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METHODS FOR CALCULATING ATMOSPHERIC
REFRACTION AND ITS PERTURBATION

INTRODUCTION

In obtaining location coordinates on the Earth's surface by means of star
observations, errors are introduced by the refraction of light by the atmosphere
because the actual positions of the stars or other bodies used differ from their
observed positions. A knowledge of the refractive index of the atmosphere as a
function of position permits the calculation of the actual ray path through the
atmosphere by numerical integration of a set of differential equations that may be
used to extend the ray step by step through the atmosphere to obtain the true
direction of the ray upon emergence.

In this report, the equations and numerical procedures for performing such
a ray trace are derived for general refractive index functions including lateral re-
fraction effects, and explicit forms are given for computation of the refraction error.
Since the greater variations of refraction occur with altitude and because the de-
tailed state of the atmosphere is usually not known at the time a given set of obser-
vations is made, it is desirable (and sufficient for many purposes) to consider the
refractive index to vary only with the radial coordinate and to neglect the effects
due to lateral variations. For this spherically symmetrical case, the refraction error
is present only for the altitude angle and is reduced to a quadrature over the radial
distance or height. The strongest part of the error can be considered to originate
from average atmospheric proffles that can be approximated by simple formulas
and several of these standard atmospheric representations that have commonly been
used are presented. The perturbation of the refraction error due to variation of the
atmosphere from the standard atmosphere leads to a further correction that is
derived and given in terms of another quadrature formula.
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RAY TRACING IN SPHERICAL COORDINATES

According to Fermat's principle (also referred to as the principle of least
time), 1 the ray joinifig any two arbitrary points, P1 and P2 , is determined by the
condition that its optical length

v = fP2 ds (1)
P

be stationary as compared with the optical lengths of arbitrary neighboring curves
joining P1 and P2. If the refractive index n is considered to be a given smooth
continuous function of position and the location along the path is given in terms of
a parameter t, then an actual ray path must furnish an extremum

P2 n(r, 0,) S(r, 0,r, ,;)dt = 0 (2)
1

where spherical coordinates are indicated with

ds - S(r, 0,r,, =Irr + r20 2 + r2 sin 20 2  (3)
dt

and where the dots indicate differentiation with respect to 't. The partial derivatives

as _ r(; 2 + sin 2 0 2) as _

ar S a; S

as r2 sin 0 cos 0 ;2 as r2(

aoS (4)

as_ aS _ r2 sin2O
5T s

IH.A. Buchdahl. An Introduction to Hamiltonian Optics, Cambridge University Press, 1970.
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will be useful in evaluating the Euler equations in the derivation that follows.

Taking

r)= n(r,0,)S(r,0,,0,) (5)

in equation 2, the rays must lie along curves satisfying an Euler equation for each

d (af\- =0 (6

-=0 (6)
dt aO

d (af af
-0

dt '8ao

and by using the relations given in equations 4 and 5,

r( n ) + Sin2 ) 0 =0
77 (n S -- n = 0
dt ar S

d r20 an r 2 sinO cosO 2
-- nT )- SL -n 0 (7)

n_ G '° )S  n-
dt S a

By taking the parameterization to be given in terms of arc length s along a ray

t = s

ds
S T - (8)

dt

the differential system for the rays is simplified by eliminating the radicals appearing
in S above.

5



d a -ni
4  + sin2 9 )=0

ds ar

* d ~(nr2  
-a - nr2 sinO oO 0 (9)

ds 30

d.. Wn2 sin2 0 I) n =_

If a canonical system of variables is introduced where

pr =nr

Po nr2 (10)

po nr sin2 0

the corresponding first-order differential system is easily put in normal form.

