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ABSTRACT

Given data z i - g(ti ) + ci, 1 4 i 4 n, where g is the unknown

function, the ti are unknown d-dimensional variables in a domain fl, and the

ei are i.i.d. random errors, the smoothing spline estimate g n is defined

to be the minimizer over h of n- Z(z i-h(ti))2 + )J (h), where X > 0 is a

smoothing parameter and Jm(h) is the sum of the integrals over 9 of the

squares of all the mth order derivatives of h. Under the assumptions that

2 is bounded and has a smooth boundary, X + 0 appropriately, and the ti

become dense in 0 as n + -, bounds on the rate of convergerence of thetht
expected square of p--- order Sobolev norm (L2 norm of p th derivatives),

are obtained. These extend known results in the one dimensional case. The

method of proof utilizes an approximation to the smoothing spline based on a

Green's function for a linear elliptic ijoundary value problem. Using

eigenvalue approximation techniques, these rate of convergence results are
dextended to faily arbitrary domains including Q = R , but only for the

case p = 0, i.e. L2 norm.

AMS (MOS) Subject Classifications: Primary 62G05, Secondary 62J99, 41A15,
41A25.
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SIGNIFICANCE AND EXPLANATION

Smoothing splines are used to approximate smooth functions when there are

only available noisy values of the function at discrete values of the

independent variables. It is shown herein that as the grid of values of the

independent variables becomes denser in the region of interest, the smoothing

spline estimate approaches the true function. Results on the rate of this

convergence are given. Convergence of derivatives is investigated, also, but

under the assumption that the region is bounded. The theory of linear

elliptic partial differential equations is used extensively, along with

sigenvalue approximation methods./
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I CONVERGENCE RATES POP MULTIVARIATE

SMOJOTHING SPLINE FUNCTIONS

Dennis D. Cox*

1.• Introduction.
,d.

Let 2 be a dom-ain in d-dmensonal Euclidean space Suppose that there is an

unknown real valued function g defined on 12 for which the following data is available

(1.1) z." t)+e k - 1,2,...,.n ,

whre Yt 2...t n  are known points in Q (referred to an "knots"), and El2,..,n

are (unknown) tendonk error@. We would like to obtain an estimate of q from the data

vector p e i
n . If it is known a pror that g is a smooth function, then a smoothing

spline will provide a reasonable estimate of g. These have been widely used for such

estimation problems (see e.g. Wabba (211 or Ragotin, et. al. (101), and can be justified

statistically as either optimal Sayes estimates (Ximeldorf and Wahba [7)) or pointwise

minimax estimates (Speckman [13] I * n order to describe these estimates, some notation is

needed.

d
A multi-index a e Z+- is a d-vector whose coordinates belong to ,+ - 0,1,2....

The order of a, denoted Jal, is given by

d

J-1

d
Given a e d, with Jal - a, there is an associated partial differentiation operator of

order m given by

d e

*Department of Statistics 1210 W. Dayton St, University of Wisconsin-Madison,
Wisconsin 53706.
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For any domain 2 C Rd , let e21) for . - 0,1,... denote the Sobolev space of all
2

generalized functions (Schwarz's distributions) for which all partial derivatives of

order 4 a exist in L2 (0). (For a more formal definition, consult Adams (11, Agon [2],

or Triebel [171.) Letting Co,-> denote the usual inner product on L2 (Q) - W0(a), we

define the inner product of 02() by
2

<f'g)" (DfDC)0

where the sum is over all multi-indices a of order ( m. The associated norm is

Ifl• - (<ff> /

With these definitions. V2) is a Hilbert space.
2

A related semi-inner product is

(f,g) - < aD >

which given rise to the smminorm

Ifl3 
=  a)!/2 .

A norm equivalvent to 1.1 which is often convenient is

(1.2) IlIflIl - (Ifl2 +  l 2fl),
a 0 ~k-I k0

where Dk is the operator for partial differentiation in the kth variable. See Theorem

4.2.4 of Triebel [17]. We shall frequently need other norms, in which case the space on

which the norm is defined and finite will appear as a subscript to the norm symbol.

The smoothing spline estimate of g can now be described. First make the following

Assumption 1. The data vector z is given by (1.1) where C1,C 2 #...,Cn are uncorrelated

random variables with mean 0 and positive, finite variance d
2 .

Definition 1.1. Let a > 6/2 be the order, An.{tilt 2 ,...,tn C be a set of knots, and

> 0 be a smoothing parameter. Then the smoothing spline operator S a an W() (if

it exists) is given for _ e an by

-2-
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SnA =n- if and only if compared

to any h e 2(0) , n minimizes2 nk).

L 1 (hW I (Xk - h(tk ) )2 +%hI.
k-i

Remarks 1.2(M) The existence of a unique such anX is assured if the knot set An is

a-unisolvent, as shown in Proposition 2.1 below. A set of points A C ad is called

i-unisolvnt if for any polynomial # on id of degree C a - 1, the condition

#(tk ) - 0 for all k, 1 k n, implies #(t) - 0 for all t.

(Li) The choice of the smoothing parameter A is a problem of considerable interest

which we do not discuss here. Se Craven and Wahba (5) for one popular method.

(Iii) The choice of a is generally dictated by one's prior knowledge of the

smoothness properties of g, or by the use that one will make of the estimate gn;L as in

Ragosin, et. &1. (101. We requitre m > d/2 in order that the evaluations h(t i) be well

defined.

(iv) for a discussion and references on computational aspects, consult Wendelberger

124]. #

Now our main interest here is in showing that gnX converges to g in various norms

as n + w, provided that g satisfies certain conditions, and that A and A varyn

with n in an appropriate way. For d - 1, there have been results presented by numerous

authors (Wahba (213, Craven and Wahba [5), Utreras [18) (19], Speckman E141, Ragotin (93,

and Cox [4]), but for d > I there have so far been only conjectures (Wahba 1221). The

results presented herein essentially generalize all the previous results for d - 1

(Theorm 5.1). The min result states that as n P *

n, - l2 . X-P/mO[)q/m + n-'d/2m]

The requirements, briefly, are that I + 0 appropriately as n + . (Assumption 2

below), that An becomes uniformly dense in 91 (Aesumption 3), and that Q be bounded

with smooth boundary (Assumption 4). The number q appearing in the bound is determined

-3-



from g according to its differentiability and satisfaction of certain boundary

conditions. Theeare spelled out in Remarks 5.6. If g a W2(0), then we may take q - a.

The smoothing splines which are used most frequently are computed for 0 - ld, to

which the result described above does not apply. However, we show in Theorem 6.2 that

if A becomes dense in a subdomain of Rd satisfying the above assumptions, than
n

2 [n-, I (9n.%(t k) - g(t k)) 2 1 . 0( X +n- xA/2
k-1

provided g e w2(a). If we put A - n ( then the upper bound becomes

0 (n "2 m/ ( 2 m+ d ) ,) which is the conjectured optimal rate of convergence in 122). We note

that for d - 1, it is immaterial whether a - It or 0 is some finite open interval

containing the knots, since the two minimization problems lead to the same result. This is

why the stronger results hold for the unidtmensional case.

In order to present our assumptions, further notation and terminology is required.

d
Let Cn(t), t e at denote the cumulative distribution function (c.d.f.), of the

probability measure which assigns mass n
"1  

to the point tk for each te A n , i.e.

