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ABSTRACT

A large number of real world problems may be characterized via a

multiobjective integer mathematical programing model. R owever, the solu-

tion to truly large-scale problems of such a type has been a difficult task.

In this paper, we present a hybrid approach, combining generalized goal

programming and generalized networks, for the modeling of such problems.

Once such a model has been developed, it may then be possible to employ the

solution procedures of generalized networks to efficiently obtain a solution

particularly if the resultant hybrid model is, fundamentally, a ultiobjective

generalized network.

Acoession For

NTIS GRA&I
DTIC TPB
Uvnmnounced 5

By
Distribit ion/

Availability Codes
Avail and/or

Dist SP.il

WPM-'.



1. I TUOUCTIOI

Goal prograng (GP) or, move appropriately generalized. goal pro-

grim-Ing (GGP) [21, 24, 27], is one of several approaches that have been

* proposed for the modeling, solution and analysis of the multiobjective

mathematical programming problem. However, GP has distinguished itself

from most alternate multiobjective methods in its computational efficiency

and evidence of widespread, actual Implemntation. Even the most adament

of its critics recognizes that GP is, as of now, the "workhorse" of the

miltiobjective mathematical programming methods.

*The computational efficiency of GP is particularly evident in dealing

with either linear or nonlinear multiobjective models having continuous

variables [21, 24, 27, 28, 29]. Here, GP has shown equivalent performance

to that available in conventional (i.e., single objective) algorithms.

However, when deal4 -ig with models which involve integer-valued variables,

the performance of various (exact) integer GP algorithms has been less than

impressive. As a result, the majority of truly large-scale integer GP

problems have been solved by various heuristic approaches (20, 21, 23, 30].

Relatively recently, there have been some substantial accomplishments

in solving single-objective integer programming problems via generalized

networks. For some problems, such an approach has been shown to be up to

several hundred times faster (and with less round-off error and reduced

storage requirements) than available through conventional software [6, 7, 8,

12, 13, 14, 19, 37, 391. One deficiency of such approaches, at least in

the opinion of the multiobjective advocate, has been the focus on a single

objective.
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The purpose of this paper is to report on an ongoing research effort

that is directed toward the development of a hybrid approach which combines

GP and Generalized Networks (GN). As a result, we term the hybrid approach

"GP-GWI. A few previous papers (22, 26, 36, 38] have addressed earlier

I results in this area and thus, herein, we expand on this topic with our

emphasis focused primarily on the modeling aspects of GP-GN since there is

an abundance of literature readily available in regard to the algorithms of

generalized networks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 31, 35, 37, 39, 40].

-I I
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2. TWO GP MODELS

There are a wide variety of GP models including weighted GP, lezico-

graphic GP (i.e., the use of the so-called "preemptive priority" concept),

minmuax GP (which includes fuzzy programing), and interactive GP (which is

used to generate a subset of nondominated solutions) (24, 25, 27, 30, 34].

However, in this paper we shall initially restrict our attention to two

particular forms of GP: (1) veighted GP and (2) iexicographic GP. The

mathematical models used to represent these two types of CP are then

presented below.

Weishted GP Model

Here, we wish to find ; so as to:

minimize z = (un + V i)(2.1)
icG (i i i i)

fl () b, ieF (2.2)

f1 G) + n Pi al b leG (2.3)

> 0 (2.4)

where:

F - the set of rigid constraints

G the set of goals (where the right-hand side value represents a

target value, or aspiration level, for the specific goal)

ni - the negative deviation of goal i

01 - the positive deviation of goal i

Uiwv a the weights associated with ni and oi respectively

'K s~.
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Lexicouraphic GP Model

If the problem goals are rank ordered according to importance, we can

model the problem as follows. Find X so as to determine the lexicographic

minim= of:

-a, ... , a, .. , (2.5)

s.t.

f i x+ni P 1 -b Vi (2.6)

> 0 (2.7)

where:

a the "achievement vector" for which we seek the lexicographic

minimal value.

ak - a function of the goal deviation variables (n,p) that are to be

minimized at priority level k. That is:

a k " (2.8)

Solvlng the Models

If the decision variables (x) are permitted to take on fractional values,

computationally efficient algorithms exist that may be used to develop the

solution. For example, if the models involve strictly linear functions

. ,(i.e., all fi (;) are linear) then algorithms have been developed for use

on IBM, UNIVAC and CDC computers (as well as others) that solve problems

of the same size (and with approximately the same efficiency) as available

through the use of conventional simplex codes. For example, the solution

of lexicographic linear GP models with up to 16,000 rows (i.e., goals and

rigid constraints) by as many variables as may be stored is available on

IBM 360 or 370 computers having the PSX software package [24, 27, 29].

