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MOTION ANALYSIS VIA LOCAL TRANSLATIONAL PROCESSING

Daryl T. Lawton
Computer and Information Science Department
University of Massachusetts
- Amherst, Massachusetts 01003

ABSTRACT

The first part of this report presents a procedure
for processing real world image sequences produced
by relative translational motion between a sensor
and environmental objects. In this procedure, the
determination of the direction of sensor
translation is effectively combined with the
determination of the displacements of image
features and environmental depth. It requires no
restrictions on the direction of motion, nor the
location and shape of environmental objects. It
has been applied successfully to real-world image
sequences from several different task domains. b

In the second part we extend this procedure to less
restricted cases of rigid body motion. Part of the
robustness of the technique is that it can work
with reasonable precision even when applied to.
small image areas containing a few features. This
allows more general image motion to be locally
approximated as translations of small areas in the
environment. Given such an approximation, we then
show how to recover the parammeters of camera
motion.

I. INTRODUCTION

I.A. Definitions

Our analysis is restricted to image sequences
formed by a sensor moving relative to a stationary
environment. The t-th image of an image sequence
is referred to as I(t). Motion of the sensor from
one image to the next is characterized by a cameras
motion parameter vector M(t), whose six dimensions
describe the displacement and reorientation of the
sensor from time t to tel.
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An Image Displacement Vector is a two-dimensional
vector describing Cthe displacement of an image
feature from one 1image to the next. An Imsge
Displacement Field is the set of image displacement
vectors for successive images. An Inage
Displacement Sequence indicates the positions of an
image feature over several successive images.
Though we are dealing with discrete image
sequences, it is often possible to descibe the
continuous curve along wvhich an image feature point
is moving. This curve is cslled the Image

Displacement Path.

Corresponding to image motions we have a set of
terms for describing environmental wmotions. An

Environmental Displacement Field is the set of
three-dimensional vectors indicsting the positions

of environmental points at successive instants. An
Environmentsl Displacement Sequence indicates the
position of an environmental poiui over several
successive instants. An Environmental Displacement

Path describes the three-d sional ocurve that
envirormental points ere moving along for

particular motions.

The Enviromnmental Direction of Motion Field (EDMF)
associates [T nage point a unit vector
desoriding the three dimensional direction of
motion of 1its corresponding envirommental point.
Note that for a particulsr motion, the vectors of
the EDMF  approximate the tangents of the
corresponding envirommental points along their
Environmental Displacement Paths

I.B. Coordinate Systea

The camera model consists of a planar retina
embedded in a three-dimensional Cartesian
coordinate system (x,y,2), with the origin at the
focal point and the optical axis aligned with the
z-axis (figure 1). The x and y axes correspond to
the  gravitationally {ntuitive horizontal and
verticsl directions. The imege plane 1is parallel
to the xy plasne and at some distance along the z
sxis. Positions in the image plane are described
using a 2-d coordinate sysiem aligned with the x
and y axes of the camers coordinate system and with
the origin determined Dby the intersection of the
image plang and the z-axis.
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Fig 1. Camera Coordinate System

I.C. Recovery of Camera Motion Parameters

There are 5 parsmeters (PRA81) that can Dbe
recovered from processing image motion without
knowing absolute camera displacement or velocity
(since absolute depth {s lost): two parameters for
the unit vector (T1(t), T2(t)) which describes tho
axis of translational motion at time t:

parameters for the unit vector (R1(t), RZ(TW
describing the axis of rotation at time t; and one
parameter R3(t) which describes the extent “of
rotation about the axis of rotation at time t.
Both of these axes are positioned at the origin of
the camers coordinate system. The problem of
processing image motion resulting from rigid body
camers motion csn be organized into subcases of
increasing co-ploxu.y. corresponding to the number
of camers motion parsmeters that are unconstrained.

II. PROCESSING TRANSLATIONAL MOTION

In this section, we begin with a review of the
properties of translational displacement fields and
an overview of the procedure for processing thea.
This is followed Dy a more detailed description of
the components of the procedure: feature
extraction, error measure computation, and
optimization. Ve then present some experimental
results showing the effectiveness of the method and
discuss some extensions.
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I1.A. Translational Motion Properties

For purely translationsl motion, the image
displacement paths are determined by the
intersection of the translational axis with the
image plane. If the translational axis intersects
the image plane on the positive half of the axis,
the point of intersection {3 called a Focus of
Expansion (FOE) and the image motion is along
straight lines radiasting from it. This corresponds
to camera motion towards environmental points. Ir
the translational axis intersects the image plane
on the negative half of the axis, the point is
called a Focus of Contraction (FOC) and the image
displacement paths are along straight lines
converging towsrds it. This corresponds to camera
motion away from environmental points. The
intersections of axes parallel to the image plane
are points at infinity and are treated as FOEs.

