matrix software, Report AERE-R10512, Atomic Energy
i Research Establishment, Harwell, England. To appear in Sources and Development of
! Mathematical Software (W. R. Cowell, ed.), Prentice-Hall, 1983.

Duff, . S. and Reid, J. K. (1082). The multifrontal solution of indefinite sparse symmetric linear
systems, Report CSS 122, Atomic Energy Research Establishment, Harwell, England.

o Duff, I. S. and Reid, J. K. (1983). Direct methods for solving sparse systems of linear equations,
j presented at the Sparse Matrix Symposium, Fairfield Glade, Tennessee, 1982 (to appear in
%, SIAM J. Sci. Stat. Comput.).

Fiacco, A. V. and McCormick, G. P. (1968). Nonlinear Programming: Sequential Unconstrained

" Minimisation Techniques, John Wiley and Sons, New York and Toronto.

::J Fletcher, R. (1974). *"Methods related to Lagrangian functions”, in Numerical Methods for
o Constrained Optimisation (P. E. Gill and W. Murray, eds.), pp. 219-240, Academic Press,
London and New York.

= Fletcher, R. (1980). Practical Methods of Optimisation, Volume 1, Unconstrained Optimisation,
- John Wiley and Sons, New York and Toronto.

e Fletcher, R. (1981). Practical Methods of Optimisation, Volume 2, Constrained Optimisation,
- John Wiley and Sons, New York and Toronto.

Fletcher, R. and Reeves, C. M. (1964). Function minimisation by conjugate gradients, Computer
- { Journal 7, pp. 149-154.

b Forrest, J. J. H. and Tomlin, J. A. (1972). Updsting triangular factors of the basis to maintain
"" sparsity in the product form simplex method, Math. Prog. 2, pp. 263-278.

- Fourer, R. (1982). Solving staircase linear programs by the simplex method, 1: Inversion, Math.
Prog. 23, pp. 274-318.

.. George, J. A. and Heath, M. T. (1980). Solution of sparse linear least squares problems using

4! Givens rotations, Linear Algebra and its Applics. 34, pp. 69-83.

..............

VoA
L WY)

k) A

BN Tl

Wl

o Tmd il
2l LM%

AN

¥\ RO R

S, -"- LN NS

Y

“a U IR F - Sk

g

References v

George, J. A. and Ng, E. (1982). Solution of sparse underdetermined systems of linear equations,
Report CS-82-39, Department of Computer Science, University of Waterloo, Canada.

Gill, P. E., Golub, G. H., Murray, W. and Saunders, M. A. (1974). Methods for modifying matrix
factorisations, Math. Comp. 28, pp. 505-535.

Gill, P. E. and Murray, W. (1974). Newton-type methods for unconstrained and linearly con-
strained optimisation, Math. Prog. 28, pp. 311-350.
Gill, P. E. and Murray, W. (1979). Conjugate-gradient methods for large-scale nonlinear optim-

isation, Report SOL 79-15, Department of Operations Research, Stanford University, Calif-
ornia.

Gill, P. E,, Gould, N. I. M., Murray, W., Saunders, M. A. and Wright, M. H. (1982). Range-space
methods for convex quadratic programming, Report SOL 82-14, Department of Operations
Research, Stanford University, California.

Gill, P. E.,, Murray, W., Saunders, M. A. and Wright, M. H. (1981). “QP-based methods
for large-scale nonlinearly constrained optimisation”, in Nonlinear Programming 4, (O. L.
Mangasarian, R. R. Meyer and S. M. Robinson, eds.), pp. 57-98, Academic Press, London
and New York.

Gill, P. E., Murray, W. and Wright, M. H. (1981). Practical Optimisation, Academic Press,
London and New York.

Gill, P. E., Murray, W., Saunders, M. A. and Wright, M. H. (1983). Truncated conjugate-gradient
methods, to appear.

Gille, P. and Loute, E. (1981). A basis factorisation and updating technique for staircase
structured systems of linear equations, Discussion Paper 8113, CORE, Université Catholique
de Louvain, Louvain-la-Neuve, Belgium.

