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MOTION ANALYSIS VIA LOCAL TRANSLATIONAL PROCESSING

Daryl T. Lawton
Computer and Information Science Department

University of Massachusetts
- Amherst, Massachusetts 01003

An image Dilacement Vector is a two-dimensional
vecE r s-del-r Th-g-th--Trsplaement of an image

Afeature from one image to the next. An Image
ABSTRACT D!spl!ment Field is the set of image dliplecemet

Val for successive Images. An
Displacement Sequene indicates the positions of an

The first part of this report presents a procedure LIge estu over several successive images.
for processing real world Image sequences produced Though we are dealing with discrete image
by relative translational motion between a sensor sequences, It Is often possible to descibe the
and environmental objects. In this procedure. the continuous curve along which an image feature point
determination of the direction of sensor Is moving. This curve is called the Imft*
translation is effectively combined with the Displacement Path.
determination of the displacements of Image
features and environmental depth. It requires no Corresponding to image motions we have a set of
restrictions on the direction of notion, nor the terms for describing environmental motions. An
location and shape of environmental objects. It Environmental plaement Field Is the set of
has been applied successfully to real-world Imagoe thre-dmennionA vetors indicating the positions
sequences from several different task domains.p% of environmental points at successive instants. An

Environetal Dilacment Sence indicates the
In the second part we extend this procedure to less position of an evironmentalpin over sveral
restricted cases of rigid body motion. Part of the successive Instants. An bvironmental Diaplacement
robustness of the technique Is that It can work Path describes the three-dimensional cwve that
with reasonable precision even when applied to. env ronmental points ore moving along for
small image areas containing a few features. This particular motions.
allows more general Image motion to be locally
approximated as translations of small areas in the The Environmental Direction of Motion Field (EDMF)
environment. Given such an approximation, we then assoceas ith eeh mage pont a unit vector
show how to recover the parameters of camera describing the three dimensional direction of
motion. otion of its corresponding environmental point.

Note that for a particular motion, the vectors of
the D1W approximate the tangents of the

I. INTRODUCTION corresponding environmental points along their
Environmental Displacement Paths

I.A. Definitions
1.B. Coordinate System

Our analysis Is restricted to image sequences
formed by a sensor moving relative to a stationary The camers model consists of a planar retina
environment. The t-th Image of an Image sequence embedded in a three-dimensional Cartesian

is referred to as I(t). Notion of the sensor from coordinate system (z.y,z). with the origin at the
one image to the next is characterized by a camera focal point and the optical axis aligned with the
notion parameter vector (t). whose six dimensions z-axis (figure 1). The x and y axes correspond to
describe the displacement and reorientation of the the gravitationally intuitive horizontal and
sensor from time t to t+i. vertical directions. The image plane Is parallel

to the xy plane and at same distance along the z
axis. Positions in the Image plane are described
using a 2-d coordinate system aligned with the x
and y axes of the eaera coordinate system and with
the origin determined by the intersection of the
image plan and the &-axis.

This research was supported by grants DARPA/ONR ) - ]
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II.A. Translational Notion Properties

For purely translational motion, the image
displacement paths are determined by the

4 intersection of the translational axis with the
Image plane. If the translational axis intersects
the image plane on the positive helf of the axis.
the point of intersection is called a Focus of
Expansion (FOE) and the image notion is along
straight lines radiating from it. This corresponds
to camers motion towards environmental points. if
the translational axis intersects the image plane
on the negative haif of the axis, the point is

i.8. ,,MO called a Focus of Contraction (FOC) and the image
displacMent paths are along straight lines
converging towards it. This corresponds to camera
motion away from environmental points. The
intersections of axes parallel to the image plane
are points at infinity and are treated as FOEs.Fig 1. Camera Coordinate System

The translational axis alone does not completely

determine an image displacement field. it
constrains the direction of motion of image

features, but not the magnitude of their
displacements, which are a simple function of both
feature position in the image and the depth of the

I.C. Recovery of Camera Notion Parameters corresponding environmental points.

