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ABSTRACT

The philosophical and computational foundations of a system
reliability analysis are discussed. Recent advances in net-
work and logic tree computational methods are reviewed.

Long run performance formulas for systems subject to pre-
ventive maintenance are given.
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SYSTEM RELIABILITY ANALYSIS: FOUNDATIONS

Richard E. Barlow
Operations Research Center
University of California
Berkeley, CA 94720

1. INTRODUCTION

System reliability analysis problems arise in many practical engineering areas.
Some of these include communication networks, electrical power systems, water trans-
mission systems, nuclear power reactors, and transportation systems. We will illus-
trate some of the ideas basic to a system reliability analysis via our experience in
analyzing a proposed Satellite X-ray Test Facility (SXTF). This facility would test
spage; satellites relative to an electromagnetic radiation environment.

The purpose of a system reliability analysis is to acquire information about a
system of interest relative to making decisions based on considerations of avail-
ability, reliability, and safety as well as any inherent engineering risks. The
philosophy and guidelines for a system analysis have been discussed in several ex-
cellent introductory chapters by David Haas] in a Fault Tree Handbook (1981). Broad-
1y speaking, there are two important aspects to a system analysis: (1) An INDUCTIVE
ANALYSIS stage and (2) A DEDUCTIVE ANALYSIS stage. In the inductive analysis stage
ve gather and organize available information on the system. We define the system,
describe its functional purpose and determine its criticald@bmponents. At this
stage, we ask the question: WHAT can happen to the system as a result of a component
failure or a human error? We hypothesize and guess possible system failure scenarios
as well as system success modes. A Preliminary Hazard Analysis is often performed
at the system level. A Failure Modes and Effects Analysis is conducted at the com-
ponent level.

The DEDUCTIVE ANALYSIS aspect of a system reliability analysis answers the
question: HOW can a system fail (or succeed) or be unavailable? A logic tree (or
fault tree if we are failure oriented) is often the best device for deducing how a
major system failure event could possibly occur. However, its construction depends
on a thorough understanding of the system and the results of the system inductive
analysis. A block diagram or a network graph is a useful device for representing a
successfully functioning system. Since the network graph is close to a system
functional representation, it cannot capture abstract system failure and human error
events as well as the logic tree representation. However, from the point of view
of mathematical probability analysis, the network graph representation seems to be
correspondingly easier to analyze.
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The Operations Research Center at Berkeley has completed two projects so far
involving extensive system reliability analysis of a proposed X-ray test facility.
One subsystem providing the photon source is composed of 192 individual modules.

They are attached at one end to the Marx capacitor bank, and the other end penetrates
into the vacuum chamber and terminates in the X-ray producing diode (see Figure 1).
Each module is filled with water that is separated from the 0il in the Marx tank by
an epoxy diaphragm and from the vacuum chamber by a styrene insulator plate.

Modules
112} space
Ca:::?tor —Hlks lrlsatellite
Bank 3
: \ vacuum
(0i1) N chamber

FIGURE 1. PROPOSED X-RAY TEST FACILITY

In the inductive phase of our system analysis we listed all possible mechanical
and electrical failure modes that we could envision. This led to a critical com-
ponents list including assessed failure rates. For each member of the list, a de-
tailed failure modes and effects form was filled out by engineers concerned with the
project. This, together with a detailed discussion of possible system faults, con-
stituted our "inductive analysis."

It is well-known that system failures often occur at subsystem interfaces. In
the deductive phase of our analysis we were most concerned with the oil-water and
also the water-vacuum interfaces. Fault trees were constructed for water leakage
from the tube into the vacuum chamber, for oil/water mixing and also for satellite
contamination. These fault trees pinpointed failure modes which might have been
otherwise overlooked. In particular, as a result of these fault trees, certain com-
ponents were redesigned to prevent potential failures. The fault trees provided use-
ful visual tools for describing the logic leading up to possible serious system fail-
ure events. They provided the basis for contending that all likely critical failure
events have been found and studied. Finally, a simple block diagram of our system
was used to implement a system availability analysis. In the next section we show
how to analyze, probabilistically, more complex networks.
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2. CALCULATION OF SYSTEM RELIABILITY

The logical relationship between component events and system events is best
represented by a network graph or a logic tree. A Boolean expression can be derived
from either representation which can then be used to calculate the probability of
system events of interest. However, recent research on the computational complexity
of network reliability problems has shown that Boolean computational methods are not
efficient. Chang (1981) in Chapter.3 of his Ph.D. thesis discusses the Boolean al-
gebra approach and Backtrack algorithms in this regard.