Ir~ n
mn~t) = : W'n-

k:tk t

Here, the sum in the numerator is over all k, 1 4 k 4 n, for which all coordinates of

tk are 4 the corresponding coordinates of t. Our basic assumption concerning the

knots in that the sequence (F converges uniformly (at a certain rate) to a c.d.f. rn

satisfying certain conditions. Our notation suggests that A C A if n 4 a, but inn a

fact it is only the quantity

dn - sup I F(t) - Fn(t) 
t

which is important asymptotically. Our main requirements for X, An, and 9 are the

following:

Assumption 2. 6uppose there is a sequence of intervals {[A n Ai] (A n An for all n)

such that X e (An An I for all n sufficiently large, and that

-4-



Lin d X5d'4m - 1£. A 0ane n n.

Lausption 3. Suppose the limiting knot distribution F has a density f e co(h) with

respect to d-dimensional Lebesgue measure such that for all t e 2

0 < K 1 4f(t) < 2(

for asm constants KuK,.

Assumption 4. Suppose 0 is a bounded simply connected open domain and its boundary

an is C, i.e. there exists a finite open covering (0 ) 1  of 3 and infinitely

differentiable bijections f i 01 + ad for which fi(Oi n 3).g (x e It
d : xd = 01.

The following result is an immediate consequence of Theorem 5 .1.

Corollary 1.3. Suppose that Assumptions 1 through 4 hold, that m > 3d/2, and that

Sa W(). Then for any p 6 2 + satisfying p < m,2

2 O(0 (m-P)/m + n-1 -(2p+d)/2m)
Jln.X _ gg2 _=()(

Furthermore, if A - Cn "2 / (2m+d) for some constant C, then

21gn) - g1p

Remarks 1.4(1) We conjecture that the latter rate of convergence is the best possible for

general g e I? (Q). Under a somewhat different model, Stone [161 showed that for any

fixed t e 0, - [2(m-p)/(2m+d)] log n is the optimal rate of convergence in probability

of log I n(t) - g(t)I2 , where %n(t) is any sequence of estimates of g(t). Besides the

fact that our results are global, whereas Stone's are local, Stone uses a model wherein

(t11 .1 ),..., (tnz n ) are a sequence of independent and identically distributed random

vectors, and also makes stronger assumptions on the th derivative than just

g e a (0). For d = 1 and the same observation model, Speckman [(15] has obtained the

result that the best possible rate of convergence of

is -[2m/(2m+1) Log n, where *n is restricted to the class of linear estimates, and

g e V2m(a,b). Arguments given below will show that Speckman's seminorm is asymptotically

-5
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equivalent to 1.10 . Speckaan even constructs an estimate which achieves the exact

optimal rate of convergence (constants included). His estimate is also a spline function,

but one that is in general smoother than the smoothing splines we deal with here.

(ii) If one strengthens or weakens the assumption g e 1(L) then faster or slower
2

rates of convergence are obtained, but some new complications are introduced. The proper

function apaces to use are sq(0 ) defined in Section 3, which are Besov spaces with

boundary conditions (section 4.3.3 of [171 ). For nonnegative integers

q a a, we have Nq- W2m* but the spaces N
q  

are defined for all real q, so one
a a

must deal with "fractional" order Sobolev spaces. If q < a +1/2 then no boundary

conditions are active. However, for a + 1/2 ' q < 3M + 1/2, certain "natural" boundary

conditions of the form Bkg = 0 are required for g to be in N(f). These are

derived in Proposition 2.2. For 3m +1/2 (q, still more boundary conditions come into

play. Now if p < 2a - 3d/2, if g e N (Q) where q satisfies

d•q(2m + p, and q ) p, and if X Cn " /( Id), then

igh- g =
2 

O{n
"2
(q-p)/(2q+d),

and this is the best obtainable rate of convergence according to our results. The

difficulties with boundary conditions are spelled out in greater detail in Remarks 5.6

below. From a practical point of view, it seems unlikely that our unknown function g

will satisfy any of the boundary conditions. Hence, if the function is very smooth

(say g e Wr
1
(A)), then g e N() for all q < a +1/2, and so we can only slightly

improve the rate of convergence given in Corollary 1.3. This difficulty with boundary

conditions was first studied by Rice and Rosenblatt (111, for d - 1.

While the results presented here are significant in and of themselves, they also have

applications to other areas. one can easily sea that the results on the generalized cross

validation method for choosing A as presented in Craven and Wahba [5) can be both

rigorized and generalized. As discussed below, along the say to proving the main theorem,

we develop an approximation to SnA which may prove to be useful numerically when

smoothing large data sets (n 3 200, say). Silverman (121 and others have considered

penalized likelihood estimates of probability density functions, and we believe the methods

-6-
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of this work can be applied to this problem as well. Further statistical ramifications of

these results will be treated elsewhere.

We now briefly describe the main ideas used in the proof of Theorem 5.1. First, we

define a continuous analog of the smoothing spline.

Definition 1.5, Let a ) d/2 be the order, I > 0 a smoothing parameter, and suppose

F is a c.d.f. satisfying Assuption 3. Then the continuous smoothing spline operator

S;, a L2) im 1 if given for C e L2 (9) by S g9. if and only if compared to any

other h 6 W2'('), gX minimise LX(h) - f (C(t) - h(t))
2dF(t) + A, h1 2

Remark. The existence of iA is shown in Proposition 2.2 below.

The idea that SXcould be used to approximate S nX has occurred to many authors

(Cogburn and Davis [31, Utreres 161, Speckman [141, Ragoxin [91), but it was in [41, where

a rather explicit perturbation formula for in terms of S1 was developed. As is

shown in Section 4 below, there is a function G A 10 x 0 + I such that for all c e L2(2)

(1.3) (S 1A)Ct) - &X(t,T)9(T)dT

Now since SnX is a linear operator (it is obtained by minimi ing a quadratic form), it

may be represented in the form

nl
*~~ (SnX)(t - n1

where 
kl- n

(1.4) InAk "' n1!')A

zk being the kth coordnate vector in d. Noting that the representation for SnX

involves an integral with respect to F.0 which approaches F. it is reasonable to expect

that as n + , gnAk(t) approaches

1.5) gxk(t) a 0A(t,tk)/f(t) - GAN(tt)/f(t)

We will see that even though A is varying with n, g k is in fact a very good

approximation to 9nk' provided I varies in such a way that consistency is obtained. A

precise statement on the accuracy of the approximation of 9njk by % is given in

Theorem 4.3 below.

Acknowledesments. The author has benefited from many suggestions made by Grace Wahba, and

is indebted to sue Leurgans for pointing out an error in the original manuscript. The
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author would also like to thank David Ragozin who provided him with an advance copy of [9].

2. Variational Problems. In this section, we show the existence and uniqueness of the

smoothing apline and continuous smoothing spline as defined above. Even more importantly,

characterizations of these functions are given which will be used in the proof of the main

theorem. For convenience, define the n-vector

(2.1) c(An ) - (9lt ),glt2l,...gltn

for any continuous g t 2 * R.

Proposition 2.1. Suppose that An is m-unisolvent, and that a > d/2. Then g Sn

exists for all z e 1
n
, and is the unique solution of the following problem:

Find g e WK(Q) so that for all h e 02(a),
2 2

-1n -1n
A(g'h)m + n-1  (tk zkhtk)

k-I k-I

Proof. For g,h _e 1), define L : a + R+ by

2+

L(ulg,h) -L

If gn, exists then for Vh

(2.2) O' (Ognvh) - 2A(gnh)m - 2n
'1 

I h(tk)(zk'gn(tkJ,
k

so it is necessary that 
9
nA be a solution of the problem. Furthermore,

-(uig,h) - 2X(h,h)3 + 2n
"1 

n h(tk)2

du2 k-I

- 2[,x (D o. n)0 + n 1  I h(tk)12 .