The translational axis alone does not completely
determine an image displacement field. It
constrains the direction of motion of image
features, bDut not the wmagnitude of their
displacements, which are a simple function of bdoth
feature position in the image and the depth of the
corresponding environmental points.

The set of all

possible translational axes

describes a unit sphere called the Translational

Dtreetion Sphere. The procedures below are defined

respect to this sphere, rather than the image
plmc itself, for reasons described in section
II.D.5.

I1.B. Overview

Processing translational wmotion consistd of
determining the axis of translation and finding the
extent of image feature displacements along the
paths determined by the corresponding FOE or FOC.
The direction of camera translation from an image
sequence 1is computed in two basic steps: Feature
Extraction and Search. The feature extraction
process picks out small image areas which
potentially correspond to distinguishing parts of
environmental objects. The search process
optimizes an error measure which reflects the
validity of a hypothesized translational axis by
evaluating the matches of extracted features along
the image displacement paths determined bDy the
hypothesized translational axis. The  search
process consists of two basic steps: a global
sampling of the error measure to determine the
rough position of the minimum followed by a search
based on local evaluation of the error measure
gradient.

The procedure requires specification of 1) the
feature extraction process; 2) the form and

computation of the error measure; and 3) the
organization of the search process.
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II.C. Feature Extraction

The feature extraction process is used to determine
small areas (sometimes called image points) in an
image that are distinct from neighboring areas.
This distinctiveness 1limits the 1likelihood of
matches of these image areas, and possibly reflects
a correspondence to actual and significant points
in the environment, such as points of high
curvature on object boundaries, texture elements,
surface markings, etc. (However some features,
termed false features will result from noise,
occlusion, and light source effects and have
behavior which is difficult to analyze), Features
can be represented as arrays of numbers extracted
directly from an image or as parameterized tokens
describing local image properties. In this paper,
we refer to features exclusively as small arrays of
data values centered at some point in an image at
some time t.

Following Moravec [MOR77,MOR80], the method of
feature extraction used here is based upon finding
image areas which are significantly different than

their neighboring areas. Using a correlation
measure normalized between 1 (for perfect
correlation) and 0, the distinctiveness of a

feature is 1 minus the best correlation value
obtained when the feature is correlated with
respect to its immediately neighboring areas.
Selecting good features then requires finding the
local maxima in the values of the distinctiveness
measure over an image.

We have extended this approach somewhat by
constraining the neighborhoods over which the
features are selected to contours determined by
. other global processes which are sensitive to image
edges. For the results in section II.F., these
contours were determined using zero-crossings.

11.C.1.

; The use of zero-crossings to determine significant
, image contours at different levels of resolution
- has been proposed and extensively studied by Marr
et. al. [HIL8O,MAR80). In this processing an
image is convolved with Gaussian-Laplacian masks
(del®#%2g) of different positive widths and
N thresholded at zero to determine 2zero-crossing
R contours. These contours are significant since
- they correspond to the points of greatest change in
. the convolved image. The distinctiveness measure
- can be applied to points along these contours in
) - the convolved image with the local maxima
- determining the position of potential features,
This generally has the effect of finding points of
high curvature along the zero-crossing contour,
although points corresponding to local occlusion
vertices and weak maxima will also be extracted.
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Feature Extraction Using Zero-Crossings <
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Fig 2. Curvature Approximation

Many of the weak features can
suppressing those which are at
curvature along the zero-crossing contours. The
curvature of a feature on 8 contour is approximated
by the inner product of the normalized vectors
describing the relative positions of the features
adjacent to it along the contour. These values are
then thresholded between 1 (corresponding to high
curvature) and -1 (corresponding to low curvature).
(the cosine of angle alpha in figure 2)

be removed by
points of low

Use of zero-crossing-based features requires
specification of the sizes of the convolution masks
that are employed and deciding whether to position
extracted feature points with respect to the
unprocessed image or the convolved images. In
general, it s beneficial to use masks of various
positive widths for sensitivity to festures at
different levels of resolution. The processing
described below can be applied independently to the
pairs of successive images formed by convolving the
Successive images with del®*2g masks of different
positive widths. Alternatively, features can be
extracted from the original, unfiltered image at

. the positions where features were determined in the

convolved images, though experience with large
masks has shown that features can move significant
distances from where a person would generally place
them with respect to the original image.

