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ABSTRACT

The effects of hot isostatic pressing on the physical and
electrical properties of sintered lead zirconate titanate are
presented. Hot isostatic pressing for short times (<1 hour) with
low applied pressures (6.9 - 20.7 MPa) at 1300°C is shown to
produce lead zirconate titanate with a higher density than that
obtained by conventional sintering techniques, Densification is
shown to occur without an appreciable change in grain size. Localized
microstructural inhomogenieties observed after pressing indicate the
migration of a PbT103-rich lead zirconate titanate liquid to pores
during hot isostatic pressing. The rapid initial increase in
density and shrinkage of macropores (~100 micrometers in diameter)

indicates that rearrangement and/or solution-precipitation initially

control densification during hot isostatic pressing. A decreased
rate of macropore shrinkage for extended pressing times indicates
that solid state diffusion ?oncrols the later stage of pore
shrinkage.

For the conditions studied, hot isostatic pressing is showu to
have no effect on the unclamped dielectric constant, dissipation
factor, plezoelectric ccefficient d33, radial coupling coefficient,
radial frequency constant, and Young's modulus of sintered lead
zirconate titanate. However, the reduction of large voids via

hot isostatic pressing improves dielectric breakdown strength.
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INTRODUCTION AND STATEMENT OF THE PROBLEM

3 The deleterious effects of porosity in ceramic bodies are

- well demonstrated throughout the literature. Porosity is especially
!i troublesome in ferroelectric ceramics as increased amounts of v
if porosity severely degrade electrical properties, and large voids

: can result in dielectric breakdown during poling or in service.
These adverse effects can be avoided if the proper processing
technique(s) is used to produce a dense homogeneous microstructure.

One technique that is proposed to increase density and improve

microstructure in sintered bodies is hot isostatic pressing.

This study will focus on hot isostatic pressing sintered

- lead zirconate titanate, a common ferroelectric ceramic, with the

i ' objectives of:

x 1. determining if hot isostatic pressing is a viable means

,f of densifying sintered lead zirconate titanate;

: 2. determining the mechanism(s) by which lead zirconate Ch
!! titanate densifies during hot isostatic pressing; and ;;
- 3. determining if hot isostatic pressing is a viable means ;;
é; . of improving the electrical properties of sintered lead i
b zirconate titanate. 15
3 :

A3
b
¥ .
-
.
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LITERATURE REVIEW

Lead Zirconate Titanate

Lead zirconate t:itanate,1 which will be referred to as PZT
throughout this thesls, represents a series of solid solutions
of lead zirconate (PbZrOB) and lead titanate (PbTiO3) in which
Zr+4 and Ti+4 occupy like positions in a perovskite-type structure

(Figure 1). As demonstrated in Figure 2, the PbZrO —Pb’rio3 system

3
exhibits complete solid solubility and is comprised of a number of
different phases., The useful forms of PZT are found at the lower
temperatures (<500°C) as they display ferroelectric and sﬁbsequently
piezoelectric behavior,

Lead zirconate titanate has the ability to transform energy
between the electrical and mechanical forms, making it a useful
material for electromechanical transducer devices such as phLono-
graphic pickups, air and underwater (sonar) transducers, accelero-
meters, and high-voltage generators. In recent times it has become
the foremost material used in the production of these devices.

The dominance of PZT in the electromechanical transducer
industry can be attributed to the superior piezoelectric pioperties
of PZT and the ability to manipulate these properties to meet the
specific requirements for the above applications. The piezoelectric
and electromechanical coupling coefficients of PZT are among the
best known, and persist over a wide range of temperatures. Further-
more, these properties and others, such as dielectric constant,

dielectric loss, and mechanical quality factor, can be adjusted by

. 2.
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Figure 1.
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Diagram of the perovskite unit cell. Open circles are
oxygen; A and B cation sites are occupied by Pb and
(Zr,T1), respectively.1
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varying composition. The solid solubility in the PZT system affords
it the flexibility to easily vary composition via changes in the
PbZr03:PbTiO3 molar ratio., Additionally, properties can be modified

with dopants such as Sr, Nb, and 31.3-9

An example of a commercial PZT that has been chemically adjusted

for a particular application is Pb0.94 Sro'06Zr0.53Tio.4703. This

material, which was exclusively used in ;his study, is suitable for
the production of electromechanical drivers (e.g., ultrasonic mixers),
By partially substituting Sr+2 for Pb+2, the electromechanical
coupling coefficients, piezoelectric constants, and dielectric
constant all show improvements over the values for undoped PZT.

Also, dielectric losses remain low, ensuring an efficient conversion
of energy without the production of excessive amounts of heat.
Furthermore, the Sr+2 addition increases the ability of the PZT

to withstand the large electrical or mechanical forces an electro-~
mechanical driver is subjected to without depoling, The 0.53:0.47
PbZr03:PbTiO3 molar ratio is used to maximize the dielectric proper-
ties. As demonstrated in Figure 3, the highest dielectric constants
and radial coupling coefficients are exhibited near the rhombohedral-
tetragonal morphotropic boundary (-53 mole 7 PbZrO,., 47 mole % PbTiO

3 3
at 25°C) and thus this is the favored composition range for commercial

applications.
Although modification of the chemical composition permits
a great deal of flexibility in property design, it is also one of
the major reasons for the difficulty in manufacturing PZT with
10-14

reproducible properties. The properties of PZT are quite

sensitive to chemical and physical variations and, as shown in a
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recent study,2 the inability to maintain chemistry in a narrow
composition range during processing and to avoid fluctuations in

raw material properties (e.g., grain size) can lead to significant

variations from lot to lot.

