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ABSTRACT

Given data z, = g(ti) + € 1 €i <n, wvhere g is the unknown
function, the t; are unknown d-dimensional variables in a domain R, and the
t-:1 are i.i.d. random errors, the smoothing spline estimate 90 is defined
to be the minimizer over h of n-12(zi-h(ti))2 + lJm(h), where A> 0 is a

smoothing parameter and J (h) is the sum of the integrals over 2 of the
squares of all the ! order derivatives of h. Under the assumptions that
f1 is bounded and has a smooth boundary, A + 0 appropriately, and the ty
become dense in @ as n * »«, bounds on the rate of convergerence of the
expected square of pEE order Sobolev norm ‘(Lz norm of pth derivatives),
are obtained. These extend known results in the one dimensional case. The
method of proof utilizes an approximation to the smoothing spline based on a
Green's function for a linear elliptic woundary value problem. Using
eigenvalue approximation techniques, these rate of convergence results are
extended to faily arbitrary domains including @ = Rd, but only for the

case p=0, i.e, L, norm,
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41A25.
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> SIGNIFICANCE AND EXPLANATION

=

smoothing splines are used to approximate smooth functions when there are
only available noisy values of the function at discrete values of the
independent variables. It is shown herein that as the grid of values of the
independent variables becomes denser in the region of interest, the smoothing
spline estimate approaches the true function. Results on the rate of this
convergence are given. Convergence of derivatives is investigated, also, but
under the assumption that the ragion is bounded. The theory of linear
elliptic partial differential equations is used extensively, along with

eigenvalue approximation methods.
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CONVERGENCE RATES FOR MULTIVARIATE
SMOOTHING SPLINE FUNCTIONS

Dennis D. Cox*

1. Introduction.

Let R be a domain in d-dimensional Euclidean space R#. Suppose that there is an

unknown real valued function g defined on R for which the following data is available

(1.1) 5" q(tk) + ek k=1,2,¢00,n ,

where t‘.tz,...,tn are known points in R (referred to as "knots"), and el,ez,...,cn
are (unknown) random errors. We would like to obtain an estimate of g from the data
vector g € lp. If it is known a priori that g is a smooth function, then a smoothing
spline will provide a reasonable estimate of g. These have been widely used for such
estimation problems (see e.g. Wahba (21] or Ragozin, et. al. {10]), and can be justified
statistically as either optimal Bayes estimates (Ximeldorf and wahba [7)) or pointwise
minimax estimates (Speckman [13]). 1In order to describe these estimates, some notation is
needed.
A multi-index a € l: is a d-vector whose coordinates belong to !* = {0,1,2,...).

The order of a, denoted |a|, is given by

q

laf = [ ay .

3=1

Given a € z: with |a] = m, there is an associated partial differentiation operator of

order m given by

a
d b)
Dc = I 3 a .
3=1 3
3tj

*Department of Statistics 1210 W. Dayton 8t, University of Wisconsin-Madison,
wisconsin 53706.
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For any domain 8 C nd, let w;(ﬂ) for m = 0,1,... denote the Sobolev space of all

generalized functions (Schwarz's distributions) for which all partial derivatives of

order € m exist in Lz(ﬂ). (For a more formal definition, consult Adams {1], Agmon (2], B §
or Triebel [17).) Letting <-,~>° denote the usual inner product on Lz(ﬁ) = wg(ﬂ), we i
H

define the inner product of vfz'(m by I
i

o s

g = I @ t,D°g>o . ;

lal<m

where the sum is over all multi-indices a of order < m. The associated norm is

‘/
- 2
1£i ((f,f).) .

With these definitions, w;(ﬂ) is a Hilbert space.

A related semi-inner product is

(f,g)n = Z (D“f,n“«po,
|a}=m

which gives rise to the seminorm

1/,
- 2
|£] ((£,£) )<,

A norm equivalvent to -l- which is often convenient is

Q
2 2
e, = aed + 1 ole22,
k=1

where Dy is the operator for partial differentiation in the kth variable. See Theorem

4.2.4 of Triebel [17]. We shall frequently need other norms, in which case the space on

T I Y T

which the norm is defined and finite will appear as a subscript to the norm symbol.

The smoothing spline estimate of g can now be described. First make the following

Assumption 1. The data vector £z is given by (1.1) where c1,ez,...,en are uncorrelated

random variables with mean 0 and positive, finite variance 02.

Definition 1.1. Let m > &/2 be the order, An-{ti"'z""'tn] C @ be a set of knots, and

A > 0 be a smoothing parameter. Then the smoothing spline operator Snxs " w;(ﬂ) (if

it exists) is given for g e .n by




Snlg = 9 if and only if compared

to any h e v};(ﬂ) ¢ 9 minimizes

nA

-1 2 2
L) = n kz‘ (g, = hie, DT + Alnl_ .
Remarks 1.2(1) The existence of a unique such 9n2 is assured if the knot set An is
m~unigolvent, as shown in Proposition 2.1 below. A set of points A“ c ld is called
s~unisolvent if for any polynomial ¢ on ld of degree €< m - 1, the condition
ﬂtk) =0 forall X, 1< k<n, implies ¥(t) = 0 for all ¢.

(1i) The choice of the smoothing parameter A is a problem of congiderable interest
which we do not discuss here. See Craven and Wahba {5] for one popular method.

(1i4) The choice of m is generally dictated by one’s prior knowledge of the
smoothness properties of g, or by the use that one will make of the estimate nr¢ 20 in
Ragogin, et. al. (10]. We require =m > d4/2 in order that the evaluations h(ti) be well
detined.

(iv) Tror a discussion and references on computational aspects, consult Wendelberger
[24). #

Now our main interest here is in showing that 9,) <converges to g in various norms
as n * ®, provided that g satisfies certain conditions, and that A and An vary
with n in an appropriate way. For d = 1, there have been results presented by numerous
authors (Wahba (21];, Craven and Wahba [5), Utreras [18] [19], Speckman ([14], Ragozin (9],
and Cox (4]), but for 4 > 1 there have so far been only conjectures (Wahba [22]). The
results presented herein essentially generalize all the previous results for & = 1

{Theorem 5.1). The main result states that as n + =,
Blg , = g = \P/RGYR . g7V
nA P
The requirements, briefly, are that ) + 0 appropristely as n + =, (Assumption 2

below), that An becomes uniformly dense in 8 (Assumption 3), and that 2 be boundad

with smooth boundary (Assumption 4). The number q appearing in the bound is determined

-3
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from g according to its differentiability and satisfaction of certain boundary

conditions. These are spelled out in Remarks 5.6. If g € H;(ﬂ), then we may take q = m.
The smoothing splines which are used most frequently are computed for Q= ld, to

which the result described above does not apply. However, we show in Theorem 6.2 that

it An becomas dense in a subdomain of &’ satisfying the above assumptions, then

-1 2y -1,~d4/2m
g[n (g,,(¢,) - 9le)) ]J= 0a+n'a ),
k=1
provided g @ W;(ﬂ). Ifweput A = n-w(md), then the upper bound becomes
O(n-z‘/(m‘”), which is the conjectured optimal rate of convergence in [22]. We note

that for d = 1, it is immaterial whether 2= R or R is some finite open interval
containing the knots, since the two minimization problems lead to the same result. This is
why the stronger results hold for the unidimensional case.

In order to present our assumptions, further notation and terminology is required.
Let rn(t), te ld denote the cumulative distribution function (c.d.f.), of the
probability measure which assigns mass n-‘l to the point ty for each tke An, i.e.

