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SECTION I

INTRODUCTION

The nominal APATS field of view, for an array antenna with a
horizontal boresight, is + 60° {n azimuth and between 45° and -15°
in elevation; however, the contractor may modify these numbers as a
result of system trade-off studies. The spacing of the array’s
elements should be chosen such that grating lobes do not occur when
the main beam is steered within the boundaries of the specified
field of view. In addition, it 1s desirable to space the elements
as far apart as possible, 1in the context of the grating lobe
constraint, in order to minimize array cost and complexity, since
larger separations permit a given aperture to be filled using fewer

elements.

Determination of an optimum or near optimum element lattice for
two dimensional arrays 1is expedited by a procedure which
incorporates the very elegant concept of the "reciprocal lattice*"

(RL) which is employed extensively in crystalography and solid state

physics. Basic RL concepts are covered in the next section, while
specific apolication of this type of analysis to APATS is deferred

1 until Section ITI. A brief conclusion section completes this work.

{ * This formation is due to J. Willard Gibbs. A basic introduction
t to reciprocal space :oncepts can be found in Introduction to Solid
X State Physics, C. Kittel (J. Wiley and Sons, 1971) p. 56-69.

i s

AR




T

‘ﬁ""-" o

SECTION II

BASIC CONCEPTS

A 3-D space lattice of point 1isotroplc scatterers can be
described by integral combinations of three primative translation
vectors. The vector from the origin lattice site (n =0, p=0, m =

0) to the site designated by the integers n, p and m is therefore,

E;pm = na + pb + mc (1)
in which‘Z,'B and ¢ are a particular set of primative translation
vectors often chosen for convenience. The position vector of
equation (1) ranges over the lattice as the indices are varied. If
the lattice is excited by a plane wave of wave vector.E, each site
nroduces an outgoing spherical wave, since it {is assumed that the
scatterers are 1isotropic. For elastic scattering these waves may
add constructively to produce an outgoing plane wave or waves

characterized by EV, %’ ete. such that,
— ‘_I .—‘I ,
el = |k"] = |k""| = 2x/x (2)
Consider an 1{incident, 12, and outgoing, 12’, plane wave. The

phase of the wavelet scattered from the lattice at Rnpm relative to

that scattered from the point at the origin is,

TE) =T LR % . R
anm(k‘k * Rnpm - * “npm
— -, -— - — —
= (k - k ) . Rnpm Ak . Rnpm (3)

as illustrated for a 2-D lattice in Figure 1. If i? is a scattered

plane wave due to reinforcement of the wavelets from all lattice

e h Ve fim e A — 4 . Al e —m. o+ _ A . e A e oa
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sites, the phase factor of equations (3) must be some 1integral

multiple of 2n radians for each set of (n, p, m) values,

Onpm(k,k ) = annpm (nnpm = integer or 0) (4)

or, using equations (3) and (1),

(5)

. R =n(£E.‘a“)+p<KT<.*S)+m(KE.’E)=znnn

npm pm

and it is evident that this equation is satisfied for all allowed

values of n, p and m if and only if the '"Laue Conditions For

Diffraction Maxima" are simultaneously satisfied:

A .a=2sh, h=..1,0,1... (6a)
Ak . b= 27k, k= ...1,0,1... (6b)
ﬁ( 0:32‘"1' 1’ o.ol,o,l.oo (6(:)

These equations, interestingly, are satisfied if Ak is given by,
Ak = hA + kB + 1C = G, ("N
g | hkl

in which,

- Zw(.f)- x '¢)

‘A (3a)
2 X . €

G - 2+7(c x 3) (8b)
TxD .%¢C

C - 27(a x b) (3¢)

a x « C
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are primative reciprocal lattice vectors* which are constructed from
the primative space lattice vectors, and have units of 1inverse
length, The magnitude of the vector triple product in the
denominator of equations (8) 1is the volume of the primative unit
call of the space lattice. Each point of the reciprocal lattice
specified by h, k, 1 indices represents an allowed diffraction
maaximum due to scattering from the corresponding space lattice. If
a single, isotropic scatterer 1is located at each space lattice
point, the diffracted besam will exist and be characterized by i?
such that,

-—

Khkl = ¥~ S (9

in which the diffracted wave vector 1is labeled by the (h,k,l)
indices of the reciprocal 1lattice vector. The 1{inverse

+
transformation should also be noted ,

. 2n(B xT)

X B . (10a)
oc— = ZW(A— X f) (lOC)

X .

