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1. THEORETICAL STUDIES

1e -
ENTEY

Figure 1 illustrates schematically the various forcing mechanisms and
physical processes that must be taken into account in order to comprehensively
model tidal oscillations from the surface to the upper therrnosphere (about 500 km),
and basically describes a recent numerical model developed by Forbes. 1.2
He solves the linearized coupled momentum, continuity, and thermal energy equa-
tions for tidal perturbations in a viscous, rotating, spherical atmcsphere from the
surface to 400 km, taking into account realistic parameterization of background
winds, temperature, composition, hydromagnetic coupling, Newtonian cocling,
eddy and molecular diffusion, and tidal forcing mechanisms. Excitation of tidal
oscillations in the model occurs via absorption of EUV and UV radiation in the
thermosphere, HZO insolation absorption in the troposphere and lower stratosphere,
O3 insolation absorption in the mesosphere, ion-neutral momentum coupling in the
F-region, and lunar gravitational forcing,

(Received for publication 10 September 1982)

1, Forbes, J. M. (1982) Atmospheric tides. 1. Model description and results
for the solar diurnal component, J. Geophys. Res, 87:5222-5240.

2. Forbes, J. M. (1982) Atmospheric tides. II, The solar and lunar semi-
diurnal components, J. Geophys. Res. 87:5241-5252,
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Figure 1. Schematic Describing the Numerical Model of Atmospheric
Tides Developed by Forbesl:?

Diurnal heating profiles for UV and EUV absorption used in the Forbesl
model are illustrated in Figure 2. Due to uncertainties in the EUV solar
flux, the model is calibrated to yield a diurnal exospheric temperature amplitude
of 110 K for a mean exospheric temperature of 1000 K for equinox conditions at
Millstone Hill (Olivers). The upper and lower peaks illustrated in Figure 2
are due to EUV and UV absorption, respectively. In addition, the increase in
altitude of the peaks as the zenith angle (x) increases is clearly evident. For an
overhead sun (x = 0) the UV and KLUV absorption peaks lie at Z = 100 km and
Z = 130 km, respectively, with corresponding peak total heating rates of

501077 I m 3 sec™! and 1.66 X 1078 7 ™3 sec™). The total height-integrated
heat inputs for x = 0 correspond to values ofﬁw = 8.3 ergs cm'2 sec -1 and
*;:~:.: —gfoo % 0.70 ergs cm-2 sec-l, for UV and EUV excitations, respectively, where
‘~“ ¢ is the heating efficiency, F‘Oo is the unattenuated solar flux, and the overbar
E:v" represents an average over the relevant wavelength bands. While it is recognized

X 3. Oliver, W.L. (1980) Improved Millstone Hill exospheric temperature meas-
. urements: evidence for a seasonal variation of the magnetic activity effect,
' J. Geophys. Res. 85:4237-4247.
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Figure 2, Diurnal Heating Rates Due to UV
and EUV Absorption in the Thermosphere
(Forbes1,2)

the ¢ may exhibit some height dependence (Torr et a14), this does not appreciably
affect values of the integrated heat input quoted previously.

Figure 3 illustrates amplitude and phase vertical structures at -180, 180,
—420, and 42° latitude for the solar diurnal westerly wind at December solstice
from the Forbes1 model. The following features are worth noting:

(1) Below 100 km at low latitudes the exponential amplitude growth and
phase progression (7\2 =~ 30 km) with height are characteristic of the (1, 1) diurnal
propagating tide. The (1, 1) mode attains its peak amplitudes near 110 km and
decays rapidly above this height due to molecular dissipation.

{2) Below 100 km at high iatitudes the relative absence of amplitude growth
and phase progression with height is indicative of the (1, -2) trapped mode. Super~-
position of the (1, 1) and (1, -2) modes accounts for the illustrated changes in
vertical structure of the diurnal tidal winds and temperatures.

(3) Amplitudes and phases of u, v, and 8T are asymptotic to constant values
above 200 km, This behavior is consistent with the dominance of diffusion in the
upper thermosphere, and with the condition that there be no sources of hest or

momentum in the upper thermosphere.