Ths s enk-i

This last expression is always nonnegative, and equals zero just in case
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(2.3) 0 for V a e z6d such that la - m,

and h(tk) - 0 for 1 4 k 4 n.

The first requirement implies h is a polynomial of degree r m - 1, and the second

implies h 2 0 by m-unisolvency of A n  Hence, LnA is a strictly convex function on

e2(Q}, and any (the) solution g of (2.2) is the unique minimizer of L
2 X

We now show that L has a minimizer, which must then be the unique solution of the
N

problem. Consider the space H - 1n X I L () (all products are Cartesian products)

where N 1 , equipped with the Hilbertian norm

I(~~r.. h12 . -, 2 2h,
zh, N) n1  zk + .h 0

k Il ji1

Define the linear operator U : W'(Q) - H by
2

J(h) - (h(A ),D h,...,D h),

where mI,...,uN are the M distinct elements of Zd  satisfying lal - m. By the

argument directly following (2.3), U is injective. We claim that H0  Range U is a closed

subspace of H. This will complete the proof, since Snz is then the inverse image

under U of the orthogonal projection of (z,0,0,...,0) e H onto H0o

Suppose {h,:j e s+}S e-() is such that {Uh I us a Cauchy sequence in ff. Now

I~j* is a seminorm on O'(- , but a norm on (the equivalence classes in) Wm )/P,

where P3 is the space of polynomials of degree 4 m - 1. Note that W2()/P is a2 m

Hilbert space under (..) us we see that or some Ip I S P. and h e 6 (Q,

|hi - h - pjIm + 0. Since U is continuous, we also have that

(j (An) - h(An)) - Pj(n) * o in U.

But by assumption, {b (A n ) - n(a) converges in JP as j *, so that j (An)I does

also. Since the mapping p + p(An) is an isomorphism between Pm and a (closed) subspace

of Rn , it follows that pi + p e P3  as j -. Hence, hj + h + p in W2(Q), and

Uhj + U(h+p) in HO, showing H0 is closed. #

Proposition 2.2. Suppose Assumptions 3 and 4 hold, and m > d/2.

(M) For V z e L2(02) ,  g S z exists and is the unique solution to the problem:

F e 40(Q) such that for all he f h

2 2 ,

-9-



(ii) gX is the unique solution to 4 boundary value problem of the form

(Xf-I(-A) a )g + a

g 0 on WD for Ijcm.

Here, A is the Laplacian, f is the density for F, and the Si, 1 4 j 4 a, are linear

differential operators of order m + j - . Furthermore, the boundary value problem is a

regular elliptic problem.

Proof. i) This follows by an argument similar to the one used in the proof of Proposition

2.1. Indeed, the argument is somewhat simpler since under Assumptions 3, and 4,

Ah 2 + fh2 dF

gives a norm on ) which is equivalent to 11 (see (2) in Theorem 4.2.4 of [171).
2 a N

Thus, it is much easier to show that the appropriate subspace of H - L2 (Q)X RI L2 (a) is

closed.

(ii) This follows from standard methods. We briefly recap the argument in Agmon [2],

pages 141-143. First note that the bilinear form B(u,v) = (uv), is uniformly strongly

elliptic (Definition 7.1 of [2]), since

Btu,v)- (D*%,D% ) 0

and for all c e d,

~ 2a d 2m
a d

Hence, by Theorem 10.2 of [2), there exist linear differential operators

sB B (XD), x e SD, of order m + j - 1 4 j 4 a) such that

s(u,v) - (u,Av)0 + I f -' 5 v do
J-1 a2

where A - (-A) , and the BH's are nowhere characteristic for aD. Here, /an denotes

differentiation in the direction of the outward normal to SD, and do is the element of

area on 32. If g were a solution to the boundary value problem in the statement of

-10-



r bQ

W), then for all h 4 Uc() we have2
lq, h)* jhr - %((-A)*g,h)0 + JgtMhtfMt)dt

(f(-g),h)0 + (fqgh)

- (fzh)0  fzhdF.

ftnce, g would be a solution to the variational problem stated in part (1). ae also

rions a Magenes (a), section 9.5.

We now verify that the boundary value problem is regularly elliptic by checking the

conditions of Definition 5.2.1/4 of Triebel (171. That Af- (-6)a is properly elliptic

follows from

fIt) 4 - At ICI 2a ) 0 for all € e Ud\€o)
la-M I d

and, if , e Rd are linearly independent then the roots of

P(M (C+n) 2 *- 0I samq

are the roots of

I - 0

(replicated a times), and these are clearly complex conjugates of each other. Since the

boundary operators (B } are nowhere characteristic for 30, they form a normal system

and furthermore they have orders (2m - 1. Finally, that Sj satisfies the complementing

condition with respec to Af 1 (-A)m + I follows from Pmuark 5.2.0/4 of [17). Nence, the

problem is regularly elliptic.

To complete the proof. we need to show that the boundary value problem possesses a

unique solution. According to Theorem 5.4.3 of (171 and the remark thereafter, it Suffices

to show that the only solution to the boundary value problem when z E 0 is the trivial

solution. Hovever, this is imediate since AfI (-A) is a positive operator so -1

cannot be in its spectrum, i.e. AI (-A)a + I has empty null space. #

-11-



4-

3. Function Spaces. In this section, we will introduce the function spaces which will be

used in the sequel. The Sobolev spaces Wk(A) were defined in Section 1. It will be

useful to have the Besov spaces 9f2), which are defined for all real a ) 0. A

complete account may be found in Triebel (17]. The following, brief definition will serve

our purposes. Given two Banach spaces A0 ,A 1 , both being subsets of a larger banach space

A, define the K-functional K(0,
o

) x (A0 + A ) R+ (here, A0 + A1  is the linear span

of A0
U 

A1, and x denotes cartesian product) by

K(X,a) - inf {Ila I +laUI: a - a0 + a1  and ai A i - 1,2)0 A 0 1 A Ai 1.2)1

For 9 e (0,1), the K-method interpolate is the Banach space

(AA)e,2 - fae A + A,: **(AA 1  , : (f[Y'eKG'a)] X d 2< }<

One of the basic properties of this interpolation method is that the spaces are increasing

in e, i.e. if 0 < 9 < # < 1, then A0 n A, E (AoAA),2 S (AOCAA ) #, 2 S A,+ A . For

any se(O,-), let k be an integer > s. Then we may define the Desov spaces by

CD2(-)ML (0) , W2(),2 with e- s/k.

The definition is independent of k, up to equivalent renorming. For a e z +

d B2(a) - V [()

with equivalent norms. For 0 - R , this result is stated in Remark 2.3.3/4 of 117), and

it follows for general 9 from Definition 4.2.1 of that reference. Interpolation of Bescv

spaces yields nothing new, i.e.

B(3 (0 - 6 + (0).
(822()' 2( )0,2 -22

This follows from Theorem 4.3.1/1 of (17).

