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CONCEPTUAL ENTITIES

James G. Greeno

University of Pittsburgh

ABSTRACT

The concept of the ontology of a problem domain is proposed and

V-" discussed. An ontology distinguishes the terms in a representation that

refer to entities, from those that refer to attributes and relations.

Entities are cognitive objects that a problem solver can reason about

directly, and that are included continuously in the representation*

Entities are hypothesized to (1) facilitate formation of analogies

between domains, (2) enable use of general reasoning methods, (3)

enhance computational efficiency, and (4) facilitate planning. Examples --

from analyses of problem solving and instruction that illustrate and 0

clarify these filnctions are discussed.'7
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CONCEPTUAL ENTITIES

James G. Greeno
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f 1

Representations of a problem can differ in several ways. In this

essay, I discuss one quite general attribute that can differentiate

problem representations: the kinds of entities that are included. By

the entities in a representation, I refer to the cognitive objects that

the system~ can reason about in a relatively direct way, and that are

included continuously in the representation.

A system reasons directly about an object if it has procedures that

take the object as an argument. In this regard, entities can be

distinguished from attributes and relations, which have to be retrieved,

Kor coptduigthe entities as cues or arguments.*

Coninuus nclsio isoften achieved by creating an entity in the

initial interpretation of a situation, and revising it whenever the :
situation is changed. Inclusion in the initial representation is not

required; entities can be created in the course of working on a problem

as well. The important feature is that an entity is maintained once it

is created; this distinguishes entities from intermediate results that

are removed from the representation after they have been used.

It seems appropriate to use the term ontology to refer to the

entities that are available for representing problem situations.

Therefore, by the ontology of a domain (for a representational system),

2A



I refer to a characterization of terms used 'n describing situations and

problems in the domain. The ontology of the domain says which terms can

refer to entities, and which only refer to attributes or relations.

I hypothesize that the ontology of a domain is significant for four

reasons.

The first hypothesis is that ontology is a significant factor in 1

forming analogies bet-ween domains. An analogy is a mapping between '

o~bjects and relations in two domains. If the domains are represented

with entities that have relations that are similar the analogy might be 4

found easily, but if either domai%'s repr-esentation lacks those

entities, the analogy might be difficult or impossible to find.

A corollary of the first hypothesis is that an analogy can be used '1

in facilitating the acquisition of representational knowledge in a

domain. If an instructional goal is the learning of a representation

that includes a specified set of conceptual entities, then that may be

facilitated by providing an anaic'-,y with a domain for which a natural

representation includes entities that correspond to those that are to beI

acquired in the target domain*

The second hypothesis is that ontology determines the kinds of 1

information that are available for reasoning using general methods. It

seems reasonable to suppose that human problem solvers have some very

general reasoning procedures that can be used when appropriate

information is available. Examples include reasoning about combinations

of quantities that are related as partd and wholes, or comparisons of

quantities in ordered sets. The ontology of a domain determines the
.A
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kinds of information that will be available in the representation, and

therefore will be available for use in general reasoning methods.

.Third, t~he ontology of a domain has an obviouis consequence for "

computational efficiency. ontology determines which kinds of

information will be available directly whenever they are needed, and

which kinds of information will have to be computed. It clearly is an

K advantage to keep those items of information available that will be

needed frequently, and this is achieved by creating entities
crresponding to those items of infrain

The fourth hypothesis is an extension of the third. It seems

Miely that ontology ahould be a significant factor in planning. A

reasonable conjecture is that procedures of planning operate primarily

on the entities that are formed in the initial representation of a '

problem. Thus, representational knowledge that Includes an appropriate

set of conceptual entities should enable a problem solver to evaluate

problem inform~.ation and choose among alternative goals and plans

efficiently.

The fourth hypothesis applies especially to problem solvinag in

domains where formulas are used to solve problems presented in text,

such as physics problems and word problems in mathematics. Problem

solving should be facilitated if representational knowledge that is

applied to problem texts forms conce~ptual entities that correspond

directly to variables in formulas. one way for this to occur would beI

for knowledge of formulas to include schemata that can be instantiated

on the information in problem texts. Schemata th4A-t enable an integrated 0-1

representation of problem information will facilitate judgments about

41
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the sufficiency and consistency of problem information and choice of

problem goals.

In the remainder of this chapter, I discuss examples in which

empirical findings are interpretable in terms of these four hypotheses

about conceptual entities in problem solving.

i2

I* Analogies Between Domains

I will discuss two examples involving mapping of problem-solvingiJ

procedures between domains. Th~e first example is from high-school

K geometry, and provides an analysis of knowledge acquired in the context

of one domain of problems that can provide a basis for transfer to

another domain of problems. The second example is from primary-grade

arithmetic, and provides an analysis of instruction that uses an analogy

between procedures in two domainis in o.:der to facilitate acquisition, of

knowledge and undearstanding of multidigit subtraction.

I.A. Geometry Proofs

The analysis that I discuss first was concerned with an issue in

the psychology of learning, discussed by Wertheimer (1945/1959). The

issue is whether when students learn to solve problems their knowledge

enables them to understand the problems or merely to carry out rote, -

'4 mechanical solutions.

An example that Wertheimer discussed is in Figure 1. Wertheimer

contrasted two ways in which the theorem of vertical angles can be t
proved. One method, which Wertheimer characterized as mechanical, uses

5



w z Prove: LwL z

(a) w + x -1800
x + i - 180*I

w + x - x + z I

(b)

i '44

44a

Figure 1.Tevria4nlspobe1ihtosltos 0ro etemr(9515)
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an algebraic representation. Quantities in the problem, the sizes of

angles, are translated into algebraic terms and a proof is derived using

equations. The algebraic steps are indicated in solution (a) in Figure

The second method, which Wertheimer characterized as a solution

KThe representation includes part-whole relations between angles, as

indicated in solution (b) of Figure 1. The two whole structures, x with

w and x with z, are equal because they are both angles formed by

straight lines. Furthermore, they share a common part, x.The proof

rests on the principle that if the same thing is removed from two equal

quantities, then the remainders are equal.