() = I a7
kit <t

k
Here, the sum in the numerator is over all k, t < k € n, for which all coordinates of
tk are € the corresponding coordinates of t. Our basic assumption concerning the
knots is that the sequence {!‘n} converges uniformly (at a certain rate) to & c.d.f. F
satisfying certain conditions. Our notation suggests that An [ An if n<m, but in
fact it is only the quantity
a = sup | P(t) - F (£) I
t
which is important asymptotically. Our main requirements for A, An‘ and 1 are the
following:
Assumption 2. Suppose there is a sequence of intervals {[An, Ah]} (An < An for all n)

such that )\ & (ln, An] for all n sufficiently large, and that

-d= '




1im @ AV L e g =0
nes nn nee

Agaumption 3. Suppose the limiring knot diatribution F hasg a density f € C.(ﬁ) with
respect to d~dimensional Lebesgue measure such that for all t e @

0<:1<!(t)<¢2<~

for some constants K, ,K

2.
Assumption 4. Suppose §l is a bounded simply connected open domain and its boundary

1

W is c", 1.e. there exists a finite open covering (0111_1 of 3R and infinitely

differentiable bijections f, : 01 hd Rd for which fi(()1 na ¢ i{xe ld T Xy = ol

The following result is an immediate consequence of Theorem 5.1.
Corollary 1.3. Suppose that Assumptions 1 through 4 hold, that m > 34/2, and that

ge w:(ﬂ). Then for any p € 3 + satisfying p < m,

Big,, - gs = 0ARVR, ST,

-2m/ ( 2m+d)

Furthermore, if A = Cn for some constant C, then

_ o2 ~2{m=p)/(2m+d)
Blg, - 91, = O(n )

Remarks 1.4(1) We conjecture that the latter rate of convergence is the best possible for

general g € H: . Under a somewhat different model, Stone [16] showed that for any
fixed t € &, = (2(m-p)/(2m+d)] log n is the optimal rate of convergence in probability
of log lgn(t) - g(t)lz, where Qn(\:) is any sequence of estimates of g(t). Besides the
fact that our resuits are global, whereas Stone's are local, Stone uses a model wherein
(t.,,z,),..., (tn,zn) are a sequence of independent and identically distributed random
vectors, and also makes stronger assumptions on the nth derivative than just

g e w'; () FPor d =1 and the same observation model, Speckman {15] has obtained the

rasult that the best possible rate of convergence of

t

n
logEn ' § [8.(t) - gte]?
k=1 n x k

is -(2m/(2m+1)] log n, where an is restricted to the class of linear estimates, and

g e wz"(.-,b). Arguments given below will show that Speckman's seminorm is asymptotically

~5=




equivalent to "'0' Speckman even constructs an estimate which achieves the exact

optimal rate of convergence (constants included). His estimate is also a spline function,

e e

but one that is in general smoother than the smoothing splines we deal with here.

.

(14) If one strengthens or weakens the assumption g € Wg(ﬂ) then faster or slower
rates of convergence are obtained, but some new complications are introduced. The proper

function spaces to use are N:(Q) defined in Section 3, which are Besov spaces with

boundary conditions (Section 4.3.3 of (17]). For nonnegative integers

q € m, ve have N: - wz", but the spaces Ng are defined for all real q, 80 one
must deal with “"fracticnal” order Sobolev spaces. If g < m +1/2 then no boundary
conditions are active. However, for m +% < q < 3m +1,, certain "natural® boundary
conditions of the form Bkg = 0 are required for g to be in N:( Q). These are
derived in Proposition 2.2. For 3m +’/2 <€ q, 6till more boundary conditions come into
play. Now if p < 2m - 34/2, if g @ Nz(ﬂ) where q satisfies

d<g<2m+p, and g > p, and if X-Cn-w(wd), then i

Elg - qli - ofn3laP)/(2qvd)y
and this is the best obtainable rate of convergence according to our results. The
¥ difficulties with boundary conditions are spelled out in greater detail in Remarks 5.6
below. From a practical point of view, it seems unlikely that our unknown function g

will satisfy any of the boundary conditions. Hence, if the function is very smooth

(say g € W:" ()), then g € nﬁ(m for all gq<m +’/2 . and so we can only slightly

improve the rate of convergence given in Corollary 1.3. This difficulty with boundary
conditions was first studied by Rice and Rosenblatt [11], for 4 = 1.,

while the results presented here are significant in and of themselves, they also have
applications to other areas. One can easily see that the results on the generalized cross
validation method for choosing A ag presented in Craven and Wahba [5) can be both
rigorized and generalized. As discussed below, along the say to proving the main theorem,

we develop an approximation to s“x which may prove to be useful numerically when

S T %4 AL e SRR A I S <A, T

smoothing large data sets (n > 200, say). Silverman (12] and others have considered

penalized likelihood estimates of probability density functions, and we believe the methods

= .

|

i
|
|
3
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of this work can be applied to this problem as well. Further statistical ramifications of

these results will be treated elsewhere.

We now briefly describe the main ideas used in the proof of Theorem 5.1. First, we

define a continuous analog of the smoothing spline.

Definition 1.5, et m > 4/2 be the order, A > 0 a smoothing paramster, and suppose

¥ is a c.d.f. satisfying Assumption 3. Then the continuous smoothing spline operator
SA 3 Lz(ﬂ) * \';(0) if given for [ e Lz(ﬂ) by Sx t=9, if and only if compared to any
other he W,"(), g, minimiszes L (h) = [ (z(e) - h(en)?ar(e) + Am)S .

Remark. The existence of 9% is shown in Proposition 2.2 below.

The idea that SA could be used to approximate Snl has occurred to many authors
(Cogburn and Davis (3], Utreras (18], Speckman [14), Ragozin (9]), but it was in [4], where
a rather explicit perturbation formula for snl in terwms of Sx was developed, As is
shown in Section 4 below, there is a function GA‘ fx Q+ R such that for all g e Lz(n)
(1.3) (S,€)(t) = [ G (t, DE(TIAT

Now since SM is a linear operator {it is obtained by minimizing a quadratic form), it

may be represented in the form
n

(S, (8 = n” k_21 9 (815,
where
(1.4) S ™ St
2 being the kth coordinate vector in l". Noting that the representation for snx
involves an integral with respect to P,+ vhich approaches P, it is reasonable to expect

that as n + =, gnlk(t) approaches
(1.5) g”‘(t) 3 Gx(t,tk)/t(t) - Gx(ﬁt.t)/t(t) .

We will see that even though X is varying with n, I is in fact a very good
approximation to 9111!:' provided A varies in such a way that consistency is obtained. A
precise statement on the accuracy of the approximation of 9k by 9 is given in
Theorem 4.3 below.

Acknowledqements. The author has benefited from many suggestions made by Grace Wahba, and

is indebted to Sue Leurgans for pointing out an error in the original manuscript. The
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author would also like to thank David Ragozin who provided him with an advance copy of [9]).

In this section, we show the existence ani uniqueness of the

2. Variational Problems.

smoothing spline and continuous smoothing spline as defined above. Even more importantly,

characterizations of these functions are given which will be used in the proof of the main

theoram. For convenience, define the n-vector

(2.1) g(An) = (gle,),g(t))00ee 9l ))!

for any continuous g : @ + R.

Proposition 2.1. Suppose that An is w-unisolvent, and that m > 4/2. Then 9.2 H Sn ¢

exists for all z € l", and is the unique solution of the following problem:

rina ge w;(n) so that for all h e w;(m,

1 ¢ -1 %
) q(tk)h(tk)-n I =

Maon) + n
k=1 k=1

kh(tk)-

Proof. FPor g,h € w;‘m), define L : R * R, by

L{u;g,h) = "nx“?"“‘"

1f g exists then for Vh
nA

aL -1
0 = 5 (01g,,0h) = 2A(g ) ,h)_ = 2n Eh(tk)(zk-gnx(tk)),

so it is necessary that 9 be a solution of the problem. Furthermore,

2 n
L2wrg,m) = 2ah,myy + 207" | oneep?
du’ k=1

R g g T

n
_ =2[x I ©%hoM +n ] nee?] .
| laj=nm =1

This last expression is always nonnegative, and equals zero just in case
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(2.3) ph=0 for Vae zf such that l|a} = =,

and n(r.k)-o for 1 €<k € n.
The first requirement implies h is a polynomial of degree < m ~ 1, and the second
implies h = 0 by m-unisolvency of An' Hence, Ln)« is a strictly convex function on
H:(m, and any (the) solution g of (2.2) is the unique minimizer of Lnx.