Y

Networks

Suppose we consider a network graph representation such as the undirected net-
work in Figure 2.

FIGURE 2. UNDIRECTED TWO TERMINAL NETWORK

In this case, system success occurs 1f there is at least one working path of nodes
and arcs from source s to termminal t . Let the Boolean indicator

1 1f arc 1 works
X; =

0 otherwise.

For convenience, suppose nodes are perfect so that (x],xz, eoes x8) is a state
vector for our network. Let

1 if s and t can communicate

${XysXns ooy Xq) =
L 8 {0 otherwise.

Such systems are called coherent systems in Barlow and Proschan (1981). Basically,
¢ 1s coherent 1f it is nondecreasing coordinatewise. A1l coherent systems, ¢ ,

-
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can be represented as two terminal networks with possible replication of some arcs.
A minimal path set for the network in Figure 2 is P] = {(1,4,7} for example.
There are 8 such min path sets {P1,P2, cees Pa} . Hence, ¢ can be represented as r
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8
O(XqsXos c0ey Xg) =1 « 1
1°%2 8 .

8
( -~ I xi) def I Iox; . (2.1)

i ePr r=1 i ePr

By expanding this expression, using the usual arithmetic (not Boolean arithmetic) and
3 replacing x? by X; » we can obtain an expression suitable for computing the system
L success probability. Assuming arc failure events are statistically independent we

ii need only replace Xy by Pj » the probability arc i works, in the resulting ex-
e pression.

f; However, there is a far more efficient method for doing this calculation - called
the factoring algorithm. The idea is to first perform all possible series and paral-
N lel probability reductions and then pivot on an arc. Let p= (p],pz, cens p8) and
g h(p) denote the probability that s and t communicate. If we "pivot" on arc i

. then we obtain the "pivotal" decomposition" of h(p) , namely

e

X A

h(p) = pih(li.g) + (1 -pi)h(oi,g) (2.2)

N S N

:I where (li,g) = (p],pz, cers pi-]’]i’pi+1’ cers p8) . This, together with series
g and parallel reductions, is the mathematical basis for the factoring algorithm.

In Figure 2 no series or parallel reductions are possible, so we pivot on arc 1.
That is, we short arc 1 on the left and delete arc 1 on the right. Series and paral-
Tel reductions are now possible on the two modified graphs. After performing these
reductions, we again pivot. In our binary computational tree in Figure 3 there are
4 leaves at the bottom of the tree. Neglecting parallel and series reductions except
at the last stage, we have performed only 2(4) -1 = 7 operations to achieve our re-
1iability computation. If each arc 1 has probability p of working, it is easy to
see that the system reliability in this case is

P{s can communicate with the terminal ¢t}

h(p)

= p2(((((p2 p)P) 4 PIP) 1 p) + p(1 -p)(((pu PP} (p2x p))
+p(1-p)((pp2p)) u (p2))p + (1 -p)2((p3x p)p?)

= (p% +p% +p5 - 5p8 +4p7 -p%) + (2p® -p° - 4p8 +ap’ -8
+ (3p* -ap% - pb +3p7 -p%) + (p%-2pt +2p° - 3p8 4 3p7 - p8)

5

2p° +4p? - 205 - 13p% +14p7 - 4p8 .
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FIGURE 3. BINARY COMPUTATIONAL TREE USING THE FACTORING ALGORITHM
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The lower case "ip" operator, . , corresponds to calculating the reliability of
Parallel arcs; i.e.,

'-i

Pyt Pj=Py*Pj-PiP;- ;5.-§

In Figure 3, ﬁi =1-p; . ;?
Linear and polynomial time algorithms are now available for computing network g

reliability when the underlying graph has a series-parallel topology. For example, i;
the graph in Figure 4 is called a topologically series-parallel graph even though .

the same graph in Figure 2 with distinguished nodes s and t 1{s not series-parallel 4

with respect to reliability computation. i

'..4

s

FIGURE 4. A TOPOLOGICAL SERIES-PARALLEL GRAPH
(NO DISTINGUISHED NODES)

For undirected networks, the basic reference is A. Satyanarayana and Kevin Wood (1982). :
For directed networks, the basic reference is Avinash Agrawal and A. Satyanarayana 1?
(1982). )
If the arc reliabflity, p , is unknown but there is data available, then we may iJ
assess our uncertainty about p by a probability density. If a Beta prior density "1
is used, then the posterior density is also Beta and is of the form N
o I{a +b) a-1, _ _yb-] %
w(pla,b) = HEER 00 - )P (2.3) -
OQur final system reliability assessment jis now 7]
R = | n(p)n(pla,b)dp . (2.4) oy
A common mistake is to compute the expected arc reliability -;
v

1
[pu(p!mb)dp “ v
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and compute “(3"%‘5) . However, R # h(a : b) .