4, Torr, M.R., Richards, R.G., and Torr, D.G. (1980) A new determination
of the ultra-violet heating efficiency of the thermosphere, J. Geophys. Res.
’{33:6819-6326.
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Figure 3. Solar Diurnal Solstitial Westerly Winds From the Forbes® Model

Corresponding to T, = 1000 K

(4) Diurnal tidal oscillations in the 90-150 km region receive about equal

contributions from upward propagating and in situ excited components.

Item (4) is examined in detail in Figure 4 where the northerly velocity at 18°

latitude is separated into relative contributions due to the (1, 1) propagating tide

{predominant below 150 km) and that excited in sita by UV and EUV solar radiation

absorption (predominant above 150 km).

These results permit interpretation of

tidal measurements of the northerly wind at Arecibo (18°N) (Harpers) as illus-

trated in Figure 5, which are in excellent agreement with the Forbes1 model.

Note the transition from a 30-km vertical wavelength phase progression with
height below 150 km [indicative of the (1, 1) mode] to phase and amplitude con-

stancy with height indicative of fast molecular diffusion and in situ excitation.

5. Harper, R.M. (1981) Some results on mean tical structure and day-to-day
variability over Arecibo, J. Atmos. Terr. Phys, 43:255-262.
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(HarperS) Compared With the Forbes! Model
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As discussed in the preceding paragraph, thermospheric models are often
tuned to yield observed diurnal temperature amplitudes. This is possible since
the diurnal thermospheric tide is excited almost exclusively in situ and is suf-
ficiently large that a reliable experimental determination of its amplitude can be
made. The shape of the local time variation of heating at a given height anu lat-
itude, which depends on the thermal and compositional structure of the background
atmosphere, in turn fixes the amplitude of the semidiurnal component relative to
the diurnal component, Semidiurnal heating rates in the thermosphere constructed
in this manner (Forbes?) are illustrated in Figure 6. Note that heating rates at
all levels are not necessarily in phase, depending upon whether the region is
optically thin (higher altitudes) or optically thick (lower altitudes). Figures 1
and 6 may be compared to the heating profiles utilized by Dickinson et a1® in their
thermospheric general circulation model, which exhibit the same characteristics
as described above, as illustrated in Figure 7.

300 N
AN DECEMBER SOLSTICE
b \ Oo
260 +60°
-60°
£ 220
b=
5
o 180
I
140
100 . S T
" 10 ° 10° 108 107

SEMIDIURNAL HEATING RATE (JOULES m sec™)

Figure 6. Semidiurnal Heating Rates Due to
UV and E[év Absorption in the Thermosphere
(Forbesl:¢)

6. Dickinson, R.E., Ridley, E.C., and Roble, R.G. (1981) A three-dimensional
general circulation of model of the thermosphere, J. Geophys. Res,
gﬁ:1499-]312.
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Figure 7. Global Fourier Decomposition of the Perturbation Solar Heating Distri-
bution for Equinox Conditions During Solar Cycle Maximum (a) Zonal mean values
for perturbation heating, (b) amplitude of wave number 1 (phase of 1200 LT),

(c) amplitude of wave number 2, and (d) phase of wavenumber 2, The units of
amplitude are J kg™* sec™*, and the phase is the time of the maximum in hours
(Dickinson et alb)

Correlation between diurnal winds and diurnal ion drag when treated in a
linear system enters as a semidiurnal momentum source in the thermosphere, as
illustrated in Figure 8. In addition, semidiurnal propagating tides excited by HZO
and O3 insolation absorption can effectively penetrate into the thermosphere and
contribute to the total semidiurnal variation. Figure 9 illustrates a Hough mode
decomposition of the numerical calculations of Forbes2 for the semidiurnal
tides excited below 100 km, Semidiurnal tides are excited indirzctly by '"'mode
coupling" due to irteraction of the main (2, 2) mode with background winds. Note
that between 60 and 90 km (2, 2} exhibits an evanescent nature, whereas the higher-
order (2,3), (2,4), and (2, 5) modes grow exponentially with height; all four modes
are comparable in the meteor wind region (80-100 km), The (2, 4) mode becomes
dominant in the E-region (100-140 km), but is secondary to the (2, 2) mode above
150 km. This behavior is indicative of the preferential damping of the shorter-
wavelength (2, 4) and (2, 5) modes.
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.1 The nonlinear coupling between tidal winds and ion drag has been invoked by
3 Mayr et 3.17 to explain spurious anomalous mcreases observed in the equatorial