We now show that L“A has a minimizer, which must then be the unique solution of the

N
problem. Consider the space H = R x1 Lz(ﬂ) (all products are Cartesian products)
m+d-1 3=
where N = { a }, equipped with the Hilbertian norm

n N
2 -1 2 2
MHeh ,eea,h ) an ' ] 25+ A ] s .
10 eiytly -y K g 30

Define the linear operator U : H:(ﬂ) + H by
a, %
U(n) = (E(An),b h,¢e.,D h),
where “1""'“N are the N distinct elements of zf satisfying Jal = m. By the
argument directly following (2.3), U is injective. We claim that HOE Range U is a closed
subspace of H. This will complete the proof, since Sn 22 is then the inverse image
under U of the orthogonal projection of (z,0,0,...,0} € H onto Ho.
Suppose {hjzj € 34_}(_: w‘;m) is such that {Uhj} us a Cauchy sequence in H. Now
el is a seminorm on w;‘(m, hut a norm on {the equivalence classes in) w;(ﬂ)/?m.

where P, is the space of polynomials of degree < m - 1. Note that W';‘(Q)/P“l is a

Hilbert space under (0,')m. Thus we see that for some {pj} < Pn and h e wl;(ﬂ),
'hj -h - pjlm + 0. since U is continuous, we also have that
(by(8) = B(A D) - py(8) + 0 in R
But by assumption, {Ej(An) - E(An)} converges in R as 3 + ®, so that {gj(An)} does
also. Since the mapping p *+ g(An) is an isomorphism between P, and a (closed) subspace
of R", it follows that Py*PEeR, as 3+ = |Hence, h, *h+p in Wo(R), ana
Uh, + U(h+p) 4in Ho. showing Hy is closed. *

3
Proposition 2.2. Suppose Assumptions 3 and 4 hold, and m > 4/2.

(i) For vz e Lz(ﬂ), 9, = S)‘z exists and is the unique solution to the problem:

Find g e w:(ﬂ) such that for all h e H;(Q), Mq,h)m + f gh 4F = ] zh 4F.

~9-




(14) 9 is the unique solution to a boundary value problem of the form

e -" s 1Ng =z

ng-o on M for 1 € 3§ < m.
Here, A is the Laplacian, f is the density for P, and the aj, 1<3j<m, are linear
differential operators of order m + j - 1, Furthermore, the boundary value problem is a
regqular elliptic problesm.
Proof. (1) This follows by an argqument similar to the one used in the proof of Propositicn
2.1. Indeed, the argument is somewhat simpler since under Assumptions 3, and 4,

Aln2 + fnar

gives a norm on w;(m which is equivalent to l-l_ (see (2) in Theorem 4.2.4 of [17}).

N
Thus, it is much easier to show that the appropriate subspace of H = Lz(ﬂ)x jll, LZ(Q) is

closed.
(i) This follows from standard methods. We briefly recap the argqument in Agmon [2],
pages 141-143. Pirst note that the bilinear form B(u,v) = (u,v)Ill is uniformly strongly
elliptic (pefinition 7.1 of [2)), since

B(u,v) = 2 (D"'\x,la"v)0

a |a|om
and for all g eRm,

a
I &%) T m?
jaj=m J=1 )

Hence, by Theorem 10.2 of [2), there exist linear differential operators

B, =B .(x,D), x @ 38, of order m + j - 1 (1 € j € m) such that

3 3
(av) = (wavi, + § [ L a
B{u,v) = (u,Av + — B v do ,
0 j=1 20 anj-1 m-j+1

where A = (-A)., and the Bj'l are nowhere characteristic for 23Q. Here, d¢/9n denotes
differentiation in the direction of the outward normal to 23fl, and d¢ is the element of

area on 3. If g were a solution to the boundary value problem in the statement of

-10-
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(i1), then for all h e n;(m ve have
Ag,h) + [gnar = M(-8)"g,h) + [gieIn(ereierae
- (!(:—q).h)° + (tq.h)o
= (fz,h)) = [zhar,
Hence, g would be a solution to the variational problem stated in part (i). Bee also

tions & Magenes [B), Section 9.5.

We now verify that the boundary value problem is regularly elliptic by checking the

conditions of Definition 5.2.1/4 of Triebel (17]. That A '(-&)™

is properly elliptic
follows from

a1 % a5 0 for a1l e a0}
|alem b 3

and, if g,ne ld are linearly indspendent then the roots of

P = § (prmi®eo
| aj=m

are the roots of

4

1 (C,"T"j)z =0

=1
(replicated m times), and thess are clearly complex conjugates of each other. Since the
boundary operators {B j) j:I are nowhere characteristic for 9, they form a normal system
and furthermore they have orders <2m - 1, Finally, that aj satisfies the complementing
condition with respect to Af '(-A)™ + 1 follows from Remark $.2.1/4 of [17). Hence, the
problem is regularly elliptic.

To complete the proof, we need to show that the boundary value problem possesses a
unique solution. According to Theorem 5.4.3 of {17] and the remark thereafter, it suffices
to show that the only solution to the boundary value problem when £ =0 is the trivial
solution, Howaver, this is immediate since Xf‘(-A)' is a positive operator so =~1

cannot be in its spectrum, i.e. M"(-A)' + 1 has empty null space. ]

-11-




3. Function Spaces. In this section, we will introduce the function spaces which will be
used in the sequel. The Sobolev spaces wgtn) were defined in Section 1. It will be
useful to have the Besov spaces 3;2(0), which are defined for all real s > 0. A
complete account may be found in Triebel ([17). The following, brief definition will serve

our purposes. Given two Banach spaces A _,A both being subsets of a larger Banach space

0"’
A, define the K-functional X:(0,%®) x (Ao + A1) *R (here, Ay + A, is the linear span

of A UA

0 1 and x denotes cartesian product) by

K(},a) = inf {uolAo + lla1IA1: a=a +a and a eA,i=1,2].

FPor © e (0,1), the K-method interpolate is the Banach space

-»
- - 1
= (f iy %,ani" any2¢ o) .

LI PP {aea, + 2 /

: lal
1 (AO'A1)9,2

One of the basic properties of this interpolation method is that the spaces are increasing

.e. n C .
in O, i.e. if 0 <O <9 <1, then A NA C Ayerydg 5 < Agrdgdy 2 SATA, For

any #€(0,®), let k be an integer > s. Then we may define the Besov spaces by

s
B3,(R) = (L,(), “:‘“’)e,z with © = s/k.
The definition i{s independent of %k, up to equivalent renorming. For s € Z + ,

B,(Q) = W)
with equivalent norms. For Q = Rd, this result is stated in Remark 2.3.3/4 of [17]), and

it follows for general £ from Definition 4.2.1 of that reference. Interpolation of Bescv

spaces yields nothing new, i.e.

(1-0)g+0r

22 Q.

s x
(un(m, an(m)e,z = B

This follows from Theorem 4.3.1/1 of [17).
Let u_(m be the subspace of w:‘(ﬂ) of functions which satisfy the natural

boundary conditions B jh =0 on M, 1 <3 <m That these are well defined follows from

Sobelev's trace theorem (Theorem 3.10 of Agmon [2]). Also, define the operator

D=t t-a™

-12-




N with domain of definition Nn(m. Hers, A 1is the usual Laplacian on RY and ' denotes
division by the density of F. According to Theorem 14.6 of Agmon [2), Dhas Adiscrete

. spectrum contained in the positive real axis, and the eigenvalues have finite
multiplicity. We will write the eigenvalues as

Y ‘Y2<n.

1
where each is replicated according to its multiplicity. The corresponding eigenfunctions

will be denoted {¢ } _., and we may assume that {Qv} forms a complete orthonormal

system for L,(Q) (Theorem 16.5 of Agmon [2]). The space is given the following norm
) Ny

2 - 2 2
“"um(m = g (Yv + ”‘h"v)o

2 2
= Iohig + Inig.