= 1p0 2  an
Pr (p 2 +

nr3  sinO

CO P4 csp 2  an
n2 sin3 9 a

* - an

n

- PO

nr 2

P.
- nr 2 sin2 0

4 6



This system is suitable for numerical integration by many standard methods in-
cluding the Runge-Kutta method. The equations are not completely independent
but are inter-related by the implicit relationship from equations 3 and 8

P + r2 42 + r2sin2 0 2 = 1 (12)

which requires that the sum of the squares of the local direction cosines of the
tangent to the ray at any point be unity. This enables the integration to be initiated
from a knowledge of position coordinates and two angles sighted along a ray; for
example, altitude and azimuth angles. It can also facilitate the change of inde-
pendent variable from s to one of the coordinates if desired; for example, if it
is desired to increment the radial distance r in fixed predetermined amounts. In
such a case, the six equations given by 11 are reduced to five. For a general inte-
gration with s as the independent variable, the initial conditions consist of the
coordinates r, 0, 0 and the direction cosines ar, a, a., related to the con-
jugate variables, as follows.

dr
ar pr =nar

dOa0  rd- P* = nra0  (13)
01 7 rs0d

S  sinO dP = nr sin Oc,

The altitude angle a and azimuth angle A are given by

sin a = ar

tan A + - (14)

4" 7
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where the ambiguity of sign must be rectified to conform with the spherical co-
ordinates, since various defining conventions are used for azimuth. By using the
identity

a 2  + a0 2 + a 2  = 1, (15)

it is easy to obtain the direction cosines in terms of altitude and azimuth.

'Or  sin a

ae = cos a cos A (16)

a. = +cos a sin A

ATMOSPHERIC REFRACTION INCLUDING
LATERAL REFRACTION

3n am an
Assuming the quantities ar. aO V are known functions of position,

one may trace a ray up through the atmosphere by using equations 11 for any
starting location ro, 0o, 00 and direction a,0 , C 0 a, . Assuming the initial
altitude angle is great enough that atmospheric ducting ans subsequent return of
the ray does not occur, the ray eventually will emerge from the atmosphere at
some location rf, Of, of with local direction coordinates af, aof, 00f. Inorder to determine the amount of bending of the ray, the transformation of the

final direction coordinates back into the initial frame must be known. This trans-
formation will now be obtained. For a general position vector R given in rec-
tangular components but expressed in spherical coordinates

. A A
R irsin0coso + jrsin0sino + krcos0. (17)

8
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A local reference frame of unit vectors r, 0, 0 may be defined by

A aR / AA
r - -rI = isin0cos + jsin0sin¢ - kcos0

0 -o- / 5 = icos0cos + jcos0sin¢ + ksin0 (18)

a ; _ R laRi A A
_ - - / - - -isin + jcosf0 Iaf

If the unit direction vector of the ray

A A A A
O' a r + oto 0 + a (19)

is expressed in terms of the initial frame, the components are found to depend
on the cosines of angles-between the initial and current frame vectors

A, AA A AAA
a r •I~ r0 )aq + (0 • r0 )ca + (rp. r0 )oa0 l

A A R A A A

+ 0 [rO 0o)ar + (0* 0o) 0t0 + (0)OO1 (20)

A A A A A A A
+ 00 [(r 0 )i + (0. 0 )ct0 + (0. 0 )%0

where the direction cosines involved are readily obtained from equations 18 applied
at the initial and current positions (The prime added to c' is to avoid confusion
with the starting direction &o)"

9-
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r = sin. asin 0 cos( - 0o) + coseCose 0

"0o = sin0 cos 0 cos( - 0 ) - cos0 sin 0 0

r 00 = sin 0 sin ( 00)| A^^

0 = cos0sin 0 cos( - 0 ) - sin0 cos 0 0 (21)

e 0 = cos0cos0 0 cos( - 0) + sin0sin 0 0

OA = cos 0 Sin ('0 0 )

• - ~.ro = - sin Oosin ( - ¢o)

AAto 0  -Cos 0 sin( 00 )

$4 Cos (0 - 0 )

A
By applying equations 20 and 21 to the emerging ray direction Cf, the com-
ponents referred'to the initial frame can be expressed in matrix form as given by
equation 22.