F?‘ neutral temperature around midnight by the NATE experirnent on AE-E, as

J illustrated in Figure 10. Figure 11 illustrates the semidiurnal and terdiurnal

:': tidal variations in N2 and temperature due to various excitation mechanisms, The
‘2 semidiurnal component receives strong contributions from (a) diurnal winds inter-

acting with the diurnal ion drag (see Figure 8), and (b) upward propagating
modes excited by O3 insolation absorption (see Figure 9). The semidiurnal
fields interacting with the diurnal component of ion drag, in turn, generate a

substantial terdiurnal component. The synthesis of all contributions yields the

AR -

signature of a midnight temperature maximum in the upper thermosphere as
illustrated in Figure 12.

¥ i ;
LI

L L] L4 T
-~ 0G0-6}

02k —— SIS } Models i

NATE (AE-E):

--------- Selected Days Algebriic-

— —~ Sejocted Days Vector- } Average

e Yoarly Average (1977} b

0.1

0.1

0.2

1 1 L
12 16 2 0 4 8 12

Figure 10. Comparisons Between OGO-6 and MSIS
Models at 250 km and Fourier Analyzed In Situ T
Measurements Fr om the NATE Experiment on g
AE-E (Mayr et al?)

sk
Neutral Atmosphere Temperature Experiment

7. Mayr, H.G., Harris, I., Spencer, N,W., Hedin, A.E., Wharton, L, E.,
Porter, 11.S., Walker, J.C.G., and Carlson, H.C. (1979) Atmospheric

tides and the midnight temperature anomaly, Geophys. Res. Lett.
6:447-450,
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Semidiurnal Tide (m=2)
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;. (due to EUY, ion drag, Og, and HO) and
. diurnal variztions in the ion density

- (Mayr et al')
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(Mayr et all)

The joint presence of molecular viscosity, thermal conductivity, arisotropic
ion drag, and rotation on a sphere renders the viscid tidal equations inseparable
with respect to height and latitude, whereas in an inviscid atmosphere where the
background temperaiure is independent of latitude the equations are separable,
and classical tidal theory applies. In classical tidal theory the eigensolutions
(Hough functions) of Laplace's tidal equation define the horizontal structures of
each mode, and the eigenvalucs (equivalent depths) fix each mode's vertical struc-
tur>. Thus, besides alteration of the vertical tidal structures from exponential
growth (for propagating tides) or decay (for trapped tides) to asymptotically con-
slant solutions in the upper thermosphere, the region where x, the ratio of the
wave period to the dissipative time scale, approaches unity is also characterized
by a transition from tidal solutions that are separable with respect to height and
latitude to one in which vertical structures for a patticular "modal extension" into

17
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the thermosphere vary with latitude or, equivalently, in which horizontal struc-
tures vary with height., This behavior is illustrated in Figures 13 and 14, which
depict the horizontal shapes of the (2, 2) and (2, 4) Hough mode extensions (HME)
of the semidiurnal temperature oscillation at various heights and levels of solar
activity, Note that the node at 15° latitude for (2, 4) disappears and the (2, 2)
horizontal shape broadens considerably at progressively greater heights in the

e

“-.- -_“,.‘
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et

thermosphere.

Amplitude and phase vertical structures at -180, 18°, -42°, and 42° 1ati-
tude for the solar semidiurnal westerly wind at December solstice from the
Forbes2 model are illustrated in Figure 15. The transition to shorter vertical
wavelengths between 80 and 100 km, the effects of dissipation on the upward
propagating components between 110 and 150 km, and the asymptotic behavior
characteristic of the upper thermosphere are clearly illustrated. The upper
thermosphere velocity and temperature fields, which typically range between
10-50 m sec"1 and 20-40 K with the larger values at low latitudes, originate with
about equal weighting from ihree excitation sources: (1) in situ EUV excitation,
(2) ion-drag momentum coupling with the diurnal tidal winds, and (3) upward
propagating modes excited below 100 km. Figure 16 illustrates the consistency
of the model calculations with measurements of the northerly wind between 120
and 180 km at Arecibo (Harpers).

