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Foreword

This report represents the analysis of a structural ceramic com-
ponent selected by AMMRC. The component selected was the hub of a hot
pressed silicon  nitride turbine rotor. The required geometrical,
material, strength, and time dependent data was supplied by AMMRC.
This work was conducted as part of the “Methodology for Ceramic Life
Program,” initiated by Dr. Robert Schulz of the Office of
Conservation, division of Transportation Systems, Department of
Energy, and monitored by the Army Materials and Mechanics Research
Center under Contract Number DAAG-46-77-C-0028. This work was part of
the continuing investigation of analytical and experimental methods in
ceramic life prediction aimed toward utilizing structural ceramics in
high temperature applications. The principal investigator of this
program was R. R. Baker, Ceramic Materials Department, engineering and
Research Staff, Ford Motor Company. The technical monitor was Dr. E.
M. Lence of AMMRC. The author wishes to thank Drs. E. M. Lenoe and R.
N. Katz of AMMRC for suggestions 1in carrying out the program.
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1. TINTRODUCTION

This report presents the analysis of a gas turbine disc based on
data supplied by AMMRC. The data supplied was the disc's geometry,
its rotational speed, forces to simulate the blade loads, heat
transfer coefficients and corresponding fluid temperature. Also
supplied were the material's elastic, fast fracture, and time dependent
properties.

The primary purpose of the analysis was to calculate reliability
versus time for the steady state speed and temperature conditions.
The time dependent theory used 1s explained in Section 2. In order to
complete a time dependent reliability analysis it 1s necessary to
calculate the reliability at time equals zero which is the fast frac-
ture reliability. Weibull theory was used for calculation of fast
fracture reliability and the theory is briefly reviewed in Sectfon 3.

The stresses and temperatures were calculated with finite element
computer programs and the results are plotted in contour plots. For
reference the stresses due to mechanical loads at room temperature
were calculated and plotted. The data supplied by AMMRC was repro-
duced here in the tabular form required by the computer codes used in
the analysis.

2. TIME DEPENDENT THEORY

The prediction of time to failure 1in structural ceramics 1is
usually based on the equation

V = AKI“ . (1

This equation relates the velocity of a crack in the material to the
stress intensity factor of the tip of the crack. Siverns(l) observed
this behavior in steel and published velocity versus stress intensity
data and fitted the constant "A” and crack velocity exponent “"n" to
the data with linear regression analysis(Z). Evans(3) observed simi-
lar behavior in ceramic materfals and using the fracture mechanics
equation

K = oYaI/2 (2)

arrigzg at the following equation for calculating crack growth versus
time .

n-2 n-2
2 1 2 ’
- (—a') (3)

I; AYnG ndt .-(%5- [ (%;)

Equation 3 applies only to a single crack in a uniform stress field.
To allow calculation of time dependent failure in complex structures
Paluszny(5) combined the ideas in FEquation 3 with the Weibu11(63
equation for calculating fast fracture reliability in brittle
materials and arrived at Fqn. 4.
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n-2 m_ -g}zd
t - o
R=exp|- [(ln@g—n ™ +Zi | ™ (4) .
131 gy B o
Equation 4 was reduced to Eqn. 5 in Reference 7. t;![;
a n-2
o (+ 25 "
. R =R s (5)
I!! ff
:.f In this study Eqn. 5 was used to calculate the reliabilities versus

time of complex structures by dividing the structure into small ele-
- ments where the stress was considered constant and evaluating Eqn. 5,
s the reliability of a structure with "q" elements was then calculated
L‘ with Eqn. 6. :

r

R=R, R, R

2 3 [ X X Rq (6)

1

This technique is suitable for use with finite element stress programs

T T e
ST
R
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where Ry is evaluated for each element., The constant in Eqn. 5 1is
- 3 given as Eqn. 7(5),
5 . 2
3 e N
ARye

Equations 5, 6, and 7 were used in this report to calculate time
dependent reliability.