I/1 [sin Of sn 0 0 Cos((-0) + C os O. Cos 0,Csin, ,S S - 0,) - s-,oio s 0. -sin 9 sin(#, -t

orF f tCso i(0 Cos

(22)

10
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It was found that the transformation matrix could be factored as

ir f sin 00  CosO °0 0 Cos 00 sino O. - 'cos of sin of 0

o: 1 f = ::0>-sin 0 : 0 0 sin of -cOf 0

a'of 0 0 1 -sin 0 os OS0 0 0 0 1

(23)

sinOf cosOf 0 arf

0 0 -1 a0 f

COS Of -sin Of 0 Laf

or alternatively in the form given by equation 24 as probably the most convenient
for computation.

arf sin 00 Cos 00 0 CoS(Of - ) sin (of - ) 0

0 f cosO0 -sin 00 0 0 0 1

(X 0 0 1 sin(Of -) - cos(f - 0 ) 0

(24)

sin Of COS Of 0 "'rf

0 0 -1 CIOl

cosOf -sin Of 0 01

II
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From equation 14, the vertical refraction correction is given byj

a a~ arccos a If arccos a (25)

and the lateral refraction error by

A'-Ao arctan ( -)-arctan(±-
f~

(26)

0fG 00 *o f
+ arctan(

ae a - a.0a
*o *oOf

where the sign again depends on the convention used for azimuth.

THE SPHERICALLY SYMMETRICAL CASE

For the case where the refractive index depends only upon r, equation 9
becomes

=(n)- an - nr(02 + sin a 2 2  ;2) O
ds ar

d 2 - 2n12 2=0 (27)4nr0) nrsinn0cos 0 0

nr' sin2 0 =C 1

4 12



where an integral has been fpund for the last equation. The coordinate system may
be chosen so that initially- s = 0. Then, C1 = 0 and -s vanishes indentically

0 00 constant (28)

and the problem is reduced to two dimensions. From the fact that * = 0, the

second equation of 27 becomes integrable:

nr2dO -C (29)
ds 2

dO
Inserting the resultant value for ds into the first equation of 27 (together with

0 =) yields the following relationship:

d dr an C 2':,:--dT n "' )  r = 0 (30)

ds ds nr

By multiplying by n and using the relationship d -- dr dr,
ds ds dr,

dr d dr dn C 2
Sn- -- (n-) - n -=- 2  0 (31)

ds dr ds dr r3

and integrating yields

dr )2 _ n2  C 2
(nd + -= C3  (32)

c 2
2 dOIf is replaced by r -)2 from equation 29, it is found that

r ds

- - s (rdO )
n2  + ()2 + - ) - 1] = C3. (33)

ds ds;

13
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The bracketed uantity must vanish because arc length s is defined by ds =
Vdr 2 +r 2 d and hence C3 = 0. It then follows that equations 29 and 30
(in r and 0) are not independent. As a matter of convenience, equation 29 will
be used and the geometrical relations between dr, ds and dO will be exploited.

As demonstrated in figure 1, a star is observed at the apparent position A1 given
by angle 4 o "

FIGURE 1. Geometrical Parameters for the Atmospheric Ray Path.

41
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If no atmosphere were present, the actual position A2 would coincide with A1 .
For a ray traveling in the reverse direction and emanating at the surface at angle
4o in a medium with variable refractive index, the ray path is curved and its in-
clination 4 at r is given by

do
nr(r -) = nrcos 4 = C (34)

ds

from equation 29 where the constant is determined from the initial values of
n, r and 4.

C no ro cos 0o (35)

After passing through the region of variable index, the ray will emerge at rf, Of
in the direction Jf toward A2 . By the optical Principle of Reversibility, an
object at A2 would be observed to have elevation 00; whereas, if the refractive
index were constant (atmosphere removed), the true elevation would be angle
a. As layers of variable refractive index are added in the reversed ray system, a
would change and so in this inbedded sense can be regarded as a function of r.

From figure 1,

a = 0 (36)
or

da do, dO
(37)dr dr dr

and a may be determined by integrating equation 37. By rewriting equation
34 in the form

n,2 dr (38)
n s d r

Is



dr dOand using the fact that sin ( - an expression for - is found.
ds dr

dO C
sin dr nr2  (39)

By differentiating equation 34 in the form

C
cos i - (40)

nr

dran expression containing is obtained.

d - C C dn
sin dr nr (41)

Combining equations 39 and 41

s d dO C dn
dr dr n2 r dr (42)

and using the fact that

sin ,/I = -COS 2 i(~'2 (43)

da
an expression for - is readily found.