The set of all possible translational axes

There are 5 parameters (PRA81] that can be describes a unit sphere called the Translational
recovered from processing image motion without Direction Sphere. The procedures below are defined
knowing absolute camera displacement or velocity with respect to this sphere, rather than the image
(since absolute depth is lost): two parameters for plane itself, for reasons described in section
the unit vector (TIt). T2(t)) whliW describes the II.D.5.
axis of translational motion at time t; two
parameters for the unit vector (RI(t). R2(-TY
describing the axis of rotation at time t; and one i.B. Overview
parameter 13(t) which describes the extent of
rotation about the axis of rotation at time t.
Both of these axes are positioned at the origin of Processing translational motion consisto of

the camera coordinate system. The problem of determining the axis of translation and finding the

processing image motion resulting from rigid body extent of image feature displacements along the

camera motion can be organized into sMcnses of paths determined by the corresponding FOE or FOC.
increangnl complexity, correspnding to the numnber The direction of camera translation from an image

of camera motion parameters that are unconstrained, sequence is computed in two basic steps: Feature
Extraction and Search. The feature extraction
process picks out aal1 image areas which

II. PROCESSING TRANSLATIONAL MOTION potentially correspond to distinguishing parts of
environmental objects. The search process
optimizes an error measure which reflects the

In this section, we begin with a review of the validity of a hypothesized translational axis by
properties of translational displacement fields and evaluating the matches of extracted features along

an overview of the procedure for processing them. the image displacement paths determined by the
This is followed by a more detailed description of hypothesized translational axis. The search
the components of the procedure: feature process consists of two basic steps: a global
extraction, error measure computation, and sampling of the error measure to determine the
optimization. We then present some experimental rough position of the minimum followed by a search
results showing the effectiveness of the method and based on local evaluation of the error measure
discuss some extensions, gradient.

The procedure requires specification of 1) the
feature extraction process: 2) the form and

computation of the error measure; and 3) the
organization of the search process.
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II.C. Feature Extraction

The feature extraction process is used to determine
small areas (sometimes called image points) in an
image that are distinct from neighboring areas.
This distinctiveness limits the likelihood of
matches of these image areas, and possibly reflects
a correspondence to actual and significant points
in the environment, such as points of high
curvature on object boundaries, texture elements.
surface markings. etc. (However some features.
termed false features will result from noise,

occlusion, and light source effects and have
behavior which is difficult to analyze). Features Fig 2. Curvature Approximation
can be represented as arrays of numbers extracted
directly from an image or as parameterized tokens
describing local image properties. In this paper, Many of the weak features can be removed by
we refer to features exclusively as mall arrays of suppressing those which are at points of low
data values centered at some point In an image at curvature along the zero-crossing contours. The
some time t. curvature of a feature on a contour is approximated

by the inner product of the normalized vectors

Following Moravec tHORT7.MOR8O], the method of describing the relative positions of the features
feature extraction used here is based upon finding adjacent to it along the contour. These values are
image areas which are significantly different than then thresholded between 1 (corresponding to high

their neighboring areas. Using a correlation curvature) and -1 (corresponding to low curvature).

measure normalized between 1 (for perfect (the cosine of angle alpha in figure 2)
correlation) and 0. the distinctiveness of a
feature is 1 minus the best correlation value Use of zero-crosing-based features requires
obtained when the feature is correlated with specification of the sizes of the convolution masks
respect to its immediately neighboring areas, that are employed and deciding whether to position
Selecting good features then requires finding the extracted feature points with respect to the
local maxims in the values of the distinctiveness unprocessed image or the convolved images. In
measure over an image. general, it is beneficial to use masks of various

positive widths for sensitivity to features at
We have extended this approach somewhat by different levels of resolution. The processing
constraining the neighborhoods over which the described below can be applied independently to the
features are selected to contours determined by pairs of successive Images formed by convolving the
other global processes which are sensitive to image successive images with deleS2g masks of different
edges. For the results in section II.F., these positive widths. Alternatively. features can be
contours were determined using zero-crosings. extracted from the original, unfiltered image at

the positions where features were determined in the
II.C. 1. Feature Extraction Using Zero-Crossings convolved images, though experience with large

masks has shown that features can move significant
/ distances from where a person would generally place

them with respeet to the original image.
The use of zero-crosings to determine significant
image contours at different levels of resolution
has been proposed and extensively studied by Hrr
et. al. [HIL8O.KAR8O]. In this processing an II.D. Error Measure

image is convolved with Gaussian-Laplacian masks
(del

5
2g) of different positive widths and

thresholded at zero to determine zero-crossing The error measure is used to evaluate the validity
contours. These contours are significant since of a translational axis with respect to successive
they correspond to the points of greatest change in images. It reflects the quality of the matches of
the convolved image. The distinctiveness measure extracted features along the image displacement
can be applied to points along these contours in paths determined by a potential translational axis.

the convolved image with the local maxima It is expected that most features will have their
determining the position of potential features, best matches along the image displacement paths
This generally has the effect of finding points of determined by the correct translational axis. This
high curvature along the zero-crossing contour, will tend to be violated by false features and

although points corresponding to local occlusion those features affected by occlusion.
vertices and weak maxima will also be extracted.
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For example. a sketch of several of the image
displacement paths determined by the intersection Normalized Correlation (j
of a potential translational axis and the image
plane is showm for a set of extracted features in

