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20. (Continued) Logarithmic Depth Circuits for Algebraic Functions

~ the m-th power of an integer and the product of m integers, where
m=0(n)
—~ the remainder and quotient of the divisiom of two integers.
For reals on a finite interval [a,b] represented as floating point numbers
within relative accuracy o(z'“), we give boolean circuits of depth O©O(log n)

-n

(loglog n)z) for computing within relative accuracy o2 ):
— the m-th power of a real and thc product of m reals where m=0(n)
— the reciprocal of a real and division of reals
— the various elementary functions on reals.
As a consequence of the above, for polynomials and power series in 2[x]
we have uniform boolean circuits of depth ©OQ{(log n{lcgloy n)z) for all the

above listed problems for polynomials and power series, and also:

— e¢valuation of a polynomial or power series in @[x] at n points,

-n

within relative accuracy of2 ).
All our circuits may be uniformly constructed by a deterministic Turing
machine with space 0(log n). The best circuit depth previously known for any

of the above problems was {l(log n)z.




0. ABSTRACT

This paper describes circuits for computation of various algebraic functions
on polynomials, power series, integers, and reczls.
let R[x] be the polynomials and power series over a commutative ring

which supports a fast Fourier transform and let ?[x] be the polynomials and
. ) e R %
power series over the rationals & -
For polynomials of degree n-1, we give circuits of depth O(log n) for

computing

— the m-th power of a polynomial and the product of m polynomials in
R,
WR(x}, where m=0(n) ‘

— the symmetrie funections on ERlx) ~

A
— the remainder and quotiert of division of polynomials in R[x]

{
.. X
~ nterpclqtiin ot a polynomial in #Zixj.

For power series with n given low order terms, we give circuits of depth
O(log n) for computing the first n low order terms of

— the m-th power<of a power series in ,Rlx\] and the product of m power
series in &[i] where m=0(n) .

— the composition of power series in FR[x]

— the reciprocal of a power series and the division of two power series

X
in 2(x]
n x Q

— the reversion of a power series in X(x] -
. . (.

—~ various elementary functions applied to power series in 2[x] such as
(fixed) powers, roots, exponentation, logarithm, sin, cos, arctangent,
and hyperbolic cosine. < o

For integers represented by n bit binary numbers, we give boolean circuits

(whose gates compute the boolean operations A, v, and +) of depth

0(log n(loglog n)2) for computing:
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— the m~th power of an integer and the product of m integers, where

m=0(n)

~ the remainder and quotient of the division of two integers.

For reals on a finite interval ([a,b] represented@ as floating point numbers
within relative accuracy o(Z-n), we give boolean circuits of depth Of(lcg n)
(loglog n)z) for computing within relative accuracy o(z’“):

— the m-th power of a real and the product of m reals where m=0(n)

— the reciprocal of a real-and division of reals

— the various elementary functions on reals.

As a consequence of the above, for polynomials and power series in 2[x]
we have uniform boolean circuits of depth 0(log n(loglog n)z) for all the
above listed problems for polynomials and power series, and also:

— evaluation of a polynomial or power series in @2[x}] at n points,

within‘relative accuracy o(Z—n)-

All our circuits may be uniformly constructed by a deterministic Turing

machine with space 0(log n). The best circuit depth previously known for any

of the above problems was {{lag n)z.

I. INTRODUCTION

Much research is now done on parallel algorithms, although in fact at this
time most current computers contain only a single processor. However, most
computers do use parallel circuits to implement the most basic and often rerecated
operations, such as the arithmetic operations: addition, subtraction, multiplica-

tion and division. These operations are generally applied to integers with an

n bit binary representation, and to floating point reals with relative accuracy 2R, -

Other frequently used repeated operations, which certainly would merit special
purpose circuits, are the elementary functions such as sin, cosine, arctangent,

exponentation, logarithm, square roots, and fixed powers.




The depth of a circuit is the time for its parallel execution. What is the minimum

depth of boolean circuits for these arithmetic operations and elementary functions?

For integer addition, [Ofman, 62], [Krapchenko, 67] and [Ladner and Fischer,
80) give boolean circuits of depth O(log n) and size O{(n). Subtraction circuits
with the same asymptotic depth and size can easily be gotten from these addition
circuits.