The solution that Wertheimer preferred uses a representation that

includes geometric entities that are not included in the more algebraic

solution. In the more geometric solution, the straight-line angles are I

entities; that is, they are cognitive objects whose relationships are

used in the solution. The only geometric entities that are needed in

the algebraic solution are the labeled angles w, 1, and z.

In geometry courses in high school, problems about angles, like the

vertical analges theorem, are preceded by instruction An solving

problems about line segments. A model was developed 'that simulated

learning from three_ example problems about line segments. The model has

been discussed previously, in another context (Anderson, Greeno, Kline,

&Neves, 1981). The example problems are shown in Figure 2. Note thatI

the third problem has the same structure as the theorem of vertical

angles, but is about lengths of line segments rather than sizes of

6
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1. B Given: AC 8, BC 3

Find: AS
A

Solution: AB"8-3i=5

C

2. B Given: ABC
A Prove: AS AC- BC

Statement Reason

1. ABC 1. Given

2. AB + BC - AC 2. Segment addition (1)

3. AS AC - BC 3. Subtraction propt ty (2)

Y

3. 0 Given: RONY, RN - OY
R Prove: RO NY

Statement Reason

1. RONY 1. Given

2. RN - OY 2. Given

3. RN - RO + ON 3. Segment addition (1)

I. OY- ON+ NY 4. Segment addition (1)

5. RO + ON - ON + NY 5. Substitution (2, 3, 4)
6. RO - NY 6. Subtraction property (5)

S" Figure 2. Example problems used for simulations of learning.
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angles. The theoretical goal was to develop a hypothesis about

knowledge structures that could be acquired in learning to solve the

problems in Figure 2 that would provide a basis for transfer to the

vertical-angles problem.

Two simulations of learning were implemented. In one version,

called stimulus-response learning, new problem-solving procedures were

acquired by associating actions from the example problems with a

representation of the problem situations in which the actions occurred.

The knowiedge acquired in this simulation was very limited in its

applicability; however, if mechanisms of stimulus generalization and

discrimination like those discussed by Anderson et al (1981) were

provided, they probably would give a fairly accurate simulation of the

knowledge that many students acquire from examples like these.

The second version, called meaningful learning, simulated learning

with structural understanding. In meaningful learning, new

problem-solving procedures were associated with schematic knowledge

about part.-whole relationships. The model's initial koowidge incl~ed
a schema for representing situations involving whole quantities made up

of parts, and making inferences about one of the quantities when the

others were given.

From Problem 1, the meaningful-learning model acqjiired a production

6 for applying its whole-parts schema in situations ýnvolving line

segments. This knowledge enabled the model to rppresent problems about

lengths of line segments in terms of their part-whole relations, and ti

use its general procedures for making qu otitative inferences about

parts and wholes in soivin6 these problems.

7 .



From Problem 2, new problem-solving procedures were acquired, with

actions of writing lines of proof corresponding to the steps in the

example solutions. In meaningful learning, these were acquired as

procedural attachments (in the sense of KBL, Bobrow & Winograd, 1977) .4
*1

- -*".. associated with the whole-parts schrma. The arguments of the acquired

procedures are objects that occupy slots in the schema; for example,

the procedure for writing a line with "Segment Addition" as the reason 44

finds the segments that are the parts and the segment that is the whole,

and writes "<parti> + <part2> - <whole>."

.4

From Problem 3, the meaningful-learning model acquired a new .

schema, which it composed using its previously existing whole-parts

schema. The new schema has two Wnole-parts structures as subschemata,

with the provision that one of their parts is shared. The system had

access to procedures attached to the subschemata; for example, the

procedure for writing lines of proof stating that the whole is equal to

the sum of the parts did not have to be acquired from Problem 3, since

it was attached to the whole-parts schema previously.

The knowledge acquired in meaningful learning could provide a basis

for transfer to problems about other kinds of objects, such as the

vertical-ang'.zs problem in Figure 1. There is evidence that some

"students acquire knowledge of that generality in studying problems like

those in Figure 2. In one study, six students were interviewed

approximately once a week during the year that they were studying

*"-: geometry. One interview included the problem shown in Figure 3 and the ...

vertical-angles problem. This interview was conducted just after the

students hl.d fini1hAd a unit on proof. about line segments, which

8
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B C

0

Given: L AOB, L COD are right angles.

Prove: L AOC ai L BOD

Figure 3. Transfer problem given to students.
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included FPoblem 2 and Problem 3 as example problems. The students had

begun to study angles, and had learned some concepts such 'as

supplementary angles and adjacent angles, but they had not yet done r

proofs about angles.

Three of the six students gave quite clear evidence in their

protocols of conceptualizing the problem in Figure 3 as a structure

involving parts and wholes. Their protocols included comments such as '
"these are the same," and "I have to subtract," applied to appropriate

quantities and combinations. Two of the students gave proofs that were

conceptually sound, but that were technically incorrect. The errors

made the proofs correspond more closely to the overlapping whole-parts r
structure than does a correct proof. The third of these students failed

to prove Figure 3, apparently because of weak knowledge of procedures.

The other three students did not show evidence for representing

Figure ? as overlapping whole-parts structures. One student solved the

problem easily using a theorem about supplementary angles. Another

student worked out a oof that was technically correct, and appeared to

involve applying a procedure for substitution in an equation. The sixth

student was unable to make progress on Figure 3, and in further

question.,ng it seemed that this student had not learned how to solve the

segment problems. *'

A similar variety of responses was obtained when the

vertical-angles problem was presented. One of the students who solved

Figure 3 with the schema said, "This is the same problem again. You

know something? I'm getting sort of tired of solving this problem." The-R4

student who appeared to apply the substitutiorn procedure for Figure 3 "

.'I
9
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failed to prove the vertical-angles theorem; this student got caught in

a perceptual difficulty in the vertical-angles problem, where w and x

are considered as a pair, and y and z are considered as the other pair.