Logic Trees

Logic tree (or fault tree) analysis is a detailed deductive analysis that usually
requires considerable system information. It is best applied during the design stages
of a system. At that point, it can identify hazardous conditions and potential acci-
dents in a system design and thus can help eliminate costly design changes and retro-
fits that would otherwise have to be made later in the system life cycle. Undesired
events requiring logic tree analysis are identified either by inductive analysis or
by intuition. These events are usually undesired system states that can occur as a
result of subsystem functional faults.

A logic tree is a model that graphically and logically represents the various
combinations of possible events, both fault and normal, occurring in a system that
lead to the top undesired event. The logic tree is so structured that the undesired
event appears as the top event in the logic tree. The sequences of events that lead
to the undesired event are shown below the top event and are logically linked to the
undesired event by .standard OR and AND gates. The input events to each logic gate
that are also outputs of other logic gates at a lower level are shown as rectangles.
(Rectangles are called gate events.) These events are developed even further until
the sequences of events lead to basic causes. The basic events appear as circles and
diamonds on the bottom of the fault tree and represent the limit of resolution. The
circle represents an internal or primary failure of a system element when exercised
within the design envelop of the system. The diamond represents a failure, other
than a primary failure, that is purposely not further developed. Gate nodes corre-
spond to intermediate events while the top node usually corresponds to a very serious
system failure event. In Figure 6, all arcs are regular with the exception of the
complementing arc joining nodes 6 and 4, and this arc is distinguished by the symbol
" e W

Associated with each gate is a logic symbol: OR gates have a plus symbol (for
set union) while AND gates have a product () symbol (for set intersection). For ex-
ample, output event 3 occurs if either input event 4 or 5 (or both) occur. Likewise
output event 5 occurs only if both input events 7 and 8 occur. Since the arc connect-
ing gate events 4 and 6 is complemented, gate event 4 occurs only if basic event 11
occurs and gate event 6 does not occur.

A complete reliability analysis on an extensive system such as the SXTF System
normally requires three levels of fault tree development, as shown in Figure 5. The
upper level, called the top structure, includes the top undesired event and the sub-
undesired events that are potential accidents and hazardous conditions that are imme-
diate causes of the top event. The next level of the logic tree divides the operation
of the system into phases, subphases, etc., until the system environment remains
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Segments of Fa$;5e%:ee
analysis development
Top
undesired
event
(Subsystem functional faults)
Handled by FTA
S e—
Top
structure

Sub-undesired
events

N, s’ e, g’
Handled by inductive analysis —-—x'—
(generic equipment hazards)
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o @ R

System
phases
Major
' system
levels

Fault
flows

[ \

= +

! Component

- > fault

- states

L Subsystem
o and detailed
L / hardware flow
'é

L' Secondary

» failures

FIGURE 5. LEVELS OF LOGIC TREE DEVELOPMENT
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constant and the system characteristics do not change the fault environment. In this
second level of fault tree development, the analyst examines system elements from a
functional point of view. He uses a structuring process to develop fault flows with-
in the system that deductively lead to asubsystem and detailed hardware flow, which
is the third level of the fault tree. At the third level, the analyst is faced with
one of the most difficult aspects of logic tree analysis. He must determine if basic
events are statistically independent. He then focuses his attention on common events
that can simultaneously fail two or more system elements. The effects of any common
environmental or operational stresses are studied, as well as the effects of the
human factor in the testing, maintenance, and operation of the system.

Once the logic tree is constructed, all logically possible accident scenarios
(called minimal cuts) can be obtained. There are many algorithms and computer prog-
rams for finding minimal cuts (or prime implicants for general logic trees). One of
the best of these is a computer program called FTAP due to Randall Willie (1978).

