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Integral transform formulae are given for the time-harmonic acoustic
pressure and particle velocities from which the acoustic intensity vectors
in the interior and exterior fluid may be calculated numerically. Some
plots of interior intensity vectors due to point-force or point-source
excitation demonstrate their potential usefulness as a visual aid to the
understanding of wave propagation in fluid~filled pipes.
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LIST OF SYMBOLS

Cartesian and cylindrical coordinates

axial, tangential and racdial iisplacements
at shell mid-surface

axial and circumferential harmonic wavenumbers
Fourier transforms of shell iisplacements
interior and exterior pressures

interior acoustic particle displacements
exterior acoustic particle iisplacements
acoustic intensity

radian frequency of vibration

density and sound velocity of interior fluid
density and sound velocity of exterior fluid
wavenumber in fluid, w/c.1 ’

radius, thickness and density of shell

=Eh/(l-02). E is Young's medulus
o is Poisson's ratio

=h%/12a%
=1 when n=0, and 2 otherwise

amplitude of point force located at
cylindrical coordinates (a,0,0)

amplitude of point source located at
cylindrical coordinates (xO,O,O)

2
= (x-x°)2+y'+22 = r2+x§-2r'xocos(ﬁ)+z2

Bessel functions and their derivatives,

A
(2=?)¥ with In.(b,)>0 to satisfy the
radiation conditions

hyseretic loss factors of shell and fluid

velocity and complex conjugate of pressure
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Some recent work by Fuller and Fahy (1] has contributed to the
understanding of the physics of wave propagation in piping systems
through their Ziscussions on the physical interpretation of the iisp-
ersion relation and the energy distribution of free-waves between
fluid and shell. James CZ,Bﬁyhas shown that the dispersion relationm,
presented as wavenumber versus frequency plots, helps to promote a
qualitative understanding of sound radiation, power radiation and
near-field responses.

Publications by Fahy [4,5] have stimulated interest in the meas-
urement of acoustic intensity using the two-microphone technique. The
paper by Reinhart and Crocker (8] provides an instructive account of a
practical application. The usefulness of intensity vector plots
obtained from theoretical work has been demonstrated by Spicer L?] for
the particular case of an elastic plate with mass-spring attachments
undergoing forced vibrations. His plots illustrate neatly the physics
of the fluid-plate interaction in terms of energy flow in the fluid; in
particular, the fluid subsonic surface wave and angled leaky-wave beam
are clearly evident.

The main purpose of the work contained herein is to discuss a
limited number of wave=frequency and interior acoustic intemsity vector
plots for the case of an infinite cylindrical elastic shell under the
action of point-force or interior point-source excitation. It is hoped
that intensity vector plots will display features that enhance the
physical interpretation of the wavenumber-frequency plots. The plots
may also be of interest to experimenters who are using the technique of
acoustic intensity measurement to investigate sound transmission in pipes
because a combination of interacting experimental and theoretical work
is needed to achieve noise control in complex pipe networks.

2. PROBLEM FORMULATION

(a) General

An infinite cylindrical thin-walled shell contains and is immersed
in an acoustic fluid. The_displacements of the shell wall satisfy an
eighth-order shell theory 8 » and the interior and exterior sound press-
ures satisfy acoustic wave equations. The time~harmonic excitation is
provided by mechanical point-forces at the shell surface or acoustic
point-sources in the interior fluid. The time factor exp(-iwt) is
omitted from all equations. The geometry is shown in Figure 1. The
mathematics is presented with a minimum of elaboration and exp%anation
because much of it has been given in greater detail elsewhere 2,3].




