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I. INTRODUCTION

The exhaust of a typical amine-fueled rocket motor contains a large mole
fraction of H,0 vapor that can be cooled to very low temperatures (~ 50°K)
during supersonic expansion. At high altitudes, where collisions with the

ambient atmosphere are infrequent, the low temperature of exhaust species may

persist many kilometers from the motor. Such a cloud of cold H,0 vapor can
significantly attenuate the earth background radiation (~ 250°K blackbody) at
wavelengths corresponding to transitions between low-lying rotational states
of H,0. Alternatively, when viewed against the cold (~ 4°K) background of
space, the cloud can be a significant emission source at the same wave-
lengths, In either case, the submillimeter optical properties of the cold
plume may provide the basis for passive detection of low-thrust motors at high

altitudes.

This scheme has been discussed at some length already by M. Litvak (Ref.
1 provides details). It is the purpose of this report to provide an indepen-
dent assessment of the feasibility of the scheme, to extend the work already

published, and to suggest certain issues that need more attention.

Figure 1 shows the rotational energy levels of the HZO molecule, with
solid lines indicating the allowed dipole transitions. At low temperature:, only
the lowest levels are significantly populated (kTp = 33 cm™! for TR = 50°K).
This study is primarily concerned with the 557-GHz (A = 0.539 mm) transition
between the 1,, and 1, rotational levels of H,0.

Section 1I is devoted to describing the physical and optical model of a
high-altitude plume and to presenting results of parametric calculations using
this model. Section IIT discusses the characteristics of earth background
radiation at the signal frequency and presents calculated background
properties. Section IV presents conclusions from this study and Section V
gives a brief and not necessarily exhaustive list of issues that require -

further study. l

FHECEDING PAGE BLANK-NOT F]10q




inb A e o g o

10 s

A33eM JO Syaad| LBiaujy [BUOFIRIOY ‘1 ‘814

(F) WNLNIWOW MVINONV TVNOILVLOY

9 v N 0 2 v 9 )
b o mmn/ ! 205 Ly 1% 0
i ol THOLSS ~
<
7 5\.1 —{ooz
NMvN —nn |
e ~{00v
I |
“Joog
ouﬁno <m<n~ ﬂ-hl
y K .an
| SNOILISNVYL “ {000
Y v_ 370d13-9 1SIONOY LS — e,
K ST3A3T ASYINI — ol
Lt o0 Lttt 1 1 looot

(L.w3) A9Y3IN3




I1., ANTENNA TEMPERATURE CALCULATIONS

Section II., A outlines a model for describing the submillimeter absorp-

tion (and emission) properties of a typical high-altitude plume. The model is
generally applicable to a variety of cold plume molecules and rotational tran-
sitions, although the discussion focuses on the 557-GHz transition of H20.
The chosen figure of merit for plume detection is the antenna temperature Tyo
which is defined to be directly proportional to the change in energy falling
on a detector as a result of the introduction of the plume into the detector
field of view against a blackbody background.

Section II, B reports a parametric study of the dependence of antenna
temperature, or detectability, on various system parameters, including motor
thrust, rotational temperature, detector field of view, etc. A brief consid-
eration of the signal-to-noise ratio expected for a heterodyne detection

system (s also presented.

A. MODEL

Figure 2 schematically depicts a high-altitude plume in a coordinate
system fixed on the rocket sotor. Exhaust species including H,0 (~ 42 mole %
for an Aerozine SO/NZO‘-fueled motor) are emitted from the motor at high
velocity (Vy o = 3.2 km/sec), but low rotational and translational tempera-

- ture (~ 50°K). The angular distribution of exhaust deuasity about the plume
axis is frequently described by the Hill-Draper or Brook models for supersonic
expansion into a vacuum, but for convenience is described in our calculations
as independent of 6 for 8 < en = 38° and proportional to the inverse square of
distance from the motor. The use of different exhaust models has a minor
effect on calculated antenna temperature. The ambient atmosphere (D> 90%
oxygen atoms above 300 km) streams into the plume at the vehicle speed

(V. = 6 km/sec), making an angle awith the thrust axis, which is charac~
teristic of the vehicle attitude (i.e., a = 0° implies forward thrust).

The effect of the ambient wind on the rotational temperature of the plume
is modeled in a simple way. Since the relative translational energy between a
plume molecule and a wind molecvle is from 103 to 104 times the rotational
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energy spacing of the low rotational levels of Hzo, it is assumed that a hard-
sphere collision (ch.s. =15 AZ) promotes the water molecule to a high rota-
tional state and effectively removes it from further consideration. For the
viewing geometries considered, the rates of radiative and collisional cooling

at \1gh altitudes are insufficient to return a highly excited molecule to the

<. %ow rotational levels of interest before the molecule exits a typical field of
-

view fixed near the motor exit. For simplicity, it is assumed that only wind
molecules that have not previously suffered a collision with a plume molecule
can create 52Fh a rotational excitation. This assumption underestimates to

some extent the deleterious effect of wind "heating” on the plume.

- Thé?mathematical formalism that describes the penetration of the wind
into th%;plume, and consequently the density ;H 0 of uncollided, or rota-
tionall;fcold, H,0 molecules at each point in space within the plume, is
straightforward. SJEh "first-collision, molecular flow" models have been
utilized frequently in cBnnection with collisional vibrational excitation of

plume species under essentially single-collision conditions.

