UTEC-82-103 !

Second Semiannual Technical Report ‘
1

i

TRANSFORMATION of ADA PROGRAMS INTO SILICON

82Mar1-820ct 31

ADA122967

Elliott I. Organick, Principal Investigator
(801) 581-6087

Contractor: The Univers.ity of Utah
Date of Contract: 81 SEPT 1
Expiring: 83 AUG 31
Sponsored by
Defense A dvanced Research Projects A gency (DeD) ‘ :
ARPA Order No. 4305 |

k
Under Contract No. MDA 903-81-C-021 1, issued by . :
Defense Supply Service ~ ¥ ashingten, W ashington DC 2031¢
The views and conclusions contained ir. this document z
are these cf the authors and sheuld not be interpreted 4 7 lﬂﬁ3
as representing the officiel pclicies, either expressed or] ﬁiﬁ. 2 4

implied, of the D efense Advanced Research Projects Agency
of the US Government. 2 “

N ovember 1982 - ’

—

- o g W b ... - X -

) "Dié’t'ﬁuﬁo@ ﬁ'}@
loase;

od for public v |

App;;:tﬂbuﬁon Unlimited i

T =

e e e et g -

e
Second Semiannual Technical Report pagei '
Table of Contents
1. Summary 1 -3
2. Converting the DoD Internet Protocol to Silicon. 3 <
2.1. Interesting aspects of Read_ Init_. Parameters 4
2.2. Arithmetic processing 5
2.3.0n going and future related work 5
3. A Transformation System: Theory and Implementation 6
3.1. Sysiems Implementation 6
3.2. Conceplual/Theoretical Basis for Transformation 6)
3.2.1. Interface With Diana 7 -
3.3. Some Remarks on System Implementation Issues 7
4. PPL Design Activities B
4.1. PPL Design Characteristics 8
4.2. The Analogy Between the PPL Design and a Computer Program 8
4.3.Design Time vs. Integrated Circuit Area]
4.4 The Utah PPL Design System 9 >
4.5. Presently Existing Circuit Layout Tools 10 e
4.6. Circuit Simulation and Elecirical Checking 10
4.7.Self Timed IC Design with PPL's 11
4.8. Future CAD Tools for the PPL Design Methodology 12
4.9. Observations 12
5. Project Bibliography of Papers, Reports and Theses 14
6. Appendix 16)
|
"’ .
1
E
;
3
|
’ |
i
i
b
9
. Yo e G RN o

S eSS q T — = S SR R T R T
ey e

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

\. REPORT NUMBER

UTEC-82-68@ /O3

2. GOVT ACCESSION NO.

AP Al Te?

3, RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

TRANSFORMATION OF ADA PROGRAMS INTO SILICON

5. YPE OF REPORT & PERIOD COVERED
emi-annual

[R LAY V. '\lﬂfj Xl

€. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
Dr. E. Organick, Dr. G/ Lindstrom, D. K. Smith,

Dr. Subraq§anyam, T: Carter
t

8. CONTRACT OR GRANT NUMBER(s)

MDA 903-81-C-0411,

9. PERFORMING ORGANIZATION NAME AND ADDRESS
University of Utah

Computer Science Department

Salt Lake City Utah 84112

10. PROGRAM ELEMENT, PROJECT, TASK
AREA

& WORK UNIT NUMBERS

1001/1122

11. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency (DoD)

1400 Wilson Boulevard
Washington, D.C. 22209

12.

2
el 1982

REPORT DATE

13. NUMBER OF PAGES

Defense Supply--Service Washington
Rm 1d-245, The Pentagon
Washington, D.C. 20310

2. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Ollice)

1S. SECURITY CLASS. (of this report)

unclassified

15a.

DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

is unlimited.

This document has been approved for public release and sale; its distribution

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different ifrom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necessary and identify by block number}oontrol unit s CADDET, SPICE
Internet protocol, submodules, Ada-to-silicon, transformation metholodogies, high
level program specifications, DoD Internet Protocol, special function architec-
ture, ADA packages & tasks, VLSI synthesis, program formal specifications, device
modeling, switched capacitor filter, stored logic array, logic simulator, hand
sqake, speed-independent, one-hot, portable standard LISP, silicon compiler, VLSI

—

transforming Ada programs, or program units,
VLSI systems.

evident;

This report outlines the beginning steps taken in an
effort toward the development of a methodology, and supporting systems, for
(directly) into corresponding
The time seems right to expect good results.
special purpose systems should be realistic alternatives where |
simplicity, speed, reliability, and security are dominant factors.
this research can lead to attractive options for embedded system applications. |

integrated research

The need is

Success in

DD ,fon'7s 1473

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

A e T R S

r pp—) —— B . .:. .___1

SECURITY CLASSIFICATION OF THIS PAGE(When Data Enterad)

! Ada programs can be regarded as ensembles of machines, one per program unit
(module), which in turn may be mapped directly into corresponding VLSI :
structures on one or more chips with interconnecting (packet switched or

other) communication nets. .
.]

Many of the transformation steps, when performed manually, when optimization
. is not everywhere crucial, and when care is taken to constrain somewhat the
. structure of the source Ada program, appear to be understood.

The research reported here is part of a five-year plan, the first year of

| which focuses on "proving" the concepts through a realistic demonstration of
methodology for a specific example Ada program (a silicon representation of
part or all of the DoD Standard Internet Protocol, IP, initially expressed in
Lda.) ‘Since the mapping from Ada to VLSI is seen as a multistep, iterative
procedure, considerable effort for the following four and a half years will be
the invested in the development and tailoring of intermediate languages and
their bridging algorithms (compilers), as needed, and in the development of
objective criteria for their use with feedback loops for jterative design.

Implicit in these objectives is the development of a set of hardware
structuring paradigms (rewrite rules) whose application can ensure that
transformation steps between levels of abstraction in the design process are
well structured in order to preserve the integrity and, where possible, the ‘

clarity of the original Ada specification. Some paradigms, but of course not
all, lead to highly efficient implementations.

SECURITY CLASSIFICATION OF THIS P AGE(Whan Date Entared) 3

'
'
L — " - ™ = -y it o e s e g g
s .
u . . rea— = = - T e . 3 s TR A

Abstract

This report summarizes the second six months of work of the coordinated research project,
"Transformation of Ada Programs into Silicon." (The mein objectives of this project were
outlined and then intreduced in depth in the preceding semiannual report.) In the past seven
months, work has advanced in three main areas. Expanded summaries of work in these areas
(and subareas) are presented:

1. Work on the principal case study of this project: Converting the DoD Internet
Protocol to silicon. The full Protocol has beer deccrnpesed into three main parts.
The part that handles outbound datagrams has beer fully specified ir Ada and
an interesting part of that code has been transformed into an NMO0S circuit
composite represented in PPI, (Path Programmable L ogic).

2. A tranformation system is being implemented to map Ada program units into

intermediate forms in syntactically correct Ada. These intermediate forms are
* suitable for irput to the transformaticn system (A SSASSIN) that automates the
production of the asynchronous control componerts ¢i the PPL circuit composites.
A theory for synthesizing dircuits from system specifications that are more
r abstract than Ada is also reported.

%)

Research and Developmert cn the desigr, fabrication, and application of PPL
(Path Programmable Logic) drcuit arrays is reported

a. The ASSA SSIN system which transforms state graphs of state machines
expressed in textual form to self-timed PPL programs and compesites is
operational.

I' b. Cempletion of a PPL simulator (ASYLIM) has been incorporated into the
PPL desigrn system.

c. Design and composite layout of three different PPL test circuits were sent
out for fabricaton. The circuits will be used to check a wide variety of
’ PPL cells and supporting crcuitry.

d. A design techrique fer ICs representing self-timed stored state machines
and dete path components using the PPL cell set has been developed. The
results of the research have produced new PPL macrc cells which
augment the set of available cells.

Acoession For
] " NTIS ORA&I

| DTIC TAB 3 |
: Unanaounced] 1|
| Justitication __ | 1
| |
By
1 B4 Distribution/

I Availability Codes

JAvail avd/or
| Dist Special

PO s —— L b e — IO ——— T i
/ -

= —o- T < e ey
L. o - - - - s TN Y A g U ., = -

- - .« T e —

Second Semiannual Technical Report page 1

1.S

This report summarizes the second six months of work of the coordinated research project,
"Transformation of Ada Programs into Silicon.” Project objectives span a broad and ambitious
spectrum (broader than the already broad title implies), hence the term coordinated; this
refers tc the fact that, on the one hand, all research within the project is closely related, but
that the overall project success is not predicated on clese coupling of individual subproject
results. The main objectives of this project were outlined and then introduced in depth in the
preceding semi-ennual report [19]). Th2y are repeated here in more brief and in a somewhat
updated form:

1. Develop elements of a tranformation methodclogy for converting Ada programs
or their parts, into VLSI systems. This research includes identifying a sufficient
set of transformation rules for mapping program specifications through

* Successive levels of representation, from A da or related abstract specifications, to
integrated circuits.

2. Demenstrate the methodology developed in 1 by manuelly applying it to a non-
trivial example: transforming an A da—encoded representation of the DoD
Standard Internet Protocol [20] (or a significant subset thereof) intc NMOS
circuitry.

3. Work toward a theory fer idertifying substructures within Ada programs for
which the transformation methodology is pragmatically attractive.

4. Develop specifications for a set of software tools for use in automating the
transformation methedcology developed ir 1.

S. Develop a2 methodology for testing integrate circuits representing Ada program
units and for integrating such circuits intc a larger system.

In the past seven months, our work has advanced in three main areas and in several
subareas listed below. Expanded summaries of work in these areas are presented in
succeedirng secticns of this report. '

1. W ork on the principal case study of this project: Converting the DoD Internet
Protocol to silicon. The full Protocol has been deccmposed intc three main
parts (18, 18] The part that handies outbound datagrams has beer fully
specified i Ada [14] and part of that code has beer transformed intc an NM0OS
dreuit composite [6],

2. Implemerting a tranformatiorn system to map Ada program units into
irtermediate forms in syntactically correct Ada. These intermediate forms
represerit <state machine, data path> pairs suitable for irput te another
transformation system that autcmates the production of circuit composites [24].

a.Development of a theory for syrthesizirg circuits frem system
specificaticr.& that are :nore abstract than Ada, e.g., axicmatic algebraic
specifications or from A da augmented with ANN A -like specifications that
alsc al)ow specificatior of temporal properties. [12, 29, 25, 26]

3. Research and Developmert on the desigr, fabricaticn, and application: of PPL
(Path Programmable Logic) circuit arrays.

a. Completicr. of the transformaticr system called A SSASSIN, reported in
detail elsewlere (7], which transforms state graphs cf state machines
expressed ir. textual form to self-timed PPL Programs and compcsites.

b. Desigrn and ccrmpesite layout of three different PPL ‘est circuits called
UU20, UU21, ard UU23. UUZ20 is used to check the read—enable flip—
flop, the write-enable flip—flop, the asynchronous—clear flip~flcp, row
pass—transistors, and flip—flep pull-up cells. UU21 checks the Set/Reset
flip-flop, the .twc—wire latch, the inverter cells, the column pass—
transistor, and the S, R,1, and 0 cells. UUZ23 checks the inptt and output
pad cells. In addition, a test circuit containing several differert oscillators
and counters has been included for determining performance.

