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I INTRODUCTION AND BACKGROUND

Navy Sun propellant requirements have continually stressed the need

for reduced Sun barrel erosion and increased Sun propellant performance.

However, a new goal has been Astablished by the need to reduce the

vulnerability of munitions to unscheduled initiation. Additional

requirereats are high impetus and low flame temperature. Current

operational Sun propellants are highly vulnerable te initiation by high

velocity, hot metal fragments resulting from @palling. Highly energetic

propellants produce intense fires, which increase the likelihood of

propagating to other charges in the magazines.

The Navy's concern over the vulnerability of current gun propellants

and TNT-based-selt cast explosives to unscheduled initiation has resulted

in the LOVA programs and the development of rubbery cast-cured

explosives. Nitiamine propellants and explosives containing Lrert binders

in place of ths conventional nitrocellulose (NC) or TNT offer the

opportunity for reduced vulnerability. Tests of several LOVA candidate

systems1 [e.g., cellulose acetate (CA/RDI), cellulose acetate-butyrate

(CAB/RDE), and polyurethane (PU/RDE)] have shown significant reduction in

vulnerability when compared with NC/RDX systems. Formulatious containing

Kraton2 and RDX were also tested and found to have a vulnerability to

initiation by fragmeots or fire between that of NC/RDE and the above

experimental systems. However, there are significant advantages to using a

thermoplastic, elastomeric binder like Kraton, over CA, CAB, and PU: a

thermoplastic binder can be more easily and safely processed than

conventional binders, and the elastoueric properties of the binder permit

the binder to absorb part of the impact energy, thus reducing overall shock

sensitivity.

It has been repotted3 that some propellant binders (e.g., polyether-

based polyurethanes) decompose endothermically when contacted by hot

fragments. It is postulated that endothermic decomposition of such binders

protects the energetic solid portion of the formulation from initiation,

3
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thereby reducing tMe vulnerability of the Sun propellant. Therefore, If we

could introduce Into the binder a polymer block that decomposes

endothermically, we could produce a superior binder that should fulfil the

requirements of the Navy's LOVA program.

Under contract with the Office of Naval Research4 SRI developed a

polymerization technique that permits synthesis of polyether glycols of

predetermined molecular weight and functionality. We demcustrated that

oi tanes and tetrahydrofurans (TE•s) can be reproducibly homo- and

cooolymerized to give a wide range of physical properties. Consequently,

we proposed to apply this new polymerization technique to prepare

polyether-based thermoplastic elastomers.

By definition, a thermoplastic elastomer is a block copolymer

containing distinct hard (glassy) or crystalline and soft (rubbery)

segments. A triblock configuration (A-B-A), in which the "A" blocks are

hard glassy or crystalline seagonts and the "B" bl3cks are rubbery segments

has the optimum thermoplastic, elastomeric properties. Block copolymers of

this type are rubbery, physically cross-linked, highly elastic materials at

temperatures below the glass transition temperature (Tg) of the hard glassy

or crystalline component. This dual behavior results from the association

of A-segment hard domains at temperatures below the softening point of the

A component•
5
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II DISCUSSION

The deficiencies of current Sun propellant binders and the processing

constraints of cast-cured explosive binders may be overcome by using

thermoplastic elastoaers. Also, the vulnerability of propellant* to jet

and spall detonation may be reduced by using themoplastic, elustomerLc

materials that will depolyaerize endothermically. furthermore,

incorporating energetic groups into the binders should permit the use of a

lower solids loading. thus decreasing the sensitivity.without sacrificing

energy*

New materials synthesized during this research program were required

to meet the following standards:

(1) Be chemically stable from -40* to 600C.

(2) Have a melting transition temperature Tm for the glassy

block of 80" to 90"C.

(3) Have a T. for the rubbery block below -40*C.

(4) Be compatible with RDX and HHX.

(5) Retain mechanical integrity when filled with solid
explosive up to 80 wvt.

(6) Exhibit endotheraic depolymeritation at tempqratures above
1000C.

Monomer Synthesis

Two monomers were identified that would produce polymers having the

requisite properties for the crystalline or glassy blocks of the proposed

thermoplas tics.

