AD-R123 636 SOFTWARE RETEST TECHNIQUES(U) COMPUTER SCIENCES CORP- 1/2
) FALLS CHURCH VA K FISCHER ET AL. 0OCT 82 RADC-TR-82-275

F30602-81-C-08889
UNCLASSIFIED ‘ F/G 972 KL

-

| aanand
3
’ .
. -
y s
)

.
’
»
'
.
'
r
[
[
v
[}
.
’oe
b
[
4
‘

.

-
.y

A\ il S N <A M Jet Al

e —re e

=t

‘EE|
(] o~ o
- —_—
S EEE

EEEFEPTINY

=

I
I
I

I

16

Il
I

14

i

125

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

.......

...., ...I..vl.(._.‘..i .r

I LLE COPY MWA123636

RADC-TR-82-275
Final Technical Report
October 1982

SOFTWARE RETEST TECHNIQUES

Computer Sciences Corporation

Dr. Kurt Fischer, Farzad Raji and Daniela Onaszko

APPROVED FOR PUBLIC ~ RELEASE; DISTRIBUTION UNLIMITED

DTIC

ELECTR
JAN 811983

S

ROME AIR DEVELOPMENT CENTER —j.....-
Air Force Systems Command e e
Griffiss Air Force Base, NY 13441

*'.:'i

1

“

.
&

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nationms.

RADC-~TR-82-275 has been reviewed and is approved for publication.

. 5 L
APPROVED: /s si ,O Chavdewck.

ANDREW J. CHRUSCICKI
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command & Control Division

FOR THE COMMANDER: j.,(, A~ %4,

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC.(COEE) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requ’res that it be returned.

@
7 S

o i

Gl

. iva- PP

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dll.‘Enf.I.d)L

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

RADC-TR-82-275

2. GOVT ACCESSION NO,| 3. RECIPIENT'S CATALOG NUMBER

MDA 3 34

4. TITLE (and Subtitle)

SOFTWARE RETEST TECHNIQUES

TYPE OF REPORT & PERIOD COVERED
*Final Technical Repor

Feb 81 - Feb 82

6. PERFORMING 03G. REPORT NUMBER

N/A

7. AUTHOR(a)
Dr. Kurt Fischer

Farzad Raji
Daniela Onaszko

8. CONTRACT OR GRANT NUMBER(s)

F30602-81-C-0089

3. PERFORMING ORGANIZATION NAME AND ADDRESS
Computer Sciences Corporation
6265 Arlington Blvd

Falls Church VA 22046

10. PﬁOGRAM ELEMENT. PROJECT TASK

62762 wonx UNIT NUMBER
55811828

1. CONTROLLING OFFICE NAME AND ADORESS

Rome Air Development Center (COEE)
Griffiss AFB NY 13441

12. REPORT DATE.

October 1982

13. NUMBER OF PAGES

144
4. MONITORING AGENCY NAME & ADDRESS(1¢ dilterent Irom Controlling Oftice) 1$. SECURITY CLASS. (of this report)
Same UNCLASSIFIED
15a. DgEé.ASElEFICATION/DOWNGRADING
N/k

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribuiton unlimited.

Same

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, /1 different from Report)

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Andrew J. Chruscicki (COEE)

Software Maintenance
Software Retest
Software Life Cycle Management

0-1 Integer Programming
Graph Theory

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

20. ABSTRACT rContinue on reverae side if necessary and identify by block number)

“The purpose of this effort was to study and then develop techniques for
maintaining software systems. The report focuses on current maintenance
problems, various strategies for retesting, besides an analysis of these
strategies. A methodology for retesting was developed that generates the
minimum number of test cases to validate a code modification. To gener-
ate the minimum number of test cases the methodology analyzes the program
data and logic structure dependencies. The selected test cases assure re-

DD 555", 1473 eoimion oF 1 nov 88 1s oBsoLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

t
RPN S S W

T

i

A 2 AR

Sy Ty W W

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whan Data Entered)

P)testing of decision to decision paths (dd-paths) reaching the changed

code and setting the changed data, and reached from the changed code and
using the changed data.

(‘\
Accession For ‘
NTIS GRAAI i
DTIC TAB '
Unannounced |
Justification. . _ |
By.
Distribution/ -
Availability Codes
Avail and/or
Dist Special
J’i

PR
&
o“"'6

2
»

o’)
AN

RN

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tu'c DAGE/When Deta Entered)

T T—

PRI R DRy

o

------- —— v LRt b Iar Sagh et ar Btk st OO ACAI A Al i S St Y~ T e e e e A -

TABLE OF CONTENTS

Paragragh

t Sectionl—Summary.'.................‘...“.‘..""‘..'...
Section 2 - INtrodUCtioN..eeeecccecoccccoccscsssooscsososossscsses

Background.seescoesesececcecossoscnssascssscsssnasacess
Current State-of-the-Art of Software Maintenance..
MaNagement ISSUES.ceeeceoscasosccossoaosonnogosssns
Graph Theory ISSUES.ceressescscssssscsososssossasso
Technical ISSUES.cieecrecesccscrssessssoscsvssancas
Current Air Force Retest PractiCeS...ccececececccses

NN
e °
WNNNDN -
. v
[VSENS Iy)

Section 3 - Overview of Retest StrategiesS...ceeceeiceccesons
Introductlontﬁ....0..........I'...Iv...l....'......‘.

Retest Strategy 2: Retest All Testable

Paths Through the Changed Code...cecevesecces

3.1.3 Retest Strategy 3: Rerun All Test
Cases Which Execute the Changed Code.........
3.1.4 Retest Strategy 4: Retest All DD-Paths
Reached From the Changed Code..icetecescecccns
3.1.5 Retest Strategy 5: Retest All DD-paths
Reaching To and Reached From the
the Changed Code.............................
3.1.6 Retest Strategy 6: Retest All DD-paths
Reaching the Changed Code and
Setting Changed Data, and Reached
From the Changed Code and Using
Changed Data@.ceceecasseesesecssccccsccaasanssnse
Detailed Description of Retest Strategies.........
Strategy l.ceceececceccsscccracscsonessocsnoccccnsss
Strategy 2..ceeceeecccsscscsssssssoscssassccssncssse
Strategy 3.ccececccecessoceocessoeesssccsssncscnss
Strategy 4.ceceecececconscosscssacsscsocncssscssssscscsns
Strategy Seccecccecosvoccensssovstscsstsonsoscccsocss
Strategy 6ecececsceccessscsscssosscosscsssscscncsnccs
Methods and ProcedUreS...ciccececssosssocsoocssnscnne
Manual Walkthrough of Set/Use MatriX..eeeceeceeeases
1 Manual Walkthrough of Algorithm A.....cce0eee
2 Manual Walkthrough of Algorithm B.....eoeeewe
Live Example 0f Strategy 6.ccececscssscsccccnccsnss
System Level AnalysSiS...ceeeesosesosseccccsvssccess
Global Set/Use MTable..iceeeesesseoccosocsosscsscsccaes
Usage of Example Global Set/Use Table...esvesssoes

¢ o & o
W NN N

v

NNNNONDNNDNNNDNNNDNNNDNODNDN
@ & 4 ¢ o 8 & & ¢ & s s s @

WWWWWWwWwWwWwwWwwwww
NIRRT AW N

[\

L AR e e Sl e a2

Y

Y Y Y

.1 Retest Strategy 1: Rerun All Test CaseS..........
L 2 .

O RN

3-3

3-8

3-8

3-12
3-14
3-14
3-14
3-16
3-23
3-27
3-27
3-33
3-34
3-35
3-36
3-46
3-46
3-409

....;

PSP T v}

Paragraph Page

.3 Result obtained.oaoo.ooo-.ooo.oonoooo....-.o.ao-oo 3-50
.3.1 Strategy Prioritization....cceeeeveccocscccsossess 3=50
.3.2 Methodology CharacteristiCS..ieeeseecccosccscccscsss 3=-54

ww w

SeCtion4—COHCIUSiOn...---.....-..-...................... 4"1 .“
Section 5 - RecommendationNS...cceeesecssccscssssscscnsccsesse D=1 j ?

n! Appendix A - Data Dependency Analysis Algorithm A.......... A-1 e
? Appendix B - Data Dependency Analysis Algorithm B.......... B-1
Appendix C - Bibliography.ceeeeeeeoseeseosceesoscsssascseaes C-1
h. Appendix D - Technical Paper...c.ececeeccceoccesescsaccannnsas D=1 f’ B
AppendixXx FE — GlOSSAry..eeeecececcsaosasssosossasscssosscssssess E=1

Appendix F - GlOSsary Of TermS..............o--............ F-l

"o Appendix G - Glossary of ACIrONYMS.c.esessoseesssccsassssase G-1 e

3
i, .
L v
g -3
E
4

ii

S T

FIGURES

Number
2-1 Organizational Responsibility and Data Flow

for Retest ProCeSS.cescesssccsscssessccocssosnscs
3-1 Path Enumeration Illustrationc.eeeecccceasacse
3-2 Simple Code Modification and Test CaseS...ccsvcess
3-3 Flow Diagram with Test CasSeS..ccceeseeccosroccocsncs
3-4 Sample Flowchart.ceeeeescesssccssocvsescscscsccscoocs
3-5 Sample Flowchart...c.ecececcececsccscsccscsccsssscnsoes
3-6 Sample Flowchart (Strategy 6) .cccccerccccccccccssns
3-7 Sample SoUrce COd€.c.cveeeccsssscccccsssnssscscnsscs
3-8 Sample Application Flowchart and Test Paths.......
3-9 Sample Retest Formulation..cceceececcesrsceccaccccas
3-10 Sample Retest Model Formulation

After Application of Reduction Rule 1l........
3-11 Sample Retest Model Formulation

After Application of Reduction Rule 2........
3-12 Example FormulatioN.ceseereseccoscescsccccsncascse
3-13 Comparison of the Results of the

Application of Strategy 4 vs, Sratetgy S.....
3-14 Sample Set/Use MatriX..ceeeeesococessccscsccsaccce
3-15 Example FOrmulatioN..ceceseececoscccscscocsonasscas
3-16 Logical AND Operation (StepP l).ccceceececcscccscas
3-17 Logical AND Operation (StepP TI).cceesscocccscnccses
3-18 Logical OR OperationN...ccesceescccccccscscccansccans
3-19 Example Set/Use MatriX.seeeesocoecscascosnsoncsoscses
3-20 Set/Use Matrix After Applying Algorithm A.........
3-21 Set/Use Matrix After Applying Algorithm B.........
3-22 Graph Presentation of Data Statement

Module and Identification of DD-paths.,.......
3-23 Logical AND Operation for Data

Statement Module..ceeecesrecsccscososnccccases
3-24 rLogical AND Operation for Dat..

Statement Module...ci.ceeesoccscsccscsccscsssns
3-25 Logical OR Operation for Data

Statement Module.,...cveeovcosccosvocscccvsoasce
3-26 0-1 Integer Programming Model for

Data Statement...ceececsccovocscscecscsccccscncs
3-27 Reduced 0-1 Integer Programming

Model For Data Statement Module....eccceencsee
3-28 Probability of Feasible Testcase

Selection Without Application of the
Retest Methodology For Data
Statement Mrdule,..cccievccccceccsrsccnsnncns

iii

Ly A

w Paant 20 Jon S e e og T —
.‘d . I‘ .

\ gl 4

Number

= W 00 ~ & oW N

Adnoh Jest Beel Ao gk s Ens S Sat b Sad g

LIRNEEh e e Bacts u Seen Bate Sndt S B Shoe b 4

FIGURES - APPENDIX D

Directed Graph Presentation of a Module...ceeeeseee D=6

Connectivity Matrix....'.......................... D—7

Reachability MatriX.eeeeceeeeooeeececscososecacesess D=8 ;.

Test Case Cross Reference MatriX....eceeeeeceeoceees D=8

MOdU].e Set/USe Matrix..-.......................... D-9

0-1 Integer Programming Model.....ccceeceecessecees D=9

LOgical AND operation.oo.oooooooo.o.oootoo.oooo.o. D_ll

Logical AND Process.O..‘....O...O.............0.0‘ D-lz

Logical OR Operation...-.......................... D—12
G].Obal Variable Set/Use Matrix...oooo.ooo-ococ.aoo D-13

APPENDIX F

Diagram Of a BranCh(l) eeeeeeceseccecsccoseccscccaas F=2

iv

v

WWWWWwWwwwwwww
HE OOV WN -

~——Y

TABLES

Retest StrategiesS...eeeeeeeeeteeccesocsccasccsanns
Sample Test Case Cross Reference MatriX....eeeeose

Test Case Cross Reference MatriX..eeceeesoso
Connectivity MatriX..oeeeeeoececccnnanness
Reachability MatriX..eeeeenooeesoococnonss
Test Case Cross Reference MatrixX....ceeoeee.
Reachability MatrixX..eceeeeeoovecoecocanaas
Test Case Cross Reference MatriXx.....ce...
Reachability MatriX.eeeeeoeoeoeacoacoscnnse

Sample Set/Use MatriX.eeveeeeooooosaosoosascoccosos
Reachability Matrix for Data Statement Module.....
Test Case Cross Reference Matrix

For Data Statement Module....ccceeeveecscocace
Set/Use Matrix For Data Statement Module..........
Set/Use Matrix For Data Statement Module

After Applying Algorithm A...ccececececescesce
Set/Use Matrix For Data Statement Module

After Applying Algorithm B....veeeeeeveeoceen
Alternative Optimum Combinations of

Test Cases For Data Statement Module

Modification.iieveeeeeeeeecnceooacsooonocncescs
Global Variable Set/Use MatriX...eceoeeecococsssssocsse
Retest Strategy Priority..cceeeecececececccsccncas

Page

3-13
3-14
3-21
3-21
3-21
3-26
3-26
3-32
3-32
3-32
3-38

3-47
3-49
3-52

ma

ad e e

B et et et o s ad o —— - T

o
{
1

3

@
-8

L J

L J

°

o

¢

L J

-
L 4

d

SECTION 1 - SUMMARY

Computer Sciences Corporation (CSC), under contract with
Rome Air Development Center (RADC), developed a methodology to
retest modified software during the operation and support phase
of the software acquisition life cycle. The Statement of Work

tasks and a brief summary of our accomplishments for each task
follow:

Task 1: Investigate existing techniques and methodologies
applicable to the retesting of software during the operation
and support phase of software development. The investigation
shall include, but not be 1limited to, applicable technology
which is currently being wutilized in various Air Force
Operational Environments. Observed deficiencies with current
technology shall be identified and described. Software
retesting activities to be addressed shall include those
involved with the identification of computer program components
(routines, paths, variables, etc.) affected by a specified
modification, and the subsequent application of necessary

testing technology to verify the integrity of the modified
software.

State-of-the-art techniques and software tools which are
purported to provide automated aids for program development,
debugging, testing, retesting, maintenance and documentation
shall be examined and evaluated to determine applicability of
the techniques and the extent to which they provide retesting
support. Applicable software tools residing in industry,
university, and Government environments shall be examined.
Included shall be an examination of the facilities provided by
the JOVIAL J73 Automated Verification System (J73 AVS)
(Reference the Functional Description (CR-1-947) dated March
1980).

Summary of Work performed Under Task 1: Different

methodologies and techniques such as path analysis , decision

It e S S

a d A T

x[
'r
.
|

—— - . -

to decision path (DD-path) analysis, (see Appendix F for
definition), graph theoretic approach, and software
segmentation were investigated and the feasibility of each in
terms of applicability to Air Force software applications,

reliubility, and cost-effectiveness was studied.

A software retest methodology was developed which considers
the impact of modifications to both the control structure as
well as the data dependency of a computer program. The retest
methodology selects the minimum number of test cases needed to
validate software modifications by applying DD-path analysis,

graph theory, and an optimization technique.

The facilities for static and dynamic analysis (e.g., path
analyses, set/use analysis) provided Dby the JOVIAL J73
Automated Verification System were studied and incorporated
into the functional design of the automated Software Retest
System, Additionally, various optimization techniques were
evaluated and the 0-1 integer programming package currently
available as part of the system support software at major
computer centers was selected and incorporated into the

automated Software Retest System.

Task 2t Develop and describe advanced techniques and
methodologies which can be automated to enhance existing Air
Force software retesting capability. The retesting technology
described shall be applicable to the Air Force approved Higher

Order Languages.

The techniques and methodologies described shall ©be

prioritized according to:

1. Effectiveness in supporting retesting requirements,

2. Degree of automation possible.

3. Ease of implementation.

4. Cost of implementation.

5. Cost of application (computer resources, manpower,
etc.).

6. Reliability.

—

e

Maece 2 i . kvt aamaaan kool

PV

L o o

Summary of Work Performed Under Task 2: Under this task,

alternative retest strategies were defined and models built for

their automated implementation. The defined strategies are:
1. Rerun all previously executed tests.
2. Retest all testable paths through the changed code.
3. Rerun all tests which execute the changed code.
4, Retest all DD-paths reachable from the changed code.

5. Retest all DD-paths reaching to and reachable from the
changed code.

6. Retest all DD-paths reaching to the changed code and
setting changed data, and reached from the changed
code and using changed data.

Though strategy 2 was shown to be impractical, techniques
were developed to implement each remaining strategy.
Implementation techniques for strategies 1 and 3 were based on
test execution history, while implementation techniques for
strategies 4 and 5 were developed using more sophisticated
techniques. For these strategies, the logical structure of the
source code was transformed into a directed graph and the graph
analyzed in terms of each strategy. For strategy 6, both the
logical and the data structure of the code were used to build
the retest model. The optimization technique of 0-1 integer
programming was then applied to minimize the amount of
retesting within the constraints inherent in each strategy.
The retest methodology and Software Retest System were
developed to be compatible with the existing Air Force software
packages (e.g., Jovial J73 Automated Verification System) and
High Order Languages. The Software Retest System could be
implemented in any of the Air Force High Order Languages
without losing language independence in the methodology.

We have also studied the characteristics of the alternative

strategies that are relevant to the Air Force needs. These

4
|

characteristics are prioritized and presented in Section 3 of

‘this report.

Task 3: Techniques (described in response to Task 2, Statement

of Work Paragraph 4.1.2) which are considered cost effective
and mature enough to be implemented in future software tools
and successfully utilized in support of Air Force Operational
Software shall be formally speci fied, A functional

description, in accordance with the CDRL, shall be prepared.

Summary of Work Performed Under Task 3: An automated version

of the Software Retest Methodology incorporating Strategy 6 was
formally specified and a functional description was prepared.

Software Retest Project Deliverable Items

In addition to this technical report, a functional
description for the automated Software Retest System (SRS) has
been defined. Also, a technical paper was presented at the
National Telecommunication Conference '81. A copy of this

paper is contained in Appendix D.

v e ¥ 7 71 we i

L2l

N M L o caar o e o v

SECTION 2 - INTRODUCTION

2.1 BACKGROUND

Computer software is the non-hardware portion of a computer
or information system, and includes computer code
(instructions), and documentation. The development of computer
software nusually goes through an evolutionary 1life cycle
beginning with the establishment of a user need, and ending
with the wuse or operation of the computer program or
information system. The individual phases of the Air Force

Software Acquisition Life Cycle follow the steps shown below:
1. Conceptual Phase - Software Requirements Analysis
2. Validation Phase - Specification Development and Study

3. Full scale Development Phase - Preliminary and
Detailed Design

4, Production Phase - Coding and Testing
5. Deployment Phase - Operations and Maintenance

The 1970's brought much progress in the fields of software
management and software engineering to many phases of the
software life cycle, The early part of the decade brought
significant increases in programmer productivity with such
techniques as structured programming, top-down development,
code walkthroughs, chief programmer teams, HIPO charts,
automated testing aids, and automated documentation aids.
These tools and techniques, though quite useful, only
concentrated on the detailed design, code, and test phases of
the software life cycle. 1In addition, both software customers
and vendors recognized the importance of a firm, complete, and
accurate understanding of the software requirements. Automated
tools to perform completeness and consistency checking such as
the University of Michigan's 1ISDOS and Ballistic Missile

Defense Advanced Technology Center's Software Requirements

..4

e ama sead

Engineering Methodology (SREM) are becoming more widely used in

both business and scientific types of applications.

The Deployment Phase (Operations and Maintenance) begins
with delivery of the first operational unit and terminates when
the system is removed from the operational inventory. Changes
to computer programs are made to remove latent errors, improve
coding or operation, adapt to changes in system requirements,

or incorporate knowledge gained from operational use.

Studying the individual 1life <c¢ycle phases and their
dependencies can be very important as the U.S. economy is
currently spending about $20 billion annually in the area of
computer software (2). A small increase in productivity can be
extremely cost effective. In the past, many software projects
have taken short cuts during the early life cycle phases so
that a product could be quickly fielded. Boehm (2) has
reported that the cost of correcting an error during the design
phase is only half the cost of correcting an error during the
coding phase, and only a tenth the cost of correcting an error
found during the acceptance test phase. During the 1960's,
however, software developers paid 1little attention to 1life
cycle modeling as software customers seemed to be more

concerned about quick delivery than error-free code.

Recent research in software management has shown the

importance of the Deployment Phase of the software life cycle.