The knowledge acquired in meaningful learning illustrates the role

that conceptual entities can play in a problem representation. With the

representational knowledge that enables line segments to be represented

as parts and wholes, the model's general procedures for making

inferences about parts and wholes can operate directly on the quantities

presented in problem situations. This analysis also shows a way in

which procedures that are acquired in one kind of problem situation can

be applied in another kind of problem, if the procedures take arguments

that are specified as the slots of a schema that can be applied to both

problem domains.

I.B. Subtraction Vrocedure

The analysis of learning in geometry discussed earlier includes

models that learn with and without understanding, but there is no

analysis there of conditions that facilitate learning with

understanding. In the domain of subtraction, we have analyzed a method

of instruction that seems to make understanding likely. The method was

developed by Resnick (Resnick, in press); she calls it iustruction by

mapping. The instruction has been successful in correcting systematic

errors in children's performanc 3n subtraction problems. Children's

explanations indicate that they also gain undeistvanding of principles of

place value in numeration and the subtraction procedure. We have

developed a hypothetical analysis of learning that this instruction

10
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produces, in wh:.ch representational knowledge of sv.btraction is

acquired, including new conceptual entities.

The instructional method uses blocks to facilitatc students'

understanding of pri~nciples involved in addition and subtraction of

multidigit numbers. Place values of ones, tens, hundreds, ard thousands

are represented by blocks of different sizes ar-4 shapes.

Representations of numbers are formed with the blocks, and procedures

for addition and subtraction are defined. A correspondence can be

"formed between the procedures that use blocks and the procedures that

use ordinary written numerals. For example, carrying and borrowing with

numerals correspond to trading with blocks, where one block of a certain

size is traded for ten blocks of the next smaller size. Use of blocks

in the teaching of arithmetic is quite common. The distinctive feature :1

of Resnick's instruction is that the correspondence between procedures r
" in the two domains is spelled out in detail, and steps are taken to

ensure that the student realises which components of each procedure

correspond to components of the other.

In Resnick's empirical research, the recipients of instruction have

been children who need remedial work on subtracticn. The work has been

done with fourth grade students who perform subtraction with bugs,

according to Brown and Burton's (1978) analysis. Figure 4 shows two

examples. The first problem is solved with a procedure called the

smaller-from-larger bug; the answer in each column is found Dy

subtracting the smaller from the larger digit in that column, regardless

of which is on the top. The second and third problems illustrate

another bug, called don't-decrement-zero. When borrowing is required

-. -- *.I.
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327 502 1'05
-184 -306 -237

I, ll

Figure 4. Subtraction problems solved with buggy algorithms.
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and a zero is encountered, a one is added where it is needed, but

nothing is decremented to compensate for that.

In Resnick's instruction, children are taught a procedure for

subtracting with blocks. In this procedure, the top number in the

subtra.tion problem is represented with blocks, and the number of blocks

indicated by the bottom number of the problem is taken away, column by

colmn. When there are too few blocks in one of the top-number viles, a

block frum the next pile to the left is traded for ten blocks of thwe

"size needed. If there are no blocks in the next pile to the left

('orresponding to a zero in the top number) a block is taken from the

next nonempty pile, traded for ten of the size to its right, one of

those is traded for tea of the next smaller size, and so on, until the

pile is reached where the extra blocks were needed.

After the child has learned to subtract with blocks, the

correspondence between blocks and numerals is taught. For each action

performed with blocks, a corresponding action is performed with the

written numerals. An example is shown in Figure 5. When a block is

removed in borrowing, the corresponding numeral is decremented. When

ten blocks of the next size are put into the display, the digit for that

column is increased by ten. When the number of blocks in a bottom digit

are taken away from a pile, the remaining number of blocka is written as

the answer for that column.

This instructional sequence can be quite effeztive. Resn!,k has

recorded several successful cases in which children with bugs like those A

illustrated in Figure 4 have learned to subtract correctly. Research on

the instructionai effectiveness of the method is continuing, but the

12
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Problem: 300 - 139 Blocks Action or Writing Action

300 1. Displays larger number in blocks.

-139 2. Writes problem in column-aligned format.

m n

L J 00[ uO 3. Trades 1 hundred block for 10 tens blocks.

0000 A 39 4. Notates the trade.

0 I ,1,0 5. Trade 1 ten block for 10 units blocks.

-139 6. Notates the trade.

~: #

7. In each den'omination removes the number
oblocks specified in the bottom number.000-139 8. In each column notates the number

•,,•.'..• - remaining.

Figure 5. An outline of mapping instruction for borrowing.
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data in hand are sufficient to establish that the instruction can

provide effective remediation of subri'action bugs.

There also is evidence that children acquire a better understanding

of general prin:iples as a rusult of mapping instruction. This evidence

"is provided in part by explanations that children are able to give after

the instruction. One child, whom we call Laura, started with the

smaller-frow-largar bug. She learned the correat procedure, and three

weeks later she still remembered how to subtract correctly. She was
asked whether she remembered how she used to subtract, and what the

'I

difference was. Ier answer was, "I used to take the numbers apart. Now

I keep them together, and take them apart." This remark seems to

_ ,indicate that Laura came to understand an important principle; that the

set of digits that are on a line collectively represent a single number.

Another wise explanation was given by a student who started with a

bug involving borrowing when a zero is encountered." This student, whom

we call Molly, learned to subtract correctly, and in a posttest solved

the problem 403 - 275, correctly decrementing the four, replacing the

zero with a nine, and placing a small one next to the three in the top

number. She mentioned that she changed the four to a three "because I

traded it for 10 tens." Then she was asked, "Do you know where the

nine came from?" Molly answered, "It's 9 tens and the other ten is

right here," pointing to the one near the three. Molly's remark seems

to indicate that she appreciated the requirement of keeping the value of

a number the same during borrowing.

* 1 i
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In theoretical research in which I have collaborated with Lauren

Resnick, Robert Neches, and James Rowland, we have tried to characterize

the knowledge that is acquired in mapping instruction, and some of the

learning processes that occur when students receive this instruction.

We are working with two general ideas, one of which has been implemented

as a simulation of learning, based on the protocol given by Molly. A

simulation of the other idea is still being developed.