Powder Synthesis

The synthesis of PZT plays an important role in reproducibly
obtaining good properties. While good quality PZT can be consistently
produced by co-pr:ecipit:at:i.onl'r’-17 and sol-gel18 methods, these tech-
niques are too involved and costly for most commercial operations.
Therefore, manufacturers rely on the somewhat less consistent method
of calcining PbCO3, ZrOz, and TJ'.02.2’19’20 Studiesz’20 have shown
that for this method, inconsistencies in raw material sources, disper-
sion of the raw materials, and calcining procedure can result in the
production of powders with differences significant enough to alter
the properties obtained in sintered bodies.

$

Sintering

The volatility of PbO at high temperatures makes sintering a
critical step in producing high-quality PZT ceramics as volatilization
will alter both stoichiometry and the densification process. Kingon2
demonstrated that PbO volatilization could be prevented by controlling
the activity of PbO vapor in the sintering atmosphere. He studied
three different ways to control PbO activity, including the addition
of excess PbQ to the PZT powder, burying pieces in a PbO "source"

powder during sintering, and sintering pieces in the presence of, but
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not in contact with, a source powder. His investigations showed
that volatilization could adequately be controlled by both the
second and third methods with the best results obtained from the
latter.

In addition to stoichiometry, microstructure must also be
controlled during sintering as it too will significantly affect
final properties. Porosity, especially, has been shown to have an
adverse effect on electrical properties, particularly dielectric

bteakdown.n’22

It has also been demonstrated that properties are
dependent on grain size,23 although to a lesser degree. Since
excessive grain growth is not usually observed in PZT, the objective
of sintering is to produce high-density bodies while maintaining
stoichiometry.

Even though a number of sintering studies have been conducted

2,9,10,16,19,24-32

on PZT, the exact mechanisms of densification have

yet to be determined. This may be due to the complex nature in which
PZT deunsifies as well as ind%cations that different mechanisms may

be dominant in different systems. High densities can be obtained
with most commercial PZT by sintering at approximately 1300°.

The high temperature phase diagram for the PbZr03-PbTiO3 system
(Figure 4) indicates that densification should then occur by a
solid state diffusion process. However, common dopants such as Bi
and Sr are believed to act as fluxes in this system, creating thin
films of 1liquid between grains that allow densification to proceed

by a liquid phase sintering mechanism.7’28’29 24

Atkin and Fulrath
have suggested that the rate-limiting step for demsification in any

PZT 1{s the diffusion of oxygen vacancies from pores to grain boundaries
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where they are annihilated. Results from a recent study by Kingon2 . 'i
:! are in accordance with this postulate.

The density obtained by sintering PZT usually varies from

95 to 97% of the theoretical value. To maximize electrical properties
and ensure their reproducibility, attempts have been made to improve
upon this. Additions of silicalo and alumina28 have been shown to
create a low melting second phase in PZT that enhances densification
by a liquid phase sintering process. However, these additions also
have adQerse effects on electrical properties. More successful ways

of producing dense, good-quality PZT ceramics have been by sintering
31,32

in oxygen, hot pressing, and hot isostatic pressing.

Hot Pressing

Hot pressing 1s a specialized processing method used to obtain
high densities in sintered bodies. Its advantage over conventional
sintering is that in addition to using elevated temperatures to
densify a piece, uniaxial pressure is also applied on the body. The
pressure increases the driving force for densification, making it

possible to obtain higher densities.33-37

Hot pressing has proven to be a viable means of producing high-

11,14,38-41

density PZT ceramics. Since densification can occur at

lower temperatures and in shorter times, PbO volatilization is

4

- suppressed and thus stoichiometry remains relatively unchanged during

: processing.ll"38 Consequently, hot pressing can produce properties r
?5 superior to those obtained by conventional sintering. '4
2

1

- Balkevich and Flidlider39 extensively studied the hot pressing B
[

E. !1
] ]
B} ]
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of PZT with emphasis on determining the densification mechanisms
associated with this process. They observed a very rapid rate of
densification initially, which slowed considerably in the inter-
mediate stage and was negligible in the end. From these and other
observations, they concluded that densification occurred by re-
arrangement in the initial stage, plastic deformation in the inter-
mediate stage, and diffusional creep in the final stage of
densification. Additionally, they showed that the use of excessive
pressures could produce grain cracking and deformation that adversely
affect electrical properties, including a reduction of the dielectric

constant and a weakening of the piezoeffect.