3. WEIBULL THEORY

The evaluation of Eqn. 5 requires that the fast fracture reliabi-
lity be evaluated. For this study, the Weibul1(6) equation was used.
Weibull proposed that each element of a structure has a definite pro-
bability of failure and that the entire structure could be considered
to be an assembly of the individual elements and their associated pro-
bability of failure. Vardar and Finnie(8) give an 1integral for-
mulation of the Weibull approach:

Pf = ] exp-B = ] - exp [‘ IV(K IA 0: dA)dV] (8)

The term in the parentheses is evaluated on the surface of the
. unit sphere (Fig. 1), over the regions where the normal stress is ten-
- sile and neglecting regions where the normal stress 1s compressive.
' The reasons for neglecting compressive stress are 1) for structural
ceramics, compression is not as detrimental in causing fracture as 1is
tension, and 2) mathematical complexities are minimized(9). The nor-
mal stress on the surface of the unit sphere in terms of the maximum
principal stresses and the polar and azimuthal angles is given by:
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Fig. 1. Geometric variables describing location on unit sphere

zsinzw) + c3sin2¢ 9 ‘ﬁﬁi‘
The constant, K, is given by:

o, = c082¢(01c032¢ +0

ki
.- L .
S .
K . o
‘.. R -
. '
r O

K = 2m + 1 (10)
2x0_ "
o

"]
The (2m+1)/27 term in Eq. 10 is a compatability factor required to S
make the result of integrating Eq. 8 using the normal stress distribu- R
tion of Eq. (9) for uniaxial stress cases, agree with the results s
obtained from the one-dimensional Weibull equation: T
- - g—m - -y
P, = 1 - exp ]v(oo) av (11) -

The integration of Eq. 8 over an entire structure is accomplished .
by dividing the structure into finite elements in which the principal o
stresses can be assumed to be constant. The result of integrating -
over the unit sphere is constant in each finite element; therefore,
the risk of rupture for each element is simply the volume of the ele-
ment times the integrated result over the unit gphere. This procedure
ie very convenient when used with finite-element stress programs and
is the one used to calculate the probability-of-failure distributions
for the structures in the present paper.
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In the Weibull formulation, 6o and m are parameters which show
the probability of having a certain strength in any finite element.
The values of J, and m are obtained from experimental test results.
Weibull showed that the characteristic strength, o,, is identical to
the ultimate strength of the material in the classical theory as the
Weibull modulus, m, increases indefinitely. This result provides a
physical interpretation of the characteristic strength. The Weibull
modulus may be interpreted as a measure of variability in the strength
distribution; as m 1increases, the variability of the strength
diminishes.

For this report value of 0, was calculated with Eqn., 12(10),

" (bh)llm L +uL, 1/m 12
g = MOR
o o ‘2 (m+1)2

The parameters 0o and m define the strength of the material and
are independent of the volume and geometry of the structure. They are
the values used to determine the failure distribution of a complex
structure and are generally determined from MOR bar tests. It is
important to note that the MOR is not an intrinsic material parameter
but depends on the geometry of the MOR bar and test fixture. A con-
venient formula for scaling the MOR value from one geometry and test
fixture to another is:

1/m 1/m
ik JOR v S - an
A BB Bl B2

The subscripts here identify bar and fixture A and bar and fix-

ture B. This formula assumes four-point loading with the inner span

place symmetrically with respect to the outer span. This formula was
used to scale the MOR values furnished by AMMRC to standard "A-size”
MOR values, The Weibull equation has been shown to be very effective
for predicting the experimental failure distributions of complex
structure from data bases obtained on MOR bar tests(8), (10),

4. FINITE ELEMENT MODEL

The finite element model set up to simulate the hub is shown in
Fig. 2. It has 216 elements and 243 nodes. The elements and nodes
are numbered horizontally from right to left, starting at the bore.
Element numbers are located in the center of the element, and node
numbers are shown on the exterior of the grid. Node numbers 236, 237,
238, 240, 241, and 242 were located with respect to the centerline to
coincide with the location of the forces used to simulate the blade
loads. Not all node and element numbers are shown on the mesh in Fig.
2., but any one may be located by counting horizontally. The node and
element numbers are needed for interpreting the forces used to simu-
late blade loads and the heat transfer data.
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Fig. 2. Disk finite element grid.