In both of these ideas, we assume that the effect of mapping is to r

elicit a generalization across the two procedures that are learned by

the student. The generalization involvei entities that are abstractions

over the domains in which the t,--.ocedures are defined. !it the case of

blocks and numeral subtr&zion, th(i entities that are acquired in our

simulation are quantitative concepts for whicrk both t10 numerals and the

blecks provide symbolic represeatations.

The main structures involved in the simulation are shown in Figure

6. We asswte that initially, the knowledge structure includes the

whole-parts schema, including a procedure for adjusting the sizes of the
parts while keeping the whole quantity constant. Instruction in the

procedure with blocks has resulted in acquisition of a procedure called

Trade, where a block of one size is removed and ten blocks of the next
smaller size are put back in its place. The amounts that are taken away

and put back are understood to be equal, since there is a ten-to-one

ratio of the sizes of the blocks.

14
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Whole Parts

Slots Procedures

Part 1 Combine- Calculate

Part 2

Whole Adjuit- Parts (N)

Decrease Part 1 (N)

Increase Part 2 (N)

t :I

Value Exchange (i + 1, 0) .

Value (i + 1) = 10 x Valup Q*).,

Decrease (I + 1, 1 1 ""-14%
Increase (I, 10) .,

FWI

_-• / A~ ;

Trade (i + 1, i) _ - - Borrow (i +1 i)
Size (1 + 1) - 10 X size Value (i + 1) a 10 x Value 1

Take- away - block (i + 1, 1 Decrement (top i + 1, /

Put -in - block (1, 10) Add (top i, 10) p.4

F Figure 6. Structures in simulation of learning from mapping instruction.

1.4a
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In mapping instruction, a procedure of borrowing is taught, and
explicit connections are made between the components of Trade, and the

components of Borrow; that is, Take-Away corresponds to Decrement, and

Put-In corresponds to Add. We hypothesize that this correspondeuc3

influences the acquisition of Borrow, through the mediation of a third

structure which we call Exchange. Exchange is a genera'.ization across

Trade and Borrow, ind its components are propagated into the Borrow

procedure. Decrease (i+1) and Increase (i) are generalizations of the

surface-level actions Take-Away, Put-In, Decrement, and Add. The

"whole-parts schema provides a constraint that the amounts of increase

and decrease should be equal. This is satisfied in Trade by the

property of block size. We assume that a generalization of block size

is included in Exchange as the property of Value, and that this is

"propagated into the Borrow procedure as a Value associated with the

place of each digit.

The structures that our simulation acquires were designed to

provide informaticn of the kind needed for explanations like those given

by Laura and Molly. One important component is the concept of value,

included in the Borrow prccedure. This is an important general

principle of numeration. Another tmportant principle is that when

borrowing occurs, the value of the number should remain the same. In

our simulation, this principle is represented by the procedure's

connection to the whole-parts scheme, and the constraint of its

Adjust-Parts procedure. We provided our system with some primitive

question-answering capability, and it can answer the question, "Where

did the nine come from?" after It has borrowed through zero in a problem

like 403 - 275. It finds the value of the block that it took away from

15
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K the hundreds column, identifies the value of the nine tens as being part

of the ten tens that it put back, and locates the other ten ones that it

exchanged for one of the tens. Laura's answer about keeping the numibers r.
NO.

together involves a more subtle use of information, which we have not

simulated. However, we conjecture that the answer depends on

conceptualizing the value of the numeral as a whole quantity, made up of

for this conceptualization are all included in our simulation.

The conceptual entities in this analysis are similar to those

acquired in meaningful learning of geometry. In both cases,

representations of problem situations include conceptual units that arer

interpreted as elements with part-whole relationships. In geometry, a

r conceptual entity represents a structure composed of two segments or

angles that are combined in a whole segment or angle. In subtraction,.

r there is a conceptual entity that represents the value corresponding to

two adjacent digits, the suim of the values of the separate digits.

II. Reasoning with General Methods

The second function of conceptual entities that I propose is that

they provide arguments on which general reasoning procedures can operate

K directly. In this section, I discuss findings that can be interpreted

with this idea. First, analyses of processes in solving physics text

Vr problems suggest that experts' representations include entities that

provide arguments to general procedures for reasoning about parts and

wholes. Then, two experiments involving instruction provide further

information about conditions that facilitate acquisition of
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representational knowledge that includes conceptual entities.

II.A. Physics Prrnblem8

In physics text problems, experienced problem 4,olvers use

representations in which forces, energlec, momerata, and other

abstractions are treated as entities. An example is in force diagramG,

in whict the collection of forces a~.4.:6ng on an object in the problem is

shown as a set of labeled atrows. The diagram shows various relations

among these entities., such as oppositio- between paira of forces acti g

in opposite directions. Chi, Feltovicht, and Glase" (1981) have shown

that abstract concepts such as conservation of momentum are salient for

expert physicists when they are aske-d to classify problems into- groups

and when thei are deciding on a method for solving a problem. McDermott

and Larkin (1978) have simulated the process of forming representations

based on abstract conceptual entities, such as forces.

I will discuss two specific examples in which representation using

conceptual entities enable general reasoning procedures to be used. In

both of these examples, the general procedures involve relationships

"between quantities that can be considered ai parts of a whole. Tables I

and 2 show partial protocols that were kindly -de available by D. P.

Simon and H. A. Simon. They were among the protocols obtained from a

novice and an expert subject working on problems from a high school text

(Simon & Simon, 1978). The problem for these protocols was the

following: "An object is dropped from a balloon that is descending at a

rate of four meters per second. If it takes 10 seconds for the object

to reach the ground, how high was the balloon e- the moment the object

17



Table 1

Novice Protocol

1. "An object dropped from a balloon descending at 4 meters per second.."
Z. 4 metors per second is v zero.
3. "lands on the ground 10 sLconds later."

4. t ecu-als 10 seconds.
S. "Wat was the altitude of the balloon at the moment the object was dropped?"
"6. Now we want s equals v zero times the time pius one half of...
"7. ... a equals g equals in this case, minus 32...
8. Oh. minus 9 point 8 meters a second.