1. Teichroew, D., "ISDOS and Recent Extensions," Proceedings

of the Symposium on Computer Software Engineering,
Polytcchnic Press (1976), p. 79.

2. Boehm, B.W., "Software Engineering," IEEE Trans. on

Computers, Vol. C-25, No. 12, Deceinber 1976, pp. 1226-1242,

T

TV

—TTTvY

Several authors have reported that maintenance costs account
for between 40-60% of the system life cycle cost (1,2). One
survey of predominantly business data processing managers found
that 90% of the respondents ranked maintenance of equal or
greater importance than new system design (3). Unfortunately,
the increased importance in software maintenance has not been
accompanied by new or improved methods for performing and

managing the maintenance task.

One technical problem area, called retest, arises when
attempting to validate code modifications. Retest is the act
of testing existing software after modification. It differs
from the test activity, which is concerned with planning and
executing tests that initially wvalidate the entire software

system. Retest deals with the following problems:

1. How can it ke shown that a change to one area of the
code does not create data and/or logic conditions that

could affect the proper execution of another area?
2. Do the previously used test cases need to be rerun?
1f so, how many, and what subset?

3. Do the modifications require generation of new test
cases? 1If yes, how many?

The problem of what to retest and how thoroughly to do so
is a major problem for software managers and researchers and

has not yet been adequately resolved either through research or

1. Boehm, B.W., op. cit.

2. Canning, R.G., "That Maintenance Iceberg," EDP Analyzer,
Vol,., 10, MNo. 10 (1972), pp. 1-14.

3., Lindhorst, M.W., "Scheduled Maintenance of Applications
Software," Datamation, Vol. 19, No. 5, (1973), pp. 64-67.

i ne

rorre

e e ey - —— Aodiund e Soaiai) Rl T

through accepted management practice. 1In the area of research,
no work has been published identifying a retest methodology.
In the area of management practice, retest decisions still
appear to be made ad hoc. The purist will demand that all
previously executed tests be rerun. The pragmatist will leave
the decision to the discretion on the test team's technical
leader (often called the test director) as he believes the test
director knows the software best, and by using engineering
judgment and his knowledge of the code he often manually
selects the subset of previously completed tests to be rerun.
Other plausible retest methods may be: to rerun a number of
randomly selected tests, to rerun all tests that execute the
modified code, or to execute a new set of test cases (sometimes
called confidence test cases) that exercise all the program's
major capabilities to give the user "confidence" (though not

statistically) that the software operates properly.

Each method has some beneficial properties, yet none gives
a perfectly reliable solution. Rerunning all previously used
test cases 1is almost always impractical as the wvalidation
process for large computer progr ams may take several
man-years. The test director may be able to select for retest
those tests that address the functional modifications, but he
may not be aware that modified data conditions could cause
execution of non-functional paths resulting 1in inaccurate
output that may go undetected for years. What is needed is a
quantitative method for assuring that new program modifications
are correct and do not introduce new errors into the code. To
formally prove this would take an analysis of every program
path, but this has been shown to be an impractical task in all

but the most trivial cases (1l).

1. Boehm, B.W., "Software and 1Its Impact: A Quantitative
Assessment,”" Datamation, Vol. 19, No. 5 (1973), pp. 48-59,

,"""

v

r._.,jv..,w‘mr,f» —

e v vrprweweeevy

.

T T T e T

The research explored during this project addressed the
validation of software modifications. The general question

was, "How can software modifications be validated?", and more
specifically:

1. What quantitative techniques can be used to implement
these strategies?

2. Are these techniques feasible?
3. What are the implementation considerations?

These questions are critical to software practitioners, because

the ad hoc retest selection technnigues of the past have proved
woefully inadequate.

Choosing a subset of test cases to be rerun can be done
using either quantitative or ad hoc techniques. No other known
studies have comprehensively addressed either method, though in
practice, the latter is most often employed. The approach
taken during this project was to apply graph theory to the
analysis of software modifications. This approach has been
successful in the area of initial software testing and was
extended here to analyze the retest problem.

The goal of this research was to find methods to perform
retesting in the most efficient and reliable way. With this
methodology, we hoped to be able to answer questions such as:

1. "What parts of the software system need to be retested
after modification?"

2. "How much retesting is needed?"
3. "What are the most efficient methods of retesting?"
4, "What test cases need to be rerun?"

The first step in the research was to define alternative
retest strategies which assure specific retest coverage.
Conclusions were drawn based on the performance of each

strategy and generalized beyond the research environment.

T d

Developments in the retest area will advance computer
software theory as well as benefit the management of the
software maintenance process. The current graph theoretic
approach to computer program testing will be extended to
computer program maintenance. Practical benefits are
anticipated to be significant because now maintainers will have
a tool with which to make tradeoff analyses with regard to cost
versus test coverage. In addition, managers will be able to
have increased confidence that modifications to one module do

not affect the proper execution of the entire software system.
2.2 CURRENT STATE-OF-THE-ART OF SOFTWARE MAINTENANCE

The maintenance effort for many software systems today runs
from 40-60 percent of the system 1life cycle cost (1,2).
Canning's studies of B. F. Goodrich and General Motors (2) show
the need for an increase of maintenance in the data processing
environment. Canning's report estimates that up to 80 percent
of the effort at Oldsmobile is maintenance. The Boehm (3)
report on two Air Force Command and Control projects indicates
the maintenance portion of the 10 years life cycle cost is
about 67-72 percent. In a recent report to Congress, it was
estimated that the Government spends 1.3 billion dollars on

software maintenance. Not included in this estimate |is

1. Boehm, B.W., "Software and 1Its Impact: A Quantitative

Assessment," op. cit.
2. Canning, R.G., op. cit.

3. Boehm B.W., "Software Engineering," op. cit.

L]
A L oLTa .

'v
Cemaa’ me A et imiacas

Sdde tle &

sl t.ak

the software maintenance cost associated with embedded weapons
systems (1).

The need for software modification during the operations
and maintenance phase of the software life cycle is unavoidable
and the retesting of these modifications 1is essential.
Unfortunately, there are few tools available to assist software
maintenance personnel in determining the proper retesting
procedures., This is not for lack of need, however. Boehm (2)
and Lipow (3) discuss the uncertain reliability of software
subsequent to maintenance modifications. Gibson and Railing

(4), Donahoo and Swearingen (5), Yau and Collofello (6),

1. Report to the Congress of the United States, "Federal
Agencies' Maintenance of Computer Program: Expensive and

Undermanaged"”, February of 1981.

2. Boehm B.W., "Software Engineering," op. cit.

3., Lipow, M., "Some Directed Graph Methods for Analyzing
Computer Program," Proceedings, Computer Sciences and

Statistics: Eighth Annual Symposium on the Interface,

Health Sciences Computing Facility, UCLA, February 1975.

4., Gibson, C.G. and L.R. Railing, "vVerification Guidelines,"
TRW Software Series #71-04, August 1971.

5. Donahoo, J. D. and D. Swearingen, A Review of Software
Maintenance Technology, RADC-TR-80-13, Rome Air Development
Center, Griffiss AFB, NY, February 1980.

6. Yau, S.S. and J. Collofello, "Some Stability Measures for
Software Maintenance," IEEE Transaction Software
Engineering, Vol, SE-6, No. 6, November 1980.

e A A aeaa

———y

Y

Py P T——

W——

TP

and Liu (1) specifically identify the need for developing a

formal quantitative maintenance validation procedure.

Three areas of software maintenance and retesting were
reviewed and significant findings in each area are discussed in
this section. The management procedures for software
maintenance and the need for software retesting tools and
technology is discussed in 2.2.1. Utilization of graph theory
as a solution to retesting problems is discussed in 2.2.2, and
difficulties involved with software maintenance and retesting

are identified in 2.2.3.

These areas provided sufficient information for the

development of our retest methodology.

2.2.1 Management Issues

For better employee morale and more efficient maintenance,
Lindhorst (2) suggests a "scheduled maintenance" approach for
maintenance of application software. Scheduled maintenance is
a policy whereby maintenance is deferred until a predetermined
month when all maintenance modifications for an application are
performed. The article attributes the following benefits to
the utilization of this approach:

1. Consolidation of requests.
2. Programmer job enrichment.

3. Better user analysis prior to the request for
modification,

4. Periodic application program evaluation.

5. Elimination of "squeaky wheel syndrome".

1. Liu, C.C., "A Look at Software Maintenance," Datamation,
VOl. 22’ No. 11, (1976)' pp- 51"55-

2. Lindhorst, M.W., op. cit.

|

1

6. Programmer back-up.

7. Better planning.

Mooney (1) suggests "organized program maintenance" to
produce more efficient and reliable software modificatious.
The organized program maintenance approach suggests that
motivational factors such as increased salaries and rotation to
a software development team after 6 months will significantly

increase the productivity and morale of a maintenance team.

Swanson (2) categorizes the failure of software into three
types: process failure, per formance failure, and
implementation failure. Based on this categorization, he
suggests an "organizational structure" approach to software
maintenance. This approach uses a team of programmers whose
only responsibility is the maintenance of installed software,
The team uses a maintenance data base and every change must be
made through a maintenance order. Swanson believes that
utilization of these tools, will result in better software

maintenance management and less software failure.

Boehm (3) categorizes software modifications during
maintenance into: software updates which results in a change
of specification, and software repair which does not affect the
software specification.

1. Mooney, J.W., "Organized Program Maintenance," Datamation,
vol. 21, No. 2 (1975), pp. 63-64,

2. Swanson, E.B., "The Dimensions of Maintenance,"
Proceedings, Second International Conference on Software
Engineering, IEEE Catalog 76CH1125-4C, October 1976, pp.
492-497.

3. Boehm, B.W., "Software Engineering," op. cit.

T T T .

Managing software maintenance has problems similar to
managing any other activity. Ignoring the problems 1leads to
poor software maintenance and software process failure thereby
increasing the cost of maintenance. Boehm (1) enumerates

sof tware management problems as follows:
1. Poor planning.
2. Poor control.
3. Poor resource estimation,
4. Unsuitable management personnel.
5. Poor accountability structure.
6. Inappropriate success criteria.
7. Procrastination on key activities.

To overcome these problems, he states that the manager of a
software maintenance activity must keep the maintenance team
current with state-of-the-art technology, especially 1in the
area of software tools, Such tools could be an automated
software retest system similar to the one described in the
"Software Retest System Functional Description" that can
increase the reliability of modified or repaired software and

decrease failures.

Yau and Collofello (2) discuss software maintenance for
large~scale software. They break down the software maintenance
modification process into different phases and steps. Their
defined maintenance process is a set of phases; each phase and
its associated process is critical to the maintenance process.
Before beginning a phase and making any modifications, their

maintenance process requires that maintenance objectives be

e

1. Boehm, B.W., "Software Engineering," op. cit.

2. Yau, S.S. and J. Collofello, "Some Stability Measures for

Software Maintenance," IEEE Transaction Software

Engineering, Vol. SE-6, No. 6, November 1980.

.‘._4

determined so that maintenance personnel understand what to

modify. The "maintenance process" phases are:

Phase 1- Understanding the program with regard to the program's
complexity and self descriptiveness. The complexity
of a program is a measure of the effort required to
understand the program. Self descriptiveness of the

program is a measure of the clarity of the program.

Phase 2- Generating a particular maintenance proposal, keeping
in mind extensibility, which is a wmeasure of the
extent to which a program can support extensions or

critical functions.

Phase 3- Accounting for ripple effect since the affect of a
modification may not only be local to the
modification, but may also affect other portions of

the program.

Phase 4- Testing to assure the modified program has at least
the same reliability as it had prior to modification.
Once Phase 4 is completed, Yau and Collofello
r ecommend determining the success of retesting
effort. If it is determined to be unsuccessful, the
maintenance modification objectives must be

reevaluated and the maintenance process repeated.

One of the most critical and neglected aspects of software
maintenance and development is the human factor. This phase of
the software 1life cycle needs experts that can quickly
understand existing software and that can rapidly modify
software. Unfortunately, software maintenance is not viewed as
the most exciting portion of the software life cycle and
frequently software maintenance personnel experience boredom
with their jobs. Mooney (1) experienced this problem and his
solution was to rotate personnel between a development team and

a maintenance team. Additionally, a pay increase for

1. Mooney, J.W., Op. Cit.

.,_.,4

a2

maintenance team members was provided. This me thod

significantly increased job satisfaction.

Shneiderman (1) considers the working environment as the
major f{actor influencing the ©behavior of programmers and
maintainers. The physical environmental factors found to be

the most significant are:
1. Room size.
2. Room structure (window, door, ceiling, etc.).
3. Brightness of the light.
4. Air temperature and humidity.
5. Arrangement of desk and work space.
6. Access to computer terminal and facilities.
7. Noise guality and intensity.
8. Interference from others.
9. Degree of privacy.

He concluded that a poor working environment decreases the

quality and gquantity of the programmer/designer's work.

2.2,2 Graph Theory lIssues

Graph theory has played a heavy role in two very
specialized areas of software testing: 1logic path generation,
and program structure analysis. The identification of 1logic
paths 1is used by those who have built automatic test data
generator programs. These programs have discovered some well

hidden errors. Hoffman (2) discusses his experience with the

1. Schneiderman, B., op. cit.

2. Hoffman, R. H., "The Impossible Pairs Detection Capability
(IMPAIR) of the Automated Test Data Generator (ATDG),"
NASA, Contract No. NAS9-14853, Houston, Texas, January 14,
1977.

4

@
P

w——
Sl NAA Snm e Jank o o et Eaa -

iC IR

LA SE a2 aes o n e e & i

A
-

Lam aan 4

~T

Ta

——

Impossible Transfer Pairs Detection Capability, (IMPAIR). This
system was tested with his Automatic Test Data Generator
program and as a result of running 15 test cases, two function
errors were found and four system modifications had to be
made. Other researchers, such as Fosdick and Osterweil (1),
have developed static analysis programs which analyze 1logic
paths to assure data consistency and software reliability,
Shooman and Ruston (2) propose an "analytical determination of
program paths." They present an algorithm based on labeling
branches of a program with a binary number that identifies the
number of possible paths in a program. As a result, each path

is a combination of branches with a unique binary number.

Graph theory 1is also utilized in the area of program
structure analysis. By using graph theory, it is possible to
determine the degree to which a program complies with various
coding constructs. Brown and Fischer (3) introduce a technique
called "segmentation" which involves analysis of program source
code. Based on an algorithm, a tool was developed to audit

source code for compliance with structured programming

1. Fosdick, L.D. and L.J. Osterweil, "DAVE - A Fortran Program

Analysis System," Proceedings, Computer Science and

Statistics: Eighth Annual Symposium on the Interface,

Health Sciences Computing Facility, UCLA, February 1975,
pp. 329-335,

2. Shooman, M.L. and H. Ruston, "Summary of Technical Progress
Investigation of Software Models," Rome Air Development
Center, RADC-TR-79-188, Griffiss AFB, NY.

3. Brown, J.R. and K.F. Fischer, "A Graph Theoretic Approach
to the vVerification of Program Structures," Proceedings,

Third 1International Conference on Software Engineering,
IEEE Catalog No. 78CH1317-7C, May 1978.

- = e a4 4 e mlaa a -

2 e amara.

constructs. Gannon and Else (1) discuss the utilization of

program branches (DD-paths) in computer program analysis.

There 1is other research that discuss graph theoretic
approaches to program testing. Krause, Smith, and Goodwin (2)
give an introduction on the use of graph theory in testing, and
discuss a method of designing test cases to exercise all of the
code using source code analysis, base path and loop generation,

optimal path design, and user interface.

Huang (3) gives an excellent tutorial on program testing
from a graph theoretic viewpoint. Lipow (4) discusses a graph
theoretic approach to testing by using Dilworth's theorem on
partially ordered sets to determine the minimum number of
testcases needed to execute all segments of a computer program
at least once. Miller (5) identifies three major categories
for program testing technology: theoretical functions,

methodology, and automated tools. Additionally, he identifies

over twenty program testing "needs" from a graph theory
1. Gannon, C. and R. F. Else, "JOVIAL J73 Automated
Verification System User's Manual," General Research

Corporation, July 1981.

2. Krause, K.W., R.W. Smith and M.A. Goodwin, "Optimal
Software Test Planning Through Automated Network Analysis,"
Record, 1973, IEEE Symposium on Computer Software
Reliability, New York, 1973, pp. 18-22.

3. Huang, J.C., "An Approach to Program Testing," Computing
Surveys, Vol. 7, No. 3 (1975), op. 113-128.

4, Lipow, M., op. cit,.
5. Miller, R.E., "Program Testing Technology in 1980's,"

Proceedings of the Conference on Computing in the 1980's,

IEEE, 1978.

viewpoint and describes each one in detail, Gannon (1)
conducted an experiment in which she compared two software
testing techniques: static analysis and dynamic path testing.
Both tools ran in a similar environment. The result indicates
that between the two testing techniques, dynamic path testing
is the most effective at detecting logic, computational, and
data base errors. In this experiment, dynamic path testing

detected 25 percent of the seeded errors.

Voges, Gmeiner and Amschler (2) designed and implemented an
automated testing tool capable of testing a single FORTRAN
module. This tool views the module as a directed graph and
generates test cases which require at least one execution of
each DD-path. Ntafos and Hakimi (3) introduces algorithms for
covering a minimum set of paths during program testing. Paige
(4) views the computer program as a graph structure and

discusses different approaches to partitioning program graphs.

l. Gannon, C., "Error Detection Using Path Testing and
Statistic Analysis," IEEE Transactions on Computer,
August, 1979,

2. Voges, U., Gmeiner, and BAmscher, "SADAT, an Automated
Testing Tool", IEEE Transaction on Software Engineering,
vol. SE-6, No. 3, May 1980, pp. 286-290.

3. Ntafos, S.C. and S.L. Hakimi, "On Path Problems in
Diagraphs and Application to Program Testing; IEEE
Transaction on Software Engineering, Vol. SES5, No. 5,
September 1979.

4. Paige, M.R. "On Partitioning Program Graph", 1EEE
Transaction on Software Engineering, Vol SE-3, No. 6,
November 1977.

2-15

-—r‘-wuwvwv i. v

-

.

ARG SR LA AR e
. a

Sloane (1) presents an algorithm for finding the paths through
a network which could be applied to computer programs. Fischer
{2) used a graph theoretic approach to determine the minimum
number of previously executed test cases needed to retest every

reachable program segment subsequent to code modification.

2.2.3 Technical Issues

As previously discussed, between 40 and 60 percent of the
system life cycle is spent on maintenance. The major technical
problems involved in computer program maintenance concern the
lack of software tools for maintenance, the focus of software

research, and the reliability of software modifications.

To effectively and efficiently perform the maintenance
task, tools are needed. Unfortunately, however, most of the
available tools were developed for use during software
production, not maintenance. Moreover, our 1literature review
and on-site surveys performed as part of this effort, indicate
that few tools are procured by organizations responsible for

software maintena: ~e.

Another technical problem which affects software
maintenance is the direction and focus of research. Boehm (3)
has defined the following categories in which maintenance

research should be targeted:

1. Understanding the existing software.

1. Sloan, N.J.A., "On Finding the Paths Through a Network,"
The Bell System Technical Journal, Vol, 51, No. 2 (1972),
pr. 371-390.

2. Fischer, K. F., "A Test Case Selection Method for the
Validation of Software Maintenance Modifications,"
Proceedings, COMPSAC '77, IEEE, November 1977, pp. 421-426.

3. Boehm, B.W., "Software Engineering," op. cit.

.4)

1C B

Y, v

a4

. i)

2. Modifying the existing software.
3. Reevaluating the modified software.

4. General aids.

The reliability of post-modified software has long been a
technical issue among software maintainers. The prevailing
assumption is that the reliability of the software is directly
associated with the reliability of the testing. Tai (1)
analyzes the complexity of programs and measures that
complexity by the amount of test data required for
demonstrating program correctness by testing. Based on this
complexity measurement, he introduces new test selection
criteria. To select test data, Howden (2) compares five

methods of software testing with the following results:

Method Errors Found in the Same Program
Path 18
Branch 6
Structured 12
Special value 17
Symbolic ' 17

Fischer (3) proposed the use of "quality assurance software

tools"., This is a useful technique to increase the reliability

1. Tai, K., "Program Testing Complexity and Test Criteria,"
IEEE Transaction on Software Engineering, Vol. SE-6, No. 6,
November 1980.

2. Howden, W.E., "Methodology for the Generation of Program
Test Data," IEEE Transaction on Computers, Vol. C-24, No. 5
(1975), pp. 554-559.

3., Pischer, K. F., The FORTRAN Code Auditor, Quality Assurance
Software Tools User's Guide, TRW Software Product
Assurance, STP-6039, January 1977.

T W e e T e T

ik

PR

of the software, by using tools such as code auditors, path

analyzers, variable analyzers, etc.

Changing software during maintenance raises the question,
"Is the performance of the software changed?" The answer can
be found in a ripple effect analysis study performed by Yau and
Collofello (1). The first part of the study identifies program
areas which require additional maintenance to insure
consistency with the initial change. The second part of the
study analyzes how changes to one program area affects the
performance of other program areas. Ripple effect analysis is

performed in three steps:
1. Change management system.

In this step, maintenance personnel provide the system
with source «code, a proposed modification, and
performance requirements. The system creates a record

of changes in a data base.
2. Lexical analysis package.