Gille, P. and Loute, E. (1982). Updating the LU Gaussian decomposition for rank-one corrections,;
application to linear programming basis partitioning techniques, Cahier No. 8201, Séminaire
de Mathématiques Appliquées aux Sciences Humaines, Facultés Universitaires Saint-Louis,
Brussels, Belgium.

Grifith, R. E. and Stewart, R. A. (1961). A nonlinear programming technique for the optimisation
of continuous processing systems, Management Science 7, pp. 379-392.

Heath, M. T. (1982). Some extensions of an algorithm for sparse linear least squares problems,
SIAM J. Sci. Stat. Comput. 8, pp. 223-237.

Hellerman, E. and Rarick, D. (1971). Reinversion with the preassigned pivot procedure, Math.
Prog. 1, pp. 195-216.

Hellerman, E. and Rarick, D. (1972). *The partitioned preassigned pivot procedure (P*)", in
Sparse Matrices and their Applications (D. J. Rose and R. A. Willoughby eds.), pp. 67-786,
Plenum Press, New York.

Hestenes, M. R. (1969). Multiplier and gradient methods, J. Opt. Th. Applics. 4, pp. 303-320.

Hestenes, M. R. (1980). Conjugate Direction Methods in Optimisation, Springer-Verlag, New
York.

Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems,
J. Res. Nat. Bur. Standards 49, pp. 409-436.

Kron, G. (1956). Diakoptics, MacDonald, London.

el r. [RENCNENEREN

.
»
.
-
e
Ch
%

C Nl i Y

as Sparse Matrix Methods in Optimisation

Markowits, H. M. (1957). The elimination form of the inverse and its applications to linear
programming, Management Science 8, pp. 255-269.

Marwil, E. 8. (1978). Exploiting Sparsity in Newton-Type Methods, Ph. D. Thesis, Cornell Univ-
ersity, Ithaca, New York.

McCormick, 8.T. (1981). Optimal approximation of sparse Hessians and its equivalence to a
graph coloring problem, Report SOL 81-22, Department of Operations Research, Stanford
University, California (to appear in Math. Prog., 1983).

Moré, J. J. and Sorensen, D. C. (1982). Newton’s method, Report ANL-82-8, Argonne National
Laboratory, Argonne, Illinois.

Murray, W. and Wright, M. H. (1982). Computation of the search direction in constrained
optimisation algorithms, Math. Prog. Study 16, pp. 62-83.

Murtagh, B. A. and Saunders, M. A. (1977). MINOS User’s Guide, Report SOL 77-9, Department
of Operations Researck, Stanford University, California.

Murtagh, B. A. and Saunders, M. A. (1978). Large-scale linearly constrained optimisation, Math.
Prog. 14, pp. 41-T2.

Murtagh, B. A. and Saunders, M. A. (1980). MINOS/AUGMENTED User’s Manual, Report SOL
80-14, Department of Operations Research, Stanford University, California.

Murtagh, B. A. and Saunders, M. A. (1982). A projected Lagrangian algorithm and its implemen-
tation for sparse nonlinear constraints, Math. Prog. Study 16, pp. 84-118.

Nash, S. G. (1982). Truncated-Newton Methods, Ph. D. Thesis, Computer Science Department,
Stanford University, Stanford, California.

O’Leary, D. P. (1982). A discrete Newton algorithm for minimising a function of many variables,
Math. Prog. 23, pp. 20-33.

Paige, C. C. and Saunders, M. A. (1975). Solutions of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal. 13, pp. 617-829.

Palacios-Gomes, F., Lasdon, L. S. and Engquist, M. (1982). Nonlinear optimisation by successive
linear programming, Management Science 38, 10, pp. 1108-1120.

Powell, M. J. D. (1969). “A method for nonlinear constraints in optimisation problems”, in
Optimisation (R. Fletcher, ed.), pp. 283-297, Academic Press, London and New York.

Powsll, M. J. D. (1976). “A view of unconstrained optimisation”, in Optimisation In Action (L.
C. W. Dixon, ed.), pp. 117-152, Academic Press, London and New York.