II.D. Error Measure

The error measure is used to evaluate the validity
of a translational axis with respect to successive
images. It reflects the quality of the matches of
extracted features along the image displacement
paths determined by a potential translational axis.
It is expected that most features will have their
best matches along the image displacement paths
determined by the correct translational axis. This
will tend to be violated by false features and
those features affected by occlusion.
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For example, 3 sketch of several of the image
displacement paths determined by the intersection
of a potentiasl translational axis and the image
. plane is shown for a set of extracted features in
. figure 3a. If the hypothesized translational axis

. . is correct, the majority of features will tend to
s have good matches along these paths. Figure 3b
. shows the match profile for a particular feature

along its displacement path with respect to the
succeeding image. The units of displacement are

E/E/

3a F:)E GN!-

1
match
strength
3b P Ot T y—————
displacement (pixels)
N Fig 3. Constrained Feature Displacements

The development of an error measure requires a
measure for the degree of match between features
and an interpolation process for determining
positions along an image displacement path. Each
of these can be implemented in various ways with
B the choices generally involving a trade-off between
the speed of evaluating the error measure and the
\ precision with which the translational axis can be
determined.

I1.D.1. Match Metric

There are several metrics for similsrity of nxn
pixel features of the form A(i,j) and B(i,j), vhere
i ranges from 1 to n and j ranges from 1 to n. Ve
have utilized:

S )
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Normslized Correlation ( 1 )

11 Ad,98(4,9)
{3

/1L AU AW, /17 B(L,1)%B(4,9)
i3 13

Moravec Correlation [MOR77) (2)

b I a8,
{3

«(E}Munuuan+<22uuﬁnudnnn
13
Normalized Absolute Value Difference ( 3)

E j{ abs(A(L.§)-B(4,3))

1.0 -
1A +§ 18,
i3 1]

All of these measures have a value of 1 for a
perfect match. Of these, the first choice is the
most conventionsl, the second » good approximation
to the first, and the third is the quickest to
evaluate.

II.D.2. 1Interpolation Process

The interpolation process approximates the
potential displacements of a feature from an
initial image into a succeeding image. Depending
on the accuracy required, positions along the image
displacement path can be approximated a) roughly by
setting the coordinates of the feature's position
to the nearest integer value; or b) more
accurately by performing a subpixel interpolation
of the feature at each of a set of selected
positions along the image displacement path with
respect to the succeeding image. The basic
trade-off is between speed and accuracy, with
subpixel interpolation being a more expensive
computation.
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I1.D.3. Error Measure

The error measure associates with a point on the
direction of translation sphere a value describing
the Quality of image feature matches along the
image displacement paths determined by the
corresponding translational axis. This value |is
computed by determining the best match for each
feature along the image displacement path
determined by the hypothesized translational axis
and then summing the normalized error values (using
one of the metrics above) for all of the image
feature points. Thus for a set of N features in an
initial image, a hypothesized translational axis,
and use of one of the match metrics above, the
error measure is

n
§ (1.0 - bestmatch(1)) (4)
el .

where bestmatch(i) 1s the best match value
associate t feature 1 along the image
displacement path determined for it by a
translational axis.

II.D.4. Properties of the Error Measure

The error measure should have a distinct global
minimum at the point on the unit sphere
corresponding to the correct translational axis.
It is expected to be well behaved globally because
it is very unlikely that translational axes that
are far from the correct position will define image
displacement paths that simultaneously allow good
matches for many features. Thus, we do not expect
competing candidates for the global miniaum to be

4
»

non=-distinctive and false features.
Non-distinctive features will match well for many
different translational axes. Large numbers of
these weak features will flatten the response of
the error measure. False features will also
distort the error measure since they will often
have their best matches with incorrect
translational asxes. .

The effects of these poor features should be
compensated by the agreement of good features.
Every one of the good features will tend to have a
bad match for the incorrect FOE snd their unanimity
is expected to overide the lack of discrimination
of weak features and the random quality of the
matches of false features.

R S e Yt A At Mo A Rttty S e Ve W
-

IJ

;’;7 widely separated, and the experiments we have
:: performed confirm this expectation.

o

) The error measure will be affected by both.
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II.D.5. Utility of the Direction of Translation
Sphere

There are significant advantages in defining the
error mcasure with respect to a unit sphere,
instead of the potential positions of FOEs and FOCs
in the image plane. The sphere 1is a bounded
surface which makes uniform global sampling of the
error measure feasibdble. Additionally, the
resolution in the position of the translational
axis varies accross the surface of the image plane.
For example, the FOEs determined by translational
axes seperated by very small angles will be
seperated by larger and larger distances in the
plane as the intersections of the translational
axes and the image plane are placed further from
the visible image. The effect of this on the error
measure, when it is defined over the image plane,

"is large flat aress for FOEs further from the

visible portions of the image. Finally, special
criteria must be used to distinguish between FOEs
and FOCs if the error measure is defined relative
to the image plane. Roughly parallel image
displacement vectors could correspond to an FOE off
to one side of the image plane or to an FOC off to
the opposite side. On the direction of translation
sphere, the corresponding translational axes would
be close while on the plane they are completely
separated. -