This step is performed once the modification to the
program has been completed. The program is analyzed
with respect to the proposed modification and a
characterization of the program containing information
necessary for tracing both logical and performance

ripple effects is compiled and saved in a data base.
3. Tracing package.

In this step, maintenance personnel execute the
tracing package which wutilizes the data base of
program changes created by the change management
system and maps these changes into the
characterization of the program created by the

previous step.

1. Yau, S.S. and J.S. Colofello, op. cit.

e N

™ |

7rkﬁ

[——

2.3 Current Air Force Retest Practices

As part of the "Software Retest Techniques" contract,
on-site interviews were conducted to determine retesting
practices currently being used by the Air Force. Four programs
were selected for participation:

1. Short Range Attack Missile Program, Oklahoma Air
Logistics Center.

2. 427M System, North American Air Defence Command, Space
Computation Center.

3. F-111 Operational Flight Program, Sacramento Air
Logistics Center.

4, Communication Software, Oklahoma Air Logistics Center.

Based on these interviews, 3 retest practices were
identified:

1. Selection of test cases to validate modifications to
software were made by the staff based on their
knowledge and familiarity with the software.

2, Manual techniques were used to select testcases.

3. One large test case was used to validate all

modifications to the software.

Each practice offers some beneficial properties, yet none
provide a reliable, cost-effective solution.

In the first practice, the selection of test cases to
validate a software modification 1is made subjectively by
personnel based on their knowledge of the software and the test
bed. Given that such personnel are available, they may be able
to select those test cases that address functional
modifications. However, without extensive knowledge of the

software, they may be unable to select test cases that address

2-19

Lo g4

“'4

mmmamasalaan sk

s

LAdn aun

7r—ﬁj'r'7

data conditions that can cause execution of non-functional
paths. The execution of non-functional paths 1leads to
inaccurate output which decreases system reliability.
Furthermore, since retest decisions are made subjectively,
statistical confidence that the software operates properly can
not be given. A software program utilizing this retest
approach will be only as reliable as the personnel responsible

for making retest decisions.

In the second practice, the selection of test cases to
validate software modifications is made without the benefits
derived from the utilization of automated support tools.
Therefore, the inputs (analysis of data and logic dependencies)
used to select test cases are developed manually. Since the
inputs are generated manually a greater probability of error is
introduced. Additionally, the cost and time of manually
generating inputs is greater than the automated generation of

inputs.

In the third practice, one large test case 1is used to
validate modifications made to the software. This large test
case is developed to exercise the entire system baseline, not
just the modified portion of the baseline. The major concern
with this practice involves the manpower and computer costs
associated with testing those portions of the baseline that
need not be tested as thoroughly as the modified areas of the
baseline. Additionally, since it is not feasible to retest
each modification, a modification cycle is frequently used.
For example, during an 18-month modification cycle, severa’
modifications may need to be made to the software. If the need
for a modification is identified during month 1 of the cycle,
it will not be implemented or tested until month 18, The time
lag associated with such a modification «c¢ycle may be

unacceptable as well as frustrating to users.

Aincaca scaba . as A4 sk . - o &

t
@

Aot

.‘1

.4

o

. UL S S U N TP S

£

The organizational responsibilities and the data flow for
the retest process are shown in Figure 2-1. As indicated, a
review board or configuration management office has approval
authority for the modification and its wvalidation (retest)

while the software support group per forms the actual
modification and retest.

v
L]
@

' « .
T U T

T

¥
r

nﬁv,- M A e L uee o 2 a ae)

S/W SUPPORT
FINDS A
PROBLEM WITH
THE SOFTWARE

————

SOFTWARE
SUPPORT
MAKES A

NEW LIBRARY

Figure 2-1,

REVIEW BOARD
GRANTS
AUTHORITY TO
FIX THE SOFTWARE

REVIEW BOARD
APPROVES THE
llF'xll

for the Retest Process

Organizational Responsibilities and Data Flow

- ‘H
v v1
R
<4
8
.‘.‘J
..J
3
SOFTWARE 3
SUPPORT S
FIXES AND L
RETESTS THE Lo
SOFTWARE U g
o4
' <
K -!
<
.
1
R
o
g
v 3
[J
1
1
[
1

S

L2

SECTION 3 ~ OVERVIEW OF RETEST STRATEGIES

3.1 INTRODUCTION

Approaches to retesting, and the degree to which it is
performed will vary widely depending on the goals and
constraints on a given software maintenance environment.
Managers usually have good intentions, but there are no widely
accepted retest standards or methodologies. Retest strategies
typically amount to a shotgun approach of performing as much

retesting as possible within set schedule and cost constraints.

This section describes six alternative retest strategies
which explicitly define the amount of retesting to be performed
for any given «code change. Examples using the selected
strategies are given along with algorithms for their
implementation.

3.1.1 Retest Strategy 1: Rerun All Test Cases

In terms of selection effort, the easiest retest strategy
is to rerun all previously used test cases. In the extreme
best-case, the set of previously executed test cases provides
full test coverage of existing capability. If the test bed
executes all DD-paths, then this strategy will usually provide
an overkill of the effort required to validate small software
modifications. While this strategy may be convenient for small
programs where the number of test cases is low, it may not be
feasible for medium to large systems where the number of test
cases is high, Even if the number of test cases is 1low,
rerunning all test cases will not guarantee software quality
unless in the aggregate the test cases provide full test
cover age. In a large software system where the number of test
cases may exceed one thousand, it is too time consuming and
expensive to rerun all test cases. Additionally, the set of
previously executed test <cases may not functionally or
structurally test that code introduced as a result of the
modification. Consequently, system reliability steadily

decreases unbeknown to the software support group.

3-1

.ﬁ

G Ak s Saat N

LEARI SN Lo0 o s iy MR (0 d

3.1.2 Retest Strategy 2: Retest All Testable Paths Through
the Changed Code

This strategy implies that one has identified and developed
test cases for each testable path,. While it 1is possible to
identify the set of all paths using a graph (1), the number of
paths through software containing loops may be very high,
making it impractical to develop test cases for each path. To
illustrate the large number of paths in a relatively simple

graph, consider the example illustrated in Figure 3-1. 1If all

LOOP
10 TIMES

LOOP
26 TIMES

C <> |
— <>
L <P]

Figure 3-1. Path Enumeration Illustration.

1. Sloan, N.J.A., "On Finding the Paths Through a Network,"

The Bell System Technical Journal, Vol. 51, No. 2 (1972},

pp. 371-390.

A gl

-

the branches are assumed to be independent there are

68,719,476,736 (calculated as 210 , 526) paths in the
graph. Even though all decision statements are seldom mutually

independent, the number of testable paths is usually too high
to consider building test cases for each. Therefore, this
retest strategy was dropped from consideration because its

implementation is currently infeasible.

3.1.3 Retest Strategy 3: Rerun All Test Cases Which Execute
the Changed Code

Clearly, if a test case does not exercise the modified
code, it is nct impacted and need not be rerun. This strategy
confines retesting to only those test cases that execute the
modified code. For example, if there are four test cases to
test the code represented in Figure 3-2, and DD-path 3 is
modified, one can visually verify that test cases 1 and 2 need
not be retested as they do not execute DD-path 3. In this
example, only test cases 3 and 4 need be rerun. Implementing
this strategy would reduce the required retesting by 50 percent
for this particular example.

Though rerunning all tests which pass through the modified
code provides high test coverage, it may also require more
retesting than either the budget or schedule will allow.
Consider the example depicted 1in Figure 3-3. Using the
strategy of rerunning all test cases that execute the
modification, a simple code modification to DD-path 3 would
require rerunning 8 of the 12 possible test cases. For this
example, two-thirds of the testbed would have to be rerun in

order to validate a simple modification.

3.1.4 Retest Strategy 4: Retest All DD-Paths Reached From
the Changed Code

Seven software entities (see Appendix F for definitions)

identified with code are:
1, Programs

2. Modules

PO ISP W

DO-PATH
1
: [
: !
. I
3 i |
L
Y r—————- I--————-:
! |
| 1 1 i
E DD—;ATH' I
L I |
o
! |
| I
: l '] |
I |
l |
| I
I [_] l

N
Fr———=—- i |

I \/
DO-PATH |
a4

DD-PATH
3
TESTCASE | DD—-PATHS
EXERCISED
1 1.2.4
2 1,2,5
3 1.3,4
4 1,3,5
DD-PATH
5

Figure 3-2, Simple Code Modification with Test Cases

Ad i o

PN GOy

IDD—PATH

Flow Diagram With Test Cases

Figure 3-3.

r—-———/—— L —

: | Ly !

= _ | £

So | <

Q [[7°

a | o | _) _w

_ I
- 1 I |)
||||| .* . _
| L _
_ _
A 1
, —p-
T 4_ T
_
T | | T T _
1! _ I _
_ _ | _ _
| _ _ [_

I _ | 2
i | | | 5
I _ | E
N 1 | Lo ——]

o no W OWOLWOow
= g _ Ea NN NG
M4 am Lo| vooorsrFrIIT S
| g _ 5| deNeNN NN
W— o — mﬂ 111111111111

L 1 2

llllllllll m TNOTVONOOO N

wn
o

- P awad 2 ———— L ARG Sus anas Sou e cons S an smne aues e o - L aren p——

3. DD-paths

4, Segments
5. Statements
6. Branches
7. Paths

Merely entering and exiting the program (entity 1) does not
provide sufficient retesting. On the other hand, sufficient
resources to test every path (entity 7) may not be available
and. as demonstrated in paragraph 3.1.2, is highly impractical
if not an impossible task. We then search for a middle ground
of software entities to sufficiently test. We know that we
would like to test all branches and statements. The technique
of breaking a computer program down into DD-paths allows for
consideration of all branches and statements in a more
manageable way. Therefore, it may be concluded that a
reasonable retest strategy is to execute all DD-paths at least
once. However, if this strategy is examined for efficiency, we
find that it can be improved. For example, if a simple
modification to DD-path 5 (in Figure 3-3) is made, it seems
inefficient to retest DD-path 6 since the execution of DD-path
5 has no impact on DD-path 6. A better retest strategy would
be to retest a subset of the testbed which covers all DD-paths
that are reached from the modified code. This strategy
incorporates the benefits of full test coverage, but eliminates
retesting DD-paths that cannot be reached from the modified
code. The minimum retest subset would then be any set of test
cases such that all DD-paths are tested.

Though testing all DD-paths that are reached from the
modified code 1is necessary, it can also miss important
potential error conditions. In the example shown in Figure
3-4, assume that the assignment statement in DD-path 3 was
changed from Y=Z*X to Y=Z/X. By retesting only those DD-paths
reached from the modified code (Strategy 4), only a single test

Y T e v ad oo e e o

case need be rerun, i.e., a test that executes DD-path 3.
However, it can be seen that a fatal error occurs depending on
which path was taken before the modified code. I1f the path
containing DD-path 1 was traversed, execution continues
normally. However, if the path containing DD-path 2 was
executed, then a fatal error occurs at the modified DD-path

because of division by zero.

DD—-PATH

r - —-:
|
|
|
|
|

DD—PATH

""" r———~"—"—

DD—PATHS
TEST CASE EXERCISED

!

I

I

l

I

—_—J
e —

—_

SWN -

Figure 3-4. Sample Flowchart

v

e

3.1.5 Retest Strateqy 5: Retest All DD-paths Reaching To

and Reached From the Changed Code

The limitations of strategy 4 suggest the more powerful
strategy of retesting all DD-paths reaching to and reachable
from the modified code. In the example depicted in Figure 3-4,
this would require that at least two testcases be rerun: one
executing the DD-path sequence 1-3, and the other executing the
DD-path sequence 2-3. This strategy, though always requiring
an amount of retesting greater than or equal to that required
by strategy 4, is apt to detect more errors than the strategy

of retesting only those DD-paths reached from the modified code.

3.1.6 Retest Strategy 6: Retest All DD-paths Reaching the
Changed Code and Setting Changed Data, and Reached
From the Changed Code and Using Changed Data

The previous five retest strategies considered only a
program's control structure when determining a retest subset.
Another 1important element is a program's data dependency
structure, The data dependency structure of a program

describes the logical relationship among data elements.

Important in a discussion of data dependency are the
concepts of setting data and using data. Setting a data value
means to assign (or reassign) a value to that data's storage
location. For example, the wvariable X is being set in the

FORTRAN assignment shown below:
X=Y*2

Using a data value means to access a data item's storage
location and utilize its value in comparing or computing some
other value, The variable Y is being used in the FORTRAN
statement shown below:

X=Y*2

]
A

Sl At T A
[

W FYTIVYY
-

It is also possible for a data value to be both set and
used in the same statement. The FORTRAN assignment statement

shown below is one such example:
X=X+1

The concept of data dependency is important to the retest
problem because studying a program's data logic as well as its
control logic can eliminate much unnecessary testing. The
example in Figure 3-5 shows how considering data logic can
eliminate some of what the previous retest strategies would
consider mandatory testing. For this example, assume that a
constant is changed in DD-path 2 from one value to another.
Clearly, this change impacts the assigned value Y, and the
effects of this change should be evaluated throughout the
program. Using control structure alone, as in strategies 4 and
5, a test case exercising DD-path 3 and a test case exercising
DD-path 4 would be selected for retest. Introducing data
dependency eliminates the need for retesting a test case
exercising DD-path 4 because although control can transfer from
DD-path 2 to DD-path 4, the data generated in DD-path 2 is not
used in DD-path 4. Since DD-path 4 is not impacted, a test
case exercising DD-path 4 would not be selected for retest.
This example indicates that the minimal retest set satisfying
strategy 6 will always be a subset of the minimal retest set

satisfying strategy 5.

In addition to retesting test cases containing DD-paths
which use variables set in the modified code, it may also be
desirable to retest test cases containing DD-paths which
transfer to the modified code. However, retesting test cases
containing DD-paths that transfer to the modified code may be
testing more than 1is necessary. The example in Figure 3-6
illustrates this point. Without <considering data flow,

strategy 5 would have dictated that a test case exercising

3-9

ik

Z=F (Y] Z=FiX

r.
I
I
I
DD-PATH |
I
I
[
L

TEST CASE

DD—PATHS
EXERCISED

PWN -

NN —
bW

Figure 3-5. Sample Flowchart

as

Y at

PPy
- .

l DD-PATH
4

L

DD-PATHS
TEST CASE EXERCISED

HWN —
NN =
HPhWW

Figure 3-6. Sample Flowchart (Strategy 6)

n) i L N . PPy

S b

W

N

DD~path 1 and a test case exercising DD-path 2 be selected for
retested. Since the value of X (DD-path 1) has no impact on
the execution of the modified DD-path 3, a test case exercising

DD-path 1 need not be selected for retest.

The previous analysis considered only data dependency of
the first order. The order of data dependency refers to the
dependency of one variable upon another. In Figure 3-7, the
first order data dependency would show that variable E is an
input to (or is used in) statement 50. The second order data
dependency would show that variables C, D, and E are input to
statement 50 (since D and C set E), and the third order data
dependency would show that variables A, B, C, D, and E are
input to statement 50. A complete effect of all orders of data
dependency 1is called the nth order dependency. Algorithms
which determine these dependencies are described in paragraphs

3.2.6.1 and 3.2.6.2.

10 INPUT A,B

20 C=A+5
30 D=B*2
40 E=D-C
50 F=E+2

Figure 3-7. Sample Source Code

3.2 DETAILED DESCRIPTION OF RETEST STRATEGIES

This section identifies the procedures and mathematical
methods necessary to implement the six retest strategies,
These strategies are listed numerically in Table 3-1 and will
be referred to by number instead of by name throughout this

section.

3-12

P

Table 3-1. Retest Strategies

Rerun all test cases.

Retest all testable paths through the changed code.
Rerun all test cases that execute the changed code.
Retest all DD-paths reached from the changed code.

Retest all DD-paths reaching to and reached from the
changed code.

Retest all DD-paths reaching the changed code and
setting changed data, and reached from the changed
code and using changed data.

e 3.2.1 Strategy 1 S 3

When using the retest strategy of rerunning all test cases,

YT Yy

the selection process is trivial. One merely reruns all test
cases that were executed during program validation and compares

their output with the system software specification.

b

3.2.2 Strategy 2

Because a program may contain an extremely large number of S

T

paths, strategy 2 (as described in paragraph 3.1.2), was e
dropped from consideration as a viable retest strategy.

Therefore, procedures for its implementation are not described.

il 3.2.3 Strategy 3
Before identifying selection methods for strategy 3, it is
necessary to introduce the test case cross reference matrix.
Given that one has used a test monitor tool such as the JOVIAL }
J73 Automated Verification System (1), this matrix can be .‘i
automatically constructed with rows corresponding to program C
DD-paths and columns corresponding to test cases. To
illustrate the construction of this matrix, the test case cross]
reference matrix depicted in Table 3-2 was generated based on o ‘J
the flowchart shown in Figure 3-8. : 1
Table 3-2. Sample Test Case Cross Reference Matrix '.2
L
DD-path Test Case R
No. 1 2 3 4 5 6 ‘
1 1 1 0 0 0 0 L
2 o o 1 1 1 1 o
3 0 0 1 1 0 0
4 0 0 0 0 1 1
5 1 0 1 0 1 0 i
® 6 0 1 0 1 0 1 -
E S
& 1. Gannon, C. and R. F. Else, "JOVIAL J73 Automated !
L Verification System User's Manual," General Research ;
L. Corporation, July 1981, v
:
| 3-14
{
:
. A 4

.

" S

&

Py

DD-PATH
1

DD-PATH

PP

l
|
|
| r
| DD—;ATH |
| |
| —t— |
| l
I |
I I .
I
I . 1 | oo_par
| l | 4
l | |
| = ——- |
L I I _I
m—————- — -————————a

| < |
: J ~ l |
| l DD—PATH
| L
| |

|

| I
[[

Figure 3-8,

Sample Application Flowchart and Test Paths

3-15

e
~
4

L i s S cama o

The selection method for strategy 3 is simple, once the
test case cross reference matrix is generated. One selects for
retest those test cases identified by a "1" in the row of the
test case cross reference matrix corresponding to the modified
DD-path. For example, if DD-path 3 in the flowchart shown in
Figure 3-8 is changed, the third row of the test case cross
reference matrix shows that the elements in columns 3 and 4 are
set to one. Therefore, according to strategy 3, test cases 3

and 4 should be rervun.
3.2.3.2 Limitations

This method restricts selection of test cases to just those
test cases that execute the modified DD-path. It is not
concerned with those DD-paths which reach the modified code.
Because of this limitation (see page 3-9, 3rd paragraph), this
strategy will no longer be considered.

3.2.4 Strategy 4
3.2.4.1 Methods and Procedures

This strategy requires the development of the test case
cross reference matrix as previously discussed. 1In addition,

DD-path reachability must be determined.

To 1identify DD-paths that reach the modified DD-path,
reachability information is needed which can be obtained from
the JOVIAL J73 Automated Verification System (1) .
Alternatively, reachability information can also be obtained by

applying transitive closure (2) to the connectivity matrix.

1. Gannon, cC. and R. F. Else, "JOVIAL J73 Automated
Verification System User's Manual," General Research

Corporation, July 1981.

2. Warshall, S., "A Theorem on Boolean Matrices," Journal of

ACM, Vol. 9, No. 1 (1962), pp. 11-12,

PO SR UP Uy S PP U

-

Connectivity information can be obtained from several static
analyzers such as the PACE (1).

Data from the test case <cross reference matrix and
reachability matrix are coupled with a optimization technique

to minimize the number of test cases selected for retest.

The technique used to optimize the selection process is 0-1

integer programming. This model consists of minimizing the
function:

subject to the following constraints:

a11X) t Ak e a2 X 2 by

2an 2 2

o

+ L B 4 +
2 a

[\
<+
.
.
.
+
')
> s e
[2P I

mn¥n 2

X =0 o0or1l
where Z is commonly referred to as the objective functicun, c.
is a cost element of the objective function, the a. . elements
are coefficients of the constraints, bi is the lower bound of
each constraint row i, and Xj is the variable for solution
which can only take on the value 0 or 1.

Let us assume that during initial validation testing of the
software there were n test cases and m program DD-paths. In

terms of this model, each Xj corresponds uniquely to one of

l. Fischer, K.F., "The Product Assurance Confidence Evaluator,

(PACE) ," Quality Assurance Software Tools User's Guide, TRW

Software Product Assurance, STP-6039, January 1977.

r-v.ﬁ—r-*:f'. T T T T T T T T T T - > ———r P T Tl S —

Y
]

the n test cases. The interpretation of the final solution .
[would be that for each j where xj=1, the corresponding ijth
) test case be included in the retest subset. For each Jj where
;' Xj=0, the corresponding jth test case need not be included in '
t(. the basic model. B N

The cost element of the objective function (cj) is the
actual cost associated with rerunning each test case.

Throughout this section, we assume that the cost of rerunning

)]) . - . 4
p! each test case is identical (cj=1). .
{ The constraint coefficients (aij) are taken directly from :
' the elements of the test case cross reference matrix. If '
r‘l testing is done with a tool that monitors testing and reports

DD-path execution incidence, then the constraint coefficients

can be generated automatically.

