NUCLEATION THRESHOLD STRESSES FOR THE
DYNAMIC FRACTURE OF A
LOW-ALLOY NI-CR STEEL

Gerald L. Moss
Paul H. Netherwood, Jr.
Lynn Seaman

January 1983

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.
Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute endorsement of any commercial product.
REPORT DOCUMENTATION PAGE

1. REPORT NUMBER
Technical Report ARBRL-TR-02460

5. TYPE OF REPORT & PERIOD COVERED
Final

2. GOVT ACCESSION NO

6. PERFORMING ORG. REPORT NUMBER

3. RECIPIENT'S CATALOG NUMBER

7. AUTHOR(s)
G. L. Moss and P. H. Netherwood, Jr., BRL
L. Seaman, SRII

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS
US Army Ballistic Research Laboratory
ATTN: DRDAR-BLT
Aberdeen Proving Ground, MD 21005

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Proj. Element 6.11.02A
DA Proj. No. 1L161102AH43
AMCRS Code 611102H4300

11. CONTROLLING OFFICE NAME AND ADDRESS
US Army Armament Research & Development Command
US Army Ballistic Research Laboratory (DRDAR-BLT)
Aberdeen Proving Ground, MD 21005

12. REPORT DATE
January 1983

13. NUMBER OF PAGES
17

14. MONITORING AGENCY NAME & ADDRESS (IF different from Controlling Office)

15. SECURITY CLASS. (OF THIS REPORT)
Unclassified

15a. DECCLASSIFICATION/DOWNGRADING SCHEDULE
N/A

16. DISTRIBUTION STATEMENT (OF THIS REPORT)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continued on reverse side if necessary and identify by block number)
Dynamic Fracture, spallation, threshold fracture stress, nucleation fracture stress

20. ABSTRACT (Continued on reverse side if necessary and identify by block number)
The stresses σ_{no} required for the nucleation of cracks with tensile stress waves were determined as a function of the strength of the steel. These threshold levels were established with the crack densities developed with parallel-plate impacts and the corresponding tensile stresses. The tensile stresses were determined with a procedure that accounts for the effects of elastic-plastic wave interactions and void development on the intensity of the tensile stresses. Two new results were discovered. First, it was
established how \(\sigma \) depends on the yield strength of the material and, second, an equation was developed that describes how the crack nucleation rate changes with stress. This relation applies for the entire range of stresses extending from the stress at which cracking begins to at least two and a half times this value.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>II. PROCEDURE</td>
<td>5</td>
</tr>
<tr>
<td>III. RESULTS</td>
<td>6</td>
</tr>
<tr>
<td>IV. CONCLUSIONS</td>
<td>11</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>12</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>13</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Two previous determinations of the crack nucleation threshold stress σ_{no} in a low-alloy Ni-Cr steel led to values differing by a factor of 3.4.1,2 The present study was initiated to clarify this situation by examining the nucleation process in more detail -- especially through investigations of cracking at stress levels near the threshold stress and as a function of the strength, or extent of tempering, of the steel.

II. PROCEDURE

The material investigated was a low-alloy 0.22C-3Ni-1Cr tempered martensitic steel, and σ_{no} determinations were completed for three different rolling and tempering conditions. These corresponded to Brinell hardnesses of 270, 320, and 370 and yield strengths σ_Y of 0.65, 0.80 and 1.02 GPa, respectively.

Partially broken samples were created for investigation with parallel-plate impacts (plate-slap tests) accomplished with a light-gas gun. The degree of damage in the samples was varied by changing the impact velocity. In all tests of a particular material condition, identical impactor and sample thicknesses were used to insure approximately the same load duration.

Crack densities were established with microscopic observations of metallographically prepared sections of the partially broken samples.3 In the plate-impact test, the load duration depends on the location in the plate. Hence, only voids in the central region -- a strip 0.021 to 0.127 cm wide -- of each sample were counted. This insured that voids in the regions investigated were initiated over approximately equal time intervals. It also allowed the use of data from the low-pressure tests where no noticeable cracking occurred in the outer regions of the plates.