14 _____________V4___
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In the case of nonlinear (weighted or lez:Lcoraphic) GP models (again,

with continuous variables), computer codes have been developed (and applied

to a variety of real world applications [21, 24, 28]) that will solve

problems with several hundred rows by thousands of variables. One actual

implementation (1978 [28]) involved the solution of a problem with 400

rows and 10,000 variables and was solved in approximately nine minutes on

the CDC-7600 computer.

However, as mentioned, the efficiency of computer codes for GP models

involving integer variables is not particularly impressive. To the

author's knowledge, most truly large-scale integer GP problems actually

dealt with have been solved by means of heuristic techniques. Further,

such heuristics have typically been carefully tailored to handle the

specific problem under consideration and, thus, an approach to the general

case has been lacking.
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3. INTEGM PROGRAMMING AND ETORM

There are numerous approaches to the modeling (and solution) of gener-

alized networks. For purposes of illustration only, we will employ models

and notation used in one of these approaches, known as NETFORM [6, 7, 12, 14].

In this section, we shall briefly summarize the NETFORM modeling approach to

conventional (i.e., single objective) problems.

The NETFORM Arc

The building blocks of the NETFORM model are its nodes - and the arcs

connecting these nodes. Figure 3-1 depicts a general NETFORM arc and its

associated nodes. The origin node is node "i" and the terminal node is

node "J". The (directed) arc, "i-j", connects these nodes. The "cost" per

unit flow is given as c i, j and is shown within the rectangle.

Figure 3-1: NETFORM Arc

The flow, xj , has a lower bound (L) and upper bound (U) as indicated in

the parentheses. Note that an asterisk will appear only if the flow across

the arc must be integer valued. A particularly important, and powerful,

feature of the model is given in the triangle as Gid. Gi,j is, in turn,

the gain factor which reflects the amplification or attenuation of the flow

through the arc.
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Once a problem has been so modeled, various softwmr Is available for

its solution and, as mentioned, the results can be extremely Impressive.

One application, for the U. S. Treasury, involved a model with 5,000 nodes

and 625,000 arcs. The problem was reportedly solved in 9 minutes on a

UNIVAC 1108 at a cost of $90. A good comsercial LP code would have, under

best conditions, required about 20 hours of CPU time, at a cost of about

$24,000 E14].

The Conventional Integer Programiln Model

The generalized network or NETFORM modeling approach is not restri,

to just those problems which naturally take on a network representation

(e.g.,assigrnent, transportation, transshipment). We can, for example,

transform any single objective (and, in the next section, multiobjective)

integer programing problem into an equivalent GN model. This is best illus-

trated via a numerical example. Consider the following model in which all

variables must take on 0 or 1 values:

minimize 3xI + 7x2 + x3

S.t.

(I) x +x 2 + x3 > 2

(II) -2x1 + 5x2  > 3

x C {0,1) J-1,2,3

The equivalent GN model will contain one "objective" node and this will

serve as the source node for the network. Also, there will be a node, for

each variable, connected directly to the objective (or source) node. Finally,

there will be a node for each constraint and these constraint nodes will be

* directly connected to those variable nodes as associated with the variables

which appear in chat constraint. This leads to the GN model shown in

Figure 3-2.

...... ......
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The "availability" of the objective, or source, node is shown as <3

meaning that up to three variables may take on values of one. The require-

ments at the terminal, or constraint, nodes are those associated with each

constraint (see original model). The cost of variable 1 in the objective

is 3 units as shown on the arc from the objective node to the variable one

(xl) node. The "gain" across this arc is 2 units which means that

variable one appears in exactly two constraints. The arcs from the variable

nodes to their associated constraint nodes have a gain factor equal to

their technological coefficient in that constraint. Solving the GN

model of Figure 3-2 will then provide the solution to the original mathe-

matical model.