. figure 3a. If the hypothesized translational axis A(iJ)B(J,J)

is correct, the majority of features will tend to __J

have good matches along these paths. Figure 3b
shows the match profile for a particular feature /I A(ij)xA(iJ) x / B(i,1)NB(i,j)
along its displacement path with respect to the j i j
succeeding image. The units of displacement are
pixels. Moravec Correlation (MoR77] (2)

,[A(i~j)xB(,.j) -

/ ((( . A(i.J)xA(i~bJ)) +(E I B('.J)xB(i.J)))/2) "
Sii ii

*Normalized Absolute Value (ifrec 3)

1.0-

* ~3 FOER3.. ~~ A(i~j) + B (i~j)
j

match All of these measures have a value of 1 for a
3b strength perfect match. Of these, the first choice is the

0 most convantional, the second a good approximation
displacement (pixeis) to the first, and the third is the quickest to

evaluate.

Fig 3. Constrained Feature Displacements II.D.2. Interpolation Process

The development of an error measure requires a The Interpolation process approximates the
measure for the degree of match between features potential displacements of a feature from an
and an interpolation process for determining initial image into a succeeding image. Depending
positions along an Image displacement path. Each on the accuracy required, positions along the image
of these can be implemented in various ways with displacement path can be approximated a) roughly by
the choices generally involving a trade-off between setting the coordinates of the feature's position
the speed of evaluating the error measure end the to the nearest integer value; or b) more
precision with WAich the translational axis can be accurately by performing a subpixel interpolation
determined, of the feature at each of a set of selectedPositions along the image displacement path with

respect to the succeeding image. The basic
trade-off is between speed and accuracy, with

II.D.I. M subpixel interpolation being a more expensive
computation.

There are several metrics for similarity of nxn
pixel features of the form A(ij) and B(1.j). uhere
i ranges from 1 to n and J. ranges from 1 to n. We
have utilized:

62
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IX.D.5. Utility of the Direction of TranslationI.D.3. Error Measure Sphere

The error measure associates with a point on the There are significant advantages in defining the
direction of translation sphere a value describing error *~asure with respct to a wit sphere,
the quality of image feature matches along the instead of the potential positions of FOEs and FOCs
image displacement paths determined by the
orreponding translational axis. This valusThe sphere is a boundedcomputed by deterining the best math for each surface which makes uniform global sampling of the

feature along the Image displacement path error measure feasible. Additionallya the
determined by the hypothesized translational axis resolution in the position of the translational
and then summing the normalized error values (using axis varies coss the surface of the image plane.
one of the metrics above) for all of the image For example, the FOEs determined by translational

feature points. Thus for a set of N features in an axes separated by very small angles will be
initial Image, a hypothesized translational axis, separated by larger and larger distances in the
and U30 of one of the match metrics above, the plane as the intersections of the translational
anser o f oe of taxes and the image plane are placed further from
error measure is the visible image. The effect of this on the error

measure, when it Is defined over the image plane,
is large flat areas for FOEs further from the
visible portions of the image. Finally. special
criteria must be used to distinguish between FOEs

b(4 and FOCs if the error measure is defined relative(1.0 -estmatch(l) )
£-1' to the image plane. Roughly parallel image

displacement vectors could correspond to an FOE off
to one side of the image plane or to an FOC off to
the opposite side. On the direction of translation

where bestmatch(i) is the best match value sphere, the corresponding translational axes would
be close while on the plane they are completelyassOCated wiFth feature i along the image separated.

displacement path determined for it by a
translational axis.

II.E. Search Organization

II.D.R. Properties of the Error Measure
The search process used here Consists of two
phases: A global sampling of the error measure toThe error measure should have a distinct global determine its rough shape followed by a local.

minimum at the point on the unit sphere search to determine the minimum . The lcal search
corresponding to the correct translational axis. is initialized at the position where the minimum
It 1 expected to be well behaved globally because value was determined by the global sampling. The
it is very unlikely that translational axes that procedure used for the loa1 search is steepest
are far from the correct position will define image descent with a diminishing step-size. That is, the
displacement paths that simultaneously allow good steepest descent procedure begins with a initial
matches for many features. Thus, we do not expect fixed step size and determines a local minimum
competing candidates for the global minimum to be using it. The step-size is then reduced and the
widely separated, and the experiments we have u re rept he step-sie is at theprformed confirm this expctation. prededure repeated until the step-size is at the

desired resolution for the determination of the

translational axis. In the experiments below theThe error measure will be affected by both initial step-size Was set to 0.1 and then reduced
non-distinctive and false features. to 0.025 and 0.005 radians.
Non-distinctive features will match well for many
different translational axes. Large numbers of The form of the error function for severalthese weak features will flatten the response of different translational sequences is smooth, with a
the error measure. False features will also single minimum in a large neighborhood around thedistort the error measure since they will often correct translational axis. Thus. the global

trasathionrl axes. sampling could be quite sparse or the initial stop
size of the local search quite large.