* One notes that e is the same as defined in 1,18.10 of Triebel [17]. Using the

1
Nm(m
definition contained therein, we may define for any nonnegative real number s,

(]

1
CLOY™ s e 2 <o

]
N (8) = {he Ly(R) : fnl
Nm(n) v

According to Theorem 1.18.10 of [17], if © e (0,1),

[ ] os
(3.1) (Lz(ﬁ), Nm(ﬂ))el2 =Ny Q).
In particular, for s € (0,2m]
8
(I.Z(m.nmm))s/m'2 =N (Q).

In order to give a more useful characterization of N:(ﬂ) it is necessary to introduce
Besov spaces with boundary conditions.

Letting Bj be the boundary operators from Proposition 2.2(ii), set

n;z'(nj}(m =~ {(he B;Z(Q):thlm = 0 for each j satisfyingm+ j - t < & -1/2 .

{compare with section 4.3.3 of [17]). Note that

- gl - gl
Nm(a) Nm () 322' (‘j}ln).
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Our immediate aim is to establish similar equivalence results for the spaces

{ ]
N .(ﬂ). S eR.
Proposition 3.1. Suppose Asgsumptions 3 and 4 hold.

() If s eR  and if there exist no i, 1 €i<m, and no j e z,\(o} such that

s=2mj-Y%)+1-Y, then

8 8
= Q
Nm(m 522'{ck1}( )

Here, the set of boundary operators {cki} are the class of all operators of the form

c.. =8, 0 D" for 1 €4 €m 1L €k €3 = [a/2m] + 1.

ki i

(11) 1f s~ 2m(3 -'%) + 1 -1, for some i, 1 <1 <m, and 3 ez \{0)}, then

1 -
N3(2) = (hes (M : B, Pne 32;2 (rY) with supp h c B} .

22, {ck].}
(iii) For all s € R. the norms el and e} are equivalent on N Q). 1In
+ s s m
B, () B(R)
22 m
particuiar, for k € Z.. the norms I'Ik and Q) X are equivalent on N:(ﬂ)-
N ()
]

Proof. Step 1. First assume s = 2mk for some k @ Z, . We will prove (i) and (iii)
in this case by induction on k. The equality in (i) is true for k = 1, as already

noted. Now we make use of the following a-priori inequality in Theorem 4.3.4. of [17): for

any p € Z,, there exist positive constants C,;, C, such that for all h e wgmﬂ’(ﬂ).
m
< + 1 .
LU R UL L DA 1 B sz, € G2
J=1 By Q)
Taking p = 0, we see that Il is equivalent to 18 on sz(m. since
-.«2"‘(9) 2 "
mn

th- G, Vhesz(Q) and all j, 1 € j € m.
For induction step, assume for some k » 2 that (i) and (iii) hold when

2mk N2m(k-1)
m

s = 2m(k=1). Then h e N_ ™" (8) implies Dn e (R), so that Dh satisfies

-14- .
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3, 0% (om) = n, 020 on 20
for 1< i< m Hence, all h @& u:'"(n) satisfy the boundary conditions in (i), Now
apply the s-priori inequality again to conclude that '.lhk is equivalent to the norm
lz:k(ﬁ) given by

(17 + Ihig ,

Yomx-1)

but by induction hypothesis, 'm'h(k-t) can, for a1l h e N:'k(ﬂ), be trapped bestween

constant multiples of

= (0% om)a? mu:)"?

\)
- = (10*ni} + wni2)2
By using the sigenfunction expansion for h, we easily see that
2 2 2 =2(x-1) 2
vjmi) < apnil < v nf‘hlo .

It is now clear that -1} is equivalent to the norm given by

2mk

2 2
(10%ng + mad)2= my k.
N2 (@)

This shows that (i) and (i4{i) hold vhen s = 2mk for aome k € z,.
Step 2. Parts (i) and (ii) are now an ismediate consequence of Step 1 and Theorem

4.3.3, of {(17). Part (1ii) follows from the norm equivalences of Step 1 and a simple

calculation with the definition of the K-method of interpolation.
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4. The Green's Function Approximation. The main result of this section is Theorem 4.3,

which gives an approximation of the smoothing spline in terms of the family of Green's

functions descsribed in the introduction. The proof of this theorem depends on the two

technical lemmas (Lemmas 4.1 and 4.2). The first provides various norm estimates on the

family of Green's functions. The second lemma concerns the accuracy of approximating the

inner product in L,(F,) by the inner product in L,(P), and in particular if one of the

O

entries in the inner product is from the Green's function family.

A e = g e S AR Y Y. YD OB, -

8ince SA: is the solution of a certain boundary value problem (Proposition 2.2(ii)),

it has the representation given in (1.3), where GX(".) is the Green's function for

AD+ 1 with domain n-(a). We prove this as in Theorem 5.6.4 of Triebel {17] by giving

an explicit construction for G,. Let {y “), {Qv} be the eigensystem for the

operator D = £.1 (-A-) with domain N-(ﬂ) as described above. Then we may develop GA in

a bilinear expansion, viz.

-1
G,(t, ) = g("“v) I NOTNEF

e e ot s At i g A i

where the series converges (at least) in Lz(n x ). The aforementioned reference
guarantees G‘\ e Hzp (3 xQ) for any p e z, satisfying p < 2m -(4/2) (and not for any
larger p).

We now introduce some notation used in the sequel. For a, B € z:, define

bt i e s

a,8 = p% [}
o:;x (t, 1) Dt D, cx(t,t) P

where D, denotes differentiation with respect to the first d-dimensional argument, and
similarly for Dt. Also, we shall use the notation for arbitrary nonnegative functions

g,h
g(t) = hit)

S VI g T AT g ST O YR FTTY YNV VS A Y SO R TSRS s

to mean there exist positive, finite constants Cqs C, such that for all t of interest

C,gtt) ¢ nir) € cglt) .

The notation

g{t) ~hic) as t + t,

-16=




means that

glt) = h(t) = o(h(t)) as ¢t + ty -

Finally, we ghall need the lin« \; erator Rnk 1 C(R) + w: (2) given by

1 1

n
-1 -
R(DAF(T) = n | 6,(t,t )t )
L AR

(R,hHE) = [ G, (e, DE(T” hit,)

= [ sy, 0en ™ ninatr(n - £ (01 .
Lemma 4.1. Let 2m > 4/2, and let Assumptions 3 and 4 hold.

(1) 1f 0< p< 2m - 4/2, then
16,1 . - (2p*@)/4m
W5 (ax@)

Here the constants may be chosen so as to depend only on i, m, p, and F.
(1) 1f pe Z, and p < 2m~d, then G, e cg(ﬂ x @), the class of functions whose
derivatives of order £ p are bounded and continuous on 8 x Q.

(iii) If p < 2m~d, then
=(ptd)/2m
. sup IGX(‘.t)lp < xax
t
xa (Q,m,p,F). Here IGA(',t)Ip means I-Ip computed when GA is considered

where x3 -

as a function of its first argument only.