2mLet N (9) be the subspace of w2 (0) of functions which satisfy the natural

boundary conditions B h - 0 on 30, 1 C j C a. That these are well defined follows from

Sobelev's trace theorem (Theorem 3.10 of Agmon (21). Also, define the operator

-1
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with domain of definition Na (Q). Here, A is the usual Laplacian on R
d 
and f

"I 
denotes

division by the density of F. According to Theorem 14.6 of Aguon [2], Dhs discrete

spectrum contained in the positiv. real axis, and the eigenvalues have finite

multiplicity. We will write the eigenvelues as

Y1 ' Y 2

where each is replicated according to its multiplicity. The corresponding eigenfunctions

will be denoted {*V 1),: and we may assume that {# forms a complete orthonormal

system for L2(Q) (Theorem 16.5 of Agmon 12]). The space N, is given the following norm

11,hi2  1 (Y2*4+ 2nh(5) ;v ' 1) v (h,* )0

VD V0

-~h 2~t + thI 2

onN notes that 1-1 is the same as defined in 1.18.10 of Triebel 117]. Using the

definition contained therein, we may define for any nonnegative real number s,

No(2) - (h e L2 (1) % IM ( (Y*/m + 1)(h,# )2 1/2 - }

According to Theorem 1.18.10 of (17], if 0 e (0,1),

(3.1) L ( :), i))0 ,2 " - (s

In particular, for s e (0,2m]

(L(2),Na(0))S/2m,2 ' N (0).

In order to give a more useful characterization of Nm(52) it is necessary to introduce

esov spaces with boundary conditions.

Letting R be the boundary operators from Proposition 2.2(11), set

07)- (h e B2 )Bh) 0 for each j satisfying m + j-i < 1/2.
B22,(. 1 22 1 aa

(compare with section 4.3.3 of (17)). Note that

N ( 2m (S 2m
m m p22, (B )

-13-



Our immediate aim is to establish similar equivalence results for the spaces

N : (a), s e a.

Proposition 3.1. Suppose Assumptions 3 and 4 hold.

i) If a e R+ and if there exist no i, 1 4 i 4 m, and no e Z +\(OJ such that

a - 2u(j- 1/2) + L - 1/2, th en

NaQ B22,(C )(a
ki

Here, the set of boundary operators 1Cki) are the class of all operators of the form

C ki -9 1 0 k for 1 • Ci m, 14k 4j Es/2m] +1.

(ii) If s 2m(j -1/2) + 1 -1/2 for some i, 1 i 4m, and j e z +\{O), then

N:, , - (h e : ui h e B/2 (Rd) with supp h CU

(iii) For all s e R+ the norms ii and I. are equivalent on N
5 
Ca). In,:2(A) N (Q)

B22 a

partivuiar, for k e Z+, the norms I-1 and 1-1 are equivalent on N kA).
+k k

Nm~

Proof. Step 1. First assume a - 2ak for some k e Z+. We will prove (i) &no (iii)

in this case by induction on k. The equality in (i) is true for k - 1, as already

noted. Now we make use of the following a-priori inequality in Theorem 4.3.4. of 117): for

any p e z*, there exist positive constants Cl, C2  such that for all h e W6 P(Q),

2

m
C IhM2m+p 4 Ihip + 1hl0 + I ISjhl M2p+J'I/2 • C2 hl2m+p"

J1 822 (a

Taking p - 0, we see that I1 is equivalent to 1-1 on 2 (Q), since

2mm
B h = 0, V h e N2m (Q) and all J. 1 C j 4 M.

For induction mstep, assume for some k ) 2 that (i) and (iii) hold when

a f 2m(k-1). Then h e N2
k 

(0) implies Ph 6 N 2m(k'l)(2), so that Ph satisfies

-14-
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0"-" l (Vh) - 5 1V9h - 0 on 3a

for 1 4 L 4 a. Hence, all h a YU:" (0) satisfy the boundary conditions in Ci).

apply the -iori inequality again to conclude that So 2sk is equivalent to the norm

V I:l(g1 given by

Ol2mt(k-1) *11

but by induction hypothesis, lBh2a(k,1) can' for all h e xr(Q), be trapped between

constant multiples of

#Vhl ~ -(IV -1),(h,, + IN,2 )V2
IOb 2x(k-1) 0 1

- (,,Vkb, +, ,0 2

By using the eigsnfunction expansion for h, we easily see that

y2 RhO
2 4 I 2 4 - 2 (k-1),Vkhg2

It is now clear that 1.12mk is equivalent to the nor* given by

+ hla hN2mk( )

m

This shows that (i) and (iii) hold when a 2mk for some k Z.+

Mg 2. Parts (i) end (ii) are now an immediate consequence of Step 1 end Theorem

4.3,3. of [17). part (Iii) follows fros the norm equivalences of Stop i and a simple

calculation vith the definition of the K-mthod of interpolation.

-15-



4. The Green's Function Approximation. The main result of this section is Theorem 4.3,

which gives an approximation of the smoothing spline in terms of the family of Green's

functions desceribed in the introduction. The proof of this theorem depends on the two

technical lemmas (Lemmas 4.1 and 4.2). The first provides various norm estimates on the

family of Green's functions. The second loma concerns the accuracy of approximating the

inner product in L2(Fn) by the inner product in L2 (F), and in particular if one of the

entries in the inner product is from the Green's function family.

Since Szs is the solution of a certain boundary value problem (Proposition 2.2(1)),

it has the representation given in (1.3), where GA(.,*) is the Green's function for

AV + 1 with domain ii(Q). We prove this as in Theorem 5.6.4 of Triebel [171 by giving

an explicit construction for G. Let (Y V), (V) be the eigensystem for the

operator V - f- (-An) with domain U (Q) as described above. Then we may develop G. in

a bilinear expansion, viz.

G A(t,T) - (1+AyV)-I#V(04 V(M,

V

where the series converges (at least) in L2 (a x A). The aforementioned reference

guarantees GA 6 W2 P ( x 0) for any p a z+ satisfying p < 2m -(d/2) (and not for any

larger p).

d
We now introduce some notation used in the sequel. For a, B e z define

GGDB( , B

A (t,r) - DaD0G (tT)

where Dt denotes differentiation with respect to the first d-dimensional argument, and

similarly for DT . Also, we shall use the notation for arbitrary nonnegative functions

g,h

g(t) - h(t)

to mean there exist positive, finite constants C1 , C 2 such that for all t of interest

C Il (t) 4 hit) 4 C2 g(t)

The notation

g(t) h(t) as t *t o

-16-

......................



16

means that

g(t) - h(t) = o(h(t)) as t t 0

Finally, we shall need the lin, ,erator Rn C(Q) + wI (2) given by
nX

(RnAh)(t) = f G1 (t,t)f(v)- h(T)dF(T) - n
" I  

G A (ttk Mtklh(t kk- I

- f GX(t,T)f(T) h(0dCFIT) - F nl)) •

Lamem 4.1. Let 2m > d/2, and let Assumptions 3 and 4 hold.

(i) If 0 p < 2m - d/2, then

2 -(2p+d)/4m

Here the constants may be chosen so as to depend only on 2, a, p, and F.

(ii) If p e Z+ and p < 2m-d, then G e Cp(2 x Q), the class of functions whose

derivatives of order ( p are bounded and continuous on 2 x 2.

(iii) If p ( 2u-d, then

-(p+d)/2m
sup IG X(*t)p 

< K 3 
A

where K3 - K3 (2,msp,F). Here IGX(*,t) I means *I computed when GI is considered

as a function of its first argument only.