Global Fourier decomposition of the perturbation meridional wind from the
thermospheric circulation model of Dickinson et al, 6 as shown in Figure 17,

can be compared with the Arecibo data and Forbesl’ 2

model results in Figures 5
and 16. The diurnal winds above 200 km as computed by Dickinson et al6 under-
estimate the observed (30 m sec™ 1) values by about 10 m sec™! and predict a
phase that is ~2-3 h later than the observed 2200 h. The absence of an upward-
propagating (1, 1) mode in their model is clearly evident below 150 km. The
semidiurnal winds similarly indicate values (~10 m sec”)) that, when compared
to observations (~40-60 m sec-l), clearly indicate the importance of upward-
propagating tidal components that they have neglected. The NCAR* general cir-
culation model is, however, in lhe process of being modified to alleviate this
shortcoming (Roble).

The lunar semidiurnal counterparts of Figures 15 and 9 are given in Figures
18 and 19, respectively. Although the lunar gravitational excitation consists of
some (2, 4) in addition to the predominant (2, 2) forcing, the excitation of the
higher-order (2, 4) and (2, 5) modes are due almost exclusively to mode coupling
due to mesospheric mean winds and meridional temperature gradients, Winds

*National Center for Atmospheric Research,
9. Roble, R.G. (1982) Private communication,
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(temperatures), in fact, reach amplitudes of order 10-15m sec'1 (10-15 K) in
lnwer thermosphere, and 5-10 m sec™! (5-10 K) in the upper ihermosphere, and

may thus account for a significant portion of day-to-day variability reported in

measurements of the solar semidiurnal tide,
tation of higher-order lunar modes as anticipated by Evans.

10,
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Evans, J.V. (1978) A note on lunar tides in the jonosphere, J, Geophys. Res.
?3:1647-1652.
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2. TIDES FROM THOMSON SCATTER MEASUREMENTS

An analysis of seasonal and solar cycle variations in neutral exospheric tem-
peratures (T } from Thomson scatter measurements at Miilstone Hill has
recently been performed by Hagan et al. 11 Figures 20 and 21 illustrate the
diurnal behavior of T°° at Millstone Hill for a typical solar maximum day

(F
10,7
both during quiet geomagnetic conditions. A stepwise least squares technique is

= 257; Figure 20) and a typical solar minimum day (F10 n = 81; Figure 21),

used to fit the data such that only the statistically significant harmonic components
are retained. Note that Figure 20 is adequately fitted by only a 24-h period wave,
whereas in Figure 21 that 12-h and 8-h periods are clearly present in the data.
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ngure 20. Example of Millstone Hill Neutral Exospheric Temperature Data Dur-
ing a Magnetically Quiet Day at Solar Maximum

11. Hagan, M. E., Forbes, J.M., Satyanarayana, P., and Oliver, W, (1982)
Exospheric temperatures at Millstone Hill: An interim analy51s (in
preparation),
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Figure 21. Example of Millstone Hill Neutral Exospheric Temperature Data Dur-
ing a Magnetically Quiet Day at Solar Minimum

The mean (To) and diurnal (6T1) amplitudes from 40 days of data are plotted
in Figures 22 and 23 to illustrate the solar cycle dependents of To and 6T1. The
scasonal variability of TO is> consistenr with the temperatures from the theoret-
ical zonal mean circulation model of Roble et al, 12 In addition, the MSIS
(Hedin et a12%* 1) model (and its extrapolation outside the Fi0.7 range
of its data base indicated by a dashed line in Figures 22 and 23) r:eproduces the
solar cycle variation of T0 quite well, On the other hand, as illustrated in Fig-
ure 23, the MSIS model clearly underestimates the measured 6T1's for levels of
solar activity where To is in excess of 1100 K (or equivalently, F1o. 7= 175).
The phase of the diurnal oscillation of temperature (Figure 24) indicates a

References cited above will not be listed here. See References, page 41.
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Figure 22, Millstone Hill Diurnal Mean Temperatures
vs F19, 7 and MSIS Model Prediction. Dashed line rep-
resents extension of MSIS model beyond range of F{q 7
values for data upon which it was based ‘

transition from ~15-16 h during winter months to ~12-13 h during summer months.
The MSIS model predicts a 2-h phase shift of the correct sense but clearly under-
estimates the magnitude of the effect.

