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\\\\\ ABSTRACT
;)A common type of observational study compares population rates in several
regions having differing policies in an effort to assess the effects of those
policies. In many studies, particularly in public health and epidemiology,
age-adjusted rates are regressed on predictor variables to obtain a covariance
adjusted estimate of effect; we show that this estimate is generally biased
for the appropriate regression coefficient. The analysis of crude rates with
age as a covariate can, unéer familiar models, lead to unbiased estimates, and

therafore can be preferrable. Several other regression methods are also

considered. <j
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DIFFICULTIES WITH REGRESSION ANALYSES OF AGE-ADJUSTED RATES

- Paul R. Rosenbaum* and bonald B, Rubin®**

1. Introduction: A Common Type of Observational Study

A common and inexpensive type of observational study uses previously

collected population data, such as census data, to assess the effects of
policies which are specific to certain counties, states or nations. An
example is the comparison of motor vehicle mortality rates in states with
and without required automobile inspection, (Fuchs and Leveson 19671
Colton and Buxbaum 1968). Note that in this example, all people living
in the same atate are subject to the same law.

. A related though distinct type of observational study involves an
exposure or treatment that is more prevalent in some states than in
others: the relationship between the extent of exposure and the outcome
is studied in an effort to assess the effects of exposure. Examples
include (a) studies which examine'site-spacltic cancer mortality rates in
various counties and their relationship to environmental factors in these
counties (e.g., Blair, Fraumeni, and Maaon 1980) and (b) studies of the
socloeconomic correlates of mortality (e.g., Xitagawa and Hauger 1973).
Our discussion here is relevant to both types of studies, and
demonstrates that standard analyses, such as those in the above

references, are generally inappropriate. The problem arises because the

* Departments of Statistics and Human Oncology, University of Wisconsin~
Madison.
**Mathematics Research Center, University of Wisconsin-Madison.

Sponsored in part by the United States Army under Contract No. DAAG29-80~C-
0041, and in part by grant P30-CA-14520 from the National Cancer Institute to
" the Wisconsin Clinical Cancer Center.
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outcome variables used in those analyses, such as death rates in various
states, have been age adjusted, whereas the predictor variables have not
been age adjusted. The use of crude state death rates as the outcome
variable with crude covariates and age as predictors can avoid the
problem, at least under some simple linear models. The use of age-
specific rates as the outcome variable is generally inappropriate unless

age-specific predictors are used.

A Motivating S le Case: Age Adjustment By Regression

Suppose we wish to estimate the regression coefficient Byx X
1 72

of Yon Xy in the multiple regression with two predictors, X, and
X,. It is well known that the least squares estimate of this coefficient
may be found by, first, regressing Y on X, ana calculating the

residuals ¥°x2, then regressing Xy on X, and calculating the

*X., and finally calculating the estimate of 8 as
172 YX1-x2

the estimated slope in the regression of the first set of residuals

residuals X

Y°x2 on the second x1-x2. An example is given by Mosteller and Tukey
(1977, p.271); the formal argument is given by Seber (1977, p.65). This
process of “sweeping out" one variable at a time forms the basis for
several of the algorithms used for multiple regression, particularly the
Gaussian pivoting in Beaton's sweep operator (Dempster 1969, p.62).

We can now give a rough description of the difficulty with the
regression analysis of age-adjusted rates; the argument is formalized in
the next section. Suppose that Y is an age and state specific

mortality rate, that X, is the corresponding age, and that X, 1is any

variable that varies with both age and state, say Xy = per capita

personal income. Roughly speaking, v-xz is the age-~adjusted




mortality. To find the least squares estimate of Byx X we ghould
172

regress age—adjusted mortality Y'xz on age-adjusted income x1-x2.

However, that is not what is often mistakenly done; rather age-adjusted

mortality Ye¢X_ £ 1is regressed on income Xq0 giving a biased estimate

2

unless income X, and age X, are orthogonal. The point is: 1if we

adjust mortality for age, we must adjust the covariates for age as well.