Hot Isostatic Pressing

Hot isostatic pressingaz-as or HIP, as it is referred to in

this thesis, is the simultaneous application of elevated temperature
and isostatic pressure to an object via an inert gas phase (e.g.,
argon). Like hot pressing, ﬁx has an increased driving force for
densification that allows it to produce high-density bodies with
lower processing temperatures and shorter times. However, since
pressure is applied isostatically, it has additional advantages that
hot pressing does not. A distinct advantage is that HIPing has
virtually no shape limitations, so pieces can be sized and shaped
prior to firing, avoiding the excessive costs of machining later.
Also, texture is not induced with isostatic pressure so idealized
microstructures with good homogeniety are produced. Furthermore,
since pressure is applied via a gas phase, there is no need for

dies, so problems with die concaminatioq and die life are avoided.
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One requirement of this process is that, in order to transmit the
pressure to the rest of the body, the surface of the object being
HIPed must be impermeable to the pressurizing gas. This is not a
difficult prerequisite to meet since impermeable surfaces are easily
produced by hermetically sealing pieces in glass or metal canisters
or sintering the piece to the closed porosity state (>92% theoretical
density) prior to HIPing.

A number of studies have been conducted on the HIPing of PZT49'54
with overall indications that a more uniform, high-density, high-
quality electroceramic is produced. The most explicit study to date
was conducted by Bowen et 31.49 They showed that lower dielectric
losses and substantially improved dielectric breakdown strengths
could be obtained by HIPing. Although their study did not concen-
trate on détermining the densification mechanisms associated with
HIP, it was suggested that, as in hot pressing, densification occurs
by a combination of rearrangement, plastic flow, and diffusional
creep. It was also postulatfd that densification may simultaneously

be occuring by the extrusion of a liquid phase into the pores.
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EXPERIMENTAL PROCEDURE

Powder Preparation and Characterization

A commercial lead zirconate titanate powder, UPI 401,a was used
exclusively throughout this study. To enhance the sintering reactiv-
ity of the powder, the coarse fraction (26 micrometers) of its particle
size distribution was removed with an Acucut air classifiet.b The
particle size was then determined bv sedimentation with a Sedigraph
5000.€ The chemical composition of the powder was determined by
both emission spectroscopyd and x-rayv diffraction with CuKu radiation.
For the latter, peak positions generated in the 43-48° 26 range were
compared to those obtained from standards to accurately determine the

molar ratio of PbZrO,:PbTiO .2

3 3

Sample Preparation

To prepare the PZT for pressing, two volume percent of an
acrylic wax emulsion (Rhoplex B-—60A)e was added to the beneficiated
powder. A homogeneous dispersion was ensured by first forming a
slurry. The slurry was then dried and screened through a 200-mesh

(105 micrometer) sieve. In order to have a reference for monitoring

3yltrasonic Powders, Inc., South Plainfield, NJ 07080,
bDonaldson Co., Inc., Minneapolis, MN 55440,
“Micromeretics Instrument Corp., Norcross, GA 30071.

dMineral Constitution Lab, The Pennsylvania State University,
University Park, PA 16802,

€pohm and Haas, Philadelphia, PA 19105.
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microstructural changes during the HIP experiments, pores of a

distinct size and geometry were introduced into the sintered body

by adding 100 * 5 micrometer polymethyl methacrylate spheresf to
the green powder. Samples were prepared by hand mixing 0.0025 g
(~5000 in number) of the spheres into 3 g of the powder-binder
mixture. To reduce preferential pressing defects, pellets were
formed by first uniaxially pressing them at 30 MPa in a 1.27 cm
diameter stainless steel die, then isostatically pressing them

at 172 MPa. All of the organics were burned out of the pellets by
heating to 500°C at 10°C/minute and holding for one hour. To
determine the effects of HIP on samples lacking gross porosity,
pellets were also formed without the macropore addition. Densities

of the green pellets were determined by dimension.

Sintering

For the hot isostatic pressing experiments, it was required
to have closed porosity in the samples. This was obtained by
sintering the pellets at 1320°C for one hour in an 02 atmosphere.
Oxygen was used to avoid entrapping a gaseous species (i.e., Nz)
in the pore phase that would not readily diffuse through the sample
during HIPing. To prevent excessive lead oxide volatilization
during sintering, the pellets were packed in a combination of
sintered and green PZT powders and enclosed in a platinum-lined
alumina crucible (Figure 5). Densities of the sintered pellets

were determined by Archimedes' method.

fPolysciences, Inc., Warrington, PA 18976,
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Hot Isostatic Pressing

The sintered samples were HIPed at 1300°C with argon gas.
To prevent lead oxide volatilization during HIPing, the pellets
were enclosed in a platinum-lined alumina crucible along with a
green PZT pellet as a lead oxide source (Figure 6). Due to
equipment limitations, this study concentrated on using relatively
low applied pressures (6.9, 13.8, and 20.7 MPa) to densify the
pellets. To study densification kinetics, HIP times were varied
from 7.5 to 60 minutes. The effect of higher pressures (69, 138,
and 207 MPa for 15 minutes) was also investigated.g However, an
accurate assessment of the results could not be made as the samples
were severely reduced in the graphite furnace. Therefore, these
experiments were terminated. With the except}on of the high pressure
experiments, all HIPing was completed in the autoclave illustrated
in Figure 7. A typical HIP run involved first heating the samples
to 1300°C, applying the pressure for the requisite time, then rapidly
reducing both temperature and pressure (Figure 8). Densities of the

HIPed pellets were determined by Archimedes' method.