II.E. Search Organization

‘The search process used here consists of two

phases: A global sampling of the error measure to
determine its rough shape followed by a local
search to determine the minimum. The local search
is initialized at the position where the minimum
value was determined by the global ssmpling. The
procedure used for the local search is steepest
descent with a diminishing step-size. That is, the
Steepest descent procedure begins with a initial
fixed step size and determines a local minimum
using it. The step-size is then reduced and the
prodedure repeated until the step-size is at the
desired resolution for the determination of the
translational axis. In the experiments below the
initial step-size was set to 0.1 and then reduced
to 0.025 and 0.005 radians.

The form of the error function for several
different translational sequences is smooth, with a
single minimum in a large neighborhcod around the
correct translational axis. Thus, the global
sampling could be quite sparse or the initial step
size of the local search quite large.
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Figures 4a and 4b (128x128 pixels, 64 intensiy
levels, black and white) show successive images o ;‘L Q %P
taken from a car driving down a country road in
Massachusetts. Figure Sa shows the extracted ]0 s a D

zero-crossings using a mask of positive width equal

to five pixels. Figure 5b shows the interesting %
points extracted along these contours and figure Sc

shows the set of (interesting points after £
low=-curvature suppression (see section II.2.C.) was

applied using an inner product threshold set to

>

2 I
ply

-0.75. Features were 5x5 pixel arrays. For this )
experiment, the extracted feature positions were [
applied relative to the raw image. ] o

AN

Fig Sa. Extracted Zero Crossings
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Fig Yas. Road Image 1 ] %\ﬂ
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Fig Sb. Distinctive Image Points
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Fig 4b. Road Image 2
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Fig Sc. After Low Curvature Suppression
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The global search used the absolute value norm and
nearest integer interpolation. The sampling
increment corresponded to the vectors on the
direction of motion sphere being separated by
.314157 radians from easch other. Maximal Image
displacements along the hypothesized image
displacement paths was set to 10 pixels. Features
were centered at the positions shown in figure Sc.
The global sampling determined @ minimum in the
error function at the unit vector (-. 80902,
-. 47554, .34548) on the direction of translation
sphere.

The 1local sesrch used the Moraveec norm and

d
bi-linear interpolation. The determine

translational axis was (-.83738, -.82043, .34933).
The displacements of the feature points from figure
Sb for this translational axis are shown in figure

6.
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Fig 6. Image Displacements

The procedure was repested, but using features at
the positions from figure Sb (those prior to low
curvature suppression). This has the effect of
introducing weak and false features into the
computation. The translationsl axis extracted vas
(-.82909, -,42281, .36585) This is a difference of
0.01863 radians or 1.06765 degrees from that
determined using the features indicated in figure

Se.

The procedure was also applied using the features
from the restricted subarea shown in figure 7,
corresponding to some faint tree texture. Using
these features, the translational axis extracted
Wi -, 84281, -.U2928, .32465). This is a
d::reienge o} 0.02677 radians or 1.53418 degrees
with the translational axis determined using the
feature centered at the positions indicated in

figure Sc.

Fig 7. Image Subarea

Given the direction of translation and image
displacements, relative environmental depth can be
recovered by the simple relation (LEE80)

5% ()
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where Z is the value of the Z component of an
environmental point at time t+1, delta Z is the
extent of environmental displacement along the Z
axis from time t to time t+1, D is the distance of
the corresponding image point from the FOE or FOC
at time t, and delta D is the image point's
displacement from time t to time t+1. Z can be
recovered in units of Delta Z without knowledge of
the actual extent of camera displacement. When
Delta D is small, the inferred depth values can be
quite erratic due to sensitivity to small numbers
in the denominator in the left hand side of
equation 5. For this reason, it is useful to keep
track of the image displacements over several
successive images with concurrent updating of the
inferred depth values. This was done using a
sequence of four successive image: of the roadsign.
In this processing, the position of the
translational axis determined from images I(t) and

I(t+1) was used as the initial value in the local

search for determing the translational
images I(t+1) and I(t+2).

axis for

Given the image displacements determined from I(1)
to I(4) of the sequence, the depth values for image
points along the contour in figure S5a were computed
using equation 5, This sequence is especially nice
for presenting depth processing results since the
three environmental objects in the images are at
three distinct depths. This is shown in figure 8a
by the three distinct clusters in the histogram of
the depth values calculated for the points along
the contour in figure Sa. Mapping feature labels
from these clusters back onto contour points from
figure S5a yields: the boundary shown in figure 8b
(the sign), the boundary shown in figure 8c (the
pole), the boundary segment shown in figure 8d (the
trees). Points in a 10 pixel wide margin along the
boundary of I(1) were ignored since the processing
did not take {nto account occlusion/disocclusion
effects along the {mage boundaries.
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Fig 8a. Depth Histogram (Z component) Fig 8d. Tree Segments
v I1.G. Summary and Extensions