Proof. (1) Rather than estimate IGXI ; we work with the equivalent norm
w2 x )

s, H1 as defined in {1.2). Since D is formally self adjoint,

W5 ()
Gx(t,r) - GA(T;t)p

and we clearly have

2 2 2
(4.1) tite, 111 + I, =2 [ 11l6,(*,01]1%ax
MR ax) AL, (@) a At p '

2

where by GA("T’ we mean to congider GA as a function of its first argument while the

second is held fixed at t. By Proposition 3.1, there are positive finite constants c4

BN ittt B KDt SR .l . A s i B A o 3. Pt B 1 o

* and ¢, depending only on &,m,p, and £ such that for every <

w}]=

IS N x e v s g



P

2
< s, (o, OIS € e lG,(*, D)} .
N-(ﬂ) A ) 22 P

(4.2) c 16, (+,T)}
1A N

According to Theorem 14.6 of Agmon {2], we have
(4.3) v, = Ve,
v
We note that & need only satisfy the restricted cone property in order for this to hold

(sea p. 239 of {(2)). Hence, for some constants c‘ = cim,-,p,n, i= 1,2, it holds that

T A A, - SR S TR0 L/ T

2
[t ) ar=] 1+ ;\Yv)-zyvp/-
nn(a) v

2m/4. -2 2p/d
Gc‘§(1+C2XV ) oV

sz /ddx

-(2p+d)/2m f
2-/6)2

~ c1x
0 (1+czx

as A + 0, The last line follows from an application of dominated convergence. This

shows that for some finite constant x, - x,(n,n,p,F),

1G, 1 < g " (2prd)/am
wg(n x Q)

An entirely similar argument shows

> k_a-(2p+d)/am

ig, 1
‘Raxa 2

P T O AP Y Y . mwﬁ;.. -

for some constant ‘2 - xz(n,m,p,r). This completes the proof of (i).

o

(i1) 8ince G, € wg(ﬂ x Q) for any q < 2m - (d4/2), it follows that GX e cg(ﬂ x Q) for

A
any p < q - (4/2) Dby one of Sobolev's imbedding theorems (see Theorem 5.4, part (C) in i

AMams (1]).
(1i1) Considering 1G,(+,t)H} as a function of t, we have
A wP(q)
m
2 z -2 Yp/ll! 2
(4.4) 1G,(*,t)8 - (1+ay_) 1o ()]
A NE(G) v v v v
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where the series converges (at least) in L‘(n), provided of course that

P <2» 4/2 . The a priori estimate (Theorem 5.3.4. of Triebel [17]) ylelds

"v'zu < ca(lmvlo + "v'o’ < cs(yv + 1) Igvlo =- cs(yv + 1)

where the conatant 03 - ca(n.-.r). By Sobolev's inequality (p. 32 of Agmon (2]), for some

c‘-c‘(n,-) and any r 2 1, we have for all t e @

-{2m~4/2) 1e.)

a/2
Io 021 < C,lx vlam ¥ ¥ l0v|°)

~{2m~4/2) a/2
< c‘ (c3 (Yvﬂ) r +r }

If we now utilize " vwd, and put r = v‘/d, then we obtain

el < csv‘/ 2 sor some Cg = Cy (R,m).  Substituting this back into (4.4) yields

2 2 -2 p/m
16, (+,¢)l <cc Joviieay )y
A nﬁ(a) 5y v

< C: e, ) (‘wzvad)-zv(Zrd)/d
v

~R e A.(p.'d)/. r x(zp"d)/ddx

L | 0 (chx‘lll/d)z

as A ¢ 0. Note that convergence of the latter integral requires

p<2m-~d.

In view of Proposition 3.1, the proof of (iii) is complete.

«19=




lLemma 4.2.

Let m > 3d4/2, and let Assumptions 3 and 4 hold.
(i) Por functions h,g e w:(ﬂ) we have
1/ ng a(r-F )} < Ka Ind gt

where L x‘(O) is a constant, and dn - suplr-?nl.

(i1) suppose p e z*' satisfies p < 2m - (34/2). ‘Then for any h ¢ wg(n),

IR .hl_ < K'a IG, 0 tht_,
nA p 4n A 4 d
w2t axq)

where Kz =K, C where C depends only on F, and K, 1is the same constant as in (i).

{(iii) Under the same hypotheses a= in (ii), for each v e Z,.

v -5d4/4m. v ~-(p~d)/2m
'R“xh'p < xS(xsdnx ) A Ihld

where xi - Ki(ﬂ,m,p,r), i =5, 6, are constants,

(iv) Under the same hypothese as in (ii), there is a constant x, = x7(n,m,p,r) such that

-1 ¢ -(p+2d)/2n
n kz1 baydp Vota € KA

(ra XV
where Ik is defined in (1.5).
Proof. (i) We start with the following integration by parts formula, valid for any
he C: (Id) = infinitely differentiable functions of compact support, and any probability
distribution function G on 8:
(4.5) [nirasey = 3 =!8 [ oPrieen) wscecanae
selo,1}?

where t[8] has 3P coordinate tj[BI given by

5 it By =1,
t [B) =

3 -
A usj 0,

el e




where A > 0 is chosen so that 2 C [-A,Ald holds. The summation in (4.5) is over all

B e zf whose coordinates are either O or 1. The integrations are over [-A,A]d. Note

that each integral on the right hand side may be reduced to a |B| -dimensional integral

with respect to

A proof of (4.5) runs as follows. If G is a unit point mass concentrated at some point

in 9, then (4.5) can be proved by a tedious but straightforward induction on d. The

result for arbitrary descrete G follows by taking convex combinations. 1t then suffices

to show that if the formula holds for each element of a sequence GysGgeenre which

converges to some G uniformly in €1, then it holds for G, because the discrete

probability measures are dense in the space of all probability measures on [-A, Al? vhen
equipped with the topology induced by Kolmogorov's (sup-norm) metric. Since Kolmogorov's
topology is stronger than the topology of weak convergence, we immediately have that
(4.6) J'h(t)dsn(t) + [ n(t)de(t) .
rurthermore, if B e {0,1}2 we claim that as n + =
fnah(r.w] )G, (t{Bl1at + [ obhcersriaieranae .

Since distribution functions are bounded by 1 and h e C;(Rd), this latter result follows
by Lebesque's dominated convergence theorem, completing the proof of (4.5).

To complete the proof of (i), assume first of all that Q= [-A,A]d and also that

h,g e c:(nd). Then the product differentiation rule followed by Cauchy-Schwarz yields
(. 1 e - rooPhgrfeetshiael < a f (0Bnarce s tae
ah B~a
ca I [1{ooT % jetstae
alB

<a I [J % 2ceranae 2 [f %% 2 rnacJ2.
<8

~21=
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If |8] < 4, sSobolev's theorem on traces (p. 38 of Agmon [2]) applies and we have

1
¢f ©%3eiaan)? <comi .
wz([-AIAJ )

where c‘ = C‘(A) is a constant. Hence, from (4.5) and (4.7) we obtain

(4.8) 1f ng atr = )1 < 227 max {1,c,}a_ ig!

wWii-a,a1%)

d 4
> U&(I-A.A] )

This was obtained under the assumptions that h,g € C;(Rd) and Q= [—A,Ald. However,
the restrictions of c;(Rd) functions to [-A,A]d gives a dense set in wg([-A,A]d), so
(4.8) holds for arbitrary h,g € W:([-A,A]d). Furthermore, there exists a continucus
extension operator (Theorem 4.32 of Adams {(1]) E: Wg(Q) +> wg([-a,nld), so that
w:([-A.A]d) norms in (4.8) may be replaced by wg(n) normg at the cost of introducing

another constant factor which depends on . this completes the proof of (i).

a,0
A

bounded and continuous on & x & by Lemma 4.1 (ii) and Assumption 3, provided |a| € p.

(11) pefine E‘(t,1) - Gx(t,t)/f(r). The assumptions on p guarantee that G is

Hence, we may interchange differentiations and integrations under these conditions. Thus

2

-~ 2
(4.9) 'Rnxh'p = If Gy {* TIh(T) AIF(T) - rnmllp

= 3 1%, 0n(n ar(n - F(01)2
lal<p A n 0

2.2, .2 =a,0 2
< K & iy 1 ] ey (e, 90 at ,
lal<p

where the last line follows from part (i). Now

I [aeye,ifae= T T f[ieyhe,n1? aar < 15,02, .
lalép lal<p |Bj<a p
An application of the product differentiation rule, Assumption 3, and Sobolev's

inequality yields
; (4.9a) llep*d <C .lep#d'
where C is a constant depending only on f£. Substituting this back into (4.9) completes

the proof of (ii).
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(444 Using part (ii) and Lemma 4.1 (i) gives for any v € z*\ {0},

v . v-1
nznxmp < x‘dnls RM hld

[ ] ]
Y Bt )

e y=(2p+3d)/4m V-1
< c,x4dnx IRnA hld

for some constant c‘ - c1(9,n,p). Using p = d in this last inequality and iterating

gives the desired result.