"9. It's descending at the rate of 4 meters per second.
10. One half • t squared,
11. that equals v zero,
12. which is 4,
13. times 10,
14. plus one half of minus 9 point 8.
15. equals minus 4 point 9 times,
16. ... Oh, we're going to come out with a minus number?

"17. It was descending at 4 meters per second.
18. Oh, great.

. 19. "How high was the balloon?"
20. "An object dropped from a balloon descending at 4 meters per secord"
21. "lands on the ground 4 seconds later."
22. It was already going...
23. The initial velocity was 4 and not zero, that's it.
24. minus 4 point 9 times lM0,
25. But this Is Its absolute...um...
29. We want its absolute value, don't we?
27. That equals 40 minus 49 hundred, that, obviously...

- 28. ... 4...4 hundred and 90...
29. ... 'cause it drops...
30. Its initial velocity wa 4 ....
31. and starting from zero,
32. Now we've got something we really don't know how to handle.
"33, Now we really don't know how to handle this.
34. Because it doesn't start from zero;
35. it started from 4 meters per seco
36. and the first second accelerates.. .so eac one...
37. that initial veloc'ity...starts at 4 and not zero.,
"38. So, I think it's 40 plus, because although it's a negative- ..
39. no, no, It's Increasing.
40. Oh no, It's iwcreaslng, it's not slawing down.
41. Okay. So the distance equals 40 plus 4 hundred and 90
42. equals 5 hundred ano 30 meters.

13. That's my answer.

17ah
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Table 2

Expert Protocol

1. "An object dropped from a balloon descending at 4 meters per second

2. lands on the ground 10 seconds later.

3. What was the altitude of the balloon at the moment the object was dropped?"r

4. So it's already got a velocity of 4 meters per second

5. and it accelerates at 9.8 meters per seconid per second

6. so its final velocity 10 se~conds later,

7. well, let's say its total additional velocity 10 seconds later

8. would be 98 meters per second per second

9. and that. .ah .. plus the 4 that it had to start with

10. would be 102 meters per second per second

11. so its average velocity during that period

1.would be 106 over 3 or 53 .. ah .. 53 meters per second

13. and at 10 seconds that would mean it had dropped 530 meters.
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was dropped?"

In the novice's protocol, shown in Table 1, the process was one of5

search guided by a formula. Quantities in the problem text were

interpreted as the values of variables. The subject applied some

general constraints, such as a requirement that distances have positive

values, but the protocol lacks evidence that velocities and

accelerations functioned as conceptual entities.

In the expert~s protocol, in Table 2, there is a rather clear

example of a conceptual entity, the "total additional velocity." The

expert apparently represented the velocity that would be achieved. at the

end of a 10-second fall as the sum of two components: the initial

velocity, and the amount that would be added during the fall. The added .
amount can be found easily, since it is proportional to the time. ThenA

N ~the velocity at the end of the fall was found by combining its two e

componente. The average velocity during the fall, needed to comput~e the

distance, 4As found by averaging the initial and terminal velocities.

Finally, the distance was found by multiplying the average velocity by 7
the given duration, .4

4 ~A reasonable interpretation of this solution is that three general 1

procedures for making quantitative inferences were U3ed. One is a

procedure for finding a whole quantity by adding its parts together.

q ~The second is a procedure that finds the average value of a quantity _

that undergoes linear change. The third is a procedure that finds the

total amount of a quantity by multiplying its average rate during a time .
ýJ interval by the duration of the interval. All of these proceduresh correspond to physics formulas, but there is no evidence in the protocol



that formulas were used in the solution. A plausible hypothesis is that

the solution was obtained by forming representations of quantities that

served as arguments for general inferential proce-ures. That inference

seems particularly well justified in the case of the "total additional

velocity," a quantity for which there is no specific variable in the

formulas that are usually given.

Another example from physics is in the discussion in this volume by

Larkin, regarding the loop-the-loop problem that deKleer (1975)

discussed earlier. Larkin notes that in place of the sequential

envisionment procedure that deKleer described and analyzed, experts

frequently represent the problem using the consezvation of energy. In

this representation, there is a quantity, the total energy, that remains

constant. The total energy is made up of two components: the potential

energy (associated with height) and the kinetic energy (associated with

speed). As the bal. moves downward, potential energy is converted to

kinetic energy, which is then reconverted to potential energy as the

ball mves up the other side. The requirement of the problem is

satisfied if the amounts involved in the two phases are equal.

A reasonable interpretation of this solution includes another

general inferential procedure involving additive combinations. If a

whole quantity is constrained to be a constant, then one of its parts

can be increased by a transfer from the other part. The use of a

general procedure for inferring quantitative changes based on that

principle in the loop-the-loop problem seems a reasonable conjecture.
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II.B. Distance, Time) and Velocity

The interpretation that I proposed in the last section regardingr

expert problem solving in physics includes conceptual entities that are

available as arguments for general methcds of reasoning. A question

that arises is how representational knowledge of that kind is acquired.r

Some suggestive findings were obtained in an instructional study

conudicted at Indiana University in 1967 (Greeno, 1976). The suggestion

is that new conceptual entities can be acquired when procedures are

learned that use those entities as arguments.

In the experiment, seventh-grade students were given instruction in

~ . solving problems about simple motion using the formula: distance-

speed x time. Different groups received differing pretraining prior to

the instruction. The pretraining that was effective included training

in two kinds of procedures. One was observational: students were shown

examples of simple linear motion and were given procedures for

manipulating distance and velocity and for measuring distance and time.

The other procedures were computational: students had practice in

V ~calculating one o~f the three quantities given the other two. Results of

rthe study suggest that from these experiences students acquired

representational knowledge in which distance, duration, and velocity

were conceptual entities about which the students could reason in a

direct, flexible manner.