This work demonstrates a simple and robust

\t procedure for determining the direction of
environmental motion and image displacements in

real-world image sequences produced by observer

translation. It is not dependent on an initial

/ '| matching process prior to the inference of camera
motion. Instead, features are extracted from an

initial image and their displacements are

determined concurrently with the inference of

direction of sensor motion. Thus complications in

matching that arise from an individual feature

being extracted in one image and not in the next

are reduced. The process is also relatively

insensitive to weak and false features. It has

been successfully applied to image sequences

1 ﬂl produced by a car translating down a road, by a

Fig 8b. Sign Segments

camera attached to a robot manipulator in an
. industrial environment, and to artificially
generated sequences. We now consider some
3 extensions.

¢ I1.G.1. Other Cases of Restricted Motion

| The procedure developed in this paper should be

l applicable to other cases of unknown but restricted

camera motions for which 1t 4is computationally

I feasible to search directly through a subspace of

| .. the camera motion parameters. Two particular cases

' are pure sensor rotation and motion constrained to
a known plane.

With pure sensor rotation, the unknown camera

Fig 8c. Pole Segments parameters are constrained to R1(t), R2(t), and
R3(t). In this case, the error measure from
section II.D.3. would be defined with respect to
the direction of rotation sphere where each point |
corresponds to an axis of rotation. For each
rotational axis, the extent of displacement for
image features is determined by different values of
R3(t). There is the additional constraint in the
rotational case that the displacements of all
ge:t\;res must correspond to the same value of
3(t).
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For motion constrained to a known plane, the
rotational axis is known to be perpendicular to
that plane and the translational axis is
constrained to lie in that plane. Thus, only R3(t)
and one translational parameter can vary and the
error measure can be computed with repect to these
two parameters. The global sampling in this case
amounts to evaluating a set of translational axes
for each of a set of potential rotations.

I1.G.2. Multiple Independently Moving Objects

The processing here has been limited to a ocamera
moving relative to a stationary environment, or a
stationary camera with a stationary background and
a single moving object. A useful extension would
allow for several independently moving objects with
different directions of translation. The technique
of summation of errors in feature matching only
allows a single axis of translation to be
determined and will cause the analysis of the
several objects in independent motion to be
confounded.

One approach is to segment an image into regions
which potentially correspond to objects, or to
arbitrarily divide the image into regular
overlapping subimages and perform the translational
analysis for each region or subimage independently
(WIL80,NAGITY]. Experiments have shown it is
possible to work with small image areas, at a size
comparable to extracted regions or subimage areas,
and still determine the axis of translation with a
reasonable level of precision. If objects with
similar translations correspond ¢to several
different regions or image subareas, then similar
translational axes will be determined for these
regions or subimages. If objécts with different
translations correspond to the same regions or
subimages then there will be poor, indistinct error
values for the error function. For this second
case, it is necessary to resegment and redetermine
a translational axis.

II.G.3. Stabilized Retina

Translational processing is sufficient for
vision-based navigation in a stationary environment
if the orientation of the optic sensor can be fixed
relative to the environment over time. In this
case, sencor motion amounts to a sequence of
translations in possibly different directions over
time.

67
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A difficulty with such a stabilized retina i{s that
much of the environment would not be observable.
This can be corrected by using a set of such
stabilized retinas arranged to yield a complete
view of space. There would then be no need to
rotate the sensor to view a particular
environmental point. A possible arrangement of
retinal surfaces is a cubical one. One of the
retinal planes will always contain an FOE and
another will always contain an FOC (unless the
direction of motion is right on an edge of the cube
and the focal length has not been properly
adjusted). There will also be several independent
estimates of the directon of translation which can
be intearated.

III. THE LOCAL TRANSLATIONAL DECOMPOSITION

We now extend the trans)- nal case to less
restricted forms -of senso: vion by applying the
procedure for determining we direction of
translational motion to s ., overlapping areas
across an image surface over squence of images.
The motivation is to approx! eneral motions as
consisting locally of env! <« al translations
and to f{interpet local im - .¢«ion as resulting
from environmental translatious. The feasibility
of this {s based upon experiments showing that the
direction of translation can be extracted with
reasonable precision using small image areas
ccntaining a few features., The resulting
description of motion is an approximation to the
Environmental Direction of Motion Field (EDMF)
(section I.A.) which associates with a set of image
points (or small image areas) the direction of
motion of the corresponding environmental point (cr
small environmental surface area). As a low level
representation of environmental mction, this
considerably simplifies the recovery of the sensor
motion parameters,

This section is divided into three parts. In
III.A., the properties of the EDMF for different
sensor motions are summarized. The cases
considered are pure rotational motion; motion
constrained to an unknown plane; and arbitrary
motion. This analysis shcws how to recover the
axis of rotation from the EDMF for these cases.