Compositional Analvsis

To determine if any significant changes in gross stoichiometry
occurred during processing, the chemical composition of sintered

and i!TPed pellets was determined by emission spectroscopy and x-ray

General Electric Corporate Research and Development, Schenectady,
NY 12019. )

paca A

NG WP

cad




e T T T e Db g T ST e T T W - T —— - - - -r

17

- Aluminag Crucible & Cover

g Platinum Foil
K ¥ Platinum Setter

k //A V/ﬁ V// Sintered PZT Pellet
W Green PZT Pellet

Figure 6. The configuration of sintered and green source
pellets used to prevent lead oxide volatilization
during HIPing.
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diffraction. Energy dispersive spectroscopy (EDS)h on a scanning

electron microscope (SEM)i was used to identify localized composi-~

IO P P v

tional variations in the sintered and HIPed pellets. These

variations were then quantified by electron microprobe analysisj

with reference to standards.

Microstructural Analysis

Microstructures of sintered and HIPed pellets were studied
on the SEM. The two features of interest were macroporosity and
grain size. To reveal both macrovoids and grain size, samples
were prepared by cutting the pellets in half, polishing with 0.25
micrometer diamond paste, and etching with a solution of 70 v/o
H0 - 29.5 v/o HNO, - 0.5 v/o HF at 80°C for 40 seconds. Macro-
pore size was measured directly from the SEM image while grain
size was determined from SEM photographs of randomly salected

regions. In both cases, it was assumed that uniform size and

equiaxed geometries were belng measured so that the average size
s
B of macropores and grains could be calculated by applying the
L; appropriate correction factor of 1.5 times the measured average ?
[
rr linear intercepc.55 ]
Electrical Property Measurements k
o i
- To determine if HIPing had any significant effect on electrical 1
X hKevex Corp., Foster City, CA 94404, ]
}' iIntetnacional Scientific Instruments, Inc., Santa Clara, CA 95051. 4
1
L
3 Jperkin-Elmer ETEC, Inc., Hayward, CA 94544. :
!
; q
v ]
. X .
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properties,* the capacitance, dissipation factor, piezoelectric
coefficient d33, and radial coupling coefficient of ~10.4 mm in
diameter by -0.06 mm thick sintered and HIPed samples were measured.
In preparation for these measurements, the samples were first
electroded. To ensure the formation of good electrical contacts,
sputtered gold electrodes with a protective coating of silver

paint were used. To avoid property variations resulting from

residual strains produced by variable cooling rates, all samples

were heﬁted above the Curie temperature to 400°C, held for 10

minutes, and slowly cooled to room temperature. The PZT samples

were poled by placing them in an oil bath at 145°C for 15 minutes
while an electrical potential of 22.5 kV/cm was applied across its
thickness. To avoid the unstable oroperties apparent immediately
following poling, the samples were aged 48 hours before taking any
measurements., Capacitance and dissipation factor were measured at
frequencies varying from 100 Hz to 4 MHz on a Hewlett-Packard multi-
frequency LCR meter;k The relative free dielectric constant at 1000 Hz
was determined from these measurements. The piezoelectric coefficient
d33 was measured at 100 Hz on a Berlincourt piezo d33 meter.1 The radial
coupling coefficient was determined by the resonance method described in
the IRE standards.56 The resonance measurements, which were made on a
Hewlett-Packard 3585A spectrum analyzer,k were also used to determine

Young's modulus Y11 and radial frequency constant.

kHewlett-Packard Company, Palo Alto, CA 94304,
1Channel Products, Inc., Chagrin Falls, OH 44022,

*A basic understanding of the electrical terms used is assumed. For
additional information on them, the reader is referred to Jaffe et al.
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RESULTS AND DISCUSSION

Caatnsan nileadh o

Powder Characteristics

As previously stated, the commercial PZT powder designated as

(OOR CLEIT W TR WOR)

401 by the manufacturer was used exclusively throughout this study.

After air classification the particle size distribution of the powder

aa. -

showed a median particle size of 2.3 micrometers with 90% of the b

distribution between 1 and 4 micrometers (Figure 9).

Composition and Structure

From emission spectroscopy the chemical composition of the

powder was determined to be Pbo.945’0.062ro.50Tio.50°3' It is -
important to note that neither sintering at 1320°C for 1 hour nor

HIPing at 1300°C for up to 2 hours with pressures of 6.9 to 20.7 MPa

resulted in significant changes in composition (Table 1). This is

consistent with the weight loss measurements used to monitor PbO

volatilization which showed that sintered samples experienced only

0.3% weight loss and HIPed samples experienced none.

From x-ray diffraction analysis, it was determined that the

structure of the PZT is tetragonal. Comparing the diffraction peaks 1

- obtained from this powder to those from standards, the PbZr03:PbT103
F' molar ratio was determined to be 0.53:0.47. This ratio is not in
Pf. agreement with that obtained by emission spectroscopv. However, by
;.' comparing the diffraction patte:ns for green sintered, and HIPed
'- PZT (Figure 10), it can be seen that peak positions are identical.
o
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:c Table 1

Emission Spectrographic Analyses of As Received PZT,
PZT After Sintering (1320°C/l1 hour), and PZT
After HIPing (1300°C/2 hours at 20,7 MPa)

F As Received Sintered HIPed
r

PbO (Wt %) 66.1
- Sr0 (wt %) 2.1

Zr0p (wt %) 19.2
A ] T10, (wt %)  12.6

o

=

ERV-F RN
. L]

MmN o

This indicates that, as was observed in the emission spectroscopic
apalysis, composition remains essentially unchanged throughout
processing. This suggests that there is a certain degree of
inaccuracy associated with one of these techniques. Since the
compositional analysis as determined by peakipositions in x-ray
diffraction patterns is well documented, it is believed that the
inaccuracy is in the emission spectroscopic analysis. Thus, the
composition of the PZT was approximated to be Pbo,945r0,062r0,53

Tig 47%3:

Although peak positions are unchanged throughout processing,

one observable difference is that the green PZT powder has broader 1

diffraction peaks than either the sintered or HIPed PZT specimens.