P —

The bi's (right hand side column) reflect whether or not

b @ . . .
b DD-path 1 needs to be tested as required by the respective

retest strategy. This is determined by examining the branching

structure of the program by means of the reachability matrix.

To implement this strategy one uses the kth row of the)
reachability matrix (where &k <corresponds to the modified
DD-path) for the right hand side of the integer programming
model. This will force a solution such that all DD-paths

reachable from the modified DD-path are retested.

The optimal solution of the objective function 1is the)
minimum number of test cases necessary to ensure that all
DD-paths reachable from the modified code are executed at least
once. The resulting Xj‘s, with a value of 1, identify the .1

subset of test cases to be included in the retest package.

It is possible that the testbed does not completely test
all DD-paths in a program. If a DD-path in a program 1is

modified and the testbed does not contain a test case that o

P

ST T

PR T T
-

T’ A

P

completely exercises that DD-path, then the 0-1 integer
programming model <cannot be solved (infeasible solution).
Should this occurs, a modified solution can be reached by
either eliminating the constraint(s) with all zero coefficients
and resolving the model, or by constructing a new test case

that executes the untested code and adding it to the model.

This basic model could be solved by a standard 0-1 integer
programming algorithm, A step-by-step procedure for solving
0-1 integer programming models is presented by Taha (1). For
large programs, however, the magnitude of the data could
overflow available storage in many computers, thereby,
preventing its practical solution. Four methods can be used to

greatly reduce the size of the data needed for model
formulation:

1. If a test does not execute any of the modified code,
then 1its execution will surely not validate the
modification. Therefore, one can discard from retest
consideration those test cases that do not exercise
the modified DD-paths. This is done by eliminating
those columns (test cases) that contain a 0 in the
row(s) corresponding to modified the DD-path(s).

2. One can eliminate from the model those constraints
corresponding to DD-paths that are incompatible with
(i.e., never reach to or are reachable from) the
modified code. This is done by discarding those

constraints whose bi value is 0.

3. One can eliminate from the model those constraints
that are duplicates of other constraints. If one
constraint is satisfied, its duplicate is also

satisfied in which case the latter is redundant,.

1. Taha, H.A. An Introduction to Operations Research, The
MacMillan Company, 1971, pp. 327-341.

3-19

. « .
e ke A&

4. One can eliminate from the model any constraint
containing all the elements included in the objective
function (2). Since any solution will satisfy that

constraint, it is extraneous.

A specific example will be reviewed to illustrate the
procedure. If the flow of a routine were as shown in Figure
3-8, there could be as many as 6 test cases designed to
exercise all program functions. The test case cross reference
matrix (Table 3-3) correlates test cases with executed
DD-paths. For example, test case 1 exercises DD-paths 1 and
5. The connectivity matrix (Table 3-4), puts the logic flow of
Figure 3-8 into a matrix format which can be converted into a
reachability matrix (Table 3-5) by applying transitive
closure. For purposes of this research, the reachability
matrix has 1's in the main diagonal to assure that the modified
DD-paths are retested. Let us suppose that a program
modification is made in DD-path 3 (in Figure 3-8) and we apply
retest strategy 4. The elements of the test case cross
reference matrix (Table 3-3) serve as coefficients of the
constraint expressions (aij's), and the right hand side
values (bi's) are taken from the third row (since DD-path 3
was modified) of the reachability matrix. The model for this

sample application would be as stated in Figure 3-9.

MINIMIZE Z = X1 + X2 + X, + X, + X + X

3 4 5 6
SUBJECT TO: Xl + X2 >0
3 + 4 + X5 + X6 >0
3+ x4 >1
5 + X6 >0
X1 + x3 + x5 >1
x2 + x4 + X6 >1

Figure 3-9. Sample Retest Model Formulation

A o ere v untaeae. A

L . a

- — r—Y v ~—r v~ ——— .|1 ..
® . ® » . ® '® » »
. ,
i .
} x
ot
' -
i 2
; 5]
: =
] » =
) %) i
' c Ol A © ~ © ~ ~ Ol —~ —~ © © - Ol ~ - A ~ ©
4 + +
. m] m
) = =
| " o ~ © - H o > nl ~ © o S Y T e
+ S
4 R] o
> —
o 0 9| © ~ -~ © O ES) | © o ©O © Q |l O ~H © ~ ©
= D) v L [1)]
8 [} U ¥ L C
&) c © L ¥
) [oJ < T c o
u ¢4 mlo A 4 ©o ~H © o 1 mo o © © 0 A Mo ~ 4 © O —_
)] U Q [« |
(U] o~
O [V} (a] [a])
&= ® v 0o -
— -
»sl_ Nl O O o © A 0, ol © o © o o} Njlo ~ ©O ©o ©
) £ £
B]]
£ *
) <3] [<a]
—_ -l 4 © © 0o A C© —~| © o © o© ~l+ 0o © 0o ©
p . L]
E < "
= | |
3] ™ ™
£ K L
+ L] +J (] +
. © — © — ©
™ [oF IF- I o A o s T~ I T TR V) Ke] (a] 0 Q.
| \] 1) — < N 0 [1|l — &N ™ <N
Py (] B~ (a] B Qa
() (a])
)]
—
Q
©
|
' L o py. P o N SR ST

4
The sample retest model formulation (Figure 3-9) can be 'l
reduced by the application of the reduction rules as described]
below:
a. Reduction Rule 1: Eliminate those columns (test cases) .;
that contain an 0 in the row(s) corresponding to the]
modified DD-paths. i
The third constraint in the formulation is examined to i
determine which test cases (Xj‘s) exercise DD-path 3 (since ‘61
DD-path 3 was modified). The third constraint indicates that
only test cases 3 and 4 exercise DD-path 3, therefore, test
{ cases 1, 2, 5, and 6 can be eliminated from all the constraints
3
"I in the formulation. Figure 3-10 shows the formulation after .'J
t application of reduction rule 1. 1
]
MINIMIZE 7 = Xy 4 X,]
[® SUBJECT TO: Xy + X, 20 .
Xy + Xy > 1 |
X3 > 1 1
Lc Xg 21 »‘J
.!
Figure 3-10. Sample Retest Model Formulation After :
94
Application of Reduction Rule 1 1
b. Reduction Rule 2: Discard all constraints whose b value .j
is 0. -
I A
: The first constraint in the reduced formulation (Figure 1
3-10) has a bi value of 0 and can be eliminated, further]
t. reducing the formulation as shown in Figure 3-11. .1
¢ MINIMIZE z = X3 + Xy ,
3 SUBJECT TO: X3 + Xy pd 1
] X3 21
' @ X4 Z 1 .1
[Figure 3-11. Sample Retest Model Formulation)
After Application of Reduction Rule 2 !
» 1
b 1
° o
t -
- ?
} 3-22
L [
e ;
| . R . . _— — J

Mas™ anar

MRS - RN

7 T ——T
v LY T T

c. Reduction Rule 3: Eliminate any constraint containing all

1's.

Since there are no duplicate constraints in the

formulation, application of rule 3 will not further reduce the
formulation.

d. Reduction Rule 4: Eliminate any constraint containing all

elements included in the objective function (2) unless it

is the only remaining constraint.

In Figure 3-11, the objective function Z is equal to X4

and Xy- The first constraint in the reduced formulation
shown in Figure 3-11 contains both these elements and can be

eliminated, reducing the formulation to:

MINIMIZE Z2 = X3 + X4

SUBJECT TO: X3 1
1

Iviv

X4
Solution of this problem using 0-1 integer programming shows
that both X4 and Xy equal 1 and the optimal value of the
objective function is 2. This means that there are two test
cases to be rerun and that they are test cases 3 and 4.

3.2.4.2 Limitation
This strategy, although more comprehensive than the

previous strategies, is still incomplete because it does not

account for the impact of the modification to the DD-paths
reached from the modified code.

3.2.5 Strategy 5

The implementation of this strategy is similar to that for
strategy 4. The same matrices (connectivity, reachability, and
test case cross reference) and the optimization method are

required, but values for the bi's are determined differently.

3.2.5.1 Methods and Procedures

This strategy takes into account the DD-paths reaching to
and reached from the modified code. To achieve this goal a

3-23

. O ST S
P S TR - .

e

e

logical OR operation is performed between the Kth row and the ’ @
Kth column (where K corresponds to the modified DD-path) of the
reachability matrix. The result of this logical OR is used as 1

the bi's of 0-1 integer programming model.

.1
An example showing how to compute the bi’s for 0-1
programming model based on strategy 5 is presented below. The]
1
flowchart shown in Figure 3-12, the test case cross reference 3
matrix shown in Table 3-6, and the reachability matrix depicted) ~'}
in Table 3-7 are used in the formulation of this example. Once
again, a modification to DD-path 3 is assumed.
Row 3 of the Reachability Matrix 001011 S b
Column 3 of the Reachability Matrix 011000 o
Logical OR 011011 (bi's)
The formulatior. of the 0-1 integer programming model for this ‘ ~.J
example is: j
]
MINIMIZE Z = X, + X, + X3 + X4 + X5 + X6
SUBJECT TO: X X, > 0 '
Xq 4 X, + Xg+ X > 1 -
+ X, > 1]
X5 + X6 > 0)
Xl + X3 + X5 > 1 o
t d
X, X, X > 1 .
After applying reduction rules, the model reduces to:
.\
MINIMIZE Z = X, + X, 1
SUBJECT TO: X, >1
X4 >
L 4
Solution of the model indicates that test cases 3 and 4 need to]
be rerun. 1
v |

3-24

o

T e . e » » > ‘. ® » »
] _ ,
: \
n
r ©
£ E ————— —_—— e —————
L e r 1]
m fa) _ _ | _
° _ TI...ollll.I_ I |
r | o | a
4 - n °
_ } S I I _ 3
_ T | _ K
I _ — _ “ _ 2
. _ == | _ S
] | | A | s
.
_ 1= N
I mv__.mw “ —
X]
| T ._| o
i L _ o | :
] e I | :
-
— € _ .m..
| T _ | -
g _ |
_ (o « |
_ | | _
_ | |
m _I||||IH llllllllllll L rllll!'llll—
<
| n
0
o
- T) SR . S <A) W o ——

Table 3-6. Example Test Case Cross Reference Matrix

Y

A
-

"

TEST CASE
DD-Path 1 2 3 4
1 1 1 0 0
2 0 0 1 1
3 0 0 1 1
4 0 0 0 0
5 1 0 1 0
6 0 1 0 1
Table 3-7. Example Reachability Matrix
DD-Path
DD-Path 1 2 3 4
1 1 0 0 0
2 0 1 1 1
3 0 0 1 0
4 0 0 0 1
5 0 0 0 0
6 0 0 0 0
3-26

-

YU DL

I X R A

2

v

For this particular example, the application of strategy 5
yields the same result as the application of strategy 4.
However, this is not always the case. For example, given the
directed graph represented in Figure 3-12, the reachability
matrix and test case cross reference matrix shown in Table 3-6
and Table 3-7 respectively, and assuming a modification to
DD-path 5, the application of strategy 5 will yield a different
result than strategy 4 as shown in Figure 3-13.

As indicated, the subset of the testbed selected for retest
by the application of strategy 5 contains a greater number of
test cases than the subset selected by the application of
strategy 4. Although application of strategy 5 requires more
retesting, it is more apt to detect errors.

3.2.5.2 Limitation

This strategy covers DD-paths reaching to the modified code
and DD-paths reachable from the modified code. Although
strategy 5 adequately considers a program's control structure,
consideration is not given to a program's data dependency
structure. Therefore, it may select more test cases than are
necessary for retesting.

3.2.6 Strategy 6

This strategy also uses the connectivity, reachability, and
test case <cross reference matrices. The matrices are
constructed the same way and are used for the same purposes.
Once again, the values for the bi's are determined
differently.

3.3.6.1 Methods and Procedures

Since this strategy is an enhanced version of strategy 5,
it uses the 0-1 integer programming technique and data
reduction as described before.

The critical difference here 1is the analysis of data

dependency, which 1is an understanding of the flow of data

3-27

.'ﬂ

S

W

L aadnad e tot e s e 2ant o TSRt ol o SR 2R At

® 9 o e . s » »
1] . - -
’ * H 1 : [
i
i
y Abaje13s *sa p Abaaeaas jo uopijedllddy ayi jo s3I[NSAH a8yl jo uostaedwol *g1-t 2anbig ,
spew uaaq sey § yied-aQ o3 uorledrjipow ¥ INOILIWNSSY !
R
(9-¢ a1qey) xyazew Airrrqeyseay |
(L-¢ @21qel) X133eW 3DU2133J3H-SS0I1D dsED 153l
(z1-¢ @2anbr3) ydein paidaalgd :NAAID k
y
(3533184 103} paidaias
G @sed 389l _ s2500 358L) 18p0W A
pue { 2sed 3ISIL ¢ dsed 3sal 10 § 95RO 383 butuwweiboad 1dbajul
pue 1 Ised 3183l 70 1 @sed 33l 19yl |3 1-0 ©3 uolinjos “§)
13 Sx
e tx
1< Sx+ ty sainyd wo13onpay
1< Iy :tog 103(qns T < Sxe Exs Iy oz 303[ans jo voraed11d0¥ oo 1
Sxe L' Ax = L SZJWIUTW Sxs Exs #x = 7 PZIWIUIN 123j¢ pauieiqo Iinsay ¢ 7__
o
0 T x4 Yo x 0% x Yye 3%
17 Sxs txs Ix 13 Sx+ fxe Ix
13 %% Sx 03 %xe Sx
1% Yxs Ex 03 Yxe Ex
13 Ixe Sx+ Ty Ex 07 %x+ Sxe Fxe By
1< Cx+ Yx :ou 308(ans 0 Tys Yy :o01 308fqng 12poW butuweaboag
wf mxo vx+ mx. Nf _x = 7 dZJWIUIW wxo mxo vx» f? nx¢ .px = 2 dZJWIUINW 19bajuy 1-0 dn 385 2 .
ts.'a) ottitt (40 "I¥31907) 1
Bl1lT1 xt2a3el X3jijqeydesay 3o § uwnjod
010000 xpa3ed A3jliqeyoead jo G Moy ,m_«ﬂgocoon:uum: Aayirqeyoeay Jo ¢ moy m._n autwiaiag °1
e e _]
¢ Abajei3s jo uojiedt (ddy ¢ Abajeayg 3o uojjedyiddy daas

[. *» . £ . P __° K

within a program. The tool used in this analysis is the
set/use matrix. Data within the set/use matrix indicates
whether or not a particular variable is set or used within each
DD-path. The setting of a variable occurs when a value is
placed into that variable's storage location (i.e., A=5). The
using of a variable occurs when the storage location of a
variable is accessed and the contents read and then used (i.e.,
A=B) . A variable can be both set and used in the same
statement (i.e., X=X+1).

The cells of a set/use matrix indicate what variables are
set and used within the source statements contained in DD-paths
of the target program. The set/use matrix in Figure 3-14 shows
the data dependency for the example flowchart in Figure 3-12.
In the matrix, the occurrence of an "S", "u", or "X" indicates
that a variable 1is set, used, or both set and used,
respectively.

DD-paths
Variables 1 2 3 4 5 6
A X U U U0 O
B g U0 U0 Uu
X U X X X U
Y U
Z U U

Figure 3-14. Sample Set/Use Matrix

Given the set/use matrix and the reachability matrix, the
retest subset can be reduced further than with the reachability
matrix alone. Recall that for strategy 4, the row of the
reachability matrix corresponding to the modified DD-path
becomes the right hand side (bi's) of the 0-1 integer
programming model. By reducing the number of 1's in the right
hand side, the number of test cases that must be rerun may be
reduced,

3-29

ey

vdvvvn-vvw y—
\

LAl 2 o aan o o Al

o P T ——" T ——— —— T Y

Two algorithms have been developed which operate on the
set/use matrix and the row and column of the reachability
matrix corresponding to the modified DD-paths to determine the
data flow impact of the modified variables.

Analysis of the module set/use matrix can be used to
further reduce the number of selected test cases. This 1is
performed by identifying DD-paths in which the data elements
can affect or be affected by the modification. The data
analysis algorithm A, 1located in Appendix A, 1is used to
determine all DD-paths containing data elements which
potentially affect data conditions used in the modified
DD-path. The data analysis algorithm B, located in Appendix B,
is used to determine all DD-paths containing data elements
which are potentially affected by data conditions set by the
modified DD-path.

In the following example, the flow chart shown in Figure
3-15, the test case cross reference matrix illustrated in Table
3-8, the reachability matrix depicted in Table 3-9, and the set
use matrix in Table 3-10 are used. A modification to DD-path 3
is assumed. The first step is to use the data analysis
algorithm A to identify DD-paths containing data elements which
potentially affect data conditions used in the modified
DD-path, A logical AND is then performed between the result of
algorithm A and column 3 (since DD-path 3 is modified) of the
reachability matrix. This identifies the DD-paths which reach
to and are affected by the modification, Figure 3-16

illustrates this analysis.

Column 3 of Reachability Matrix 011000
Result of Algorithm A 101110
Data/Logic Dependencies (Logical AND) 0 0 1 0 0 O (1)

Reaching to Modified DD-path

Figure 3-16. Logical AND Operation (Step I)

e e ° 1 . s e 'y
N
T T
= =
5 s
T a a
T IS GENED GhEmt GEn M) GEEEp GERD ‘GEES GpED G GREED eletu
; r o 7]
2 | || !
- ——— . i |
|| 4 | | | €
| T ¢ | e
|] | | _ 3
_ _ {1t ! _ E
H _ | bl _ :
| o
| P L L]f
| | .
1 ; _ H ! :
_ T mpp—— —J _ | _ 1
| e p | I :
| it | _ 2
a ! _ by
_ o — _
_ P _
_ i | !
L o e o e e e o N N W
£ =
:- :.
o fo)
o o)
A W v B T T =

3-31

t‘ Table 3-8, Example Test Case Cross Reference Matrix
s
TEST CASE
DD-Path 1 2 3 4 5 6

O -~ O ©o O
H o © o O
O = O ~ + o
-~ o O = = o
O~ +H o + o
H O = o - o

A W N

Table 3-9. Example Reachability Matrix

DD-path
DD-Path 1 2 3 4 5 6
1 1 0 0 0 1 1l
2 0 1 1 1 1 1
3 0 0 1 0 1 1
4 0 0 0 1 1 1
5 0 0 0 0 1 0
6 0 0 0 0 0 1
Table 3-10. Sample Set/Use Matrix
DD-path

Variables 1 2 3 4 5 6
A X U U U U U

B U
X 9] X X U

Y U

4 U

3-32

{
o

y S N

L BRI 4 b M e e

The second step is to identify DD-paths reached from the
modified DDh-path and data elements affected by the
modification. The analysis proceeds in the same manner, except
the logical AND is performed between the result of the data
analysis algorithm B, described in Appendix B, and the third
row of the reachability matrix. Figure 3-17, demonstrates the
logical AND operation used to determine the DD-paths affected
by and reached from the modified DD-path.

Row 3 of the Reachability Matrix 001011
Result of Algorithm B 011111
Data/logic Dependencies

Reached From the Modified DD-Path 001011 (11)

Figure 3-17. Logical AND Operation (Step II)

Finally, a logical OR between the result of step (I) and
the result of step (1I) is performed to identify the final
bi's used in the 0-1 integer programming model. Figure 3-18
illustrates this logical OR operation.

Result of Step 1 001000
Result of Step 2 001011
Final bi's 001011

Figure 3-18. Logical OR Operation

The remainder of the test case selection methodology (i.e.,

solving the 0-1 integer programing model) is identical to that
described for strategy 4 and 5.

3.2.6.2 Manual Walkthrough of Set/Use Matrix

In this paragraph, a manual walkthrough of the set/use
matrix analysis using Algorithms A and B is conducted. Figure
3-19 illustrates a set/use matrix for a module containing 7
DD-paths and 3 variables.

PO P N,

‘
F DD-path
F Variable 1 2 3 4 5 6
e X S U Ub
Y S S U
. A S S

Figure 3-19. Example Set/Use Matrix

Throughout this walkthrough, a modification to DD-path 4 is

assumed.
3.2.6.2.1 Manual Walkthrough of Algorithm A

*‘I Since DD-path 4 is modified, the 4th column of the set/use
matrix is flagged with a 1 in row 0 of that column and is then

searched. Since row X contains U, the column array

————

(implemented in Figure 3-20 as column 0) is flagged with a 1.
F‘: The second search is of row X and column 1 is flagged in the
H row array (implemented in the Figure 3-19 as row 0), because
{ ‘ the variable is set in DD-path 1. The third search is of
[column 1 because that column was flagged during the previous
search. Since there are no variables used in DD-path 1, set in

row X, or used in column 4 the algorithm terminates.

DD-path
Variable 1 2 3 4 5 6 7 Column 0
i i
]
Y - U § PRGN, o SRP § PESEDEUEPPIIPUIIPIE | (P ->
x@§ U U U 1
Y i S s U U
i 5 S S
Row 0. _ 1 .0, 0 I o, o, o0
. -~ . ' . ' I3 oLt .

Figure 3-20. Set/Use Matrix After Applying Algorithm A

3-34

Upon algorithm ¢termination, the columns of row 0 (which
contain flags set during the algorithm's processing) containing
a 1 identify DD-paths that use the variable being used in the
modified DD-path. The row flags DD-paths that are affected and
reach to the modification.