For integer multiplication, [Ofman, 62] and [Wallace, 64] give boolean circuits
of depth O©O(log n}, and [Schonhage and Strassen, 71] also achieve depth O0(log n)
with simultaneous size O(n(log n)loglog n).

For division, best known boolean circuit depth was (log n)2. [Anderson,
et al., 67] first gave such a circuit (which incidentally was implemented by them
on the IBM/360 Model 91 Floating-Point Execution Unit). ([Knuth, 69] and [aho,
Hopcroft and qllman, 74) describe a division circuit attributed to Steve Cook of
depth (log n)2 and size O(n logn loglogn).

The best known boolean circuit depth for the elementary functions was
(log n)2 [Brent, 76), [Kung, 76].

Many of the above mentioned boolean circuits of derth $(log n)2 use a second
order Newton iteration with §{log n) steps, each requiring an n-bit integer
multiplication with §(log n) depth. Alternatively, a reduction is made to the
problem of computing the m-th power of a n~bit integer modulo 2"+1  for m=0(n).
This is naively computed by {2(log n) steps of repeated squaring, where each
square computation requires {l(log n) depth.

This paper gives a uniform boolean circuits of depth 0O(log n{loglog n)z)
for the problem of computing the product of m n-bit integers modulo (2n+1).

From this result, we get uniform boolean circuits of depth O(log n(loglog n)2)
for the problems of division and computing elementary functions, among others.

{Borodin, 77) proved that if a function £ is comruted in uniform boolean

circuit depth d(n) 21log n, then f can be computed by a deterministic Turing
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Machine with space d(n). Thus division and the elementary functions can be

computed in deterministic space 0(log n(loglog n)z). Note that as an amusing

consequence, we have that for any n20 the first n digits of 7, Euler's
constant e, and the golden ratio ¢ can all be computed by uniform boolean
circuits of depth 0(log n(loglog n)2), and hence can be computed in det .xministic
space O(log n(loglog n)z).

An essential technique in the cqnstruction of our product circuit is the use
of negatively wrapped convolution;, which can be computed in boolean depth
O(log n) by the fast Fourier transform of [Cooley and Tukey, 65). This tech-
nique was first introduced by [Schonhage and Strassen, 71} for the multiplication
of twe integers. Our innovation was to generalize the technigque to products of
more than two integers.

Our tedluiigues are best un rst in the context of polynamiale and
power series in say Z[x]. 1In fact, this context is interesting in itself. We
might envision a special purpose computer designed for algebraic computation. 1Its
data are (coefficients of) polynomials and power series. The arithmetic operations
including division of polynomials and power series are elementary operations of
our "algebraic computer.” Also, frequently applied operations are the composition
of power series, reversion of a power series, computation of elementary functions
applied to power series, and interpolation of polynomials.

Section 2 gives circuits of depth O(log n) that for all these polynomial

and power series operations, where each gate of the circuits computes an addition,

multiplication, or a division of two rationals. In the case the polynomials and
power series have rational coefficients, then we have boolean circuits of

O(log n(loglog n)z) depth for all these polynomial and power-series operations.
Furthermore, we can also evaluate the resulting polynomials and power series

within accuracy o(2-n) by boolean circuits with depth 0(log n(loglog n)z).




2. CIRCUITS FOR POLYNOMIAL AND POWER SERIES COMPUTATIONS

2.0 Circuit Definitions

A ctircutt a, over a commutative ring K= (@,+,,0,1) is an acyclic
labeled digraph, with
(i) a list of N distinguished irmput nodes that have no entering edges
(ii) constant nodes with indegree 0 and labeled with constants in &
(iii) internal nodes with indegree two and labeled with the symbols in
{n4n, wen} .
{iv) a list of & distinguished output nodes.

Given an assignment of the input nodes fromdomain &, the value of the
circuit at the output nodes is gotten by evaluation of the cates in torological
order. The circuit OLN thus defines a mapping from QN to gi_ A circuit
a. over the rationals 2 is similarly defined, except the nodes can aisu

N

" compute division.