IjT
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4. * EIGUTU '-G

We shall first address the modeling of the weighted integer GP model

via GN. The resulting concepts and approach may then be extended so as to

encompass the subject of the following section: lexicographic integer GP.

The easiest way to explain the GP-GN approach is via a simple, illus-

trative example. Consider the following weighted integer C? model:

Find x so as to

minimize z - 5n 1 + 20 2

() x + x2 + x3  < 2

(II) 3xI  + 2x + n 4

(III) 3xI + 2x + 7x + n

xj e (0,1) 1j

Approach One

Recalling the modeling approach used in the conventional integer pro-

graming model, as illustrated in the previous section, we note that it may

be directly applied to our example since it too is in the form of a single

objective integer model. This approach would lead to a GP-GN model as

shown in Figure 4-1. Here, we simply treated the goal deviation variables

(nit n2' p1 and p2) as model variables and added the corresponding variable

nodes.

We choose, however, not to use this approach but, rather, employ an

equivalent alternate modeling scheme, in the construction of the weighted

integer GP-GN model. We discuss this technique below.

,,.
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AD~roach TWO

This second approach involves the incorporation of a new, "complex"

node. This special node, denoted as the goal node, is composed of a simple

terminal node plus two additional arcs. A general goal-node is shown in

Figure 4-2. In this figure, we note that node A is, in essence, a "soft"

constraint node. That is, it allows for some deviation either above or

below the goal target value, bi.

The input to node A reflects the actual value achieved for that goal,

which we may call ai. The desired value, bi, is shown to the right and, in

the network, is a sink node requirement. Rovever, if a, > b, then there is

positive deviation (or "overflow") which flows out of node A into the top,

positive deviation (p) branch at a cost of wi units per unit of flow. On

the other hand, if a1 < bi, then there is negative deviation (or "underflow")

which requires a flow into node A - as depicted by the lower branch (ni).

The flow on this branch incurs a cost of u1 units per unit of flow. Such

a goal-node will then be associated with each goal fn the GP model under

consideration. Combining the GN modeling process with the goal-node concept,

we msay model our example as shown in Figure 4-3. (Recall that numbers in

rectangles represent coefficients or, in this case, weights while these

in triangles refer to the gain across the arc.)

tl _________________!IA
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[ai

0I

ni

Figure 4-2: The Goal-Node

To summarize, the use of the goal-node leads to a weighted integer GP

model wherein:

(1) There is a single source node (node 0) with a "supply" equal to

the number of zero-one variables in the problem.

(2) There are arcs from the source node directly to a set of variable

nodes (i.e., decision variables only). The multiplier (gain) on

the arc indicates the number of constraints plus goals in which

the associated variables appears.

(3) The variable nodes are connected, via arcs, to the constraint and

goal-nodes in which they appear. The multiplier for these arcs

is equal to the technological coefficient of the variable in the

respective constraint or goal.

I .... .. ___ _
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(4) A constraint node (see node I) is then a simple, termiunsting node.

The "dmand" of that node is shown to its right. A goal-node is

also a terminating node but is, as noted, a complex node (as

shown for goals II and III).

When the standard assumptions (see the references) of generalized net-

works are satisfied, solution to this form of the weighted integer GP-GN

model is available via the appropriate generalized network software. The

solution thus found, for our example, would be:

x - (1,0,0) or (1,1,0)

and z*- 5

We now proceed to the second form of the GP model, i.e., lexicographic GP.

. o 
4
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5. LU OOGU IC -GU

The development of the network model for lexicographic integer GP

problems follows the same basic procedure as outlined, in the previous

section, for weighted integer GP. However, we shall form a sequence of

weighted integer GP-GN models for the representation of the lexicographic

model where the total number of models in each sequence shall be, at worst,

equal to the number of priority levels in the original lexicographic GP

mathematical model.

We shall denote this process as Sequential GP-GN, or SGN. SGN, in

turn, is simply the network equivalent of the approach known as SGP (i.e.,

sequential goal programming) that has been employed for approximately 15

years in modeling and solving large-scale GP models (24, 27, 29]. The pro-

cedure may be described as follows. First, we formulate that portion of the

lexicographic GP model associated with priority one. This submodel is simply

a weighted integer GP model and thus may be solved directly via the weighted

GP-GN approach as described previously. Next, we form the GP model associated

with priority one and two. However, we augment this model with the additional

condition (i.e., a new rigid constraint) which restricts the next solution

derived to one which does not degrade the solution found for the previous

submodels (i.e., gl(n,p) - a,*]. This process is continued until all

priority levels (and associated submodels) have been solved. The last solu-

tion is the solution to the original lexicographic GP model. The process

may be summarized via the algorithm provided below.