Although age~adjusted mortality rates are commonly available, it is

uncommon to find covarjates such as income that have been age adjusted

before tabulation. If the available data consist of adjusted mortality

rates and unadjusted per capita income for each state, we cannot

generally adjust income for age, and therefore cannot determine the

partial regression coefficient of mortality on income adjusting for age.

An alternative solution would be to regress adjusted mortality

y-xz on crude per capita income X; and crude age X,, when the age

information, X,, is available. It is eagily shown that the coefficient

of income in this regression is the usual unbiased least squares estimate

of B Unfortunately this procedure is not generally applicable to

Yx’ -xz

age-adjusted rates, for reasons described in §5 below.

e P T A TIPS Y it T et

3. Regression Analysis of Adjusted Rates

Let YQ-i be the response of the ith person with age a in state

s, fori= 1'2""'“aa‘ For purposes of this discussion, we assume the

following linear model for Yagi Which includes polynomial terms in age:

J
D) = a + ] B8

b T T
PR R L gy

.E(Yasi ~asi

for £ = 1,2,...,n a=1,2,.00,A 8= 1,2,,..,8,
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where

Zoagi ™ 1 if individual i was exposed to the treatment and
0 otherwise,

5. is a vector of characteristics of state s (e.g., minimum
driving age in the state)

!aai is a vector of characteristics of the individual (egqg, income,

marital status), excluding features of the state as a whole
since these are included in g', but possibly including
characteristics which are constant for all members of certain
counties (e.g.; source of drinking water: city supplied vs.

private well),

u,81,82,...,83, A, Y, § are parameters, and D is short-hand for the
age information and all the 2's, X's and W's. The polynomial in age
can be replaced by other linear structures such as an indicator variable
for each age or age category, a polynomial in the logarithm or
exponential of age, or a combination of a polynomial in age and indicator
variables for extreme age categories.

If Y,gy 1is binary, the linear logistic model (Cox 1970) is more
attractive than the linear model for most purposes; however, the logit
model does not lead to straightforward conclusions about the common
practice of linearly regressing adjusted rates on predictors, nor would

use of the logit model eliminate the problems that we describe which

result from the use of age-adjusted rates.

R o




The age and state specific mean response (or rate if Yosi is

n
as
- 1 -
binary) is Yaa+ - 2 Y..i « By (1), the expectation of Y..+ is
as 1i=1
- J J . .= T ™~
E(Y, . [D) = a+ 351 Bja’ + 82+ XAy * £ Wp (2)
where z“+ and w"+ are averages of the Z.8i and the w;.i,

respectively. Clearly, the parameters of model (1) may be estimated from

a suitable weighted regression of the age and state specific rates i..+

on the age and atate specific averages in (2). For example, if the

conditional variances given D of the Y

asi'® ore all equal to a common

value az, and if the Yasi's are conditionaly uncorrelated, the

appropriate weight for ia in regression model (2) is n Other

s+ as’

choices for weights are described by Pocock, Cook and Beresford (1981).
Now consider the crude unadjusted rates for state s, namely

)/(] n__), with expectations
a

+8+ as ast as
< 1 - T -
EY gD} = @+ j-):'1 Bymgy * 82, 0t XX, Wy, 3

where §+ and over all individuals

o+ !+s+ are averages of 2

asi’ Yaai
in state s, and Mgy = (E n..aj)/(E na') is the jth moment of age in
state s. If the first J moments of the age distribution are available
from each state, then the parameters of model (1) may be estimated by a
suitable weighted regression of the crude rates §+.+ on the crude
predictors (m.j, I=1,00e, It i+‘+,§' ,i+'+) for the states. For

example, under the simple assumption of the previous paragraph, the

would be the population of state s, namely )} n__ .
a

weight for §+

s+ as




state s. Note that the constant a includes the age component, Lf.m

In practice, the moments n'j of age distributions may be
approximated from frequency tabulations of age distributions for each
state, using, for example, the EM algorithm of Dempster, Laird and Rubin
{1977) to correct for grouping. If a linear structure other than a
polynomial is used for age in (1), then the corresponding averages would
appear in (3). For example, if indicators are used for each age
category, then the proportion of individuals in each age category in each

state, p

as ~ "al/E Ny’ would appear in (3).