This may be due to the coexistence of PbZr03-rich rhombohedral PZT 5
o with PbTiO3—rich tetragonal PZT in the green powder. For such a 1
q case, many peaks would be present in a narrow range of 26, and this
would appear as a single broad peak in the diffraction pattern.
Monophase PZT has distinct, sharp peaks. Kingon2 indicated that 1

high temperatures (>900°C) are required to produce a monophase PZT.
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In accordance with this, the results from this study indicate that

Pl VI Y

the reaction to produce monophase tetragonal PZT occurs during
sintering as the diffraction patterns for sintered and HIPed PZT
are comprised of distinct, sharp peaks and are virtually identical.

Although observable variations in peak intensities exist in

Lo L

the diffraction patterns for the green, sintered, and HIPed PZT,

it is believed that these variations are the result of orientation
effects. Therefore, they are not considered pertinent to the
analysis of these results. Overall, the results indicate that no
major differences in composition or structure exist between sintered
and HIPed PZT.

From the x-ray peak positions and the chemical composition
determined above, the theoretical density of the sintered PZT was

determined to be 8.00 g/cc.

; Sintering

An average density of 97.37% of theoretical was obtained for all
samples sintered, including both those with and without macropores

E, added. This result indicates that the addition of polymethyl

r’t methacrylate spheres to the green body does not affect the total

Fai porosity level obtained during sintering. The size of macropores

/;t was 100 micrometers in the pellets after burnout and 123 micro-

:' meters after sintering. This indicates that the macropores grew 1

during sintering, a common phenomenon reported in the literature.57

The sphericity of the macropores and the surrounding dense micro-

Lol el

structure is clearly shown in Figure 1lla. At higher magnification,

Y t P el P D WP W . P ) POt - —t— J




a)

b)

Figure

11. Photomicrograph of macroporosity in sintered
PZT at a) 45x and b) 650x.
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the grains at the pore surface are seen to be equiaxed with smooth

surfaces (Figure 11b).

Hot Isostdatic Pressing

Physical Properties. Densities after sintering at 1320°C for

1 hour and after HIPing at 1300°C and 20.7 MPa as a function of time
for PZT processed without the addition of macropores are presented
in Table 2. Based on the accuracy of the Archimedes' technique, the
values reported are accurate to *#0.1%. Only the high pressure

(20.7 MPa) HIP results are presented as the greatest change in
density would be expected for these experiments. In general, it is

evident that HIPing at these presures slightly improves the density

of sintered PZT.

Table 2

Density of PZT Without Macropores After Sintering
for 1 Hour at 1320°C, and After HIPing
as a Function of Time at 1300°C and 20.7 MPa

HIP Time Sintered HIPed
(min) Density (%) Density (%)
0.0 97.32 97.32
7.5 97.10 97 .67
15.0 97.80 . 97.87
30.0 97.70 97.82
60.0 96.10 97.80

The changes in the physical properties of PZT (with macropores

added) as a function of HIP time at 1300°C and pressures of 6.9,

|
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13.8, and 20.7 MPa are reported in Tables 3-5, respectively. Based

:(f on the accuracy of the average linear intercept technique, the grain

and macropore sizes reported are accurate to *#0,01%. The results

show the trends apparent for each set of parameters studied, with

E! similar trends observed for all three pressing pressures.

E In general, HIPing results in a slight increase in density, with
i the majority of densification occurring in short times (< 15 minutes).
:‘ At longer HIP times the densities remain relatively unchanged. This

E : suggesté that a two-stage densification process with a limiting

density of less than 987 of theoretical exists for these HIP conditions.
K] From microstructural analysis it is observed that there was no
appreciable change in grain size during HIPing. As shown in Figure

12, the only observable difference between the microstructures of

L‘: . sintered and HIPed PZT is the presence of a "liquid phase™ at triple

F

points in the latter. Although this liquid phase is not observed in

the sintered PZT, Goo et al.58 have determined that thin films (-10nm)

of a liquid phase with a high solubility of solid PZT exist between

grains when excess Pb0 is pre.ent in the system. They also suggested

Pt 2

that this grain boundary phase should not be very transient during

DGl

¢ ' sintering. This could explain why the liquid phase 1s not observed

at triple points in the sintered PZT. It is believed that, during

HIPing, the external pressure compresses the system, decreasing

i. interparticle distances and forcing the liquid into previously t

i porous regions. Such a mechanism has been postulated by Bowen et T
. al.49 Further evidence for such a process can be inferred from a .:
'. discussion of liquid phase sintering by Lange.59 He demonstrated X

that the amount of liquid between grains continuouslv decreases with

™
P .__11
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a)

b)

f a) sintered

ph of the microstructure o

Photomicrogra

Figure 12.