The semidiurnal temperature amplitudes (6T2) inferred from the Millstone
Hill Thomson scatter measurements clearly indicate a solar cycle dependence
(Figure 25) and a seasonal dependence of the phase (Figure 26), indicating a winter
to summer phase shift of +3 h. The MSIS phase shift of 5 h clearly overestimates
this effect. The semidiurnal amplitudes of the MSIS model are clearly indicated
to be too small.
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3. TIDES IN COMPOSITION AND TOTAL MASS DENSITY

Mayr and Harris15 and Forbes16 have investigated tidal variations in
thermospheric O, 02, N2, Ar, He, and H using models that take into
account the effects of tidal temperatures, horizontal and vertical tidal winds,
photo- and ion-chemistry, exospheric transport, and thermal diffusion. Hydrogen
tidal variations are dominated by vertical flow due to lateral transport in the exo-
sphere, but wind-induced diffusion is the single most important process for causing
deviations from diffusive equilibrium (temperature~dominated) solutions of tidal

7 fl
[

variations in O, 02. o Ar, and He in the thermosphere, The effects of ion~ and

. el
1
.

photo-chemistry on the variations of O and 02, and exospheric transport on He,

4
BT e
»

I L R
3
L
P edntaln

are found to be of secondary or negligible importance above 120 km, In Figure 27

E:% the diurnal oscillations in Q, 02, N2, Ar, He, and H are plotted vs height at the
o 15. Mayr, H.G., and Harris, 1. (1977) Diurnal variations in the thermosphere
{‘5.,-,3 ~-2. Temperature, composition, winds, J, Geophys. Res, %:2628-2640.

16, Forbes, J.M. (1978) Tidal variations in thermospheric O, O,, N,, Ar, He,

and H, J. Geophys. Res. 83:3691-3698. 2

28

-tk
A0
x

XY RN I
T T 4

3
2)

f

P

4
‘



L ]
[
%

r.mf. B xS Sin i "l
o Y E TR P P 'y e ¥, TR TN AN T Ll i RO <a -
’4' oy 'ﬂ ~;'~“wﬂwhﬂ‘n:‘ E fras 2 Sl R Sl DO RE N N VR T ;"u"".‘r’_“\“"l CLTIREN \.'.‘*_“2 SESTRS I A e M AN A SN S R e . .

> - - « * » ~

l.‘_'v‘
bl
k™
Y
3
.4
o
l":'-\
e
oy 80
i A EQUINOX ©
O SUWMMER
@ WINTER
%
~ 1 60 (o]
S
% o
o) A
E (o)
i 4
w 40
S A2
@
w A
] o) ® 7
[ ~
- —
20 |-
% A/
<
1 1 1 ]

(o]
700 760 880 1000 1120 1240

\:::‘:; To (K)
% Figure 25. Millstone Hill Sem1d1urna1 Temperature

Amplitudes vs T, (Hagan et alll), Dashed line rep-
resents extensmn of MSIS model beyond range of
F10 7 values for data upon which it was based.

10

t‘d-I
a¥ ety
PLER
YRR

PHASE OF BTSEMlDlURNAL (L7)

’

]
b

I

AN

i 1 1
0] 100 200 300 400

5N DAY NUMBER

e Figure 26. Phase of Semidiurnal Temperature at Mlllstone Hill
14 vs Day of Year Compared to MSIS Model (Hagan et alll)

e 29




T 7 ™ ....._;x\'_’i:‘z_ww;& B2 38 g ey R .
- . ~ - » ~ N [ »

A e - » » -~ . . - . n - “ . - * ¥ ~
B N . . RN - B *a * - ~
- L R P . N PO L L N e T a UL A T LI At e

rq(m:‘r;\"&ia? :\:W r{‘{:‘“.a_*::v::?v :‘:“QWW‘;W ‘T: K -‘;‘ ¥ (QN‘ .\:\-\-\ )KW.X'IAT‘K"W:'{' ?:-Fw