The minimal cuts can then be used to compute the probability of gate events including
the TOP event. A sensitivity analysis can be performed using a so-called marginal
importance measure which is essentially the partial derivative of system reliability
with respect to component reliability.

Mathematics of Fault Trge Analysis

Boolean switching theory is basic for the mathematics of fault tree analysis.
For the fault tree node set U = [1,2, ..., q] , let XpsXos <oes xq be Boolean
variables assuming values 0 or 1 and let x = (X{:Xy, ..., xq) . (In Figure 6,
q=14.) Forany 0 in U, let Xy = 1 - Xy The index set for complements is
-y=[-1,-2, ..., -q] and (u,-u) is a complementary pair of indices.

Expressions may be formed using Xps oees xq s X_gs vees x_q and the ordinary
Boolean relations of product and sum. An arbitrary nonempty family I of subsets
of Uu (-U) (not necessarily distinct) is identified with the Boolean sum-of-products

expression

] 1 Xg s (2.5)
Iel iel

where 1 1is a member of the family I . (Remember, the arithmetic is Boolean.) The
notation /I/x denotes the value of this expression for a given vector x of 0's
and 1's, that is,

/1/x = max (min xi) = 1 mox . (2.6)
lel \iel Iel el

Given nonempty families I and J of subsets of Uu (-U) , /I/ = /J/ means that
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for all x /I/x = /3/x . It is further assumed that no set of a family comtains a
complementary pair. Whenever a new family is constructed, any set containing comple-
mentary pairs is simply eliminated.

A family is said to be minimal if all sets are distinct and for any two sets of
the family, neither is a subset of the other. For any family I , let m(I) (the
"minimization" of 1I) be the minimal family obtained by eliminating duplicate sets
and those which contain another set of I . For instance, m([(2,3}, {1,2,3}]) =
[t{2,3}] . Of course, for any 1 , /m(I)/ = /1/ . The first task of a fault tree
analysis is to obtain a certain minimal family of sets of U U (-U) called a prime
implicant family. We are only interested in prime implicant families for fault tree
nodes which we wish to analyze since such families are unique and determine the Boolean
expression for the node indicator. For Figure 6 and node 1,

P = [(9,10},{12,14},{13},(11}]
js a prime implicant family and

X) LN P (2.7)

PEP ieP

where P is a member of the family P and X is the indicator for the top event
in Figure 6. The first task of a fault tree analysis is to obtain the prime implicant
families for fault tree nodes of special interest.

For trees without complemented arcs, the prime implicants are called minimal cut
sets. The minimal cut set family for a large fault tree (having, say, more than 100
gate noces) may consist of millions of sets, if the tree has an appreciable number of
OR-type gates. A. Rosenthal (1975) has shown that the general problem of finding the
complete minimal cut set family associated with a fault tree is a member ¢f the class
of NP-complete problems. (A class of problems for which it is conjectured that no
algorithm exists which will always run on a computer within a polynomial time bound.)
Hence we cannot expect to devise an algorithm whose running time is bounded for all
fault trees by a polynomial in, say, the number of fault tree nodes. The serious
analyst should probably not rely on the same method for every fault tree.

Sensitivity Analysis for Coherent Systems and Logic Trees

t; Often the relative importance rdnking of components in a coherent system (or of
:% basic events in a logic tree) is more useful than the probability of system success
3" or failure. We will use coherent system terminology to illustrate the concept of

Ej marginal importance. We define the marginal importance, Ih(i) » of component 1

" to' be :
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ah(p)
I (i) = % (2.8)

when components are statistically independent and h(p) 1is the system reliability.
From the pivotal decomposition in (2.2), it is clear that

an(p)
—ﬁ,-fld h(15.p) - h(0,.p) . (2.9)

This is also valid for general logic trees where h(p) is the probability of the
Top Event. If, in addition, ¢ is nondecreasing coordinatewise,

. 3h(p)

so that Ih(i) is the probability that component i is "critical" at a given time
instant. This means that with i working the system works, but with i failed, the
system is failed.