The experiment took place in three consecutive daily sessions. In.

the first session a pretest was given. The second session was an .

instructional treatment that varied among groups of students. In the

third session all of the students received some instruction in solving

20
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with simple motion in a setup shown in Figure 7. Model railroad tracksA

were marked at one-foot intervals. A timer, visible to the students,

ran as an engine muoved along the track. Velocity was variable from 0.5r
r.

to 3 feet per second. A regulator was available to the students for one

of the tracks. 
I

In the instruction, a series of problems was presented to groups ofr

four or five students. in each problem, two of thi, thx.,et

quantities-distance, velocity, and duration-were given, and studenci;2

stdnspromdteoperations that determined the quantity, either '
by adjusting the transformer or by placing the photocell that stopped

the timer. Each result was tested by running an engine. The -

correspondence between distance and time was noted as the engine moved

along the track, a record of results on all the problems was kept, and1

results of different combinations of quantities were discussed. A few -

1. problems with two engines moving simultaneously at different velocities

were given at the end of the session.
oil

The effect of this experience was compared wit~h two other

instructional groups and a control group. The other two instructional

groups received experience of a more mathematical kind, involving the

inverse relation of multiplication and division or use of ratios in '

* solving problems. The fourth group went to a study hall.
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The instruction that all students received on the third day was a

straightforward presentation of the formula, distance - speed x time,

with examples of its use in solving simple problems.

The tests that were given before and after instruction consisted of

seven problems. Three were easy, requiring calculation of one of the

three quantities from the other two, for example, "A man drove at a

a spe~d of 60 miles per hour for 4 hours. How far did he drive?" The

other four problems were more complicated, requiring aLLalysis of motions

into components, either of durations or of distances. An example is,

"'The distance between Bloomington and Chicago is 240 miles, and there

are two airline flights between the two cities. One flight is nonstop

a nd takeas 1 1/2 hours. The other flight stops for 1/2 hour in Terre I

Haute, but also takes 1 ./2 hours. How fast does each plane fly?"

Pretest and postteat problems were variants of each other, involvir;

different kinds of moving objects and different numbers.

The. beat poattest perf'rmance was given by the group with

experience with the model trains. On the four complicated test

problems, that group i,,proved by an average of 1.21 problems between

pratest and posttest, the control group improved by .57 problems, and

: .+" the other instructional groups improved by .21 problems.

"An interpretation that seems reasonable is that students who

- received experience with model trains acquired representational

knowledge in which distance, velocity, and duration were conceptual
entites. The complicated problems on which they excelled requirud

- combining parts of a trip. The students' ability to solve these

problems suggest that their representations of quantities in problems

22

. , = .-. ... ¾...- . , :. -



F'o
were in a form that enabled them to be used by general reasoning

procedures associated with a whole parts schema or other similar

structures. A plausible conjecture is that entites may have resulted

from the students' acquisition of observational and computational

procedures that operated directly on the quantities of distance,

duration, and velocity.

II.C. Sound Transmission

r
The last example I discuss in this section also involves an

instructional experiment. This study was motivated by discussions of

mental models as mechanisms of reasoning. In analyses such as Stevens

and Collins' (1978) discussion of inferential reasoning about weather,

knowledge a&Nut the detailed internal structure of processes enables

individuals to generate conjectures about the behaviors of the processes P

in new conditions. In a study in which I collaborated with Gregg T.

Vesonder and Amy K. Majectic, we investigated the question whether

instruction regarding the detailed causal structure of sound

transmission would enhance students' ability to reason about properties

of that process. A full report of thIs experiment is available (see

Greeno, Vesonder, & Majetic, 1982).

We designed two instructional units about transmission of sound.

One was patterned after the usual textbook sequence, focusing on

amplitude and frequency of sound waves. We refer to this instruction as

a Steady-State unit, since it focused on temporal properties of sound

waves at a single point in space: alternating compressions and

rarefactions varying in amplitude and frequency. We gave a simpler
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discussion than is often used in texts. We made no attempt to discuss

longitudinal waves, restricting our discussion to transverse waves

consisting of alternating compressions and rarefactions. We also

related the properties of waves to concrete phenomena, using a guitar to

produce tones varying in loudness and pitch. The mechanism of

transmission was discussed, mainly in the contest of these properties.

A Slinky toy was used to show transmission of a transverse wave,~ and a

piece of plastic foam with dots painted on it was used to model

compressions and rarefactions. Waves with varying amplitudes and

frequencies were illustrated with both of these models and related to

V differing sounds made writh a guitar.

We refer to the other instructional unit that we designed as a

Transmission unit. It focused on the causal mechanism of sound

and was reinforced using a tube covered on both ends with balloon

rubber, so that pressing on one end caused the other end to bulge. A

Slinky toy was used to show a pulse moving through a medium, and foam

rubber with painted dots was used to model compression of molecules.

K Finally, a shallow round dish containing water was used to show that a

4 pulse moving from the center is distributed over a greater area and

therefore becomes weaker at any single point. After showing all these

aspects of transmitting a pulse, we discussed sound waves as alternating

increases and decreases in pressure caused by a vibrating source, and

illustrated the effects of that with each of the models.

24



Our two instructional units can be considered as containing a

common core of information, elaborated in different ways. The common

information was about the components of sound transmission: the

requirements of a source, a medium, and a detector, anid some basic

causal relations involving vibrations, compressions, and rarefactions.

In the Steady-State unit, this information was elaborated by discussing

attributes of sounds, identifying properties of pitch and loudness that .

vary between different sounds and relating these to variables of

frequency and amplitude in the theoretical system of sound transmission,

In the Transmission unit, the basic information was elaborated by a

more detailed discussion of the causal mechanism of sound, using the

simpler case of a pulse to make the causal system easier to understand.

This instructlon was designed to teach the m~icrostructure of the causal

systeym. We anticipated that this might enable students with

Transmission instruction to reason more successfully about situations

involving transmission of sound than their counterparts, whose

instruction focused more on attributes and less on the causal structure.

This anticipation was not borne out in the results.

We tested our sixth-grade stude~nt subjects by asking a set of 12

questions. Their answers were tape recoi:Aed and transcribed, and we

evaluated them using an analysis of propositions that would constitute

c orrect knowledge and understanding. We were particularly interested in

four questions that required inferences about sound transmission. One
7.1

involved a simple application of knowledge that sound will be softer at

a greater distance. A second question required the inference that sound

will not be transmitted through a vacuum, but that it will be
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transmitted through water. The other two questions required conjectures

about rates of transmission: one that sound could travel faster through

one medium than another, and the other that one form of energy might

travel faster than another.