'v) Pressure and Particle Displacements Inside Pipe

The excitation is assumed to be of even P-dependence so the
pressure, radial displacement and axial displacement can be expressed
as the Fourier transforms

Plirf)évz) 0 ﬁl(r'n!a)
w (mBe) | = (1/2m) L cos(mp) D exp(192) | T, (r,n,0)| @
uzl(l‘.ﬁ,z) ﬁzl(r’nya) (2-1)
The spectral pressure is of the form [2,3]
B, (z,n,a) = IEWZEJn(blr)/leg(bla)]W(n.a) + A(r,n,®) (2.2)

where W(n,%) is the radial spectral displacement at the shell surface and
i(r,n,2) is identically zero for point-force excitation. A matrix formula
for W(n,d) for the special case of Goldenveizer-Novozhilov shell theory

81 is given in the Appendix. For point source excitation [2,3

(blxo)/Jé(bla)][Jn(blr)Yﬁ(bla)-Yn(blr)Jﬁ(bla)], X
(2.3)
= ﬁpoen[Jrgblr)/J;x(bla’)][Jn(blxobyﬁ(bla)-yn(blxo)J;l(bla’)]’ <X,

K(r,n,a) = mp e [J-

on n

The radial and axial acoustic particle displacements are related to
the pressure by the formula

Copy/or, opy/02] = pwlu_ys uy] (2.4)
from which the spectral displacements
- [} ' T 2y=1, <
u,) (,0,0) = L33 (0,2)/3 (0,2) W (n,@) + (2w0) ok(z,n,0)/ox (2.5)
a,,(ryn,a) = ia[Jn(blr)/lea(bla)]W(n,a) + uz(plwz)'lx(r, n,a)  (2.5)
may be obtained by the use of equations (2.1-2.3). In equation (2.5)

oR/or = mp e L5, (byx)/01(v12) I [ (b, 7)Y (0y2)-1; (0,200 (0y2) ], wox,

= M2, (0 7)/0 1 (012) o, L3 (byx 312 (Bya)=¥ (5 )4 (0,8)], rex,
(2.7)




(¢) Exterior Pressure and Particle Displacements

The exterior pressure, radial and axial 3iisplacements have the
Fourier transform representations

pz(r,ﬁ,z) 32(1"540') (5 a)
20 . P rye;
u,(zBi2)] = (1/2m) I jcos(nf) [ exp(i0z) {T_,(r,m,a) fda 505
uzz(r,ﬁ,z) azz\rvn'a)
The spectral pressure in the absence of exterior sound sources is
- 2 .
pz(r,n,a) = hw [Hn(bzr)/bzﬂn(bza.)‘ﬁ(n,a) (2.9)

where W(n,2) is the spectral displacement at the shell surface. The fluid
particle displacements are simply

[H&(bzr)/ﬁgbza)jﬁ(n,a)
Ezz(r,n,cx) = iG-EHn(bZr)/bzﬂr'l(bza.)]ﬁ{n,a)

T, ( ? ’a
Trp (7o) (2.10)

(d) Intensity Vectors in (r,z) Plane

The radial and axial components of the time and f-averaged interior
intensity vector are defined as

o _x
= 4 P (ryz)t _(z,2)
I(z02) = 3 Jorad " Tarlt (2.11)
Iz(r,z) = 3 E,op*nl(r'z)ﬁnzl(r'z)
where
Pnl(r’Z) ﬁi(r,n,a)
ﬁm:l(r,Z) = (1/2m) ,{: exp(idz) _iwﬁrl(r'n'a) sa (2.12)
dnz'l(r’Z) 'iwﬁzl(ron’a)
The amplitude and phase of the intensity vector are
I(r2) = (E(r,20ei2(r,2)F, a(x,2) = tanM1 /1] (2.13)

The acoustic intensity vector in the exterior fluid is defined in the same
way, except that a subscript 2 replaces the subscript 1.
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3. MNUMERICAL EVALUATION CF INTEGRALS

The integrals in equations (2.12) must be evaluated numerically
because closed-form expressions are not available. Their numerical
approximaticn, on truncating the infinite limits to finite values, is
based on a sinmple adaptive Gaussian quadrature scheme of order 2 that
has been used E}] to evaluate similar integrals. Because the Fourier
integral transform representation is arbitrary with respect to a
solution of the homogeneous equations, it is necessary to introduce
jamping into the system before numerical evaluation is possible. The
usual procedure is adopted here to include dissipation, viz set E=E(l-ﬁk)
and c=c(l-ﬂy) where n_ and 1. are the hysteretic loss factors in the

shell wall and fluid %espectively,

When the excitation is a radial force or source located at 2z=0,
then the computational times may be halved by writing equations (2.12)
in the form

Pnl(r'z) Zﬁl(r,n,a)cos(az)
A (zez)| = (1/2m) Jﬁo‘” -2iwd,, (r,n,%)cos(az) | 4@
ﬂnzl(r'z) ZWﬁzl(r,n,d)sin(az).