The nucleation threshold stress was determined iteratively by first estimating an approximate threshold stress σ_{no} by extrapolating curves of crack density versus the maximum compressive stress to the stress corresponding to no cracking. If this resulted in a stress less than the Hugoniot elastic limit (HEL), σ_{no}' was approximated with the HEL. Subsequently, the maximum tensile stress attained in each test was computed with the one-dimensional

stress wave-propagation computer code PUFF\(^4\) with the brittle-fracture subroutine BFRACT\(^4\), and by using \(\sigma_{no}\) and related material fracture parameters from independent tests\(^2\). Such a computation automatically accounts for the elastic-plastic wave interactions as well as the effect of void development on the intensity of the tensile stresses computed. Finally, \(\sigma_{no}\) was determined by extrapolating curves of crack density versus the maximum tensile stress to the tensile stress corresponding to no cracking. The stress at no cracking was assumed to be \(\sigma_{no}\).

Crack morphology was examined at each strength level to aid in interpreting the results of the threshold determinations.

III. RESULTS

Microscopic observations revealed that failure invariably started at inclusions which either cracked or separated from the matrix. Eventually, cracks extended from these regions into the matrix. Clearly, there are several distinct stages in the failure process, and nucleation can be described in several ways. Here, nucleation was associated with the beginning of the crack extensions into the steel matrix.

Graphs of the crack densities versus stress are shown in Figure 1 for the thermomechanical treatments corresponding to yield stresses of 0.65 and 1.02 GPa. It can be seen that the curves based on the tensile and compressive stresses.

![Graph showing crack density dependence on stress. Symbols with the same shape correspond to the same test.](image)

Figure 1. Crack density dependence on stress. Symbols with the same shape correspond to the same test.

stresses do not extrapolate to the same no-damage levels. This is partly because there is insufficient cracking at stresses just above \(\sigma_{\text{no}} \) to get statistically significant crack densities. Since cracking is activated by tensile, rather than compressive, stresses, \(\sigma_{\text{no}} \) was related to the tensile stress at which cracking began. A new result shown in Figure 1 is that \(\sigma_{\text{no}} \) decreases as \(\sigma_Y \) increases over the stress range investigated.

The reason for this behavior is revealed by the appearance of the cracks. Examples are shown in Figures 2 and 3. It is readily seen in Figure 2 that when \(\sigma_Y \) equals 1.02 GPa, the cracks tend to extend along the edges of inclusions and appear as fine lines in the matrix. They are typical sharp cracks. In contrast, there is approximately spherical void growth around the inclusions in the lower strength steel (\(\sigma_Y = 0.65 \) GPa) as shown in Figure 3. Eventually, matrix cracks form, but these are clearly nucleated with more plastic deformation than the cracks in the higher strength steel.

Figure 2. Sharp cracks at inclusion-matrix interfaces and in the steel matrix (\(\sigma_Y = 1.02 \) GPa).
Figure 3. Approximately spherical void growth at inclusions. Vertical lines are shear cracks ($\sigma_Y = 0.65$ GPa).

The nature of the cracking is further emphasized in Figure 4 where the data for the Ni-Cr steel and several other materials are shown along with curves that approximate bounding conditions for the development of failure. 5-9

The lower limit on threshold stresses for cracking was assumed to be the stress required to develop sharp cracks. This was approximated with the stress just sufficient to initiate plastic deformation. For plane-strain conditions, as encountered in the plate-impact test, the stress \(\sigma_{11} \) in the direction of wave propagation required to initiate plastic flow is proportional to the yield strength of the standard tensile test and is given by the relation

\[
\sigma_{11} = (1-\nu)\sigma_Y/(1-2\nu).
\]

This curve is shown in Figure 4 for a Poisson's ratio \(\nu \) of 0.27, and it is apparent that the threshold stresses for cracking in brittle materials in which sharp cracks form, i.e., Lexan, S-200 Be, Armco Fe and the Ni-Cr steel (\(\sigma_Y = 1.02 \) GPa), almost coincide with this line. Hence, increasing \(\sigma_Y \) of the Ni-Cr steel above about 1 GPa should result in an increase in \(\sigma_{11} \).