From the density distribution of uncollided HZO molecules within the
plume, one can determine the necessary optical characteristics of the plume at
the relevant submillimeter wavelengths. An important parameter is the optical
depth 1 along a line of sight through the plume. In all calculations reported
here, the line of sight is perpendicular to the plume axis (i.e., along the v-
axis in Fig. 2). It is also assumed that the line of sight 1is perpendicular
to the vehicle velocity vector (i.e., 6@ is in the x-z plane in Fig., 2),
although this second assumption is easily relaxed (see Sec. II1. B)., 1t is
defined in the standard way by Eq. (4) in Fig. 3 and is clearly a function of
frequency and location in the x-z plane. The absorption coefficient at each
point along the line of sight (i.e., a(v, £)) is determined from spectroscopic
constants for the line of interest. The absorption lines are assumed to be

Doppler broadened with a translational temperature of Ty = 20°K and

appropriately shifted by the component of GH 0 along the line of sight. The
line strength of the 557-GHz absorption of H%o is taken to be 1.93 x 10—18
cm/molecule for Tg = 50°K and is easily calculated for other rotational tem-

peratures. Since the thermal Doppler width of the absorption line at any

11




Antenna Temperature Definition
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Fig. 3. Antenna Temperature Definition
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point in the plume (i.e., Y_ = 0.2 MHz hwhm) is much smaller than the range of

Doppler shifts throughout t:e plume (i.e., + 4 MHz), it is clear that only
molecules in a small range of locations contribute to absorption at a parti-
cular frequency. For a broadside viewing geometry, for example, only those
molecules close to the x-z plane of Fig. 2 contribute to absorption at the
unshifted line center frequency, vo = 556,91 GHz. The assumed translational

temperature of uncollided Hzo molecules is not critical to the calculation

of 1 as long as YD < 4 MHz,

The optical depth of the plume allows one to calculate the effect of
interposing the plume between a bhackground blackbody source and a distant
observer tuned to detect radiant energy at frequency v. Eq. (1) of Fig., 3

defines an antenna temperature TA that is directly proportional to the chanre

in spectral "brightness,” a spectral steradiancy, as a result of the inter-
position of a plume with optical depth T and temperature Tg (= Tr for this
application) in front of a background blackbody at temperature Tp. The
antenna temperature is a function of frequency and the observer's line of
sight by way of the optical depth (. For a given field of view (FOV) (Fig,
2), the antenna temperature is averaged over the field of view. The resulting
temperature is directly proportional to the change in spectral power,

AP (watts/Hz), incident on a distant detector that subtends a solid

angle Q and views an area AFOV’ i.e.,

Det

2
2 kv T (6)

= — Y
bF c2 AFOV Det "A

T, is clearly negative for occultation of a warm background by a cooler plume,
and positive for emission by a plume against a cooler background.

It should be noted that for typical radio frequency applications where
both Ty and Tg are >> hv/k, the antenna temperature is simply related in Eq.
(5) of Fig. 3 to optical depth and background and source temperatures. This
relationship is not precisely correct for submillimeter wavelengths and low
background temperatures., The useful definition of Ty in terms of radiant

energy in Eqs. (1) through (4) is maintained in these calculations.
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A final comment on the radiative lifetime of the 557-GHz transition of
H,0 is necessary. The Einstein coefficients of the transition are calculated
from the line strength to be Ay = 3.3 x 1073 sec_1 and B;; =3.1 x 10!8

2. Thus, the spontaneous lifetime for the transition is ~ 300 sec

cm3/erg sec
and the lifetime for induced emission and absorption for molecules near an
infinite blackbody at ~ 300°K is ~ 55 sec. Both times are much longer than
the transit time (~ 1 sec) for plume molecules across a typical field of view
positioned near a motor. Thus, spontaneous and induced radiative processes
should not significantly alter rotational populations, or calculated antenna

temperatures.

B. CALCULATED ANTENNA TEMPERATURES

The model described in Sec. II. A has been used to calculate antenna tenm-
peratures for typical high-altitude plumes. The dependence of TA on several
important motor and observational parameters 1is investigated. In all calcula-
tions, a typical low-thrust, liquid-fueled (Aerozine SO/NZOA) motor is used.
The viewing geometry is perpendicular to the plume axis and vehicle velocity
vector (Fig. 2). With noted exceptions, the FOV is 3 km in diameter, centered
on the plume axis, and adjusted along the axis to obtain the optimum FOV-
averaged a~“~nna temperature. For a 3-km FOV, the optimum invariably occurred
when the FOV was centered 1.5 to 2.0 km downstream from the motor. The
thrust, or attack, angle a was 90° in all calculations. The calculations are
relatively insensitive to a at altitudes above 300 km. With noted excepticns,
all calculations were made for the wunshifted line center frequency
v, = 556.92 GHz, which 1is optimum for broadside viewing. The dependence of Ty
on frequency is considered briefly. The translational temperature (not
necessarily equal to the rotational temperature) of the plume is assumed to be
20°K, although calculations are essentially insensitive to the assumed value
up to large translational temperatures. With a noted exception, the plume is

viewed against a blackbody background at 250°K.