310 | -— Ty T T T T T T 310
N A% X X + b4 A X W
) 275 l‘ ax  XX0 + - |- 2 a X w 4 215
i i X O + b4 4 X o
g W B0 + 4 a X &+
% X4 &) + g a X o4
o —~ 240 P XA XH o+ - - b4 a X &+ -l 240 ~
: E X & WOR + z a X e+ £
= X AXD R+ b:4 a X &+ ~
w X X0 % X a X & + w
- S 208 |- X x0 £ 4 Yy & X @+ -4 2058
, = X £08 4% 2 & X "+ =
o = X X0 &+ X X & X & 4+ -
o~ = *x 0o &~ X Z & X B+ =
i & XX 4a % 2 ax ® + «
E 170 x Oox + & X - - z ax ® + 4 170
- £ O X + &% T & o+
. X 0 X + & 3 X ™+
L ¢ kR % v
. - o oz ¥ 4 z & %
l" 135 |- ‘?@ 2% +4 k- 2 X &z J 4 135
- X 2g Y +#
:'::: X’&% + } xxx§ x X ;gi 4 {+
;‘:"\ 100 L " gmé \ x. PR W 1 !. ! + T + 100
. o4 3
¥, 10 16 1?0 4 8 12 16 20 24
2 a AMPL i TUDE PHASE (LT)
400 T T T —— STt - 1 | ] ] 460
XA *xd + 4 A X G
X & *0Z + X & X %+
350 b X & xo0% 4 | = a X & Jd 350
X & X0 % z A X &+
X ARG 42 F4 A X o+
e b X wo +2z | | 2 a X &+ 4 300
T X X0 + z b4 & X o+ E
= X X0a+ Z b:4 & x &+ X
o X% O a+ z 2 ax & + w
S 256 |- X 0 - g 4 + z x o + 1 2805
o X 0 X +a z b: SIS oX+ =
o x 0 X + 4 b4 X XA O+ X ]
a » X+ & 0z X Xé + O X =
200 % X+ -4 - % x & - o x- 260
o X+ & z Z X & + oOx
] X + &2 Z X & + (O
25 2 %% o
IS¢ = % g, e 4 F £ *x & « g w2 - 150
Xy x% *a_+ Sy
3§ 3 %
X +
oy X * o Yeos Y 23 L comgpgeR®X X AL LA RPN
167 107! X)) ¢ 8 12 16 20 24
AMPL § TUGK PHASE (LT}
Figure 27. Plots of (Left) Amplitudes and (Right) Phase of Diurnal Variations in

O (Crosses), Oy (Circles), Ng (Asterisks), Ar (Pluses), He (Triangles), and H
(Double Triangles) at (Top) SSMIN and (Bottom) SSMAX at the Equator Under
Equinox Conditions (From the Theoretical Model of Forbes 16)

30



- . e O T T 2 = " < 7 Dl Aad o Y <y TR W, N ARV R TTWE T TRW AR Y
P L LR ot o O i (et Bt s~ S S U e SR A R DR A NG A A Sl S T Sl
e Vo - g 2 AT e T e T T e T T s e I L LT G RN . B - P T
T T e ; - ST

equator for sunspot minimum (SSMIN) and sunspot maximum (SSMAX) under
equinox conditions (Forbes'®). The phase and amplitude structures for SSMIN
agree extremely well with independent calculations by Mayr and Harris. 15

~
&

fav

> However, the results presented in Figure 27 indicate that solar cycle variations

‘:} in the diurnal amplitudes and phases of these constituents are likely to be sub-

{:. stantial. In particular, the phase difference between O and the heavier constit-
uents (and temperature), which arises mainly due to the effects of winds, extends

f« further into the upper thermosphere during SSMAX than SSMIN. This solar

!’: R

cycle variation of the phase difference simply reflects the fact that diffusion

faed

¥

donmiinates over transport effects at a lower altitude when the mean exospheric
temperature is less and should be reflected in the "phase anomaly’ of total mass
density,

e}

)

3

Using the Forbes16 model with input diurnal winds and temperatures from
Forbes and Garrett, 17 Forbes and Maz'cos18 calculated the tida' variations in O,
N2, and total mass density p in the form