°C and 20.7 MPa.

PZT and b) PZT HIPed for 1 hour at 1300




sintering time, his calculations based on the compressive forces
arising from capillary action. During HIPing, it is believed that
the greater compressive forces generated by the external applied

pressure enhance the rate at which this process occurs. The result

is an observable migration of the liquid to previously porous regions.

It is also shown in Tables 3-5 that HIPing reduced the size of
macroporosity, with large decreases observed for short times and
little or no additional changes for longer times. The percent
change in the volume of macroporosity (zAVmacro) as a function of

HIP time was determined from the equation:

where Ds is the average diameter of macropores in the sintered

PZT, and Dﬂ is the average diameter of macropores in the HIPed PZT.
The kinetics of the shrinkage of macroporosity are shown in Figures
13-15. It is observed that HIPing results in large volume percent
reductions of the macroporosity, with the trends for this reduction
the same as those observed for density changes.

To determine if macropores are preferentially reduced near the
surface of the pellets during HIPing, the average size of pores near
the pellet's surface was compared to that of those in'the center.
Since no difference was observed, it is believed that preferential
densification is not a problem in HIPing PZT, at least not for the

sample sizes studied.

Porosity. 1In addition to total and macroporosity, it was

desired to see how the microporosity changed with HIP time. The
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microporosity is defined here as any porosity that occurs in the
sample that is not attributable to the addition of the polymethyl
methacrylate spheres. Since it is beyond the scope of this thesis
to study microporosity directly (e.g., TEM), the information avail-
able was used to calculate the total amount of microporosity
present in samples. The total volume percent of porosity (%vtotal)
can be determined from the density measurements. Knowing the total
volume percent of macroporosity originally present in the sintered
body (i.ZlZ) and the change in the volume of macroporosity as a
function of HIP time, the volume percent of macroporosity can be

determined from the equation:

wv = 1.21% (1-AV )
macro macro

The volume percent of microporosity (ZVm ro) can then be determined

ic
from the difference of these:

Avmicro = Avtotal - %vmacro

Tables 6-8 show the changes in total, macro-, and microporosity
levels as a function of HIP time at the various pressing pressures.
In Figures 16-18, it is observed that the zmounts of total and
macroporosity decrease rapidly in the first 15 minutes, and remain
constant at longer times. Unexpectedly, though, a rapid increase
in the amount -f micruporosity is observed for the first 15 minutes.
This could be the result of either the development of new pores or
the growch of existing micropores. However, it is not obvious how
micropores would grow, as current theories predict their shrinkage.
Therefore, it is believed that new pores are being formed during

HIPing. A similar phenomenon has been observed in compressive
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Table 6

;! The Change in Total, Macro-, and Microporosity Levels
: as a Function of HIP Time at 1300°C and 6.9 MPa
L HIP Time Volume % Porosity
h (min) Total Macro Micro
: 0.0 2.68 1.21 1.46
. 7.5 2.52 0.57 1.95
1 15.0 2.41 0.71 1.70

30.0 2.36 0.57 1.79
f‘ 45.0 2.27 0.57 1.70

60.0 2.38 0.56 1.82
q : Table 7

The Change in Total, Macro-, and Microporosity Levels
as a Function of HIP Time at 1300°C and 13.8 MPa

‘ * HIP Time Volume % Porosity

SO (min) Total Macro Micro

! 0.0 2.68 1.21 1.47
7.5 2.41 0.57 1.84
15.0 2.35 0.69 1.66
30.0 2.29 § 0.69 1.60
45.0 2.36 0.57 1.79
60.0 2.44 0.57 1.87
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Table 8 .

3

The Change in Total, Macro-, and Microporosity Levels ;

as a Function of HIP Time at 1300°C and 20.7 MPa b

3

HIP Time Volume 7 Porosity .

(min) Total Macro Micro &
0.0 2.68 1,21 1,47
7.5 1.95 0.65 1.30

15.0 2.34 0.61 1.73 o

30.0 2.37 0.47 1.90 4
45.0 2.26 0.44 1.82
60.0 2,08 0.40 1.68
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X 50
creep experiments, and is known as cavitation. It is believed B
that, during HIPing, cavities are created about macropores due to ;
1
the rearrangement of grains in that region. Evidence of this can

be seen in Figuie 19,

Microstructure. The microstructure in and about macropores

in HIPed PZT (Figure 19) is quite different from that previously

{

;‘l observed in the sintered PZT. After HIPing, the deformation of

E macropores during densification is evidenced by the rough pore
surfaces. Also, it appears that localized microstructural in-
homogeneities result from HIPing. Tetragonal crystals are observed
on the pore surface, and a '"dense phase'" is present on the pore
periphery. The presence of tetragonal crystals is consistent with
&‘: what would be expected based on the phase diagram (Figure 4). The .
{ dense phase present is compositionally analogous to the liquid

phase observed at triple points in HIPed PZT. This lends additional
support to the hypothesis that liquid is being squeezed into porous

regions during HIPing. $

Microprobe analysis (Table 9) of the microstructural variatioms

Mg s an an 4

in and about macropores indicates that both the dense phase and the
crystals are PbTiO3-rich PZT. The bulk of the material has a 1
PbZrOB:PbTiO3 molar ratio of ~53:47 while the dense phase on the
periphery and the crystalline phase on the macropore surface have
molar ratios of ~40:60 and -~10:90, respectivelv. These results §
indicate that the composition of the PZT becomes increasingly rich

3 in PbTiO3 as one goes from the matrix to the center of the pore.

i

ok

S
b
y : ] e 4
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Figure 19,

45

Photomicrograph of the sintered PZT after HIPing for
45 minutes at 1300°C and 13.8 MPa. Note the crystals

formed in the macropore and the dense region surrounding
the pore.

ttasau e

1.