An upper bound on the stress to initiate cracks was assumed to be the stress to develop a perfectly blunted crack, i.e., a spherical pore. Hill has shown that the hydrostatic pressure \(P \) required to enlarge a spherical void in an infinite elastic-perfectly plastic solid is given by

\[
P = (2\sigma_Y/3)\left\{1-\ln\left[2\sigma_Y(1/3K-1/4\mu)\right]\right\},
\]

Figure 4. Nucleation threshold stresses for fracture with stress waves. The curves bounding the possible threshold stresses correspond to the development of perfectly sharp and perfectly blunted cracks.
where \(K \) and \(\mu \) are the bulk and shear moduli, respectively. The stress component \(\sigma_{11} \) in the direction the stress wave propagates is

\[
\sigma_{11} = P + \frac{2}{3}\sigma_Y.
\]

This is the stress component usually related to fracture with stress waves. When \(P \) is taken as the critical stress for void growth, \(\sigma_{11} = \sigma_{\text{no}} \). This is plotted in Figure 4 for average values of \(K \) and \(\mu \) for ductile materials and is identified as the upper bound on \(\sigma_{\text{no}} \). Measured threshold stresses for the nucleation of voids in ductile materials (Al, Cu, apparently Ti and the Ni-Cr steel when \(\sigma_Y = 0.65 \) GPa) are also shown in Figure 4, and these are in close agreement with the upper limit for \(\sigma_{\text{no}} \), i.e., the curve for perfectly blunted cracks. Since the critical condition for void growth is defined by the expression for \(P \), the agreement between the data and the bounding curve is a quantitative indication that the initial approximately spherical void growth in ductile materials is governed by all the principal stress components rather than by \(\sigma_{11} \) alone.

It is apparent that there is a maximum in the \(\sigma_{\text{no}} \) vs. \(\sigma_Y \) curve for the Ni-Cr steel at about 0.6 GPa because the limiting curve for perfectly blunted cracks is an increasing function of yield stress while in the interval \(0.60 \leq \sigma_Y \leq 1.0 \) GPa the threshold stress for cracking the Ni-Cr steel is a decreasing function of yield stress. This maximum should be an important feature in the design and selection of tempered martensitic steels that must resist fracture due to stress waves. The implication is that for some loads there may be a tempering condition that will result in optimum fracture resistance.

The data in Figure 1 are also helpful in establishing appropriate functions for the description of crack nucleation rates \(\dot{N} \). Previous results have shown that at stresses appreciably greater than \(\sigma_{\text{no}} \), \(\dot{N} \) is approximately given by

\[
\dot{N} = \dot{N}_0 \exp \left(\frac{\sigma_{11} - \sigma_{\text{no}}}{\sigma_1} \right).
\]

However, the graph shown in Figure 1 suggests the behavior of the high-strength steel (\(\sigma_Y = 1.02 \) GPa) is actually consistent with

\[
\dot{N} = \dot{N}_0 \left\{ \exp \left[\frac{\left(\sigma_{11} - \sigma_{\text{no}} \right)}{\sigma_1} \right]^{1.25} - 1 \right\}.
\]

Hence, when \(\sigma \) equals \(\sigma_{\text{no}} \), the nucleation rate is zero and not \(\dot{N}_0 \). At stresses appreciably above \(\sigma_{\text{no}} \), Eq. 1 and the relation for \(\dot{N} \) that has been used in the past are approximately the same.

New features discovered about the fracture with stress waves of a quenched and tempered low-alloy 3Ni-1Cr steel are as follows:

1. At low stresses, the threshold stress σ_{no} for the nucleation of cracks with stress waves increases with increasing yield strength σ_Y. However, at approximately 0.65 GPa there is a maximum and at 1.02 GPa a minimum in the σ_{no}-σ_Y curve. The quantitative dependence of σ_{no} on σ_Y is given by the following relations.