Techniques for computing the EDMF from  image
sequences are presented in section III.B. There
are two cases considered: 1) sequences for which
image displacement vectors have not Dbeen
determined; and 2) sequences for which image
displacement vectors have been determined. In the
first case, computing the EDMF alsc determines
image displacements.

Section III.C. demonstrates the use of the local
translational decomposition fcr processing image
sequences that are produced by sensor motion
constrained to an unknown plane in highly textured
environments. There are indications that this
processing is quite robust. We also note the
effect of coupling the EDMF and environmental
rigidity constraints for the recovery of relative
depth.
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III.A. EDMF Properties for Different Types of
Camera Mction -

Befcre discussing the computaticn and use of the
EDMF, it is necessary to describe some of its basic
properties for different classes of motion. To
describe these properties, it is useful to map the
EDMF vectcrs onto the direction of translation
sphere. In  section II, the direction of
translation sphere was used as the domain for the
errcr measure. Here it is used in a manner similar
to a histegram. Each EDMF vector votes for a
particular point on the direction of translation
sphere. Processing then involves finding certain
patterns in the distribution of the EDMF vectors.

III.A.). Pure Translational Motion of the Camera

As discussed above, for translational motion the
image displacement paths are straight 1lines
intersecting at a point. The environmental
displacement paths are straight, parallel lines.
All the vectors in the EDMF are identical and map
onto a single point on the Direction of Translation
Sphere corresponding to the translational axis.

II1.A.2. Ppure Rotaticnal Motion of the Camera

For pure rotational motion of the camera, the image
displacement paths are conic sections determined by
the intersection of the image plane with the nested
family of cones aligned with the axis of rotation
based at the origin of the camera coordinate
systenm, The environmental displacement paths are
circles about the axis of rotation and are
contained in planes perpendicular to it., The EDMF
vectors will lie upon a great circle contained in a
plane perpendicular to the axis of rotation when
mapped cnto the direction of translation sphere.

III.A.3. Motion Constrained to an Unknown Plane

Fer this case, the environmental displacement paths
are circles in planes perpendicular to the axis cf
rotation, but the axis does not necessarily contain
the origin of the coordinate system (see the
discussion of kinematics in chapter 1 of [WHI44]),
As for the rotational case, the EDMF vectors will
lie cn a great circle in a plane perpendicular to
the axis of rotation when mapped onto the Directicn
cf Translation Sphere.

III.A.4. Arbitrary Motion

For arbitrary metion, the image displacement paths
cannot be easily described. But the environmental
displacement paths are helices abcut an axis which
does not necessarily contain the origin (since a
screw displacement is the most general form of a
rigid bedy motion {COX61,WHITUU]),

N .
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The set of normalized tangent vectors to a helix,
when based at a common origin, will generate a
cone, called the tangent cone., The orientaticn of
this cone specifies the axis of rotation. The set
of tangent cones determined by a rigid body motion
for all points in space will all have the same
orientation. Note that the difference vectors
between any vectors of a tangent cone will lie in a
plane perpendicular to the axis of rotation.
Because of this, the EDMF produced during arbitrary
motion has a particularly nice property if the
rigid body motion 1is constant over two or more
intervals., For such motion there will be
successive environmental direction of moticn
vectors associated with each image point and the
difference vectors between these successive EDMF
vectors will lie in the same plane, perpendicular
to the axis of rotation, for all image points.

I11.B. Computing the EDMF

III.B.1. From an Unprocessed Image Sequence

The translational processing procedure described in
section II vyields a set of image displacements
consistent with a determined translational axis.
Applying this procedure to a small area of an image
containing extracted features finds a set of image
displacements consistent with interpreting the
local image motion as if it were produced by a
translation of the corresponding part of the
environment. Note that where the translational
approximati~n is poor (for example, image areas
near the intersection of the axis af rotation and
the image plane) there will be a large value of the
error measure describing the validity of the
translational axis. Thus, ‘he error messure can
serve to validate the approximation. It is also
necessary to incorporate information ccncerning the
number and distribution of the feasture points in
the local image areas for this evaluation. Fer
example, if there is only one feature in the area
or the features are bunched together, the
translational approximation will be poor.
Processing 1is not applied to lccal aress which do
not satisfy these requirements.