T rry
“ns

P

ok

lnN=1nNo+AlnN

%
£

v
¢.x .:

where In No represents a diurnal average value of O, Nz, orp, and A In N is the

¥
D]

tidal perturbation, Determination of total mass density variations from the O and

3 Ty

N, variations requires a background composition model, and these values were
ta-l'<en from the Jacohia19 model, In Figure 28 the vertical structures of
diurnal amplitude and phase of O, N2, and p at equinox are depicted for SSMIN
and SSMAX conditions, corresponding to mean exospheric temperatures of 800 K
and 1400 K, respectively. Tidal determinations from Atmosphere Explorer E
measurements of O and N, (Hedin et a1*%) and total mass density (Forbes

and Marcoszl) are in gooc; agreement with the theoretical predictions of
Forbes, 16 which were made independent of the experimental results. The

[

. Forbes, J,.M., and Garrett, H.B. (1976) Solar diurnal tide in the thermo-
sphere, J. Atmos. Sci. 33:2226-2241,

18. Forbes, J.M., and Marcos, F.A. (1980) Seasonal-latitudinal tidal structures
of O, Np and total mass density in the thermosphere, J. Geophys. Res.
%:3489-3493,

19, Jacchia, L.G. (1977) Thermospheric Temperature, Density, and Composition:
New Medels, SAO Special Report 375.

20. Hedin, A.E., Spencer, N.W., Mayer, H.G., Harris, 1., and Porter, i,S.
(1978) Direct evidence of transport processes in thermospheric diurnal
tide, J. Geophys. Res. 83:3355-3357.

21, Forbes, J.M., and Marcos, F.A, (1579) Tidal variations in total mass

dznsity as derived from the AE-E MESA experiment, J. Geophys. Res,
84:31-35,
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Figure 28, Diurnal Variations in O, Ny, and Total Mass Density Compared
With AE-E Mass Spectrometer o(A) and No(o), and Accelerometer Total
Mass Density (o) Measurements (Forbes and Marcos1
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only significant discrepancies of the theoretical curves appear to be a 25 percent
underestimate of N2 variations above 200 km and phase predictions that are about
1 h too early above 180 km. Recent calculations that utilize new parameteriza-
tions of ion drag, molecular viscosity, thermal conductivity, and background
temperature structure (Forbesl), do in fact yield a shift in phase of the diurnal
temperature amplitude to about 1 h late: in local time, in better agreement with
the above measurements; amplitudes are generally unaffected, since the solar
heat input is calibrated to yield specific diurnal temperature amplitudes at 45°N
(80 K at SSMIN and 180 K at SSMAX) consistent with Millstone Hill incoherent
sScatter measurements,

Basically, the seasonal and latitudinal variations of O in the lower thermo-
sphere (below 200 km) are strongly affected by winds, whereas N2 at all heights
and O about 300 km respond primarily to temperature, which has a different
seasonal dependence than the winds. Seasonal and latitudinal variations of p
consistent with those of O and N2 are not obvious, since the extent to which p
reflects O and N2 variations not only depends on the relative amplitudes of O and
N2 but also on their relative molecular weights and background concentrations (O
becomes greater than N2 above 180 km). However, since in general the total mass
density must reflect a hydrostatic equilibrium distribution, tl.e profiles of p tend
to be similar to the N2 profiles, with some modification of phase by O, depending
on height, season, and solar activity, IFor instance, since O variations are con-
siderably larger during summer than during winter, the diurnal phase of p during
summer consistently lags that during winter by several hours, Further, as
pointed out by Forbes and Marcos,21 the diurnal phase of p between 150
and 200 km is expected on the basis of theory to shift to later times from the
equator to mid-latitudes. In an effort to verify this anticipated phase behavior, an
extensive data base of total mass densities from accelerometers on four low~
altitude satellites (Atmosphere Explorer C, D, and E and Air Force satellite
S3-1) was analyzed by Forbes and Marcos. 18 In Figure 29 the "annual average"
diurnal phases corresponding to latitude bands 0°-20°, 20°-40°, and 40°-60°

derived from the complete data set are compared with theoretical computations at

Tt
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ey
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4