Figure 4 shows the dependence of Ty on thrust level at two different
altitudes. At 500 km the ambient atmosphere is too thin to collisionally

"heat” the plume (Xm = 250 km), and T, ceases to change with

ean free path
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increasing altitude. Below 250 km (Amf < 3 km), collisional heating quickly
re.luces TA' Figure 4 shows that TA depends linearly on thrust until the plume
becomes optically thick over the FOV. For an optically dense plume, T, event-
ually approaches the limiting value, equal to TR - TB (= - 200°K).

Figure 5 shows the dependence of antenna temperature on the assumed
rotational temperature TR (i.e., the rotational temperature of the supersoni-
cally expanded exhaust gases prior to atmospheric collisions). A rotational
temperature of 50°K is frequently assumed, or calculated, for the supersonic
expansion into vacuum of small motor exhausts; however, actual temperatures
may depend to some extent on thrust level, fuel, and motor design. The rota-
tional temperature is a critical parameter because of its strong effect on the
relative populations of the rotational levels connected by the radiative

transition.

Figure 6 illustrates the dependence of TA on the detector field of
view., Smaller fields of view can be positioned closer to the motor, where the
plume is denser and less perturbed by ambient collisions. Thus, larger (abso-
lute magnitude) antenna temperatures are achievable., Fig. 6 also indicates
the antenna size required to produce a diffraction-limited spot size equal to

the assumed field of view at geosynchronous distance,

Calculated antenna temperatures depend on the temperature of the back-
ground against which the plume is viewed. A simple expression relates the
antenna temperatures for two different background blackbody temperatures, Ty

and TB’

hv/kTB hv/kTR hv/kTB

e - e e -1 (7)
hyv/kT hv/kTB hv/k'rR

e B _ 1 e - e

T,(Tg) i}
T,(Tp)

Eq. (7) may be used to convert antenna temperatures typically calculated at Tg
= 250°K to other background temperatures. Figure 7 is a plot of T, against
motor thrust for a plume viewed against a cold sky (i.e., TB = 4°K) and is

analogous to Fig. 4, which corresponds to viewing against the earth disk.
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Against a 4°K background, t'.c plume is seen in emission, and for a dense plume

TA approaches an upper limit approximately equal to the plume rotational

temperature.

The optical depth of a plume, and thus the antenna temperature, depends
on the observation frequency. In this study, calculations are generally made
for the normal line center frequency Yo of the 557-GHz line, which is the
optimum frequency for broadside viewing. Detectors, whether incoherent or
heterodyne, accept a range of frequencies; thus, the spectral line shape of
the absorption feature is important. Figure 8 shows antenna temperature as a
function of frequency offset from line center for a typical plume. The opti-
cal depth of the plume is significant for frequency shifts up to the maximum
Doppler shift of Avm for those molecules emitted in the y-z plane with axis
angle em (Fig. 2). The calculated "lineshape” for T, is to some extent a
function of the model used for the dependence of plume density on the off-axis
angle 6. The choice of a Hill-Draper, or Brook, plume model would result in a
less sharp cutoff at Avm, but in a very similar line width and peak antenna

temperature.

; Viewing geometries that are not at 90° to both the plume axis and vehicle
velocity are not specifically considered in our calculations. Results for
viewing normal to the plume axis but non-normal to the vehicle velocity vector
are, however, simply derived from our results. Antenna temperatures and
lineshapes are essentially identical to the current results, but shifted in
frequency by the Doppler component of the vehicle velocity along the line of
sight. For a geostationary observer, the maximum line center shift for a
terrestrial vehicle speed of ~ 6 km/sec is ~ 11 MHz, For viewing that is not
normal to the plume axis, lineshapes may be complicated and not necessarily
symmetrical about a Doppler-shifted line center frequency. The maximum line
center Doppler shift for non-normal viewing is ~ 17 MHz. i

C. SIGNAL-TO-NOISE ESTIMATE

Figure 9 displays a very rough estimate of the signal-to-noise ratio for :
a typical high-altitude plume observed against the earth, which is assumed to i
present a benign background, from geosynchronous orbit with a ~ 3-km FOV. The -
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Fig. 8. Plume Signal vs. Frequency




SIGNAL-TO- NOISE OF COHERENT DETECTION SCHEME

SIGNAL = TA'AI/ - t

NOISE = Tsys \‘Al/-t

LET ( T, - 2% ( ~100-1b motor)
Av = 8 MHz
< t = 1 sec
T = 3000°K
sys
\
THEN  SIGNAL=_ A = 20°K_ - 20
NO I SE Tsysf,'\‘AV.t 1°K

IF t = 1072 sec, then SIGNAL = 0.6
NOISE

Fig. 9. Signal-to-Noige Calculation
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intrinsic noise level of the heterodyne detection system is characterized by a
system temperature Tsys (currently a few thousand degrees for submillimeter
detectors). The IF bandpass of the detector is set equal to the full line-
width of the absorption line, € MHz, over which T, 1s rougzhly constent and
equal to its peak value. In order to cover the maximum range of Doppler-
shifted signal frequencies, this bandpass should be ~34 MHz. The use of 8 MHz
assumes either a frequency scanning capability or a viewing geometry that
entails less than the maximum Doppler shift. The dwell time t is roughly the
transit time of the plume across the field of view and should be ~1 sec for a

staring, or ~ 1 msec for a scanning, observational arrangement.