The reliability importance of components may be used to evaluate the effect of
an improvement in component reliability on system reliability, as follows. By the
chain rule for differentiation,

where t 1is a common parameter, say, the time elapsed since system development began.
Using (2.8), we have

n dp,
g_*tl= Io1,0) g (2.11)

J=1
Thus the rate at which system reliability grows is a weighted combination of the rates
at which component reliabilities grow, where the weights are the reliability importance

numbers.
From (2.11), we may also obtain

n
thz L Iy (2.12)

where Ah iz the perturbation in system reliability corresponding to perturbations

p;um.‘.‘.'.
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g ApJ in component reliabilities. As in (2.11), the reliability importance numbers
L‘j enter as weights. Thus small improvements Apj in component reliabilities lead to .
|\ a corresponding improvement ah in system reliability in accordance with (2.12). "
. Examples: :
4
Assume components have been labeled so that component reliabilities are ordered :
as follows: 3
-4

Py Py 2Py -

n
(a) Series System. If n(p) = ’in'l Py » then

I.(j) = n

and Ih(l) > Ih(z) > eve > lh(n) , SO that the component with lowest reli-
ability is the most important to the system. This reflects the well-known
principle that "a chain is as strong as its weakest link."

n
b) Parallel System. If h(p) = 1u] Py » then

) = 1 (1= )

- and I,(1) <1,(2) < - < I,(n) , so that the component with highest reli-
;"~ ability is the most important to the system. This, too, is intuitively
reasonable, since 1f just ome component functions, the system functions.

} The concept of marginal importance plays a very key role in a computer program y
L : called PAFT, [T. Barlow and K. Wood (1982)] for analyzing logic trees. This program B
[; calculates the probability of al) gate events given the probabilities for basic events.

' 1t then calculates the marginal importances of all gate and basic events relative to ;J

s the Top Event. Given failure rates for basic events and using the marginal impor- 1

- tances, the program also calculates marginal occurrence rates for basic events rela-
tive to the Top Event. The Top Event occurrence rate for selected time points is

“ then calculated as the sum of basic event marginal occurrence rates.

;" This program attempts to take optimum advantage of the tree structure for the

probability calculation. It neither finds nor uses minimal cut sets for this purpose.
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Another approach not based on minimal cut sets is due to S. Arnborg (1978). His
algorithm uses the concept of domination in order to achieve "reduced state enumera- F
tion." According to Arnborg, it can give good results, but apparently the fault trees
on which it is used must be carefully screened for the right characteristics.

v
A

7

- a1
e Raiaiansiahe

_ju:' ESESENE
i VR

S §

aaly oL

PTrTTIVTrTY
v TN R R

AN A0Ena R 4
(BN RSN
Lo =

“'f{ s I R

P v . e . v

o &0
-

03 e
o« alal

X o o o)
. - i

o -
b N R
s ]
bo '.1
¢ g
S -4

SRR
A

MR INET TG PEFL TSN TU S PP TN ou s i ; oo ~l




........
g T e e T TR T e T 2 T e e e ey

3. SYSTEM AVAILABILITY ANALYSIS
o In most system reliability analyses, it is necessary to evaluate the effect of
!! maintenance procedures on overall system availability and performance. For example,

the following questions are of interest:

2. What is the long run expected average of system up (down) times?

3. How often do we expect a specific component to "cause” system failure?
(We say that a component "causes” system failure if system failure coincides
with that component's failure.)

h 1. What is the long run expected time average of the number of system fajlures?

We will consider two system models of general interest.

MODEL A: Coherent Systems with Separately Maintained Components

For this model, failure-repair processes in different system component positions
are assumed to be statistically independent. This is somewhat unrealistic since we

also suppose that functioning components continue to operate (and perhaps fail) even
when the system is down.

MODEL B: Series Systems Whose Functioning Components Suspend Operation During Repair

This mode]l represents the other extreme relative to MODEL A. In this case func-
tioning components are in “suspended animation” so to speak when the system is down.
While in "suspended animation” components do not age and cannot fail.

For both models, we assume continuous failure and repair distributions. Let

ﬁi(t) be the number of times in [0,t] that component i "causes" system failure.
Let

I £EG AP e

; . n .
.l N(t) = 121 N, (t)
Eﬁ
&f be the number of system failures in [0,t] where n is the number of system com-
= ponents. We call ELN( the expected time average of the number of system fail-
e ures in [0,t] . In general, it will be time dependent. When
=9
i N
- 1im EN(E)
22

exists, we call this the long run expected time average of the number of system fail-
ures.
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MODEL A: LONG RUN PERFORMANCE FORMULAS

Most of the formulas which answer the previous three questions involve computing B
the reliability, function, h(p) , discussed in Section 2. Although this function is
based on the binary case (components are eijther working or failed at a specific time),
it also plays a crucial role in the dynamic, time dependent case. Under Model A, we
have an alternating renewal process for each component position of our coherent sys-