3.2.6.2.2 Manual Walkthrough of Algorithm B

Since DD-path 4 is modified, the fourth column of the
set/use matrix is flagged with a 1 in row 0 of that column and
is then searched. Since row Y contains an S, the column array
(implemented in the Figure 3-17 as Column 0) is flagged with a
l. The second search is of row Y and columns 5 and 6 are
flagged in the row array (implemented in Figure 3-21 as row 0,)
because variable Y is used in DD-path 5 and 6., The third
search is of column 5 because that column was flagged during
the previous search. Since there are no variables set in that
DD-path, column 6 (also flagged in search 2) is searched next.
The S found in row 2 of column 6 causes row Z to be flagged,
which forces row Z to be searched next. Since no U's are found
in row Z, the algorithm terminates.

DD-PATH

Variable 1 2 3 7 Column O

X

PR - -
y A [}

o

1
)
|
1
1
[}
]
)
|
[}
{
[}
|
\
|
|
[}
)
|
\
!
l—‘é({l - -
I
|
|
|
|
v

Figure 3-21. Set/Use Matrix After Applying Algorithm B

Upon algorithm termination, the columns of row 0 (which
contain flags set during the algorithm's processing) containing
a 1 identify DD-paths that use the variable being set in the
modified DD-path. Row 0 flags DD-paths that are reached from
the modification.

3-35

—..<

._.q

3.2.6.3 Live Example of Strategy 6

This paragraph presents a live example of the Strategy 6.
The source code for the data statement module used in this
example is located in Appendix E. The function of this module
is to perform syntax analyses on data assignment statements
written in program design language. Figure 3-22 provides a
graphic representation of the data statement module and a
tabular listing of statements contained in each DD-path. Each
node of the graph corresponds to an executable statement in the
source code, The reachability matrix and the test case cross
reference matrix for the data statement module are illustrated

in Table 3-11 and Table 3-12, respectively.

Table 3-13 illustrates the set/use matrix which shows the
status of each variable in the data statement module. Tables
3-14 and 3-15 show the set/use matrix after applying Algorithm
A and Algorithm B, respectively.

In this example, a modification to DD-path 5 is assumed.
Therefore, we looked up column 5 of the reachability matrix
(Table 3-11) to identify all DD-paths reaching DD-path 5. A
logical AND is performed between the result of the analysis of
algorithm A to the set/use matrix (Table 3-14) and column 5 of

the reachability matrix. Figure 3-23 shows this operation.

Algorithm A 1 10 01 01 1 0 1 0 0 1 0
Col. 5 of Reachability 1 1 1 1 1 1 1 1 1 1 1 1 1
Logical AND

R

1

Figure 3-23. Logical AND Operation for Data Statement Module

Another logical AND is performed between the result of the
analysis of Algorithm B (Table 3-15) and row 5 of the

reachability matrix. This operation is shown in Figure 3-24.

STATEMENTS
OD-PATH INCLUDED IN
DD-PATH
1 1,2,3,4,5
2 1.3,4,5
3 5,24
4 5,6
5 6,7,8,9
6 9,10, 11
7 11,12,14, 21
8 11,13, 14, 21
9 9,15
10 15, 16, 17, 18, 21
1} 15, 18, 21
12 6, 20, 21
13 21,22,23,5
14 21,5

Figure 3-22,

——

Py

Graph Presentation of Data Statement Module
and Identification of DD-paths

Reachability Matrix for Data Statement Module

Table 3-11.

DD-pqth

10 11 12 13 14

9

DD-path

10
11

12
13

14

3-38

2 — v - b
S tana 1‘[4 —_— Lo R4 | i NI A . k M b ' : . . {
» R B L > * _ ,
| : oo . |
i i ! - - - ! - - _
!
!
!
1
{
!
b
n O - O O O O 0 O o O o O © QA
= - o © 0O © ©O O O O © 0o O © |
o O M — e - O - O O O O O =~ %
~
[= - O —_ e - O - O O O O O ~ A
» — |
n 0 © ~ . e d O - O O O O - O]
—
e]
« ~ - O - - O~ O 0O O O ~ O !
x -~ :
" o S ~ - 0O O O O 0O 0 O —- O ~ M
—
! 8]
. c 7 - o —_ O O O O O O O N O -)
. ¢ o =]
v M.. qnlu. Mw. © - - 0O 0 O O O 0O O m~M =~ O -
“ B]
Y ¥ O e} - o - 0 O O O © O O m~ =~ O _
b g X 2 -
b w oo nw u (= - - O O O O - O O - M
N :
! o o “ H.. - O - - 0 O O - O ~ O O =~
o] o
)
(8] m (= o O ~ - - O O O =~ O ™~ 0O = O J.
-t
; 9 ©
[) o - © - - O O QO O ~ O = O ™
o w0
O ©) © - - - - -
b s Py
- n © ~ -~ O - = OO Q ™M - O O O -
v O
& " V) © —_ - O O D ™ e OO =~ O
. N 7% - O - et O O O ™ e OO ~ O
~
.l_. I [= J— - e - o= OO O O O O -~
™
(e} -0 —_ e -~ O O O O O O ~
Q
M ~ [= Jr— - - - O O O O 0O ~ O
iy — - O — e i = O O O O =~ O
4 T — 0
p <
} +
3 m ~ ™~ T N O N O N O N2
1] it -t vl - v—
) [=]
a
: . S P PP TP S G U V. VORI S
i - P Jl B A RS -« CUNDTIrarDs ./ WRren

T v Ty
| [

- T Ty
- d—’ o
. e !

e A

P2 N e A - S e R S v v LA . v vy

Table 3-13. Set/Use Matrix For Data Statement Module

DD-Path

Variable

10 11 12 13 14

databit
dataexist

ind

W oMo wn |~

flag
tokcode U U

[=}

ends
retcode
data U

semi

a a o c

semimissg
datamissg
csdp'end'of'file U U

endmissg

3-40

[=}

ca a o o

ca o o >

.-2

—y AP —T———r— ~ -~ —-— - - 3
PR Ty —p—— "

)

Table 3-14. Set/Use Matrix For Data Statement Module 1
after Applying Algorithm A

o

DD-path Col. 1

Variable 1 4 5 6 7 8 91011121314 0]

databit S 0 -

E dataexist v 1) j
. C e

W‘ ind X X X 1 o
- flag X X U U s X u 1 o
B tokcode UUUUUUUUUU L o
-l ends U v v 0 R
R
4 Retcode S v v U U U U U 1 .
2 ;
Data U U uwu 1 S

semi UUUUU 1 -

semimissg U v 1 N .'

“ datamissg 1} 1 C
.. csdp'end'of'file U v UUuuuwu 1]
- endmissg U 1 B
{ Row 0 1100101101001 0) ,‘;
! L
‘ e
| |
v

.

3-41

Table 3-15.

variable

Set/Use Matrix for Data Statement Module
after Applying Algorithm B

Col.
12 13 14 0

databit
dataexist
ind

flag
tokcode
ends
Retcode
Data

semi

® X C n |~

semimissg
datamissg
csdp'end'of'file
endmissg

Row 0 1111

[~}
cacacc [~]
[— I~ T =] c®m

(-]
Q C a »x

[=]

1

0O 0O 00 00O = O O + - O

Do g——

NI YRPTF TV IO VI

Algorithm B 1 1111 0 1 1 0 1 1 1 1 1

Row 5 of Reachability o 0 1 1 1 1 1 1 1 1 1 1 1

Logical AND

R, o 01 1®@ 1 0 1 1 0 1 1 1 1 1

Figure 3-24. Logical AND Operation for Data Statement Module

To compute the final bi's, a logical OR 1is performed
between the results of the logical operations shown in Figures
3-23 and 3-24. This logical OR is performed to determine all
DD-paths reached to or reached from the modified code. Figure
3-25 illustrates this logical QR operation.

R1 1 0
R2 0
Logical OR
Final bi's 1 1111 0 1 1 0 1 1 1 1 1

Figure 3-25. Logical OR Operation for Data Statement Module

The result of the logical OR operation is used as the lai's
for the 0-1 integer programming model. Figure 3-26 illustrates
the formulation of the 0-1 integer programming model €for this
example. To reduce the size of the model, the data reduction
rules identified and described 1in paragraph 3.2.4.1 are

applied. The reduced 0-1 integer programming model is shown in
Figure 3-27.

The solution to the reduced 0-1 integer programming model
identifies the minimum number of test cases necessary to
implement retest strategy 6 and can be obtained by applying the
step-by-step procedure described by Taha (1). Results indicate

1. Taha, H.,A., An Introduction to Operations Research, The
McMillan Company, 1971, p. 327-341.

3-43

VRN

VNSV VeI

AL AS L A heh

T YTy q ey . W E———— P p—p— —— e p—= — ——pp——p—y
. . . P e T e » 'Y > "
. : .= K AN . , . -
,. \ |) S ' a [. . \
L
Juswa3lr3ls 'leq I03J TopoW butumrexboxd xo9bsjul 1-0 °9z-¢ 2anbtg ;
L
!
_
A
T < 0z, ,6T, , 9Ty ,STy 4 4 SV § VN By 4Ly 4 Yy JEx *
r < 8Ty +LTx + PIx 481y & 0Ty +6x + 9% +5x + Zx +Tx
T < 9Ty ,STy ,PTy LETy
T < 21y ,TT,, 0Ty L6y
L Bx +Lx +9x +5x
0 < 2Ty TT, 0Ty L6y By Ly 9y .Sy
T < 0z, ,6T, 8T, LT, <
v x +Ex +%x +Tx M
0 < 02y 46Ty BTy 4LTx 4 Uy +Ex +%x +Tx o
L 0Zy 46Ty 48Ty L1y TTy 4 TT0a 0Ty 46y 48% 4Ly +9% +5x +¥x +Ex +Tx +Tx
T < 02, 6T, 8Ty LTy 9T, STy BTy €T, 2T, TT 0T, 6y By Ly 9y Sy by £y 2y Ty
T < ZZy Ty 0Ty 6Ty 8Ty LTy ,OTy STy PTy BTy TTy 41Ty 0Ty +6x +8x 4lx 4% +5x +Px 48x +%x +Tx
T < Ty, 0Zy & 8Ty + My & iy & Ty & 0Tys 8y I+ Y+ Ty
T < 1e 6Ty + LTy s STy + €Ty 4 Mys by Lys Sx+ Ex+ Tx o1 adarens
Tey T2y 02y 6Ty BTy LTy 9Ty STy 40Ty b8Ty (800 oIl 0Ty 6 a8% 4hx 4% 4% +¥x +Ex +%x +Tx =z azIwININ

W W w— w W - =Tt

X, +X3 +X; +X, *X * Xy * Xy MRS
, *X, *X rXg *Xy 12 18 20
X + Xp» Kb X+ Xo# X+ Xob Xt Xo# X ot X4 Xy + X o Xy gt X) g% 99
X+ Xy Xy+ X,

+ X + X + X

+ X, ,+ X ¢+ X, .+ X

17 718 719 720

X5+ X6

Xt Xy
Xg+ X g% X 1* Xy
X+ X + X5+ Xg * X9+ X9 18
+ X + X

17
+ X+ X
X3+ X, * XXy 1t %12 19

+ X, ,+ X

20

Figure 3-27. Reduced 0-1 Integer Programming Model
For Data S'atement Module

3-45

'A

3

|
v

———

that a minimum of 4 test cases must be rerun to validate the
modification made to DD-path 5 and that there are 196
alternative optimum solutions (i.e., minimum combinations of
different test cases that satisfy the constraints contained in
this example). Table 3-16 identifies all the alternative
optimums that will satisfy the 0-1 integer programming model.
Given this high number of alternative optimums, some might
conclude that the probability of selecting a feasible solution
without benefit of the retest methodology is high. However,
even if we assume that the maintenance team knows that the
minimum number of test cases that must be rerun is 4, the
probability, of selecting a feasible solution without further
analysis is less than 3%. This is calculated by the ratio of
alternative optimum solutions to the number of ©possible
combinations of test case selections as shown in Figure 3-28,
Therefore, this demonstrates the value of employing the retest

methodology.

3.2.7 System Level Analysis

Since changes in data or logic conditions can affect code
in remote locations, one concern is the global communication
between system modules. This communication is accomplished via
global variables shared by modules. Modification of a module
within a software system could affect other modules if they use

the same global variables as the modified module.
3.2.7.1 Global vVariable Set/Use Matrix

To determine the relationship between modules and global
variables, a global variable set/use matrix is employed to
monitor and record usage of global variables within the
computer program, The set/use relationships between modules

and global variables are defined below:

1. A variable is defined to be "sget"™ if its value is changed
(e.g., the variable A is set in the statement A=5, A=X+Y).
This 1is represented by the 1letter "S" in the global

variable set/use matrix.

Alternative Optimum Combinations of Test Cases

for Data Statement Mndule Modification

Table 3-16.
(1,5,9,20) (2,5,9,19)
(1,5,10,19) (2,5,9,20)
(1,5,10,20) (2,5,10,19)
(1,5,11,18) (2,5,10,20)
(1,5,11,20) (2,5,11,17)
(1,5,12,17) (2,5,11,18)
(1,5,12,18) (2,5,11,19)
(1,5,12,19) (2,5,11,20)
(1,5,12,20) (2,5,12,17)
(1,6,9,19) (2,5,12,18)
(1,6,9,20) (2,5,12,19)
(1,6,10,19) (2,5,12,20)
(1,6,10,20) (2,6,9,19)
(1,6,11,17) (2,6,9,20)

(1,6,11,18)
(1,6,11,19)
(1,6,11,20)
(1,6,12,17)
(1,6,12,18)
(1,6,12,19)
(1,6,12,20)
1,7,9,18)

(1,7,9,20)

(1,7,10,17)
(L,7,10,18)
(,7,10,19)
(1,7,10,20)
(1,7,11,18)
(1,7,11,20)
(1,7,12,17)
(1,7,12,18)
(1,7,12,19)
(1,7,12,20)
(1,8,9,17)

(1,8,9,18)

(1,8,9,19)

(1,8,9,20)

(1,8,10,17)
(1,8,10,18)
(1,8,10,19)
(1,8,10,20)
(1,8,11,17)
(1,8,11,18)
(1,8,11,19)
(1,8,11,20)
(1,8,12,17)
(1,8,12,18)
(1,8,12,19)
(1,8,12,20)

(2,6,10,19)
(2,6,11,17)
(2,6,11,18)
(2,6,11,19)
(2,6,11,20)
(2,6,12,17)
(2,6,12,19)
(2,7,9,17)

(2,7,9,18)

(217191'19)

(2,7,9,20)

(2,7,10,17)
(2,7,10,18)
(2,7,10,19)
(2,7,10,20)
(2,7,11,17)
(2,7,11,18)
(2,7,11,19)
(2,7,11,20)
(2,7,12,17)
(2,7,12,18)
(2,7,12,19)
(2,7,12,20)
(2,8,9,17)

(2,8,9,18)

(2,8,9,19)

(2,8,9,20)

(2,8,10,17)
(2,8,10,19)
(2,8,11,17)
(2,8,11,18)
(2,8,11,19)
(2,8,11,20)
(2,8,12,17)
(2,8,12,19)

(3,5,9,18)

(3,5,9,20)

(3,5,10,17)
(3,5,10,18)
(3,5,10,19)
(3,5,10,20)
(3,5,11,18)
(3,5,11,20)
(3,5,12,17)
(3,5,12,18)
(3,5,12,19)
(3,5,12,20)
(3,6,9,17)

(3,6,9,18)

(3,6,9,19)

(3,6,9,20)

(3,6,10,17)
(3,6,10,18)
(3,6,10,19)
(3,6,10,20)
(3,6,11,17)
(3,6,11,18)
(3,6,11,19)
(3,6,11,20)
(3,6,12,17)
(3,6,12,18)
(3,6,12,19)
(3,6,12,20)
(3,7,9,18)

(3,7,9,20)

(3,7,10,17)
(3,7,10,18)
(2,7,10,19)
(3,7,10,20)
(3,7,11,17)
(3,7,11,18)
(3,8,9,17)

(318I9I18)

(3,8,9,19)

(3,8,9,20)

(3,8,10,17)
(3,8,10,18)
(3,8,10,19)
(3,8,10,20)
(3,8,11,17)
(3,8,11,18)
(3,3,12,17)
(3,8,12,18)
(3,7,12,18)

(4,5,9,17)
(4,5,9,18)
(4,5,9,19)
(4,5,9,20)
(4,5,10,17)
(4,5,10,18)
(4,5,10,19)
(4,5,10,20)
(4,5,11,17)
(4,5,11,18)
(4,5,11,19)
(4,5,11,20)
(4,5,12,17)
(4,5,12,18)
(4,5,12,19)
(4,5,12,20)
(4,6,9,17)
(4,6,9,18)
(4,6,9,19)
(4,6,9,20)
(4,6,10,17)
(4,6,10,19)
(4,6,11,17)
(4,6,11,18)
(4,6,11,19)
(4,6,11,20)
(4,6,12,17)
(4,6,12,19)
(4,7,9,17)
(4,7,9,18)
(4,7,9,19)
(4,7,9,20)
(4,7,10,17)
(4,7,10,18)
(4,7,10,19)
(4,7,10,20)
(4,7,11,17)
(4,7,11,18)
(4,7,12,17)
(4,7,12,18)
(4,8,9,17)
(4,8,9,18)
(4,8,9,19)
(4,8,9,20)
(4,8,10,17)
(4,8,10,19)
(4,8,11,17)
(4,8,11,18)
(4,8,12,17)

r 8
Number of Possible ' ",
Combinations of Testcases = N! = 221 = 7315 C
(N-P) !P! 18141 -
- o
N = Number of testcases in testbed d

P = Minimum Number of Testcases to be rerun
Probability of Selecting = Number of Viable Solutions = i “.1
A Feasible Solution Number of Possible Combinations . Q
196 = .0268 = 3%
7315 o
..}
c
94
.“

Figure 3-28. Probability of Feasible Testcase Selection
Without Application of the Retest Methodology For :
Data Statement Module - '1
i
-
|]
3-48

1
o

*

)
'
)
\
i
‘
’
)
y
f
»
)
)
y
)
'
¥
]
)
)
)
)
r
¥
!
}
!
]
I
v
h .. .

P

2. A variable is defined to be "used" if it is accessed and
its value is used during the process (e.g., variables B and
C are used in the statement A=B+C). This is represented by

the letter "U" in the global variable set/use matrix.

3. A variable is defined to be both "set and used" if its
value is set and used in a statement (e.g., A=A+l);
represented in the matrix by the letter "X".

3.2.7.2 Example Using the Global Variable Set/Use Matrix

Suppose a DD-path in another module is modified and this
modification affects a global variable which has been used in a
DD-path of the data statement module. The effects of this
modification are reflected in the global variable set/use
matrix. By scanning the global variable set/use matrix, the
modules which wuse the modified global variable can be
identified. For example, as shown in Table 3-17, if global
variable A is modified in module 1, then modules 2 and 4 are
also identified for further analysis. Once the modules
affected by the remote modification are identified, each
individual module must be analyzed to determine the specific
DD-paths within the module which are affected by the remote
modification. This identification of DD-paths is accomplished
via the module set/use matrix because it maps variables
(global, local, arguments, etc.) in a module to the DD-paths of
the module. Since DD-paths affected by the remote modification
are identified, the procedure for selecting test cases to be
retested for these modules is accomplished by applying
strategy 6.,

Table 3-17. Global Variable Set/Use Matrix

Global Modules
Variables 1 2 3 4 5
A S U U
B U U

C U 8]
3-49

.‘1

[P S S

U S e s e v U s S AU UL S S W S S WY S S s |

3.3 RESULT OBTAINED
3.3.1 Strategy Prioritization

In this section, each retest strategy is prioritized based

upon the following factors:

a. Reliability. The probability that the computer

program modification is fault free.

b. Application Cost. The relative cost of running

the Software Retest System (SRS) for one computer
program to identify those test cases that must be

rerun.

c. Retest Cost. The relative cost of running the

resulting test cases identified for retest by a

given strategy.

d. Degree of Automation, The portion of the

strategy that can be automated.

e. Cost of Implementation, The relative cost of

developing an SRS based upon a given strategy.

f. Ease of Implementation. The simplicity of

developing an SRS based upon a given strategy.

Each of these criterion is associated with a weight factor
which identifies the importance of the criterion in meeting Air
Force retest objectives. The weight factor for each criterion
is given in Table 3-18. A weight factor of 3 indicates high
importance in meeting Air Force retest objectives, whereas a

weight factor of .5 indicates low importance.

A prioritization of the six retest strategies based on the
criteria identified above 1is shown in Table 3-18. This
prioritization is made using a scale from 1 to 5 where 5 is the
most favorable and 1 is the most unfavorable. For example, a 5
would indicate high reliability, 1low application cost, 1low

retest cost, high degree of automation, low implementation cost

P - . e

P A bl an

"

T

—

p——————r

—y v
CEM s SAiE S S S St it

and high ease of implementation. The last column in the table

provides the total weighted cost-effectiveness for each
strategy.