The effects of these poor features should be
compensated by the agreement of good features.
Every one of the good features Will tend to have a
bad match for the incorrect FOE and their unanimity
Is expected to overide the lack of discrimination
of weak features and the random quality of the
matches of false features.

-9
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II.F. Experiments -

Figures 4&a and 4b (128x128 pixels. 64 intensy 
<

levels, black and white) show successive images
taken from a car driving down a country road in

Massachusetts. Figure 5a shows the extracted 0 3
zero-crossings using a Mask of positive width equal P,.

i to five pixels. Figure 5b shows the interesting *

points extracted along these contours and figure 5c
shows the set of interesting points after
low-curvature suppression (see section II.2.C.) was

applied using an inner product threshold set to
-0.75. Features were 5x5 pixel arrays. For this

experiment, the extracted feature positions were
"* applied relative to the raw image.

Fig Sa. Extracted Zero Crossings

I Ir

Fig 4s. Road Image 1I

Fix 5b. Distinctive Image Points

U

Fig ib. Road Image 2 ,

Fig 5c. After Low Curvature Suppression
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7The global search Used the absolute value norm and
nearest integer interpolation. The sampling

increment corresponded to the vectors On the 0".4
direction of motion sphere being separated by "

.314157 radians from each other. maximal Image
displacementS along the hypothesized image

displacement paths Was set to 10 pixels. Features 7
were centered at the postions shown in figure 5c

The global sampling determined a minimum in the -

error function at the unit vector (-.80902.

-. 47554, .34548) on the direction of translation

sphere.

The local search used the Moravec norm and

bi-linear interpolation. The determined

translational axis was (-.83738. -. 42043. .34933). Fig 7. Image Subarea
The displaoements of the feature points from figure

5b for this translational axis are shown in figure Given the direction of translation and image.

displacements, relative environmental depth can be

recovered by the simple relation CLEE80.

- - where Z is the value of the Z component of an

-- - - -environmental point at time t+1, delta Z is the

S - - - - extent of environmental displacement along the Z

- - axis from time t to time tW., D is the distance of I
- _- the corresponding image point from the FOE or FOC

- at time t. and delta D is the image point's
- - -displacement from time t to time tW1. Z can be

recovered in units of Delta Z without knowledge of

- the actual extent of camera displacement. When
Delta D is small, the inferred depth values can be

< quite erratic due to sensitivity to small numbers

Fig 6. TImage Displacements in the denominator in the left hand side of

equation 5. For this reason, it is useful to keep

The procedure was repeated. but using features at track of the image dsplaOements over several

the positions from figure 5b (those prior to low successive images ith concurrent updating of the

curvature suppression). This has the effect of inferred depth values. This was done using a
Introducing weak and false features into the sequence of four successive images of the roadsign.

computation. The translational axis extracted was In this processing, the position of the

(-.82909. -. 42281, .36585) This is a difference of translational axis determined from images I(t) and
0.01863 radianls or 1.06765 degrees from that Tit1+) was used as the initial value in the local

determined using the features indicated in figure search for determing the translational axis for
images I(tel) and I(t+2).

5c.

The proeedure was also applied using the features Given the image displacements determined from 1(1)

from the restricted subarea shown in figure 7. to I(M) of the sequence, the depth values for image

corresponding to some faint tree texture. Using points along the contour in figure 5a were computed

these features, the translational axis extracted using equation S. This sequence is especially nice
was (-.84281, -.42928#, .32465). This is a for presenting depth processinr results since the

three environmental objects in the images are at
difference of 0.02677 radians or 1.53418 degrees three dirn eths This in she infgure a

with the translational axis determined using the three distinct depths. This is shown in figure oa
feature centered at the positions ind.cated in by the three distinct clusters in the histogrm ofthe depth values calculated for the points along

figure 5c. the contour in figure 5s. Mapping feature labels

from these clusters back onto contour points from
figure 58 yields: the boundary shown in figure Bb

(the sign), the boundary shown in figure Bc (the
pole), the boundary segment shown in figure Bd (the

trees). Points in a 10 pixel wide margin along the

boundary of I(1) were ignored since the processing
did not take into aCcount occlusion/disocclusion

effects along the image boundaries.

" ... i _ '., m" "-' m " " 1 " " " ' ' ' -" ",f' t" ' , . . . - m " ." " :. " -" "- " -" ' " --. . . .



