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ABSTRACT

A large number of real world problems may be characterized via a
sultiobjective integer mathematical programming model. However, the solu-
tion to truly large-scale problems of such a type has been a difficult task.
In this paper, we present a hybrid approach, combining generalized goal
programming and generalized networks, for the modeling of such problems.

Once such a model has been developed, it may then be possible to employ the
solution procedures of generalized networks to efficiently obtain a Qolution
particularly if the resultant hyﬁrid model is, fundamentally, a multiobjective

generalized network.
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1. INTRODUCTION

Goal programming (GP) or, more appropriately gensralized goal pro-
gramming (GGP) [21, 24, 27], is one of several approaches that have been
proposed for the modeling, solution and analysis of the multiobjective
mathemstical programming problem. However, GP has distinguished itself
from most alternate multiobjective methods in {ts computational efficiency
and evidence of widespread, actual implementation. Even the most adament
of its critics recognizes that GP is, as of now, the "workhorse" of the
multiobjective mathematical programming methoda.

The computational efficiency of GP is particularly evident in dealing
with either linear or nonlinear multiobjective models having continuous
variables [21, 24, 27, 28, 29]. Here, GP has shown equivalent performance
to that available in conventional (i.e., single objective) algorithms.
However, when deal’~g with models which involve integer-valued variables,
the performance of various (exact) integer GP algorithms has been less than
impressive. As a result, the majority of truly large-scale integer GP
problems have been solved by various heuristic approaches (20, 21, 23, 30].

Relatively recently, there have been some substantial accomplishments
in solving single-objective integer programming problems via generalized
networks. For gome problems, such an approach has been shown to be up to
several hundred times faster (and with less round-off error and reduced
storage requirements) than available through conventional software (6, 7, 8,
12, 13, 14, 19, 37, 39]. One deficiency of such approaches, at least in

the opinion of the multiobjective advocate, has been the focus on a single

objective.
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Purpose
The purpose of this paper is to report om an ongoing research effort

that is directed toward the development of a hybrid approsch which combines

GP and Generalized Networks (GN). As a result, we term the hybrid approsch

"GP-GR". A few previous papers [22, 26, 36, 38] have addressed earlier
results in this area and thus, herein, we expand on this topic with our
emphasis focused primarily on the modeling aspects of GP-GN since there is
an abundance of literature readily available in regard to the algoritims of

generslized networks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 31, 35, 37, 39, 40].
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B 2. TWO GP MODELS

There are a wide variety of GP models including weighted GP, lexico-~-
graphic GP (i.e., the use of the so-called "preemptive priority" concept),
minmax GP (which includes fuszzy programming), and interactive GP (which is
used to generate a subset of nondominated solutions) (24, 25, 27, 30, 34].
However, in this paper we shall initially restrict our attention to two

particular forms of GP: (1) weighted GP and (2) iexicographic GP. The

mathematical models used to represent these two types of GP are then

presented below.

Weighted GP Model

Here, we wish to find x so as to: {

\ ninimize z =i (“1n1 + wipi) (2.1) i
) !
E < |
fi (x) - \ b1 ieF (2.2)
l/
f1 (x) + ng =Py b:l ieG (2.3)
X, N, 6 > 0 (2.4)
wherae:
F = the set of rigid constraints %
E G = the set of goals (where the right-hand side value represents a

target value, or aspiration level, for the specific gosl)
the negative deviation of goal 1

the positive deviation of goal {

the weights associated with

ng and o4 respectively
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Lexicographic GP Model

If the problem goals are rank ordered according to importance, we can

model the problem as follows. Find X 80 as to determine the lexicographic

minfmum of:
a={a;, .oopay, o0oey ap) (2.5)
s.t.
£, (x) +ng -p, = b, ¥i (2.6)
X, N, p > 0 (2.7)
where:
a = the "achievement vector" for which we seek the lexicographic

minimal value.
a =a function of the goal deviation variables (n,p) that are to be
minimized at priority level k. That is:

8 = g, (5) (2.8)

Solving the Models

If the decision variables (x) are permitted to take on fractional values,
computationally efficient algorithms exist that may be used to develop the
solution. For example, if the models involve strictly linear functions
({.e., all fi (x) are linear) then algorithms have been developed for use
on IBM, UNIVAC and CDC computers (as well as others) that solve problems
of the same size (and with approximately the same efficiency) as available
through the use of conventional simplex codes. For example, the solution
of lexicographic linear GP models with up to 16,000 rows (i.e., goals and

rigid constraints) by as many variables as may be stored is available on

IBM 360 or 370 computers having the MPSX software package [24, 27, 29].