{iv) We have by Cauchy-Schwarz

n
-1 — -
(4.10) n 121 19, 100y 0y = N 182115, ( )1, aF (t)

= 2 /. = 2 %
< ([ G, (et arn(c)fz [f 15, ey arn(:)}z.
Now concentrating on the first factor, we obtain from part (i) that

- 2 ~ 2 - 2
J 16, (o, 0)1% aF () € [ 16, (¢, £)1_ aF(t) + K, 1G,1
A p n A P 4 n A _ptd
2 ( xQ)

Now Lemma 4.1, inequality (4.9a), and Assumption 3 imply the existence of constants

c, = ci(ﬂ,n.p,!‘). i = 1,2, for which

i .
/ l'é;(m:)l2 ar(e) < c A (2prA)/2m
P 1
and
- 2 -(2p+3d)/2m
TN | < e\ .
Yt 2
Hence
= o2 -{2p+d)/2m -(2p+34)/2m
I FR)00 AR (8) < C +K,C,d A

If we set p = @ in this latter result, and substitute the bounds back into (4.10), then

the desired result is obtained.
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Theorem 4.3. Suppose m > 3d/2, and that Assumptions 2,3, and 4 hold.

(i) There exists nj = no(ﬂ,m.{xn}.F,{dn}) such that for all

n? no and all j, 1 € j € n,

«
v
Farg T VZO Radag

where the series converges in wg(ﬁ) for any p€32, p < 2m-~ 3d/2. Moreover, for any

fixed n > n this convergence is uniform in j (1 € § < n) and A e [kn,-).

0'

(4i) There exists n_, = n1(9,m,(kn}) such that for all n > n

1 and any p € ()

1
p < 2m - 3d/2,
-5d/4m) A—(p—d)/ZmIg

1 < K7(dnl

'9ak T Iak'p !

Ak d

where Kﬁ = K7(ﬂ,m,p,F) is a constant.

Proof.(i) Por any fixed t_ e Q, let Ex(t,r) - Gx(t,t)/f(r) as before, and put

0
gx° - GA(.’to) .

If ve z* and 0 € p < 2m - 34/2, then Lemma 4.2 (iii) yields

(4.11) iR < xs(xsanx's"/‘“)“ yemd)/2m,

2 %0'p x'a

Hence, if only

-5d/4m -1
(4.12) dnxn < KG

then the series in the statement of the Lemma converges in wg(ﬂ). By Assumption 2, there

ig an no = no(ﬂ,m,{xn},r,(dn}) for which (4.12) holds for all n > nge Lemma 4.1 (iii)

and (4.9a) give the following bound, independent of ¢t;:
-d/m
Igmld < KS ’
which implies the convergence of the series uniformly in Jj. Substituting this latter

inequality back into (4.11) and putting c4 = K5K3 yields

v -5d4/4m v ~{p+d)/2m
(4.13) anxgmlp < c4(x5dnx ) A

which implies the convergence uniformly in A > Xn.
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To complete the proof of (i), we need only show that

-
(4.14) v
he I R,g
Va0 nA% Ak
{s in fact equal to 9k In order to do this, we will first show that for all
xe H:(ﬂ), and any fixed to t_ e Q,
(4.15) MG (e o))+ [ Gy(ege01xdF = xttg) .
We claim that N:r(ﬂ) is dense in w:(n), 8o that is suffices to prove (4.15) for
X e N:r. This density claim follows since the linear span of the eigenfunctions (Qv}
is dense in both N:m and N:, and the latter is the same as w: but with an equivalent

norm (Proposition 3.1). Now for x € “:n' we may apply the Green's formula and note that
the boundary terms vanish to obtain that the left hand side of (4.15) is equal to

[ B =00 + 06, e vaT .

9 -}
However, this last quantity is equal to x(to) by the definition of Gx as a Green's

function,.

Now note that

-~ [}
\'J A\
h=gy - \2"{.\;"»‘ * R \zo’h’m = Ran

where the second equality is justified (if m > 34/2) by the fact that the serles converges
absolutely in W:(n), and RnA is a continuous operator on w:(ﬂ). Furthermore, using
Fubini's theorem, we obtain for any x & w:(ﬂ) that

MR \h,x) + I(Rnxh)xdi‘ -

=r I [ B e, onmatetn-r (01 0% (t)de
|aj=m n

+ [ { [ S, (e, 0ncnatrcn - Fn(t)]}xlt)di‘(t)

= {X| % [ %% (t1ae + [ § (e, nx(t1ar(e) fninalF(D-F (D]
aj=m

= [ x(nir(n)alr(r) - F (D],
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where the last line follows from (4.15). These laat two sets of displayed calculations can
now be uged to show that for any x € H:(ﬂ).
Ah,x)  + fhxd!‘n

= Mg, X+ J/ g X @F + MR ;hox) |+ f (R ;hix @& - | nx ar-¢ )

- x(tk) .

where the last line follows from (4.15). It now follows from Proposition 2.1(i) that
h= Yk’ and hence that the proof of (i) is complete.

(14) If n>n we have from (4.11) that

ol

v
'gnlk - gXk'[:b < \21 'Rnkqlklp

-
-(p-d)/2m
< xX b9y s )) (xgd

A-Sd/«n) v
V=1 '

- ~(p-d)/2m - -5d/4m, -1
cgd X 1g, 1, 1 - X8 X 1,

where C5 - cs(a,-,p.r). If we take n, = n1(n,n, [An), {dn]) sufficiently large that for

all n > n1,
~-5d/4n -1
dnxn < (zxs) '

then part (ii) follows.
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5. Main Theorem. The results of the previous sections are brought together here to prove

the following main result.

Theorem 5.1. Suppose Assumptions 1 through 4 hold, and that = > (3d/2). 1let pez,

with p < 2~ (34/2) .
Suppose g € N:(ﬂ) where q satisfies

d<€q€¢2m+p, p<q.
It 9 " Snx 8 with the observational model (1.1}, then as n + =

"QM - g.; - oh(q-p)/l . n-ix-(zwd)/h]

uniformly in i e [xn.An].
Remark 5.2. The last phrase means there exists an n, (depending only on ﬂ,n,p,q,(kn},
5 (An), and (dn)) such that there is a constant C for which n 2 n, implies for all

Ae [xn,An].
5 Blo,, - ql;‘; < c[x“l‘P)/‘ e A—(2p+d)/2l] .

Remark 5.3. From the two lemmas below, we see that a somevhat sharper result can be stated

if one is willing to use the equivalent Ni(ﬂ) norm, namely, for all 6> 0,

2 2 2
sup Elg , - gl Ao MO+ J w,t 't)l“pm)dr(t) .

lglN: =9 N:(ﬂ)

Here, A_ : R+ R is given in (5.2), and satisfies the relation a_(A) = A(TP)/®
pa o+ + : P

The supremum is taken over all g e N:(ﬂ) for which gl a = 0,
NI(Q)
]

Proof of Theorem. Using Assumption 1, we calculate

2 2
llq“A - glp - "Snls(An) +e- gl P

e e i o ol .

2 -1 2
lsnkg(an)-glp + 2n E (B ) <S ,a(8)-9,9, 5, >t EIS, e,

2 2
lsnxg(an) - qlp + llsn*glp .
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This is the familiar decomposition of mean squared error into bias squared plus variance.

The theorem is now an immediate consequence of the following two lemmas and the equivalence
of 1+lp and I-I“f‘:(m (Proposition 3.1).