Let £ be a function of (the coefficients of) m polynomials pl(x) ,...,pn(x)

in 4RIx] of degree n-l. A circuit aN for £ has N=mn inputs, namely
the list of N coefficients in % of the given polynomials. The output nodes
of O.N give the list of coefficients of f(pl(x) gens ,pm(x)). I1f on the other
hand f is a function of m power series pl(x) ,...,pm(x) in ARIx)] each with

n given low order coefficients, then the circuit O‘N for f also has N=nm

inputs, and the output nodes of ay only give some prescribed finite number of

the coefficients of (the possibly infinite) power series f(pl(x) reee ,pm(x)).

The depth of circuit a is the length of its longest path. A function §£

N

over polynomials or rower series in R has simultaneous derth 0(d(x)) and

size O(S(N)) if 3 an infinite family of circuits OeeeesQyrees and constants

' c2>1 such that VYNZ21, has depth not more than cld(N) and size not

¢

more than czs (N) and given N input coefficients of the input polvnomial or

N
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power series, @, computes f within the prescribed number of coefficients.
All the circuits considered in this paper are uniform in the sense of
[Borodin, 77]; they may be constructed in space O(log N) by a deterministic

Turing Machine.

2.1 The Discrete Fourier Transform

Fix a commutative ring &= (&, +,-,0,1). We assume w is the princigple
. . . N . .
N-th root of unity in 4®. Given a vector a€4 , the Discrete Fourier Trans-

form is
DFTN(a) = Aa

where Aijzwj for 0€i, j<N. We assume N has a rmultiplicative

. . l -ij . . . .
inverse and let Aij =§ w J. The inverse Discrete Fourier Transform is

Df‘r;l‘(a) =A—1a and obviously satisfies DFT;II(DFTN (a)) =a. [Cooley and Tukey,
65) gave the Fast Fourier Transform for which

1 R

THEOREM 2.1. DFTy and DFT, over R lhave simultaneous depth G(log N)

and size O(N logN).

(Note given a vector aGQn , where n <N, DFTN(a) will be defined to be
+ + , .
DF'I‘N(a ) where a 1is che vector of length N derived by concatenating a

with N-n zeros.)

2.2 Products of Polynomials

Suppose we are given m vectors a; €Q‘n for i=1,...,m. Each vecter
T . I o
ai (ai,o""'ai,n-l) gives the coefficients of a n-1 degree polynomial
n-1 .
Ai (x) = X a, j x)  in HRIix). Let N=nm. We wish to compute the product
,= ’ .
=0 N-1 k m
polynomial B(x}) = I bkx ., where B({x) = Ai(x). (Note that we have
k=0 i=1
bk=° for N-m+1€<k<N-1.)
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In the special case m=2 and N=2n, the convolution vector

b-=(bo,...,bN_1)T = alGDaz gives the coefficients of B(x). By the Convolution

e vty e T

oo,

Theorem:
a, ® a, = DFT;]‘(DFTN(al)-DE‘rN(aZ)) where - denotes pairwise product.
Hence the well-known result that

THEOREM 2.2. The product of two polynomials in ZRIx] of degree n-1

has simultaneous derth O(log n) and size O(n logn).

In the case of general m22, we wish to compute the coefficient vector

T
b= (bye-aiby ) =a, @...0a.

By repeated application of the Convolution Theorem, we get

-1
LEMMA 2.1. b=DFT\"(DFTy(a;)---DFT (ay_;)) -

1

Thus we first compute in parallel for i=1,...,m fi==DFTN(ai), where

T

fi=:(fi,0"°"fi,N-l) . Ne;t we compute in parallel for j=1,...,m the
elementary products F, = T £, .. Finally, we compute DFT((FO.---,FN_l)T)-
‘ i=1

Since the computation of DFTN, DFT;1 and the required products Fj’ each

have depth 0(log N), we have:

THEOREM 2.3. The product of m polynomials in FRIx) of degree n-1
hags depth 0O(log(nm)).
(Note that the naive method of repeated squaring by Theorem 2.2 has

depth Q(log(m)log(n)).