Since interpretation of Table 3-18 is difficult because of

the polarity of the criteria, each strategy is described below.

Strategy 1l: Rerun all Test Cases

The reliability of this strategy is 1low because it 1is
totally dependent on the adequacy of the testbed. Though a
large number of test cases may be rerun, tL.ere is no assurance
that those test cases are adequate. The application cost is
low because the selection procedure 1is trivial. The retest
cost is high because all test cases need to be rerun. This
strategy can be automated easily due to the simplicity of the
procedure. Therefore, the implementation is simple and the

cost of implementation is low.

Strategy 2: Retest All Testable Paths Through the Changed Code

Although this strategy provides very high reliability, its
implementation is costly and difficult because the number of
paths through a program 1is generally very laxge, Since this
strategy requires the development of a test case for each path,
and the number of paths through the changed code can
potentially be very large; the number of test cases selected
for retest may be large causing a high retest cost. Because of
the problems associated with path analysis, the degree of

automation is low and the application cost is high,

Strategy 3: Rerun All Test Cases That Execute the Changed Code

The reliability of this strategy is 1low because although
all tests that execute the modified code are rerun, there is no
assurance that those tests are adequate. Since the number of
test cases selected for retest by this strategy is lower than
for strategies 1 and 2, the retest cost was rated as moderate.

The implementation of this strategy is relatively easy and cost

y LS YU S G WP S . -

. -~"-4

PO Y R

24

A3taotrad Abejeials 3s9313d °81-t 3SIqel

!
1
;
1
1
1

(uojaejuawd tdwr jo asea ybry ‘3500 uojjiejuawa(du] MOl ‘uciiewolne
Jo @21bop ybly ‘3500 388331 MOT ‘350D uotjedyidde moy ‘A3117qe1182 ybyy ‘*a°§) uO}IJPUCD 21QeI0CAR} ISOW = §

(uojaejuowa [dwy jo asea MO puf 360D uojIejuawd(dwy ybyy ‘uojiewozne jo
@21bap mo1 ‘3500 382333 ybpy ‘3502 uoy3edj1dde ybry ‘A311jqe)le1 MO ‘*@°]) UOJITPUOD 21QEIOARIUN IEOW = 1

, 21eds buyjey

1
1
Sttt £ [4 1 L 4 [4 S Y !
o~ '

un
SZ°0¢t € st v € ST S 19 | '
™ .
0°82 £ € 1 4 S £ € [h
1
1 ¢ v v v € y 1 € !
S°€Z 1 1 € z 1 S 4 !
1
1
0°ze S S S 1 S 1 1 _
i
: - TToTTTTT e - .
§52UaATID8]3d T=3M T=3IM 1=3IM (S T=3IM) (S°0=3IM) (E=IM))
A 380D EYTF] 3800 uojlewolny 380D 380D SES0UPA[30#93)3 KBoivias .
pojybrem uot3yejuawdrdwl 3o aaibag 38339y uojied}1ddy /Rattiqey 19y Isajon .

r
3

p——

T

effective since the only tools required for implementation
would be a test case cross reference analysis program to
identify the DD-paths covered by each test case), a statement
to DD-path association table (to identify statements contained
in each DD-path), and a code comparator (to determine the
location of the modifications). Similarly, the application
cost is relatively low because the processing required by this
strategy is relatively 1low when compared to the other
strategies. With the exception of the test case cross
reference analysis program, all tools required for
implementation have already been developed for other
applications; therefore, the degree of automation provided by
this strategy is félatively high.

Strategy 4: Retest All DD-paths Reached from the Changed Code

The reliability of this strategy is higher than the
previous strategy because it provides assurance that all
DD-paths reached by the modified code are covered. The retest
cost is lower for this strategy than the previous strategies
because the number of test cases identified for retest is
lower. The application cost 1is slightly higher than for
strategy 3 because more processing is required to determine the
reachability of all DD-paths in a program. When compared to
strategy 3, the implementation cost as well as the difficulty
of implementation is slightly higher because a tool to
determine the reachability of DD-paths within a program must be
built. Since automated tools to determine the reachability of
DD-paths within a program have been developed, the deqree of
automation provided by this strategy is the same as that

provided by strategy 3.

Strategy 5: Retest All DD-paths Reaching To and Reached From

the Changed Code

This strategy provides higher reliability than the previous
strategy because assurance is given that all DD-paths reaching
to and reached from the modified code are covered. Since all

e

L B

DD-paths reaching from the modified code must be identified and
logically ORed with those DD-paths reaching to the modified
code, the application cost as well as the implementation cost
is slightly higher for this strategy when compared to strategy
4., The retest cost is higher than for strategy 4 because the
number of test cases selected for retest will be larger. The
algorithm required for identification of DD-paths reaching to
and reached from the modified <code is straightforward,
therefore5 the ease of implementation is rated the same as for

strateqgy 4.

Strategy 6: Retest All DD-paths Reaching the Changed Code and
Setting Changed Data, and Rcached From the Changed Code and

Using Changed Data

The purpose of analyzing data dependencies within a program
(strategy 6) is to reduce the amount of retesting required when
only a program's control structure (strategy 5) is used as a
basis for selecting test cases to retest. Therefore, strategy
6 will provide a lower retest cost than strategy 5 while
maintaining the same reliability. Both the implementation cost
as well as the application cost will be greater for strategy 6
than for strategy 5 because set/use analysis must be
performed. Since these algorithms have already been developed
and can be automated, this strategy provides the same degree of

automation and ease of implementation as strategy 5.

Based on the results of the prioritization, as identified
in Table 3-18, it 1is concluded that strategy 6 should be
implemented because it is the most cost-effective of the

strategies.

3.3.2 Methodology Characteristics

The software retest methodology has six interesting

characteristics:

1. Inadequacy of Test Bed (i.e., Infeasible Solution). It is
quite possible that test cases identified in a test case

cross reference matrix do not completely test all

y

b i aa

O S . v P . P S S
L

DD-paths in a program. 1f part of a computer program is
not properly tested and that part is modified later in the
maintenance phase, the 0-1 integer programming will
indicate an infeasible solution and will identify the
specific DD-paths that are not tested.

2. Alternative Optimum.

It may be the case that minimum combinations of different
test cases «could satisfy all constraints. Users of
mathematical programming models call this an "alternative
optimum"”. The following example is an illustration of an
alternative optimum. Assume the following constraints had
been derived from a problem:

MINIMIZE 2Z =)(1 + + X
SUBJECT TO: Xy + X + X > 1
X1 + X + X > 1
x1 > 1
X, + X, > 1
SOLUTION: Retest Set 1: (Xl, Xz)
Retest Set 2: (Xl, X3)

The solution to this 0-1 integer programming model
indicates that two minimum combinations of test cases (Retest
Set 1 or Retest Set 2) exist that satisfy all constraints in
the +«odel. Therefore, selection of either retest set 1 or

retesl set 2 will provide complete coverage.
3. Test Cost.

Up to this point we have assumed that the cost of rerunning
each test case 1is identical (e.g., cj=1). If we apply

the actual cost associated with rerunning each test case

e T & T T w5 "

@ L

R———

and apply the model, the model not only will produce
different sets of test cases, it will signal the most cost
effective set of test cases as well.

Language Independency.

The software retest methodology is language independent,
This characteristic increases usability of the method
during the maintenance phase. The proposed automated
version of the software retest methodology carries this
characteristic as well. The only language dependent need
is for an automated analysis tool to provide information
necessary for the preparation of the retest matrices.

Consistent Behavior with Different Modifications.

The software retest methodology behaves consistently
regardless of the nature of modifications made to the
software system. One or a combination of the following

modifications may occur:

Addition: As long as addition of code does not create
a new DD-path, a new test case 1is not
needed. Otherwise the test case cross
reference matrix should be updated (as
described in the "Software Retest System
Functional Description") and the retest

,//’héthodology should be used to determine the
impact of the new additions to the code on
the rest of the software system.

Deletion: If deleting lines of code results in the
deletion of a DD-path, the test case cross
reference matrix must be updated. In the
maintenance phase, it 1is necessary to use
the retest methodology after a delete

operation to determine the impact of

Andiinit. Ream (Al i SaTan e EE 3 N v R A A ~ - - B v v Fr

L A

G PP ST

[g e g e Y T e T W W, R W T e
N L el eeo mas aums smte aonm arh oRiRA SN SRS SGN S AU e v v - .
o o (R ey . 3 N . RN R - - - .

o nw.vz
. v

-,'v—vl‘

PT—

deletion to the rest of the software
especially if any global variable is
involved.

Substitution: Since substitution involves both an addition
and a deletion, the retest methodology must
be used to determine the impact of the
substitution on the program's control
structure as well as its logic structure.
Therefore, the test case cross reference
matrix and the set/use matrices may need to
be updated.

Alternative structural analysis options.

There are different methods that can be used to analyze the
structure of a computer program. A computer program can be
viewed as a set of executable statements, DD-paths,
modules, or even system components. The retest methodology
is flexible enough to be able to function with any option
chosen by the maintainer. 1In this research, the DD-path
option was chosen because of its compatibility with

existing Air Force software.
Multi DD-path modification.

If modifications to more than one DD-path are made, a
logical OR should be performed among the rows of the
reachability matrix corresponding to the modified DD-path.
This procedure should 1likewise be ©performed on the
appropriate columns of the reachability matrix. The
results of these operations can be used to computc the
right hand side (bi's) of the 0-1 integer programming
model.

3-57

BN *‘»-4

T g T W T T T e W v w2 o s
R T — Lt oCi A A e .

SECTION 4 - CONCLUSION

The validation of software modifications is important
during both the development and the operations and maintenance
phases of the software life cycle, yvet a review of the software
literature shows that little research has been reported in this
area. This report is one of the pioneer efforts in this area,
and the results reported here show promising potential for both

additional theoretical research and practical applications.

The objective of this research was to investigate the
feasibility of quantitative retest methods by defining
alternative retest strategies, measuring their performance
characteristics, and identifying implementation techniques.

The defined retest strategies are:
1, Rerun all previously used test cases.
2. Retest all testable paths through the changed code.
3. Rerun all test cases which execute the changed code,
4. Retest all DD-paths reachable from the changed code.

5. Retest all DD-paths reaching to or reachable from the
changed code.

6. Retest all DD-paths reaching to the changed code and

setting changed data, and reached from the changed
code and using changed data.

Though strategy 2 was shown to be impractical, techniques were
developed to implement each remaining strategy. Implementation
techniques for strategies 1 and 3 were 1limited to a test
execution history, while implementation techniques for
strategies 4, 5, and 6 were developed using more sophisticated
static analysis techniques. For these strategies, the logical
structure of the source code was transformed into a directed
graph and the graph analyzed in terms of each strategy. The
optimization technique of 0-1 integer programming was then
applied to minimize the amount of retesting within the
constraints inherent in each strategy.

4-1

Ao de

P

.'.‘

P S S

aaa a4

Vyt
@

GaCRath e e 1 an uiake g

vvvvvvv

This research has extended the state-of-the-art

in software

technology by:

1. Defining alternative retest strategies.

2. Building a framework for making retest decisions using
a directed graph representation of the target software.

3. Applying 0-1 integer programming to the retest problem
to optimize the retest solution.

4, Defining algorithms to identify data dependencies
within a software module.

5. Identifying the steps necessary to automate the
implementation of these techniques.

Though these advances in software technology are

significant,

they provide additional research opportunities in

several interesting areas:

1.

Additional

which provide more

retest strategies could be investigated

reliable testing and/or reduced

implementation cest.

Test data could be collected from sample programs and
several of the six alternative retest strategies run

to validate the performance and practicality of the

methodology.

Software quality ~uld be investigated wusing this
model. For example, one measure of maintainability
may be the number of tests cases necessary to
revalidate a software modification. One could measure
the performance of structured versus unstructured

programs to determine the effect of program structure

on maintainability.

The use of 0-1
by identifying further

integer programming could be enhanced
data

implementation

reduction techniques or

more efficient algorithms given the

structural properties of the retest model.

L

Ty

AAA_‘_‘A.‘.‘I. PED poos

RN TN

"y

-l

This research forms a s0lid foundation both for future
research and for easing some traditional burdens of maintaining
complex software systems. Implementation of retest strategy
models has been demonstrated to be feasible, and tools for
structuring automated retest systems have been identified.
Therefore, this work can be a springboard for achieving
immediate practical benefits, because the disorder of retesting
software is not an inherent property, but rather stems from the
typical failure of software specialists to apply the same
degree of systemization to the wvalidation of software
modifications as they do to initial system validation.

D-A123 636 SOFTWARE RETEST TECHNIQUES(U) COMPUTER SCIENCES CORF 272 .
FALLS CHURCH YA K FISCHER ET AL. OCT 82 RADC-TR-82-275 ‘
F28602-81-C-8889

UNCLRSSIFIED F/G 972 NL

END
FumeD
o7ic

w - = _— —y o—y T———" - WY L e A S
5 b vttt . B DA AT R A . i A A N A S N Nl SR S LA R T B RO R
~ FTT o e ptiaas ittt v ome = - - e e e . e . ﬂ,___A‘ .

v

B)
. i k
,‘ ‘. p
* . LT
. |' R
1’.
.

o

FEEFEEE R

:
I

“" N
‘ s)

HLzs flis mie

Er
F
43

——
N
o
T'ﬂ‘; R amanan T S0 Pt

‘

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

B Sa 7_7-" -y e Ciem ey
D, L r]

: 1
e
3
-]
> L A
r“ el :"'.1
L B
R
S
r LT
[]
P
I o
»‘—
. o

P P PO S ey pre NV ST S A WAOY. Sy o .-

L SECTION 5 - RECOMMENDATIONS

DoD software acquisitions are characterized by a number of
attributes, which even after twenty years of trying to solve,
still plague acquisition managers. One of these attributes is
that the maintenance of software systems usually is more costly
than their original development. This attribute is valid for
both ADP and embedded computer systems. Some of the problems

frequently encountered by managers of software maintenance
activities are:

1. Inadequate planning.

2. Shortage of gualified personnel.

3. Lack of available tools and techniques.
4, Poor documentation.
5. Software not developed with maintainability in mind.

It is the purpose of this section to describe a proposed
solution to the third problem identified above.

Though the Air Force has recognized the need for software
maintenance environments (e.g., the Electronic Warfare Avionics
Integration Support Facility, the F-111 Integration Support
Facility, and the NORAD Off-site Test Facility), the technical '

personnel working within these support facilities have no C

guidance in the form of quantitative techniques or tools on how '_ ":

to retest their modified software.
Under this contract, CSC, has performed the following tasks:

1. CSC investigated existing retesting techniques and) @
methodologies by performing a literature review and B 1
conducting on-site surveys. We found no quantitative
methods that had been actually employed, and only one

guantitative method (1) for which a preliminary » v

A ac oo

technique was specified.

P —— ey P o= Tt Ty -

Based on this preliminary technique, CSC developed and
described advanced techniques which could be automated
to enhance existing Air Force software retesting

methods, We developed six candidate retest

strategies, several of which were based on a directed
graph representation of the target computer program
and used =zero-one integer programming to minimize the

amount of retesting such that all affected program

elements were retested at least once. A cost-benefit
analysis showed that one strategy was far superior to

the others. This strategy was to rerun the minimum

number of test cases such that all program components
(e.g., DD-paths) reaching to and setting the changed
variables and reached from and wusing the changed

variables were tested.

3. Based on this strateqgy, a Functional Description
document was prepared which identified and described
each functional element of an automated software

retest system to implement the aforementioned strategy.

During this contract, CSC has developed an excellent
methodology for providing a cost effective reduction in the
maintenance cost of both ADP and embedded computer software.
The methodology is too complex to perform manually, and the

data management too cumbersome, tedious, and error-prone.

Therefore, in order to effectively implement the methodology,
an automated Software Retesting System (SRS) should be
developed. Such a system has already been functionally)

]

1. Fischer, K. F., "A Test Case Selection Method for the]
Validation of Software Maintenance Modifications,"

Proceedings, COMPSAC '77, IEEE, November 1977, pp. 421-426.

[

- -

[

.

specified in the Software Retesting System Functional
Description document, and promises to be an extremely low risk
effort.

To effectively satisfy the Air Force's software retesting
objectives in its many varied environments, our SRS has been
designed to be source language independent and highly portable
from one host to another. As described in our Functional

Description, the SKS consists of four functional components:

1. Retest Front-End - This component will provide the
interface to the host operating envircnment and is the
only SRS component that will require modification when
moving from one host to another,

2. Command Organizer - This component provides the user
interface and validates and invokes all user

commands.

3. Retest Analy:zer - This component performs the
necessary analysis to determine the specific teost
cases to rerun which efficiently and reliably validate

a given modification.

4. Data Base - This component indexes, stores, retrieves,
and updates the necessary tables required by the
Retest Analyzer.

Once the SRS is implemented and validated, CSC feels that
two important steps are necessary for its acceptance by users:
1) its thorough demonstration in a real project environment,
and 2) 1its incorporation into an integrated prograrming
environment such as the J73 programming environment developed
for RADC by CSC (under contract F30602-79-C-0051) or the Ada
Integrated Environment. These last two steps are critical for
system acceptance. The first step will lend credibility to the
entire methodology, without which, System Program Offices will
not require its use. The second step is important for

technical users who will more readily accept the system if it

is embedded within their current development environment,
rather than having to go to another operational environment.

We find the estimated cost for the SRS to be surprisingly
reasonable. Based upon our estimate of 46,800 lines of code,
the estimated level of effort for the necessary implementation

steps is as follows:

Activity Estimated Level of Effort
Study and analysis 10 man months
Specification 10 man months
Implementation 30 man months
Test 12 man months
System Installation 8 man months
Demonstration 30 man months

Total 100 man months

Based on the comments we received during our survey of Air
Force operational and support sites, the demand for a retest
tool is extremely high, and the Dbenefits are extremely

worthwhile:

1. A reliable assessment of retesting effort for each

modification.

2. A tool to transfer machine readable knowledge from the

development environment to the maintenance environment.
3. A tool that will identify an insufficient test bed.
4, A tool to aid in the creation of new test cases.

3. A tool to identify sufficient retesting for a given

software modification.
4. A methodology against which a standard can be applied.

Based on these benefits, we can only conclude that the
implementation of the Software Retest System has low technical
risk, is extremely cost effective, and highly beneficial to the

Air Force.

P Y W S G T e P a

.

3
4

.
i..;;_AAA“ Arn _As 1_‘4444 s

, o "
- B a2 aaciNe harc

) P ,

4
4
_al

-— S N R

i
L ...

L

APPENDIX A
Data Dependency Analysis Algorithm A

This algorithm is used to evaluate the set/use matrix to

determine DD-paths which reach to the modified DD-paths and

affect the modification.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Sten 8.

Set up a row array with the number of elements equal
to the number of DD-paths in the target program. Set
the value of each element to zero.

Set up a column array with the number of elements
equal to the number of variables in the target

program. Set the value of each element to zero.

Set the wvalue of the element in the row array
corresponding to the modified DD-path to 1.

Scan the column of the set/use matrix corresponding to
the modified DD-path, and determine the row (variable)
that is being used (denoted by a "U" or an “X" in that
column) . In the column array, set the value of the

element corresponding to the used variable to 1.

If an element in the column array is set to 1, scan
its corresponding row in the set/use matrix and set
the corresponding element in the row array to 1 if
that variable is set in any DD-path (denoted by a "S"
or an "X" in that row). If no elements of the column
array are set to 1, go to step 8.

For each element of the row array set to 1 in step 5,
scan the corresponding columns in the set-use matrix
to identify what variables are used by those DD-paths
{denoted by a "U" or an "X" in those columns) and set
the corresponding element of the column array to 1.
If no elements of the row array are set to 1, go to
step 8.

Go to step S.

Stop.

‘.-

APPENDIX B
Data Dependency Analysis Algorithm B

This algorithm is used to evaluate the set/use matrix to

determine DD-paths which reach from the modified DD-paths and

affect the modification.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Set up a row array with the number of elements equal
to the number of DD-paths in the target program. Set

the value of each element to zero.

Set up a column array with the number of elements
equal to the number of wvariables in the target

program. Set the value of each element to zero.

Set the value of the element 1in the row array
corresponding to the modified DD-path to 1.

Scan the column of the set/use matrix corresponding to
the modified DD-path, and determine the row (variable)
that is being set (denoted by an "S" or an "X" in that
column) . In the column array, set the value of the
element corresponding to the set variable to 1.

If an element in the column array is set to 1, scan
its corresponding row in the set/use matrix and set
the corresponding element in the row array to 1 if
that variable is used in any DD-path (denoted by a "U"
or an "X" in that row). If no elements of the column

array are set to 1, go to step 8.

For each element of the row array set to 1 in step 5,
scan the corresponding columns in the set-use matrix
to identify what variables are set by those DD-paths
(denoted by an "S" or an "X" in those columns) and set
the corresponding element of the column array to 1.
If no elements of the row array are set to 1, go to
step 8.

Go to step 5.

Stop.

Zoaa

P T

7" v T Hf-’;"’"r"l 7T 1T v

TV YT
-

W M

10.

11.

12.

13.