To our surprise, scores on these inferential questions were not

significantly different among students who had different units of

instruction. Indeed, students -who received either or both units did not

differ from students in a control condition who received neither unit.

The trend favored the students in the Steady-State condition, inA

apposition to our expectation of an advantage due to the Transmission

unit.

This finding was was reinforced by a more detailed analysis of

*evidence for knowledge of specific propositions. We divided

propovitions-irto four sets, judging whether each proposition was

included explicitly in the Transmission unit, the Steady-State unit,

both units, or neither unit. On propositions that were in both units,

there was a nearly significant difference favoring the Steady-State9

unit. On propositions that were in only the Transmission unit, students

with only Steady-State instruction did as well as students with

Transmission instruction. This was not a symmetric finding: on

propositions that were only in the Steady-State unit, Steady-State

students were much better than Transmission students.

The students' responses to questions suggested that most of them

learned about the requirements for sound transmission: a source, a

medium, and a receptor. All except four of the 120 students correctly

7 said that sound would not be transmitted through a vacuum when air was
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pumped out of a jar with a bell in it. Thirteen of the 20 students

correctly said that sound would be transmitted if the jar were filled

with water. The number of correct answers about either the vacuum or

the water did not depend on the instruction that students received.

On the two questions requiring conjectures about velocities of

transmission, correct answers were given by only six, and four of the 20

students, and there was no relationship between the answers. and the

instruction that students had received. Apparently the knowledge that

they acquired about sound did not make contact with their general

concepts about faster or slower motion. Several students gave answers

indicating that the concepts of source, medium, and receptor were

seen before thunder is heard; six students conjectured that lightning

occurs earlier. The other question asked why a train is heard sooner if

your ear is close to the railroad track; 15 students conjectured that

~ the rail becomes a source of sound, being caused to vibrate by the

wheels of the train.

V The conclusion that we reach is that both of our instructional

units probably led to acqui~sition of conceptual entites corresponding to

the components of sound transmission: a source, a medium, and a -

Ureceptor. -This acquisition did not seem to be strengthened

substantially by explanation of the detailed causal structure of the

system. Of course, we may have chosen poor questions in trying to tap

that kcnowledge. The main opportunity to show improved performance

requires conjectures about speed of transmission, a global property. .iv

The difficulty could have been in children's making contact between7
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their knowledge of sound and their general knowledge about motions with

differing speeds, rather than a lack of representational knowledge about

sound. Even so, we are led to conclude that knowledge of the detailed

causal structure of a mechanism may not be as useful an instructional

N, target as knowledge of attributes that are directly relevant to

question-answering and other target tasks.

III. Computational Efficiency

The hypothesis that appropriate conceptual entities can enable more

efficient computation is probably obvious. I will present a single

example in which the point is illustrated with unusual clarity.

III.A. Monster Problems

An example in which alternative representations of problems have

been analyzed in detail is a set of puzzles about monsters and globes

that are isomorphs of the Tower of Hanoi problem, analyzýed by Simon and

Hayes (1976). The entities that are involved in this example are sets

of objects, and the procedures for which the entities are arguments are

operations on sets, such as finding the largest member of a set.

Simon and Hayes classified problems into two categories, called

Transfer and Change problems, which differ in the way which

applicability of operators depends on attributes and entities. The

distinction was very significant empirically: Change problems were

about twice as difficult as Transfer problems.
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To illustrate the problem categuries, ccnsider two problems in

K, which there are three monsters each holdi~ng a globe. The monsters a,

globes both vary in size: the sizes are small, med~ium, and large.

Initially, the small monster holds Lli large globe, the medium monoter

r ~ holds the small globe, and the large monster holds the medium globe.

The goal is a situation in which the. size of each monster matches the

size of the globe that It is holding.

VIn the Transfet -problem, -globes are moved from monster to monster.

Only one globe can be moved at a time, a monster cani only give away its

largest globe, and the trancferrad globe must be larger than anly the

receiving monster is holdilag prior to the transfer.

In the Change~ probl~em the sizes of globes are changed by shrinking

and expanding. To change a L?,lIbe from its initial size to i~ome teru~inal

size, the moaster bolding the alobe must be the larg~st monster

currently holding a globe of its ir4.tial size, and no larger monster may

be holding a globe of ito torminal size.

To explain the greatar difficulty of Z4hange problems, Simon and

Hayes suggestcd a plausible hyp'othesis about the repreccntation of

4stated and operators. In the repr~esentation of a stat-r,. (1) thrace is a

list of the monsters; (2) each mnonster's size is an attribute; (3) a

list of the globes held by each monster is a second attribute; aad (4)

each globe's size is an attribute of clie globe. The operator for the

Transfer prolblems has the form Move(GS, MS'I, MS2), whtich means "Move the

globe of size GS ftom the monster of size MSl to the monster of size

14S2." The operator for the Change problems has the form Change(iIS, GS1,

GS2), which means, "Change the globe held by the monster of size MS from
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its present size GS1 to size GS2."

"The problems differ in a way that involves conceptual entities.

The list of globes held by each monster is an entity in the

representation; the lists ale included in the initial representation of

the problem, and are modified after each change in the problem state.

These entitities are used directly in the Transfer problems. To test

whether Move(GS, MS1, MS2) can be applied, the solver retrieves the

lists of globes held by monsters MSI and MS2 and determines whether

globe size GS is the largest of both sets. The corresponding test in

the change problems does not use entities in the representation, and

iraquires construction of lists that are to be tested. Testing

applicability of Change(4S, GS1, GS2) involves retrieving the monsters

.boiding globes of size G51 and GS2, and testing whether monster size MMS

is the largent of both of these sets. The sets have to be constructed,

since the lists of mon•ters holding globes of the three sizes are not

entities in the representation.