Using the system parameters defined in Fig. 9, the thrust levels required
to produce a S/N = | with a benign background are presented in Table 1 for
viewing above the horizon and below the horizon and for scanning and staring

modes of observation.

Table 1. Thrust Required to Give S/N = | with Plume at 500 km Altitude

Below Horizon Above Horizon
Scanning 150 1bs 21000 1bs
(t = 10" 3gec)
Staring 4 lbs 25 1bs

(t = ] sec)

Lower limits on detectability depend on the required observation mode, and on

improvements in intrinsic detector noise for a heterodyne detection system.
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III. BACKGROUND RADIATION FROM THE ATMOSPHERE

The basic question being addressed is: What is the variation of back-

§ ground radiation from place to place across the earth when viewed from space
at and near the center of the particular water rotational lines of interest?
In different terms, the problem is to evaluate the variations in atmospheric
spectral radiance as the sensor field of view is scanned across the earth as
viewed from outside the atmosphere. Spatial variation in background radiation
will ultimately depend on the distributions of temperature, pressure, and

| humidity in the atmosphere along different representative lines of sight.

| The answer to the question is expected to be complex and, in fact, not
fully answerable at this time, owing to limited knowledge of atmospheric
structure. As will be seen below, we are concerned with the region between
about 35 km and 100 km altitude. This includes the entire mesosphere (~ 50 to
90 km), the upper portion of the stratosphere (35 to 50 km), and a little of
the lower thermosphere (~ 90 to 100 km). 1In this region, there are phenomena
leading to structure in atmospheric properties on all scale sizes from global i

to less than a typical plume size.

In Sec. III. A is presented a brief review of the elements of atmospheric
structure in the altitude range of interest. In Sec. III. B are presented the
results from calculations of radiative transfer using different models of
atmospheric properties and different viewing geometries. This will give =
broad picture of the characteristics of this background radiation and its

1 variability on a global scale. In Sec. III. C the effects of atmospheric

structure on a smaller physical scale are discussed.

{
Q A. ATMOSPHERIC STRUCTURE
!

Phenomena leading to atmospheric structure are discussed below, roughly
] in order of decreasing characteristic scale size. This section is a synopsis
{ of information taken from several much more detailed discussions in the

literature. (Refs. 2 through 5).

It is convenient to speak of the global atmospheric properties averaged

over all longitudes, the “zonal mean” atmosphere, and deviations from this
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mean. The zonal mean atmosphere is formed largely by the interplay of
radiative transfer and induced fluid motions. The zonal mean atmosphere
changes with an annual periodicity and with semiannual and weaker biennial
periodicities. An example of zonal mean temperature distribution is shown in
Fig. 10.

When the longitudinal dependence of atmospheric properties is examined,
the first few Fourier components are called planetary waves. These first few
Fourier components account for nearly all of the deviation from zonal mean
values of atmospheric properties in the stratosphere, except on much smaller
scale sizes. Thevy are much stronger in the winter than in other seasons and
are stronger in the stratosphere than the mesosphere. An example of planetarv
waves showing the results of Fourier decomposition into waves 1 through 4 is
shown in Fig. 11. The plotted quantity is the altitude where the pressure is
50 mb for the Fourier components, which vary as sin6, sin2%, sin3€, and

sin4b, respectively, where 3 is longituge,

[]
=

re
There are tidal oscillations of the atmosphere generated in part gravita-

tionally by the sun and moon, but in greater part thermally by the sun. In
the upper atmosphere, the 24-h tide is of greatest importance., The tidal
motion is vertical with wavelengths of 20 to 30 km. Its important effects are
confined to latitudes less than 50°, There is also an important 12-h compo-
nent near the mesopause.

To this point, the discussion has been concerned with components of
atmospheric structure that, because of their large physical scale, probably
will not contribute to variations in the background intensity during the
observation of any one particular high-altitude missile. They may contribute,
however, to differences between observed backgrounds at places separated bv
more than‘iSay, 1000 km. Other components of atmospheric structure occur on a
smaller scale, so that they could produce sensible background variations
during one scan event, One of these is termed gravity waves. These are
generated by a variety of sources, including aurorae, at high altitudes, and
by tropospheric weather systems, jet streams, and tropospheric winds inter-

acting with surface topography. They have a short period cut-off of about 5

26




PRESSURE mb

so0f e i
1000 . : ———— - -

90 80 70 &0 SO 40 30 20 10 O 10 20 30 40 50 &) 70 80 90
CLATITUDE

Fig. 10. Schematic Latitude-Height Section of Zonal
Mean Temperature at the Solstices (Ref. 2)

27

HEIGHT km (Appron)




WAVE 3
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to 10 min in the upper mesosphere. The strongest waves have periods of ] tn ?
h., The horizontal scale size is 10 to 300 km and the vertical scale size is 5
to 50 km.

Gravity waves have been observed in meteor trail radar echoes, in VHF
radar neutral backscatter data, in the luminosity patterns of noctilucent
clouds and, in fact, have been photographed in the near-infrared through their
influence on hydroxyl chemiluminescence. As these waves propagate vertically
upward, they grow in amplitude owing to the decreasing atmospheric density and
the requirement for conservation of energy flux. At some point near the meso-
pause, the waves tend to become unstable, undergoing nonlinear interactions

leading to viscous dissipation and possibly to generation of turbulence.