(3.1)

It is also evident that further savings in computer time are possible by
parallel computation at an array of z-values, due to the simplicity of
the z-dependent texrm in relation to the r-dependent term. Methods based
on the fast Fourier transform algorithm are unlikely to be of much
greater efficiency.

4, YNUMERICAL EXAMPLES
(a) General

For the particular case of a water-filled shell surrounded by a
vacuum, Figures 2-3 show wave-number~frequency plots and Figures 4-10
show intensity vector plots for the n=0 and 2 harmonics separately. The
material and geometric constants in SI units that have been used in the
computations are as follows:

steel: E-19.5x1010 7=0,29 p=7700,0 h=0.01 a=0.10 ns=0.02
Water: P=1000.0 ¢=1500.0 1.=0,201

The radial point-force was located at the cylindrical coordinates (a,0,0)
and the interior point-source was located at the point (2a/3,0,0). The
fluid loss-factor, 7,0,001, is sufficiently large enough to allow
mumerical integratioht of equations {3 .l1) without ill-conditioning, yet it
is sufficiently small to avoid significant attenuation in the fluid over
the maximum axial distance considered, viz O.4m.

The intensity vector plots are shown for the separate values of the

circumferential harmonic, n, in order to aid interpretation via the wave=-
qumber versus frequency plots; also, the individual intensities have




physical meaning because they are measureable. Due to the symmetry of the
excitations, the intensity vectors are plotted for z>0 only; plots for
2<0 are simply mirror images. In all Fi ires the plotted lengths of the
normalised vectors are proportional to 1{r,z).

(b) Wavenumber-Frequency 2lots

The wavenumbers for free-wave propagation in the axial iirection are
those real values of & for which the determinant of the matrix equation (Al
vanishes. Plots of these values versus frequency, for a selected value of
n, are called axial wavenumber versus frequency plots. The physical inter-
pretation of these plots is described elsewhere [l]; in particular, the
changing nature of each branch with frequency is of central importance as
its energy ratios between shell and fluid may alter considerably.

Figure 2 contains the wavenumber-frequency plots of a steel pipe
whose interior and exterior are vacuums. Superimposed cn these plots are
the wavenumbers of a rigid-walled circular duct of water. Figure 3
contains the plots for a steel pipe containing water: briefly, for n=0
the branches labelled l-4 cut-on close to a plane fluid wave, an axdal
shell wave, a radial shell wave and a fluid wave, respectively - the
branch '0' is a wave of pure torsion; for n=2 the branches labelled 1-3
cut-on close to a radial shell wave, a fluid wave and a torsional wave,
respectively.

(c) Rigid Shell:; Source Excitation

Figures 4a and 4b show the intensity vectors of the n=0 harmonic
at frequencies of 4 and 12kHz, respectively. The plane wave mode alone
propagates at 4kHz, while at 12kHz it is just evident that the two prop-
agating modes are combining to form a 'weak' interference pattern. The
intensity vectors on the shell axis must be parallel to that axis because
the fluid particle velocity in the radial direction vanishes there.

Figures 5a and 5b show the intensity vectors of the n=2 harmonic
at frequencies of 4 and 12kHz, respectively. A%t 4kHz the intensity
vectors decay rapidly with distance because of the absence of a prop-
agating mode, while at 12kHz there is a single propagating mode. The
intensity vectors on the shell axis must vanish because both pressure
and particle velocities are identically zero there.

(d4) Steel Shell: Source Excitation

Figures 6 and 7 show the intensity vectors of the n=0 harmonic at
the frequencies of 7.25 and 12kHz, respectively. A plot at 4kHz is not
shown because it has much the same appearance as the plot of Figure Ya,
except that the vectors at the shell centre have marginally smaller
magnitudes. At 7.25kHz, which is just above the cut-on frequency of the
radial shell mode, modal interference effects and areas of energy circ-
ulation are clearly evident; also, there is an interchange of energy
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between the fluid and the shell. Similar remarks apply %o the plot at
12kHz. Schultz[Q] notes that areas of acoustic energy circulation are
the rule rather than the exception in acoustic fields; they are even
present in standing-wave fields iue to the superposition of modes
whose individual intensities vanish!

