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Rayleigh's Method Applied to a Conducting Liquid Drop in the Presence of
a Point Charge

by Clyde Morrison
Richard Leavitt

. ABSTRACT
Y

The method that Rayleigh formulated in 1879 is used to determine the
effect of a point charge on the natural frequencies of a charged drop.
Explicit expressions are derived for the rescnant frequencies and the
deformation of the charged drop. The results are expressed in terms of sums
over particular types of Clebsch-Gordon coefficients and more complicated
sums. Further work is necessary before practical application of the results

can be made: . /77
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INTRODUCTION

The purpose of'this work is to extend our previous method of solution to
problems involving drops in an electric field!!) o charged droplets.
Conseqﬁently, we summarize some of our more recent results on the study of the
! dynamics of liquid droplets.

The methods employed here are consistent with the method employed by Lord
; Rayleiqh(z) in his original treafment of the dynamics of liquid droplets. We
3 . begin with a brief rederivation of Rayléigh's results for uncharged and
cﬁarged conducting droplets.(3) This is followed by a more detailed
derivation of the problem of a charged droplet in the presence of a point
charge., Extensive attention is given to this latter result, since it appears
to be new, Many of the results given here may have application to the
formation of clouds,(4'8) the physical aspects of drop formation,(g) the
stability of electrified surfaces,(’O) and the electrical dispersion of liquid
aerosols.(11)

RAYLEIGH'S RESULT

“-‘.;"-' o]

In his original paper, Rayleigh(Z) assumed that the distance, r, from the
center to a point on the surface of the droplet can be expanded in a Legendre
f series as

¢

r(e,t) = a (t) + Z;-ak(t) P, (cos 0) (1)

y an x A & aCraial)

e
i R

where we have assumed that the drop is symmetric around the z axis of the
drop. At this point the z axis can be chosen in any direction, but later,

when we include the electromagnetic energy, the electric field will be assumed
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‘and we use this result in (3) to obtain
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along this axis. The prime on the sum will be used throughout to denote the

absence of the k = 0 term. The volume of the drop is given by

r(6)

f d¢ [ ae f r'? sin 0 ar' . (2)

Since the drop is symmetric around z and with y = cos6, we have
v-2 f rday . (3)
From (1) we have

r3 ~ a3 + 3a z ak P + 3a

z: a a, P P, . (4)

2
¢ 3y ]

v-—[z +3c2a; ] =] (s)
k
where we have used* .
! 2
f Pz Pz, dy = Ty 621, ’ (6)

-1

and we have terminated the approximation at the square of a. We will follow
this procedure throughéht; that is, we assume !akl <« a, and products of more
than two a, are ignorable (k # 0)., We assume the fluid is incompressible with

equilibrium radius "a" so that the volume (5) is a constant, 4na3/3; that is,

2
1 ak
2k+1 !

3 3
a = ao + 3 ao 2

(7)
k .

’See the appendix for a number of useful relations involving Legendre
polynomials.
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or
2
1 ?
a =‘ao [1 + :5 é 2k+1] 3 (8)
then 0
2
[}
ag~a-1/a] == . (9)

The result given by (9) serves as a constraint on the variables ay .

The potential energy, Us’ of the drop due to the surface tension, Y, is

é;: the surface area of the drop multiplied by the surface tension, or
. .
2n
Us =y f‘ daé f r sin 8 ds , (10)
0

where ds is the arc length along the surface given by

d52 = dr2 + rzdez .

Then
. 2 dry241/2
- ds = 48 [r“ + (EG-J ] . (11)
:: Using the result (11) in (10), we have
2
- ! 2, (dry2
[ u=2my [ r[e2+ 1 -ud) (V2 4, (12)
b -] -1 du
4
where we have used the relation .
:_‘ %, - Sin 9 %“j‘ .
’E.
i‘ Expanding the integrand in (12) we have
- 1 2
: 2 (1-u~) ,dry2
X U, ~ 2%y {1 [£€ + ——3——-(3;J ] au (13)
{ 5
-
-
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ar
du
integrals in (13) can be evaluated simply to give (see the Appendix)

and since does not involve a,, we need consider no higher terms. The

2 ):' [k{k+1)+2] 2]

U, = 2my [2a] + L ST a] (14)

and if we use the constraint given in (9), we have

PP
NN

A AL AN g F
PR PR
BR bl D)

omraiad -

(k=1) (k+2) 2]

2k+1 qgd v (15)

Us = 2Ny [2a2 + E'

which gives the potential energy due to surface tension correct through terms

Litdndoes

of order a:.