16

.%,



pi'(.

C dn r dn

na r __2 0 r C)2- (44)

rnd

2r 2

,., r n.._ 2 _2r ( (_r. I

C C
If this expression is integrated by parts from ro to rf, the value for the obser-

• . vational error is found:

Inrr dn

= a ae - a. =er dr (45)

nr 
r )2

i.:. nor ( ) frf dr
Sa =arcsec -arcsec - (46)

r ~sec 002_

where ao = , ro, no and af, rf, nf are initial and final values, and C is
given by equation 35.

6a = arcsec (f_ sec 00- 00- ,d (47)

0 r o r r n on r sec  o0

For determining 6a by numerical integration, equation 45 should be preferable
to equation 47 by virtue of its simplicity and certainly a need to carry fewer
significant figures. It can be easily evaluated with the trapezoidal rule, using adn
linear interpolation for For higher degree approximations, standard splinedr
methods are suggested. Although it can be integrated by quadrature formulae
(e.g. Newton-Cotes), equation 47 appears to offer no distinct advantage.

17
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NUMERICAL INTEGRATION

The equation for numerical integration with the trapezoidal rule using linear
cerpolation for the derivative can be copied directly from equation 45 by in-

spection. If the interval [r., rf] is broken into N sub-intervals such that

r. <j... < rj < r,+ I <''" < rN= rf (48)

and where

n= n(rj)

Cfj = C(49)

" r_2L [-i J 2

the value of the integral is given approximately by

"6a E f + J-i
26a = v (50)

j= l

where C = nor o  cos iPo as previously defined. This form enables one to ust
unequal intervals that may be necessary for some sets of data.

18. . .. . ..-•



ATMOSPHERIC MODELS

In order to perform an integration with equations 50 or 11, one must
know the refractive index as a function of position. This is a function of temper-
ature, pressure, and composition. Older references such as Newcomb give the re-
fractive index in terms of density p by2

n2 - 1 = 2Cp (51)

where the value C = 0.22607 gives good agreement with the well-known Poulkova
tables (excerpted by Tricker 3 ). For n close to 1, the expression n2 - 1 may
be replaced by 2(n - 1).

n = 1+ Cp (52)

This expression is said to give still better agreement with measured refraction. 4

The actual values of temperature, pressure, and composition of the atmos-
phere vary, depending on position and time, and follow no simply expressible
physical law exactly. Some tables giving detailed values of temperature and pressure
as a function of altitude are available. 5 Hotine cites the following formula that was
adopted by the International Association for Geodesy in 1960:6

JAG I 5Xl0-' e
1- p5 X0 (53)

I + at 601 + at

2Simon Newcomb, Compendium of SphericalAstronomy, New York: Dover Publications. 1960.

3R.A.R. Tricker, Introduction to Meteorological Optics, Elsovier. 1971.

4Simon Newcomb, Compendium of Spherical Astronomy, New York: Dover Publications. 1960.

I U.S. Standard Atmosphere, 1962, National Aeronautics and Space Administration.

6Martin Hotine, Mathematical Geodesy, ESSA Monograph 2. 1969.

19
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where

p A actual refractive index

-U group refractive index calculated from

- 1) X 101 = 2876.04 + (3 X 16.288)X-' + (5 X 0.l136)X-4'

* t = temperature of air in 0C

p = total atmospheric pressure in mm. Hg.

e = partial pressure of water vapor content in mm. Hg. -nm. Hg.

01temperature coefficient of refractivity of air tir
(or the coefficient of thermal expansion),
(0.003661)

X = wavelength in microns

* An equivalent formula is given by Bomford."

Several formulas for air density p as a function of altitude h are given by
Newcomb. 8

h
P , pde'If (54)

P =I2 (I I--h (55)

k h
P P, (56)

7G.Bomford, Geodesy, Oxford University Press. 1971,

SSimon Newcomb, Compendium of Spherical Astronomy, New York: Dover Publication. 1960.