UU20 and UUZ21 were sent to MOSIS for the June 4 rur, and in July we
were informed that, due to some mask problems, rone cf the circuits were
completed. W e are still waiting for these parts. In September we decided

o —t e~

Second Semiannual Technical Report

to process all three test drcuits in our own (HED CO) laboratory.
Problems with mask meking equipment have caused delays, however,
UU20 and UU21 are expected out of the process line in late November or
early December. UU23 should also be processed in D eceinber.

. Completion of @ PPL simulator called ASYLIM which has been under

development for the past year. (The work was sponsored primarily by a
commercial company. The simulator was inccrporated into the PPL
design system for use in this project. The mair characteristics of this
simulator are outlined in Secticn 4 of this report.

.Development a design technique fcr ICs representing self-timed stored

state machines and data path components using the PPL cell set. (The
work was sponsored by a private company.) These techniques have been
primarily directed at the design of circuits using a ccnventional single—
rail Four Cycle signalling protoccl. The results of the research have
produced new PPL macro cells w hich augment the set of avaiiable cells

page 2

Second Semiannual Technical Report page 3

2. Converting the DoD Internet Protocol to Silicon.
by
Elliott I. Organick and Gary Lindstrom

As mentioned previously [19), our design of the Protocol is based on a decomposition into
three submodules: INM _ OUT dealing with traffic outbound cn a given local net, INM . IN
. similar]y hardlirg inbound traffic. and IN M _ SRV tying them tcgether and interfacing to the
i Hoest(s). We envision cne INM _IN and INM_ OUT pair of submodules for each local net

interface, but only one INM . SKV submodule per Intercet M odule (INM).

We are following the five-devel scftware development and testing plan discussed in the
preceding report. The levels correspond to IP applications in increasingly generalized settings.
The plar. stipulates testing as each level is reached, rather than as an epilog to the
development plan. Testing is to be conducted at several levels, from the physical
characteristics of the circuits themselves to the (A da) semantic bshavior of the submodules

that have been converted to circuits.

_' After designing (specifying) the interfaces between the subraodules [13, 10), we then
selected the INM _ OUT (sub)module as the first or:e to be converted to circuitry. W ork toward
this objective in the past sever months has beer. rapid in some respects and slow in others.

The specific and sigrificar.t accomplishments have been as follows:

l 1. W e have coded the complete INM _ OUT submodule in Ada and have succeeded
in compiling most of it for execution on the Intel iAPX 432 system except for
statements and declarations associated with uses cf the Ada rendezvous
censtruct.

[As later versiors of the Intel ccmpiler beccme available, we expect not cnly to be
able to compile the full module using rendezvous syntax and semantics, but to
exectte it in this mode as well. In the meantime we are working w ith a version
of the code that simulates each rendezvous via Send/Receive primitives
instantiated through use of the A da generic package mechanism.]

2. The INM_ OUT submodule is an Ade package named INM_ OUT._ Module; it
‘ cortains three intercommunicating Ade tasks. We are in the process of

trarsforming eact .f these tasks into PPL circuit compoesites beginning with the
{ second cre listed below:

l a. The mair tesk, named INM _ OUT, interfaces with INM = SRV ard with

LN M _ OUT such that a pipeline effect is achieved for speeding datagrams

F aleng the outbound data path: Hest module —> INM_ SRY —>
: INM_OUT —> LNM_O0UT.

‘ b. An auxiliary (server) task, nemed Read_ Init_ Parameters, which cbtains

from host-related memory the iritial parameter values needed ic perform

rich in A da control structures, is esser:tially completed. A demonstration,
showing the process by whick we make the transicrmaticn tc PPL circuit
compcsite was given in June, 1982 during a DARPA review of our project.
That demcnstratior. was based or. a preliminary versior. of the A da task,
' which has now been updated. The composite produced for the current
t version of the task is mere interesting and is apt tc resemble more clesely
ti.e one we evertually will consider the final version.

E’ datagram transmission. Trarsformatior. of this server task, one which is
]

c. Ar. auxiliary task ramed Translate- TOS- Tesk, which cperates in
parallel with INM - OUT, the mair task, by translatiing type—ef-service
infermation from host—level to local-net level encoding.

]
F
i
|
!
I 3. As just mentioned, the task Read- Init_ Parameters has now been converted

semi-sutomatically to PPL circuit compesites in NMOS. The conversion into
PPL composite form is discussed in part in a new paper by Carter, to be presented
at a DARPA —sponsored meeting at Stanford, on November 5 and in part below.
Carter's paper focuses primarily cn the technolegy for converting the control
structure portion of the Ada task into the self-timed centrol unit of the

S— —— D - e ———"

e mem i wr B . n m .
- o P W — g—— W T R S S) BT L ——
- T —_ " J——

e i e

™

r—-ry;“‘ s

Second Semiannual Technical Report page 4

corresponding circuit.

In this report we make some observations on the overall structure of
Read_ Init. Parameters and on some of its subtle details. W e alsc comment on
sore of the steps we traversed in arriving at this versicr. of the task. A copy of
the body part for the present version of this Ada task is to be found in the
A ppendix.

[The complete Ada specification of the INM_ OUT submodule, which indudes
this tesk is giver in a separate report [1¢]. A reeder of the Apperdix version
~nly is expected tcimagine how the task Read_ Irit_ Parameters interfaces with
the remainder of the entire submodule. A reader of the separate report is treated
to a "road map" ol the full Ada structure of the INM_ OUT submodule which
Lelps to understand our overall design.]

N

. A's a prelude to testing hardware versons of Ada pargram units and i suppert of
our work in specifying subsystems in Ada and then simulating them, we
installed, made cperational, and have begun using a complete Intel 432 Cross
Development System. This system includes an Ada cross compiler for a large
subset of Ada and a 432 multiprocessor system consisting of two regular and two
interface processors. W e expect tc receive frem Intel a compiler that includes full
tasking by the end of calendar 1982 and an equally complete resident ccmpiler
approximately a year later. We have also gained hands-or. familiarity with a
rumber of the 432 System's cperatirg system features.

2.1. Interesting aspects of Read_ Init_ Parameters

The structure of Read_ Init_ Parameters includes a cumber of typical and interesting
features of Ada tasks botk from the point of view of inter—task cornmunication and intra—task
body structure.)

—~Inter—task communication. The task includes nested accept statements both of
which have both in—beund and out-bound parameters. 7 here accept statements
are implemented using simple request/acknow ledge protocols.

—Intra—task computatiorn. The task body includes a rich nested loop structure and
one nested block defining local variables whose ranges are determined
dyrnamically. The loops include the infinite cutermest loop of the task, familiar
"fer” locps witk fixed upper bourds, and irdefinite loops escapes from which are
based on "exit when"” clauses. As we have expecled all along, all of these Ada
centrel structure forms map in a straightforward way tc correspondirng control
structures at the state machire level and thence tc PPL dcircuits.

The data path of Read_ Init_ Parameters ircludes several variables w hich are represented
in tke Lardware as registers or counters. One array variable is represerted as a RAM to
represer.t a map frem type—cf-service encoded at the hest level tc type—of—service encoded at
the lccal net level. [The size of this RAM, which is never apt tc be very large ir. any case, is
limited tc fcur—occtets (for a 2 by 2 array) ir. our demonstraticr. implementaticr.. Mecst of the
above variables are shared with the other two tasks of the submodule; that is, they are
declared lccal tc the certaining package, INM_ OUT_ Module, however we perceive no
difficulty in achieving mutually exclusive access.

The cre variable that is local tc the ertire server task does rot and is rot represented in
hardware as a storage element. Variables used locally for loop cortrol are represented as
Lardware courters and/cr registers, but some sharing is achieved where there is nc chance for
cer.flict.

Althcugh the transformation to the A da code to the "engine leve'", i.e., torepresentation as
a (contrel unit, data path) pair, has beer. dor.e by hand, the trar.sformation research reported
in. the rext section nas included corsideration of each of the "hand-made” mapping steps in
this particular exercise.

Second Semiennual Technical Report

2.2. Arithmetic processing

That we have encountered so little trouble performing the mapping for this task is partially
explained by the fact that the task involves only trivial arithmetic processing. {Indeed, the
entire INM_ OUT_ Module inveolves cnly minor arithmetic processing.) At this stage of cur
research we are glad this is the case as we consider it important to determine first what new
chailenges, if any, must be met for achieving asynchrenous control.

2.3. On going and future related work

Now that this part of the research is essentially complete, induding the development cof the
ideas embodied in ASSA SSIN, we expect to be concentraling next on such challenges as the
application of the same or related asynchronous design principles to aritkmetic processing.
Also included in our agenda is research intended to help us automate the mapping of data
path storage components, identified in the transformation from A da program units, into PPL
circuits coupled to their contrcls.

Second Semiannual Technical Report page 6

3. A Transformation System: Theory and Implementation
by
P.A. Subrahamanyam

| W e have made substantial progress elong two directions: implementation of a prototype

transfermatior. system and further development of a conceptual/thecretical basis to support

! the design cf integrated software-hardware systems. We cutlire the major contributions
belcw, with apprepriate pointers to references that centair mere detailed discussions.

3.1. Systems Implementation

—A set cf tools to support experimentation with A da—te—Silicon transformations has
been implemented, and runs on the TOPS-20. The system has been ported to the
VAX-750, and an initial version has been installed. This porting proved to be a
major job (and problemn) due to unstated incompatibilities between INTERLISP—20
and INTERLISP-VAX. Further debugging and testing of the Vax version will be
done when the experimentation is moved completely over tc the Vax. (Given the
needed persocnnel, we expect this to be carried out over the next year, when our
address space requirements force us to move over tc the Vax).

—An initial set of transformatiorn routines has been implemented and is being

augmented so as to handle additional syntactic ccnstructs in Ada. This set of
| programs is intended to aid in the interactive generation of the target hardware
description in a symbolic representation. Details of the current status of this work
are reported in [24].

3.2. Conceptual/Theoretical Basis for Transformation

—A unified theoretical framework to support a broad spectrum of the VLSI design
process has been introduced in [29], which is currentiy available in the form of the
draft of a research monograph. This monograph introduces an algebraic
framework te aid in the synthesis and verification of special purpose VLSI
systems, proceeding from higk level specifications. It allows for abstract

§ specifications of the syntax, semar.tics, temporal and performance requirements
particular to a given problem. The claracteristics of the envirenment in which the
systern is embedded can alsc be specified ar.d are used in the synthesis procvess. In
addition, the framework allows several of the constructs in existing languages to

\ be modelled, incduding nordeterminism, concurrency, ard data/demand driven
evaluaticn. Tkis allows the irfrastructure tc be (1) applied te situations wherein
the problem "specification” is in the ferm cf a program in a corventicral high level
language and (2) used to model the lower level synchrenous/asynchrenous nature
of 1mplementations. Topology and circuit layout gecmetry can also be expressed
by using the algebraic primitives available.