\ Our previous experience with bis(auidomethyl)oxetane (NA0) shoved

th t It was potentially the Ideal energetic candidate for this applica-

ti n. When polymerized to a molecular weight of 4000 it has a T3 of

82 C. BAD0 is readily prepared by reacting sodium aside with

bid(chlorosethyl)ozetane (8040).6

5
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O (CH 2C)O2 + NaN(3 (CH2N3)2

BCHO BAMO

We found that if BCO is purified by distillation before use, the product

BAMO requires only one pass through an alumina column In chloroform to

ortain monomer sufficiently pure for polymerization.

The second monomer prepared was bis(ethoxymethyl)oxetane (BEMO). BEMO

is also prepared from bis(chloromethyl)oxetane by reaction with sodium

ethoxide 7

CH2 Cl) H C 250H 0 (CH2OCH2CH3)
O'• C2CI)2 + NaOC2H5  ,

BECO BDEO

Similarly, if BCNO is purified before etherification a simple flash

distillation from calcium hydride produces polymerizable grade BEMO.

Polymer Synthesis

For the elastomeric block of the thermoplastics we investigated three

candidate polymers.

Poly(ethylene glycol) (PEG) was selected to demonstrate the principle

of the proposed approach. Although PEG is somev it crystalline, we felt it

was sufficiently elastomeric for a center block and for demonstration of

the concept.

The second polymer investigated was a copolymer of THF and 3-

butoxymethyl-3-methyloxetane (BMHO). To reduce the crystallinity to

poly(TUF), BEMO was incorporated to impart internal plasticization of
poly((TF). BMKO i4as prepared by treating butyl bromide with the sodium

salt of 3-hydroxymethyl-3-methyloxetans.8

6
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+ CH3 C 2CH2 CH22Br OC

!•11040

The resulting BM1O was distilled from calcium hydride before use.

The third polymer investigated was a copolymer of RlAND and THF, which

was proposed as an energetic center block in the thermoplastics.

To evaluate each polymer as candidate glassy or elastomeric blocks, we

first synthesized each polyetherglycol block by the polymerization method

developed earlier at SRI. 4

Molecular weights of 6000 to 8000 were required to produce the glassy

V- blocks. Therefore, poly(BAMO) and poly(BIEO) were synthesized within this

molecular weight range. Each polymer was characterized with respect to

molecular weight, polydispersity, glass transition temperature, and melting

transit" n temperature. These results are given below.

Polymer MW Ta (C) T. (8C)

BAHO 7800 1.2 -32 88

BEWO 8000 1.2 -6 84

The data show that both polymers melt within the desired range. Also the

glass transition temperature indicates that both polymers would not be

glassy at ambient temperature, but the crystalline nature of each would

fullfil the requirements for the formation of crystalline domains within a

thermoplastic.

The elastomer blocks synthesized and evaluated were poly(ethylene

glycol), copoly(BMHO/THF) and copoly (BAMO/THF). Ethylene oxide was

polymerized to a molecular weight of 20,000 a value selected to exhibit

phase separation in the final thermoplastic. Phase separation was

demonstrated when a heated mixture of poly(BAMO) and poly(ethylene glycol)

separated Into two distinct phases on cooling.
7

. ...........



Two alternative elastomeric blocks were synthesized by the

copolymerizing of THP with BMO and with BAMO. The objcctiv- here was to

take advantage of the elastomeric properties of poly(THP), but to reduce

its crystallinity by copolymerization with a second monomer and thus reduce

the stereoregularity of the polymer backbone. We had demonstrated earlier

that copolymerizing THP and BAMO peduces a flowable liquid polyol, that

when cured to an infinite network has good low tetperature properties. 4

The copolymer of THF and BMHO incorporates the butoxymethyl side group

of BMMO to disrupt the chain folding, and the crystallinity of poly(TaF).

A series of poly(THF/BMMO) polymers was tI.erefore prepared to determine the

ninimim concentration of BMMO required to produce a noncrystalliae polymer.

A detailed characterization of each material synthesized is described.

Block Formation

To characterize a thermoplastic block copolymer, we had to

characterize each polymer block separately and also as part of the final

block polymer. Before efforts were expended to ccpolymerize the candidate

crystalline and elastomeric blocks, we elected to use diblock linking to

provide material for evaluation. Results of the evaluat 4 in of the diblock

and triblock polymers prepared in this manner would indicate whether the

properties of the block polymers are within the desired range. For this

study poly(BEMO) and poly(ethylene glycol) were used.