When σ_Y is within the stress interval $\sigma^* \leq \sigma_Y \leq 0.65$ GPa with the lower bound σ^* being the lowest stress that will form a spherical void,

$$\sigma_{\text{no}} = \frac{4}{3} \sigma_Y \left[1 - \frac{1}{2} \ln 2\sigma_Y \left(\frac{1}{3K} + \frac{1}{4\mu} \right) \right].$$

When $0.65 \leq \sigma_Y \leq 1.02$ GPa,

$$\sigma_{\text{no}} = -1.71 \sigma_Y + 3.38.$$

When $\sigma_Y \geq 1.02$ GPa,

$$\sigma_{\text{no}} = (1 - v) \sigma_Y/(1 - 2v).$$

The stress corresponding to the lower bound σ^* is unknown, but crack blunting should not be expected behavior for indefinitely low values of σ_Y. Sharp cracks should be encountered when there is massive ferrite since ferrite is known to cleave. This condition should define σ^*.

2. Intermediate behavior in which σ_{no} decreases as σ_Y increases corresponds to a decrease in the degree of plastic blunting at crack tips as the yield strength increases.

3. The nucleation rate at stresses near σ_{no} is given by

$$\dot{N} = \dot{N}_0 \left\{ \exp \left[\left(\sigma_{11} - \sigma_{\text{no}} \right)/\sigma_1 \right]^{1.25} \right\}^{-1}$$

when $\sigma_Y = 1.02$ GPa. The above relation reflects a significant improvement in our understanding of the rate at which cracks nucleate at low stresses -- stresses in the vicinity of σ_{no}, and it should allow better quantitative predictions of the damage due to fracture with stress waves.
REFERENCES

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 12 | Administrator
Defense Technical Info Center
ATTN: DTIC-DDA
Cameron Station
Alexandria, VA 22314 | 6 | Commander
US Army Armament Research
and Development Command
ATTN: DRDAR-TSS
J. D. Corrie
R. J. Weimer
J. Beetle
E. Bloore
Dover, NJ 07801 |
| 3 | Director
Defense Advanced Research Projects Agency
ATTN: Tech Info
Dr. E. Van Reuth
Dr. Ray Gogolewski
1400 Wilson Boulevard
Arlington, VA 22209 | 13 | Commander
US Army Armament Materiel Readiness Command
ATTN: DRSAR-LEP-L
Rock Island, IL 61299 |
| 1 | Commander
US Army Command and General Staff College
ATTN: Archives
Fort Leavenworth, KS 66027 | 1 | Director
US Army ARRADCOM
Benet Weapons Laboratory
ATTN: DRDAR-LCB-TL
Watervliet, NY 12189 |
| 1 | Deputy Assistant Secretary of the Army (R&D)
Department of the Army
Washington, DC 20310 | 1 | Commander
US Army Armament Materiel Readiness Command
ATTN: DRSAR-LEP-L
Rock Island, IL 61299 |
| 1 | Commander
US Army Command and General Staff College
ATTN: Archives
Fort Leavenworth, KS 66027 | 1 | Commander
US Army Armament Materiel Readiness Command
ATTN: DRSAR-LEP-L
Rock Island, IL 61299 |
| 1 | Commander
US Army War College
ATTN: Lib
Carlisle Barracks, PA 17013 | 1 | Commander
US Army Armament Materiel Readiness Command
ATTN: DRSAR-LEP-L
Rock Island, IL 61299 |
| 1 | Commander
US Military Academy
ATTN: Library
West Point, NY 10996 | 1 | Commander
US Army Aviation Research and Development Command
ATTN: DRDAV-E
4300 Goodfellow Blvd
St. Louis, MO 63120 |
| 1 | Commander
US Army Materiel Development and Readiness Command
ATTN: DRCMD-M-ST
5001 Eisenhower Avenue
Alexandria, VA 22333 | 1 | Commander
US Army Aviation Research and Development Command
ATTN: DRDAV-E
4300 Goodfellow Blvd
St. Louis, MO 63120 |
| 1 | Commander
US Army Armament Research and Development Command
ATTN: DRDAR-TDC (Dr. D. Gyorog)
Dover, NJ 07801 | 1 | Director
US Army Air Mobility Research and Development Laboratory
Ames Research Center
Moffett Field, CA 94035 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Commander US Army Materials and Mechanics Research Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRXMR-ATL</td>
</tr>
<tr>
<td></td>
<td>DRXMR-MM, Dr. M. Azrin</td>
</tr>
<tr>
<td></td>
<td>DRXMR-SM, Dr. F. Baratta</td>
</tr>
<tr>
<td></td>
<td>DRXMR-SM, Dr. E. Lenoe</td>
</tr>
<tr>
<td></td>
<td>DRXMR-MD, Mr. G. Bishop</td>
</tr>
<tr>
<td></td>
<td>DRXMR-H, Dr. D. Dandekar</td>
</tr>
<tr>
<td></td>
<td>DRXMR-T, Mr. J. Mescall</td>
</tr>
<tr>
<td></td>
<td>DRXMR-H, Dr. S. C. Chou</td>
</tr>
<tr>
<td></td>
<td>Watertown, MA 02172</td>
</tr>
</tbody>
</table>