Figure 8 shows the intensity vectors for the n=2 harmonic at “kiz
where there is a single propagating mode. Most of the energy from the
source immediately enters the shell, and the propagating fluid surface
wave associated with a radial shell wave is evident. At 12kHz, not
shown here, the n=2 plot is little different from the rigid shell plot
of Figure 5b.

(e) Steel Shelli: Force Excitation

Figure 9 is the plot of the n=0 harmonic at 7.25kHz. It has many
features in common with Figure 6 (the plot with source excitation) with
the interchange of energy between fluid and shell being particularly
marked. Figure 10 is the vector plot of the n=2 harmonic at 12kHz. In
the range r<a/2, a comparison with Figure 5b shows that the energy is
due to an essentially fluid-type mode; however, in the range r>a/2,
interference between shell and fluid modes results in a considerable
interchange of energy between fluid and shell.

5. CONCIUDING REMARKS

Formulae have been given from which the acoustic intensity vectors
interior and exterior to an elastic shell may be calculated numerically.
Enthusiasts of wave propagation problems will find the work of Fuller and
Fahy (1] a valuable aid to their interpretation. The limited number of
plots of interior vectors, due to pont-force or point-source excitation,
that are presented are of sufficient interest to Jjustify further numer-
ical work to enhance their physigcal interpretation and their practical
usefulness in noise control. *

First, it is necessary to obtain intensity vector plots for an
extended range of parameters that include:

(i) sufficiently small frequency steps;

ii) the individual (n=0,1,2) harmonics together with their sum;
iii)the presence of an exterior fluid;

(iv) a range of shell materials,

This extended range of plots together with wavenumber versus frequency
plots should assist the understanding of wave propagation in and sound
radiation from fluid-filled pipes.

Secondly, intensity vectors in the presence of point or axisymmetric

constraints on the shell surface may be of practical value to investig-
ations into wave transmission phenomena in complex piping networks in

- i0 -
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which non-uniformjities are common. No new procedure is involved here;
the method of dymamic stiffness coupling can be used to determine the
reaction forces caused by the constraints, whence the determination

of the intensity vectors proceeds in an uncomplicated way. The procedure
to be followed is given in Spicer's rerort 7.,
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APPENDIX

The Spectral Tisplacements

The excitation is sither a radial point force, of magnituie ~_,
that is located at the cylindrical coordinates 'a,2,2 , or it is ana
interior point source of sound, of free-field pressure p_oxp(ix,R ,/33,
that is located at (x_,3,0)._ The spectral iisplacementsoare obtafned,
via Novozhilov shell %heory [8J, as the solution of the matrix equation
that relates displacements to external excitations L2

51 512 Sya T(n,2) 3
521 S22 Sp3 V(a2 |2
“ 2.,
) ' T e '
Sq) Sgp Spgtiw Hn\bza)/bz}{n(bza.) o) F e /2Ma or
- 2 ] o a r N 1/ N
nw Jn(bla)/len(bla) Zpo,an\olxo,/blaJn\o:a,
(A1)
where
- ~ 2. 2 2 2
§y7 7 mlfa +n°(1-0)/2a°] - lghw
S5y, = -Ellan(l+o)/2a
513 = -Ellao{a
5,17 S
op = B[ (1=0)/2 + n%/a® + 20%8%(1-0) + B%n%/aT - p v’ (a2}
8yn = EICn/a2 + na252(2-:ﬂ + n3527a2]
7
331 = -813
532 - 823

o Fq/.2 42 2 2.2 L 2
533 = :l[l/a +a 32a + 2n 82 . n Sz/azj - psw”h

An axial point force excitation is obtained dy_setting the right-hand
side of the matrix equation to b?oen/zwa,J,J; .
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FIG. 7 POINT SOURCE EXCITATION. STEEL SHELL. N=O.
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FIG. 9 POINT FORCE EXCITATION. STEEL SHELL. N=O.
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FIG. 10 POINT FORCE EXCITATION. STEEL SHELL.
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