The polymer blocks were linked by reacting of the bis-chloroformate of

the center block, PEG, with one or two equivalents of the end block,

poly(BEMO), as shown below. 9
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excess COtl 2SR~~~O-(Cll2W t0) -Hl •jC 2C:I ClC(O)O-kCl2CH 20)n-C(O)C1

PEG

ClC(O)O(CH2 CH2)n-OC(O)Cl + HO-(CH2 -C--CH 20) n -H

(CH 2C25)) 2

Poly(BsHo)

(CH 2OC 2 H5)2 ( CH2OC2P5) 2

BEMO-PEG-BEMO Triblock

The properties determined for thm five homopolymers investigated are

summarized in Table 1. The densities and refractive indices were each

deter;.-..ned with Dale-Gladstone plots of polymer dn/dc in various

solvents. The dn/dc's show the expected linear dependence on solvent

refractive index and are necessary for the measurement of N. and

polydispersity. 1hey will also be used later in the analysis of the

composition and i:rue weight average molecular weight (Mw*), of copolymers.

Reasonably lood agreement is obtained between the measured molecular

weights (M W) and :hose calculated with the Mark-Houwirk coefficients K and

a. The significance of these numbers is illustrated in the gross

discrepancies between thu true molecular weight and that calculated from

size exclusion chr,.--.-wraphy (SEC) with polystyrene standards. The latter

assumes that all polymers in every solvent can be characterized by the same

K and a values, a widespread but completely incorrect assumption. The

values for BEMO and BAMO reflect the high degree of steric hinderance to

crankshaft rotAtions due to the pendant groups. The substitution of the

stiff, polar azoxy group for the ethoxy group results in lower solubility

and a decrease in the second viral coefficient A2 .

The characterization data for copoly(THF-BMKO) (Table 2) demonstrate

the Importance of accurate molecular weight characterization. The apparent

9



Mw obtained by light scattering is always greater than the true weight

average mLý and varies, with solvent refractive index, from 3430 to

infinity

for the 20:80 THF:BHHO composition. Analysis of the dependence of KW* on n

indicates the following:

o Mw measured in acetone is essentially identical to Mw*.

o The average distribution of THP and BNMO repeating units
is essentially random, but the exact distribution of
segments within a given molecule varies with the MWd of the
molecule.

Analysis of the copolymer composition, based on the well-known

additive relationship between weight fraction and homopolymer refractive

index, i.e., dn/dc - e I wtZi (dn/dc)i, indicates that the actual

composition is not id .tical to that of the initial monomer ratio. This

observation and the molecular weight dependence of the segment distribution

is very consistent with what one would expect from a slow polymerization

reaction.

The block copolymers investigated were prepared in two reactions. The

first produced a mixture of AB diblock plus excess B block and the second

produced predominantly AZ). triblock (Table 3). The excess B block (PEG)

resulted because an incorrect molecular weight of 6,000, obtained with a

polystyrene calibrated SEC, was used instead of the correct light-

scattering molecular weight of 16,000.

Some of the problems encountered in interpreting the apparent weight

average molecular weight obtained from copolymers are obviated in these

measurements. If scattering is measured in a solvent for which the dn/dc

of one block is very much smaller than the other, then it is essentially

invisible. Therefore measurements in benzene, in which the PEG block is

* almost invisible, yielded the molecular weight of the BEMO blocks in a

given molecule. That is, the observed molecular weight of an AB diblock is

identical to that of the A homoblock and one half of that of an ABA

triblock. Thus the BEMO homoblock and the methanol-insoluble fraction of

the first block copolymer preparation have the same apparent M.w The dn/dc

and A2 each decrease because they are sensitive to the presence of the PEG

10



block. The apparent Mw for the AB diblock in THF is much higher as would

be expected from the previous discussion of the apparent m. and the solvent

refractive index.