* . . a.I:

Fig 8a. Depth Histogram (Z component) Fig 8d. Tree Segments

1T.G. Summary and Extensions

This work demonstrates a simple and robust
procedure for determining the direction of
environmental motion and image displacements in
real-world image sequences produced by observer
translation. It is not dependent on an initial
matching process prior to the inference of camera
motion. Instead, features are extracted from an
initial image and their displacements are
determined concurrently with the inference of
direction of sensor motion. Thus ccmplications in

Fig 8b. Sign Segments matching that arise from an individual feature
being extracted in one image and not in the next
are reduced. The process is also relatively
insensitive to weak and false features. It has
been successfully applied to image sequences
produced by a oar translating down a road, by a
camera attached to a robot manipulator in an
industrial environment, and to artificially
generated sequences. We now consider some

L extensions.

II.G.1. Other Cases of Restricted Motion

The procedure developed in this paper should be
applicable to other cases of unknown but restricted
camera motions for which it is computationally
feasible to search directly through a subspace of
the camera motion parameters. Two particular Cases
are pure sensor rotation and motion constrained to
a known plane.

With pure sensor rotation, the unknown camera
Fig Be. Pole Segments parameters are constrained to R1(t), R2(t), and

R3(t). In this case, the error measure from
section iI.D.3. would be defined with respect to
the direction of rotation sphere where each point
corresponds to an axis of rotation. For each
rotational axis, the extent of displacement for
image features is determined by different values of
R3(t). There is the additional constraint in the
rotational case that the displacements of all
features must correspond to the same value of
R3(t).
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For motion constrained to a known plane, the A difficulty with such a stabilized retina is that

rotational axis is known to be perpendicular to much of the environment would not be observable.

that plane and the translational axis is This can be corrected by using a set of such

constrained to lie in that plane. Thus, only R3(t) stabilized retinas arranged to yield a complete

and one translational parameter can vary and the view of space. There would then be no need to

error measure can be computed with repect to these rotate the sensor to view a particular

two parameters. The global sampling in this case environmental point. A possible arrangement of

amounts to evaluating a set of translational axes retinal surfaces is a cubical one. One of the

for each of a set of potential rotations. retinal planes Will always contain an FOE and
another will always contain an FOC (unless the

direction of motion is right on an edge of the cube

II.G.2. Multiple Independently Moving Objects and the focal length has not been properly

adjusted). There will also be several independent

estimates of the directon of translation which can

The processing here has been limited to a camera be intearated.

moving relative to a stationary environment, or a III. THE LOCAL TRANSLATIONAL DECOMPOSITION

stationary camera with a stationary background and
a single moving object. A useful extension would
allow for several independently moving objects with We now extend the trans]- inal case to less
different directions of translation. The technique restricted forms of sensot .ion by applying the
of summation of errors in feature matching only procedure for determining le direction of

allows a single axis of translation to be translational motion to s a, overlapping areas
determined and will cause the analysis of the across an image surface over tquence of images.

several objects in independent motion to be The motivation is to approx! -oneral motions as
confounded. consisting locally of envy A *l translations

and to interpet local im f ion as resulting

One approach is to segment an image into regions from environmental translatiom.. The feasibility
which potentially correspond to objects, or to of this is based upon experiments showing that the

arbitrarily divide the image into regular direction of translation can be extracted with
overlapping subimages and perform the translational reasonable precision using small image areas

analysis for each region or subimage independently containing a few features. The resulting
[WIL80, NAG179]. Experiments have shown it is description of motion is an approximation to the

possible to work with small image areas, at a size Environmental Direction of Motion Field (EDMF)
comparable to extracted regions or subimage areas (section I.A.) which associates with a set of image
and still determine the axis of translation with a points (or small image areas) the direction of

reasonable level of precision. If objects with motion of the corresponding environmental point (4r
similar translations correspond to several small environmental surface area). As a low level
different regions or image subareas, then similar representation of environmental motion, this
translational axes will be determined for these considerably simplifies the recovery of the sensor
regions or subimages. If objects with different motion parameters.
translations correspond to the same regions or

subimages then there will be poor, indistinct error
values for the error function. For this second This section is divided into three parts. In

case, it is necessary to resegment and redetermine III.A., the properties of the EDMF for different

a translational axis. sensor motions are summarized. The cases

considered are pure rotational motion; motion
constrained to an unknown plane; and arbitrary

motion. This analysis shows how to recover the
II.G. 3. Stabilized Retina axis of rotation from the EDNF for these cases.

Techniques for computing the EDMF from image
Translational processing is sufficient for sequences are presented in section III.B. There
vision-based navigation in a stationary environment are two cases considered: 1) sequences for which
if the orientation of the optic sensor can be fixed image displacement vectors have not been
relative to the environment over time. In this determined; and 2) sequences for htch image

Case. sensor motion Mounts to 8 sequence of displacement vectors have been determined. In the
translations in possibly different directions over first case, computing the EDMF also determines
time. image displacements.