—Anrotaticns tc Ada have beer propcsed to aid the abstract specification of
temporal properties of systems and desired perfcrmar.ce requiremer.ts (25, 28, 12].

—Trarsformatior. methods to epply the theory in the ccntext of Ada to obtain
systolic implementatiors are detailed [27, 24].

—Ar algebraic moedelling of weak conditions to be met by asynchrencus drcuits has
beer. dere — the resulting model is very simple, and the corditiors corcise and
intuitive [26].

‘Fcllowing a discussion of the specification and synthesis methods, illustrations are given

in [29] that demonstrate the use of the proposed theoretical basis irn synthesizing various

¥ classes of algorithms. It is shown how (families of) systolic algorithms may be obtained as a
special case. Methods for proving the cerrectness of implementations are presented and
illustrated with examples. The concept »f the propagaticn of computational loci arises
naturally in course of the developmert, and serves to generalize the commorly used notion of a
"wavefront” of computation for 2—dimensional architectures. Automatable design aids based

on. the proposed algebraic basis are delineated. Finally, it is shown how MOS circuits can be

Second Semiannual Techaical Report page 7

modelled using the primitives available, and the algebraic derivatiou of Bryant's simulation
algorithm used in M OSSIM 1l is illustrated in this context.

3.2.1. Interface W ith Diana

Most of our transfarmation tools use the parse tree representation of a program as the
primary data structure they work with. W e have in mind the long term objective of being able
to interface with the tools that are designed to operate on Ada program parse trees, and that
being develcped by the Ada commurity at large (ar.d in particular the DARPA commurity).
To this end, we have been interacting (to a limited extent) with the Diana group (primarily at
Tartan Laboratories).

3.3. Somne Remarks on System Implementation Issues

W hile we are continuing work on the currernt version of the transformation system (in
Interlisp, and on the Vax and DEC-R0), it has become clear that there are two mejor
deficiencies that need to be remedied sooner or later. These are (1) unsuitability of the current
parse tree interface (and parser generator) for several of the transformation routires
themselves; and (2) (lack of) speed: this is due to the slowness of Interlisp on the Vax
(compounded, of course, by the fact that we are working with non—trivial pieces of softw are).

To solve the first problem, it is necessary to redesign the parser generator (which has been
imported from ISI [31]). However, since the other tools (particularly the syntax directed editor
generator and pattern matching system) and the history list mechanism are all very much
inter—related and quite deeply ingrained in the system, there is a substantial software
development effort involved in doing this. Currently, we have neither the equipment nor the
man—power to support such an effort. We envision the redesign being more profitably done
using a newer generaticn of Lisp (e.g. PSL, CommonLisp) for efficiency reasons, and run on
personal machines, rather than cr a Vax like machine. In the interim, however, the response
of the extant version of our system can alsc benefit greatly from being run on an Interlisp—
supporting machine, e.g.,, the Dorado/Dclphin. Having ‘access tc such systems would
obviously result in greatly improved programmer productivity.

- m— e e

== - — D aancs Wab o e e TR .

P T—— S I

Second Semiannual Technical Report page 8

4. PPL Design Activities
by

Kent F. Smith, Brent Nelson, Tony Carter, and Alar. Hayes

A system for the desigr of integrated circuits using a methodology known as Path
Pregrammable Logic (PPL) has been develcped by the Utah VLS Group. This werk has beer.
sponsorec ir part by the DARPA centract and by cortracts with other government agencies
and in part by support from several independent companies. The system addresses the
complete desigr cycle including initial logic desigr, circuit layout, simulatior, electrical
checking, and pattern generator tape preparation. It includes: (1) symbolic layout programs to
facilitate the placement of the symbols on the grid, (2) a simulator patterned after switch—
level simulators but specifically tailored for use on PPL, (3) a checker program for cell

placement verification and DC circuit loading checking, and (4) a commen database for design
representation.

4.1. PPL Design Characteristics
The characteristics of desigr. using the PPL methodology include:

1. IC desigr. is performed by placing small circuit modules w hich can be represented
with logic symbols on a grid representing the integrated circuit. W her the grid
is ccmpletely pepulated, it is both the logical represertatior. and the topological
layout of the circuit. Efficient design changes can be made as a result of this
desigr. methodology because the designer has simultanecus perception of the
circuit function and the cireuit topology.

<. The circuit modules have predefined schematic and composite representations.
They are custom designed to optimize performance and size for any specific
irtegrated circuit process. Desigr Rule Checking {DRC) is performed on the
medule and thus it is net necessary to do DRC cn the overall dreuit since it is
simply a cellection of dircuit modules. ‘

W

- A complete circuit can be designed ir PPL and no custom design is required. The
pads ard the intercornect car alsc be made by the placement of PPL cells on the
grid. All intercorrections between modules are there by default. The designer
orly places breaks to remove connectiors rather thar to adcd them.

o

- Hierarchica: desigr. is possible by custom design cf macres which are collections
of PPL cells put together tc perform spedfied functions. These macres cells can
have custem physical shapes to conferm to specific space requirements.

[94]

- Simulation ar.d checking are easijy accomplished, eliminating the need for very
difficult and time—ccnsuming operations. The orly elemerts manipulated are
symbols rather tharn trarsisters or rectangles which must be checked ir systems
thet design at the trarsistor level.

4.2. The Analogy Between the PPL Design and a Computer Program

There is an aralogy betweer the developmert cf the PPL desigr. methodology and
programming larguages. The 1's and 0's which were used ir early machine language
computer programming are analogous Lo the rectangles which arc used in the custom layout of
integrated circuits. Placing transistors on a composite might be thought of as beirng analogous
tec writing machine larguage code ir hexidecimal since we are still placing rectangles cn a
grid in shorthand ferm. The PPL design methodclogy is aralogous tc writing programs in
assembly language where mnemonics are used to represent specific collections of transistors
(functiors). This PPL design methodology is still very dependent upon the specific technology
which it is designed ir. This is similar to the way that assembly language is machine—
depender:t.

The analogy between the development of computer programs and the PPL methodology can
be carried even further with the compilation of high level cireuit description larguages to

e e
- - - .
-y e e X g YT -
S S A
T N T T P . - T TN TSI wenm—

. 13 ey o I T T ——

Second Semiannual Technical Report - page 8

integrated circuit layouts (silicon compilers). The high level descriptions of the integrated
creuit are machine independent and are compiled directly to a specific PPL cell set designed
in a particular technology. To date there have been cell sets done in NM0S [21], CM 0S [22],
and I2L [23]. An example of such a silicon compiler is A SSA SSIN {7] which is currently in use
at the University of Utah.

4.3. Design Time vs. Integrated Circuit Area

Tke mairn disadvantage cf PPL design methodclogy is that it will probably result in drcuits
which are larger than completely custom--designed circuits. Previous work done by the VLSI
group at the University of Utah has compared some custom designs to some PPL designs. This
gives insight into the tradecffs which exist between the two techniques. A circuit known as
the Utah Serial Cordic M achine (USCM) was designed under a contract with W right Patterson
AFB for the VHSIC program (3, 4, 5] using both custom design techniques and the PPL Design
M ethodology. The USCM was constructed using an implementation similar to the shift~
register scheme propcsed by V older [30].

The USCM was implemented using a CMOS PPL cell set. Its design time and chip area
were compared to those for an equivalent custom NMOS design done at Boeing Aercspace
Corp. The entire CMOS PPL chip was designed and simulated in approximately eight man
days, compared to approximately eighty man days for the NMOS custom design. The CM0S
PPL design was 19 percent lerger than the custom NMOS design. W hLile these figures may
not be an accurate reflection of the variables which enter into design time measurements, they
are indicators that PPL designs require significantly less design time than do equivalent
custom designs and result in. chips which are not significantly larger in area.

This favorable reduction in design time can be attributed to several factors: (1) The designer
has concurrent perception of logical function and layout. Thus, he can immediately see when
the logic function being implemented does not fit in well with the rest of the circuit. The logic
design is made as the compesite is drawn. This eliminates the need for separate composite i
layout/lcgic design stages. (2) The higher level symbolic notation allows the designer to
manipulate very complex logical elements in an efficient manner. It is, for example, not
necessary tc trace a complex series of logic gates to determine the function of the circuit
because the symbolic notation is easily read and interpreted. In addition, the symbolic
notaticn car. be directly simulated and does rot require the extraction of the transistor-level
circuit from the composite.

Past experience would indicate that the area penalty incurred by the PPL design
methodology will eventually disappear as more sophsticated design tools are developed. This
is again analcgous tc the development of cempilers. It is well known that, as expertise in
compiler writing improved, the gap between hand—coded and compiler—produced object code
size became regligible. Some of the techniques being develcped for compaction of integrated
circuit layouts will be used to close the current gap between the area required for custom
designs and actomatically generated PPL layouts.

4.4. The Utah PPL Design System

Ir addition tc the develepmernt of the PPL as & hardware implementation methodology
described abeve, the cther major thrust of research here at Utah has been in developing
software tools for PPL design. The goals of this software research have included the following:
(1) Finding ways to exploit the symbolic nature and representation of a PPL design to reduce
design complexity. (2) Development of CAD tocls around converticnal computer hardware,
which would allow designers to work from remole workstations. (3) Creation of a complete
system tc be used by the IC design ccrmmunity here at Utak.

An integral part of the design system is a Computer Vision CADDS2/VLSI Designer
Svstem. [t is used to do the compesite layout of the individual PPL cells, placement of the
individual cells on a grid to form a circuit, connecting the circuit to pads, adding scribe lanes,
and generating a PG tape. Although we have relied heavily on this machine in the initial
developmert of the system, in its absence all of the functions it performs could be done with
other tools (the Cal-Teck Scftware Package for example).

— - o — o —— - - —--
,
Mu-uwm;meh_L‘_w

Second Semiannual Technical Report page 10

The other part of the design system is built around a DECSystem-20. A silicon compiler for
finite state machines (FSM), a symbolic layout system, a simulater and cell placement
checker, and a compaction program all reside there. The transfer of designs between the
Computer Vision machine (CV) and the DECSystern—20 is done using a mag tape written in
Computer Vision External Database format. The combinaticn of these twc computers gives
the system the power of the CV's IC layout features combined with the computing power of a
mainframe.)

] Each PPL cell used in the system has three representations. The compcsites of the cells are

designed so that they fit together by virture of their bei rg placed adjacent to each: other on the

grid. A schematic representation of each cell is created for reference. A graphical

E representation is also created which is used by the designer as he uses the cells to form larger
circuits.