To calculate the kinetic energy, T, we need to evaluate the integral

- ot =T

Bl S

. RS
,

=y
o

Yof
ok mtwgts

T = fb&p v2 dt , “(16)

where p is the density and v is the velocity. Since we are assuming that the

fluid is incompressible and that there are no sources or sinks within the

Nadt g ad 2- 8 ef Y
. . ONTN

drop, we have -

:- V.v=0 ; (17)
E1 and further, if we assume
o Vxv=0 , (18)
E mﬂzcmbeud%d&mapmmdufmammwwsmhmn
]
¢ v = v, (19)
:« and from (17) we have
..V' 2 .
" iy, =0 . (20)

Using (19) in (16) we have

T=Y 0 [ (W% ar (21)
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l and by converting the integral over the volume to a surface integral, we have

T =0 [y, (V) + A0

. (22)
' Assuming that the area element d}; is approximately along 4 {corrections are of
i higher order), we can write dE = r a2 d¢ du, where ¢ = the azimuthal angle
: and r = the unit vector along the radius; then
= 1 d4
. sl v

T = wpa -{ wv e dy . (24)

The solution of (19) appropriate for our problem is

.

n
b, = E B r P (w , (25)

where we have assumed that the potential is evaluated at the surface. Using
(25) in (24) we have

T = 2“pa2 Z n 2n-1 2

20+ a Bn . (26)
_ 'l’heden in (26) can be evaluated by equating the velocity at the surface, given
S n .
;:'! bygr—- , to r from (1), or
h
L P . n=1
3 a =na Bn . (27)
T Then (26) becomes
2 ‘o2
- 3 %n
T = 2mpa X YETYER] . | (28)

- T
e o O

The results given in (28) and in (15) are sufficient to form the Lagrangian

(L =T~ U) in the absence of other energy sources. Rayleighu) uses these
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~I

S|




- . R T . N .
—p— ——— T T N . B
ey — O . . .
L 2 B arie s S ACRM O SO ST A e e . .
S « RN RS S D ettt AN P . .. . . .
" . .. - ~ - - . .

HDL-TL-83~1, January 1983

results to obtain the equation of motion for the an(t)-by treating the a, as

generalized coordinates. We will put off doing this until the electromagnetic

!l energy is contained in the Lagrangian.

y
)
V-
4
»
»

The particular problem we wish to solve here is for a charged conducting
sphere of equilibrium radius a with total charge Q. This problem was also
solved by Rayleigh,(12) but by a slightly different technique tﬁan was used in
his original paper. Since we are interested here in extending his original

technique to a new problem, we shall include more detail than in our previous
discussion.

From Maxwell's equations we have

VxE=o0 , (29)
or A E = -9y .
Then from

ysE=0 , - (30)
we have

v2 y = 0. (31)

Thus, the potential ¢ is a solution of Laplace's equation. The appropriate
solution of (31) for our problem for r » r(6,t) is

A
n

n+l Pn
r

. (32)

The total charge on the sphere, Q, is assumed constant; thus, Ag = Q. This

result (Ao = Q) is simply proven by assuming a very large sphere surrounding

the charged drop and employing Gauss' thedrem at the surface of that sphere.
The other An must be found from the boundary conditions of the problem. Once
the A, have been determined, the electromagnetic energy is given by(13)
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Up =Y [ovds , (33)

where p is the surface charge density, ¢ is the potential at the surface, and
the integral covers the surface of the sphere, Since the potential on a

conducting surface is constant, V, say, then (33) becomes

37 PR

.
-

where Q = f pdc and is a constant by assumption. The potential at the

USRI Sl

B AR S g

I

surface, V, is however a function of the variation of the shape of the
surface, as will become apparent. A

To proceed further it is convenient to introduce the notation
r(e,t) =a, +8]a 2 ,
VSZG\’V(\’) ,

and (v) (35)

’

v
A =18 A

which serves to keep track of the order of the corrections. In the final

result we let § = 1, since

6 only serves as an artifice to keep the terms in order. The single boundary

E condition needed is
: A
]
3 vel,] —Lp (36)
X r n+l n
F@ where r is the function of 6 given in (35). The coefficients A;v) in (35) can
? be determined by using (35) in (36) and equating powers of § on each side. If
4 this is done, the results through 62 are
y (0
F‘t v )"ag_ ’
F” 0
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n Qa0 n '
vt a0,
| (1) a2
! (2) _¢'_(n+1) 'n'n Q@ ¢ ™n
and : v z n+2 (zn+1) T 73 z 2n+1
a a. n
(o} 0
or n a2
(2) - -9 n
v 3 ) (2n+1) ° (37)
a, n