Section III.C. demonstrates the use of the local

translational decomposition for processing image

sequences that are produced by sensor motion

constrained to an unknown plane in highly textured

environments. There are indications that this

processing is quite robust. We also note the
effect of coupling the EDMF and environmental
rigidity constraints for the recovery of relative
depth.6
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1ZI.A. EDMF Properties for Different Types o The set of normalized tangent vectors to a helix.

Camera ?tE-n when based at a common origin, will generate a
cone, called the tangent cone. The orientation of
this cone specifies the axis of rotation. The set

Before discussing the computation and use of the of tangent cones determined by a rigid body motion
EDNF. it is necessary to describe some of Its basic for all Points in space will all have the same
properties for different classes of motion. To orientation. Note that the difference vectors
describe these properties, it is useful to map the between any vectors of a tangent cone will lie in a

EDF vectors onto the direction of translation plane perpendicular to the axis of rotation.
sphere. In section II. the direction of Because of this, the ED04F produced during arbitrary

translation sphere was used as the domain for the motion has a particularly nice property if the
error measure. Here it is used in a manner similar rigid body motion is constant over two or more
to a histogram. Each EDMF vector votes for a intervals. For such motion there will be
particular point on the direction of translation successive environmental direction of motion
sphere. Processing then involves finding certain vectors associated with each image point and the

patterns in the distribution of the EDMF vectors, difference vectors between these successive EDMF

vectors will lie in the same plane, perpendicular

to the axis of rotation, for all image points.
III.A.1. Pure Translational Motion of the Camera

III.B. Computing the EDMF
As discussed above, for translational motion the
image displacement paths are straight lines
intersecting at a point. The environmental III.B.1. From an Unprocessed Image Sequence
displacement paths are straight, parallel lines.
All the vectors in the EDHF are identical and map
onto a single point on the Direction of Translation The translational processing procedure described in
Sphere corresponding to the translational axis. section II yields a set of image displacements

consistent with a determined translational axis.

Applying this procedure to a small area of an image
IZI.A.2. Pure Rotational Motion of the Camera containing extracted features finds a set of image

displacements consistent with interpreting the

local image motion as if it were produced by a
For pure rotational motion of the camera, the image translation of the corresponding part of the
displacement paths are conic sections determined by environment. Note that where the translational

the intersection of the image plane with the nested approxisati'n is poor (for example, image areas
family of cones aligned with the axis of rotation near the intersection of the axis nf rotation and
based at the origin of the camera coordinate the image plane) there will be a large value of the
system. The environmental displacement paths are error measure describing the validity of the
circles about the axis of rotation and are translational axis. Thus, ,he error measure can

contained in planes perpendicular to it. The EDKF serve to validate the approximation. It is also
vectors will lie upon a great circle contained in a necessary to incorporate information concerning theplane perpendicular to the axis of rotation when number and distribution of the feature points in
mapped onto the direction of translation sphere the local image areas for this evaluation. Forexample, if there is only one feature in the area

or the features are bunched together, the
III.A.3. Motion Constrained to an Unknown Plane translational approximation will be poor.

Processing is not applied to local areas which do

bOt satisfy these requirements.
For this case, the environmental displacement paths
are circles in planes perpendcular to the axis of Figure 9a is a 128x128 pixel image of some grass
rotation, but the axis does not necessarily contain texture with seven bits of intensity. Figure 9b
the origin of the coordinate system (see the was derived from figure 9a by applying a simulated
discussion of kinematics in chapter 1 of [WHI441). rotation of 0.1 radians about the Y axis of the
As for the rotational case. the EDIF vectors will camera coordinate system (the focal length was set
lie on a great circle in a plane perpendicular to to one). Features were selected from the image in
the axis of rotation when mapped onto the Direction figure 9a by first determining image points where
of Translation Sphere. the contrast was greater than 20 Intensity levels.

and then finding local maxima in the
III.A.. Arbitrary Notio. n distinctiveness values (section II.C.) associated

with the 5x5 pixel square features centered at
those points. The resulting feature positions areFor arbitrary motion, the image displacement paths shown in figure 10.

cannot be easily described. But the environmental
displacement paths are helices about an axis which
does not necessarily contain the origin (since a
screw displacement is the most general form of a
rigid body motion ECOX61,WHIT44]).
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Using the translational processing procedure, the - . .-

direction of translation Was determined for 11xl
pixel neighborhoods centered at each feature in --.