. 4.5. Presently Existing Circuit Layout Tools

] The placement of the PPL cells or the grid tc form a circuit can be done using either the
Computer Vision machine or one of several pregrams on the Utah DECSystem—20. The
program used for cell placement on the DEC System-20 is known as SLED (Structured Logic
Editer) (15] . In SLED, the PPL design is represented as an array of cell symbols which are
then edited. W ith the SLED editor, a simple CRT terminal and modem is all that is needed for
arcuit design but at the expense of mcre cryptic graphical representations of the individual
PPL cells than those found on the Computer Visior machine. In general, the ability to use
SLED from a remote terminal outweighs this limitaticn. Advanced editcrs are now being
designed to run on a CRT terminal that will overcome some of the graphical limitations of
SLED. :

SLED was designed to be similar to a screen—oriented text editor. In fact, the commands in
SLED are the same as the equivalent commands in EMACS (8], a popular screen—oriented text
(editor. Cursor movement is possible in any of the four directions, and regions (windows) can
be marked and then named, dele.ed, replicated, cr writter to a disk file. Ccnventicnal text
editors, however, only allow for scrolling and windowing ir the vertical direction (lires longer
than the width of the screen are wrapped around). In SLED, scrolling and windowing are
possible in both directions. Thus, an array witk 30C columns and 300 rows can be displayed '
and edited using SLED withcut screen wrap—arcund. The effect is that the user has an 80X 24
window which can be moved around the array.

Circuit layout can alsc be accemplished using a first—generaticn silicor compiler.
Compilaton of A da language modules to drcuits is accomplished using the program named
ASSASSIN [7]. This pregram takes as its input a textual descripticr: of the cperation cf a
control unit (Finite State Machine) and frem it generates a PPL layout implementing the
control unit.

4.6. Circuit Simulation and Electrical Checking

Simulaticn of the PPL design is essertial before actual fabricaticn. Ar impcrtant part of
the desigr. system is a simulator (ASYLIM) whick can do simulatior. of the PPL. Because the
PPL cells are simulated ard checked individually at the transient level when the cell set is
designed, the complete circuit made up of PPL cells can be simulated at a switch cr gate level.
ASYLIM [16, 17] reads the circuit database writter ir Computer Visior External Database
fcrmat. Thus, the actual desigr can be simulated rether than a logic equivalent.

ASYLIM is similar tc cther recently developed M OS simulaters in that it uses a switch
model. However, the development of a simulater for PPL has shewr [17) that a spedial
purpose simulator was required in order to preserve the user's abstract view of the circuit.
The input fermat to existing simulators is typically giver in the form of a table or listing of

L] transistors and nodes. To preserve the user's abstract view of the circuit it was necessary to
design a simulator fcr PPL where the elements in the simula’er correspend to these in the

4] PPL cell set. During the interactive debugging phase of the simulation of a circuit, the user
can then refer to circuit elements by their position in the PPL array. An added feature of the

! PPL simulator is that the information stored in the simulator’s internal representation of the

I »
. — — ,

—— — — . e g

.
- ” 2 PSR WV o IR, g ~.
- . y
L‘_‘ 2 T ——— PRy RS TN T m——— s i Ll T ad e A i i e B e b e e o ik L’ R
i R ————T ! Cpmp— — e Bl s ' g e R -

R

Second Semijannual Technical Report page 11

circujt interconnect structure ca be used for additional creuit checking unique to the PPL
methodology. The end result is that ASYLIM is similar to conventiona! switch-level
simulators but with an extensive user—interface that allows the user to work with the circuit
at the symbolic PPL level, the same level he uses when designing.

ASYLIM makes use of six~valu-d logic and uses a unit—delay timing model [1,2] The
underlying circuit model primitives are switches but with extensions to allow for the
simulation of certain entities as gates (flip flops and latches). It has been shown that the
urit—delay mecdel is adequate provided the circuit is free from races. Thus it car be used to
model the sequence of circuit activity [2].

An additional advantage of using ASYLIM over other siinulators is that it contains an
exlensive interactive circuit debugger. The features of this debugger allow the user to view
the circuit interconnect structure as constructed by the simulator. This is displayed in a
readable format that allows the user to quickly compare the simulator's interpretation of the
circuit element interconrections and the intended design. This comparison uncovers most
design errors relatively quickly. In addition, the simulator performs a pre-simulation
plausibility check on the dreuit's nodal structure. This feature (the idea borrowed from
Bryant's MOSSIM [2] enables the user to find a large percertage of the design errors without
ever going tothe expense ¢f an actual simulation. This check identifies nodes with fanout but
no inputs, inputs but no fanout, no path to either power or ground, or multiple pullup loads.

W hile a logic or switch~level simulation can provide an invaluable service in verifying the
logic desigr, there are many features of a design that do not show up in a simulation run. For
example, the ground node may be specified as an input tc a transistor in a diagram but it
requires an explicit check on the layout to ensure that ground actually has been routed to that
device. In PPL design, these types of electrical (non-logic) entities are included in the design
using special cells. For instance, the pow er bussing structure is included by placing power and
grcund buss cells around the circuit perimeter. In addition, other cells, like row and colomn
loads, are usually left of out of logic diagrams but must be included for the circuit's correct
operatior.. ASYLIM checks for these cells as a part of its operation.

4.7. Self Timed IC Design with PPL's

A rcther activity which has beer. funded by a private ccmparny and is ¢f importance ir the
development of the PPL methodology is the design of self~timed modules using the PPL cell
set. The work is based or techniques developeri earlier {9] for realizing self~timed stored state
sequential circuits. The criginal investigations were applied to cff-the—shelf SSI parts. The
presert investigatiorns are for the transfer of those ideas to large collecticns (macros) of PPL
cells fer use in the design of self timed systems to be contained or. single integrated circuits.
The investigations have led to further development of the PPL cell set to incdlude methods for
self timed circuits [11].

This research has resulted ir. a design discipline for self—timed stored state machines which
has been develcped usirg a conventicnal sirngle rail Four Cycle signalling protocol. (State
descripticrs are er.coded ir. PLA s represented ir. PPL.) The discipline differs from that used by
Carter [7] which uses a techrique known as a 'one nnt" scheme. The approach used for
realizirg the self timed stored state machires is based or. twc key developments: (1) A novel
clocking circuit that generates @ non—overlapping two phase cock cycle fcr an arbitrary size
register, where the duration of the phi 1 phase of the cycle is autcmatically adjusted to the
register size, and (2) A layout discipline for the folded PLA hclding tne state table, which
guarantees that the inputs to the state register will be valid at the time that the clock cyce
cceurs.

The method depends on certain preperties of the NMOS PPL cell set, i.e. that row and clock
wires are polysilicon, and that registers are formed by locating flip-flop ceils such that their
clock lines are serially connected. This method offers a designer the advantage that he need
not concern himself with the timing details of a state machine design in order to assure that it
will work. Assuming that the state table realized by the PLA is correct, that the rows and
columrns of the design are properly loaded, and that the proper interconnections have been
made (all of which can ve verified with the PPL simulator |17]), the designer can be assured of
correct operation of the state machine. The principle disadvantage of the method is the

~-

Second Semiannual Technical Report _page 12

overhead of the clocking circuit which must be associated with each state machine.

In addition to the self-timed state machine design, the described design discipline [11] has
been applied to several interesting types of self-timed data—path modules, for example multi-
bit latches and ripple—carry counters.

4.8. Future CAD Tools for the PPL Design Methodology

Our operational design tools should be erharnced. The following agenda lists the tools we
have identified as being an important part of a design system for this methodology and which
we plan todevelop:

1. A Relational PPL Database Management System — This will allow the same
software tools such as the editor and simulator tc be used on PPL designs done
using any specified integrated circuit technology such as NMOS, CM 08, I2L, and
GaAs. Ir addition, it will provide a standard interface between the various CAD
prograrms.

2. A Symbolic, Interactive, PPL Editor — this editer will be used to create a
symbolic represerntation of a PPL drecuit. It will be used interactively by a
designer for the semi-automatic placing of PPL cells or the PPL grid. Because of
the symbolic nature of PPL, many of the ni:ndane design tasks can be
automatically performed by the editor, leaving the designer free to concentrate
on logical design. The editor will use either tablet or keyboard entry with
simultaneouvs graphical representation of both the logic descripticn and the
dreuit topology.

3. Minimization of PPL programs — Development cf a compaction program for
compressing a PPL design by rearranging its symbolic description. Such a
program will use heuristically driven artificial intelligence techriques to arrive
at a2 near—cptimal solution to the minimization problem. This tool will give us
the capability of doing loosely packed PPL designs which can then be
automatically compressed. This is a unique feature of the PPL design
rmethodology and can be accormplished because of the symbolic nature of the PPL.

N

_Predefined Structured Logic Blocks — We are persuaded that circuits that
already ccnteirn large blocks of nen-PPL structured legic should be designed
using similar techniques to these presently used for the design of such blocks.
Ferinstance, if a random access memeory (RAM) is required in a circuit, it is more
efficiert, both frem a performance as well as a topelogical standpoint, tc actually
dc a custom laycut of the RAM. The PPL cell set can be extended to include very
elemerntary cells frcm whict macro cells car be developed for arny specific
implemcntatior. of @ RAM. Componerts generated by such an implementation,
although not strictly PPLs, would be compatible with their PPL neighbers. A list
of of structures we expect to implement as macres indudes:

nxm ram

nxm rom

n-bit ripple adder

n bit fast adder

n-bit priority encoder
n-bit register

nxm multiplier

n-bit comparator

n-bit synch counter :
n-bit ripple counter
n-bit by m:l MUX

4.9. Observations

Our research thus far has demonstrated the usefulness of the PPL methodolcgy as a higher
level design techrique for hardware analogous to the use cf assembly language for computer
programming. The analogy has been extended by the introduction of ASSASSIN, a first—
generaticn silicon compiler for speed—independert finite state machines.

R L e T S

T et — =

Second Semiannual Technical Report page 13

Our design system has proven useful for doing actual design of a variety of integrated
drecuits. It has reduced design times required by an order of magnitude. Resultant designs
are easily simulated and corrected due to their symbolic representation. System designers
with little or no direct experience with integrated circuit design can do actual IC layout

P ey E———

Second Semiannual Technical Report page 14

5. Project Bibliography of Papers, Reports and Theses

This section contains a cumulative list of the papers, reports and theses regarded as direct
or indirect "products” of this Project. Subsequent semiannual technical reports will contain
updated versions of the list given here.

[1]

(€]

[7]

(€]

€]

[10]

[11]

- [12]

[13]

Carter, T.M.

ASSASSIN: A A ssembly, Specification and A nalysis System for Speed-Independent
Control-Urit Design in Integrated Circuits Using PPL.

M aster’s thesis, University of Utah, Department of Computer Science, June, 1982.

Carter, T.M.
ASSASSIN: A CAD System for Self-Timed Control-Unit Design.
Techrical Report UTEC—82—101, University of Utah, October, 1882.

Drenan,L.A.
On Trarsforming Ada to Silicun.
M aster’s thesis, University of Utah, D epartment of Computer Science, A ugust, 1982.

Drenan, L.A ., Orgarnick, E.I.

Ada to Silicon Trnsformations: The Outline of a M ethod.

Technical Report UTEC-82-018, University of Utak, Dept. of Computer Science, Sept,
1982.

Hayes, A .B.

Self-Timed IC Designs with PPL's.

October, 1882.

Paper submitted for 1983 Cal Tech VLSI Conference.

Nelson, B.E.
ASYLIM User's i anual
1982.

Nelson, B.E.

ASYLIM: A Simulation and Placement Checking System for Path—Programmable
LogicIntegrated Circuits. , o

M aster’s thesis, University of Utal, Department of Computer Science, October, 1982.