* Actually psuedo vectors, but this 1is 1irrelevant if coordinates
system of one handedness is used consistently.

Since’E,‘E and ¢, as defined here, are pseudo vectors, the 1inverse
transformation 1is not valid if the coordinates system is inverted.




and will be used later in the analysis. To apply the above
diffraction theory concepts to a planar array, it is neces-

sary to determine the reciprocal lattice for 2-D periodic
arrangements of scatterers. Imagine an infinite collection of
identical 2-D lattices stacked to form a 3-D lattice such that the
lattice points are in vertical registry, i.e., the points of one
array are directly above those of its lower neighbor. If the
vertical separation between the arrays is allowed to increase
without limit, only one array, i.e. the one assumed to be stationary
with respect to a hypothetical observer, remains. In reciprocal
space, however, tha reciprocal lattice points corresponding to the
separate arrays move closer together as the space lattice 1is
expanded, and, in the limit of infinite spacial separation, the
reciprocal lattice points coalesce 1into rods. If © is the array
separation vector which is increased without limit, the rods pass
through the reciprocal lattice points given by,

-—

Chk = hA + kB (1)

and are perpendicular to plane determined by‘x and ‘B (i.e, along'E).
as illustrated 1in figure 2 for a rectangular array. If the
reciprocal lattice of the array is viewed along the rods, it anpears
as the 2-D lattice of equation (11); however, it must be remembered

that 1t actually occupies three dimensions.

An 1rray beam scanned to array azimuth (¢) and elevation (90),
and formed at a wavelength, ), is represented by‘i in the previous
analysis. The wave vector is conveniently expressed in terms of {its
direction cosine angles,a, B, and Yy with respect to the array x

(horizontal), y and z (boresight) axes respectively:

10
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K=kR+xkf+x2
X y z

= (2n/2)(cosaX + cos8Y + cosyZ) (12)

The direction cosines are related to the array azimuth and elevation

by,
cosn = cosOsing, cosf8 = sin0, cosy = cosBcosé (13)

The grating lobes are identified with the primed wave vectors which
correspond to diffraction maxima, aand can be identified by the h, k

indices of their associated reciprocal lattice rods.

For simplicity, consider first only the reciprocal lattice rods
lying in one plane along A. The origin of reciprocal space 1is
placed at an arbitrary point along one rod and the head of % is
placed at this point. The array beam, represented by'E, is steered
off boresight by an angle y in the plane of the rods, and first
grating lobe will occur when k is scanned off boresight enough to
enable kK’ to contact an adjacent rod, as shown in figure 3. The
incipient grating lobe emerges parallel to the array, and by

construction equation (9) is satisfied. More specifically,

k| siny + |k’] = A] = 2v/a (14)
or,

a = (1l + sin Y)-.l (15)

expresses the element separation (referred to as optimum here) at

which the grating lobe peak direction is parallel to the array face.

For example, 1f y = 500, the separation, a, can be as large as

0

0.535) before the grating lobe peak emerges from the plane of the
array (in the A direction).

12
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When considering grating lobe emergence in the whole plane of
the array, the reciprocal lattice should be viewed along the rods to

produce a 2-D lattice perspective.

In figure 4 a 2-D generalization of the construction of
figure 3 is illustrated. The inner circle represents the
projection of the tail of K onto a plane perpendicular to the
reciprocal lattice rods for the boundary of a conical scan volume of
half angle y about the array boresight, which is parallel to the
rods. The outer concentric circle represents the projection of the
outer boundary of the set of vectors obtained by subtracting'E from
potential grating lobe wavevectors, 1:'. The rectangular reciprocal
lattice which corresponds to the optimum space lattice is found by
placing a rectangular array of rods about the outer boundary in such
a manner that the rods closest to the origin contact the boundary.
When a rod touches the boundary, equation (9) 1is satisfied by a
grazing (parallel to the array) grating lobe peak which is directed
from the origin rod to the point of contact. For the conical scan
volume the optimum rod lattice {s obviously square, as illustrated

in figure 4, and has primative basis vectors,
A= e/ + siap R (16a)
B = (20/2)(1 + siny) ¥ (16b)
which corresponds to the space lattice basis,

2 = a1 + siny)” 1 % (172)

<>

b = a(1 + siny) ! (17b)

14

—_—




| shGmasasssmane 48 a¢ —~w

NVIS TVIINOD HO4 33111V 1vI0HdIO3H HVINONVYLIIH WNWILJO 't ainbry

aodjio’t-)




for which T = Z 1s assumed just for coavenience in carrying out the

inverse transformation of equation (10).