}; latitudes 100, 300, and 50° for equinox conditions at SSMIN, As illustrated, the
e data and theory do indeed indicate a shift to later times from equatorisl to middle
;_‘7 latitudes of the diurnal phase of total mass density,

L Measurements of neutral composition and temperature aboard the AE~E

<, satellite have also been analyzed to determine the semidiurnal and terdiurnal

- variations of O, N2, He, and Ar from 145-295 km (Hedin et a122). The

b —_—

A 22. Hedin, A.E., Spencer, N.W., and Mayr, II.G. (1980) The semidiurnal and
Terdiurnal tides in the equatorial thermosphere from AE-E measurements,
» J. Geophys. Res. 85:1787-1791.
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Figure 29. Diurnal Phase of Total Mass Density Compared With
Phases Determined From Satellite Accelerometer Measurements
(Forbes and Marcos18)

semidiurnal variations of O and N2 are illustrated in Figures 3(1)3ar:c3131, respec-
tively, along with predictions from the MSIS model (Hedin et al*”’ *"), the
Forbes16 model, and the Mayr et al7 model. For O variations, the Forbes1 and
Mayr et al7 models predict the overall phase and amplitude structures quite well,
with some overestimate of amplitude. Surprisingly, the empirical MSIS does not
fit the measurements as well as the theoretical models. On the other hand, the
MSIS model provides a much better fit to the semidiurnal amplitude of N2, where-
as the oth 'r models overestimate its amplitude. The semidiurnal phases for N
are adequately reproduced by the Forbes'® anda msis1s: 14 models, but the
Mayr et al7 model yields phases about 2 h too late above 200 km.
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Figure 30. Atomic Oxygen Semidiurnal Variations (Hedin et a12%)
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4. ACCELERATION AND HEATING OF THE LOWER THERMOSPHERE
DUE TO DISSIPATING TIDAL WAVES

In the zonal mean, the atmosphere can te accelerated and heated by the
deposition of momentum and thermal energy by the so-called " eddy" or "pertur-
bation" motions of the atmosphere. Since gravity wave and tidal amplitudes grow
exponentially with height, it has often been suggested that these motions might
contribute significantly to the mean momentum and erergy budget of the lower
thermosphere. These effects enter in the zonal mean momentum equation as a
divergence of the eastward eddy momentum flux:

(utvt cos® é) - -é- g—z- p u'w!

el
1
[\v]
EE

acos” ¢

and in the thermal energy equation as a divergence of the thermal eddy momentum

flux: »

Fo=-—L 9 Gz 1l a 'y
Fp = acos ¢ 9¢ (x(bzcos¢ pazpwq)z ’

where
a = radius of the earth
¢ = latitude
z = altitude
p = pressure
u'! = perturbation westerly velocity
v! = perturbation northerly velocity
w! = perturbation vertical velocity
¢' = perturbation geopotential,

Dickinson et al23 have calculated the mean direct circulation of the lower
thermosphere due to solar heating along; for comparison purposes their results
for the mean zonal wind are illustrated in Figure 32. Miyahatraz4 has investigated

23. Dickinson, R, E., Ridley, E.C., and Roble, R.G. (1975) Meridional circula-
tion in the thermosphere, J. Atmos. Sci. 32:1737-1735,

24. Miyahara, S. (1978) Zonsl mean winds induced by vertically propagating
atmospheric tidal waves in the lower thermosphere, J. Meteor. Soc.
Japan 56:86-98.
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Due to Solar Heating Alone From Equi-
nox Model of Dickinson et al

the deposition of mean momentum and heat in the lower thermosphere connected
with the dissipating (1, 1) and (2, 4) tidal modes using the above equations.
Figure 33, Miyahara's>

In
calculation of Fu and the resulting mean zonal wind are
illustrated. The (1, 1) mode is apparently capable of producing an easterly jet
(~60m sec'l) in the equatorial lower thermosphere, and a westerly flow of
order 30 m sec™! at midlatitudes. Results for the (2,4) mode in Figure 34 indi-

cate mean zonal winds of order 10-15 m sec” !

» which are smaller but not neg-
ligible compared with the (1, 1) mode. Note that the zonal flow generated by the
dissipating tidal modes is comparable to the flow generated by direct solar

heating, as illustrated in Figure 32.
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