Organick, E.I., and Lindstrom, G.
M apping high—order language vnits inte VLSI structures.
In Proc. COM PCON 82, pages 15-18. IEEE, Feb., 1982.

Organick, E.I., Carter, T., Lindstrom, G., Smitk, K. F., Subrahmanyam, P.A.
Transformation vf Ada Programs tnto Silicon. Semidnnual Technical Report.
Technical Report UTEC-82-020, University of Utah, March, 1982.

Organick, E.I., Carter, T.M ., Hayes, A.B., Nelscr, B.E ., Lindstrom, G., Smith, K.,

Stbrahmaryam, P.A.

Transformation of 4 da Programs into Silicon. Second Semid nnual Technical Report
(to appear).

Technical Report UTEC—82-1C3, University of Utak, November, 1982.

Ramachar.drar., R.
A Complexity Computation Package for Data Type Implementatiens.
M aster's thesis, University of Utah, D epartmer.t of Computer Scierce, June, 1882.

Subrahmanyam, P.A.
From Anna+ to Ada: Automating the Synthesis of Ada Package and Task Bodies.
Technical Report Internal Report, University of Utah, M arch, 1982.

Purushothaman.S, and Subrahmanyam, P.A.
An Algebraic Model of Seitzs Weak Conditions for Self Timed Systerns.
Technical Report UTEC § 82-066, University of Utakh, October, 1982.

e T o PO o pmeass »
- » e AR St TR ~. s = R
S WL gy T 1 - 4 i o L e S i B P e T O pa=— 0 e o e bl oo . o —

Second Semiannual Technical Report page 15

.' . [14] Subrahmanyam, P.A.

Language Issues in Transformation Systems (to appear).
Technical Report UTEC # 82~069, Unriversity of Utah, N ovember, 1982.

[15] Subrahmanyam, P.A. and Rajopadhye, S.
Autornated Design of VLSI Architectures: Some Preliminary Explorations.
Technical Report UTEC # 82-067, University of Utah, October (Revised), 1982,

[16] Subrahmanyam, P.A.
A Theoretical Basis for the Synthesis and Verification of Systolic Designs.
Technical Report Internal Report, Dept. of Computer Science, University of Utah,
June, 1982.

{17] Subrahmanyam, P.A.
' On Automating the Computation of Approzimate, Concrete, and Asymptotic Complezity
M easures of VLSI Designs (to appear).
Technical Report UTE C-82-095, Dept. of Computer Science, University of Utah,
November, 1982.

(18] Subrahmanyam, P.A.
Automatable Paradigms for Software—Hardware D esign: Language Issues.
In J.Rader (editor), JEEE Workshop on VLSI and Software Engineering. IEEE,
October, 1982.
Also available as University of Utah Technical Report UTEC-82-096, September
1982.

‘ [18] P.A. Subrahmanyam.
An Awdomatic /Interactive Software Development System: Formal Basis and Design.
North-Holland, A msterdam, 1982, .

[20] Subrahmanyam, P.A.
Abstractions to Silicon: A New Design Paradigm for Special Purpose V LSI Systems.
Techrical Report UTEC # 82065, University of Utah, January, 1981 (Revised M ay
- 1982).
Submitted for Publication to TOCS.

(21] Subrahmanyam, P.A.
Ar Algebraic Basis for VLSI Design.
Draft of a Research M onograpk, April 1982, 120 pp. Available from the Department
of Computer Science, U niversity of Utah.

— - g AT T e YT ™

3 .
F
Ij T o T R R, g PP PP W T e
- - .
o

T N

s o

U

Secord Semiannual Technica! Report page 16
6. Appendix

- ARda-to-Slllcon Project --

- University of Utah: -

- DoD Internet Protoco! INMN_OUT submodule -

- fda code for the body of task Reac_Init_Parameters -

- Version of October 25, 1982 --

scparate (Inm_Out_Hodule)

task body Read_init_Parameters is

-- fAccessed globals:

-= number_of_local_net_types_
-~ local_net_type_of_service_

-- tos_table:

-- Renamed task entry:

of _service:
table_row_size:

octet_type
octet_type
vetet_buffer_typa

-~ The package MNemory_HNodule containing the task HMemory holds
-~ to-be-sent datagrams as well as initiallzation parameters

-- needed by INM_OUT.

procedure Hemory_reguest(
request_type_formai:

chunk_cf_address_{formali:

octet_tormatl:
renames Hemory.Request;

-- Local variable declaration

memorg_rtquest_tgpe{
-~ Load_address or receive_datum_octet.
chunk_of_address _type;
-- Don’t care when request_type_formal
-~ recelve_datum_octet.
out octet_type)
~- Don’t care when load_address.

-~ The {iollowing variable is commented out. It appeared only in the

--~ "hligh-level” used to read

in the TOS table. See below.

~-- number_of_tos_table_octets: integer range 2 .. max_tos_table _size -~ 1;

octat_register:

octet_type;

begin
loop
accept Go(
init_num_{formsl: bith; -~ For Carter’s paper
-- only; otherwise bit3
response: out out_response)
do
response : = cent_ok; -- Rliso means lnit_ok.
—~ (et from the server all of the addr_chunks needed to form the base

-~ address in memory that holds the inltiallzation parameters and
-- sends these chunks to the Nemory moduie.
for index in ! .. init_num_{formal

loop
accept Srv_reqg (

server_command_datum:

-- Get next address

-= chunk from the

-~ Server Hodule.
srv_command;

response_to_server: out out_response)

do

Hemory_request (

-~ Put chunk out to the
-~ Nemory module.

A

mmgp——— TS

e EEEEa————

e e e L o e e v GRS e i s sl el i A o
B a1 e N A L e

Second Semiannual Technical Report page 17

request_type_formal => load_address,

chunk_of_address_formal = >
Convtrt_srv_ccmnand_to_chunk_o1_addrcst

(server_command _datum),
octet_formal => dont_care_octet);
end Srv_reg;
end loop;

—- Get the 6 individual inltiallzatlon parameters (contained in the
—— next B octets recelved) from the Hemory Hodule.

for Index in 1 .. 8

loop

nemorg_requast(
request_type_formal =5 receive_datum_octet,
churnk _of_address_formal = > dont_care_X_datum,
octet_formal => octet_register);

case Index is
when ! => Inm_max_packet.lo = ocilet_regisier;
when 2 => Inm_max_packet.hl := octet_register;
when 3 => Inm_address_length ;= octet_reolister;
when é => Inm_time_out.lo 1= octet_reglster;
when 5 => Inm_time_out.hl 1= octet_reglster;
when 6 = > ack_type := octet_reglister;
when 7 =2> Ioca|_net_tgpc_oi_sarvice_tabIo_rou_:izc
:= octet_register;
when 8 = 2> numbcr_o{_local_nct_tgpes_oi_sorvlcc
:= octet_register;
end case; :
end loop;
-- Convert the local net timeocut into milliseconds.?
-- time_out_in_milliseconds := Inm_time_out / 1888.8; .
—- Left-hand side varlable declared
— in Inm_Out_todule. Value Is used

-~- later In Do_send procedurs.

—— Note: Davis never did this In

-- hls design. Is this step needed?
-- No! He don’t need this step

-- slnce the quotient can be

-- approximated by & dlv by 2exll
-- In the event we need to

-- represent milliseconds.

-- Read in type of service transiation table.

-- The follokling code in comments is replaced belok by &

-- “lower-ievel" version that closely reflects the harduare |
- imptementation chosen in which we eliminate the need for

- for & multipltier. '

number _of_tos_table_octets := Iocal_net_tgpo_oi_str»ico_table_rou_:izc l
* numbnr_oi_locaI_nct_tgpos_oi_servicc;

-~ Check to see if{ required table slze exceeds maximum

1f number_of_tos_table_octets > max_tos_table_size then
response = bad_srv_command;
return;

end if;

for index in 1 .. number _of_.vs_table_octets
loop

Nemory_reguest (
request_type_formal => receive_datum_octet,
chunk _of_address_formal = > dont_care_X_datum,
octet_formal => tos_table(Index));

end loop;

= i L aninas SV o T A T g, o Ay g s i e e e e By e

Second Semiannual Technical Report page 18

declare
roWw_number: integer range & .. number_of_local_net_types_ot service;

col_number: Integer range 8 ..
IocaI_net_tgpe_of_service_table_rou_slze;
index: integer range 8 ..
number_of _local_net_types_of service
* locaI_ntt_tgpe_of_servlce_tabIe_rou_sizn

1= 8
begin
row_number := &;
loop -- Outer loop reads all rows of TOS table.

col_number := 8;
loop -~ lInner loop reads in one row of TOS table.
MHemory_request(
request_type_tormal
chunk_ot_address_tormal
octet_formal

> receive_datum_octet,
> dont_care_X_catum,
> tos_table(index));

mou

col_number := col_number + 1;
exit when col_nunber = Iocal_nct_tgps_of-s-rvicn_table_rou_size;

index := index + 1;
i index > max_tos_table_size then
response = bad_srv_command;

return; —- Exit the current accept statement.
end if;
end loop; -~ End inner loop.
rouw_number := roWw_number + 1;
exit when row_number = number_of_locaI_net_:gpes_of_service;
end loop; -- End outer loop.
end; -- End deciare block.
end Goj; -~ End ot init processing.
end loop; —- End of outer-most (inifinite)
-~ loop.
end Read_Init_Parameters;
N T e S

pndme e B b i M o e e g o e el g o e e S S e e a
. ” " i T T e i

Second Semiannual Technical Report page 19

(1]

(2]

(3]

(4]

(5]

(s]

(10]

(11]

(12]

(18]

References

R.E.Bryant -
Logie Simuletion of i/ 05 LSI.
PED Disseration Propesal, M assachusetts Institute of Technology, January, 1980.

R.E. Bryant.
A Suntch~Level Simulation Model Jor Integrated Logic Circuits.
PhD ihesis, M assachusetts Institute of Technology, 1981.

T.M.Carter and K. F. Smith.

Applications of Logic Arrays in VHSIC Design.

March, 1881.

Quarterly Technical Report #2 from the VLSI Research Group at the University of
Utak, Department of Computer Science, tc Boeing A ercspace Company.

T.M.Carter; K. F. Smith; C. E. Hunt; and W . L. Howard

Applications of Logic Arrays in VHSIC Design.

June, 1981.

Quarterly Technical Report #3 from the VLSI Research Group at the University of
Utah, Department of Computer Science, tc Boeing A erospace Corporation.

T.M.Carter;K. F. Smith; C. E. Hunt; and B. E. Nelson.

Applicatiors of Logic Arrays in VHSIC D esign.

September, 1981. .

Quarterly Technical Report #4 from the VLSI Resea rch Group at the University of -
Utah, D epartment of Computer Scieuce, to Boeing A eraspace C orporation.

Carter, T M.
ASSASSIN: A CAD System for Self~Timed Control-Unit Design.
Technical Repert UTEC-82-101, University of Utah, O ctober, 1982,

T.M.Carter.

ASSASSIN: Arn Assembly, Specificaticn and Analysis System for Speed-Independent
Control-Unit Design in Integrated Circuits Using PPL.