To obtain this result, the equations given in. the appendix were used, The

electromagnetic energy through second order is given by using (37 in (34) or

(0) + V(Z)]

up =0 [v . (38)

The result for V(%) can be reduced further by using the constraint, (9), in

i
(37) to give !
2 1
(0) 2 _1__ ' an !
o v+ 1 5] (39)
= a n
).' -
}4. The result (39) along with (15) and (28) is sufficient to form the Lagrangian
i:. for the system, that is ’
- .
»
- L=T-Ug- Uy ,
L. -
b lting i 22
.‘ resulting in L = 2m0a Zc an _ .2" zi (n=1){n+2) az
. e n(zn+1) YL T %n
| (40)
' - RSN
3 2n+1 n '
2a n

10
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.!l L4

where the constant terms in (15) and in (39) have been ignored.

The equation of motion for a, is lLagrange's equation,.gz-g%— - 3§£ =0 ,
which becomes aa'n n
" 2
a + 0 a =0, : (41)
n n n
where 2
w2 . h(n=-1) [Y(n+2) _ _jl__] ,
n 3 3
pa 4xa

which is the result derived by Rayleigh"z) expressed in the same form. As
was pointed out by Rayleigh, the system becomes unstable for mi < 0 , which

occurs for values of Q such that

2
-517; > y{n + 2) , (42)
4na
2

which for the lowest mode (n = 2) requires that —9-3 > 4y. The charge on the
drop acts so as to reduce the surface tension 53"1hat only the higher modes
are stable., The result given in (42) has been used by numerous workers as a
starting point for the discussion of not only charged drops but also uncharged
drops in an external uniform electric field, one of the more recent being the
article by Smith.(!3)

If in (42) we replace the charge by the electric field at the surface of
the equilibrium sphere (Q = azE), then we can write

2 .
%&,,Hz , (43)

and for the fundamental mode (n = 2) we have

E 2.2 ,
Y
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for the onset of instability. Frequently, in reportiang experimental results
of drops in electric fields, the field E in (43) is taken as the external
field and the constant CO' determined in the equation

, E 2=c¢c , (44)
f Y
by experimental means. Such a procedure was adapted by Wilson and Taylox b

in their experiments with soap bubbles, where they evaluated Co = 1.61 & g
as the critical value in (44).

CONDUCTING DROP IN THE FIELD OF A POINT CHARGE

We assume as beforé that the conducting drop of charge, Q, equilibrium
radius a is at the origin of the coordinate system. The point charge, Qs is
located on the.positive z axis at a distance R from the origin. The energy of

the system cortesponding to (33) is

1 1

where, as before, V is the potential at the surface of the sphere and Y(R) is
the electric potential at the point charge. The expressions for the kinetic

energy, (28), and the surface energy, (15), remain the same as before,

The potential { appropriate for the problem is

A . rn
p=17 nP+Q12 P, (46)

+
rn+‘l n Rn 1 n
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where in the second term we have assumed r < R, which is the region of thé

F! interest., 1It is convenient to rewrite (46) as

- . Q . A . n

3 _o . n r

. 4 rtr * Z n+1 Pn M Q1 Z n+1 Pn ! (47)

) - n r R

{ i

r‘ so that all the sums have the terms n = 0 omitted. To evaluate the constants
-

in (47), it is convenient to assume the same "bookkeeping procedure” as given

in (35) to expand each side of the equation

-
. Q A n
f! vV = y(r)| =2, J——p + 0, §<=—p , (48)

r=r(9,t) r R rn+1 n Rn+1 n

and equate the coefficients of each order. The terms in the potential are

then given by

v :
. vior 1,2 (49)
= R a,
< (1) X n a3-1an z (n+1)anA£0)
L v = - ’ (50)
% (2n+1)RH! (2n+1)a0n+2
2 (1) (0)
{n+1)a A (n+1){(n+2)A
(2) _Q 2n n n n 2
A4 = Z - Z + z Z <kk'|n>
ay (2n+1)a3+2 n 2(zn+1)ag*3 Ko KX

an-2
n({n-=1) 0
+ 0 1 )
1 n 2(2n+1) ™ ke

akak,<kk'|n>2 . (51)

where the Clebsch-Gordan coefficients (C-G coefficients) <kk'|n>2 are given in

the appendix. The corresponding expression for the A, are given by

Q
A(0) o a2n+1 , (52)
n n+1 0
(o)} )