,___,__ ___-__ __ ___,___ __ __ ,_ __ ,___ __ __
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SON Algoritha

Step 1: Develop the lexicographic integer GP model as shown in (2.5) through

(2.8). Set k - 1.

Step 2: Establish the weighted integer GP model associated with priority

k (i.e., priority one). This is:

mininize a, a 91 (5)

S.t.

f i(x) + n i - 0i a b i  i FE P 1

o>0

Xj C (0,11 Vj

Step 3: Convert the present GP submodel to the equivalent weighted integer

GP-GN model and solve, via the appropriate GN software, for the

optimal value of ak (i.e., ak*).

Step 4: If k - K, stop as the last solution (x*) is the solution to the

original lexicographic GP model. If k < K, go to Step 5.

Step 5: Set k - k + 1 and establish the next (weighted) GP submodel in

the sequence where this submodel is given by:

minimize ak - k 

S.t.

i! 'fi Wx + n i - 0i b bi i e T k

gt ( = a * tul.,2,. ..,k-1
at

1,>

X e (0,11 Vj

and Tk is the set of all gcals and constraints in priority levels

1 through k.



Step 6: Repeat Steps 3 through 5 until the entire model has been solved.

The final value of x* is the optimal program for the original

lexicographic integer GP model.

Implmentation

Implementation of the SGN process would be achieved via the use of a buffer

program in conjunction with the GH software. The buffer program simply

automates the above process by forming each submodel, delivering the sub-

model to the GN software, and forming the necessary augmented constraint

associated with the intermediate GN outputs. In actual practice, however,

there are a number of refinements that may be added so as to substantially

improve overall computational efficiency. We touch on just a few of these

in the example to follow as well as in the next section.

Example

In order to simply illustrate the basic procedure, we shall formulate

the sequence of models associated with the problem shown below:

Find x to lexicographically

minimize:

a - {(), n2 + 203). (n3)1 (5.1)

s.t

xI +  x2 + x3 + nI - , - 2 (5.2)

3x + 2x + r2 - 2 w 4 (5.3)
1 3 + 2  2 i 53

3x 1+ 2x 2 + 7x3 + n 3 -0 3 = 5 (5.4)

x c (0,11 and n, P > 0 (5.5)

The three models developed to support the SGN process are shown in Figures

5-1 through 5-3 and we shall briefly comment on the construction of each.

. -
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In Fisure 5-1, the GP-GN model for priority level one is shown. The

solution gives al* - 0 - P, and we move to the model for priority levels

one and two, as shown in Figure 5-2. However, we may simplify constraint

node I at this time. That is, since o1 must be kept to a value of zero,

equation (5.2) is equivalent to:

x + x + x + n - 2

or, more simply,

x + x 2 + x 3 < 2

As a result, the goal node for goal I (as in Figure 5-1) may be replaced

by the simpler constraint node shown in Figure 5-2.

Solving the GP-GN model of Figure 5-2 gives:

a 2 5 = 5n2 + 203 (5.6)

which is the augmented constraint that should be added to the next GP-GN

model. However, as indicated in Figure 5-3, relationship (5.6) can be

included in the network by simply modifying the two goal nodes as shown.

That is, we add the augmented source node "A" with an input of exactly 5

units (i.e., the value of a2*). The two arcs emanating from node A then

assure us that, in any solution to the GP-GN network of Figure 5-3, rela-

tionship (5.6) must be satisfied.

Solving the final GP-GN model of Figure 5-3 gives us:

.- x = (1,1,0)

and thus the solution to the example of (5.1) through (5.5) is:

a - (0,5,0)

x - (1,1,0)

,
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6. REFINEMENTS: LEXICOGRAPEIC GP-GN

Just as there have been found to be numerous refinements to SGP (such

as "column drop", "early stop", etc. (27]), there are similar refinements

possible for SGN. In fact, the very use of the network representation

provides for a number of straightforward, but potentially powerful, refine-

ments that may greatly enhance computational efficiency. We discuss a few

of the more obvious of these below.