APPENDIX C

BIBLOGRAPHY

Alford, M.W., "Software Requirements Engineering
Methodology (SREM) , " Proceedings, Second U.S. Army
Software Symposium, Williamsburg, Virginia, October 25-27,
1978, pp. 221-234,

Allen, F.E. and J. Cocke, "A Program Data Flow Analysis
Procedure, " Communications of ACM, Vol. 19, No. 3 (1976},
pp. 137-147.

Belady, L.A. and M.M, Lehman, "A Model of Large Program
Development," IBM Systems Journal, No. 3, 1976, pp. 225-252,

Boehm, B.W., "Software and 1Its Impact: A Quantitative
Assessment," Datamation, Vol. 19, No. 5 (1973), pp. 48-59.

Boehm, B.W., "“Software Engineering," IEEE Trans. on
Computers, Vol. C-25, No. 12, December 1976, pp. 1226-1242.

Brown, J.R. and K.F. Fischer, "A Graph Theoretic Approach
to the Verification of Program Structures," Proceedings,
Third International Conference on Software Engineering,
IEEE Catalog No. 78CH1317-7C, May 1978.

Brown, J.R. and M. Lipow, "Testing For Software
Reliability," Proceedings, International Conference on
Reliable Software, IEEE Catalog No. 75CH1317-7CSR, April

1975, pp. 518-527.

Bucher, D.E.W., "Maintenance of the Computer Sciences
Teleprocessing System," Proceedings, International
Conference on Reliable Software, IEEE Catalog No. 75CH0940,
April 1975, pp. 260-266.

Canning, R.G., "That Maintenance Iceberg," EDP Analyzer,
vol. 10, No. 10 (1972), pp. 1-14.

Carey, L.J., Qualifier User's Manual, Computer Software
Aralysts, Inc., 1974.

Christofides, N., Graph Theory: An Algorithmic Approach,
Academic Press, 1975.

Clarke, L., "aA System To Generate Test Data and
Symbolically Execute Programs,”" Dept. of Computer Science,
University of Colorado, Report No. CU-CS-060-75, February
1975.

naly, E. B., "Management of Software Development," IEEE
Transactions on Software Engineering, Vol. SE-3, No. 2
(1977), pp. 229-242,

Py

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

Deb, R. K., "On Generation of Test Data and Minimal Cover
of Directed Graphs,” Proceedings of Information Processing
77, IFIP Congress, Toronto, 1977, pp. 13-16.

Donahoo, J. D. and D. Swearingen, "A Review of Software
Maintenance Technology", RADC-TR-80-13, Rome Air
Development Center, Griffiss AFB, NY, February 1980.

Fischer, K. F., The FORTRAN Code Auditor, Quality Assurance
Software Tools User's Guide, TRW Software Product
Assurance, STP-6039, January 1977.

Fischer, K. F., "A Test Case Selection Method for the
validation of Software Maintenance Modifications,"
Proceedings, COMPSAC '77, IEEE, November 1977, pp. 421-426.

Fischer, K. F., "The IOVAR Program," Quality Assurance
Software Tools User's Guide, TRW Software Product
Assurance, STP-6039, January 1977.

Fischer, K.F., "The Product Assurance Confidence Evaluator
(PACE), Quality Assurance Software Tools User's Guide, TRW
Software Product Assurance, STP-6039, January 1977.

Fischer, K.R., "Test Predictor-State of the Program
Report," TRW Report 75-6910.05-1079, November 18, 1975.

Fosdick, L.D. and L.J. Osterweil, "DAVE - A Fortran Program
Analysis System," Proceedings, Computer Science and

Statistics: Eighth Annual Symposium on the 1Interface,
Health Sciences Computing Facility, UCLA, February 1975,
pp. 329-335.

Gannon, C., "Error Detection Using Path Testing and
Statistic Analysis,"” IEEE t;ansactions on Computer,
August, 1979,

Gannon, c. and R. F. Else, "JOVIAL J73 Automated
Verification System User's Manual," General Research
Corporation, July 1981.

Garfinkel, R. and G.L. Nemhauser, Integer Programming, John
Wiley and Sons, Inc., 1972.

Gloss-Soler, S.A., The DACS Glossary - A Bibliography of

Software Engineering Terms, Rome Air Development Center,
Data and Analysis Center for Software, GLOS-1, October 1979.

Gibson, C.G. and L.R. Railing, "Verification Guidelines,"
TRW Software Series #71-04, Aucgust 1971.

Harary, F., Graph Theory, Addison - Wesley, 1971.

OB

.-

PPy

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Hecht, M.S. and J.D. Ullman, "Analysis of a Simple
Algorithm for Global Data Flow Problems," Proceedings, ACM
Symposium on Principles of Programming Languages, 1973, pp.
207-217.

Hecht, M.S. and J.D. Ullman, "Graph Flow Reducibility,”
SIAM Journal of Computing, Vol. 1, No. 2 (1972),
pp. 188-202,

Henley, E.J., and R.A. Williams, Graph Theory in Modern
Engineering, Academic Press, 1973.

Hoffman, R.H., "NASA/Johnson Space Center Approach ¢to
Automated Test Data Generation,”" Proceedings, Computer
Science and Statistics: Eighth Annual Symposium on the
Interface, Health Scilences Computing Facility, ucLaA,
February 1975, pp. 336-341.

Hof fman, R. H., "The Impossible Pairs Detection Capability
(IMPAIR) of the Automated Test Data Generator (ATDG),"
NASA, Contract No. NAS9-14853, Houston, Texas, January 14,
1977.

Howden, W.E., "Methodology for the Generation of Program
Test Data," IEEE Transaction on Computers, Vol. C-24, No. 5
(1975) , pp. 554-559,

Howden, W.E., "Theoretical and Empirical Studies of Program
Testing", University of Victoria, Victoria, Canada.

Huang, J.C., "An Approach to Program Testing," Computing
Surveys, Vol. 7, No. 3 (1975), pp. 113-128,

King, J.C., "a New Approach to Program Testing,"
proceedings International Conference on Reliable Software,
IEEE Catalog No. 75CH0940-7CSR, April 1975, pp. 228-233.

Krause, K.W., R.W. Smith and M.A. Goodwin, ™"Optimal
Software Test Planning Through Automated Network Analysis,”
Record, 1973, IEEE Symposium on Computer Software
Reliability, New York, 1973, pp. 18-22.

Lientz, B.P. and E,B. Swanson, "Software Maintenance a
User/Management Tog-of-War", Data Management, Vol. 17, No.
4 (1979), pp. 26-30.

Lientz, B.P., E.B. Swanson and G.E. Tompkins,
"Characteristics of Application Software Maintenance,"

Comm. ACM, Vol. 21, No. 7, (1978).

Lindhorst, M.W., "Scheduled Maintenance of Applications
Software," Datamation, Vol. 19, No. 5, (1973), pp. 64-67,

45,

46.

47.

48,

49,

50.

51.

52.

53.

o .. A S A a2l e e 3

M., "Applications of Algebraic Methods to Computer
”ﬁﬁ Analysis,”" TRW Software Series No. 73-10, May 1973.
. * W
&

‘#s M., "Some Directed Graph Methods for Analyzing

”géuter Program," Proceedings, Computer Sciences and
/atistics: Eighth Annual Symposium on the Interface,
Zalth Sciences Computing Facility, UCLA, February 1975.

, Liu, C.C., "A Look at Software Maintenance,"” Datamation,

Vol. 22, No, 11, (1976), pp. 51-55.

Lloyd, D. K. and M. Lipow, Reliability: Management,
Methods, and Mathematics, published by the authors, Redondo

Beach, California, 1977, pp 525-527.

Maitler, R.L., "SURVAYOR - the Set-Use of Routine Variables
Analysis Program," Applied Software Laboratory, TRW DSSG,

1975.

Marimont, R. B., "Applications of Graphs and Boolean
Matrices to Computer Programming," SIAM Review, Vol. 2, No.
4 (1960), pp. 259-268.

Martin, D. E. and G. Estrin, "Path Length Computations on
Graph Models of Coimputations," IEEE Transactions on
Computers, Vol, C-18, No. 6 (1969), pp. 530-536.

McMillan Jr., C., Mathematical Progr amming: An
Introduction to the Design and Application of Optimal
Decision Machines, John Wiley and Sons, Inc., 1970.

Miller, R.E., "Program Testing Technology in 1980's,"
Proceedings of the Conference on Computing in the 1980's,
IEEE, 1978.

Miller, E.F., RXVP: An Automated Verification System for
FORTRAN, General Research Corp, Santa Barbara, CA, January
1975.

Mooney, J.W., "Organized Program Maintenance," Datamation,
Vvol. 21, No. 2 (1975), pp. 63-64.

Nelson, E.C., "A Statistical Basis for Software Reliability
Assessment," TRW Software Series No 73-03, March 1973,

Ntafos, S.C. and S.L. Hakimi, "On Path Problems in
Diagraphs and Application to Program Testing; IEEE
Transaction on Software Engineering, Vol. SE5, No. 5,
September 1979,

g

54.

55‘

56.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Popkin, G.S. and M.L. Shooman, "On the Number of Tests
Necessary to Verify a Computer Program:, Rome Air
Development Center, RADC-TR-78-229, Griffiss AFB, NY,
November 1978.

Paige, M.R. "On Partitioning Program Graph", IEEE
Transaction on Software Engineering, Vol SE-3, No. 6,
November 1977.

Prosser, R,T., "Applications of Boolean Matrices to the
Analysis of Flow Diagrams," Proceedings of the Eastern

———

Joint Computer Conference, 1959, pp. 133-138,

Roy, B., "An Algorithm for a General Constrained Set
Covering Problem," in Graph Theory and Computing, ed. by
R.C. Reed, Academic Press, 1972.

Shooman, M.L. and H. Ruston, "Summary of Technical Proc :ss
Investigation of Software Models," Rome Air Develo} nt
Center, RADC-TR-79-188, Griffiss AFB, NY.

Shneiderman, B., Software Psychology Human Factor
Computer and Information Systems, Winthrop Publisher 1 ’
1980, p. 44.

Sloan, N.J.A., "On Finding the Paths Through a Network,"
The Bell System Technical Journal, Vol. 51, No. 2 (1972),
pp. 371-390.

Stucki, L.G., "Tools Lessons Learned-New Strategies,"
McDonnell Douglas Astronautics Company, Huntington Beach,
California.

Swanson, E.B., "The Dimensions of Maintenance,"
Proceedings, Second International Conference on Software
Engineering, IEEE Catalog 76CH1125-4C, October 1976, pp.
492-497,

Taha, H.A., An Introduction to Operations Research, The
MacMillan Company, 1971.

Tai, K., "Program Testing Complexity and Test Criteria,"
IEEE Transaction on Software Engineering, Vol. SE-6, No., 6,
November 1980.

Teichroew, D., "ISDOS and Recent Extensions," Proceedings
of the Symposium on Computer Software Engineering,
Polytechnic Press (1976), p. 79.

Voges, U., Gmeiner, and Amscher, "SADAT, an Automated
Testing Tool", IEEE Transaction on Software Engineering,
Vol. SE-6, No. 3, May 1980, pp. 286-290.

PR B el

i

Chn b N D e dum i) aum e 4

66,

67.

68.

69.

2) - Eiiadt i S anac] Bl N - PO T T Y e W ©

Warshall, S., "A Theorem on Boolean Matrices," Journal of

ACM, Vol, 9, No. 1 (1962), pp. 11-12.

Yau, S.S., and J.S. Collofello, Performance Considerations

in the Maintenance Phase of Large-Scale Software System,
Rome Air Development Center, RADC-TR-79-129, Griffiss Air
Force Base, N.Y., June 1979,

Yau, S.S. and J. Collofello, "Some Stability Measures for
Software Maintenance," IEEE Transaction Software

Engineering, Vol. SE-6, No. 6, November 1980.

Report to the Congress of the United States, "Federal
Agencies' Maintenance of Computer Program: Expensive and
Undermanaged", February of 1981,

1
1
<
q

APPENDIX D

This appendix contains a technical paper describing the
retest methodology developed under this contract,. The
technical paper entitled, "A Retest Methodology for Modified
Software," was presented at the National Telecommunications
Conference '81 and was published in the conference
proceedings. The National Telecommunications Conference '81
was sponsored by the Institute of Electrical and Electronic
Engineers and Bell Laboratories,

‘
Mvatentectenial

AcAlich o

=

Ol e oat e

T

|

Ty

n rrdv—v-w-w RARAR A L

A RETEST METHODOLOGY FOR MODIFIED SOFTWARFE

ABSTRA T

This paper describes a methodology for software retesting
that leads to the development of tools which will decrease the
high cost associated with current maintenance practices, as
well as increase the reliability of modifications made to a
software systems, Frequent modification of user requirements
and/or the continuous repair of observed program errors have
made the maintenance phase of the software life cycle one of
the most important and often the most expensive. A major
concern during this phase 1is the potential proliferation of
errors throughout the system caused by the modification of
programs. The lack of available tools and techniques forces
most software maintainers to use ad hoc retesting methods which
provide little, if any, quantitative information as to their

test sufficiency.

I. INTRODUCTION¥*

The development of computer software usually goes through
an evolutionary life cycle beginning with the establishment of
an operational requirement and ending with the deployment and
operation of the software system. In the past, short cuts have
been taken on many software projects during the early 1life
cycle phases in order to get a product into the field quickly.
This situation normally 1leads to decreased reliability and
extremely expensive subsequent modifications during the
maintenance phase. Unfortunately, most software systems take
this path causing frequent modifications and updates. One

problem area in the maintenance phase, called retest, arises

* This work was supported by the U.S. Air Force Rome Air
Development Center under contract F30602-81-C-0089,

Bk ad

when attempting to revalidate the system due to code
modifications or code additions. Retest is the act of
rerunning certain tests to verify a change to an existing
system. It differs from the test activity, which is concerned
with planning and executing tests that initially validate the

entire software system. Retest answers the following questions:

o For any given modification, what other section(s) of the
software is impacted by that modification?

o] For the 1identified section(s) of code that could be
affected, what test cases should be rerun to assure the
proper execution of existing capability?

The decision of what to retest and how thoroughly to do so
is a major problem for software managers and researchers and
has not yet been adequately resolved. In research, 1little
work has been done in the area of retest methodologies [1].
The purist will demand that all previously used test cases be
rerun. The pragmatist will 1leave the decision to the
discretion of the test director as he believes the test
director knows the software best, and by using engineering
judgment and his knowledge of the code he often manually
selects the subset of previously completed test cases to be
rerun. Other retest methods may be: to rerun a number of
randomly selected test cases; to rerun all test cases that
execute the modified code; or to execute a new set of test
cases that exercise all the program's major capabilities to
give the user "confidence" (though not statistically) that the
software operates properly ([2].

Each method has some beneficial attributes, yet none gives
a completely reliable solution. Rerunning all previously used
test cases is almost always impractical as validation tests for
large computer programs may number in the hundreds. The test
director may be able to select for retest those tests that

address the functional modifications, but he may not be aware

_—
L J

A e e o

cadh

ok nd bnd

T.',,_,_,.‘f~.-v T———— r— — - - T < < "*".'-*-1

& that modified data conditions <could cause execution of i L

i non-functional paths resulting in inaccurate computation that ‘

may go undetected for years. What is needed is a quantitative

method for assuring that new program modifications do not

introduce new errors into the code. To prove this would i @’

require an analysis of every program path, but this has been

formally shown to be a difficult task in all but the most

trivial cases. Though the need for retesting can arise during

both the testing phases of development and the operations and -’<

maintenance phase [2], this paper will discuss retest only in

the cont=-* of the operations and maintenance phase since more

life cycle costs are spent in this phase rather than in the

testing phase. .
Section II of this paper presents an overview of the T

methodology. An example of applying the methodology |is e

presented in Section III. Section IV discusses data dependency.

II. OVERVIEW
Since changes in data or logic conditions can affect code

in remote locations, one concern is the global communication

between system modules. This communication is accomplished via
global variables shared by modules. Modification of a module L
within a software system could affect other modules if they use W
the same global variables as the modified module. To determine
the relationship between modules and global variables, a global R
variable set/use matrix is employed to monitor and record usage
of global variables within the software system. The set/use
relationships between modules and global variables are defined
below:

o] A variable is defined to be "set"™ if its value is changed

{e.g., the variable A is set in the statement A=5, A=X+Y).
This is represented by the 1letter "S" in the global
variable set/use matrix.

o A variable is defined to be "used" if it is accessed and

its value is used during the process (e.g., variables B and

P

v}
!
£
‘ .
B S-Sy Y

§

- r—y — - - Catel iiraan and AU IR Snd g Rttt A g
Lo 2t SR . T ———————— " -

C are used in the statement A=B+C). This is represented by
the letter "U" in the global variable set/use matrix,

o] A variable is defined to be both "set and used" if its
value is set and used in a statement (e.g., A=A+l);
represented in the matrix by the letter "X".

At the module level, the focus is on structural elements
called segments and the interrelationship of segments within a
module, A segment 1is defined as a continuous sequence of
executable statements with only one entry point at the
beginning and one exit point at the end. By executing the
first statement in any segment, all other statements in that
segment are also executed [2]. The retest methodology employs
knowledge of the reachability among segments. The reachability
matrix (shown 1later) identifies, .for each segment, all the
other segments that can reach to it or be reached from it
(either directly or indirectly). Two other matrices of
importance are the module level set/use matrix which identifies
the status of all 1local variables, global variables, and

arguments within modules and the test case cross reference

matrix which identifies what segments are tested by each test SRS
case. Both of these matrices are further discussed in
subsequent sections of this paper.

The selection of the optimal subset of test cases is

accomplished by using the 0-1 integer programming technique : 1
with data provided by the reachability, set/use, and test case
cross reference matrices. The following is an abstract
formulation of the 0-1 integer programming model [4] consisting ;:
of minimizing the function. S
Z = c1X] + c3X2 ... + cpXp
subject to the following constraints
a11Xy + ay2X2 ... + ainXp > b 4 .
az1X] + az2Xy ... + azxpXpn > bj B .
L] - - 1
am1X1 *+ am2X2 + ... + amnXn 2 bp
Xy =0 or 1l ,
. . 1

s ol hur A g
a

AR S "HT'#.... o

]

where cj is the cost element for running each test case
(which we assume is one), aij is an element of the constraint
coefficient matrix, and bi is the 1lower bound of each
constraint row 1i. The variable for solution, X., corresponds
to jth test case in the test case cross referegce matrix. M
and n are the number of segments and number of test cases
associated with each module, respectively. The constraint
coefficient matrix (aij) is taken directly from the test case
cross reference matrix, and the right hand side (bi) is taken
from the logical OR of the applicable rows and columns of the
reachability matrix corresponding to the modified segment. The
exact procedure is explained via example in the next section.
From the solution of this model, the value of the objective
function Z will give the minimum number of test cases necessary
to assure full retest coverage, and the values of xj that are
equal to one will identify the specific test cases which form

the optimal retest subset.

ITI. EXAMPLE MODEL FORMULATION

Retest methodology views a software module as a directed
graph where each node is a segment and the arcs represent
connectivity between segments, The directed graph for the

module used as an example in this section is shown in Figure 1.

Figure 1. Directed Graph Presentation of a Module

T

(e
g . T OIS B

!

P ——

—wr ~ At ol
T ot hidl e At

Associated with each module is a connectivity matrix and a
reachability matrix. The connectivity between the segments in
Figure 1 1is shown in the connectivity matrix in Figure 2.
Whenever segment i is connected to segment j, the connectivity
matrix element (i,j) is 1; 0 otherwise. The reachability
matrix, which is the transitive closure of the connectivity
matrix, depicts the reachability of segments from each other
{51. If a segment can reach another segment in the module,
directly or indirectly, element (i,j) of the reachability
matrix is 1; 0 otherwise. For purposes of this research we
assume every segment reaches itself, and therefore all elements
of the main diagonal are set to 1. Fiqure 3 illustrates the
reachability matrix respectively based on the directed graph

representation of the module shown in Figure 1.

TO

1l 234567829

1 011000000
2 000001000
3 000110000
4 000010000
FROM 5 000001000
6 000000110
7 00000000O01
8 000000O0O0T1
9 00000O0O0O00O

Figure 2. Connectivity Matrix

PP YOS U I Y

2 4 a2 ad

Py . PR ot e T et ontienh s Jumy s aae o

TO

1234567829

1 111111111
2 010001111
3 001111111
4 000111111
FROM 5 000011111
6 000001111
7 000000101
8 00000O0O011
9 00000O0O0CO1

Figure 3. Reachability Matrix

Additionally, a test case cross reference matrix is
associated with each module. This matrix is constructed by
identifying segments executed by test cases during the testing
phase of software development. If any element (i, j) of the
test case cross reference matrix is 1, segment i is executed by
test case j; 0 otherwise. For example, in Figure 4, test case
1 exercises segments 1, 2, 6, 7 and 9 of the example module.
Column 2 through 6 of the test case cross reference matrix

correspond to the other test cases used.

Test Cases

Segments 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 1 0 0 0 0
3 0 0 1 1 1 1
4 0 0 0 0 1 1
5 0 0 1 1 1 1
6 1 1 1 1 1 1
7 1 0 1 0 1 0
8 0 1 0 1 0 1
9 1 1 1 1 1 1

Figure 4. Test Case Cross Reference Matrix

Let us assume that the module contains three variables: X,

Y, and Z represented by the set/use matrix in Figure 5.