Figure 9a is a 128x128 pixel image of some grass
texture with seven bits of intensity. Figure 9b
was derived from figure 9a by applying a simulated
retation of 0.1 radians about the Y axis of the
camera coordinate system (the focal length was set
to one). Features were selected from the image in
figure 9a by first determining image points where
the contrast was greater than 20 intensity levels,
and then finding 1local maxima in the
distinctiveness values (section II.C.) associated
with the 5x5 pixel square features centered at
those points. The resulting feature pcsiticns are
shown in figure 10,
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Using the translaticnal prccessing procedure, the
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direction of translation was determined for 11x11 x&‘;"ﬁ‘“—‘/g-/
pixel neighborhcods centered at each feature in =T %.*’-7-‘“*.':—;__‘—;&‘5
figure 10. The image displacement associated with ..E-‘-a_ ™ B e st
a feature was that determined by the best B N =g
translational approximation for the feature's T ST TR e
neighborhcod. The resulting image displacement —dqp=="=kL‘ — '“'“"‘tgéz—
field is shown in figure 11. ey Ty
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Fig 11, Image Displacements

1II.B.2, From a Computed Displacement Field

An error measure can be developed to evaluate
translational axes for image sequences for which
image displacements have been determined. The
error, with respect to an image displacement field,
can be calculated for a translational axis by
summing the angles between the image displacement
vectors and the image displacement paths from the
FOE or FOC determined by the translaticnal axis
(figure 12). Similarly, the sum of one minus the
cosine of each angle could be used. To ccmpute the
EDMF, the translaticnal axis is determined applying
this error measure to lccal areas of the computed
displacement field.

Fig 9a. Grass Texture Image 1

It may be possible to determine the EDMF from
sparse image displacement fields by filling the
image displacement field to an adequate density by
a smcothing or averaging procedure which treats the
sparse determined image displacements as boundary
conditions and then locally applying the
translational processing procedure using the
adapted error measure.

[+5] 7
Ve
7
7 Fig 12 Er
y g . ror Measure
/s
“ o —e—
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~
N
N a
N 3
~N
Error = E a.:
Fig 10. Extracted Feature Positions 1
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III.C. Processing the Computed EDMFs
II1.C.1. Processing Arbitrary Planar Motion

For arbitrary planar motion, all the environmental
displacements are constrained to lie in planes
perpendicular to the axis of rotation. In this
case four of the five recoverable camera parameters
are unconstrained: the axis and extent of rotation
are arbitrary, and the translational axis is
constrained to be perpendicular to the rotational
axis.
the Direction of. Translation Sphere, they will lie
on a great circle in a plane perpendicular to the
axis of rotation. Thus, processing consists of
determining the EDMF and finding the best planar
fit of the EDMF vectors which alsc contains - the
origin. This may be done using any of a number of
plane fitting routines. In the experiments here,
the eigenvector fit procedure described in [DUD73)
pP. 332-335 is used, having been adapted for
planes containing the origin.

Note that if the mction occurs over several
Successive instants-and remains constrained to the
same plane, then the vectors in the successive
EDMFs are alsc constrained to 1lie in the plane
parallel to it and containing the origin. Thus
more and more values for the fit can be collected
over time, thereby increasing the accuracy of the
processing.

For example, using the EDMF determined for the
‘grass  texture sequence described in section
III.B.1., the normal to the best plane fit was
determined to be (.002518,.999893,~-.0143709). This
is off by .014592 radians or .836053 degrees from
the correct rotational axis. Figure 13 shows a
histogram of the computed EDMF vectors in a pélar
coordinate system (for the unit vectors (X,Y,Z) on
the direction of translation sphere, Phit =
arctan(Y/X), Phi2 = arccos(Z)). The number of
vectors at a particular location {s encoded by
darkness. Note the orientation in a plane
perpendicular to the Y axis.

Phi1

Fig 13. EDMF Histogram

When, the ideal EDMF vectors are mapped onto.
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Figure 14 shows a 32x32 image displacement field
produced using a sphericsl distribution of
environmental points about the Z-axis (the observer
is looking into the interior of s sphere) with
noise modulation sdded to the depth values of the
points. A rotation of 0.1 radians occurs sbout an
axis whose orientation is parallel to (.577350,
.577350, .577350) and positioned at the back of the
sphere. The local direction of translation was
determined at all positions across the displacement
field for 5x5 pixel windows, using the measure
described in section III.C.2. Using all the
determined EDMF vectors in the plane fitting
procedure, the normal is determined to be (.647159,
.543663, .534429). This deviates from the correct
axis by .088631 radians or 5.078184 degrees.
Figure 15 shows the error values in the
translational fit proportional to image darkness.
Note that the greatest errors occur where the image
displacement vectors have a rotational character.
By restricting the plane fit to EDMF vectors which
have 1low associated error values for the
translational approximation, the determination of
the axis of rotation is improved. By using EDMF
vectors for which the determined error measure is
less than 90 degrees over the 5x5 pixel asreas, the
normal is determined to be (.579862, .583347,
.569148), This deviates by .010380 radians or
.594798 degrées from the correct rotational axis.
Thus, the high error measure values have been used
to remove the rotaticnal-like displacements in the
center of the image.