5. MATERIAL DATA

The calculation of temperatures, stresses, fast fracture and time
dependent reliabilities requires a number of material properties.
These properties were supplied by AMMRC or it was suggested that a
particular property was similar to the property of a known material.
The properties used are given in the Appendix B. AMMRC suggested that
the thermal properties of Norton's NC-132 be used and thus the thermal
properties given in Table I are for NC-132,

The elastic properties are given in Table II. Young's modulus,
Poisson's ratio, and shear modulus were furnished in graphical form
and are reproduced here in tabular form. The coefficient of thermal
expansion was furnished in tabular form, Table II.

AMMRC furnished modulus of rupture data, giving the values for
50% probability of failure; however, the size of the MOR bar was not
that of a standard "A" size bar. This required two conversions to get
the MOR bar data into the.values accepted by Ford's codes for calcu-
lating fast fracture reliability. First the characteristic MOR was
calculated from Eqn. 14

hd

it




(MOR )™

MOR— (14)
o

P.=1-exp -

f

where Pg = 0,5, MOR = the value furnished for 50% probability of
failure, and m=15. The results were then scaled to the standard "A"
size bar using Eqn. 13, which with the bar dimensions and the given
Weibull modulus of 15 becomes

MOR,
-@TA = 1,0367 (15)

The results after these two conversions are presented in Table III.

The time dependent material properties are given in Table IV,
The values were furnished for 1100, 1150, 1200, and 1250°C. Most of
the computed tempertures in the disc were below 1100°C, with tem-
peratures down to 787°C. Since values of B and n are required at all
temperatures the B and n values furnished for 1100°C were assumed to
.apply down to room temperature. The alternate approach in the absence
of values for B and n is to use a lower limit on temperature below
which no crack growth is assumed to occur. This approach was not used
in this report, since a lower limit was not furnished. The value of B
furnished was assumed to be the one obtained from the application of
Eqn. 7.

6. MECHANICAL STRESSES

The primary purpose of this report is to calculate time dependent
reliabilities and the associated temperatures and stresses; however,
for interpreting the results it is useful to have the stresses due to
centrifugal effects. This section presents these stresses at room
temperature. Table V shows the forces used to simulate blade loads
and the node number at which the particular load was applied. This
data was furnished in tabular form by AMMRC. The mesh was constructed
so that the nodes were locted to correspond with the geometric loca-
tion. The forces were applied radially outward at these nodes.

The rotational speed at which the stresses were calculated was
61,500 rpme The maximum principal stresses ar- plotted in Fig., 3.
The bore stress 1is 165 MPa, and the neck stress is 125 MPa. The
tangential and radial stresses are plotted in Figs. 4 and 5 respec-
tively. The 1isostress plots are in increments of 5 MPa, The fast
fracture probability of fallure for these stresses and the Weibull
data given in Table III is 3.725x10-8,

7. COMBINED THERMAL AND MECHANICAL STRESSES

This section presents the results of the analysis of the combined
thermal and mechanfical stresses. In the analysis a steady state tem-~
perature distribution and no creep was assumed. The heat transfer
data furnished was in graphical form. 1In order to input the data into
the computer code it was necessary to convert the data into numerical
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Fig. 3. Maximum principal stresses [MPa]
in disc, centrifugal stresses.
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form. Table VI gives the data as prepared for the computer. Shown
are the heat transfer coefficients and adiabatic wall temperatures and
the corresponding element and node numbers. Data was supplied for the
pedestal, and upstream and downstream faces of the disc. The data
furnished assumed no heat transfer in ... bore and at the attachments;
therefore, all surfaces not listed in Table VI were treated as being
adiabatic. The steady state temperatures calculated from these
boundry conditions are plotted in Fig. 6. Temperatures shown are 1in
degrees centigrade, and the maximum calculated nodal temperature is
1121°C at node 216.