If the reciprocal net is hexagonal in configuration, as shown in

figure 5, an optimum set of primative vectors is,

A = 1¥i (1 + siny) X + % (1 + siny) ¥ (18a)
'§=l'l-;[—3(1 +siny)’i+%(1 + siny) ¥ (18b)

which transforms to the space lattice basis vectors,

a = 7§ (1 + sirnr)-1 K+ 21 + sinv)-l s (19a)
b= 3% (1 + slnvsl X+ A(1 + stnysl?‘ (19b)

which also define a hexagonal lattice which is, however, rotated 300

with respect to the reciprocal rod lattice.

The array aperture area per element may be obtained from either

the space or reciprocal lattice primative vectors:
— e 2
Ap = laxb] = 4" |A x B (20)

For the two examples considered above,

i square; Ae = xz(l + siny).2 (21)
L'l
sz -2
L hexagonal; Ae = Jﬁ— (1 + siny) (22)
k.
3
3
t 16
o
b
b
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and it is seen that, independent of the conical scan half angle v,
an hexagonal array lattice requires 13.4% fewer elements to fill a
given aperture than a square lattice - a result which has been

1
proven elsewhere ',

To determine the parameters of the space lattice with the
largest area per element, consistent with an absence of grating lobe
peaks less than 90° off boresight for a particular field of view,

the following general procedure may be employed:

1) The wave vectors for the specified scan boundary
are projected onto the plane perpendicular to the
array boresight, which is also the plane
perpendicular to the reciprocal lattice rods.

2) The projected scan boundary is extended by radii
of (2n/)) centered on each point of the scan
boundary. The envelope of these circles
represents the locus of all potential incipient
grating lobes with peaks directed perpendicular to
the array boresight, i.e., parallel to the array.

3) A reciprocal lattice type (triangular,
rectangular, etc.) is chosen and fit to the
envelope in such a way as to minimize the
reciprocal lattice unit cell area (A x B) without
placing any lattice rod, save for the rod at the
origin, within the envelope.

4) The space or element lattice is found by inverting

the reciptocal_laktice of step 3, using, for
convenience, C = 7, and equations (10).

Very often the symmetry of the field of view immediately
suggests an appropriate reciprocal lattice type or types for
consideration. For example, if the field of view has a mirror plane
of symmetry, only rectangular and 1{soceles triangular reciprocal
lattices need be considered. Clearly, the reciprocal lattice and
spice lattice, should, at a2 minimum, have as many symmetry elements

(mirror planes, rotation axes, etc.) as the field of view.

18




The above perscription for element lattice wunit cell area
maximization permits grating lobe peaks to occur parallel to the
array face. However, it has been noted2 that mutual coupling
between the elements can cause '"blind spots" when the beam is
steared in a direction such that a grating lobe peak lies parallel
to the array plane. To obtain the additional grating lobe
suppression desired, it is usually sufficient to add one half of a
full mainbeam width at the field of view boundary to the perimeter
of the field of view. As explained in mnore detail later, this

expedient places the first grating lobe null tangent to the array
face.

In the following section the analysis described here is used to

find the optinum element pattern for APATS.

19
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SECTION IIIL

ANALYSTIS AND RESULTS FOR APATS

As stated in the introduction, the nominal APATS field of view,
referenced to the local horizontal, is tﬁOo in azimuth, and from 45°
to -15° in elevation. Elevation is measured in a vertical plane
from the horizontal, while azinuth is measured in a horizontal plane
from the vertical plane which contains the array boresight. Since
the array bhoresight will be elevated 19° - 15° to reduce scan loss
when the RV 1is in peak plasma, it is necessary to transform the
field of view into angular coordinates referenced to the array
coordinate system, in which 7 lies along the boresight and X lies in
the array plane and along the horizontal. The appropriate
transformation matrix and equations have been given elsewhere

recently and will not be repeated here.