In the cass of nonlinear (weighted or lexicographic) GP models (again,
with continuous variables), computer codes have been developed (and applied
to a variety of real world applications [21, 24, 28]) that will solve
problems with several hundred rows by thousands of variables. One actual
implementation (1978 [28]) involved the solution of a problem with 400
rows and 10,000 variables and was solved in approximately nine minutes on
the CDC~7600 computer.

However, as mentioned, the efficiency of computer codes for GP wmodels
involving integer variables is not particularly impressive. To the
author's knowledge, most truly large-scale integer GP problems actually
dealt with have been solved by means of heuristic techniques. Further,
such heuristics have typically been carefully tailored to handle the
specific problem under consideration and, thus, an approach to the general

case has been lacking.




3. INTEGER PROGRAMMING AND NETFORM

There are numerous approaches to the modeling (and solution) of gener-

alized networks. For purposes of illustration only, we will employ models
and notation used in one of these approaches, known as NETFORM [6, 7, 12, 14].
In this section, we shall briefly summarize the NETFORM modeling approach to

conventional (i.e., single objective) problems.

The NETFORM Arc

The building blocks of the NETFORM model are its nodes - and the arcs
connecting these nodes. Figure 3-1 depicts a general NETFORM arc and its
associated nodes. The origin node is node "i" and the terminal node is
node "j". The (directed) arc, "i-j", comnects these nodes. The "cost" per

unit flow is given as ¢, j and is shown within the rectangle.

1,] (L,U)* LINY T
® O

Figure 3-1: NETFORM Arc

The flow, xi,j’ has a lower bound (L) and upper bound (U) as indicated in
the parentheses. Note that an asterisk will appear only if the flow across
the arc must be integer valued. A particularly important, and powerful,
feature of the model is given in the triangle as Gi,j' Gi,j is, in turn,

the gain factor which reflects the amplification or attenuation of the flow

through the arc.
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The Couventional Integer Programming Model
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Once a problem has been so modelead, various software is available for
its solution and, as mentioned, the results can be extremely impressive.
One application, for the U. S. Treasury, involved a model with 5,000 nodes
and 625,000 arcs. The problem was reportedly solved in 9 minutes on a
UNIVAC 1108 at a cost of $90, A good commercial LP code would have, under
best conditions, required about 20 hours of CPU time, at a cost of about

$24,000 {14]. ]

The generalized network or NETFORM modeling approach is not restri

to just those problems which naturally take on a network representation
(e.g., assignment, transportation, transshipment). We can, for example,
transform any single objective (and, in the next section, multiobjective)
integer programming problem into an equivalent GN model. This is best illus-
trated via a mumerical example. Consider the following model in which all

variables must take on 0 or 1 values:

minimize 3x1 + 7x2 + X4
s.t.
(1) Xy + Xy + xg.l 2
(11) -2x1 + 5x2 >3
xJ e {0,1} j=1,2,3 H

The equivalent GN model will contain one "objective" node and this will
serve as the source node for the network. Also, there will be a node, for {

each variable, connected directly to the objective (or source) node. Finally,

there will be a node for sach constraint and these constraint nodes will be

directly connected to those variable nodes as associated with the variables

which appear in that constraint. This leads to the GN model shown in

Figure 3-2.
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The "availability" of the objective, or source, node is shown as <3
meaning that up to three variables may take on values of one. The require-
ments at the terminal, or constraint, nodes are those associated with each
constraint (see original model). The cost of variable 1 in the objective
is 3 units as shown on the arc from the objective node to the variable one
(xl) node. The "gain" across this arc is 2 units which means that
variable one appears in exactly two constraints. The arcs from the variable
nodes to their associated constraint nodes have a gain factor equal to
their technological coefficient in that constraint. Solving the GN
model of Figure 3-2 will then provide the solution to the original mathe-~

matical model.
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4, WEIGHTEL °-GN

We shall first address the modeling of the weighted integer GP model
via GN. The resulting concepts and approach may then be extended so as to
encompass the subject of the following section: 1lexicographic integer GP.