6	Commander US Army Research Office
	ATTN: Dr. Hermann Robl
	Dr. E. Saibel
	Dr. George Mayer
	Dr. James Murray
	Dr. E. Saibel
	Dr. F. Smiedeshoff
	P. O. Box 12211
	Research Triangle Park
	NC 27709

2	Commander US Army Research and Standardization Group (Europe)
	ATTN: Dr. B. Steverding
	Dr. F. Rothwarf
	Box 65
	FPO NY 09510

1	Director US Army TRADOC Systems Analysis Activity
	ATTN: ATAA-SL, Tech Lib
	White Sands Missile Range
	NM 88002

<p>| 1 | Chief of Naval Research |
| | ATTN: Code 402 |
| | Department of the Navy |
| | Washington, DC 20360 |</p>
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Commander</td>
<td>3</td>
<td>Air Force Armament Laboratory</td>
</tr>
<tr>
<td>2</td>
<td>Commander</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Honeywell, Inc.</td>
</tr>
<tr>
<td>7</td>
<td>Commander</td>
<td>2</td>
<td>Orlando Technology, Inc.</td>
</tr>
<tr>
<td>1</td>
<td>AFOSR (Dr. Alan H. Rosenstein)</td>
<td>6</td>
<td>Sandia Laboratories</td>
</tr>
<tr>
<td>1</td>
<td>AFWL/SUL</td>
<td>6</td>
<td>SRI International</td>
</tr>
<tr>
<td>2</td>
<td>Air Force Wright Aeronautical Laboratories</td>
<td>1</td>
<td>Terra Tek, Inc.</td>
</tr>
</tbody>
</table>

Commander

- Naval Surface Weapons Center
 - ATTN: Dr. W. H. Holt
 - Dr. W. Mock
 - Tech Lib
 - Dahlgren, VA 22448

- Naval Surface Weapons Center
 - ATTN: Dr. W. H. Holt
 - Dr. W. Mock
 - Tech Lib
 - Dahlgren, VA 22448

- Naval Surface Weapons Center
 - ATTN: Dr. Robert Crowe
 - Tech Lib
 - Silver Spring, MD 20910

- Naval Research Laboratory
 - ATTN: Code 2020, Tech Lib
 - Washington, DC 20375

- Naval Research Laboratory
 - Engineering Materials Division
 - ATTN: E. A. Lange
 - G. R. Yoder
 - C. A. Griffis
 - R. J. Goode
 - R. W. Judy, Jr.
 - A. M. Sullivan
 - T. W. Crooker
 - Washington, DC 20375

- Naval Research Laboratory
 - Metallurgy Division
 - ATTN: W. S. Pellini
 - Washington, DC 20375

- AFOSR (Dr. Alan H. Rosenstein)
 - Bolling AFB, DC 20332

- AFWL/SUL
 - Kirtland AFB, NM 87115

- Air Force Wright Aeronautical Laboratories
 - Air Force Systems Command
 - Materials Laboratory
 - ATTN: Dr. Theodore Nicholas
 - Dr. John P. Henderson
 - Wright-Patterson AFB, OH 45433

- Lawrence Livermore Laboratory
 - ATTN: Dr. M. L. Wilkins
 - P. O. Box 808
 - Livermore, CA 94550

- Honeywell, Inc.
 - Defense Systems Division
 - ATTN: Dr. Gordon Johnson
 - 600 Second Street, NE
 - Hopkins, MN 55343