(2+1)A "a La

(1) n-1 n-1 £ 'k 2 n 2
A = a Qa + a z <kl|n> -a_. Q z <k2|n> '

n 0 o & ag 0 %1 L R A

13
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(53)
(1)
: (2+1)A
(2) n-2 J1..2 . .n 2 2
An a, Q Z akak,<_kk [n>< + a, Z e <k%|n>
kk* 2k ao
. [(l+1)(l+'2)A;o) 1(2-1)agQ1] 5 cxer oo ,
- a + a a <kk'|v> ¢<vi|n> .
0 2kk 2ag+1 2R£+1 k k! v. )
By combining (49) through (54), we obtain
Q
i 3,2 (55)
R a
0
Q a,
(1) 1 0yn+1 M
v = —3'2 (Efﬂ a . s : (56)
%o n a2 .Q ' a, n#
2y __Q n_ 1 0 2 A (
v = aE ] Zlakaz(a) <xkg|n>® (57)
, a n a nk{
o (o] 4+
Al 2 e - g 20 o <kt [n>? (58)
n "% P33 9 1+ ’ 4
2k R
a
(2) _ n-2 2 n-2 204241
a7 mag e ] taga kit - ga™ T o2en ()T aam, o
2k 2kk
and
T = § v <krg|wiak|n? . (59)
k'k2 v

These results are all that are necessary to obtain the electrostatic energy

through terms of order ai. In (56) through (58), a, can be replaced by "a“",

but in (55) the constraining equation, (9), must be used to cast this term in

final form. If this is done we have V = V(O) + V(1) + V(z) and if W1 = 1/2

QV, the first part of the energy given in (45) is

14
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2+E‘—Zza G, ,(x)]

%t 73 % kg '* ‘
a” kg2

! where

lt ® 1

B G (%) = 7™ <kalm?

i and n=1

X =a/R .

Ly
3 [
DL

This result, (60), is in final useable form for lLagrange's equations, but the
second part of the electrostatic energy given by (45) needs more reduction
- before it can be used. From the second term in (45) we have

1 . '

where the terms in {(r) that become infinite at r = R are removed. From (46)
and (48) we have '

A

=L Q '_n
F w=39 R+ I 55l o (62)
- n R
f? where in the second term we have used the
& relation Pn(cose) = 1 for & = 0, since we are assuming that the charge Q, lies
-
:ﬂ on the positive z axis at a distance R from the origin, As in our previous

procedure, we assume

{4)) (1) (2)
w2 = w2 + w2 + w2 ’ (63)
8o that from (62) we have
A(0)
(0) .'l 2 ' 'n .
uorr Rt E Rn+1] ’ (64)

15

P w
. - - . - PP PN Gy e WS S




HDL-TL-83-~1, January 1983

A(1)

(M _ 2 ''_n :
ot L o (63)
and A(2)
(2) _ 1 ' n
Wyt =g 1 o (66)

Each of the terms, (64), (€5), and (66), require considerable effort to reduce
them to useable results,

The first, (64), is the simplest; when (52) is used, we have

2 2
- L0 1% % [ 2 1 5 2 ] (67)
2 2 R 2a 2 2.2 2 2n+1 ’
1- (1-x")" a” n

where x = a/R, and we have used the constraint (9). If in (65) we use (S8),

we have

M ac (x) , (68)

k
(2k+1) x a G

Q Q
(1) 1 ' _n# !
W, e— ]« — I

2
a - 1
2 2a n n 2a2 n,k

Sy

r--
R

where G, (x) is as defined in (60). The last term, (66), can be obtained by
substituting (59) into (66), which gives

At ;o0 . t i
. A
,

RN A A

. 2
s wi?) - 3’% I taa Gpe(x) = =z 1" mi2met Ja,a, G, (x) G (x) . (69)
®, 22 ix 2a° xim

- With the result given in (69), we have completed all the terms in the
I potential energy that are necessary to form the Lagrangian of the problem.
t‘* ' Unlike most of the previous results, there appears to be no advantage in

~ combining (67), (68) and (69), since corresponding terms do not exist. The

Langrangian can be written




P
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with
Us=1Ug+ Uz , (71)

where T is given in (28), Ug is given in (15) and

(0) w(1) + W(Z)