The easiest way to explain the GP-GN approach is via a simple, 1llus-
trative example. Consider the following weighted integer GP model:

- Find x 8o as to

minimize z = Sn1 + 292

(¢9) x1+ x2+ x3 <2

(I1) 3x1 + 2x3 + noR

(I11) 3x1 + 2x2 + 7x3 + n, -p, = 5

xj € {0’1} ¥j

Approach One

Recalling the modeling approach used in the conventional integer pro-
gramming model, as illustrated in the previous section, we note that it may
be directly applied to our example since it too is in the form of a single
objective integer model. This approach would lead to a GP-GN model as
shown in Figure 4-~1. Here, we simply treated the goal deviation variables

(nl. Ngs 04 and 92) as model variables and added the corresponding variable

nodes.
We choose, however, not to use this approach but, rather, employ an

equivalent alternate modeling scheme, in the construction of the weighted

integer GP-GN model. We discuss this technique below.
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Approach Two

This second approach involves the incorporation of a new, "complex”
node. This special node, denoted as the goal node, is composed of a simple
terminal node plus two additional arcs. A general goal-node is shown in
Figure 4-2. In this figure, we note that node A is, in essence, a "soft"
constraint node. That is, it allows for some deviation either above or
below the goal target value, bi' |

The input to node A reflects the actual value achieved for that goal,
which we may call a,. The desired value, bi’ is shown to the right and, in
the network, is a sink node requirement. However, if a, > b1 then there is
positive deviation (or "overflow") which flows gut of node A into the top,
positive deviation (pi) branch at a cost of v, units par unit of flow. On

the other hand, if a, < b,, then there is negative deviation (or "underflow")

i
which requires a flow into node A - as depicted by the lower branch (“1)‘

The flow on this branch incurs a cost of u, units per unit of flow. Such

a goal-node will then be associated with each goal in the GP model under
consideration, Combining the GN modeling process with the goal-node concept,
we may model our example as shown in Figure 4-3. (Recall that numbers in

rectangles represent coefficients or, in this case, weights while these

in triangles refer to the gain across the arc.)




! Figure 4-2: The Goal-Node

' To summarize, the use of the goal-node leads to a weighted integer GP
model wherein:
{, (1) There is a single source node (node 0) with a "supply” equal to
the number of zero-one variables in the problem.
(2) There are arcs from the source node directly to a set of variable
nodes (i.e., decision variables only). The multiplier (gain) on
| the arc indicates the number of constraints plus goals in which
- é the associated variables appears.
; f i (3) The variable nodes are connected, via arcs, to the constraint and
goal-nodes in which they appear. The multiplier for these arcs
is equal to the technological coefficient of the variable in the

respective constraint or goal.

A
i R 3 T
X B o—— — 3




om], yoeoaddy :y3pol ND-d9 -y 2an3y4




15

| (4) A constraint node (see node I) is then a simple, terminating node.
The "demand” of that node is shown to its right. A goal-node is

L

, * also a terminating node but is, as noted, a complex node (as
4 shown for goals II and III),

When the standard assumptions (see the references) of generalized net-

works are satisfied, solution to this form of the weighted integer GP-GN
model is available via the appropriate generalized network software. The
' solution thus found, for our example, would be:

¥ = (1,0,0) or (1,1,0)

-! and z* = 5

We nowv proceed to the second form of the GP model, i.e., lexicographic GP.
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5. LEXICOGRAPNIC GP-GM

The development of the network model for lexicographic integer GP
problems follows the same basic procedure as outlined, in the previous
section, for weighted integer GP. However, we shall form a sequence of
weighted integer GP-GN modaels for the representation of the lexicographic
model where the total number of models in each sequence shall be, at worst,
equal to the number of priority levels in the original lexicographic GP
mathematical model.