M aster's thesis, D epartment of C omputer Science, Uriversity of Utak, June, 1982.

Rickard M. Stallman.
E}ACS K anual for TW ENEX Users
M assachusetts Institute of Technology, Artificial Intelligence Laboratory, 1980C.

A.B.Hayes.
Stcred State Asyrnchronous Sequential Circuits.
[EEE Transactions on Computers C—30(8).596-60C, A vgust, 1881.

AlanB. Hayes.
High-level Logic Design of the DoD INM=0UT M odule.
April, 1982.

Hayes, A .B.

Self-Timed IC Designs with PPLs.

Octcber, 1982.

Paper submitted for 1983 Cal Tech VLS! Conference.

Krieg—Bruckner, B., Luckhem, I.C., von Henke, F.W ., Owe, 0.
{Draft) Reference M anual for Anna, A language for Annotating A da Programs.
Unpublished, Reviewer's Copy, O ctober 1982.

Lindstrom, G.
Irternet Protocol Case Study: Background and Initial Dsign.
May, 1982.

“~Second Semiannual Technical Report page 20
N

[14] Lindstrom, G:; Organick, E.I., Klass, D., ¥ aloney, M, ,
Ada Spec&ﬁcaﬁonsj’ar@g’)oD Internet Protocol: The INM_ QUT Sub module, Report |
: No. 1.

Technical Report, D epartme;it\ofc\qg\ptlter Science, University of Utah, N ovember,

1982. | \\\\
(15] BrerntE. Nelson. \\\
SLED Users Manual N
1982. S
Department of Computer Science, University of Utah. T~

[18] BrentE. Nelsor. \
ASYLIM Users Hanual \
1982,

: Department of Computer Science, University of Utah.

i [17] BrentE. Nelson. !

ASYLIM: A Simulation and Placement Checking System for Path—Programmable |
LogicIntegrated Circuits.

| M aster's thesis, U niversity of Utah, October, 1982.
E
L

[18] Organick, E.I., and Lindstrom, G.

M apping high~order language units into VLSI structures.
In Proc. CCM PCON 82, pages 15-18. IEEE, Feb., 1982.

(18] Organick, E.L, Carter, T.} .. Lindstrom, G., Smith, K.F., Subrahmanyam, P.A.
Transformation of Ada Programs into Silicon. SemiAnnual T echnical Report.
Technical Report UTEC-82-020, University of Utah, M arch, 1982.

[20] Postel, Jor: editor. B : . . !
Internet Protocol: DA RPA Internet Program, Protocol Specification. ’
Tecknical Report RFC 791, Informatior: Sciences Institute, USC, Sept., 1981, . : 4

' [21] K.F.Smith 3
Implementation of SLA's in NM0OS Technology.

In Proceedings of the VLSI 81 International Conference, Edinburgh, UK, pages
247-256. August, 1981.

-

(22] K.F.Smith; 7. M. Carter and C. E. Hunt.
T“heCMOSSLA ard SLA Program Structures. !
InH.T.Kung; B. Sproull; and G. Steele (editor), Proceedings of the 1981 CM IV

Conference o V L SI Systems and Computatons, pages 396—407. Computer Science
Department, Carnegie-M ellon Uriversity, Cemputer Science Press, O ctober, 1981.

[28] K.F.Smith
Desigr. of Stered Legic A rraysinI2L.
Ir. Proceedings of the 1961 IEEE International Symposium on Circuits and Systerns,
pages 1CE-11C. IEEE Circuits and Systems Sodety, A pril, 1981.
IEEE Catalog Nc. 81CH1635-2.

[2¢] Subrahmaryam, P.A.ard Rajopadhye, S.
Autornated Design of VLSI Architectures: Some FPreliminary Explorations.
Tectrical Report UTEC #82-067, U niversity of Utah, October (Revised), 1982.

[25] Subrahmanyam, P.A.

From Anna+ to Ada: A utomnating the Synthesis of Ada Package and Task Bodies.
Technical Report Internal Report, U niversity cf Utah, M arch, 1982.

e i e
e

[26] Purushothamar.S, and Subrahmaryam, P.A.
Algebraic Modeling of Self Timed Systerns.
Technical Report UTEC #82-066, U niversity of Utah, A ugust, 1982,

I p——
w

e A

S8l
Second Semiannual Technical Repor: page 21
[27] Subrahmanyam,PA.
A Theoretical Basis for the Synthesis and Verification of Systolic Designs.
Technical Report UTEC~82-097, Dept. of Computer Science, University of Utah, June,
1982.
[28] Subrahmanyam, P.A.
Transformational Implernentation of Software /Hardware Systerns: Global Strategy
Guidance.
Submitted for Publicatior, Uriversity of Utah, Jarnuary, 1982.
[29] Subrahmanyam, P.A.
Ar Algebraic Basis for VLSI Design.
Draft of a Research M onograph, April 1982. Available from the D epartment of
Computer Science, University of Utah.
[30] J.E.Volder.
The CORDIC Trigonometric Computing Technique.
IRE Transactions on Electronic Computers V olumn N umber Unknown:330= 334,
September, 1959.
[31] Wile, Dave.
POPART: A Producer of Parsers and Related Toals, System Builder's M anual.
June 1980.

Unpublished, USC /ISI.

-~

ASSASSIN: A CAD System for
Self-Timed Control-Unit Design

Tony M. Carter
D epartment of Computer Science
University of Utah
Salt Lake City, Utah 84112

October 1982

Abstract

Many software systems exist for automatically implementing synchronous state-machines.
Presented in this paper is a software system — A SSASSIN — for the design and automatic layout of
self-timed (or speed-independent) control-units as integrated circuit modules. ASSASSIN provides
for the editing of textual descriptions of control—flow, the functional simulation of speed-independent
cantrol—units, and the automatic layout of the implementation as a Path-Programmable Logic (PPL)

" program. ASSASSIN uses a well-known lechnique {a cnie—hot slate encoding) for implementation of

the control-unit. Examples are given illustrating the specification and implementation of simple
state-machines. In addition, the design of a statée-machine of interest in the University of Utah's
A da—to—Silicon project is carried out. A portion of the Ada’ code for the "Output Side" of the Inter—
Net-M odule (INM - 0UT), which will eventually be fabricated as part of the A da—to-Silicon Project, is
converted by hand to ASSASSIN input format and from there to an integrated drcuit layout by
A sSASSIN, thus illustrating the use of A SSASSIN in the context of the A da—to—Silicon Project. .

This work was sponsored in part by the Defense A dvanced Research Projects A gency (DARPA)
under coatract number MDA 803-81-C-0414 . o T . .

1. Introduction ' .

The development of CAD tools for integrated circuit design has exploited a vast body of know'ledge
about synchrencus computing systems. O1d and new integrated circuit tachnologies have been well-
suited fcr implementing synchronous computing systems. The success of these synchronous systems
has been prodigious as witnessed by the recent booms in the manufacturing and purchasing of com~-

puting systems. Current research in semiconductor devices is rapidly heading toward the ability to

construct cornputing systems which operate orders of magnitude faster and which are far more com-
plex than those currently available. ASSASSIN treais part of problem of designing self-timed sys—
tems.

W ith projected room-{emperature speeds of logic devices renging down to tens of picoseconds of
delay time [3], it appears that the postulate edvanced by Seitz in Chapter 7 of Introduction fo VLS/
Systems [7] will be horne out. The contention is that the current methods of system synchronization
(global clocks) will result in unreliable circuits as device speeds increase and as device switching
energies decrease. '

If Seitz is indeed right, the newer and faster integrated circuit technologies will require computing
systems to be implemented using something like "Self-Timed" or "Speed-Independent” logic. In
these types of logic, only sequence is of concern. The actual gate and wiring delays will not affect the
function, only the absolute speed. It should be noted that any asynchronous device requires that the

1A da is a registered trademark of the U.S. Government, Ada Jeint Program O flice.

- B - » TRes W -~ Ved -

———

ASSASSN

surrounding enviranment to be suitably conditicned so as to tolerate the "un-synchronized” actions
of the device. ‘

Much work has been done in the implementation of synchronous structures in integrated circuits.
Computing systemns can be divided into two main parts: control and data~path. Universities and
industry alike have produced many methods for generating synchronous system control, some using
the PLA. Work has and is being done in the automatic generation of synchronous data~paths [8]. .
W hile there have been some successtul efforts to construct self~timed or speed-independent comput-
ing systems such as DDM 1 [2] and ILLIAC II (6], there has been very little work done an the im~—
plementation of self-timed computing systems in integrated circuits. This may be because there
were few integrated circuit implementation strategies which readily lent themselves to the construe—
tion of self~timed circuits.

The development of Path~Programmable Logic[1] (PPL), a derivative of the Storage/Logic A rray
(SLA)[10], has proven to be of great value in the generation of self~timed control in integrated
circuits. -

A ssASSIN is part of a research effort, being pursued at the Univérsity of Utah, to convert Ada
programs into integrated circuit implementations. A SSASSIN transforms the cantrol portions of A da
programs into their corresponding integrated circuit counterparts. In addition, AssassIN|[1)
provides a software (ool for the specification, simulation and compilation of self+imed control-units
to integrated circuit module layouts. As such, it begins to treat some of the low-level problems of
self-timed systems design. It uses PPL as the integrated circuit implementation strategy and a
one-hot encoding of the control states(4] as o mapping fram the specification to the circuit
implementation. It allows an implementation independent specification of control (that is, inde—
pendent of fabrication technologies and circuit implementation techniques), and provides functional :
simulation capabilities. Layout generation (analogous to the software compiler code generation)
resulls in self~timed rircuits which functionally match the results ‘of simulation. A SSASSIN also
provides a single, convenient user interface for all of its functions. " g '

2. The Specification of Control: Syntax :

The specification of control for a given drcuit can result in a labelled, directed graph similar to the
one in figure 2-1. There are named nodes which are called states and labelled directed arcs which
are called transitions. Associated with states are operations on output variables. These operations
may be {unctions of only the state, or they may be functions of the state and a boolean function of a
set of input variables. Transitions are labelled with a boclean function of members of the set of input
variables which dictates the condition upon which that transition will take place. Transitions may
also have associated operations on outputs (M ealy M achines). '

The ability to specify strictly sequential control is certainly essential. A lthough our current un—
derstanding of concurrent processing is very limited, the ability to handle concurrent paths of contro]
may also prove to be useful as our understanding increases. C oncurrency (in the context of control)
can be interpreted in two ways. The first is where two separate machines operate independently,
communicating via some signalling protocol. The second is where a single machine performs some
types of concurrent processing by Laving concurrently executing control paths. The first is handled
oy having control-units composed of multiple state-machines. In terms of graphs, this lmpli& that
one can draw many separate graphs, whose interconnection is implied by output and input variable
names. The second is handled by allowing, within a single state~machine, some notion of forking to
begin concurrently executing control paths and a notion of joining to terminate concurrently execut—
ing control paths. The addition of the concepts of FORK and JOIN to the graph model of control-flow
isillustrated in figure 2-2. _ . A .