4 20



=)Y (57)

Pv - g (e - )-Ph (58)

All of the equations are based on assumptions that need not hold physically but,
in some cases, are qualitatively correct or plausible.

PERTURBATION OF THE SOLUTION

The refractive index function n(r) is given a variation em(r) and the new
error in altitude angle is obtained from equation 45

r dC
r f

j f C dr dr (59)
ro nr nr 2

-. where

" (r) = n(r) + em(r) (60)

and

dh dn dm- + e (61)
dr dr dr

By using equation 61 and the following Taylor expansion in e,

r r r mr [(nr")2 1
C C C CLC j + 0(e2

irr /Wr)2 n ( 2 nr 2 r r212 -1
C/ C (62)

21
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the expression given below is obtained for the perturbed (or varied) integral

0r nrT C

_________ ''F~())~ - d] -_____ __ . di11j f ., -* dr+e Id -c [ _._ _____

(63)

. O(e2  ).

In equation 63, the full variation is obtained for e= 1, and the conditions that
the first-order term give a good representation of the corresponding variation in
J are

em (r) ,4 n(r)

(64)

dm dn
dr dr

where e has been carried in equation 64 mainly for purposes of identification.

By differentiation and by a considerable amount of algebraic manipulation,
the following identity may be obtained:

r dmi[ mr 1n r nr\
C dr _ d - J (2+-.:.. r X r ) _1 dr nr /(. r) 2 3/2

.4" 
(65)

r (r) 2 L .\2 _ 11

C C C dn
(.!)2 [Q 2 !.)2 -1]3 /2 dr

4 22



and this is useful in further simplifying the form of the second integral of equation j
63.

""r dn im nr _
rf r dC rf CL" r=dr dr+e dr

nr r)2 [(fo r)21 ]3/2

(66)

+ [nr ( ;2] + 0(e 2)

By assuming the value of m to vanish at the endpoints,

m(ro) = m(r) = 0 (67)

"4

the quantity bracketed in equation 66 will also vanish. For the upper endpoint,
this is a reasonable assumption since the refractive index should assume the value
for vacuum and variation or perturbation is not reasonable. For the lower endpoint,
it is necessary on practical grounds, since any variation of refractive index will
disturb the value of C (initial condition) used throughout the entire range of
integration.

The first term of equation 66 is the unperturbed error. The integral in the
second term is known as the variational or functional derivative of J of first order.

* Taking e = I and ignoring higher order terms yields the first order or linear per-
turbation of J:

m (n,

r f C c
6Jr [(".') - dr (68)

fr nr 2 _ /2

i 23



If the value of the integrand is known for values of r given by

ro <...< r. < r + I <...< rN rf, (69)

the integral can be evaluated numerically using the trapezoidal rule

N-1

6J 1 j 6p, Ar, (70)

j=1

where

0 j CO  (71)

( 2 -C ]312

m(r 1 (72)

Co

Ar = (73)
2

and where CO is given by equation 52 in order to express the variation of re-
fractive index in terms of the variation in density. The end values of j do not
appear in equation 70 because the variation in refractive index is taken to be zero.
Explicit retention of the factors Arj enables one to use unequal intervals that
may be necessitated by available data.

24
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CONCLUSIONS

By using Fermat's Principle and the Euler equations, a system of differential
equations for ray tracing in spherical coordinates was derived for media with con-
tinuously variable refractive index. This system was reduced to first order in a form
suitable for numerical integration. The transformation from the final reference
frame to the initial frame was derived and expressions for the true altitude and
azimuth angles were derived. The spherically symmetrical case was discussed and
the integral for the error in altitude angle was obtained along with the corresponding
numerical formulas. Some standard atmospheric profiles and relationships between

refractive index and density given in the literature were described. A perturbation
equation was derived for treating the error in altitude angle due to departures of
the actual refractive index profile from that of a standard reference atmosphere.
The corresponding numerical integration formulas were also obtained.
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