Turbulence gives rise to the smallest scale variations in atmospheric
properties of any of the mechanisms operating in the mesosphere and of
potential importance to this problem. At the mesopause, scale sizes as small
as ~ 50 m are to be expected and decreasing sizes occur with decreasing alti-
tude. Turbulence has been observed at up to 105 km altitude in the trail of
rocket-borne vapor releases and in meteor radar observations in the range R"
to 100 km., It is sporadic in time and space and 1s generallv horizontallv
stratified,

The extent of detailed knowledge of these various mechanisms leading to
structure in the atmosphere increases rapidly with the scale size. Earth
satellites are unique in their ability to obtain global measurements on a
repeated basis with regular sampling in space and time. Coverage is verv good
for large-scale processes that do not change rapidly in times of much less
than a day. Our knowledge of the zonal mean atmosphere, its variation with
the seasons, and planetary waves has developed over the last two decades
almost entirely from these satellite observations. On the other hand,
repeated and widespread use of radiosonde and sounding rocket atmospheric
probes has given much information about the vertical distributions at many
particular locations throughout the globe. 1In the context of the above
discussion of structure-generating mechanisms, our knowledge of the extent,

frequency, and intensity of gravity waves and turbulence in the upper
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stratosphere and mesosphere is meager. It will not be possible to realisti-
cally describe the effects of these mechanisms on the background radiation.

Instead the results of simple illustrative calculations will be reported.

B. CALCULATIONS OF BACKGROUND RADIATION FOR SCALES > 1000 km

It is necessary first to define the region of the atmosphere that gives
rise to radiation seen as background by the proposed sensor system. We shall
be describing results of calculations of radiative transfer in the atmosphere
in a small frequency range centered on the water vapor rotational transition
at 18.577 cm-l. Other water vapor rotational transitions that have been
discussed are expected to give similar background properties. The frequencv
range in the calculations is dictated largely by the range of Doppler shifts
to be expected in an exhaust plume from a missile traveling at 6 km/sec. This

corresponds to a frequency range of about t .0006 cm-l.

The calculations were performed by means of a set of versatile computer
programs already in existence for computing the radiative properties of the
atmosphere. These programs have been devised over a period of time by Dr. C.
M. Randall to model numerous problems in atmospheric radiative transfer. The
user specifies vertical distributions of pressure, temperature, and humidity
in the atmosphere, as well as the viewing geometry. The program uses the AFGL
Line Atlas to prescribe line positions, line strengths, pressure-broadening
coefficients, and upper- and lower-state energy levels for finding Boltzmann
population factors. Boch pressure broadening and Doppler broadening were
important in the altitude range of interest and so a Voigt line shape was

used.

The program divides the atmosphere into a number of layers, each of which
is assumed to be homogeneous. It then calculates the apparent spectral
radiance of each layer as viewed by the sensor, consistent with absorption and
stimulated emission in the intervening layers. Contributions to the spectral
absorptivity from the far wings of distant pressure-broadened lines are
included, but are not important in the frequency range of interest, which is

narrowly confined to near the line center. The calculations of layer-by-layer
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apparent spectral radiance are then manipulated in several different ways to

illustrate the nature of the background radiation.

Calculations were done for three different models of temperature
distribution and two different models of water vapor distribution, all shown
graphically in Figs. 12 and 13, These were done in the combinations shown in
Table 2. The U, S. Standard Atmosphere (Ref. 6) pressure distribution was

used in all cases.

Table 2. Conditions of Calculations

Calculation No. Temperature Water Tangent Height
(Case) Distribution Distribution Line of Sight (km)
1 Ref. 7 Ref. 9 Vertical -—

2 Ref. 6 Ref. 9 Vertical -

3 Ref. 6 Ref., 10 Vertical -

4 Ref. 8 Ref. 10 Vertical -

5 Ref. 6 Ref. 10 Limb view 0
6 Ref, 6 Ref. 10 Limb view 90
7 Ref. 6 Ref, 10 Limb view 70
8} Ref. 6 but with Ref. 10 Vertical -
9 {depressed Ref. 10 Limb view 70

mesopause

The three temperature distributions used represent examples of warm, cold,

and mean mesospheric conditions. There is much uncertainty currently about
the mesospheric water content. There are other models available that would
undoubtedly give somewhat different radiance distributions than the ones we

have used.

1. Viewing below the Earth Disc Horizon (Cases 1 to 5)

A set of computer-generated plots for calculation no. 3 (Table 2) is
shown in Figs. 14 through 37. For this case, the U. S. Standard Atmosphere
temperature distribution (Ref. 6) and the Crutzen-enhanced Hy0 model (Ref. 10)
were used. Figures 14 through 20 show the altitude at which different fixed
values of optical depth are obtained as a function of frequency. Figure 21
shows the background apparent spectral radiance. Figures 22 through 37 show

the distribution with altitude of apparent volumetric spectral emission and
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Fig. 12. Atmospheric Temperature Distributions '
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the relative cumulative spectral radiance at each of several fixed values of
frequency. Similar plots are available from the authors for the remaining

cases listed in Table 2.