Powell, M. J. D. (1981). A note on quasi-Newton formulae for sparse second derivative matrices,
Math. Prog. 20, pp. 144-151.

Powell, M. J. D. (1982). State-of-the-Art Tutorial on “Variable metric methods for constrained
optimisation”, Report DAMTP 1982/NAS, Dept. of Applied Mathematics and Theoretical

Physics, University of Cambridge, England.

Powsll, M. J. D. and Toint, P. L. (1979). On the estimation of sparse Hessian matrices, SIAM J.
Numer. Anal. 16, pp. 1080-1074.

Reid, J. K. (1971). “On the method of conjugate gradients for the solution of large sparse systems
of linear equations”, in Large Sparse Sets of Linear Equations (J. K. Reid, ed.), pp. 231-254,
Academic Press, London and New York.

i e i mega e g e = . P .- - e
Sty AT RSO TVU NOP E N N SC S S, WA Sl S S W JAL AT 7SR P N Th T B Py

« e s e

References »

Reid, J. K. (1976). Fortran subroutines for handling sparse linear programming bases, Report
AERE-R8269, Atomic Energy Research Establishment, Harwell, England.

Reid, J. K. (1982). A sparsity-exploiting variant of the Bartels-Golub decomposition for linear
programming bases, Math. Prog. 24, pp. 55-69.

Robinson, S. M. (1972). A quadratically convergent algorithm for general nonlinear programming
problems, Math. Prog. 8, pp. 145-156.

Rosen, J. B. (1978). “Two-phase algorithm for nonlinear constraint problems®, in Nonlinear
Programming 3 (O. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds.), pp. 97-124,
Acadenic Press, London and New York.

Rosen, J. B. and Kreuser, J. (1972). “A gradient projection algorithm for nonlinear constraints”,
in Numerical Methods for Non-Linear Optimisation (F. A. Lootsma, ed.), pp. 297-300,
Academic Press, London and New York.

Saunders, M. A. (1976). *A fast, stable implementation of the simplex method using Bartels-
Golub updating”, in Sparse Matrix Computations (J. R. Bunch and D. J. Rose, eds.), pp.
213-226, Academic Press, New York.

Schubert, L. K. (1970). Modification of a quasi-Newton method for nonlinear equations with a
sparse Jacobian, Math. Comp. 24, pp. 27-30.

Shanno, D.F. (1980). On variable metric methods for sparse Hessians, Math. Comp. 34, pp.
499-514.

Sorensen, D.C. (1982). Collinear scaling and sequential estimation in sparse optimisation algo-
rithms, Math. Prog. Study 18, pp. 135-159.

Steihaug, T. (1980). Quasi-Newton methods for large-scale nonlinear problems, Working Paper
#49, School of Organization and Management, Yale University.

Steihaug, T. (1982). On the sparse and symmetric least-change secant update, Report MASC TR
82-4, Dept. of Mathematical Sciences, Rice University, Houston, Texas.

Stott, B., Alsac, O. and Marinho, J. L. (1980). “The optimal power flow problem”, in Electric
Power Problems: The Mathematical Challenge (A. M. Erisman, K. W. Neves and M. H.
Dwarakanath, eds.) SIAM, Philadelphia.

Thapa, M. N. (1980). Optimisation of Unconstrained Functions with Sparse Hessian Matrices,
Ph. D. Thesis, Stanford University, California.

Toint, P. L. (1977). On sparse and symmetric matrix updating subject to a linear equation, Math.
Comp. 31, pp. 954-961.

Toint, P. L. (1978). Some numerical results using a sparse matrix updating formula in uncon-
strained optimisation, Math. Comp. 32, pp. 839-851.

Toint, P. L. (1979). On the superlinear convergence of an algorithm for solving a sparse minim-
isation problem, SIAM J. Numer. Anal. 18, pp. 1036-1045.

Tomlin, J. A. (1975). An accuracy test for updating triangular factors, Math. Prog. Study 4, pp.
142-145.

Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem, Oxford University Press.