The scan boundary wave vector for the transformed field of view
is projected onto the array plane in figure 6 for a boresight
elevation of 10° and A = 13.3 cm. The axes have units of cm.l and
this projection is actually on a reciprocal space plane parallel to
the array plane. As discussed previously, the components of k which

give the projection boundary are,
kx = (2n/\)cosdsing = (2x/1)cosa (23a)
ky = (2n/2)sine = (2n/r)cosk (27h)

in which 98 and ¢ are the angular coordinates of the transformed
field of view perimeter. The envelope of the (k" - © values was
produced graphically using a compass set to a radius corresponding

to N.472 cm-l, the magnitude of the wave vector. Except for the

20

| .




ST T TTETTY

[

| 18-63,933 |

T . g - W T e Y e, W WS w S W T w - W e

8T ~
AT m—
7 <~
N —~.
.6\
ky=<
.5'\

S S SN S

==

Ot~

w

N

PROJECTEDk AT FIELD OF
VIEW BOUNDARY -3+

{k- k) ENVELOPE

N
(0,0)

iy 2

Figure 6 RECIPROCAL SPACE CONSTRUCTION FOR 10° BORESIG

. V=

— ke ow—



.4

A ——n
T1 A
R (1,1)
\‘ \
- %\ N\ N\,
-~ — \ AN
—_ \ AN
) N AN AN
) \)‘ \\
N \
| B N\
\RET o Br
B ‘L
A%
AN . )\
| \
%< ‘
h 1--
!
M._z-h
.DOF
-.3+
- 2n
4 b
-.5-1-
: -6
| —
f Y e

1 PACE CONSTRUCTION FOR 10° BORESIGHT ELEVATION
I

B W VNS W TSI W NP PN S




v T w T T ey W

-

origin, the rods of the reciprocal lattice, which appear as points
in the projection, must lie outside this envelope. However, the
closer the vods can be spaced in reciprocal space, the larger the

area will be per lattice site in the space lattice.

For a rectangular reciprocal net, the shortest primative

reciprocal lattice vectors are, in inverse centimeters,

A = 0.880 X, B = 0.743 £'d (24)

as illustrated in figure 6. The inverse transformatfon of equations

(10) yields (C = 7 used for convenience),

’ER = 7.16 R(em) = 0.537x X (25)
*ER = 8.46 Y(cm) = 0.6361 ¥

and the space lattice is rectangular with its short dimension in the

2 2

horizontal direction. The area per element is 0.342)x" or 60.4cm

for » = 13.3cm.

The symmetry of the field of view in the array coordinate system
implies that only isoceles triangular lattices need be considered in
addition to the rectangular lattice; however, there are two

alternatives for this type of lattice:

1) The half width of the k' - 'k envelope can be equal
to twice cthe column separation in the reciprocal
lattice.

2) The height of the envelope, from the origin to the

top, can be equal to twice the row separation in
the reciprocal lattice.

23
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Primative reciprocal lattice vectors for these two cases are

depicted in figure 6, For case 1l these are, in inverse centimeters,

A.. =0.8% X, B

2\ 0 "l
Tl mn = -0.440 X + 0.747 Y (cm ) (26)

and the inverse transformation produces,

-—
a

= 7.14 X+ 4.21 ¥ =0.5372 X + 0.316A ¥ (cm)

(27)
b= 8.42 Y = 0,630 Y (cm)

which is a nearly hexagonal space lattice, as illustrated {n figure
7. The area per element is 0.340x2, which is slightly less than
that for the rectangular lattice previously considered. Thus this

triangular arrangement has no advantage over the simpler rectangular

periodicity.