Proof. i) Rather than estimate IG I , we work with the equivalent norm

II IGAI I I~ as defined in (1.2). Since V is formally self adjoint,

2 GI(t,T) - GA(T,t),

and we clearly have

(4.1) iii111 2 + IG 3 2 2 f IIIG( 0 1 2d
X x g XL2(2 - 2X L 2 xa, a p

where by GA(.,T) we mean to consider GA as a function of its first argument while the

second is held fixed at r. By Proposition 3.1, there are positive finite constants cI

and c2 depending only on Q,m,p, and f such that for every T

-17-



(4.2) cnG (',T)n () IP IG, .)tIII 2 4 C2 IG(.,T) 00•

According to Theorem 14.6 of Agmon [2], we have

(4.3) 
Yv M V2m/d"

We note that Q need only satisfy the restricted cone property in order for this to hold

(see p. 239 of 121). Hence, for some constants C, = Ci (,m,pF), i - 1,2, it holds that

1(; (*,I)2 dt- I (I + A 2 Y"
N Is) I(9 )  v

V

c I 1  (1 + C2) 'd)-2,2p/d

v

C A-(2p+d)/2m x x2p/dd.
I (l+C2x/d)2

as A + 0. The last line follows from an application of dominated convergence. This

shows that for some finite constant KI = K I (Q,M,pF),

IGAI (o x 0) KI X
"(2p+d)/42

2

An entirely similar argument shows

IGAI 2(C . U) K 2A- (2p+d)/4=

2

for some constant K2 = K2(0,M,p,F). This completes the proof of (i).

(ii) Since G e W(9 x 0) for any q < 2m - (d/2), it follows that G e C (O x 2) for
A 2 A~ a

any p < q - (d/2) by one of Sobolev's imbedding theorems (see Theorem 5.4, part (C) in

Adams [1]).

(iii) Considering IG (.,t)l as a function of t, we have

m

2 .(+xy )-2 n/m 1# (t)l2
(4.4) IG ( •,t). -18- v



where the series converges (at least) in L 1 (Q), provided of course that

p < 2u- 4/2 . The & priori estimate (Theorem 5.3.4. of Triebel [17]) yields

IOvl2m ' C3(IV#VIo + t. ao) 4 C3(yv + 1) I# 0 - C3(y v + 1)

whee the constant C3 - C39m~f). 3y Sobolevel Inequality (p. 32 of Agmon 121). for se

C4 M C4(Q t) and any r ) 1. we have for all t e 2

#v~t)l r. C4 1(r 712 u-4 /2  1 Iv 2m + r 4 / 2 10 1 0

4 C4 (C (Y +1) V-(2m-6/2) + r"
2 )/

if we now utilize Yv v2/ and put r - v1/4 , then we obtain

4vM)I 4 C5v 
1 /d for some CS - C5 (Q,m). Substituting this back into (4.4) yields

I(-,t)l( • V2

S

2 C/d)-2v(2p+d)/d

21 -(P~d)/a r" x (2p+d)/d ds
C 5 C I J Cx20/d 2

as A 4 0. Note that convergence of the latter integral requires

p < 2m - d.

In view of Proposition 3.1, the proof of (lii) Is complete.

-19-
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Lea! 4. 2.

Let a > 3d/2, and let Assumptions 3 and 4 hold.

d
(i) For functions hg e w2 (0) we have

If hg d(F-Fn)i n K4 dnh Idogd

where K4 - K4 (9) is a constant, and dn  supIF-Fn1.

{ii) Suppose p e z+ satisfies p ( 2a - (3d/2). Then for any h e W (a),

IRnx hlp 4 n A~IG AWpd( thld

where K - K C, where C depends only on F, and K4  is the same constant as in (i).
X4 - 4 C

(iii) Under the same hypotheses aR in (ii), for each v e Z

IR Vh pI - KS(X 6 dnA 5d/ 4 m)v x (pd)/ 2
m h I

where Ki - Ki (,mp,F), i - 5, 6, are constants,

(iv) Under the same hypothese as in (ii), there is a constant K,. = K7 ( Cm,pF) such that

n-1 n ikp gkl T-(V+2d)/2m(1d d=

k=1 n

where gAk is defined in (1.5).

Proof. Mi) We start with the following integration by parts formula, valid for any

h e CO (ad ) - infinitely differentiable functions of compact support, and any probability

distribution function G on 2;

(4.5) f h(t)dG(t) 1 ( " )'1 f Doh(t[O1).G(t([B)dt

where t[B] has th coordinate t (0) given by

(ti if B - ,

tj Ij
A2 if 0- ,

-20-



46a

where A > 0 is chosen so that 0 C (-,Ald holds. The sation in (4.5) is over all
dd

+e Z whose coordinates are either 0 or 1. The integrations are over [-A,Ad. Note

that each integral on the right hand side may be reduced to a 101 -dimensional integral

with respect to

1 dt .

A proof of (4.5) runs as follows. If G is a unit point mass concentrated at some point

in 0, then (4.5) can be proved by a tedious but straightforward induction on d. The

result for arbitrary descrete G follows by taking convex combinations. It then suffices

to show that if the formula holds for each element of a sequence G 1,G2 ... which

converges to some G uniformly in 0 , then it holds for G, because the discrete

probability measures are dense in the space of all probability measures on [-A, Aid when

equipped with the topology induced by Kolmogorov's (sup-norm) metric. Since Kolmogorov's

topology is stronger than the topology of weak convergence, we immediately have that

(4.6) f h(t)dG (t) + f h(t)dG(t)

Furthermore, if o e 10 , 1 }d we claim that as n +

f O h(tf1)G n(t[Sf}dt + f DOh(tSIj)G(t[0jldt.

Since distribution functions are bounded by I and h e C (Rd), this latter result follows

by Lebesque's dominated convergence theorem, completing the proof of (4.5).

To complete the proof of (M), assume first of all that Q - [-A,AJ
d  

and also that

h,g e C,(R d
). Then the product differentiation rule followed by Cauchy-Schwarz yields

(4.7) J 1(1 - n )D hg)j(tS1)dt 4 d n f ID (hg)(t(B])Idt

4 d E f I (M')(D0 )1(t 01 dtn 12

4 a n  I [f (D h)2(t[B1)dt 1'2 If (D 'N 2 t 10) t 2 .

-21-
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if ii < d, Sobolev's theorem on traces (p. 38 of Agmon 12]) applies and we have

(f (D%)2 (t1B])dt)2 r I h d
1W2( [-A,A] d)

where C = C I(A) is a constant. Hence, from (4.5) and (4.7) we obtain-x 1 C,}n ,1

(4.8) If hg d(F - 'n~l ) 2 2d ma. {1,C ld thI[d d dW (fAA W2[-A,A] d

d dThis was obtained under the assumptions that hg e C0 (R ) and - (-AA] . However,

the restrictions of CO(d) functions to [-A,A]d gives a dense set in W2([-,A]
d ), 
d 0

(4.8) holds for arbitrary hg e Wd((-A,A] d. Furthermore, there exists a continuous

d- d d d

extension operator (Teorem 4.32 of Adams ujI] t: Vd(D) * Wd([-A,AId), so that

Wv(E-AAl ) norms in (4.8) may be replaced by wVO) norms at the cost of introducing

another constant factor which depends on Q. this completes the proof of (i).

(ii) Define G =(t'T) = GA(tT)/f(y). The assumptions on p guarantee that -,,O is

bounded and continuous on U x U by Lemma 4.1 (ii) and Assumption 3, provided mal C p.