Now consider the age—-adjusted rates

Vo = L 000
a
where t‘ 'is the fraction of the reference population with age a. Note
that the same weights £. are applied in all states. For example, the

total population age distribution might be used as weights, so that

fa = n&/nﬁ- Now, -

J
~ - j - Ly -
B(Y, D) = a+ [ 8y leal ¢+ alez o+ oxx ¢+ £ led,,
=1 a a a
et jL sjnj ML TPV & SR A
AL L) & S S I (4)

th

say, where ;j is the j~ moment of age in the reference population,

and z+.* and g+'+ are the age-adjusted averages of Z and W _for

33’
which is the same for all states; this would be true no matter what

linear structure is assumed in (1) for the regression on age.




M,

Equation (4) formally describes the difficulty, mentioned in the
last section, that is encountered vhen age-adjusted rates are regressed
on predictors. To estimate the parameters of the model (1), we must
regress the adjusted rates ;; on the age-adjusted treatment indicator
E;'+ + the age-adjusted covariates §L3+, and E’. Note that there is
no difficulty when both (a) treatment, 2,.,, is constant within a
state, as is the case when 2 represents a state law, and (b) the only
covariates involved are the descriptors gs of the state as a whole,
such as other state laws or policies. However, there is a difficulty if
there are covariates !asi such as personal income that describe
individuals within a state, or when there are covariates such as
pollutionvlevels that deacribe areas within a state, because in such
cases age~adjusted income or pollution levels are required to fit
equation (4), and these quantities are rarely tabulated in official
publications. Moreover, the difficulty also occurs if treatment,

varies within a state, for in such cases, the age-adjusted rate

zasi'
Y+.+ should be regressed on age-adjusted exposure z+s+ .

Although age—-gspecific death rates, Y may be available, it is

as+’

often difficult to obtain age-specific predictors (zas+' 53, Eus+)' L8

a result, another common practice is to regress age-specific rates ias+

on crude predictors (z*s+, gs’

association in 18 countries between wine consumption and cardiovascular

W, .)¢ An example is a study of the

~t+g+
mortality among men and women aged 55 to 64 (St. Leger, Cochrane, and
Moore 1979). However, inspection of equation (2) shows that this

procedure is generally inappropriate, unless the age-specific predictors

( W__,) equal the crude predictors (z+.+, Xy !*'+).

Zogt’ Xgr Yagt
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4. An_Example
This section presents an example to illustrate the problem described

in §3. The data used are a mixture of real and artificial data, because

the true values for the age-adjusted covariates were not available, and

As a result, although the

we wished to dramatize possible effects.

studies from which the data were drawn may have been affected by the

problems we describe, our numerical results do not necessarily contradict

the qualitative conclusions of those studies.

Table 1 contains (a) age-adjusted motor vehicle accident mortality

rates (;;.+) for white males in 1960 for the 48 contiguous states of

the United States, (b) a variable §+

indicating whether the state

s+
requires motor vehicle inspections, (c) the percent of the state living

in urban areas §+ . and (d) the (artificial) age-adjusted percent of

a+

urbanization, Since the state law affects everyone in a state, the

W+’+.

~

inspection indicator is not altered by age-adjustment; i.e., E+a+ - z+s+'

Presumably, an individual's risk of accident mortality (e.gq.,

prob(Y = 1), say), depends less on the statewide degree of

asi

T ———

urbanization ﬁ+s+ than on whether the individual himgelf lives in an

urbanized area (i.e., whether W,,, = 1, say). For example, an

individual living outside Massena, New York, far from Manhattan, may be

no more affected by the high percent of urbanization in New York State

than are residents of, say, Vermont. If the age distributions in urban

and rural areas differ, then w+'+ and w+.+ will generally differ,

generally leading to a biased estimate of the coefficient of automobile

inspection z+.+ when adjusted mortality ¥+.* is regressed on z+.*

and crude urbanization w+'+.
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TABLE 1. Data For The Example: Mortality and Motor Vehicle Inspections

o

G ALy A e

State Age—~adjusted Inspection Pexcent Age~adjusted
Motor Vehicle State* Urban*+* Percent
Mortality* (1 = yes) Urban*+*+*
- (0 = no)
Z

~ ~

W W

Yoot +at = Zige +a+

O 0 N 600 U & W N -

W N N NN M N DN = cb o o o =t o b b =
® N 00 0 d W N =2 O VW O N O O b W v -0




State

1 2 ]

*e®

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Age-adjusted
Motor Vehicle
Mortality*

~

Yigt

62.4
45.0
35.5
47.6
96.0
49.9
37.5
29.6
21.0
37.4
©20.9
79.1
23.2
28.1
13.4
47.7
42.4
51.4
35.7
42.’