We shall denote this process as Sequential GP-GN, or SGN. SGN, in
turn, is simply the network equivalent of the approach known as SGP (i.e.,
sequential goal programming) that has been employed for approximately 15
years in modeling and solving large-scale GP models (24, 27, 29]. The pro-
cedure may be described as follows. First, we formulate that portion of the
lexicographic GP model associated with priority one. This submodel is simply
a weighted integer GP model and thus may be solved directly via the weighted
GP-GN approach as described previously. Next, we form the GP model associated
with priority one and two. However, we augment this model with the additional
condition (i.e., a new rigid constraint) which restricts the next solution
derived to one which does not degrade the solution found for the previous
submodels (i.e., gl(ﬁ}s) - al*]. This process is continued until all
priority levels (and associated submodels) have been solved. The last solu-
tion is the solution to the original lexicographic GP model. The process

may be summarized via the algorithm provided below.




SGN Algorithm

Step 1: Develop the lexicographic integer GP model as showm in (2.5) through
(2.8). Set k=1,
Step 2: Establish the weighted integer GP model associated with priority
k (1.e., priority one). This is:
ninizize a, =8 (n,0)

s.t.

Convert the present GP submodel to the equivalent weighted integer
GP-GN model and solve, via the appropriate GN software, for the
optimal value of a, (d.e., ak*).

I1f k = K, stop as the last solution (x*) is the solution to the
original lexicographic GP model. If k < K, go to Step 5.

Set k = k + 1 and establish the next (weighted) GP submodel in

the sequence where this submodel is given by:
minimize a, = 8, (n,p)

slt.

fi (x) + n.1 - oi = bi ie Tk

8, (n,0) = a* t=1,2,...,k=1

no >0

x, ¢ (0,1} ¥

]
and Tk is the set of all gcals and constraints in priority levels

1 through k.




Step 6: Repeat Steps 3 through 5 until the entire model has been solved.
The final value of x* is the optimal prograam for the original

lexicographic integer GP model.

Inplementation .

Implementation of the SGN process would be achieved via the use of 4 buffer
program in conjunction with the GN software. The buffer program simply
automates the above process by forming each submodel, delivering the sub-
model to the GN software, and forming the necessary augmented constraint
associated with the intermediate GN outputs. In actual practice, however,
there are a number of refinements that may be added so as to substantially
improve overall computational efficiency. We touch on just a few of these

in the example to follow as well as in the next section.

Example
In order to gimply illustrate the basic procedure, we shall formulate

the sequence of models associated with the problem shown below:

Find x to lexicographically

minimize:
a = {(p))s (Sny + 205), (ny)} (5.1)
s.t
X+ Xyt Xy +ny - =2 (5.2)
3%, +2xy 4, - p, = b (5.3)
3x1 + Zx2 + 7x3 + Ny = Py " 5 (5.4)
x, ¢ (0,1} and n, >0 (5.5)

The three models developed to support the SGN process are shown in Figures

5-1 through 5~3 and we shall briefly comment on the construction of each.
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In Figure 5-1, the GP-GN model for priority level one is shown. The
solution gives 11* s 0= Py and we move to the model for priority levels
one and two, as shovn in Figure 5~2. However, we may simplify constraint
node I at this time. That is, since p, must be kept to a value of zero,
equation (5.2) is equivalent to:

xl+x2+x3+n1-2
or, more simply,

X, Fxy+ x5 < 2

As a result, the goal node for goal I (as in Figure 5-1) may be replaced

by the simpler constraint node shown in Figure 5-2.

Solving the GP~GN model of Figure 5-2 gives:

az* =5 = Snz + 293 (5.6)

which is the augmented constraint that should be added to the next GP-GN
model. However, as indicated in Figure 5-3, relationship (5.6) can be
included in the network by simply modifying the two goal nodes as shown.
That is, we add the augmented source node "A" with an input of exactly 5
units (i.e., the value of az*). The two arcs emanating from node A then
assure us that, in any solution to the GP-GN network of Figure 5-3, rela-
tionship (5.6) must be satisfied.

Solving the final GP-GN model of Figure 5-3 gives us:

a3* = (

-_—
x = (1,1,0)
and thus the solution to the example of (5.1) through (5.5) is:

*
= (0,5,0)

* e (1,1,0)

®|
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6. REFINEMENTS: LEXICOGRAPHIC GP-GN

Just as there have been found to be numerous refinements to SGP (such
as "column drop", "early stop', etc. [27]), there are similar refinements

possible for SGN. 1In fact, the very use of the network representation

provides for a number of straightforward, but potentially powerful, refine-
ments that may greatly enhance computational efficiency. We discuss a few

of the more obvious of these below.