2.3 Modular Products of Polynomials

n
Let B(x) = T Ai(x) be the product polynomial considered in the previous

i=] n-1 .

section. Here we consider the computation of the modular product D(x) = ¥ dix1

i=0

where D(x) ZB(x) mod (xn+1).
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m-1 r
LEMMA 2.2. The coefficients of D(x) are d, = ¥ (-1)'b _.. for
1 r=0 nr+i

i=0,...,n-1.
For proof, see the Appendix.
We assume W is the principle nth root of unity in 9, and n has a

multiplicative inverse. We also assume there exists an y €2 such that wz =w.

n=- a = ) ’n-l T 3
Then 1. Let a, (ailo,tLai’l,...,y ai,n-l) . The negatively wrapped
eonvoluticn of a,,....,a_ is
1l m
d=(a ya.,....v" & HT .
o' "1’ ! n-1

In the Appendix we prove:

a4 -1 A e ~
LEMMA 2.3. 4= DFTn (DFTn(al) DFTn(am)).

The above lLemmas 2.2, 2.3 and Theorem 2.1 imply:

m., X A n &
lar prvduct (A (Yoo () Ymodly +1) n<

~ - A .
PYr oaiviverd oluvpms ale

2 Ly i med (y of polyvem?
A (x) e, () in RIx) degree n-1 has simu:ltareous depth O(log(nm)) and
size oO(nmlog(nm)) . Ihe modular porer A(x)™ mod(x"+1) cf a single polynemial

A(x) of degree n-1 has sitmultanecus derth 0O(log(nm)) a»d size O(n log (nm}).

&

2.4 Elementary Functions on Power Series

An immediate conseguence of Theorem 2.3 is

COROLLARY 2.1. The composition of two power series in RIx] has dertn
O(log n).

The elementary functions exp(x), log(x), sin(x), cos(x), arctan{(x), and
square root(x), etc. all have known Taylor series expansions convergent over
given intervals. Thus by Corollary 2.1 we have:

COROLLARY 2.2. The elementary functions on 2(x] have depth O(log n).

For some given x_,...%x € QN it is frequently useful in algebraic compu-

1 N N N
tations to determine the polynomial TN (x-xi) = I (-l)Jpjx) whose coefficients
i=1 j=0




pj = zil<iz<'°'<ij xil‘--xij are the elementary symmetric functions. It was

pointed out to us by Les Valiant that Theorem 2.3 immediately implies

COROLLARY 2.3. The elementary symmetric functions in RI(x] have depth

O(log N).

2.5 Power Series and Polynomial Division

n-1 .
let A(z) = X aiz1 be a power series in 2[x]. The reciprocal of A(2)
i=0 .
is the power series I(z) = X riz1 such that A(z)-I(z) =1. I(z) has the
i=0
infinite series expansion
Q .
I(z) = I (1-a(z))* .
i=0
n-1 i
We wish to compute the first n coefficients of I(z). Since I(z) = I (1-A(z)) +
i=0

o(zn), we have by Theorem 2.3:
COROLLARY 2.4. The first n terms of the reciprocal of a power series and
the division of two power series in 2(x] can be computed in dept# O(log n).
An alternative method using‘the lemma below results in a circuit of depth

O(log n) with smaller circuit size.

- log(n+l)-1 2i n
LEMMA 2.4. If I(z2) = n (1-(1-A(2))° ) then 11(2) -I(2)]| = otz)
{=0

for zE€ (0,%) ad A(z) >1-z.

For proof, see the Appendix.

In the Appendix we show that Corollary 2.4 implies:

COROLLARY 2.5. Given polynomials a(x), b(x) in 2[x] of degree at most
n, we can cormpute in depth O(log n) the unique polynomials q(x), r(x) such

that a(x) =q(x)b(x) +r(x) and degree < (r(x)) degree(b(x)).

2.6 Polynomial Interpolation

COROLLARY 2.6. Interpolation ¢f a polynomial in P(x]) has depth O(log n).
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2.7 Reversion of a Power Series

In the Appendix we show that Theorem 2.3 and Corollary 2.4 imply:

“OROLLARY 2.7. The reversion of a powver series tn 2I[x] has depth 0(log n).

3. INTEGER COMPUTATIONS

3.0 Boolean Circuits

We consider computations over integers given as n bit binary nurbers, and
reals over [0,1] given within accuracy 2", our computational model in this
section is the boolean circuit, defined as usual. The i-th input node of o
takes the i-th bit of the encoding of the input integer or real. Each gate of
an computes a boolean operation Vv, A, or =. Each output node provides a bit
of the encoding of the computed integer or real. (In the case of reals with
floating point representation, we only provide the input and output bits up to

some finite prescribed accuracy.)