Hence, we may interchange differentiations and integrations under these conditions. Thus

(4.9) Rhl 2 if G(-,rT)h(T) d[F(T) - F (T)]I2

nX p Xn p

- X mf~~~ C',-r)h(r) dF(CT) - F (t)]I2
IuJ'p n 0I

(2 K 2 IM 2  
f .--a,O. .) 2 dt

4 n d 4 X  tId

where the last line follows from part (i). Now

G t*12dt I f G~ f a (t',)I dtdr -C G 2
al9p AaI(p 101l-d X

An application of the product differentiation rule, Assumption 3, and Sobolev's

inequality yields

(4.9a) IG Alp~ d  4 C IG XI p~d #

where C is a constant depending only on f. Substituting this back into (4.9) completes

the proof of (ii).

-22-



(iii. Using part (ii) and Lma 4.1 (1) gives for any v e Z+\1O1 ,

IR V Xhl 4 V~d Ia I IR V 1 hi
n) p 4n X , p+d,d ) nX d

2

4 C X;d )(2p43d)/4 " 1R'h I
1n nX d

for some constant C1 - Cl(fm,p). Using p - d in this last inequality and iterating

gives the desired result.

(iv) We have by Cauchy-Schwarz

(4.10) n
1 

n I IG(',t)Ip IGlXt)I d dFn(t)
k,,1

[iG '(',t)' p %(t) 1/2 fI '(-t)l 'd d t /

now concentrating on the first factor, we obtain from part (M that

J IG' t,tI 2p d n2t) C f IG (',t) 2 dr(t) + K d IE 2

X p nX p 4 n X W+2 d ( a gf )

2

How Lemma 4.1, inequality (4.9a), and Assumption 3 imply the existence of constants

C C (U,a,pF), i 1,2, for which

f IGEl*,t)l
2 

dF(t) 4 C -12p+dl/2m

and
GG 1 2 d C 2 (2pL: 3d l/2m .

2
Hence

f IGU(,t)l
2 

4Fn(t) 4 C x-(2p+d)/2m + 4C2 d 
2 p + 3 d / 2 m

If we set p - 4 in this latter result, and substitute the bounds back into (4.10), then

the desired result is obtained.

-23-



Theorem 4.3. Suppose m > 3d/2, and that Assumptions 2,3, and 4 hold.

(i) There exists no = n0(Q'm,{Xn},F,{dn ) such that for all

n ) no  and all j, 1 4 j 4 n,

gnxj -Vi0 Rn~g 'j

where the series converges in W2(O) for any p e Z+, p < 2m - 3d/2. Moreover, for any

fixed n ; no, this convergence is uniform in j (1 4 j 4 n) and X e [ n,).

(ii) There exists n, . nI (gm, Pn 
)
) such that for all n ) n1  and any p e z+,

p < 2m - 3d/2,

1
9
nAk - gAkIp K 7(dn

X 5
d/

4
m) X-(p-d)/2m I

where K-7 = 1T(0,m,p,F) is a constant.

Proof.(i) For any fixed t0 e Q, let GI(t,T) = GX(t,T)/f(T) as before, and put

gXo - GX ( .t 0 )

If v e Z+ and 0 4 p < 2m - 3d/2, then Lemma 4.2 (iii) yields

(4.11) IR" I0 p r K(K 6dnX-5d/ 4 m)V X-(p-d)/
2
mlg 0

Hence, if only

(4.12) dnA nSd/4m < X-1

n n6

then the series in the statement of the Lemma converges in W
1
2(Q). By Assumption 2, there
2

is an no = n0( ,M,{AnlF,(dn}) for which (4.12) holds for all n > n0 * Lemma 4.1 (iii)

and (4.9a) give the following bound, independent of to:

gXO'd < K3. 
d/m

which implies the convergence of the series uniformly in J. Substituting this latter

inequality back into (4.11) and putting C4 - K5K3 yields

(4.13) IRV g 1 4 C4 (K d X-5d/4m)v X -(p+d)/2m
n AO p 45 n

which implies the convergence uniformly in A ) X n
n

-24-



To complete the proof of (i), we need only show that

(4.14) h EI RnAgAk

v0n

is in fact equal to gn~k" In order to do this, we will first show that for all

X e w'(Z), and any fixed to to e (,

2 0
(4.15) x (to,'),X) + f ii (to,.XdF - X(t o •

We claim that N 2m() is dense in e(f), so that is suffices to prove (4.15) for
3 2

X e N3 * This density claim follows since the linear span of the eigenfunctions (4v}

is dense in both N2m  and N , and the latter is the same as W2 but with an equivalent
Is m 2m2

norm (Proposition 3.1). Now for X e N Is, we may apply the Green's formula and note that

the boundary terms vanish to obtain that the left hand side of (4.15) is equal to

S{.XE(l)-i[(-A) aX3](T) + )((T)}I G A(to0, -0dT
g 1

However, this last quantity is equal to X(t0 ) by the definition of G1  as a Green's

function.

Now note that
* 0

vmto

where the second equality is justified (if m > 3d/2) by the fact that the series converges

absolutely in wm(), and R1  is a continuous operator on W( . Furthermore, using

Fubini's theorem, we obtain for any x e WQ) that
2

A(R n.h,x)m + f(R nXh)xdF =

- 1 L j { j 0(t,r)h(d[F(c)n-F (r)1}(D-X)(t)dt

+ f I f G(t, )h( )d[F(T) - Fn(r)1 }x(t)dF(t)

-f Ix f a '(t,1)(Dox)(t)dt + f (t,T)x(tdFt.h(ud[FT-F n()]

- f x(T)h(T)d[F(T) - Fn ()]

-25-



where the last line follows from (4.15). These last two sets of displayed calculations can

now be used to show that for any x e Wa(1),2

A(hx) f hxdFn

" A(g),x)u + f gkx dr + MRnhn x) m + J (Rnxh)x dF - f hx dEF-?n]

where the last line follov from (4.15). It now follows from Proposition 2.1(i) that

h - nAk' and hence that the proof of (i) is complete.

(ii) If A A n., we have from (4.11) that

nAk_ 
1  

1 'gAklp

( x6 A(pd)/
2
m3 g d i I (K5d n5d/

4 m) v

= C5 dn 'A(d)/Iq Id (1 - X5d A5d/4'1-l , I

where C5 - C5 (0,I,pF). If we take nI - n1 (Om,(A n},{d ) sufficiently large that for

all n ) n1

d x-5d/4, -,

then part (ii) follows.
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S. Hain Theorem. The results of the previous sections are brought together here to prove

the following main result.

Theorem 5.1. Suppose Assmptions 1 through 4 hold, and that a > (34/2). Let p e Z+,

with p < 2m - (3d/2)

Suppose g e vq(a ) whore q satisfies

d q 2m +p, p < q

If gnA a n with the observational model (1.1), then as n * *

3 - g12 . 0 1[(q-p)/m + n-I-(2p d1/z

uniformly in I e (AnA n.

Remark 5.2. The last phrase means there exists an no (depending only on Qm,p,q,(A n}

(An }, and (d}) such that there is a constant C for which n i n implies for all
n no

g g 2  C[1 (q-p)/m + n-l -(2p+d)/2m]

nX p

Remark 5.3. From the two lemmas below, we see that a somewhat sharper result can be stated

if one is willing to use the equivalent N(A) norm, namely, for all e > O,

sup e - g 2  A (M)2
*g1 q 9 eP A () +(10()t1

la

Hereo Apq : R+ * R+ is given in (5.2), and satisfies the relation A pq(A) 
(q- p )/ m

The supremum is taken over all g e x q(0) for which Ig N  - 9.