The methanol precipitation did not completely fractionate the PEG

homoblock from the AB diblock as indicated by SEC-LALS (low angle light

scattering) techniques. H~wever, enough separated to demonstrate the

presence of excess PEG. Both the light-scattering molecular weight and the

Ta by differential scannine calorimetry (DSC) indicated that the soluble

fraction was PEG. DSC measurements in the diblock showed distinct T S of

-63* and -3"C, indicating that the Mw of the two blocks are sufficiently

high for phase separation to occur.

Similar considerations apply to the analysis of the &BA triblock

polymer. SEC-LALS indicates a single narrow distribution product with a Mw
of 32,000, roughly equal to two BEMO blocks. The observed dn/dc and A2 are

also consistent with what would be expected from av ABA triblock.

11
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Table 1

HOMOPOLYMER PROPERTIES

Polymer

PEG BEMO BMMO THF BAMO

n 1.485 1.460 1.408 1.407 -

p(g/mL) 0.879 0.741 -- 0.88 -

H (dalton x 10") 2.0 1.66 4.0
V

m 1.4 1.5 1.8

A2(dalt~on cm 31/g2A32

"x 103 - 1.25 - 0.91

M :M x 10-4 -- 5.32: - - 5.53:
w n

(Polystyrene/THF 3.27 2.56
calibration)

dn/dc x i0 2(mL/g)

THF 9.8 5.4 -0.126 6.25 9.93
Benzene -1.4 -4.75 - - -
Cymene -0.4 -3.06 ....
CC1 4  2.76 -0.76 .....

[n] (THF, dL/g) 0.54 0.14

K, a (THF) 1.58 x 4.78 x
! -10 "3 , .10-5

0:6 1.08

T (0C) -84 -8g

I • 12
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Table 2

RANDOM COPOLYMER PROPERTIE.S OF COPOLY (THF-BM•O)

dn/dc x 102  M* x 104  dn/dc x 102  M w
Solvent (uML/g w (L/s) U

Benzene -2.84 >25.4 - --

CH2CI2 4.09 0.44 - -

Acetone 10.6 0.343 9.85 0.615

Hexane 8.87 1.0 - -

CHUl3  2.0 1.44 - -

p-Fluorotoluene <0.1 - -

CCl1 1.05 1.67 - -

4

Composition 20:80 27:73
THF:BMMO

13

i 13[I __________



Table 3

BLOCK COPOLYMERa PROPERTIES

AB + B Preparation ABA Preparation
Solvent MeOH Soluble MeOH Insoluble MeOH Insoluble

BENZENE

M (dalton x 10-) - 1.54 3.2w

A2 (daltoi cm=3g) - 0.70 0.55x 10 )

dn/dc (mL/g x 102) - -4.43 -3.83

THF

M (dalton x 10-4) 2.0 105

, A2 (dalton cm3 /g 2  -

x 103)I 2dn/dc (mL/g x 102) 9.80 5.02 -

M /M 1.4 bimodal 1.4
distribution

Tg (0C) -5.1 -65, -3

aA biock: poly(BEMO).

B block: poly(ethylene glycol).

14
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III CONCLUSIONS

We have demonstrated that block polymers based on crystalline and

rubbery segmented polyethers can be synthesized and that they show the

properties required for thermoplastic elastomers.

To aid in synthesizing and characterizing these new materials, we used

differential refractive index techniques to distinguish between mixtures of

homopolymers, random copolymers, and block polymers.

Results for the random copolymers indicate the following:

o Random copolymers without blockiness were obtained.

o Reasonably high molecular weights were obtained, e.g.,

molecular weights above the point at which the glass

transition temperature depends on the molecular weight.

o Random copolymerization reduced the glass transition

temperature substantially, indicating that bloc!. copolymers

containing the random copolymer as the soft block will have

the desired thermoplastic elastomer characteristics.

a Intrinsic viscosity-molecular weight relationship indicates a

high degree of steric 'hindrance by pendant azoxy groups to

rotation about the carbon backbone, leading to a highly

expanded coil in solution.

Characterization of homopolymers provided the following

information:

* o Absolute molecular weights, scattering factors in different

solvents, polydispersity data, and solvent interaction

parameters.

"o The n and a, required for balanced stoichiometry in the block

copolymer condensation, e.g., 2(A) 5 + (B)n - (A)n(B)m(A)n.