Aupented Constraint

Step 5 of the SGN algorithm indicates the addition, for each submodel

except the first, of the augmented constraint:

gt (;,p) - at* (6.1)

From this, it would appear that we are increasing the complexity of the

network equivalent when, in fact, quite often just the opposite occurs.

To illustrate, consider first the case in which the augmented con-

straint (6.1) contains deviation variables from more than one goal (i.e.,

there exist several goals at the previous priority level). This case may

be considered via the use of the specific example given below:
-- *

9t(0,P) - w1 P1 + u2 n2 
= a (6.2)

In this example, we have two goals at priority t. The goal-nodes for these

two goals are given, originally, as shown in Figure 6-1. Note that, if

**the achieved level of (6.2) is zero (i.e., at M 0), a simplification is

possible. That is, if at a 0 then (6.2) becomes:

Wl0 1 + u 2 n2 - 0

which can only be satisfied -;han there is no flovy across either the P1 or

n, arc. For this case, we simoly remove thcse two arcs from their goal-nodes

of Figure 6-1 in all further calculations.
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hlen the opctml solution to (6.2) is non-zero (i.e., at 2 0), w my

use the network modification already illustrated In Figure 5-3, for our

example of section 5.

Next, let us consider the case wherein, for the priority level previously

solved, there is but one associated goal. That is, the associated augmented

constraint is of the general form shown below:

gt(Vp) - wi Pi +u i ni - at  (6.3)

Now, if the value of at is zero, we have an obvious simplification designated as

the "collapse" of the associated goal node. This is illustrated. for a

specific form of (6.3), in our previous example of section 5 wherein the

goal nods of Figure 5-1 "collapsed" into a standard constraint node in

Figure 5-2.

Variable Reduction

It may also be possible, when performing the SGN algorithm, to actually

eliminate one or more variables (and thus their associated nodes and arcs)

from the model. The most obvious case is when a constraint node (either an

original constraint node or a collapsed goal-node) can only be satisfied by

one specific combination of those variables whose arcs lead to that node.

Early Stop

If, through variable elimination (as directed above), all the variable

values are fixed, the problem is solved and thus it is not necessary to

consider further submodels in the sequence.

I - ... ,~-~ .-. ....
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Nonlinear F mtious

The processes previously described are also applicable in principle,

to nonlinear integer GP models. Here, the single arc from a variable node

to a constraint or goal-node would be replaced by several arcs. Each of

these arcs would represent a linear approximation, over a given interval,

of the nonlinear function. The interval, in turn, is controlled via the

upper and lower bounds on flow across each of the multiple arcs associated

with the specific variable-constraint/goal combination.

Minmax GP and Fuzzy Prograuming

In Section 2, we presented only two (i.e., weighted GP and lexico-

graphic GP) forms of GP. Another form of GP (see the references for further

details [27, 32, 41]) is that known as minmax GP. In mmnmax GP, we strive

to minimize the worst single goal deviation. Two natural and straight-

forward extensions of minmax GP are: lexicographic minmax GP and an approach

known as "fuzzy programing" (27, 32, 41]. By means of approaches similar

to those discussed in this paper, these models may also be represented and

solved via the GN approach and, consequently, a detailed discussion is

believed unnecessary.

Augmented GP

Yet a further class of GP is that known as augmented GP [27, 34].

Augmented GP may be used to derive (via minimal interaction with the decision

maker) a subset of all the nondominated solutions which exist for a given

problem. Such an approach is implemented by means of extensions to the GP-GN

concept and is the topic of a present research effort.

The restrictions typical of all such approximations must, of course, hold.
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7. SUM4NAR

In this paper we have provided and described, via example, the results

of an on-going research effort dedicated to the modeling, solution and

analysis of multobjective integer programing problms. This has been

accomplished by means of combining generalized goal programming (21, 24,

25, 27, 28, 29, 30, 34] with generalized networks [1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 26, 31, 33, 35, 37, 38, 39,

40]. The resulting methodology, denoted as GP-GN may be applied to any

multiple objective model which conforms to the standard assumptions of

generalized networks. For such problems, the GP-GN approach should provide

for a computationally efficient method of problem solving.

Ii
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