46

Table 9

Microprobe Analysis of the Microstructural Inhomogeneities
In and About Macropores in PZT HIPed
for 1 Hour at 1300°C and 20.7 MPa

Bulk Crystal Dense Phase
PbO (wt %) 58.74 63.35 60.69
Sro (wt %) 1.44 0.77 1.25
ZrO2 (wt %) 24.57 5.80 18.74
TiO2 (wt %) 15.25 30.08 . 19.32

This can be explained by considering isothermal sections of the

PbO-?bZr03-PbTi03 ternary phase diagram (Figure 20).

Initially, a solid of composition Sl and a liquid of composition

Ll are present at the HIPing temperature of 1300°C (Figure 20a). The

slight excess of PbO present in the system is responsible for the
liquid phase observed, and it is the nonequilibrium cooling of this
liquid that produces the compositional variations observed. As

the system is cooled, the changing equilibrium between the liquid
and solid will result in the solidification of PZT that is increas-
ingly richer in PbTiO3 (Figures 20b and 20c). The results presented
earlier are consistent with this, as the PZT at the macropore
surface would be expected to have the highest concentration of
PbTiO3.

The microstructural variations observed are not as easily

explained. The migration of liquid to the pores can account for the

T

-1

v

[ microstructure on the pore periphery, but does not explain why
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crystals are formed at the pore surface. It is suggested that
pressure is at least partially responsible since heat treating
HIPed samples for 10 hours at 1320°C (atmospheric pressure) results
in the disappearance of these crystals (Figure 21). Further work
would be required to determing exactly why these crystals are formed

during HIPing.

idechanisms. The results obtained from the HIP experiments
give an indication of the mechanisms by which the macropores shrink
during HIPing. The rapid increase in density and decrease in
macroporosity in short HIP times suggest that kinetics are initially
controlled by a rearrangement and/or solution-precipitation process.
Arguments for a rearrangement process are supported by the presence
of a liquid phase in and about macropores, and grain rearrangement
on macropore surfaces (Figure 22). There is no direct evidence for
a solution-precipitation process, but the presence of a liquid
phase with a high solubility for the solid PZT suggests that it must
be occurring. From the information available, it is impossible to
determine exactly how much of each contributes to the initial
densification; however, both are believed to play important roles.

End point densities less than the theoretical density of the
PZT suggest that a slow process (i.e., diffusion) ultimately controls
densification. Internal pressures resulting from the compression of
gases trapped within pores during sintering do not appear to be
responsible for the end point densities. This is argued on the
basis that oxygen would be the gas entrapped in the pores. Thus,
it would have readily diffused through the PZT lattice to relieve

any pressure buildup resulting from pore shrinkage. Likewise,
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Figure 21. Photomicrograph bf a macropore in a sample that has .
been heat treated for 10 hours at 1320°C after HIPing.
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Figure 22.

Photomicrograph indicating grain rearrangement at
macropore surfaces in PZT samples HIPed for 7.5 minutes
at 1300°C and a) 13.8 MPa and b) 20.7 MPa.
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growth of micropores due to entrapped oxygen can also be discounted
as the gas would have been trapped at the sintering temperature
(1320°C), and therefore could not have expanded at the lower HIPing
temperature (1300°C). These results indicate that -98% represents

the end point density for the conditions studied.

Electrical Properties

The electrical property measurements of samples sintered with
and without macropores are presented in Table 10. Only one sample
was obtained from a given pellet for electrical measurements, and
this was always taken from the interior of the pellet. It was
assumed that the electrical properties of the sample would be
representative of both the pellet and the processing conditions.
Many samples were lost due to dielectric breakdown during poling,
and this accounts for the small and variable number of samples
measured. It is suggested that the major reason for the high losses
during poling was the large size of macroporosity (-100 micrometers)
with respect to sample thickness (-~600 micrometers). A higher
probability of failure exists for small samples containing defects
than for large ones. Also, the larger the defect, the more
deletereous the effect on dielectric breakdown strength.21 This is
the case in this study as the relatively large pores in the small
samples substantially reduced dielectric breakdown strength.
Approximately 507 of the samples containing macropores broke down
during poling while only 10% of those without macropores failed.

Also, the effect of size was evident as HIPed samples containing
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pores slightly smaller than those present in sintered samples showed A
r
!: a slightly lower probability of failure (~40%). Overall, these 2
k
results are in agreement with observations made by Gerson and
. Marshall.>l i
2 i
!! Since electrical measurements were made on only a limited
number of samples, the statistical accuracy is not as good as
desired. However, general trends can still be observed. Both

dielectric constant and radial coupling coefficient are apparently
higher in sintered samples without the macropore addition. Also,
dielectric losses are lower in these samples. This indicates that
the macropore addition does in fact adversely affect electrical
properties. This is in agreement with the findings of Okazaki and
Nagata,62 who showed that, in PZT, electrical properties are

adversely affected with increasing levels of porosity.