Segments
Variables 1 2 3 4 5 6 7 8 9
X S U U U© U s
Y S § U U S
zZ U S S

where:
S: variable i set in segment j
U: variable i used in segment j
X: variable i set and used in segment j
Figure 5, Module Set/Use Matrix.

In this example, we assume a change to segment 2 is made.
The following analysis should be performed to select the test
cases for retest. The nine constraint expressions (i.e., one
for each segment), corresponding to rows of the test case cross
reference matrix, serve to assure that at least one test case
executes every segment that is reached from or reaches to the
modified segment. The right hand values (bi's) are the
result of a logical OR operation performed between the row and
column of the reachability matrix associated with modified
segment (in this case vow and column two). The outcome is
incorporated into the 0-1 integer programming model as the
right hand side (bi's) values,

MINIMIZE Z = X1+ X2+ X3+ X4+ X5+ X6
SUBJECT TO X1+ X2+ X3+ X4+ X5+ XG >1
Xt X, 21
x3+ x4+ x5+ X6 >0
Xg+ Xg 20
x3+ x4+ x5+ x6 >0
X1+ Xy Xgt X+ X+ X > 1
X;+ X4+ Xg >1
X,* Xyt Xe 21
Xq+ x2+ x3+ x4+ x5+ x6 >1

Figure 6. 0-1 Integer Programming Model

D-9

PO - . |

———— ————
rf-‘—-l-.‘.‘,-- BLAN e s e o B na S s S A e i on et A rge S an T ————— ~—7

This model can be reduced by several reduction methods [2,4].

Minimize 2 = Xl +
Subject to X1 + > 1
X, + X, > 1
X1 > 1
X, 21
X, + X, 21

After the reduction process, redundant constraints may appear
and may be removed as shown in this example. The final model

formulation reduces to:

Minimize Z = X7 + X2

Subject to X1 >1
X2 >1
Solution of this example shows that both X1 and X,

equal 1 and the optimal value of the objective function is 2.
This means that there are two test cases to be rerun and that

they are test cases 1 and 2.

IV. DATA DEPENDENCY

In the previous section, the methodology selected test
cases based solely on a module's logic structure. However,
analysis of data dependency can be performed to further reduce
the number of test cases selected for retest. Previously the
global variable and module level set/use matrices were briefly
mentioned, however, it is now necessary to fully describe their
purposes and utilization. The module set/use matrix reflects
the status of each global variable, parameter, argument, and

local variable. Global variables are included in the matrix to

facilitate the identification of segments in which the global - 4
variables are used. Arguments are included for invocation of |
those modules whose arguments change during the modification.
The set/use matrix serves two purposes. First, it can reduce

the number of selected test cases associated with the module in 1

D-10

v—vﬁ' s T e

—r1=r-

which the modification was made. Secondly, it identifies test

cases that need to be rerun as a result of modification to
other modules. The following two examples illustrate each
purpose and utilization of the set/use matrix.

Analysis of the module set/use matrix can be used to reduce
the number of selected test cases. This analysis is performed
by using the algorithms described in Appendices A and B to
identify segments in which the data elements can affect or be
affected by the modification. Algorithm A is used to determine
all segments containing data elements which potentially affect
data conditions used in the modified segment., Algorithm B is
used to determine all segments containing data elements which
are potentially affected by data conditions set by the modified
segment. In this example, the first step is to use the
algorithm described in Appendix A. A logical AND 1is then
performed between the result of the algorithm and column two
(since segment 2 is modified) of the reachability matrix. This
identifies the segments which reach to and affect the
modification of segment two. Figure 6 illustrates this
analysis.

Column two of reachability matrix 110000000
Result of the Algorithm A 110000000
Logical AND

Data/logic dependencies
reaching to modified segment 1100000O00O0
(1)

Figure 7. Logical AND Operation

The second step is to identify segments reached from the
modified segment and data elements affected by the
modification. The analysis proceeds in the same manner, except
the 1logical AND 1is performed between the result of the
algorithm described in Appendix B and the second row of the

|

Y
&

e

ﬁ?ﬁ'w’.—rrvvd

reachability matrix. Figure g, demonstrates the logical AND
operation to determine the segments affected by and reached
from the modified segment.

Row two of the reachability

matrix 010001111

Result of the algorithm B 01 0 0 01110
Logical AND

010001110 (I1)
Figure 8. Logical AND Process

Finally, a logical OR between the result of step one and
the result of step two is performed to identify the final bis
used in the 0-1 integer programming model. Figure 8
illustrates this logical OR operation.

Step one results (I) 110000000
Step two results (1I1) 010001110
Logical OR
Final bi's 110001110

Figure 9. Logical OR Operation

The next example illustrates the use of the set/use matrix
to identify test cases that need to be rerun as a result of
modification to a remote module. Suppose a segment in another
module is modified and this modification affects a global
variable which has bheen used in a segment of the example
module. The effects of this modification are reflected in the
global. variable set/use matrix. By scanning the global
variable set/use matrix, the modules which use the modified

global variable can be identified. For example, as shown in

jC

@

Figure 10, if global variable A is modified in module 1, then
modules 2 and 4 are also identified for further analysis. Once
the modules affected by the remote modification are identified,
each individual module must be analyzed to determine the
specific segments within the module which are affected by the
remote modification. This identification of segments is
accomplished via the module set/use matrix because it maps
variables (global, local, arguments, etc.) in a module to the
segments of the module. Since segments affected by the remote
modification are identified, the procedure for selecting test
cases to be retested is the same as the procedure described in
example 1.

Modules
Global Variables ml m2 m3 mé m5
A S U U
B S §) U
C U U

Figure 10. Global Variable Set/Use Matrix

V. CONCLUSION

Software Retesting is important during both the development
phase and the operations and maintenance phase of the software
life cycle. However, a review of the software literature shows
that little research has been reported in this area.

This paper has presented a feasible methodology for
retesting modified software based on rerunning previously used
test cases.

In addition, this research has extended the state-of-the-art in
software technology by:
1. Building a framework for making retest decisions using a

directed graph representation of the target software

. ..*

MRV RE Ty

2. Applying 0-1 integer programming to the retest problem to
optimize the retest solution
3. Defining an algorithm to identify data dependencies within

a software module.

Though these advances in software engineering technology
are significant, they provide additional research opportunities
in several interesting areas. Additional retest strategies
should be investigated in order to provide both more reliable
and more cost efficient testing procedures. Software quality
shouid also be investigated using this model. For example, one
measure of maintainability may be the number of test cases
necessary to revalidate a software modification. One should
also measure the performance of structured versus unstructured
programs to determine the effect of program structure on
maintainability. Current research 1is investigating the cost
and effectiveness of several retest strategies against both a
recently employed ad hoc method and the testing 1limit of
rerunning all tests. Preliminary results show that performing
a data dependency analysis can significantly reduce the number
of tests needed to be rerun, while maintaining high confidence

that the software is being adequately retested.

APPENDIX A

An Algorithm for the evaluation of the set/use Matrix to

determine segments which reach to the modified segment and
affect the modification.

1'

Set up a row array with the number of elements equal to the

number of segments in the target program. Set the value of
each element to zero,

Set up a column array with the number of elements equal to
the number of variables in the target program. Set the
value of each element to zero.

Set the value of the element in the row array corresponding
to the modified segment to 1.

Scan the column of the set/use table corresponding to the
modified segment, and determine the row (variable) that is
being used (denoted by an "U" or an "X" in that column).
In the column array, set the value of the element
corresponding to the used variable to 1.

If an element in the column array is set to 1, scan its
corresponding row in the set/use table and set the
corresponding element in the row array to 1 1if that
variable is set in any segments (denoted by a "S" or and
"X" in that row). If no elements of the column array are
set to 1, go to step 8.

For each element of the row array set to 1 in step 5, scan
the corresponding columns in the set-use table to identify
what variables are used by those segments (denoted by a "U"
or an "X" in those columns) and set the corresponding
elements of the column array to 1. If no elements of the
row array are set to 1, go to step 8.

Go to step 5.

Stop.

, L D e mamn oot LAuis Ant Sfuie AN g

]
B A

o dodh

+

APPENDIX B

An Algorithm for the evaluation of set and use Matrix to

determine segments reached from the modified segment and are

affected by the modification.

1'

Set up a row array with the number of elements equal to the
number of segments in the target program. Set the value of

each element to zero.

Set up a column array with the number of elements equal to
the number of variables in the target program. Set the

value of each element to zero.

Set the value of the element in the row array corresponding

to the modified segment to 1.

Scan the column of the set/use table corresponding to the
modified segment, and determine the row (variable) that is
being set (denoted by an "S" or an "X" in that column). 1In
the column array, set the value of the element

corresponding to the set variable to 1.

If an element in the column array is set to 1, scan its
corresponding row in the set/use table and set the
corresponding element in the row array to 1 if that
variable is used in any segments (denoted by a "U" or and
"X" in that row). 1If no elements of the column array are

set to 1, go to step 8.

For each element of the row array set to 1 in step 5, scan
the corresponding columns in the set-use table to identify
what variables are set by those segments (denoted by an "S"
or an "X" in those columns) and set the corresponding
element of the column array to 1. If no elements of the

row array are set to 1, go to step 8.
Go to step 5,

Stop.

.-

. f
IV I LYW 4

REFERENCES

[l1] Gibson, C. G., and L. R. Railing, Verification Guidelines,
TRW Document 17618-H200-RO-00, prepared for NASA/JSC under
contract NAS 9-8166 August 1971.

121 Fischer XK. F., "A Test Case Selection Method for the
validation of Software Maintenance Modification", Proceedings,
COMPSAC '77, IEEE, Nov. 1977.

[3] Warshall, S., "A Theorem on Boolean Matricies", Journal of
ACM, IX, 1, January 1962,

[4] pavis, R. E., D. A. Kendrik, and Weitzman,
Branch-and-Bound Algorithm for Zero and One Integer Programming
Problems", Operation Research, Vol. 19 (1971), pp. 1036-1044,

(5] Allenson, R. E., et.al., Automated Verification System
Programmer's Guide, TRW Systems, Note No. 72 FMT.

' “.-d

U DNLY

cia

,,,,,,,,

APPENDIX E

This appendix contains the source code for the data B
:(statement module used as an example in Section 3, The function
] of this module is to perform syntax analyses on data assignment
statements written in program design language.

E-1

T T

"

YT T YTy i,v- v

- r)vxvvvdvv.r.‘.

[L3 Wl
a2
vhA3ng
Vvd4qud
WwedSHe
dddnd
vobt
vdlan
VoY
JeYu
Jiode
vllaee
vl2ve
G EN
AMldvo
Jdidu
vivde
Wl1T4ha
Gl
wivgpe
dLnad
021l o
V2400
v23ush
0edceo
9250
02040
w2104
CPL YD)
029¢¢
¥309v
v3lvo
03200
CEEL LY
Aidne
vw3ibod
3044
03ildY
@380v
v3Yae
V4V
vidlve
420w
V/q "'1"
44,0
V4dan
Javio
valva
Ry ST
P49
W98nd
h 14
094 0
v 3.
54,0
[RTEY
=1, 1%
AST e
1N
0HYen

otdrdt

tcompool (°*3173s10.cmp’);

fcompool (°cconst.cmp’);

icu pool (‘paxtrl.cwp’);

tcoapool (‘racnst.crp’);

icumpool (‘piaertrs.cmp’);

tconpuol ‘cstaer.cup’ csyv’end’ot’file;
3et pIoc pdldata (iret’code);

LIRS SRR 2R0000SRFSELED0 5000802402800 408220050800560084850800888250868008

OF 90 OF OF e @5 g% OF oK & B - o K IE @ K O K X 9 > o M W K o

PROLUGUE

AUTIU /4 DALE wRLLTEN: F Kal1l /7 vOoveroer <Y, 1944
MULLETICATLUY AULHUKIS) /7 LALES

e mal3l (C) 7/ Januiaty 9, JYsl,
AkovuMep v S

tonen: (input/outpout) Charalter. Sequence ot characters

to oe processed.

toxken’code: (input/output) intejer. representation ot token type,

ret ‘code: (input/output) integer. status error code,

PAKE.v1 MUDULES none.
EXTenrNAL MUDULESS
palscan: 1o provide tokens trom source tilje;
pailserver: To provide error nessajes and ~arnings.
GLOBAL DATA STRUCTURES:
ind: i1nteyer, external, findicates level ot jindentation.
agdtauvits: external boolean to indicates existence ot data block,
wote: All dvove variables are Detftined in “"pdilexterls® compool.
FUNCTIONAL NARRATIVE:

Kecognizes tne syntax ot 3 3ata olock and its matching end,
since the information in tne data pblock does not follow any specified
syntdax, and the type of 1decidaration varies, tnis moaule elfiminates
tne entire block., The only statemnent that is recognized by
this module {s “end data;". The pdl syntax of the data block is:
ddta <Jdeclardations and commnents> end dJdata;

(22 R R RN RN R R P R S R R R R R R AR A R S R A R R R A A R RS2 22 Y

vegiln .
fcovy ‘pdocls.’i?3°®; sinclude adeclaration of pdlscan, pdlexp, pdlserverg
1tem ti32 ©;

it

ddtaoit = true;
valserver (dataexist):;

N1 = 1n3 + 2;

tlad 3 talse;
afilleitlay = talse);
veygin

1t takcole I ends;
pelrn
frn1 = tny = 2;
vaiscan(iret’cote);
11 tokcoue = data;

vejin
wilscanliret’cote);
1t torcnase = seni;

valscan (iret’cole);
else palserver (senimissi);

%
%
%
3
%
3
*
3
%
3
%
%
%
L)
%
%
13
3
%
%
%
L
3
3
%
3
]
s

Y

4 a2e a0 PO B PR

2 ekl Anacye

Aagios.

PO RErYTY

o

ook ¢ tla3d = true;

Yolo4 eng

Vol else If tokcode = seni;

Vo 3de reygin

Vo4 pdlserver (dataniss3):
VabSoy palscan(iret’code);
Jobvur flag = true;

wolun end

Yoruy else pulscan (sret’code);
VoYV eny % 1f tokcode = end %

nWldde eise pdlscan(iret code);

071904 it ret‘coie = csdp’end’ot‘tile;
Bl oegin

Wil3on pdlserver (endnissq):

01404 tlaj = true;

[Tl end

wlodu ena 4 anile %

91700 yatdault = true;

“Wlvdv end % pdlaata %
01900 term

E-3

Aoas

N

APPENDIX F

GLOSSARY

The following terms anrd definitions pertinent to this
document are described below. Acronyms are defined in
Appendix G.

Automated Verification System (AVS) -

A software tool that performs both static and dynamic
analysis to aid in the testing and verification of -
computer programs.

§£anch -

A branch (or Decision-to-Decision path) is the ordered

sequence of statements the program performs as a

result of the outcome of a decision up until the ‘ ?
evaluation of the predicate in the next decision ,_:
statement encountered. Figure 1-1 provides a diagram . '.-i
of a branch. e
Connectivity Matrix -
An NxN matrix where N equals the number of program
.) @ !
elements (such as decision-to-decision paths), and oA
where any (i,j) element is denoted on the matrix by a _ .
1 if program element i transfers directly to program L ?
element 7. If program element i does not transfer .
|
. e oy s @
directly to program element j, then element (i,j) is N 4 j
denoted by a 0., This matrix may also be known as an _
incidence matrix or an adjacency matrix. Ty
Data Dependency - ; v’
The 1logical connectivity or relationship of data) :
elements within a program.)

F-1

FROM PREVIOUS
BRANCH

|
'

SELECT
PREDICATE
OUTCOME

ALTERNATIVE ALTERNATIVE
OUTCOME OUTCOME

EXECUTE BRANCH
SEQUENCE
OF NON-
DECISION
STATEMENTS

l

DECISION
STATEMENT:
EVALUATE
PREDICATE

SELECT
PREDICATE
OUTCOME

R

Figure 1-1, Diagram of a Branch(1l)

1. C. Gannon, JOVIAL J73 Automated Verification System - Study
Phase, prepared by General Research Corporation, Rome Air
Development Center, TR-80-261, August 1980.

A . . a4 s

L s ey aoun mas aone auast el I SR — —TTR

Decision-to-Decision Path (DD-path) -

See definition for "Branch".

Directed Graph -

A special type of mathematical graph characterized by
each branch having a specified direction between its
connecting nodes and having one or more identified

entry points and one or more identified exit points.

Dynamic Analysis -

A debugging or testing technique used to evaluate a
program based on its execution. The program is
executed with data, the program output, and any
additional execution-time reports, and is analyzed for
conformity to functional or structural performance
specifications.

Global Set/Use Matrix -

An NxM matrix which identifies global variables used
and set within each module of a software program
(where N represents the number of global variables and

M represents the number of modules in the program).

LOOE -

A unique sequence of one or more nodes defined on a
graph in which the terminal node of the sequence is
equal to the initial node of the sequence.

Mathematical Graph -

A collection of points (or nodes) Xyr Xgr eeey
x. denoted by the set X, and a collection of arcs
Ay By, eees A denoted by the set A joining
some or all of the nodes. Therefore, a graph is fully

described and denoted by (X,A).

Pagal aam aan oo aan o
i

ENN™ it

Module -

A logically self-contained and discrete part of a
computer program, In JOVIAL J73, a module is the

smallest entity that can be separately compiled.

Path -
A unique sequence of one or more program elements
defined on a graph beginning with an entry point and
ending with an exit point., A continuous sequence of
control flow (branches) between two points in a
program (usually between a program unit’'s entry and
exit).

Program -

A collection of statements that can be assembled or

compiled and can be executed as a single entity.

Program Element -

A unit within the hierarchy of software components,
such as a routine, procedure, DD-path (branch),
module, or statement. A DD-path 1is the program

element most commonly used in this document.

Reachability Matrix -

An NxN matrix where N equals the number of program
elements and where any (i,j) position is represented
on the matrix by a 1 if program element j can be
reached either directly or indirectly from program
element 1i. If program element j cannot be reached
either directly or indirectly from program element i,

then position (i,j) is represented by a 0.

Retest -~

The act of rerunning certain tests to verify that a
change in one area of the existing software does not
create data and or logic conditions that could affect

the proper execution of another area.

o

™ Segments -

A contiguous sequence of executable statements with
one entry point at the beginning and one exit point at
the end. By executing the first statement in any

T segment, all other statements in that segment are also
executed.

Set -

A term used to describe a data dependency that occurs
when a value 1is placed into a variable's storage
location. An example of a statement where the
variable X is "set" is: X=5,

Set and Use -

A term used to describe a data dependency in which a
variable is both set and used in the same statement.
An example of a statement in which the variable X is
both "set and used" is: X=X+1.

Set/Use Table -

A table used to analyze the flow of data (data
dependency) within a program. This table has size NxM
where N equals the number of variables (data elements)
and M equals the number of executable statements in
the module. Data within the table represents whether
or not a particular variable is used, set, or both set

and used indicated by a "o", "s", or "X", respectively.
Statement -

A unit of a computer program consisting of a
meaningful arrangement of basic language elements
which expresses a unified instruction or information,

analogons to a sentence in English (1),

1. Gloss-Soler, S.A., The DACS Glossary - A Bibliography

of Software Engineering Terms, Rome Air Development
Center, Data 2analysis Center for Software, GLOSS-1,
October 1979,

F-5

- .-4

TP

.-4

. e atala

Ty ey by M acaaare o e Pp————— T T PP WY W v e w e~ e w -

Static Analysis -
A program analysis technique which does not actually

_ execute the program using input data. The technigue

;c is usually employed to detect inconsistencies in _
' semantics or in asserted versus actual conditions.

Testbed -

L The set of testcases developed or modified during the
h! various 1levels of testing to validate a computer B
1 program or computer program component.

E Test Case Cross Reference Matrix -

" A matrix used to identify the DD-paths of a program -
[that are exercised by any given test case. It is a
§ boolean matrix with a 1 in any (i,j) position if
[DD-path i is executed by test case j; otherwise it is
e represented by a 0. ~
4

i Transitive Closure -

[A mathematical technique used to derive the
‘ reachability matrix from the connectivity matrix by
b

l finding the sum of a sufficiently large number of .

[powers of the connectivity matrix where all additions

and multiplications are Boolean. o

[Use - .
A term used to describe a data dependency that occurs A
when the storage location of a variable is accessed,
! the contents read, and the value used in comparing or
computing some other value. An example of a FORTRAN

executable statement where the variable Y is "used" 3
is: X=Y*2,.

2.

L an afh o e . on 4

. A - N v

csC

DoD

IMPAIR

RADC

SREM

SRS

APPENDIX G - ACRONYMS

Computer Sciences Corporation

Department of Defense

Impossible Transfer Pairs Detection Capability
Rome Air Development Center

Software Requirements Engineering Methodology

Software Retest System

=

Q

ROV PR Sy TR IPULT S S

g

MISSION
of
Rome Air Development Center

RADC plans and executes reseanch, development, test and
selected acquisition programs in support o Command, Control
Communications and Intelligence (C31) activities. Technical
and engineening suppornt within areas 0f technical competence
4s provided to ESD Program Offices (POs) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and contrnof, sur-
veillance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
Lonospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility,