Finally, the methods developed for block copolymer characterization

allowed us to accomplish the following:

o Unambiguously differentiate between starting materials

"(homopolymers An and Bm) and the desired block copolymers

(AnBmAn)

15
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o )emonatrate that the miLn~inmm required molecular weight
necessary for phase separation was realized, and that phase

separation occurred. *
J
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IV EXPERI4ENTAL DETAILS

Monomer Synthesis Procedures

The experimental procedures reported below are either new synthetic

reactions that are not reported in the literature or are modified

procedures of known reactions. All other experiments reported in the text

duplicate published procedures.

3 .3-Biea ethoxymethyl)oxetane

93 g (4 aol) of sodium was dissolved in 600 mL of ethanol. With

vigorous stirring, 155 Z (1 aol) of 3,3-bis(chloromethyl)oxetane was added

over a 30-min period. The reaction flask was then heated to 80*C for 15 h

and then cooled In an ice bt'h. The rusultant white solid was filtered and

"the filtrate washed twico with an equal volume of water. The water-
insoluble product waa dried over magnesium sulfate and then vacuum die-
tilled. The fraction boiling at 83-85"C at 10 torr yielded pure product,

representing an 872 yield. Characterization was confirmed by WM and II

amalysis.

3-Butoxymethyl-3-methylo.etane

102 g (1 aol) of 3-hydroxymeth.yl-3-methyloxetane was dissolved in 300

mL of 2-butanone. To this solution was added with vigorous stirring 35 g
(0.9 g-ate) of potassium the solution was warned to 45C to aid

dissolution. When a clear solution had been obtained, a solution of 221 g
(1.2 aol) of 1-iodobutane in 100 uL of 2-butanone was added over a 5-mmn

periad. The resulting solution was then heated to reflux for 24 h. The

mixture was cooled and quenched with 100 mL water and extracted with

* j methylene chloride. The organic phase was dried over magnesium sulfate,

evaporated to constant weight and the reaction products were isolated by

open column chromatography using alumina and methylene chloride. The major
fraction proved to be the required product representing a 37Z yield. The

"* structure was confirmed by NMR and IR analysis.
17
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Polymerization Procedures, Block Synthesis

Materials

Burdick and Jackson UV grade THP and sethylene chloride were used as

received and stored over molecular sieves. Commercial grade boron

trifluoride etherate was freshly distilled before use. 1,4-Butanediol was

distilled under redvccd pressure from calcium hydride and stored over

molecular sieves. Monomers were freshly distilled from calcium hydride

before use. All glassware was flame dried and swept with dry nitrogen

Immediately before the introducing reactants. During polymerizations the

reactants were maintained under a dry nitrogen atmosphere.

Typical Solution Polymerization Procedure (N4O; BDEM0)

A flame-dried resin flask was charged with the calculatee weight of

diol as a 50 wtZ solution In methylene chloride. The solution was cooled

to oeC, and the desired amount of boron trifluoride etherate was added

dropvise. After the solution was stirred I h the desired amount of monomer

was added as a 20 wtl solution in nethylene chloride over a 10-tin

period. After the solution was stirred for 24 h, the solution was quenched
with a volume of saturated aqueous sodium chloride solution equal to the

volume of catalyst used. The organic ltyer was separated, washed with an

equal volume of 10Z aqueous sodium bicarbonate solution, and dried over
//

"anhydrous magnesium sulfate. The organic fraction was then added to ap vigorously stirred 10-fold volume excess of methanol. The resulting

insoluble residue was separated and dried to constant weight under high

vacuum at ambient temperature.

Typical Bulk Polymerization Procedure (BIMO/TRF)

A flame-dried resin flask was charged with the calculated weight of

monomer and butanediol. The flask was then cooled to the temperature

selected for the polymerization, usually belowa-5C. The calculated amount

of boron trifluoride etherate was then added and the mixture stirred

"vigorously for 30 win. At this point the stirring may be stopped, but the

cooling must be maintained during the entire polymerization.