AP OOt R I A A R K OO Bec D A O :
L4
N
\4)
‘ . UNCLASSIFIED
. SBCURITY CLASSIFICATION OF TiiS PAGE (When Date Eniered .
= REPORT DOCUMENTATION PAGE BEFORE COMPLETING PORM
= - REPSKY NUNBER Vm;—-ﬁmm.m—ﬁ
SOL-82-17 4p-#/24 37,
. 6. TITLE (and Subtitle) ! " |3 vvme oF rerorT & pemo0D covareo
Sparse Matrix Methods in Optimization, Technical Repert.
jat ' 6. PERFORMING ORG. REPORT NUMBER
/
L?. m#w 7 . OR GRANT NUMBEN S
p’ E. G111, W. Murray, N00014-75-C~0267,
M.A. Ssunders and M.H. Wright DAAG29-81-K-0156
"'E; . PERFORMING ORGANIZATION NAME AND Al . B RAM [7] . PROJECT, TASK
- Department of Operations Research - SOL ARER VRO BT wuNde e
Stanford University NR-047-143
Stanford, CA 94305
e 1. CONTROLLING OF FICE NAME AND ADDRESS 12. AKPORT DATE
& Office of Naval Research - Dept. of the Navy December 1982
M 800 N. Quincy Street 13, NUMBER OF PAGES
- Arlington, VA 22217 29
oot 8. SECURITY CLASS. (of this repers)
. U.S. Army Research Office
3 P.0. Box 12211 UNCLASSIFIED
: hngarch Triangle Park, NC 27709 Tk, DEC %C-—WWCA GRADING
IT] A (of e
- This document has been approved for public release and sale;
- its distribution 1s unlimited.
N
::E 17. DISTRIBUTION STATEMNENT (of the abotrast entored in Bleck 20, il different frem Report)
¥
L
- [7s. suPPLEnENTARY NOTES
" 9. KLY WOROR (Continws on reveree oide i/ nosocswry tnd iontily by Mook mumber)
Large-scale nonlinear optimisation sparse matrices
N sparse linear and nonlinear constraints linear and quadratic programming
updating matrix factorizations
0 B0, ABSTRACT (Continwe on reverce side W noscooary and IGontily by biosk mumber)
-~ See other side
.: “
DD ,an'7s T3 coimion oF 1 wov 8 18 ossoLETE
? SECURITY CLASNPICATION OF THIS PAS
J‘?‘ ":'\' “ i .-_."—'v. '-" ‘ - T q" »-_‘..‘ -"_’-‘ -"-h‘ - ‘_\ "- '.I "“ '4":'" ..‘..-“ .'_ . " e «

SEAR ARSI R
e uag sty e < LIPS S Y A (0 AT £ N AN NI ARSI ERC AR AR
LI S .-‘\".‘ PO R R St ‘h"..k&.. hot ..'.\.\ i) -_'.'_\\,' P e N M AR

JECUNTY CLASSIPICATION OF TWiS PASE(When Date Sntered) , .

ABSTRACT - SOL 82-17
Sparse Matrix Methods in Optimization
by P.E. Gill, W. Murray, M.A. Ssunders and M.H. Wright

Optimization algorithms typically require the solution of many systems
of linear equations Byyy = by. When large numbers of variables or
constraints are present, these linear systems could account for much of the
total computation time.

Both direct and iterative equation solvers are needed in practice.
Unfortunately, most off-the-shelf solvers are designed for single systems,
whereas optimization problems give rige to hundreds or thousands of
systems. To avoid refactorization, or to speed the convergence of an
iterative method, it 1is essential to note that By, 1is related to
Bg-1-

We review various sparse natrices that arise in optimization, and
discuss compromises that are currently being made in dealing with them.
Since significant advances contimue to be made with single-system solvers,
we give special attention to methods that allow such golvers to be used
repeatedly on a sequence of modified systems (e.g., the product-form
update; use of the Schur complement). The speed of factorizing s matrix
then becomes relatively less important than the efficiency of subsequent
solves with very many right-hand sides.

At the ssme time, we hope that future improvements to linear-equation
software will be oriented more specifically to the case of related matrices

By.

SECURITY CLASRIFICATION OF Tuie PAGRITRIN. e Entered)