The combined stresses due to the thermal gradients shown in Fig.
6 and the centrifugal loads given in the previous section were calcu-
lated and were plotted in Figs. 7, 8, and 9. These are the maximum
principal, tangential, and radial stresses, respectively. The maximum
bore stress is 220 MPa and the maximum stress in the neck is 200 MPa.
The gradient between the isostress lines is 5 MPa.

Fig. 5. Radial stresses [MPa] in disc, centrifugal stresses
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Fig. 6. Isotherms [°C] in disc of 61500 rpm. :i_:g
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Fig. 7. Maximum principal stresses [MPa] in disc, combining thermal
and centrifugal stresses at 61500 rpm.
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centrifugal stresses at 61500 rpm.

S Fig. 9. Radial stesses [MPa] in disc, combining thermal and centrigual S
£ J stresses at 61500 rpm. o
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8. RELIABILITIES

The reliability versus time for the disc was calculated for up to , 1
1000 hours of steady state running and the result is plotted in Fig. e 3

10. The fast fracture reliability, that 1s the reliability at time C
equal zero, 1is 0.99982. The time dependent parameters used are in Co
Table IV. The results assume continuous opertion at 61500 rpm at the
temperatures shown in Fig. 6. The effects of creep and oxidation are
assumed to be negligible. The maximum principal stress in the bore o
225 MPa at a temperature of 823°C. The reliability for steady state e B
running at these conditions is at time equal zero, 0.99982, and at .

time equal 1000 hours, 0.667.
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Fig. 10. Reliability versus time for steady state operation.
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9. SUMMARY . ;

The mechanical stresses and combined mechanical and thermal v
stresses were calculated for a hot pressed silicon nitride turbine . 1
disec. At room temperature the maximum principal stress was 165 MPa
due to mechanical loads at 61500 rpm. The corresponding fast fracture
probability of failure was 3.725x108. The steady state temperature
distribution was calculated for the boundary conditions at 61500 rpm.

t. * The maximum temperature in the bore was 824°C, the maximum temperature P
. in the neck was 946°C, and the maxi{mum temperature on the platform was A

i 1121°C. The thermal stresses due to this temperature distribution 1
! were combined with the stresses due to mechanical loads at elevated
[ temperatures. At these conditions the maximum principal stress in the
3 bore was 225 MPa at 823°C, and the maximum principal streas in the :
¥\ neck was 210 MPa at 929°C. v
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The reliabilities versus time were calculated, assuming no creep
and continuous running at 61500 rpm, for the combined stress and
steady state temperature conditions. At time equal to zero the calcu-
lated reliability' is 0.99982 and at 1000 hours the reliability is

0.667.
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11. APPENDIX A NOMENCLATURE

a Crack length, m

a8y Initial crack length, m

A Area on unit sphere, n?

A Premultiplier in crack velocity equation, meter/second (MPa-m)"
B Constant in reliability versus time equation, MPaz—hr
B Risk of rupture

b Width of MOR specimen, m

h Height of MOR specimen, m

K Constant, defined by Eqn. 10

Ky Stress intensity MPavm

Kic Critical stress intensity, a material parameter, MPav/m
L) Bottom span of MOR specimen, m