3.1 The DFT over an Integer Ring

A 2
We assume n and w are positive powers of two. Let p = wn/ + 1

and let 3?p be the ring of integers modulo p.

PROPOSITION 3.1. In .ﬁ’p, w t8 the principle nth root of wnity and n
has a multiplicative inverse modulo p.

Proposition 3.1 implies DFTn and DFT;1 are well defined.

The fast Fourier transform computation of [Cooley and Tukey, 65) yields a
arithmetic circuit un of depth O(log n) and size O(n logn) computing DE“I‘n
whose elements require:

(i) addition of two ‘log(p)-bit integers.

(ii) multiplication of a ’log(p)-bit integer by a power of .
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We wish to expand an into a boolean circuit. Since w is a power of
two, the multiplications canbe implemented by the arpropriate bit shifts

(i.e., the gate connections are shifted by the appropriate amount). The

additions can be implemented by Carry-Save dd circuitry of [Ofman, 62] and
(wallice, 64] (also see [Savage, 76]) yielding a boolean circuit of depth

O(log(np)) and size O(np log(np)). Thus we have

THEOREM 3.1. DFT_ and Dl"'l‘;l over integer ring Qp have stmultcneous

boolean depth O(log(np)) and size O(np log(np)).

3.2 Products of Integers

[Schonhage, Strassen, 71] have shown:

THEOREM 3.2. The product of two K-bit integers has simultaneous bociean

depth O(log N) and size O(N logN loglog N).

We now show:

THEOREM 3.3. Given a list of N-bit integers a_,... 2 the product

1l
n
(n ai)mod(2N+l) has boolean depth 0O(log(Nm) (loglog N)z).
i=1

(Note that the naive method of repeated squaring by Theorem 3.2 results

in a boolean circuit of depth (l(log(m) log N).)

Proof. In the case m>NA8log N) we do the computation by partitioning

/2, 1/2

1 .
ajseeean into 'm/N groups, each of size at most N . We compute the

1
product of all the elements of each group in parallel by O©O{(loglog n) iter-

ations of a method described in the proof of Lemma 3.1 below. The result is
. 172 . .
a list of ‘m/N ' integers of N-bits each.
Our resulting boolean circuit for product will have depth bp{(m,N). It

will satisfy the recurrence

/2 172

D(m,N) = l‘a('lﬂ/‘N1 ",N) + D('N V,N) for m#N/(8 logN).

4:£i R _‘J-i--n---uI-l--l---l---IillIIII'....l.ll..illllllll.l‘l
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! In the case m=1, we obviously have
D(m,N) = ) .
We will prove below:
LEMMA 3.1. NWe can comstruct our beolea. circutt for product to satisfy:

1/

D(m,N) = D(m,8° (Nm logm) 1/%') + 0(log N)

for 1<m<N/(8 logN).

Note that O(lcglog N) applications of the recurrence of Lemma 3.1

implies

/2‘.N) = D(‘Nl/z‘.IG'Nl/zlog N') + O(log N loglog N) .

p(n?
Solving these above recurrences we get
D(m,N) = 0(log(Nm) (loglog N)2)

for 211 121, Thus we have proved Theorem 3.3.

Proof of Lemma 3.1. We can assume we are given N-bit integers

a ,...,am. where m<N/(8 log N). We wish to compute d= b mod(2N+l),

1
m
where b= Il a..
, i
i=]

Fix n be the largest power of two not more than 8(Nm log m) 1/2, and

let £=N/n'. Each number ai is subdivided into n “chunks” a, _,....,a

n-1 i,0 i,n~1
where O%a, j<22'. Then define the polynomial Ai(x) = X ai ij such that
’ s ’
3=0
a:.L = Ai(22). The corresponding product polynomial is
nm=-1 i m
B(x) = X bix . where B(x) = I Ai(x);
i=0 i=1
L -l
it must satisfy b=B(27). The modular product rolynomial is D(x) = ¥ dix ,
i=0

where D(x) EB(x)mod(xn+1); it satisfies d=D(22) , which is what we have
to compute.