Electrical properties of HIPed samples (with macropores) are
shown in Tables 11-13. Since the physical properties obtained by ]
HIPing at all three pressin& pressures are similar, it is expected
that the resultant electrical properties should also be similar.
Therefore, electrical measurements were made only on samples HIPed
at 20.7 MPa. Samples HIPed for 7.5, 15, and 60 minutes were !4
measured to determine whether or not a correlation exists between

the electrical properties and density. As shown in Table 14, there

is no clear trend. This is probably due to the fact that only -
small changes in density resulted from HIPing. However, it is

believed that a positive trend (i.e., improved properties) would

PO .

|

have been observed had higher densities (e.g., ~theoretical) been -

obtained. Electrical properties were also determined for samples '
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Table 11
Room Temperature Electrical Properties of PZT With
Macropores HIPed for 7.5 Minutes at 1300°C and 20.7 MPa
Sample 1 2 Average
Dielectric Constant at 1000 Hz 1355 1350 1355
Dissipation Factor at 1000 Hz 0.006 0.009 0.008
Piezoelectric Coefficient, d33,
at 100 Hz (C/N x 10°12) 320 320 320
Radial Coupling Coefficient (%) 56 54 55
Young's Modulus, Y, (N/w® x 101 1.7 1.8 1.8
Radial Frequency Constant (m * Hz) 2335 2365 2350
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Table 13 '
-4
Room Temperature Electrical Properties of PZT With 1
Macropores HIPed for 1 Hour at 1300°C and 20.7 MPa :
Sample 1 2 Average :
}
Dielectric Constant at 1000 Hz 1390 1380 1385 :
Dissipation Factor at 1000 Hz 0.006 0.010 0.008
Piezoelectric Coefficiegt, dqq, : 4
at 100 Hz (C/N x 1071%) 300 300 300 y
Radial Coupling Coefficient (%) 53 51 52 ;
Young's Modulus, Y1, (N/m2 X 1011) 1.7 1.7 1.7 :
Radial Frequency Constant (m °« Hz) 2555 2580 2565
Table 14 -
Room Temperature Electrical Properties of PZT With
Macropores as a Function of HIP Time at 1300°C and 20.7 MPa
HIP Time (minutes) 0* 7.5 15 60
g Dielectric Constant at 1000 Hz 1310 1355 1290 1385 1
: Dissipation Factor at 1000 Hz 0.007 0.008 0.012  0.008 '
.“
@ : Piezoelectric Coefficiigt, d33, .
at 100 Hz (C/N x 107+°) 300 320 290 300 ;
;. Radial Coupling Coefficient (%) 52 55 51 52 :
E: Young's Modulus, Y5 (N/m2 x 1011) 1.6 1.8 1.7 1.7 ;
[
' Radial Frequency Constant (m - Hz) 2340 2350 2350 2565 ]
* Sintered
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HIPed without macropores (Table 15). Again, no relationship
between electrical properties and density is observed. This result
indicates that, for the conditions studied, HIPing has no effect

on the electrical properties of sintered PZT,

Table 15

Room Temperature Electrical Properties of PZT Without
Macropores as a Function of HIP Time at 1300°C and 20.7 MPa

HIP Time (minutes) 0* 7.5 15 60
Dielectric Constant at 1000 Hz 1415 1250 1310 1250
Dissipation Factor at 1000 Hz 0.005 0.007 0.006 0.006
Piezoelectric Coefficient, d33,

at 100 Hz (C/N x 10-12) 305 290 290 290
Radial Coupling Coefficient (%) 55 47 48 52
Young's Modulus, ¥, a/m? x 10ty 1.7 1.6 1.5 1.6
Radial Frequency Constant (m . Hz) 2335 2320 2300 2340
* Sintered f

s
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SUMMARY AND CONCLUSIONS

The effects of hot isostatic pressing sintered lead zirconate
titanate with low pressures (6.9 - 20.7 MPa) were studied. Gross
composition and grain size were unaffected. Slight increases in
density were observed for all conditions studied, with the kinetics
of densification indicating a two-stage process. Macroporosity was
substantially reduced in size and volume percent while the amount
of microporosity increased. Compositional and microstructural
variations in and about macropores indicated the migration of
PbTi03-rich liquid to the pores. Rapid kinetics, microstructural
analysis, and the presence of a liquid phase about macropores
suggest that rearrangement and solution-precipitation mav be
responsible for initial densification. End point densities of
approximately 98% indicate that a solid state diffusion process
ultimately controls densification.

A substantial decrease in dielectric breakdown strength was
observed in lead zirconate titanate samples containing large voids.
Hot isostatic pressing to reduce the size of these voids improved
the breakdown strength. The unclamped dielectric constant, dissipa-
tion factor, piezoelactric coefficient d33, radial coupling
coefficient, radial frequency constant, and Young's modulus of
sintered lead zirconate titanate were unaffected by hot isostatic

pressing.
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