Output generation from a control-unit can be either enduring or ephemeral. Enduring outputs

i il MR St ik

ASSASSIN

heuT=3
g T
=» HOLD/ QUmiT-2 g
INUT2
o}
]

Figure 2-1: A Simple Control-Flow Graph

are latched and operated on by SET and RESET only. W hen an enduring output is SET it will
remain on until a RESET operation is performed. Ephemeral outputs are gated and remain on only
while the required condition is met (either residence in a state or execution of a transition). They are
operated on by HOLD. .

Figure 2-8 contains a control-flow graph which contains all of the features induded in the discus—
sion above. States are represented by rectangle: with the name of the state indicated in the upper
left comner, followed by a colon. Output generation is Indicated by a right-errow. To the left of the
right-arrow will be a boolean expression and to the right the operations to be performed and the
names of the outputs which are to be operated on. Far example, State B contains three output
operations. The first is unconditional (it depends anly on the state of the machine) and causes the
ephemeral output "01" to be held true. The second is conditional (the boolean expression Is "I3") and
causes the enduring output "03" to be SET. The third is also conditional (the boolean expression is

"I4 OR I5") and causes the ephemeral outputs "02" and "05" to be held true and the enduring output
"04" to be RESET.

Alsorequired in the specification of control is the concept of an initial state. In the graphs, this is
indicated by the arc labelled M asterReset which has no state node at its tail.

In summary, the specification language for control should indude the following features:
—the concept of an initial state,
—simple transitions from one state to another (M oVE),
—transitions from one state to many states (FORK),
—transitions from many states to one state (JoIN),
—outputs controlled only by resldence in a state or by the execution of a transition,

—outputs controlled by a boolean combination of inputs AND by residence in a state or by
the execution of a transition,

ASSASSIN
\Lm ¢
AS
INUT=3
1 —
b
f@ﬁ §
weuT-2 T3
!
D =]
f Qn Co E J
|
|
i NPT -4 — euT-§
:
)
) :
] NUT-§
)
Lo
}.
l
!

Figure 2—2: A Control-Flow Graph W ith Concurrency

ASSASSN

MASTER-RESET
5 = J1 AND (I2 OR NOT I3)
A4
As
BIc -
> HAD/ 01. 02§
. ! => RESET/ 03y

i > SET/ D4
[EE Np:
4 - 1D/ DIy - XD’ 01)

1 - &1/ 03y
14 R 15 - fe=ET Rlos,

|
' s 4718 ~18 7
: BiG - =/ of) L2 = B
i a1 ﬂ/
i o
oy =g
! fo— T -
r 1
l -l6
|
AL
i ’

—\
J il

Im
oo

% Figure 2-8: A Complex Control-Flow Graph

ASSASSIN

—arbitrarily complex boolean expressions for conditions (controlling transiticns and output
generation),

~lambda transitions (where the condition is the tautology TRUE),
—ephemeral outputs,

—enduring outputs,

~multiple and variud transitions from a given state,

—multiple and varied transitions to a given state, and

—multiple state-machirne control-units.

The task now is to codify the points listed above, such as in a grammar in BNF. It must allow for
all the points listed above while limiting its expressive power to those points. The language must be
easily parsed and it is desirable that parser generators be used to generate the code for the parser.

A bove all, the language should be concise and intelligible to design engineers.

The complete BNF for the language (which is called CUDL) is included in Appendix I. The lan—
guage has the ability to represent each of the points listed above. ‘There are four types of blocks in
the language. The first is the CONTROLUNIT block. This block indicates the name of the overall
control-unit and cortains STATEMACHINE blocxks. It also indudes the specification of "global” input
expressions which assign boolean expressions to an internal variable which can significantly reduce
the size of the code written to describe the control-unit. The names of "global” inputs can be used in
the descriptions of transitions and output generation. Figure 2-4 contains the CUDL code describing

the machine whose graph is in figure 2-3.

controlunit CompiieTestS:
inputs: BIG := I1 and (I2 or not I3);

seiftimed statemachine Test9:

startstate R:
forkon BIG to B,C;
moveon NOT BIG to D;
hold 01,02;
reset 03;
set 04;

end;

stote B:

joins C on 14 AND IS to F;

joins E on I4 OR IS5 to F;

hoid 01;

if 13 then set 03;

if 14 OR IS then begin reset 04; hoid 02,05; end;
end;

state C:
moveon NOT 16 to E;
joins B on 16 to F doing begin reset 03;
if BIG then set 04; end;
hold 01;
end;

state D:
moveon 17 to F doing set 03;
and;

state E:
joins B on TRUE to F;
end;

state F:
moveon I8 to R;
moveon NOT I8 to D;
end;
end;
and.

Figure2-4: CUDL Code for the Graph in Figure 2-3

.

-

“currently implemented in A SSASSIN.

ASSASSN

Eventually, given an appropriate display device, 2 graphical version of this langubge could be
developed and the specification of control could be done in terms of control-flow graphs rather thana
textual description of the graph. A project is underway to implement such & front end to ASSASSIN
on an Apollo DOMAIN camputer.

3. The Simulation of Control: Semantics

Given that the syntax of control-unit specification is defined, the designer must also understand
the semantics in order to use the system. The semantics of control is directly influenced by the
implementation strategy selected. Since the specification of control should allow for concurrency
within a given state-machine, a scheme which allows the implementation of such concurrency must
be selected. The notion of concurrency eliminates the possibility of completely and uniquely encod-
ing the state variables. The one-hot implementation scheme (campletely decoded) allows for easy
implementation of concurrency. The following discussion is largely based on the assumption that a
one-hot implementation is used. '

The specification syntax described in the previous section can be interpreted in three ways. The
interpretation depends on the partiéular mapping strategy being used in the cpmpilatién. The three
possible types of mapping are synchronous, asynchronous, and self-timed. In order to allow far all
three interpretations to be eventually simulated and compiled, the language includes the concept of a
state-machine type. The choice of a state-machine level semantic interpretation is madle' explicit
through the use of the keywords: SELFTIMED, ASYNCHRONOUS, and SYNCHRONOUS. In this way, the.
user cen specify various types of ‘ccntrol using the same system. Only -thé\ SELFTINED option is

The simulation of sel{-timed control can be functional in nature. This functional simulation.
provides knowledge about the sequential function of the circuﬁt__ Since the jmplementation of the
circuit is such that if sequence is correct, function is correct, the user is sure that'the circuit will -
work if the environment in which he places it is conditioned to interact in a sel{—timed mnnil:er with
the control-unit. , : .

The simulation of synchronous and asynchronous control really requires the use of a detailed
tirning simulator. This simulator must be able to make accurate delay calculations based on vari—
able gate delays. In the world of the integrated circuit, these delays may or may not be early
calculated since long wires and heavy loads will significantly alter the operation of any given gate.
Thus, the problem of simulation for these types of systems is much more difficult that for the self-
timed systems.

To interpret the semantic actions of the control--unit, one must know first the actions to be taken
to execute a transition and second how outputs are generated. Transitions are nperations that
change the internal state of the machine. Although there may be many transitions specified for
leaving a given state, it should never be possible to execute two transitions concurrently from the
same state. Since the control-unit has no control over the sequence of arrival and the timing of the
inputs that trigger transitions, the problem of having two transitions executed simu'taneously is
inherently a dynemic cne and its avoidance requires a detailed knowledge of the environment into
which the control-unit is to be placed. If two transitions were executed simultaneously, the result
would be a state-machine which would be in two sequential and mutually exclusive states at the
same time. '

The three interpretations of control have somewhat different views of transitions. The one-hot
imple'menlation uses transitions that are essentially handshakes between logically &djaceﬁt states.
This characteristic can be portrayed by a "tokeanassing-tm&i:ie". with provisions made for the
controlled splitting and recombination of tokens (FORK and JOIN). In a transition between state A
and state B, state A will first set state B and then state B will reset stateA. Consider the case (ﬁgm '

R Ny -

3~1) where a machine contains four sequential states, A, B, C and D. Assume the machine is currently
in state B. If a transition is executed, moving from state B to state C, both states B and ¢ will be on

reset state C before state € can reset state B, the machine will be left in a state where both states B
and D are on —resulting in a malfunction.

. Thedifferences between the three sementic interpretations all center around what to do about this
timing problem. In the self-timed approach, it must be guaranteed that such a malfunction cannot
occur. In order to ensure this, the state-machine must verify that each transition is complete before
allowing the next one. This is done by imposing an additional condition on each transition. It.is no
longer sufficient just to be in a state for a transition to be possible. In addition, al] states which could
possibly cause a transition to the current state (its predecessors) must also be off. In the

the clock period is of the same order as the delays in the faster gates, the problem will not be
avoided. Unfortunately, the introduction of the dock necessarily slows the response of the control—-
unit. Of the three approaches, only the self~timed approach guarantees a control-unit which cannot
malfunction dueto internal timing problems.

Looking from inside the control—unit, there are two types of outputs. The first is the ephemeral or
gated output. Itis turned on only while the appropriate condition is met. The second is the enduring
or latched output. This type of output is controlled by setting or resetting a latch and therefore its
level is maintained even after the appropriate condition has disappeared. It is possible, however, to
place a latched output in a metastable condition by trying to set or reset it at the same time, so some
care must be taken in working with latched outputs.

The generation of outputs from a control-unit is always conditional upon something. W hat we
term as an unconditional output is an output that depends only on being in a particular state or only
on a particular transition being executed. W hatwe term as a conditional output depends not only on
state or transition, but also on a boolean combination of input variables.

Unconditional outputs are operated on immediately upon entry into a state or upsn the execution

of a transition. Also, ephemeral outputs which are unconditionally operated on from a state or

transition must be released when the state is left or the transition is completed.

Conditional outputs are operated cn when the entire condition becomes true, induding entry to a
state or_ekecutlon of the appropriate transition. Ageain, ephemeral outputs which are conditionally
operated on from a state or transition must be released when either the boolean condition is no
longer met or the state is left or the transltion is completed. ‘l

ASSASSIN

Becnuse of the handshake going on between logically adjacent states, there is a small amount of
time when the machine is legally in both states at the same time. This allows for ephemeral outputs
to be ORed in a glitch-free manner between logically adjacent states. Enduring outputs controlled
by logically adjacent states pose a problem if both a set and reset are attempted at the same time
— the output latch wjll temporarily be placed in a metastable state, possibly adversely affecting the
surrounding environfnent. '

In AssassIN, there is no implicit communication between any two state—machines specified as
part of the same control-unit. All such inter-state-machine communication is accomplished by
explicit signalling protocols using inputs to and outputs from the state-machines.

4. The Implementation of Control

The actual physical implementation of control depends on two factors: the circuit implementation
technique and the control~unit implementation technique. The circuit implementation technique
should be picked so as to make the physical realization of the control~unit implementation technique
as simple as possible.

"The selection of a control-unit implementation technique depends on the set of features to be
implemented. Thus, employing FORK and JOIN prohibits using a mondlithic, completely encoded
control-unit. Including FORK and JOIN in a control-unit implementation technique requires either a
very complex strategy for splitting out the concurrent sections of the control into physicelly (and
perhaps logically) separate seclions, a partially encoded scheme where the sequential contral sections
are encoded and the concurrent are not, or a completely decoded machine. The one—hot implemen—

tation is & completely decoded scheme in which FoRK and JoIN are easily included. The tradeoffs

involved in selecting the one—hot strategy are discussed by Hollaar [4]. .