Inspection Percent
State* Urban*+*

(1 = yes)

_ (0 = no)

Zigt = Zegt Voot
0. 9.6
0. 25.5
0. 31.1
0. 28.4
0. «0
1. 37.4
1. 21.5
1. 14.2
1. 34.7
1. 14.5
1. 18.7
1. 21.2
1. 55.8
1. 31.1
1. 33.6
1. 46.3
1. 35.3
1. «0
1. 25.1
t. 13.5

From Colton and Buxbaum (1968).,
adjusted to the total population

From Kitagawa and Hauser (1973)

Artificial., W._ . = W

+g+

Age-adjusted
Percent
Urban#*+**

v74»3-0»

9.6
25.5
31.1
28.4
.0
67.4
51.5
44.2
64.7
44.5
48.7
51.2
85.8
61.1
63.6
76.3
65.3
30.0
55.1
42.5

Rate is for white males in 1960,
age distribution in 1960.

+ 302*‘+.




Table 2 summarizes the results of (a) regressing Yout OF 2, o+

and w+.+ and (b) regreasing Y+.+ on z+.+ and w+.+. For purposes of
illustration only, no attention has been paid to the important questions
of weighting the rates (Pocock, Cook and Beresford 1981) or to regression
diagnostics (Draper and Smith 1966, chapter 3; Seber 1977, section 6.6).

By construction of the age-adjusted urbanization variable, the two

estimates of the coefficient of inspection differ markedly: with age-

adjusted covariates, the coefficient is positive; with unadjusted

covariates, the coefficient is significantly negative.

P
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TABLE 2, Results Of Two Regressions: least squares estimate and 95%

confidence intervals

(a) Regresgsion With (b) Regression With
Parameter Age-adjusted Covariates Unadjusted Covariates
a 60.54 60.54
(50.77, 70.31) (50.77, 70.31)
A ¢27 -12.1‘
(-14-20, 14.74) (-21-38' ~2.89)
E -.41 -'41

("-76, -007) (-076' -007)
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5.

TECHNICAL ISSUES

5.1 A Formal Expression for the Bias of the Estimator of A.

We now obtain an expression for the bias that results from

regressing adjusted mortality ;;'+ on crude predictors §+.+, 5',
and §+s+' Let
4 244 5? ‘-’Etj 1 TR 1‘:'11- ;'31:
L= |12, -’5: E'-'fz+ ana =117, x«-o-Tzw ;':24.
. .
.1 i"’s"‘ g :fs't-‘ L1 ;+S+ ’:(-fs-o- ifs-.-_

and let 8 = (a, 4, ', §'). Moreover, let ¥ = (Y, L FOVCTLIYE PN

For any full rank matrix : that will be used to weight the adjusted

)T,

mortality rates, the estimator E - (G‘g?)"%’gg that results from

regressing adjusted ?+'+ on adjusted covariates 2;a+' §!, E;s+' is

unbiagsed for 9 since E(ilb) = iﬁ. However, the estimator

= (U'Q) Y'Y that results from regressing adjusted Y .  on crude

covariates E X, W

o+’ Zg' Wigyt has bias

3 - 0lp) = (@ VHE-1 8

where I is the identity matrix. Let E? = (t1""ts) be the second

row of (§Tg§)'1§?Q§; the bias in the estimator of A& from § is
£T2 - 4, and so, as we would expect, the bias in the estimator of 4
is affected by all the variables,

) 4 4 Zasi is constant within each state, as in the case of a state

law, then ty is the mean difference, in the ith column of G;




between states with the law (;*_.+ = 1) and states without the law

(z‘_.+ = 0) after covariance adjustment for X, and g+.+. For
instance, in the example in §4, t5 is the mean difference between
inspection and noninspection states in age-adjusted urbanization after

covariance adjustment for crude urbanigation.