In the Appendix we prove:

2m(f+1l+log n)log m

PROPOSITION 3.2. For each 3=0,...,n-1, ldjl <2
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/2

let w=4 and p=uun +1. Then by Proposition 3.1, the integer ring

Qp has w as the principle n-th root of unity and n has a multiplicative

. ~ n-1 T
. 3 2. = -
inverse modp Also, we define ¢ = Let a; (ai,o'wai,l' N ai,n—l
for i=0,...,n-1. By Lemma 2.2, the coefficients of D(x) are
m-1
di = I (-l)r bm:-l-i for i=0,...,n-1. By Proposition 3.1, and by our choice
r=0
of n we have |a |<p/2 for all i=1,...,n-1. Then d= (do,wdl,...,w"'ldn_l)T

is the negatively wrapped convolution of the coefficients of polynomials

Al(x) PR ,Am(x) . To compute d, in parallel for i=1,...,m we compute in

the ring QP. DF:‘(Si) = (gi,o""'gi,n-l)T then in parallel for k=o,...,n-1
we compute e = il.-—.lo gi,k mod p, and finally by lLemma 2.3, a=DFr;l(eo,... 'en-l)'
Since Y is a power of two, we can easily extract do,...,dn_l from d in
depth O(log n). By Theorem 3.1, the DF-'rn and DI-‘T;]' computations have
depth 0O(log n).
Note that siace p =wn/2 +1= 2" 4 1 and n <8(Nmlogm) 1/2, the recurrence

claimed in Lemma 3.2 is satisfied. : o

3.3 Multiprecision Evaluation of Polynomials and Power Series

let p(x) be a polynomial or power series in 2([x] with n-l given
rational coefficients of magnitude <2". We wish to evaluate p(x) at a

floating point real x., within relative accuracy o(2-n). By Theorem 3.3 we

(o

have
COROLLARY 3.1. The evaluation of p(x) at a given x, to relative
accuracy o(2™™) has boolean depth 0O(log n(loglog n)z).

Since the elementary functions exp(x), log(x), sin(x), cos(x), arctan(x),

square root(x), etc. power series expansions over given intervals, we have




COROLLARY 3.2. The evaluation of an elementary junction to relative
accuracy o(2 ") has boolean deptn 0(log n{loglog n)z).
COROLLARY 3.3. The elementary symmetric functions (see Section 2.4)

over @(x) have boolean depth O(log n(loglog n)2).

3.4 Reciprocals and Division of Integers

let a be an integer within bounds 2n-1€a<2n. Then a has binary

n-1 .
representation I ai21 where a ,=1. The reciprocal of a is 2 (n by,
o i=0
where r = I ri 21, We wish to compute the first n bits ro,...,rn-l.

i=0
For this, we can use the product form of [Anderson, et al., 671 and [Savage, 76}.
log(n+l)-1 -n o} _
LEMMA 3.3. If t = ni (1-(1-2 "a)® ) then |r-r| = o(2
{=0

™.

By Theorem 3.3 and the above lemma, we get
COROTTARY 3.4. The reciprocal can be computed within relative accuracy

o(2™™) by a boolean circuit of derth 0(log n(loglog n)z).

COROLLARY 3.5. (Given integers a, b with binary represertation ccrtainir.

W

n bits, ve can compute in Foolean depth 0O(log n(loglog n)2) the civision

quotient q and remainder r <integers such that a=qb+r and 0<r<b.

Further Results

Our results for 2([(x) can be extended to Euclidean domains. In a forth-

coming draft of this paper, we improve the size bounds of our circuitry.
Also, we can reduce our boolean depth bound for products in Theorem 3.3 to
0(log N loglog N) by improving lLemma 3.1 to get the recurrence D(m, N) =

D(m, m"log N') + O(log N} for m < N/(8log N).
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APPENDIX

Proof of Lemma 2.2.

N-1 j ni-:l N-1 nrti
B(x) = b.x = b X
j=0 3 =0 i=0 "%
w1 r i n
= Z (-1)'b . X" mod(x +1)
= nr+i
since (--1)r = x"F mod(xn+l) .

o= Pad = T
Proof of Lemma 2.3. For i=1,...,m let DFT(ai) (gi.O""'gi,n-l)
where
= 5, 3%
g. = a, Ve
1,k j=0 1,3
for k=0,...,n-1. Let
z k(Z, )
m j. j,
ek=(n gik = Z ;plw 1(“ a,.).
i=1 ¢ <., 7,5 <n i=1 134
1 m
T

Now let Df'rn(d) = (e!',...,e'

. =0,...,n- t
o n-l) Then for k=0, n-1 we le

n-1
o' = Z angwkg
=0

n-l m-1
- ¥ Ve, by Lemma 2.2
=0 r=0

n-1 m-1 m
- Y ¥ tenT 2, noa .