Once the axis of rotation has been determined,
processing hss been reduced to the case of known
planar motion. This could bde sclved directly via
the suggested adaptation of the translational
technique to known planar motion (section II.G.1.).
Alternatively, the inference techniques of Prazdny
[PRA81] and Nagel [NAGS81a,NAG81b] could be applied
to the image displacement field determined
concurrently with the EDMF. In these techniques a

‘composite image displacement field (one produced by

combined camera rotation and translation) is
decomposed into its translational and rotaticnal
coaponents by searching through the
three-dimensionsl space of rotational parameters to

find a rotational displacement field which, when
subtracted from the composite field, yields a
translational displacement field. By having

determined the axis of rotation via analysis of the
EDMF, this search has been reduced to a single
bounded dimension corresponding to the extent of
rotation.

For the case of planar motion, the FOE or FOC {s
further constrained to lie along a line in the
image plane determined by the intersection of the
image plane and the plane perpendicular to the axis
of rotation and containing the focal point.
Because of this, the decomposition procedure is
simplified. When the correct rotational field 1s
subtracted from the composite field, the resulting
field should have an FOE or FOC along the line.
Thus, it is only necessary to evaluate the
distribution of the intersections of the image
displacement vectors resulting from subtraction of
a hypothesized rotational displacement field with
this line.
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Fig 14, Image Displacement Field

Fig 15. Translational Approximation Error

Note that by mapping the EDMF onto the direction of
translation sphere, the local differential
properties of the EDMF are not being utilized. We
suspect that the extent of rotation can be
recovered, or at least strongly constrained, by
analyzing the local changes in the orientation of
the EDMF vectors either spatially (over a small
area of an image) or temporally (over successive
inter-image intervals). If this is so, processing
could be directly reduced to the purely
translational case by removal of the determined
rotationai component.

Let us consider the case where the parameters of
motion remain constant over successive intervals,
Here the angle between the successive EDMF vectors
associated with an image point will be equal to the
angle of rotation. This angle will be the same for
all points {n the image sequence and suggests a
potentially rodbust technique for determining the
extent of rotation by finding the mean angle
between successive EDMF vectors.

III.C.2. Coupling the approximated EDMF  and
Rigidity COnsEraIngs - -

There are several formulations for the recovery cf
environmental depth and camera motion parameters
based upon environmental rigidity (LAW8O, NAGS1,
MER80,  ROA8B0, ULL79, WEB81). Solving these
constraints is simplified when information about
the direction of environmental motion is
incorporated into them. In particular, the number
of points in successive frames that is necessary to

infer their relative depth is reduced from five to
two.

For two points in successive images there are four
unknowns to be recovered corresponding to the
depths of the two points at instants t and tel,
One of the depths at time t can be set arbitrarily
since only relative depth can be recovered. Both
depths of the points at time t+1 can be determined
from their image displacement vectors, their depths
at time t, and their corresponding EDMF vectors.
(To see this (figure 16) , note that given 1)
sSuccesive rays of projection Pt and P2; 2) a depth
D for the corresponding environmental point along
P1 and 3) the direction of environmental motion for
the point along P1, the depth of the environmental
point along P2 can be determined by selecting the
point on P2 that is closest to the (dotted) line
determined by the environmental point along P1 and
its direction of motion). Thus, the depth of one
of the points can be set arbitrarily and the other
depth determined based on satisfaction of the
rigidity constraint over successive instants.

Each point can thus assign relative depths tc all
other image points. This suggests a consistency
computation wherein agreement between the relative
depth maps determined by each point are used to
find a globally consistent depth map.

2

focal point

Fig 16. Depth Inference
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III.D. Discussion

This work shows that if the EDMF can be reliably
computed, it is a very wuseful low level
representation for rigid body motion analysis.
There are strong indications that this is possible
for densely textured image sequences and that
camera motion parameters can be recovered for cases
of motion of complexity corresponding to motion
constrained to an unknown plane.

Techniques for processing arbitrary motion have
been suggested in section III.A.4. (finding the
best planar fit to the difference vectors of
successive EDMF vectors) and in section III.C.2
(solving rigidity constraints coupled with
information in the EDMF). The primary question
concerns the robustness of processing when using a
noisy, approximated EDMF in the arbitrary case.
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