S SO

tem, ¢ . .let component type {1 have mean life My and mean repair time vy - Let
© {1 if component i is working at time t , S
x.(t) = 3
i 0 otherwise. g
[ a
Then the system indicator function is i
X(t) = olXy () X5(t), ..oy X (t)] &
o
and "':
A(t) = P(x(t) = 1] -
-
v
where Ai(t) is the probability that component i is available at time t . The r A
long run availability is '
4
e R T 4

)
L

The number of failures in component position i , Ni(t) , generates a (delayed)
renewal counting process {Ni(t) ; t >0} . Let Mi(t) = ENi(t) . It is proved in 5
Barlow and Proschan (1975) that the expected number of system failures in [0,t]

T

PR RO

.’I
caused by component i is -~
:f-: Eﬂ‘(t) -l[h(li.l_\_(u)) - h(oi.A_(u))]dni(u) . (3.3)
g v
5 B
& From this result it can be shown that . 4
9 J
% 1 o . :
B =3
N where A = (A;,Ay, ..., A)) and A, =y /(i + v,) . The long run expected time
3 7
", . ]
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e Bl 4

average of the number of system failures is then E
‘ L
- n ~
tin B T (1) - h(0, MG ¢ vy) (3.5) -
toe i=1
If U].Uz. ey Uk are successive system uptimes, then it can be shown that B
E[U; + Uy + ... + U] h(A) ]
Tim X a — . (3.6) 4
k-iﬂ n 4
d
If DDy, ..., D are successive system downtimes, then ]
E[D] + ..+ Dk] 1 - h(A) N
1im K == (3.7) 3
Ky
the long run average of system downtimes. N
Example: Series System o
N
In this case, the long run expected time average of the number of system failures R
is :
n n n ﬁ
[n—-ﬂ-v— z-lsA{ul (3.8) H
SR I MRl R i=1 ¥y 5
while g
. EUy + ... +ud [n 7"
- - ) 1im X =| § — (3.9)
koo i=1 ¥4
[ and letting = E l-]
") u [ »
i=1 "4
-
n !}
- n
E[D] + ... ¢ Dk] "' ug ¢+ Vj 1 - A . ':
Tim K - n n = A b (3.]0) -
kos i e ;] 1+ "
g=t M gl e W
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MODEL B: LONG RUN PERFORMANCE FORMULAS

T PP

Under this model, functioning components suspend operation during repair of non-
functioning components. If any component in this series system fails, the remaining

components are shut off and remain in suspended animation until the failed component ,j
is fixed. 3
Let U(t) [D(t)] be the cumulated system uptime [downtime] by time t . 1In f
Barlow and Proschan (1975), Chapter 7, it fs shown that the long run average system s
availability s, in this case b
n v\ R

Ay, 3L 1in %IA(u)du - (1 + 3 ;1) . (3.11) F

tom =17 -4

If 1lim A(t) exists, then it is the same as (3.11).

tom
The limiting expected time average of the number of system failures caused by
component {1 1is

EN,(t) A
11m—1—-=ﬂ. (3.12)
toe 4

Hence, the long run expected time average of the number of system failures is

= n
1im ENCE) | 4 1. (3.13)
toe U av 121 ¥y

The long run average of system uptimes is

'
SN 1 N SRR

E[U, + U, + ... + U] n
T ——2 k =(z 1) f, . (3.18)
kse i=1 ¥4

""
ekl

The long run average of system downtimes is

.

4

E(D, + 0, + ... + D] n 1-A .

1 2 k av -

1im =y ¥ ovi/u '( )u . (3.15) _

ke k IS Rav A

’

& Compare (3.8) and (3.13); also (3.9) and (3.14); also (3.10) and (3.15). R
o Availability of Series Systems with Preventive Maintenance ;i
i - v
f& Most systems are subject to planned maintenance. In calculating system avail- ;1
Kﬁ ability, it seems unfair that planned maintenance downtime should count against good ;i
¥ ]
4 1
/ v
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system performance. Hence, we define Afailure as long run system availability when
downtime due to routine maintenance is not considered as contributing to system un-
availability. Conversely, system failure unavailability is, in the long run, the
fraction of time the system is down due to a component or subsystem failure. The
following discussion shows how this fraction (or percentage) may be computed.