figure 10. The image displacement associated with - -- --
a feature was that determined by the best

translational approximation for the feature's "...... -" -
neighborhood. The resulting Image displacement .ht' ___

field is shown in figure 11. - "-

_ - ------ -

Fig 11. Image Displacements

II.B.2. From a Computed Displacement Field

An error measure can be developed to evaluate

translational axes for image sequences for which

image displacements have been determined. The

error, with respect to an image displacement field,

can be calculated for a translational axis by

summing the angles between the image displacement
Fig 9a. Grass Texture Image 1 vectors and the image displacement paths from the

FOE or FOC determined by the translational axis

(figure 12). Similarly, the sum of one minus the

cosine of each angle could be used. To compute the

EDMF. the translational axis is determined applying

this error measure to local areas of the computed

displacement field.

It may be Possible to determine the EDMF from

sparse image displacement fields by filling the

image displacement field to an adequate density by

a smoothing or averaging procedure which treats the
sparse determined image displacements as boundary

conditions and then locally applying the

translational processing procedure using the

adapted error measure.

Fig 9b. Grass Texture Image 2 7

... .: . Fig 12. Error Measure

"..........................

S•: ..: ---... , .:.... -9

N N

.Fig 10. Extracted Feature Posittions Errt
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III.C. Processing the Computed EDMFs Figure 14 shows a 32x32 image displacement field
produced using a spherical distribution of
environmental points about the Z-axis (the observer

1IT.C.1. Processing Arbitrary Planar Motion is looking into the interior of a sphere) with
noise modulation added to the depth values of the
points. A rotation of 0.1 radians occurs about an

For arbitrary planar motion, all the environmental axis whose orientation is parallel to (.577350,
displacements are constrained to lie in planes .577350, .577350) and positioned at the back of the
perpendicular to the axis of rotation. In this sphere. The local direction of translation was
case four of the five recoverable camera parameters determined at all positions across the displacement
are unconstrained: the axis and extent of rotation field for 5x5 pixel windows, using the measure
are arbitrary, and the translational axis is described in section III.C.2. Using all the
constrained to be perpendicular to the rotational determined EDMF vectors in the plane fitting
axis. When, the ideal EDMF vectors are mapped onto. procedure, the normal is determined to be (.647159,
the Direction of. Translation Sphere,' they will lie .543663, .534429). This deviates from the correct
on a great circle in a plane perpendicular to the axis by .088631 radians or 5.078184 degrees.
axis of rotation. Thus, processing consists of Figure 15 shows the error values in the
determining the EDI4F and finding the best planar translational fit proportional to image darkness.
fit of the EDMF vectors which also contains the Note that the greatest errors occur where the image
origin. This may be done using any of a number of displacement vectors have a rotational character.
plane fitting routines. In the experiments here, By restricting the plane fit to EDMF vectors which
the eigenvector fit procedure described in [DUD73] have low associated error values for the
pp. 332-335 is used, having been adapted for translational approximation, the determination of
planes containing the origin, the axis of rotation is improved. By using EDNF

vectors for which the determined error measure is
Note that if the motion occurs over several less than 90 degrees over the 5x5 pixel areas, the
successive instants and remains constrained to the normal is determined to be (.579462, .583317,
same plane, then the vectors in the successive .569148). This deviates by .010380 radians or
EDMFs are also constrained to lie in the plane .594798 degrees from the correct rotational axis.
parallel to it and containing the origin. Thus Thus, the high error measure values have been used
more and more values for the fit can be collected to remove the rotational-like displacements in the
over time, thereby increasing the accuracy of the center of the image.
processing.

Once the axis of rotation has been determined.
For example, using the EDHF determined for the processing has been reduced to the case of known
grass texture sequence described in section planar motion. This could be solved directly via
III.8.1., the normal to the best plane fit was the suggested adaptation of the translational
determined to be (.002518,.999893.-.0143709). This technique to known planar motion (section 1I.G.1.).
is off by .014592 radians or .836053 degrees from Alternatively, the inference techniques of Prazdny
the correct rotational axis. Figure 13 show* a [PRA81] and Nagel ENAG81aNAG81b] could be applied
histogram of the computed EDMF vectors in a p6lar to the image displacement field determined
coordinate system (for the unit vectors (XYZ) on concurrently with the EDMF. In these techniques a
the direction of translation sphere, Phil _ composite image displacement field (one produced by
arctan(Y/X), Phi2 a arCCos(Z)). The number of combined camera rotation and translation) is
vectors at a particular location is encoded by decomposed into its translational and rotational
darkness. Note the orientation in a plane components by searching through the
perpendicular to the Y axis. three-dimensional space of rotational parameters to

find a rotational displacement field which, when
subtracted from the composite field, yields a
translational displacement field. By having
determined the axis of rotation via analysis of the
EDMF, this search has been reduced to a single
bounded dimension corresponding to the extent of
rotation.