Basically, the one-hot strategy involves the use of one latch for each state, iwo gates for each -

transition, a latch or driver for each output, and one gate for each condition controlling cpnditionél
outputs from a given state or transition. For complex machines, the automatic full-custom layout of
& one-hot control-unit could be very difficult. . :

Path~Programmable Logic provides a very regular structure that is particularly well suited for
implementing one-hot control-units. In the mapping of contral onto PPL using a one-hot encoding, a
single latch is used for each state variable. Each transition maps to two PPL row segments, ope to
set the next state and the other to reset the current state once the next state has been set. In
addition, complex boclean conditions on transitions (or on outputs) may require the introduction of
temporary gates. In PPL, the AND of several iriputs is detected on a single row. The OR is formed
on the columns. For this reason, extra PPL columns containing temporary variables must be jn—
serted for forming the OR terms of booclean expressions. Outputs are controlled by using a single
PPL row to drive all the unconditional outputs controlled by a state or a transition. Each separate
condition for controlling conditional outputs uses a single PPL row.

4.1. The Implementation of Control: Floor Plan

W ith the basic mapping strategy defined above, we soon see that there are many ways to specfy
the global organization or floor plan of the control—unit. The one selected for use in A SSASSIN was
chosen because it appears to be simple. This floor plan (see figure 4—1) has the state latches, tem—
porary variable inverters, and input inverters in a single band across the middle of the control~unit.
Output latches and inverters are placed in a band across the top of the control-unit. Inputs arrive
from the bottom of the control~unit and outputs are emitted from the top of the control~unit. This
stacking of inputs and outputs results in a significantly smaller area and is a direct consequence of
using a PPL-like structure for the dreuit implementation. State transitions are generated in the

ASSASSN

bottom half of the control-unit and boolean expressions and outputs are generated between the state
latch band and the output band. It is possible to make other area optimizations in the PPL layout of
one-hot control-units.

Output Latches and Gates

Boolean Expressions
and
Output Generation

State Latches, Input/Temp Gates

Transitions

Figure 4—1. Global Organization of A SSA SSIN Output

This global organization results in a simple PPL generator that needs no routing tools for con—
structing the control-unit. All the PPL generator has to know is wh.lch cells to plnce and where to
place them — an easy problem when compared with routing.

4.2. The Implementation of Control: Code Generation

¥ e have now almost fully specified the entire system. All that remains is to actually construct
algorithms for generating PPL programs that implement the control—unit. The self-timed control—
unit requires the use of latches far representing states. These latches must indicate their change in
state after the set or reset signal has arrived. The PPL cell designed for this purpose is the four—wire
latch. It contains cross—coupled NMOS inverters for the latch with inverting-buffered outputs.
Thus, this cell cannot signal its change in state until after the latch has changed state. A SSASSIN
can currently generate either a CIF description of the control-unit or a file written in
Computervision’s CADDS2 External Data Base format.

The transitions for a self-timed control-unit require two row segments. The first senses that the
machine is in a certain state — say state A, that all possible predecessor states (states which could
have caused a transilion to state A) have been reset, and that the condilion for the transition is met.
If all these conditions are met, the latch for the next state is set. If there are outputs controlled by
the transition, an inverter is used to appropriately control output generation from the transition.
The second row segment detects that the next state has been successfully set and resets statea.

Figurz 4-2 illustrates a simple transition between two states. The machine is in state B, having
come from state A. State A has been reset. The first row below the state latches performs the
"forward” transition, or setting of the next state. The ‘0’ under the latch for state & detects that state
A hes been reset. The ‘1’ under the latch for state B detects that slale B has been set. The ‘1’ under
the inverter for input I1 detects that the input condition has been met and the ‘S’ under the latch for
state ¢ will set state C when the transition occurs. The second row performs the "reverse” transition,

10

- -’ e T e g il s 0 i

Tﬂ_ - s —_— ———ﬂ

ASSASSIN

.or the resetting of the previous state. The ‘1’ under the latch for state ¢ detects that state ¢ has been
sét and the ‘R’ under the latch for state B will reset state B when the forward transition has been
completed. Completing the operations of both these rows constitutes a complete transition.

1
1

A B

1
2

- g
o

LI N T T TR T B
(. CEEY T PRy pupi

t 0t 1 1 3 3 1 3
I=l=)=]=]R===P-]]

!
| " Figure 4-2: A Simple Self~Tinied Transitian
i

A synchronous transitions are different from self-timed transitions in that they do not sense that
predecessor stales have been reset. If gate delays are sulfidently naon-uniformy, a machine construc—
| ted in the asynchronous manner would not function properly. Figure 4-3 show the same section cf
control as in figure 4~2, implemented asynchronously.

|
|
Al
{
|

t 1 8t 3 3 1 3
I=1=1=11=P=]-c-§
LI S I D T T B |
I=1=1=1=|R===p-1|

Figure 4-3: A Simple A synchronous Transition

Synchronous transitions are implemented the same as asynchronous transitions, with the excep—
tion that the state latches are replaced by clocked flip—flops. This is illustrated in figure 4=,

i1		
(
11		
11		
]	1111	
lA1 1 1B C)		
= =-1-2- = - Phi2		
1		
- - - - - - Phil
| 11 | |
| 11 | |

t 8 3 32 s 3 3 3
I=1=1=11-P=1==-§)
LI I A I Y
I=1=1=1=1R=~=p=])

Figuie 4-4: A Simple Synchronous Transition

The following discussion explains the ASSASSIN compilation of all the constructs described by
Hollaar [4), Examples are drawn from the sample control-unit whose flow—graph is contained in
figure 2-3. The CUDL code for this control-unit is in figure 2—4. The complete PPL program for this
example is in figure 4-6. The various constructs being discussed contain portions of this PPL
program. Row segments are referred to from left to right in a given row. Row and column numbers

b |
R— i
— - ——— — - —
/ -
v mper e e e
. 2 e—c— P T T e gl P ~. b
1 hao
[WTWL 1
L - T N T T T ¥ g

N_‘. AP T T — caas neo b ML B L T o G et R B e e & F o o | i

T g | R S Ry o T i b

TR TR em—m—m—_—

.

ASSASSIN

are as labeled in the figures.

Figure 4-6 illustrates the compilation of a move transition (from state A to state D). Rows 17
through 19 contain the state latches, input gates and temporary gates. T1 conteins "I2 and not 13."
T2 contains "I4 or I6." T3 indicates that the JOIN transition from states B and C to state F is cur—
rently being taken. T4 indicates that the MOVE transition from state D to state F is being taken.
Row 15 is the forward transition from state A to state D. I{ senses that state 1 is active by the ‘1’in
column 1, that "BIG" is false by the 0’ in columns 2 and 3, and that state F is inactive by the *0’ in
column 22. State D is made active by the 'S’ in column 17 and the row load is the ‘P’ in column 11.
The reverse transition in row 14 simply senses with the ‘1’ in column 17 that state D is active and
resets state A with the 'R’ in column 0.

Scale—of—two loops pose a particular problem. It is possible to get stuck in both states, with no
way to get out. Scule—of-tw 2 loops therefore require some sort of mutual exclusion on transitions to
avoid this problem. Figure 4-7 illustrates the compilation of a scale—of-two loop. Row § contains
the forward transition from state D to state P. Note the ‘0's in columns 0 and 22 which detect the
predecessors to state D. The '+’ in column 18 is used in generating the outputs associated with this
transition by driving T4 when the transition is in progress. The right segment on row 12 resets state
D after the forward transition to state F has been finished. Note the ‘1’ in column 19 which senses
that input I8 has not yet become false. This gives the required mutual exclusion of input signals in a
scale—of—two loop. Row 4 contains the forward transition from state F to state D. The 0’ in column
19 detects the false state of input I8 and the other ‘0's detect the inactivity of the possible predeces—-
sors to state P. Row 4 contains the reverse transition asocmted with the transition from st.ate F to
stateD. The '0’in column 15 senses that input 7 is currently false. ’

Figure 4-8 illustrates the FORK transition from state A tostates B and C. Row ~.13 cantains the
forward FORK transition. It senses the state A is active, that étate F is inactive and that input BIG is
true (the '1's in columns 2 and 3). It also sets both states B andc. Thé reverse FORK transition is in
the left segment of row 12. 1t detects that both states B and ¢ have been activated and resets stateA.

Figure 4-9 shows the JOIN transition from states B and C to state F. Row 9 implements the -

forward transition by sensing that the predecessor state (A) is inactive, states B and C are active,

inputs I4, I5 and I6 are true, and by setting state F. The '+ 'in column 14 is used for generating the-

outputs associated with the JOIN transition from state ¢. The reverse transition is implemented in
row B where the activation of state F is detected and states B and C are deactivated (reset).

Figure 4-10 shows the compilation of the input boolean expression BIG ~I1 and (I2 or not I3). The
leftmost row segments on rows 20 and 21 (I1+ —=1~P| and |+ ~P=0l respectively) compile the subexpres—
sion "2 or not I3." The ‘+ ' in column 3 generate the OR of these two rows into T1. 12 is sensed by
the ‘1’ in column 4 of row 20 and "not I3" is sensed by the ‘0’ in column 5 of row 21. To sense "BIG",
the program must contain ‘1's in both columns 2 and 3. To sense "not BIG" it must contain ‘O’s in
both columns 2 and 3.

Figure 4-11 shows both conditional and unconditional output generation from states and tren-
sitions. Row 22 implements the unconditional outputs controlled by state A. The *1' in column 1
senses that state A is active. The “+'s in columns 6 and 13 implement the "HOLD 01,02"
statement, the 'S’ in column 17 implements the "RESET 03" statement and the ‘R’ in column 10
implements the "SET 04" statement. The S’ is used to reset a LATCH2 PPL cell and the ‘R’ is used
to set it. Rows 24 and 25 implement the conditional outputs controlled by state B. Row 24 detects
the "I4 or I5" condition arid HOLDs 05 and 02 and resets 04. Row 25 detects the "I3" condition and
sets 03. The last row segment on row 20 (Il-P——SI) implements the unconditional output (03)
controlled by the JOIN transition from states B and ¢ to F. Row 26 implements the "if BIG then set
04" statement from the JOIN transition in state C.

'

e SN Pl ey —

ASSASSIN

T
TovaT
Taitay
TaT v
TiTaT
TaTaeq
-5o--—
TVNAS
T
Tavan
Tivaw
—z=--
TIIaT
=
Ty
TaTa
Tevar
-Sa~-—
TTTaT
—sz--
Tyl
TaTae
TiTa
q-l.-q
- e

}

1}

1}

]

L

}

]

s

s

y
S SEETEEEY EEERTS B My

e et |

L]
A ety P Y

]

s

~t=ci smaog-§)

B-S---g-fonenu]|

1-P-===aucR =]

S |
3 3
LI |
1
t 8
LI |
3 3

3
3 3
LI |
3 = 3
L |
L |

3

3

3

3<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>