5.2 Properties of an Alternative Estimator

An alternative estimator, mentioned at the end of §2, involves

X, W

regressing adjusted mortality ;;s+ on crude predictors §+a+' Xyt Wigt

and age. Age may be represented either by moments of the age
distributions within the states, myys OF by the proportions ;as of

people in state 8 with age a. From (4) we have

~ ~ - T T ~ -
B(Y, /D) =a+ a2 +yX +EW  +az, -2 )
(6)
T ~ - J -
M 5 (!‘0’84' - !""9“') +o .j.z1pl84‘

where the Eas's have zero coefficients since the expectation in (4),

which is conditional on all the age information in D, does not depend

on age. If the differences (z+s+ - z+.*) and (!+s+ - !+s+) can be

written as linear functions of the ;..+'l, then (6) can be rewritten

BE, D) =o +8F,_ +yx +EW, .+ 14D (M
+s+ +8+ ~s s+ a 288

o~
for some parameters & and ’a' a=1,2,...,A7 1in this case, the
alternative o-tiﬁator leads to unbiased estimates of A.
The differences (2, . - Z, .) and (W, =W _.) will indeed be

+3¢ +3+ ~tg+ ~rgd

linear functions of the proportions ;..+ if the age~specific regressors

=14~




z..+ and !"+ can be written as the sum of an age and a state
° component, i.e. if
’ -
zal+ = n. + rl
and {(8)
L R

for some sgcalars L and Cgr and some vectors g. and !', for all

a and s. If i. is average income in state s at age a, and (8)

st
is true, then the difference in average income bestween New York and

Virginia, say, is the same at all ages. To see that (8) implies the

. required linear dependence, note that
z,_ -3, =Y% (¢ ~p )

(l‘ + r')(f‘ - p‘.+) (9)

- (E -.t‘) - (E n.p.'+)

since 2 f‘ = 2 E.‘+ = 1, As required, (9) is a linear function of the
a a

= ’ 3

p“+ s. Analagous arquments apply to the g" 8.

The condition that (z+'+ - z+.+) and (!*.+ - !*'*) must be

linear functions of the proportions B..+ is quite restrictive. Even
random deviations from linear dependence would constitute errors in the

predictor variables, leading to biagsed estimates by analogy with standard

arguments (e.g. Beber 1977, p.155; Johnston 1972, p.281).




6. Su-lrx

We have considered the following seven procedures:

(a) Regression of the responses of individuals, Yasi' on the age of

individuals and the predictors (2 X Yoo 4) describing i

asi’ ~s8’' ~a

individuals.

(b) Weighted regression of the age-specific response rates §aa+ on the

as+’ ~8’ Eas+)'

age-gpecific predictor averages (z

(c) Weighted regression of the crude response rates §+'+ on the crude

predictor averages (z+‘+, 5:’ g+s+).

(d) Weighted regression of the age-adjusted rates §18+ on the age-

~

adjusted predictors (z+a+' g'. g+'+).

(e) Weighted regression of age-adjusted rates Q;'+ on age and crude )
predictors (z+s+’ §+’+, E;.+). (
(f) Weighted regression of age-adjusted rates ;;s+ on crude predictors Q
z W \
(z+8+' "‘"s' !’4_”)- 3
(g) Weighted regression of age-specific rates ias+ on crude predictors g
:
7 W !
(z+s+. Xs, !+s+)' '

Under the simple linear model for (a), that is equation (1), methods
(a) through (d) yield unbiased estimates of the parameters of the model;
however, the data required for methods (a), (b), and (d) are often
unavailable in official tabulations. The crude rates required for (c)
are available in some but not all official tabulations; for example,
homicide death rates are rarely age-adjusted, whereas, coronary dise;ae
mortality rates are usually age-adjusted. Method (e) can yield unbiased

estimates under restrictive assumptions defined in §5.2. Methods (f£) and




AR

(g), although popular techniques in practice, do not generally lead to

unbiased estimates under the linear model for (a).
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