= joe--j_<n i=1 **3j
£=0 1r=0 O<Jl j <n i=1 i

nr+l=L .
I3




But if we substitute & = (z!;=1 ji) -nr into the above expansion, we get

. k(Z.)
R.wkﬂ. r ) I 35

since wnr= (-1)r and w'=1. Hence el'(=ek' o

Proof of lemma 2.4. Let B(z)=1-A(z). Then Aa(z)I(z)=(1-B(z))I(z) =

1-B(z)™ = 1- @-a@n™?. so

(1-A(z))**1

[16z) -T2 | A(2)

€ 2(1 -A(z))n+1 since A(2) ?%

< 2zm~1 since z21-2a(z)

= o(zn) since z € (0, %) . o

Proof of Corollery 2.5. (Also, see [Knuth, 81]). Let = degree (a(x) !}

"y

and n2=degree (b(x)). The computation is triwvial unless n1>n2?l. Then

nl-n2+1
A(z) = Q(z)B(z) +z R(2)
where
1 n, 1 Ry g
A(z) = z1a(d, B(2) =z"2b(d), o(z) = =z a)
z A b4
and R(z) = anlr(%).

Thus to compute the coefficients of g(x), r(x) we compute the first

n_-n.+1
,nz-,n1+1 coefficients of A(z2)/B(z) = Q(z) +0(z 12 ), then compute the
n_-n_+1
power series A(z) -B(z)Q(z) =z ! 2 R(z), and finally output the
coefficients of Q(z), R(z). o

Proof of Corollary 2.6. Suppose we are given pl(x) ,...,pn(x) polynomials

in 2I[x] each of degree n-l, and polynomials ql(x) ,....qm(x) where




A.3

m
degree (qi(x)) < degree (pi(x)) for i=1,...,n. Let P(x) = N pi(x). The
i=1
Chinese Remainder Theorem states that there is a unique polynomial Q(x) of
degree less than that of P(x) such that Q(x) Eqi(x)mod p; (x) for

i=1,...,m.

The Lagrangian interpolation formula gives

m
Q(x) = ig% g, ()T, (x)s, (x) mod P (x)

where S; (x) =P(x)/pi(x) and ri(x) is the multiplicative inverse of
s; (x)mod Py (x).

Theorem 2.2 and Corollary 2.5 imply that preconditioned Chinese remaindering,
with the rl(x) ,...,rm(x) also given, has depth 0(log n).

However, in the spe:cial case pi (x) =x-a, for i=1,...,m, where the a;
are distinct then each ri(x) = l/si (x) can be computed in parallel by
Theorem 3.3 and Corollary 2.5 in depth O(log n}. 1In this case the qi(x) =bi
are constants, since they must have degree less than the pi(x).

Further note that in this case Q(x) is the unique polynomial such that

Q(ai) =bi for i=1,...,m. Thus we have proved Corollary 2.6. o
@ .
Proof of Corollary 2.7. Let A(x) = X aixl be a power series in Q][x])
i=
where a0= 0 and a1= 1. The reversion of A(x) is the power series
[ ]
R(z) = £ r zk where 2z =A(Xx). Note that r =0 and r_ =1. For the
k=0 k 0] 1
kth coefficient, we first compute

o
o1 i
B = ok = Lo byx

and then apply Lagrange's reversion formula [Lagrange, 1768] r =b /R

for k#2. Thus Theorem 3.3 implies Corollary 2.7. o




Proof of Proposition 3.2. Let f£f(i) be the maximum magnitude of any

coefficient of a polynomial resulting from a product of 2t of the Aj (x)
L .
polynomials taken mod (x"+1) . Clearly f£(C) =2 and f(i) =2n f(l-l)2

for 1>0. Solving this recurrence we get

f(flog m') <22mm+1+10g n) log m (o}