Augmented Constraint
Step 5 of the SGN algorithm indicates the addition, for each submodel

except the first, of the augmented constraint:

g, (M,0) = a.* (6.1)

From this, it would appear that we are increasing the complexity of the
network equivalent when, in fact, quite often just the opposite occurs.
To illustrate, consider first the case in which the augmented con-

straint (6.1) contains deviation variables from more than one goal (i.e.,

there exist several goals at the previous priority level). This case may

be considered via the use of the specific example given below:

- - *
8. (N,p) = wip) +u,n, = a, (6.2)
In this example, we have two goals at priority t. The goal-nodes for these

two goals are given, originally, as shown in Figure 6~1. Note that, if

*
the achieved level of (6.2) is zero (i.e., at = ), a simplification is
*
possible. That is, 1if a, = 0 then (6.2) becomes:

+u = 0

wiPp T UM

which can only be satisfied when there is no flow across either the Py or

n, arc.

of Figure 6-1 {n all further calculations.

For this casc, we simply remove these two arcs from their goal-nodes

< o e o

A T e
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When the optimal solution to (6.2) is non-sero (i.e., l: > 0), ve may
use the network modification already illustrated in Figure 5-3, for our
example of section 5.

Next, let us consider the case wherein, for the priority level previously
solved, there is but one associated goal. That is, the associated augmented

constraint is of the genaral form shown below:
L]

¢ (6.3)

84?.?) =w p, *u n =a
Now, if the value of a: is zero, we have an obvious simplification designated as
the "collapse" of the associated goal node. This is illustrated, for a
specific form of (6.3), in our previous example of section 5 wherein the
goal node of Figure 5-1 "collapsed" into a standard constraint node in

Figure 5-2.

Variable Reduction

It may also be possible, when performing the SGN algorithm, to actually
eliminate one or more variables (and thus their associated nodes and arcs)
from the model. The most obvious case is when a constraint node (either an
original constraint node or a collapsed goal-node) can only be satisfied by

one specific combination of those variables whose arcs lead to that node.

Early Stop

If, through variable elimination (as directed above), all the variable

values are fixed, the problem is solved and thus it is not naecessary to

consider further submodels in the sequence.

adaliink
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Nonlinear Functions

The processes previously described are also applicable in principle,
to nonlinear integer GP models. Here, the single arc from a variable node
to a counstraint or goal-node would be replaced by several arcs. Each of
these arcs would represent a linear approximation, over a given interval,
of the nonlinear funccion.* The interval, in turn, is controlled via the
upper and lower bounds on flow across each of the multiple arcs associated

with the specific variable-constraint/goal combinationm.

Minmax GP and Fuzzy Programming

In Section 2, we presented only two (i.e., weighted GP and lexico-
graphic GP) forms of GP. Another form of GP (see the references for further
details [27, 32, 41]) is that known as minmax GP. In minmax GP, we strive
to minimize the worst single goal deviation. Two natural and straight-
forvard extensions of minmax GP are: lexicographic mimmax GP and an approach
known as "fuzzy programming’ [27, 32, 41]. By means of approaches similar
to those discussed in this paper, these models may also be represented and
solved via the GN approach and, consequently, a detailed discussion is

believed unnecessary.

Augmented GP
Yet a further class of GP is that known as augmented GP (27, 34].

Augmented GP may be used to derive (via minimal interaction with the decision
maker) a subset of all the nondominated solutions which exist for a given
problem. Such an approach is implemented by means of extensions to the GP-GN

concept and is the topic of a present research effort.

*
The restrictions typical of all such approximations must, of course, hold.
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7. SUMMARY

In this paper we have provided and described, vis example, the results
of an on-going research effort dedicated to the modeling, solution and
analysis of multiobjective integer programming problems. This has been
accomplished by means of combining generalized goal prograsming (21, 24,
25, 27, 28, 29, 30, 34} with generalized networks {1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 26, 31, 33, 35, 37, 38, 139,
40]. The resulting methodology, denoted as GP-GN may be applied to any
multiple objective model which conforms to the standard assumptions of

generalized networks. For such problems, the GP-GN approach should provide

for a computationally efficient method of problem solving.

= %
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