When the polymerization reached a steady state, an equal volume of
•, 18
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I methylene chloride was added to dissolve the polymer mass, and a volume of ,
saturated aqueous sodium chloride was added to quench the reaction. The

organic layer was separsw.ad, washed vith an equal volume of IOZ aqueous

sodium bicarbonate solution, and then dried over anhydrous magnesium

sulfate. The resultant solution was added to a vigorously stirred 10-told

volume excess of methanol. The insoluble residue ma separated and dried

to constant weight under high vacuum at ambient temperature.

Block Linking Technique

Preparation of PolX(ethylene glycol)bis-chloroformaste

In a flams-dried flask under a nitrogen atmosphere 20 g of poly-

(ethylene glycol) was dissolved in 100 mL of dry dichloroethane (dried over

calcium hydride). The solution was cooled to -10"C and then a 5 mol exycevs

(0.005 mol) of phosgene was introduced. The temperature was maintained at

-10"C for 2 h, then allowed to come to ambient temperature overnight. Most

of the excess phosgene was removed by passing a stream of dry nitrogen

through the solution; the remainder was removed at reduced pressure. The

product was used without further purification.

Block Polymer Preparation

To the poly(ethylene glycol)bis-chloroformate was added a solution of

14 S (0.002 mol) of 7,000 molecular weight poly(BEIO) in 50 AL of dry

dichloroethane followed by 1 mL of analytical grade pyridine. The

S- -. resulting solution was heated to 500C overnight, cooled, quenched with

water, and extracted with methylene chloride. Further isolation was

achieved by precipitation from methanol.

Functionality Determination

The polymer (1 g) was heated for 15 min at 95C with 2 mL of a 2:1

mixture of pyridine and acetic anhydride. The resulting so tion %as then

added to 50 mL of water and the mixture titrated with 0.1 N odium

hydroxide. The titer of the polyol solution was compared with the titer of

a blank containing no polyol. The difference between the blank solution
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and the polyol sample solution was used to calculate the hydroxyl

functionality of the polymer.

* Alternatively, 1 g of the polyol was heated with an excess of

hexamethyl disilazane for 1 h. The mixture was then heated overnight under

moderate vacuum to remove the volatile trimethyleilyl ether formed by any

water present in the sample. The residue was dissolved in deuterated

chloroform (without TMS standard). The silylated end group content was

determined by NMR using benzene on'the internal reference. The

functionality of the polyol could be calculated from the number average

molecular weight and the end-group content.

Molecular Weight Determination (Preliminary)

All molecular weights were determined ueing a Waters gel permeation

chromatograph equipped with a differential refractive index detector and a

Data Module 730. The column set consisted of seven microstyragel columns
/ 0 0 0 0

(two 100 A, two 500 A, two 1000 A, and one 10000 A) connected in series.

The eluting solvent was THF. The system was calibrated with polypropylene

glycol standards of molecular weight 800. 1200, 2000, anOL .000. Molecular

weights determinations were confirmed usiag a Chromatix ,&iX6 light-

scattering analyzer.

Molecular Weight by Light Scattering

Light scattering measurements of the weight average molecular weight

(Mw*) and the second virial coefficient (A2) were made on solutions

filtered through 0.2 pm filters with a LALS photometer (Chromatix KMX-6).

Combined SEC-LALS were made with two independent commercial systems and the

data were analyzed with a dedicated minicomputer (Chromatix, DP-1).

Differential Refractive Index Determination

The differential refractive index (dn/dc) was obtained with a
o

refractometer (Brice-Phoenix) modified for operation at 6328 A. The
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Instrument was calibrated vith two systems for which the du/dc€ Is well

"known, e.g., polystyrene:toluene and KCl:0 2 0.

Glasu Transition Temperature Determination

The glass transition temperature (T.) was determined both by DSC, (Du

Pont 940) and by measurement of the temperature dependence of the dynamic

tensile modulus (Z*, Rheovibron DVD-II) at 110 Hz.
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V PUBLICATIONS AND PUSENTA•IONS

The following presentation was made during this reporting period

"Novel Polyether Block Copolymers," Energetic Polymer Workshop, Chestertown,

Maryland (August 17, 1982) .

The following abstract was submittii and accepted for the AlChE

meeting in Los Angeles, CA, November 18, 1982:

"Viscoelastic Behavior of Block Copolymers Based on Polyethers,"

Joint paper with L. H. Cperling et al., Lehigb University.
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