Simon and aayea' suggested explanation has not been confirmed

empirically, aad they are continuing their exp~erimental research on the

problem (H. A. Simon, personal communication). There probably are

several factors that contribute to the difference in difficulty between

.the two ki~nds of probleas. Even io, heir hypothesis is plausible and

prov-ides an ispecially clear example of the importaace of conceptual

entities in problem represca~ation.
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IV. Planning

The final hypothesis considered I~a this essay is that the ontology

of a problem domain has important effects on goal definition and

planning. This point is illustrated by results of another set of

instrustional studies.

NV.A. Biniomial Probability

In the early 1970's, Richard Mayer, Dennis Egan, and I conducted ar

series of experiments (Egan & Greeno, 1972; Mayer, 1974; Mayer &

Greeno, 1972; Mayer, Stiehl, & Greeno, 1975) in which we gave

4 instruction in the formula for binomial probability:

P(R I)= p (I pff R

where N is a number of trials, R is a number of success outcomes, and p

is the probability of success on each trial. The studies involved

comparisons between alternative instructional conditions. In most of

the experiments we compared two sequences of expository instruction.

One sequence focused attention on calculation with the binomial formula.

The other sequence emphasized meanings of concepts, providing

definitions of variables in relation to general experience and giving

explanations about how the concepts combine to form components of the

formula. The conceptual instruction discussed outcomes of trials and

sequences of trials with different outcomes, and defined the probability

of R successes as the sum of probabilities of the different sequences

that include R successes. We also compared expository learning that

emphasized the formula with discovery learning, and obtained similar

results to those we found with formula and conceptual emphases.
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Ourintrprtatonof these studies wes that conceptual expository

instruction and instruction by discovery led t~o knowledge that was more

strongly connected to the students' general knowledge than the knowledge P

that was acquired inep~tr instruction that emphasized the formula.2

Thatstil sems corectinterpretation, but a more specific

hypothesis may be warranted. It seems likely that conceptual

instruction and discovery learning may have facilitated formation of

conceptual entities corresponding to the variables and that these were

less likely to be acquired by students whose instruction emphasized

calculation with the formula.

Several of the findings of our experiments are consistent with this

interpretation. First, students with conceptual or discovery

instruction were able to solve story problems nearly as easily as they

could solve problems with inform-ation presented in terms of the

variables of the formula, whereas for students with formula instruction

story problems were considerably more difficult. This is consistent

with the idea that conceptual entities facilitate interpretation of

problem information in novel contexts.

Three further findings can be interpreted as indications that

conceptual entities facilitate planning. First, some of the problems

that we presented had inconsistent or incomplete information and hence

K-. were unsolvable. For example, one problem gave R-3, N-2, and p-1/2 and

asked for P(R/NI). The information is inconsistent, because there cannot

be more successes than trials. The students with conceptual instruction

identified these as unsolvable problems more frequently than students

with formula instruction. Students with conceptual instruction also]
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were better at solving problems in which the probability of a specific

sequence of outcomes was requested, rather than the probability of a

number of success outcomes. We called a third kind of problem Luchins

problems, because Luchins (1942) studied performance on similar problems

extensively. These were problems in which the answer could be found by

a simple direct means, but if students tried to apply formulas they

could be led into a complicated sequence of fruitless calculations. An :

example was the following: "You play a game five times in which the

probability of winning each time is .17, and the probability of winning

three games out of five is .32. What Ls the total number of successes -

plus the total number of failures?" Luchins problems were almost as easy

as ordinary problems about binomial probability for students who had

discovery learning, but they were much harder than ordinary problems for

students with expository learning.

All three of these findings are consistent with the idea thac a

representation with conceptual entities corresponding to the variables

enables a problem solver to reason directly about the quantities rather

than simply through the medium of the formula. The conceptual

instruction gave more emphasis to discussion of sequences of their

4outcomes and their properties. Thus, it seems likely that in that

instruction, students would gain representational knowledge enabling

them to interpret problems and questions in terms of individual

sequences when that was appropriate. This would provide information

that could be used directly to determine the problems were incoherent,

to identify problem goals in~volving individual sequences rather than the

quantity given by the binomial formula, and to find direct solution

K. ~methods. T
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V. Conclusions

_U this essay I have explored hypotheses about ways in which

representational knowledge can influence problem solving. The

discussion has been focused on effects of an aspt-t of representaLion

that I have referred to as the ontology of a problem domain, the kinds

of conceptual entities that are included in represeotations of problem

situations. I have presented interpretations of several empirical

findings and theoretical analyses that indicate f out ways in which

ontology can influence problem solving: by facillAa4:Ang the formation

of analogies between domains, by enabling is" of &eaneral reasoning

procedures, by providing efficiency, and by facilitating planning.

The idea of problem ontology raises sig-taificant issues relevant to

instruction and the acquisition of cognitive skill. It seems important

to design instruction so -that students will acquire the conceptual

entities that are needed for representing problems in the domain, as

well as acquiring the procedures needed to make the calculations and

inferences required for solving problems. Three studies described in

this essay provided evidence of succcuaful instruction that can be

interpreted as acquisition of conceptval entities. In each of these the

procedures that were taught were related to other information of various

kinds. In mapping instruction for arithmetic, the procedure of

multidigit subtraction with numerals was related to an analogous

procedure of subtraction with place-value blocks. In instruction for

solving problems about simple motion, the procedures for calculating

answers were related to observational experience and procedures for

manipulating and measuring values of the variables. And in instruction

334

iSII!.SUJW ktM



for solving problems using the binomial formula, the instruction that

led to better understanding provided relationships between the

computational formula and general concepts of trials, outcomes, and

*sequences. These findings suggest a general principle: perhaps the

acquisition of cognitive entities is most effective when variables in

procedures are related to other entities in cognitive structure. The

kinds of relationships that can be useful in this way are clearly quite

variable; on the other hand, we cannot expect everything to work, as

evidenced by the results of our experiment on sound transmiss' on. A

detailed theory of learning will be required tu characterize the

favorable conditions specifically, but it seems reasonable to propose

6 that the acquisition of the ontology of a domain is one of the

significant issues to be addressed in our study of learning processes.
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