UE = w1 + w2 + W, 2 . (72)
The equation of motion for the generalized coordinate ap is given by
N d 3L L
T s - aap 0 ’ (73)
P
which can be written as
a o, B Tk (74)
at . da da *
sa =) P
P
With the appropriate substitutions we have
3 _° (p=1) (p+2)
S N Apzl)ip+2)
dmpa P(2p+1) + 4my 2p+1 ap
2 QQ
2 (p=v)  _ 71
= 33 2pH1 ap 3 (2p)GPp(x) ap
2
- Sl x4(3-x2) %
ad (1-x%% %
2
Q1 ' | 2
+—a_ Im(2m+ 1) G (x)
a P m pm
+ FO + F1 ’ (75)
where

17
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(x+ 1 <M e ), -
kp
k
and
1 .
F, = - 33 E (2 + p) az.Gzp(x)

: Q1 v ot
= Y 5 m(am + 1) a, G, (x) Gmp(x) .

a 2 m

The terms on the right side of (75) have been grouped in a particular
manner. The first four terms multiply ap and act as a restoring (or
repulsive, depending on the sign of Q1) force. The term F, acts as a constant
force causing a displacement from the equilibrium point (normally, the

equilibrium point is at a

p = 0), and the term F; acts to couple a_. to the

P
other modes of vibration.

If we ignore F, and F, on the right side of (75), we can write

a + m2 a =0 , (76)
P P P

where

x4(3-x2)

pip -1) + U
(1-x2)2

paaw; = yplp - 1)(p + 2) - 01

2

2 2
+ 012(2p Y(2p + 1)~Gpp(x) - 02 p(2p + 1) E m{2m + 1)Gpm(x) '

(77)
2
where 01 = —2—3, 02 =3¢ and 012 = 3 The first two terms on the
right side 43 (77) aéga just pa3 timé%rathe frequency of a charged drop as

derived originally by Rayleigh,(12)

and are given in (41). Since Fy, Fy, Uy,
and 012 vanish when Q} = 0 the result (77) becomes identical to (41), as it

should., 1If, on the other hand Q = 0, we have, from (77),

18
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32 x4(3-x2) 2
pa QP(Q=0) = yplp - 1)(p + 2) + U2 :::;5;5- P - UZP(ZP+1) E m(2m+1) Gpm(x)

(78)

which can cause either an increase or decrease in the resonant frequency of a

’

free drop [pa3m2 = yp(p - 1)(p + 2)] through the rather complicated
dependence of the lazt two terms on x. The frequency shift given in (78) does
not depend on the sign of the point charge Q, as it should not; however, when
the charge Q is not zero, then (77) shows that the sign of the charge 2,
relative to Q is significant, as apparent by the terms involving Ujge

Many of the less obvious results of (77) will have to await considerable
computational investigation before quantitative statements can be made.
However, it is possible that further analytical work can be done on the Gpp(x)

and the sums involving these functions. They seem to be expressible in terms

= of terminating hypergeometric functions. This can be seen by expressing the

CG-coefficients in Gpp(x) in Racah's(15’16) closed form and using expressions

. for the hypergeometric series and their identities given in Rainville.(17)

19
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APPENDIX

During the course of the development of the theory a number involving

relations of Legendre polynomials are needed. We abbreviate Pz(u) = Pz and

T a_ I
3 an Pz(u) Pl in the results.
i!l ! 2 '

' f1 PPy du = 5o 7 sz . (A1)
y -

1
2 _22(241)

& [ (1 -y Py By du = o6, . (a2)

-1

- } (1 - u2) é P!P' dy = [2(2+1)+k(k+1)-n(n+1)]

-1 nk £ 2n+1

ax|m? . 4

[<2k|n> = <2(0)k(0)|n(0)> = C (£kn;00)] ,

where <2k|n> is a Clebsch-Gordan coefficient. Of these three results, the

last (A3) is the only difficult one to derive. A thorough discussion of

(16) (18)

Clebsch-Gordon coefficients is given by Rose or Brink and Satchler,

but is more general than is necessary here. 1In general, the simple relations

given here can be derived from

2
PP, = [ <akln>® e (ad)

Thus,
(2n+1)

2
<tk |n>® = 3

1
{1 P PP, du (a5)

which is a special case of Gaunt's(19) formula.

Other properties which we need are

<zk|n>2 = <k2|n>2 , (a6)
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<2.k|n>2 = (;:::) <2n|k>2 ’ (a7)
2 1
<ak|0>® = s (a8)
+1
<z1ln>2 = 2:+1 , neg+1
L
2041 n=2-1
(n9)

=0 , For other values of n .

The result given in (A4) can be used to reduce more complicated products such

as

2
= '
RPP E' <k&[n'> PP

= 7 <kz|n'>2<n'n|n">29 " (R10)
n"n" n .

which gives the result (A5) if both sides are integrated over u, and (A1) with
(A8) is used. -
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