L2 Top span of MOR specimen, m

m Weibull Modulus

MOR Modulus of rupture, MPa

MOR, Characteristic modulus of rupture, MPa

n Crack velocity exponent

Pg¢ Probability of failure

R Reliability as a function of time

Rff Fast fracture reliability

o Stress, MPa

69 Characteristic strength of the structure, MPa

On Normal stress, MPa

01,02,03 Maximum principal stresses, MPa

0o Weibull parameter, MPa/(m’)1/m

14,
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Time, hours

Volume, ma

Crack velocity, m/sec

Stress intensity factor coefficient, non-dimensional
Azimuthal angle

Polar angle

15,
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TABLE 1 3

<

Thermal Properties

Temperature Thermal Specific
Conductivity Heat

°C watt joule

meter °C kg °C

Hot Pressed Silicon 21. 29.4 754,
Nitride 260, 26.0 963,

3

Density = 3.19 gm/cm” 538. 22.5 1088.
816. 19.0 1214.
1092. 15.9 1381.
1371. 13.8 ‘1340,
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Hot Pressed Silicon
Nitride

Density 3
=3,19 gm/cm

TABLE II

Elastic Properties

Temp.,

Young's
Modulus

Poisson's
Ratio

Shear
Modulus

Coefficient
of Thermal
Expansion

°C

23.
600.
800.

1000.
1100.
1200.
1300.
1400.

CN/m?

320.
311.
308.
301.
297.
287.
274,
257.

17.

«280
.278
$277
«275
o274
«276
«276
o274

GN/m

122,
121,
120.
118.
116.
112.

- 108.

101.

2

1/°¢C

1.13
3.39
3.59
3.67
3.47
3.45
3.43
3.25
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TABLE III

Fast Fracture Properties

Temperature Characteristic Weibull
MOR Modulus
°C MPa
20 733, 15.
900 568, 15.
1000 532. 15.
1100 _ 480. 15.
1200 425, 15.

1250 373, 15.
Specimen Dimensions ("A"-size bar)

width 6,350 mm RN
Height 3.175 mm
Inner span 9.525 mm
Outer span 19,050 mm
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TABLE 1V
Time Dependent Properties

Temperature Parameter Crack Velocity
B Exponent

°C HPaz—Sec

21 515. 40
1100 515, 40
1150 . 515. 40
1200 8.81 40
1250 .12 40
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TABLE V

Forces Simulating Blade Loads

Node Force
Number Newtons
236 5148.8
237 12821.9
238 15903.6
240 15996.9
241 13617.0
242 . 5631.7
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TABLE VI
Heat Transfer Data

Element Node Node

Heat Transfer Adiabatic
Number 1 2 Coefficient Wall Temperature
W oc
m2°K
Pedestal 216 243 242 2650. 1250
215 242, 241 1480. 1250
214 241 240 1260. 1250
213 240 239 1230. 1250
212 239 238 1200. 1250
211 238 237 1180. 1250
210 237 236 1150. 1250
209 236 235 1130. 1250
Upstream 100 121 120 1170. 700
Face of Disc 99 120 119 1150. 701
110 119 130 1090. 709
118 130 137 1030. 712
124 137 144 970. 722
130 144 151 925. 730
136 151 158 885. 737
142 158 165 850. 745
148 165 172 815. 750
154 172 179 790. 757
160 179 186 760. 763
166 186 193 730. 772
172 193 200 710. 776
i 178 200 ' 207 690. 795
192 207 216 660. 820
é! 200 216 225 640. 900
208 225 234 625. 1042
216 234 243 608. 1150
3 Downstream 88 95 109 580. 755
{ Face of Disc 101 109 122 550, 757
L. 111 122 131 520. 763
¢ 119 131 138 490. 776
{ 125 138 145 465, 786
. 131 145 152 450. 795
3 137 152 159 435. 800
¥ 143 159 166 420. 810
¢ 149 166 173 410. 815
s 155 173 180 400. 825
161 180 187 390, 835
. 167 187 194 383. 845
: 173 194 201 3180. 900
: 179 201 208 370. 995
» 193 208 217 365. 1100
4 201 217 226 355, 1230
& 209 226 235 350. 1305
§
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