- Orlando Technology, Inc.
 - ATTN: Dr. Daniel Matuska
 - Dr. John J. Osborn
 - P. O. Box 855
 - Shalimar, FL 32579

- Sandia Laboratories
 - ATTN: Tech Lib
 - Dr. Lee Davison
 - Dr. W. E. Warren
 - Dr. L. D. Bertholf
 - Dr. Marlin Kipp
 - Dr. Dennis Grady
 - Albuquerque, NM 87115

- SRI International
 - ATTN: Dr. George R. Abrahamson
 - Dr. Donald R. Curran
 - Dr. Donald A. Shockey
 - Dr. Lynn Seaman
 - Mr. D. Erlich
 - Dr. R. Caliqiuri
 - 333 Ravenswood Avenue
 - Menlo Park, CA 94025

- Terra Tek, Inc.
 - ATTN: Dr. Arfon Jones
 - 420 Wakara Way
 - University Research Park
 - Salt Lake City, UT 84108
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 1 | Brown University
Division of Applied Mathematics
ATTN: Prof. H. Kolsky
Providence, RI 02912 | 2 | Falcon Research & Develop Corp
ATTN: Prof. R. B. Pond, Sr.
Prof. R. Green
696 Fairmont Avenue
Towson, MD 21204 |
| 2 | Brown University
Division of Engineering
ATTN: Prof. James R. Rice
Prof. L. B. Freund
Providence, RI 02912 | 1 | Union College
ATTN: Prof. Raymond Eisenstadt
Schenectady, NY 12308 |
| 1 | Colorado School of Mines
Dept of Metallurgical Engr.
ATTN: Prof. George Krauss
Golden, CO 80401 | 2 | University of California
Los Alamos Scientific Lab.
ATTN: Dr. W. E. Deal, Jr.
Tech Lib
P. O. Box 1663
Los Alamos, CA 87545 |
| 1 | Drexel University
Dept of Materials Engineering
ATTN: Prof. Harry C. Rogers
Philadelphia, PA 19104 | 1 | University of Dayton
University of Dayton Rsch Institute
ATTN: Dr. Stephan Bless
Dayton, OH 45406 |
| 1 | Lehigh University
Institute of Fracture and Solid Mechanics
ATTN: Prof. George C. Sih
Bethlehem, PA 18015 | 1 | University of Delaware
Dept of Mechanical and Aerospace Engineering
ATTN: Dr. Minoru Taya
Newark, DE 19711 |
| 1 | Lehigh University
Department of Mechanics
ATTN: Prof. Frazil Erdogen
Bethlehem, PA 18015 | 1 | Washington State University
Department of Physics
ATTN: Prof. G. E. Duvall
Pullman, WA 99164 |
| 1 | Massachusetts Institute of Technology
ATTN: Prof. Frank A. McClintock
77 Massachusetts Avenue
Cambridge, MA 02139 | 1 | University of Illinois
Department of Theoretical and Applied Mechanics
College of Engineering
ATTN: Prof. Herbert T. Corten
Urbana, IL 61801 |
| 2 | Michigan Technological University
Dept of Metallurgical Engr.
ATTN: Prof. Dale F. Stein
Prof. Donald E. Mikkola
Houghton, MI 49931 | 1 | University of Pittsburgh
ATTN: Dean M. L. Williams
Pittsburgh, PA 15213 |
| 1 | South Dakota State University
Dept of Mechanical Engineering
ATTN: Prof. Michael P. Wnuk
Brookings, SD 57006 | 1 | University of Washington
Dept of Aeronautics and Astronautics
ATTN: Dr. Ian M. Fyfe
206 Guggenheim Hall
Seattle, WA 98105 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 1 | University of Washington Department of Mechanical Engineering
ATTN: Prof. A. S. Kobayashi
Seattle, WA 98105 | | Aberdeen Proving Ground
Dir, USAMSAA
ATTN: DRXY-SY-D
DRXY-SY-MP, H. Cohen
Cdr, USATECOM
ATTN: DRXY-TO-F
Dir, USACSL, Bldg. E3516, EA
ATTN: DRDAR-CLB-PA |
USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

 Name: ________________________________

 Telephone Number: ____________________

 Organization Address: ____________________