Proof of Theorem. Using Assumption 1, we calculate

Z 1 12 Z IS n - )  - g l 2

.2 2" A1

Sn~Jq(6n)-9S + 2n 1  I (Eck) <S )l& n+ B~qsnA>C,+
2

I a g12 + ISnj 2
A- q( n )  p --
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This is the familiar decomposition of mean squared error into bias squared plus variance.

The theorem is now an immediate consequence of the following two lemmas and the equivalence

of I.Ip and 1-1 (Q) (Proposition 3.1).
m

Lemma 5.4. Under Assumptions 2,3. and 4, if m > (3d/2), p e Z+ and q e Ed,-) satisfy

p < 2m - (3d/2) and p < q 4 2m + p, then for every e > 0,

$u p Sn An) - g2 S g N e ) and ,ql ) e A (.X)9

a m

as n . Here, the function hpq is determined by p,q,Q,m, and P, and furthermore

A (q-p}/m.pq
A
pq

For both asymptotic relations, there exists n. - n 0 (2,apq, {n ,An J,(dn, F) such that

for all n ) no, the relations hold uniformly in [A n ,An 1.

Proof. First note that

S.jCA) n t0

so that

S7(A -; [ ( f G(T,*)gU)d(T) - R.g 1 ,- V

where
C) - f GAI(,T)g(T)dT - g

In order to show convergence of the series and obtain bounds on the terms, we need to

estimate £ Now

(1 + Ay v) AyV (g,#V ) *V
v-1

where {YV1 , (4V* is the eigensystem for 0 introduced above. We see immediately that

(5.1) It 12 = 1 Y ¥ )P/M( 1 + 2¥VI2l(Y 2 (g, 2 A EX)lgl 2
X p Vl) v V V pq q

m Is
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where

(5.2) A (A) - sup 0 + y pq)/( 1 + A V2 Ay
VpO

Moreover, if the sup is attai;,dd at some (finite) v0, then the upper bound in (5.1) is

attained at any scalar multiple of #,aO Utilizing the eigenvalue estimate (4.3) gives

(5.3) A pq ) 4 (2 sup V 2(p-q)/d(1 + C IV2/d )(XV2/d)
2

WO

Sc 2 Alq-p)/m up (1 + C1 x-2x (2m+p-q)/m
xa

where C, - CSi(Qm*p.qsF), i - 1,2, are constants. Here we have replaced the discrete

variable AV 
2
/d by the continuous variable x. Now if

p < q 4 2m + p

then as x +s

0 + CX)-2 x(2m+p-q)/m + 0

and remains bounded as x + 0. This shows that the sup in (5.2) is attained at some

Vat and hence that the upper bound in (5.1) is attained. Note that

(0 + C142 x 
(2
m
+ p- q )/m  

remains finite if only q ) p. Furthermore, one can obtain a

lower bound for A .(A) which is of the same form as (5.3) (only the constants are

different), and so

A (q-p/
pq

To complete the proof of the Lemma, we need only show that -RXc is
V-1

asymptotically negligible compared to 
t
A. We apply Lemma 4.2(ii) to obtain for all

V -5d/4m)VAlp(-d)/2m ,
sR c ( (C d 6 ) IttnxA Ap 3 2 n Ad

and hence that for all n sufficiently large

I1 e 1 K(d n5ld/ 4 m)k (d'p)/2m It I
1 nA p n A d

4 X'Ig Id A5d/4m) A (d-p)/
2m A(q-d)/2m

C K'Igq (dn A 5
d/

4
m
)
A (qp)/2 u
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where RK. are constants depending on ktupoq, and F. The fact that q P d was used

at the second step. By the first part of the proof, Assumption 2 implies the lost

expression is asymptotically negligible compared with completing the

proof. I

1am 5.5. Let a > 3d/2, and suppose Assumptions 1,2,3. and 4 hold. If p e Z+

Satisfies

0 4 p < 2m - (3d/2)

then
RI nXII2 a -1 n'7 (2p

+ d )/ 2
a

a0 n + Furthermore, there exists an no  % 0 (,urp,{ n An),(dn such that the

constants may be chosen independently of A e (AnOAn for all n > n0.

Proof. Since the errors are mean zero and uncorrelated, we obtain

(5.4) , S go,--: -g
nA- p k-1 gnAk IV

-2 1
k 1 (Iqk'p + 1Xk nAkop

we nov deal vith each of the three terms in turn.

Firstly, note that

"  
XkI _ f I%- (t')I

2 
drM)

k p p n

- J Q IG(t*)3 dCt) JO JG(t,.)I 2d(F~t) - (At))

Using Assumption 3 and Iomme 4.1(1), we obtain

Also, lemma 4.2(1) and the assumption that p < 2m - (3d/2) yield

(5.6) 1 G1 t,.)1 2dCFr(t) - F (t'i Ia4 UG 2 - d O(x-2 A J)/n
npn

-0

1 {nX-Sd/RjA4/4MOX-(2pd)/2M. oi-(2pd)/2} .
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Assumption 2 is used at the last step.

Turning to the second term in (5. 4), an~ application of Cauchy-Schwarz gives

I 1  g)k 91k - gn ) 'P n 1 Egp~ - g-; I

where Theorem 4.3(11) was used at the last step. Now by Un1a 4.2(tv),

C(V4)1a a ~ 1 1g)I Mi9'kd - j1 + 4 "a tc2~)2

Combining the last two displayed estimates and using Assumption 2 gives

(5.7 nt )Lkg - gJA o) = P+)/

Finally, the third term in (5.4) is easily dealt with in the ese manner, and one

obtains

Combining (5.5), (5.6), (S.7), and (5.8), and inserting them into (5.4) yields

uS a 2 _ d2 nl f IG C t 2 4(t) . -* (2~)2

The statement regarding uniformity follow from the corresponding statements in ramafs 4.1,

4.2, and Theorem 4.3.

Remarks 5.6. throughout these remarkcs, we adopt the notation and hypotheses of Theorem

5o.

Mi The best possible rate of convergence implied by Theorem 5.1 is always obtained if

in which case

Zig 3 1 - p3
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An will be noted in (vi) below, implicit here are certain lower bounds on q besides thse

stated in the theorem. We proceed to analyze some of the various cases with regard to

smoothness of g and boundary conditions.

(ii) if q < a + /2, then q(a) _ Bq (0), and there is no difficulty with boundary3 22

conditions.

(iii) If a + 1/2 q < 3a + 1/2 then necessarily Bkg - 0 on ao for all

k e Z , 1 4 k 4 m, such that m + k - 1 4 q -1/2 (see proposition 3.1). For a

particular p, the requirement q 4 2m + p may be the limiting factor. In particular, if

p - 0, then there is no gain in convergence rate for q beyond 2m. This is an example of

the saturation phenomenon familiar in approximation theory. Note however that we can still

make gains in estimating higher order derivatives (p 0 1).

(iv) If 3m +1/2( q • 2m + p < 4m - (3d/2), then not only does g satisfy the natural

boundary conditions g - 0 on 32, I • k 4 m, but also some second order natural

boundary conditions, namely Bkg - 0 on 32 for k such that 3m + k - 1 • q -1/2.

This, of course, only has an effect on estimating derivatives of order n + 1, m + 2, ... ,

12K - (3d/2)].

(v) ote that when q A m + 1/2 , the assumption g e Nq(p) limits g in both smoothness

2mand boundary conditions. If, for example, g e wV (a), but for some J, 1 4 < m, we

have Bkg - 0 on 32 if k < j but a g A 0 on 32, then g e N q(Q) for all

q < a + j -1/2, but no larger q. Hence, we have for every C < 0 that the rate

- 2 . Ojn2(' j- 1/2 -€)/(2m+2j-1-2+d) I

is obtainable. It would be interesting to sharpen this result, by going to logarithms for

example.