The finer structure visible in the even-numbered plots of Figs. 22
through 36 is not real; it is a consequence of the artificial stratification
of atmospheric properties into homogeneous layers of finite thickness as
necessary to do the computer calculation, The structure is gradually removed
as the number of layers in the calculation is increased, but the computation

time increases proportionately.

Figures 22 through 36 substantiate the claim made in Sec. III that we are
concerned with the altitude range from 35 to 100 km. Similar results for
cases 1, 2, 4, and 5 (Table 2) give about the same altitude range.

The altitude at which the peak apparent spectral radiance occurs as a
function of signal frequency, or Doppler shift, can be determined from these
plots. The distribution for cases 1 through 5 is shown in Fig. 38, and is
seen to be fairly independent of the atmospheric model for temperature or
humidity. The thickness of the emitting layer can also be determined from
these plots. The altitude range between the 10% and 90% points on the cumula-
tive radiance plots is defined here as thickness., The distribution of thick-
ness with signal frequency 1s shown in Fig. 39. Here there is some dependence on

the water vapor model, but very little dependence on temperature distribution.

The spectral radiance of the background within the expected Doppler range
is shown in Fig. 40 for cases 1 through 5. Also shown 1s the spectrum calcu-
lated by Litvak et al. (Ref. 1), the conditions of which correspond nominally
to those of case 4. It can be seen that large differences in background
spectra can be expected to occur with differing atmospheric temperature pro-
files., This confirms the suggestion that observations taken at places on the
earth's disc that are separated by large distances (> 1000 km) may have sig-
nificantly different background radiation. Clearly, in an operational svstem,
algorithms with the purpose of identifying a missile plume from spectral
absorption measurements with the earth's disc in the field of view will have
to contend with a large variety of possible background spectra.
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Fig. 40. Background Spectra for Various Model Atmospheres
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Case 5 (Table 2) is identical with case 3, except that the line of sight
is ex. tly tangential to the earth's surface instead of being vertical. It is
seen in Figs. 38 through 40 that the effect of this different viewing geometrv
is slight, and it would appear that the background characteristics are onlv
weakly dependent on the viewing geometry, provided that the line of sight

intersects the earth's surface.
2. Limb Viewing

Two calculations (cases 6 and 7, Table 2) have been done in which the
line of sight traverses at least some of the atmosphere, but does not
intersect the earth's surface. These are distinguished by tangent height, the

distance of closest approach to the surface.

Figure 4] shows spectral radiance for these two cases and also includes
case 5 for comparison., One sees that the spectral radiance generally is quite
different for limb viewing than for disc viewing geometries. The weighting
functions, volume emission as a function of both altitude and slant path, are
shown in Figs. 42 to 56 for cases 6 and 7. C(learly, the background spectral
radiance undergoes a gradual transition from the character of Fig. 40 to that
of a 3°K deep-space background as the line of sight moves from viewing the
earth's disc to viewing above the limb. From the information presented here,
that transition appears to begin at a tangent height of about 50 km and is
essentially complete at a tangent height of 110 km. In between these two

values, a wide variety of spectral shapes and atmospheric radiance profiles

can be expected.

From the weighting functions in Figs. 44 to 56, it is seen that radiation
is collected over a long slant path approaching several hundred kilometers for

some combinations of tangent height and signal frequency.

The computations discussed so far give a broad view of the background
characteristics on a global scale. We turn attention next to the variability
of the background signature on a smaller scale, say, less than 1000 km

horizontal distance.

T o
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C. BACKGROUND SIGNATURE VARIABILITY AT SMALLER SCALE SIZES

1. Gravity Waves

The principal source of atmospheric structure of concern here is internal
gravity waves, discussed in Sec. III. A. These produce perturbations,
sometimes regular and periodic, in the density and temperature of the
atmosphere at altitudes in the mesosphere and higher. The effects of gravity
waves on atmospheric properties have been observed from the ground through
their influence on

(a) radar echoes from long-lived ionized meteor trails,

(b) radar echoes from neutral-density gradients of the atmosphere,

(c) luminosity patterns of noctilucent clouds, and

(d) spatial and temporal luminosity patterns of the night-time hydroxyl

airglow.
The radar measurements give a Doppler spectrum from which wind velocity
properties are deduced. Studies of the hydroxyl airglow have been numerous
and fruitful because the radiation is bright enough some of the time to be
photographed in the near infrared, and because emission spectra can be

interpreted for rotational temperature.

The hydroxyl emission occurs primarily in the altitude range from 80 to
100 km (Ref. 11). Horizontal wavelengths vary in the range 4 to 70 km (Ref.
12). Vertical depth of the emission layer varies from 6 to 20 km. Signifi-
cant temperature changes have been measured down to a 30-sec time interval
(Ref. 13). Fluctuations as large as + 50°K have been observed over times of 5
to 10 min (Ref. 14). Crests of single waves up to 600 km long have been
observed (Ref. 12).

In two respects, there are reasonable questions about the proper inter-
pretation of these observations. First, there is concern that the rotational-
state population in OH may not always be in thermal equilibrium with the
atmosphere. However, there is good evidence that thermal equilibrium pertains
in most of the spectra. Second, it seems possible that time and spatial
variations of rotational temperature may in fact result from a changing

altitude of the emission layer in a region of steady temperature gradient in
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altitude. If either of these concerns is valid, then the hydroxyl airglow
gives at best only limited information relevant to the problem. Both of these
issues have been addressed in the recent literature (Refs. 15 through !R), but

without resolution.