The Pulse Radiation Source (an X-ray system) is basically a series system of
five major subsystems: Marx, waterline, tube, source, and source shield. Each sub-
system has a prescribed time between scheduled maintenance and a maintenance down-
time (see Table 1). In addition, system failures may cause additional unscheduled
maintenance downtime. When scheduled or unscheduled maintenance is performed on a
subsystem, the other subsystems are said to be in suspended animation. When the sub-
system is maintained or repaired, all subsystems resume normal operation. For the
purpose of availability analysis, we assume that maintained or repaired subsystems
are "like new."

A table of maintenance downtimes, failure repair downtimes, and subsystems mean
times to failure follows (Table 1). Since there are four shots per 8-hour work day,
we let 1 system shot equal 2 hours and all times in the table are expressed in hours.

TABLE 1

PULSE RADIATION SOURCE
MAINTENANCE AND FATILURE INFORMATION

Mean Time | Failure Repair
Maintenance | Maintenance
Subsystem Frequency Downt ime To F::lure Mean Dg:ntime
After
Marx 50 shots 8 h :goaggoﬁs 8 h
or 100 h
After
Waterline | 50 shots 8 h 32013:gt: 16 h
or 100 h
After
50 shots 8 h 200 “s,ms 24 h
Tube or 100 h
After
5 shots 4 h
or 20 h
After
g:?:?:/ every shot 1h - ---
or2h
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Since the source/shield is repaired after every shot, no mean time to failure
is assessed. Since the Marx, Waterline and Tube are periodically maintained, the
failure rate is considered constant (one divided by the mean time to failure).

There is a natural 100h operating cycle for the maintenance regime. Since after
10h, 100h, etc. more than one subsystem is serviced, each downtime corresponds to the
longest required service time. In a 100h operating cycle, the total maintenance
downtime accumulated is

T = 1.0[50 - 10] + 4[10 - 1] + 8[1] = 84 hours.
Let t be calendar time (in units of working hours) and U(t) the cumulated

system uptime in calendar time t . Let Dir be the r-th downtime to repair a fail-
ure of subsystem i . Then overall system availability, A° , in the long run is

A = Tim u(t) (3.16)
G U(t k N.[U(t)]
u(t) + T+ ) D4y
i=1 r=1
since UOE T will be approximately the downtime due to preventive maintenance in
calendar time t . In our example, k = 3 corresponding to the Marx, waterline
and the tube. Hence
1

Ao = K P = 0.519 ,

T
1+ + § —

which looks bad! However, if we only count downtime due to failures, then long run
avajlability in this case, called Afailure s is

u(t) + YWEl 7
= 1im Téﬁl

A
fail N, [U(t
T umfee ) 1[2: o
j= rs

ir

- — 121100 . g 955 (3.17)
Vi

T
1+ + —_
708 121 ¥
Let Amaint be the long run system avajlability with respect to planned mainte-
nance (i.e., the fraction of time the system is not down due to planned maintenance).
Then

Soadutia

.lll"‘.‘

i




TSIV

vy " TR
'.l‘,'. P A

v
B

Dl
EE

Sea L e

LEEA ZNS 1 5 ana an au o

-1
. u(t) T
A . = 1im = [1 + ———]
maint. tos U(t) + U T 100

= 0.543. (3.18)

Note that from (3.16), (3.17) and (3.18) we have

A =A A

(1] maint. ~ “failure °

This is valid assuming failure occurrence is independent of scheduled maintenance.
If we neglect planned maintenance downtimes, then from (3.11), we have

-1
k v,
vim ELE)] [} v fﬁ] (3.19)

tow i=1 ¥y

and from (3.13) the long run expected time average of the number of system failures
(neglecting planned maintenance downtimes) is

-1
k v k
1+ § 3 ) 1
=1 M) =1 Y
In 100 operating hours, we expect
k v, -1 k
1001 + ) o I —
i=1 M1 = W

system failures so that for a planned operating and maintenance cycle of 100 + T
hours we expect the long run average number of failures per hour to be

k v, L .
o + § —1 § —
A= (1 D L M RPN 1073/n (3.20)
T00 + T - .

where X = dwarx * Muaterline * Mube 29

-4
AMGFX = 6,256 x 10 "/h .
Materline = 3-005 x 107°/h
-3
XTube = 1,25 x 10°°/h .

It is clear that the Tube, the Marx and the Waterline are the most critical subsystems
and in that order.
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