Lemma 5.4. Under Assumptions 2,3, and 4, if m > (34/2), p e z, and q e (4,=) satisfy
Pp<2m~- (34/2) and p < q € 2m + p, then for every © > 0,

2
sup {lsnkg(hn) - qle 1 ge N:(ﬂ) and Igl = 9} ~ qu(x)ez

q
n(ﬂ) Nn(ﬂ)
as n + =, Here, the function qu is determined by p,q,8,m, and F, and furthermore

A_(n) =alaR/E

Pq
Por both asymptotic relations, there exists n, = no(ﬂ,n,p,q,{ln,hn}.(dn}, F) such that
for all n > L
Proof. First note that

the relations hold uniformly in A e [An,An].

n -
-1 v -
S gld)=n ' § qgttdg, = § [ 6, (t,2)g(nIar_(1)
nx<'"n =1 X “nik %IX A n !
so that
IR, U3 ] E"
S.qa)-g=[IR, (/]G (T,*)g(1)ar(T) - R .9)] - g = €
nad{2n R YR A Rua oo Bt
where

€ = IGA('.T)q(t)dr -g.

In order to show convergence of the series and obtain bounds on the terms, we need to

estimate ex. Now
-»
- -1
< 1 0+ X)) Ay (g, ¢

Vo b, ¢
a1 vo'v

where {Y“}, {ov} is the eigensystem for U introduced above. We gee immediately that

2 p/m -2 2 2 2
(5.1) 1g, 0 = 3 00+ vy )P0+ a7 A0 %9, 005 €A (M) 1g]
A N:(ﬂ) v v v v *¥v'o Pq “:(a)

=28~




where
(5.2 (Al = s 1+ y ) TGy )

. Moreover, if the sup 1is attax..\::: at some (finite) vo, then the upper bound in (5.1) is
attained at any scalar multiple of ovo. Utilizing the eigenvalue estimate (4.]) gives
(5.3) Apg M) €S sup VD4, o W V42

< czx(q'p)/' sup (1 +C, x) "2 2mpmal/m

x>0
where Ci = Cl(ﬂ,m,p,q,!), i = 1,2, are constants. Here we have replaced the discrete
variable sz./d by the continuous variable x. Now it

p<q¢<m+p

then as x + =,

(1 + c,x)'zx(""'"*"':’)/m +0

and remains bounded as x * 0. This shows that the sup in (5.2) is attained at some

v and hence that the upper bound in (5.1) is attained. Note that

-Zx( 2m+p~q) /m

ol
(1 + cix) remains finite if only q » p. Furthermore, one can obtain a
lower bound for AN(X) which is of the same form as (5.3) (only the constants are
different), and so

(A) = x(c.r-p)/m .

-
To complete the proof of the Lemma, we need only show that ): &‘:At:A is
v=1

asymptotically negligible compared to ¢ We apply Lemma 4.2(iii) to obtain for all

a
vt
Sd/«n v '(p‘d)/Zl
iR A‘A P < cs‘czd A "A'd R
and hence that for all n lutucicntly large
=5d4/4m, ,(d=-p)/2m
'ZRAx ¢ x(a A 'BY te, 1,

-5da/4m, .(d-p)/2m A(q-d)/Zm

1]
<K 'Q'q(dn‘\ P 3

< xuglq(dnx's"/"')x‘q’p)’z‘

. -29-
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where K,K' are constants depending on @,m,p,q, and F. The fact that q > 4 was used

at the second step. By the first part of the proof, Assumption 2 implies the last

expression is asymptotically negligible compared with lcllp, completing the

proof. [ ]

Lemma 5.5. Let m > 34/2, and suppose Assumptions 1,2,3, and 4 hold. If pe z,

satisfies

0<p< 2m- (34/2) ,

then
5iS_ g1? » p tyT(2PA)/2m
ni~ p

as n +®. Furthermors, there exists an n, = no(ﬂ,l,r,p,(ln, An).(dn}) such that the
constants may be chosen independently of 1 & {An,An] for all n > a5

Proof. Since the errors are mean zero and uncorrelated, we obtain

n
2 2«2 2
(5.4) llsnkglp = o°n '2 .gnlk.p
1
22 % 2 2
=on x-z1 {"'n:'p *2< g9 " Tk 2ot e T Gancpl

We now deal with each of the three terms in turn.

Firstly, note that
-1 2 = 2
n ,{‘ Ighlp [ lcx(tn)lpdrn(t)

= 2 = 2
= [ 16, (¢, *)0 dr(e) - ]lcx(t.')lpd(r(c) -r (V) .

Using Assumption 3 and Lemma 4.1(1), we obtain

(5.5) J 13, (e, )0 2arce) = A(2prar/am

Also, Lemma 4.2(4) and the assumption that p < 2m ~ (34/2) yield

(5.6) / lax(e.-n:um) - 7 (0)] <K 65,01 - g ofx"‘2prI%/2m)

4n A 'g*d‘mm

- {a A-Sd/‘.»d/‘ldx-(zwd)/zl} - o(x-(ZPPd)/ZI} .
n

=30~
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Assumption 2 is used at the last step.
Turning to the second term in (5.4), an application of Cauchy-Schwarz gives

-1 -1
{n E‘g*“' Ik " Tnax ’p | SR E a9y oW Tanp

-sa/am, .~(p-4)/2m -1
< L,(dnl 12} n E '9lk.p'gkk'd

where Theorem 4.3(ii) was used at the last step. Now by Lesma 4.2(iv),
~(p-d)/m -1 - ~d/, =-(2p+d)/2m
A n E TNURT MU R IR R "0 Y .

Combining the last two displayed estimates and using Assumption 2 gives

(5.7) a” I € oty = S %p - o(a"iZprar/am,

Pinally, the third term in (5.4) is easily dealt with in the same manner, and one

obtains

-1 - 2 ~54/4m.2  .-(2p+d)/2m - =(2p+d)/2m
(5.8) n Elg“ Il = (4,2 ¥ o } = of) ) .
Combining (5.5), (5.6), (5.7), and (5.8), and inserting them into (5.4) yields

2 2= 2 =1,~(2p+d)/2m
IIS“kglp on J 16, (/e L ar(e) = n” X .
The statement regarding uniformity follow from the corresponding statements in Lemmas 4.1,

4.2, and Theorem 4.3,
[ ]

$.6. throughout these remarks, we adopt the notation and hypotheses of Theorem

S.1.
(1) The best possible rate of convergence implied by Theorem 5.1 is always cbtained if
A e n-ZI/ (2q¢d)

in which case
"‘nx - q.: - o{n-Z(rp)/(qu)} .
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As will be noted in (vi) below, implicit here are certain lower bounds on q besides thuse
stated in the theorem. We proceed to analyze some of the various cases with regard to

smoothness of g and boundary conditions.

(11) 12 q<m+Y%, then ug(n) - n';z(n), and there is no difficulty with boundary

e e A TR T i A

conditions.

ey

(111) 1¢ m +‘/2< q < 3m +1/2 » then necessarily Bkg =0 on 3% for all
ke z,. 1<¢k€m such that m+ k-1 < g -1/2 (see Proposition 3.1). Por a i
" particular p, the requirement q € 2m + p may be the limiting factor. 1In particular, if
P = 0, then there is no gain in convergence rate for q beyond 2m. This is an example of
the saturation phenomenon familiar in approximation theory. Note however that we can still

make gains in estimating higher order derivatives (p > 1).

(iv) If 3m+14< q< 2m+ p < 4m - (34/2), then not only does g satisfy the natural

boundary conditions Bg= 0 on 38, 1 €<k <m, but also some second order natural
boundary conditions, namely Bkvg =0 on 3 for k such that 3m+ k -~ 1 < q -1/2 .