To be conservative, we shall assume that these observations imply kinetic
temperature fluctuations in any spatially fixed volume of space in the
emission layer., It is likely that the water vapor rotational temperature

varies in space and time in a similar manner.

Lacking a complete statistical description of the variation of
temperature and density owing to gravity waves, we have elected instead to do
an illustrative calculation using a reasonable approximation. Two calcula-
tions of background signature were done using the atmospheric properties as
for case 3, Table 2, but with a depressed temperature of the mesopause of T =
157°K. This represents a 30°K maximum reduction from the U. S. Standard
Atmosphere at 90 km. The assumed temperature distribution is shown in Fig., 12
as the dashed line. No change was assumed for humidity and pressure distribu-
tions. Calculations were done for vertical viewing (case 8) and for 70~km
tangent height limb viewing (case 9). Background spectral radiances for cases
3, 7, 8, and 9 are compared in Fig. 57. The only change occurs at and near
the line center, as would be expected from the weighting functions displaved
in Figs. 22 and 42. Because there is a fairly good match in altitude between
the weighting functions at the line center and the assumed temperature pertur-
bation, most of the maximum temperature decrement is reflected in the change

in background apparent temperature.

The amplitude of gravity waves increases with increasing altitude. There
will be some manifestations of gravityv waves at altitudes below 80 km, but
they will be progressively smaller with decreasing altitude. While there will
be larger temperature excursions from gravity waves above 100 km, the atmo-
sphere is optically thin there and these excursions will not affect the back-

ground signature.

It appears that spatial variation of temperature and density could have a

substantial effect on background signature in the immediate vicinity of the
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line center. To be sure, more calculations are required using more realistic

models for the perturbations of temperature and density induced by gravitv

waves.
2. Turbulence

While turbulence appears to exist in the mesosphere, it is expected to
have a negligible effect on the background signature. First, it is horizon-
tally stratified so that a particular turbulence layer will occupy only a
small fraction of the altitude range of the weighting function at any fre-
quency, 1f the line of sight is, say, within 45° of the vertical. If the line
of sight is more nearly horizontal, a turbulent layer can occupy a larger
fraction of the range of the weighting function, but the full signal will be
derived fromw a long column of turbulent gas over which the integrated effect
of small-scale random fluctuations will tend to zero. Because of these geo-
metrical considerations, it is difficult to see how turbulence could have a

significant effect on background signatures and it is not considered further

here.

82




IV. CONCLUSIONS

Based on the analyses reported here, it appears that the plumes of small
rocket motors at high altitudes can be detected by observing their submilli-
meter optical properties. However, there are critical issues that have not
been addressed here that would require a larger effort and could, depending on

their resolution, change this tentative conclusion. These are given in Sec. V.

In the presence of a benign background from the atmosphere, that is, one
with no spatial or temporal variation, the estimate outlined in Sec. II. C for
a staring detector shows that a 100-1b~thrust motor would be detected with a
signal-to-noise ratio of 20 under the assumed conditions and system parameters
there specified. Against a background of deep space, the same plume results
in a signal-to-noise ratio of about 4, lower because the plume is now being

detected in emission rather than in absorption.

The calculations of atmospheric spectral radiance for different distribu-
tions of temperature and humidity and different viewing geometries show that
the altitude range that gives rise to the background in the spectral range
(18.577 + .0006) cm™! is 35 to 100 km and that the system must be able to cope
with a variety of background signatures. These relatively large differences
in signature will occur at points separated by distances >1000 km across the
earth's disk and, at any one point, over times as short as one dav. Differ-
ences in background apparent temperature in the range 20 to 50°K can be
expected at a particular spectral frequency. The shape of the atmospheric

background spectra will change on the same distance and time scales.

On a smaller size scale, gravitv waves appear to generate horizontal
spatial variations in atmospheric temperature in the altitude range, which
gives rise to background radiation that appears at and very close to (+ 2 MHz)
the line center. When the relative motions of sensor and plume are such that
a significant component of the plume absorption is not Doppler shifted away
from the line center, the plume detectability may be degraded by these

background variations.
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The situation is somewhat different when the line of sight passes through
the earth limb, as opposed to viewing the always optically thick atmosphere
over the earth disc. First, for a tangent height less than 50 km the atmo-
sphere is optically thick at all frequencies of interest and the background is
little different from that of vertical viewing. For a tangent height greater
than ~ 110 km, the atmosphere probably contributes a negligible background.
Between these values, the background spectral signature varies rapidly with
tangent height. Because of this variation in background character across the
limb, an exhaust plume between the sensor and the limb can appear either in
absorption or in emission and the magnitude and sign of the plume signal will
be a continuous function of the tangent height of the line of sight. In
addition, if there are changes in the signal Doppler shift because of changes
in the direction of the thrust vector, and if there are changes in the limb
signature in a direction parallel to the earth's surface, one can see that the

limb-viewing geometry detection problem is potentially complicated for this
system.
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V. ISSUES REQUIRING FURTHER STUDY

Some of the issues presented here are critical to the feasibility of this
scheme. Others are important to the further understanding of when and how
well the system will work. This list is by no means exhaustive. We have
specifically excluded issues related to the feasibility and development of

hardware, although some of these are suggested by the discussion.