For the case of planar motion, the FOE or FOC is
P1i2 further constrained to lie along a line in the

image plane determined by the intersection of the
image plane and the plane perpendicular to the axis
of rotation and containing the focal point.
Because of this, the decomposition procedure is
simplified. When the correct rotational field is
subtracted from the composite field, the resulting
field should have an FOE or FOC along the line.
Thus, it is only necessary to evaluate the
distribution of the intersections of the image

Fig 13. EDHF Histogram displacement vectors resulting from subtraction of
a hypothesized rotational displacement field with
this line.
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* . . .. .. .

III. C. 2. Coupling the approximated EDMF and
__ IN Rigidity Cosrainta

, 1 ,,.There are several formulations for the recovery of
" --- " '\\ environmental depth and casera motion parameters

r based upon environmental rigidity [LAW8O, NAG81.
, -'ER8O. ROA8O, ULL79, WEB81]. Solving theseN / constraints is simplified when information about

. .NK', \, ,' -/ the direction of environmental motion is
incorporated into them. In particular, the number

of points in successive frames that is necessary to
. -I infer their relative depth is reduced from five to

* ' '.'.""- ~two.* .' N'' ' .. '. XNNN -- m 
- '  

t O

\\ . For two points in successive Images there are four. , - - unknowns to be recovered corresponding to the'"" -. ' " - depths of the two points at instants t and tW.

One of the depths at time t can be set arbitrarily
Fig 14. Image Displacement Field since only relative depth can be recovered. Both

depths of the points at time t+1 can be determined
from their image displacement vectors, their depths
at time t, and their corresponding EDMF vectors.
(To see this (figure 16) . note that given 1)

.'. : suCCesive rays of projection PI and P2: 2) a depth
D for the corresponding environmental point along
PI and 3) the direction of environmental motion for
the point along P1, the depth of the environmental
point along P2 can be determined by selecting the
point on P2 that is closest to the (dotted) line

= :" :-\!determined by the environmental point along P1 and
its direction of motion). Thus, the depth of one
of the points can be set arbitrarily and the other
depth determined based on satisfaction of the

. rigidity constraint over successive Instants.

Each point can thus assign relative depths to all
other image points. This suggests a consistency
computation wherein agreement between the relative
depth maps determined by each point are used to
find a globally consistent depth map.

Fig 15. Translational Approximation Error

2
Note that by mapping the EDNF onto the direction of P1
translation sphere, the local differential
properties of the EDMF are not being utilized. We
suspect that the extent of rotation can be
recovered, or at least strongly constrained. by
analyzing the local changes In the orientation of
the EDHF vectors either spatially (over a maall -
area of an Image) or temporally (over successive
Inter-image intervals). If this is so. processing
could be directly reduced to the purely
translational case by removal of the determined
rotational component. D

Let us consider the case where the parameters of
motion remain constant over successive intervals.
Here the angle between the successive EDNF vectors focal point
associated with an image point will be equal to the
angle of rotation. This angle will be the same for
all points in the Image sequence and suggests a Fig 16. Depth Inference
potentially robust technique for determining the
extent of rotation by finding the mean angle
between successive EDNF vectors.
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III.D. Discussion EMOR77] Moravec, H.P., "Towards Automatic
Visual Obstacle Avoidance." Proceedings
of the 5th IJCAI. MIT. Cambridge, MA.

This work shows that It the EDMF can be reliably 1977, p. 58k4.

computed. It is a very useful low level
representation for rigid body motion analysis. [MEI80] Meiri, A.Z., "On Monocular Perception

There are strong indications that this is possible of 3-D Moving Objects". IEEE

% for densely textured image sequences and that Transactions on Pattern Analysis and

camera motion parameters can be recovered for Cases Machine Intelligence, Volume PAMI 2

of motion of complexity corresponding to motion Number 6. November. 1980.
constrained to an unknown plane. [NAG81a] Nagel. H.-H., "On the Derivation of 3-D

Techniques for processing arbitrary motion have Rigid Point Configurations from Image

been suggested in section III.A.4. (finding the Sequences," IEEE PRIP-81. Dallas,

best planar fit to the difference vectors of Texas. August 1981.

successive EDMF vectors) and in section III.C.2

(solving rigidity constraints coupled with [NAG81b] Nagel. H.-H. and Neumann, B., "On 3-D

information in the EDF). The primary question Reconstruction from Two Perspective

concerns the robustness of processing when using a Views." Int'l Joint Conference on

noisy, approximated EDIF in the arbitrary case. Artificialm t i , Vancouver.
Canada. August 1981.
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