This, of course, only has an effect on estimating derivatives of order m + 1, m + 2, ...,

A

; [2m - (34/2)].
(v) Note that when q > m + ‘/2 s, the assumption g € Ng(ﬂ) limits g in both smoothness

and boundary conditions. If, for example, g € w:"(n), but for some j, 1 € j < m, we

have B g=0o0n 3 if k < j but B

q
. jg £0 on 32, then g e Nn(n) for all

qg<m+ j- 1/2 + but no larger q. Hence, we have for every € < 0 that the rate
- -1 o ee
.,.: - 0[n"2(m3- Y-/ (2me23-1-2004) )

T A R S WY T TS

Elg, -

is obtainable. It would be interesting to sharpen this result, by going to logarithms for

e e

example.
(vi) 1In order to verify Assumption 2, it is necessary to know how fast dn = gup|F - l"nl
can go to zexo. For d=1 and = (0,1), one can easily check that
a > (zm)™!
with equality just in case

t,=(k=%)/m 1<k<n.
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Por general 4, if n = jd for some ) € Z, then the uniform discrete measure

concentrated on the grid of the form

- i
3y Vg eaakg =), 1 Ck <) ,

approaches uniform (Lebasque) measure on the cube (0,1 )4 in Kolmogorov metric at the rate

3-1 - n.vd. Under Assumption 3, F looks like uniform measure on sufficiently small

cubés, so the rate

a =V
n

is at least attainable. However, if one chooses the knots randomly (l.e. if tg, t,, ...
are independent and identically distributed with the distribution F), then the rate can be

improved to

a = op(n'l’2 ),

where 0p means "big oh in probability,” See equation (2.4.3) in Gaenssler and Stute ([6].
We conjecture that dn ~ n-1 is obtainable in any dimension, but the construction of knot
sequences attaining this rate appears to be a nontrivial problem. In general, if

-r

q =
n

for some r > 0, and if also
Am n-zn/(zq+d) ,

(so that the optimal rate is obtained), then Asgumption 2 requires that
q > 4(5=2r)/(4r) .

This is a stronger assumption than the minimal one required for Theorem 5.1 (i.e. that

q ? d) unless r > 5/6.




6. _Extension to Larger Domains, Suppose that F and O satisfy Assumptions 3 and 4, and
that ' is a domain satisfying
aca ,

g fi' = ld. Congider the smoothing spline estimate q;“ obtained by minimizing over

he w:(ﬂ') the quadratic form
Il -nen?enr 1 o%henie.
k jaj=m Q°
The only difference between q:ﬂ and 9 is that the objective function involves
Lz(ﬂ‘) norms of 8" order derivatives rather than Lz(ﬂ) norms. If
R = ld, then g"IA is called a "thin plate®" smoothing spline [22], or Laplacian
ssoothing spline [24]. Our convergence rates will be in terms of the expacted value of the

square of the Lz(l'n) seminorm of the error, viz.
2
T, - E s (gh,-9) drn]
[} 2]
=E|n (gt,(e.) - g (e 7],
k=1 nA tx k
L]
with "nx defined by replacing I with LR
We define an n x n matrix A:':A by
(6.1) Al'“ z™~ (S;‘kg_)(An),
where S"')‘ s R H:(Q') is the smoothing spline operator for the domain ' (see
Definition 1.1). It is easily checked that
2 -1 2 2
T = 1S 0e080) - gl ar « 0 oTerlaar 7 .
See, for example, equation (1.7) of Craven and Wahba [5]. A simple argument (Lemma 4.1 of
(51) shows that if g € W(Q'), then
m)

2 ( 2
Jisy,tat8,)) - q)“ar < A ‘Iv(q (u))“au

- Mgi?,
w,(8%)

for all n > 1 and all A > 0. Hence, to obtain an upper bound for 'r““,

-34=
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it is only necessary to bound 'rr(h"lx)? We shall do this by showing that the eigenvalues
of Ax'\l are bounded by the corresponding eigenvalues of LISV the matrix obtained by

deleting the primes in (6.1). A simple variant of the proof of Lesma 5.5 then gives an

upper bound on Tr An:, assuming that P and f satiafy the agsumptions.

Dafine the quadratic form

ln(u,v) - !\wdrn

for either u,v & v;(m or u,ve w;m-) .

We assume that

s cace.
Aleo dafine the quadratic forms

An(wev) =3B (u,v) + AMu,v)

u;(a)

R;A(Q:V) - ‘n(“pv) + A(“'V)":(n') ’

with domains i:(ﬂ) and q(ﬂ'). respectively. It follows from the proof of Proposition
2.1 that Anl and A;“ are strictly positive definite. Purthermore, the codimension of
the null space of B, is n for both domains, and the Rayleigh quotients
ln(\l.\l)/hm\(u,u) and Bn(u.u)/h;‘x(u.u) are bounded by 1. Hence, there are n positive
eigenvalues.
(6.2) R S I N
for the Rayleigh quotient B n‘“'“"‘nl‘“'“)' Here, the eigenvalues are defined
recursively by

Baag = S0P (B (u,u) 1w e WA, A (uum) =1},
where the supremum is obtained at LIy and assuming (“Mi' Y j) has been defined for

1€3€<xk~1,

R {Bn(u,u) tue n‘;(m. A ,(wu) =1, and

Anx(u,unw) =0 for 1<3 <k ~1}.

See Theorem 3.2.,3 of Weinberger {23]. B8imilary, we lat

(6.3) u"m > u;‘n 2 v ? u;‘h >0

38




be the sigenvalues for the Rayleigh quotient Bntu,u)/A"‘A(u,u). For a more complete

account of these eigensystems and further applications (in one dimension) see Speckman
(14), Section 5. The most important fact for our purposes is that (6.2) (respectively
(6.3)) are the eigenvalues for the matrix Anx (respectively A:\A)' To see this, note
that the variational equation of Proposition 2.1 may be written as
m
Anx(v,gnx) = Bn(v,c) vve wz(m
vhere { € W:(m is any function satisfying
K4 (An) =z .
Hence, if for some Y > 0 we have
Aar 27 02
then we may take [ = f‘gnk so that
-1 m
Anx(v,gnx) -y BnA(v,an). vve wz(m .

from which it follows that Y is an eigenvalue of the Rayleigh quotient Bn/An 2t

lewsa 6.1. Let m > d/2 and suppose that O C R'. Then the eigenvalues in (6.2) and
(6.3) satisfy

L]

un”‘<un»‘ for 1 <k €n,
Proof. The assumption m > 4/2 implies that w;‘(m and w‘;(n-) may be embedded in

C {2) and C (R'), respectively (Theorem 4.6.1(e) of Triebel [17]). Hence,
Bn' AnA' and A' Al are well defined, and so is the restriction operator
R : w;‘(n') * #2‘((2), i.e. fRu)(t) = u(t) for all t' e, all ue w:(Q').

Then the following inequalities are obvious:

B {(u,u)

Bn(ku,m) > ( ) A A(Ru,ku)

A"u(u,u)

B _(u,u)

AnA(Ru,Ru) > A;‘A(u,u)

A;ﬂ(u,\x)

for all ue w;‘(n')/(o}. The lemma now follows from the "Mapping Principle,® Theorem

3.6.1 of Weinberger [23]. L)




Theorem 6.2+ Suppose Assumptions 1,2,3, and 4 hold (for the domain ), and that

m > 3d4/2. Then, for any domain f' O @1, there exists a finite constant C > 0
depending on m, 9, 9', and P, and an integer n, such that for all n > n, and all
Ae lxn,An] .
T;‘x < Xlglzm +c qzn-1 A-G/Zm
wzm')

Proof. 1In view of Lemma 6.1 and the remarks preceding it, it suffices to show that

2 Ym

Tr Anx } .

uniformly in i e un’An] as n *+ %, Since
n
-1 2 -1 2
n' o ral =k (n ,.)-:, (5,8 (¢4 ]

2
- "Snxf'nz(rn) ‘

and by Assumption 4 and Lemma 5.5,
v

2 2
“sanlhz(F) E 'snxf'o

- n—‘l x-d/Zm

uniformly in A e “n'A n] s it suffices to prove that

2 2 -
(6.4) E ['Snxf'nz(rn) - lsn:\fll.z(l’)] ol

uniformly in A e [l“,An]. To this end, apply Lemma 4.2 (i) and Lemma 5.5 to obtain
2
4dn Blsnkf'd

- dn“-1 k—3d/2m

n-1 X-d/Zm)

2
- (S,26) “alP-F 1] <x

= (q XYR) TV,

Equation (6.4) now follws from Assumption 2.
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