A, CRITICAL ISSUES

1. In all of the foregoing discussion and analyses, it has been
explicitly assumed that water vapor is the absorbing plume molecule. Such a
scheme requires the presence of both hydrogen and oxygen atoms in the propel-
lant system of the observed plumes. In order to be feasible for different
propellant systems, in principle the system could be designed to sense the
absorption from a rotational transition in any other major exhaust species
having a permanent dipole moment. However, that species probably must also be
present in quantity in the mesosphere or stratosphere in order to retain the
relatively benign background characteristics found for water. If the species
is not present in the upper atmosphere, the sensor will probably view back-
ground radiation that originates in the troposphere, where there are large
spatial and temporal variations in temperature that create a cluttered back-
ground. The situation is illustrated in Fig. 58, which shows the altitude at
which the optical depth is unity when viewed vertically from above in the fre-

quency range 10 to 55 co~!. A note of caution in interpreting this figure:

calculations were done only at intervals of 1.0 en”!

, 80 some strong atmo-
spheric absorption features are not accurately represented in the plot, for
example, the 18,577 em~! line of water. For practical purposes, the question
then becomes: Are there current or possible future bus engine propellant sys-
tems that do not produce substantial fractions of water vapor? If so, this

scheme will probably not work as well for those motors.

2, There is strong evidence from observations of solar scattering of
visible wavelengths at high altitudes that at least some condensation of water

occurs 1in an exhaust plume. However, it is also known from infrared signatures
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that most of the water is present as vapor in the plumes of larger motors.

Clearly it is necessary that this be so for the smaller motors of interest

here for the scheme to be feasible. In light of the apparent presence of con-

densed-phase water, it seems prudent to ascertain the quantity and distribu-

tion of vapor-phase water in the plumes of interest.

B. OTHER ISSUES

Provided that the two critical issues above can be resolved

satisfactorily, other issues that need attention are as follows:

1.

A detailed study of the relative merité of this and competing
schemes is needed. Competing schemes that should be considered
include the SWIR systems, as well as MWIR, LWIR, UV, and visible
light systems.

The wind heating model used in Sec. II will cease to be even
approximately valid below some altitude. Further studies are
needed to characterize the performance of this system at the low
end of the altitude range where it will function.

Comprehensive measurements are needed of the earth background
signature in different viewing geometries, in different seasons,
and in different parts of the globe at and near the center of the
rotational lines of interest. These should include measurements of
spatial and temporal spectra.

A computer model should be developed for calculating plume signals
for arbitrary or‘entation of the plume axis and the vehicle
velocity vectors in the presence of realistic background spectra.

Algorithms need to be developed for identification of plume signals
in the presence of varying background signatures.
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporstion i{s conducting exper-
imental and theoretical investigations necessary for the evaluation and applica-
tion of scientific advences to new military space systems. Versatility and
flexibility have been developed to a high degree by the laboratory personnel in
dealing with the many problems encountered in the nation's rapidly developing
space systems. Expertise in the lstest scientific developments is vitsl to the
accomplishment of tasks related to these problems. The laboratories that con-
tribute to this research are:

Aerophysics Laboratory: Launch vehicle and reentry serodynamics and heat
transfer, propulsion chemistry and flui{d mechanics, structural mechanics, flight
dynamics; high-temperature thermomechanics, gas kinetics and radiation; research
in environmentsl chemistry and contamination; cw and pulsed chemical laser

development {ncluding chemical kinetics, spectroscopy, optical resonators and
beam pointing, atmospheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atwmospheric chemical reactions, atmo-
spheric optics, light scattering, state~sp:cific chemical reactions and radia-
tion transport in rocket plumes, applied laser spectroscopy, laser chemistry,
battery electrochemistry, space vacuum and radiastion effects on materials, lu-
bricstion and surface phenomena, thermionic emission, photosensitive mater{als
and detectors, atomic frequency standards, and bioenvironmental research and
monitoring.

Electronics Research Laboratory: Microelectronics, GsAs low~noise and
power devices, semiconductor lasers, electromagnetic and optical propagation
phenomena, quantum electronics, laser communications, lidar, and electro-optics;
communication sciences, applied electronics, semiconductor crystal and device
physics, radiometric imaging; millimeter-wave and microwave technology.

Information Sciences Research Office: Program verification, program trans~
lation, performance-sensitive system design, distributed architectures for
spaceborne computers, fault-tolerant computer systems, artificisl intelligence,
and microelectronics applications.

Materials Sciences Laboratory: Development of new materials: metal matrix
composites, polymers, and new forms of carbon; component fsilure analysis and
reliability; fracture mechanics and stress corrosion; evaluation of materials in
space environment; materials performance in space transportation systems; anal-
ysis of systems vulnerability and survivability in enemy-~induced environments.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radiation
from the atmosphere, density and composition of the upper atmosphere, aurorae
and airglow; magnetospharic physics, cossic rays, generation and propagation of
plasna waves in the wmagnetosphere; solar physics, infrared astronomy; the
effects of nuclear explosions, magnetic storms, and solar activity on the
earth's atmosphere, ionosphere, and sagnetosphere; the affects of optical,
electromagnetic, and particulate radistions in space on space systems.