(vi) In order to verify Assumption 2, it is necessary to know how fast dn  s upiF - Fn I

can go to zero. For d - 1 and 2 - (0,1), one can easily check that

d n (2n)
1

n

with equality just in case

t- (k- /2 )/n 1 k n,
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For general d, if n - a for some a Z+8 then the uniform discrete measure

concentrated on the grid of the form

J(k, - 12 .... k - 1/2 )  1 C k
ii

approaches uniform (Lebosque) measure on the cube (0,I)d in Kolmogorov metric at the rate

-1 ./d Under &ssmption 3, 7 looks like uniform measure on sufficiently mll

cubes, so the rate

d . n i / d
n

is at least attainable. lowever, if one chooses the knots randomly (i.e. if t 1 , t 2 ,

are independent and identically distributed with the distribution F), then the rate can be

improved to
dn 0 n -1/2
dn  O(n 1  },

where 0p means "big oh in probability." See equation (2.4.3) in Gaenssler and Stute [6].

We conjecture that dn w n" I is obtainable in any dimension, but the construction of knot

sequences attaining this rate appears to be a nontrivial problem. in general, if

d . n-r
n

for some r 1 0, and if also

Sn-2'A/(2q
+ d ) ,

(so that the optimal rate is obtained), then Assumption 2 requires that

q > d(5-2r)/(4r) .

This is a stronger assumption than the minimal one required for Theorem 5.1 (i.e. that

q P d) unless r > 5/6.

-33-
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6. Extension to zargr Domains, Suppose that F and 2 satisfy Assumptions 3 and 4, and

that 0' is a domain satisfying

e.g. 9' - RI .  
Consider the smoothing spline estimate g'% obtained by minimizing over

h 02(-W) the quadratic form
2

-n 1 - h(tk )2 + A f (D%(t)) 2 dtn kal- a'
The only difference between gnA and i W s that the objective function involves

L2 (U') norms of nth order derivatives rather than L2 (U) norms. if

2' - a , then gn is called a "thin plate' moothing spline (22], or Laplacian

maoothing spline [241. our convergence rates vil be in terms of the expected value of the

square of the L2(P n ) seminorm of the error, viz.

Znn

I n- - 1
k-1

with T defined by replacing g' with 9,.,.

We define an n x n matrix A', by
(6.1) An,~z ($',A)"(n),

where S : + 12') is the moothing spline operator fair the domain II' (see$nX 2

Definition 1.1 ). It is eoily chocked that

T;nX f S [SnA CIC&n)) - e n
2 l t A

See, for example, equation (1.7) of Craven and Wahba (51. A simple argument (Lema 4.1 of

(51) shove that if g W2(U'), then

22

2a

for all n I and all X ) 0. Hence, to obtain an upper bound for TnV
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it is only necessary to bound Tr(A' ).2 We shall do this by showing that the eigenvalues

of A, are bounded by the corresponding eigenvalues of h 10 the matrix obtained bynx
deleting the primes in (6.1). A simple veriant of the proof of Lema 5.5 then gives an

upper bound on Tr A assuming that 7 and Q satisfy the assumptions.

Define the quadratic form

%n(u,v) - f uvdAF

for either uv t V(N) or u,v • .

ws senes that
8CQCQ'.
a- -

Also define the quadratic forms

A (UMY) B )(uv) + M,U)

2

A 'auv) - I(U,v) + A(uv)

2
with domains (Q) and V 5') respectively. it follows from the proof of Proposition2 2
2.1 that A and a are strictly positive definite. Purthermore, the codimension of

the null space of a ais n for both domains. and the Rayleigh quotients

Sn(UU)/An (u,u) A Sn(u'u)/An' (uu) are bounded by 1. Hence, there are n positive

eigenvalues.

(6.2) "nA1 ' % A 2 % A'" 
•  

nn 0for the Rayleigh quotient a3n(uu)/An1 (uu). Here, the eigenvalues are defined

recursively by

Un). - (s(u'u) I u e w!(Q), A (u,u) - 1),
Am"u 2 nA)

where the supremum is obtained at u nl, and assuming (hn).j * unflj) has been defined for

1 4 k i - 1,

-up (a , uS I t a (D), An (uu) - 1, and

a nx (UU n). 0 for I k - 1)

aee Theorem 3.2.3 of Weinberger 123). Sinilary, we let

(6.3) n), n'A2 On 0
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be the sigenvaluos for the Rayleigh quotient Bn(u,u)/An(u,u), For a more complete

account of these eigensystems and further applications (in one dimension) see Speckman

(141, Section 5. The most important fact for our purposes is that (6.2) (respectively

(6.3)) are the eigenvalues for the matrix A (respectively An). To see this, note

that the variational equation of Proposition 2.1 may be written as

A nX(vgn - Bn(v.) v v e W2(1)
22where e V:(D) is any function satisfying

s (An ) - •

Hence, if for some ' > 0 we have

-1

then we may take C - Y g n so that

AnlV,gn) -Y718n(V,g v v e

from which it follows that Y is an eigenvalue of the Rayleigh quotient B n/An.

Lema 6.1. Let a > d/2 and suppose that aC 2'. Then the eigenvalues in (6.2) and

(6.3) satisfy

'~ •'n)k for 1 • k n

Proof. The assumption a > d/2 implies that V"'(f) and ?()may be embedded in2 2

C (0) and C (2'), respectively (Theorem 4.6.1(e) of Triebel 171). Hence,

*no A n and A'n, are well defined, and so is the restriction operator

R : ef(Q') - eM(Q), i.e. (Ru)(t) - u(t) for all t e Q, all u e Wm(a').
2 2 *2

Then the following inequalities are obvious:

B (u'u)
Bn (Ru,R) 2 ( ) A n(RuRu)

A' A(u'u)

B (u'u)
An (Ru,Ru) ) n A(uu)

nX A' (u'u) n

for all u e vX (2')/(0). The lema now follows from the "Mapping Principle," Theorem
2

3.6.1 of Weinberger (231.

3 -36-
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Theorem 6.2. Suppose Assumptions 1,2,3, and 4 hold (for the domain A), and that

a > 3d/2. Then, for any domain 01 D 0f, there exists a finite constant C > 0

depending on m, 5, $1', and F, .nd an integer no  such that for all n ) n and all

4 e An ,A n  ,
TnA~~ ~ -I12( ' ) °n A7,d/2m

2 c

Proof. In view of Lemma 6.1 and the remarks preceding it, it suffices to show that

Tr A-2  . O(Ad/2m ,

uniformly in A e [AnA n ] as n *." Since
n n

flu 4 TrA" K n"1  (sA. ) 2 (tj)]
J.1

- l 2
Sn^ S L 2(F

and by Assumption 4 and Lema 5.5,NI 1J -€ 2 - -I$ l2

hx . L2(F) - UK

n 'd/2m

uniformly in A e (AnAn], it suffices to prove that

(6.4) B [I'S .2 - isnel 2 - o(n' -" /2mhA. L 2 (F n) n-L2W

uniformly in A e [A n,A n]. To this end, apply Lemma 4.2 (i) and Lemma 5.5 to obtain

E f (S !A) 2 d[F-Fnjj d E n 2

-d -1 x--3d/2,m
n

- (d A"d/ )(n'lA 2m)n

Equation (6.4) now follwa from Assumption 2.
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