The second type of triangular net has primative reciprocal

vectors,

— ) A A — A -1
ATZ = (),820 X - 0.372 Y, BTZ 0.743 Y (cm ) (28)

which produce the space net,
*-— A\ “\
a=7.66 X=0,576 X (cm)

(29)
‘D = 3.86 X + 8.46 ¥ = 0.289% X + 0.6362 Y  (cm)

which is {llustrated in figure 8. Interestingly, the area per

element is 0.366x2 - ahbout 7% greater than that of the rectangular

24
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lattice. This is equivalent to a %.6% savings in elements with
respect to the rectangular lattice for the field of view and

boresight elevation considered.

Identical analyses have been performed for the suggested APATS
field of view as transformed to an array system with a 15° boresight
elevation. The salient results have been summarized in table 1,
together with those pertaining to the 19° boresight elevation case
just discussed. The reciprocal space construction for the 15° case

appears in figure 9.

With the array boresight elevated by 150, the projection of the
transformed field of view 1s more nearly centered about the origin,
or (0,0) reciprocal lattice rod, and it 1is possible to construct
primative reciprocal lattice vectors which are shorter than those
required for the 10° transformed field of view. Ia particular, the
optimum (T2) lattice for the 15° case has an area of 0.380x2 per
element - a 3,87 increase over the 10o case, which translates to
3.7% fewer elements for the 15° case. The theoretical element gain

for this optimum case is,

4
G = 23 = 47(0.380) = 4.78 (39)

A
or 6.79 dB - a value which should not be impractical} however,
element scan losses must also be considered and may indicate that
an element with less boresight gain and less scan loss in a tighter

lattice is more desirable.

As mentioned at the end of Section II, additional grating lobe
suppression may be necessary in order to reduce or avoid blind spots
at those points at the fleld of view boundary which produce grating
lobes parallel to the array. This suppression may be provided by
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expanding the fleld of view in such a fashion as to place the first
grating lobe null in the array plane when the main beam is steered
to the original field of view boundary. The optimum lattice is
determined using the expanded field of view and the procedure
outlined in Section 1I. To a good approximation, the expanded scan
area can be obtained from the specified scan area by adding one half
of a full beamwidth (for a beam steered to the original boundary) to
each point along the boundary. The additional scan angle is, of

course, a function of scan boundary position, and array size and

geometry.

The underlying principles are best illustrated by consideration
of a linear array of (N + 1) elements with spacing d. If the first
grating lobe is parallel to the array when the beam is scanned to an

angle 6’ off boresight, equation (15) indicates that d must satisfy,
d = A[l + sine’]"! (31)

If the scan angle is reduced to a value of 93, such that the phase

change at any element,
Ad = (27d/2)[(sind’ - sin 8] (32)

i{s equal to 2n/N radians, a null occurs in the direction where the
grating lobe peak had existed when the beam was steered to 9°.

Therefore, if the field of view boundary is at 9, 3" can be obtained

from,
9 = sin-l[x/L + sins] 373)

in which L = Nd is the length of the array. Since the grating lobe
condition is satisfied at 3’, the first grating lobe null will occur

31




at 9 as desired. Egquation (33) also specifies the position of the
first outside (away from boresight) null for an array beam steered
to 9. Since the mainbeam 1is aporoximately symmetrical, adding half
a beamwidth to the field of view should provide very nearly the
desired result.

For an APATS field of view and an array which has a rectangular
lattice with axes parallel to the array edges, equations (33) and
(15) can be immediately used to determine the optimum lattice
spacings needed to null the incipient grating lobes in the array
plane. For the 10° boresight elevation case, the maximum elevation
scan angle, at 0° azimuth, is increased from 35° to 39.30, while the
maximum azimuth scan, at 0° elevation, is increased form 59.6° to
65.1° as per equation (33) for anm array having a width of Jm and
height of 2m. The reciprocal space geometry of figure 6 indicates
that only these two angular coordinates are 1important 1in the
determination of the optimum clement lattice. The maximum element
separations can be computed by substitution of the expanded field of
view angles into equation (31) or (15):

a = 0.5260 %, D = 0.6100 ¢ (34)

The area per array element 1is 0.320x2, or 6.9%2 less than the
correspoading case without the additional suppression of the grating

lobes.
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For the 15° boresight elevation case, the expanded scan angles
are 34.5° elevation, at 0° azimuth, and 64.5° azimuth, at n°

elevation, and the primative lattice vectors are,

-— oD — 2\

a = 0.526:X, b = 0.6382Y (35)
which give 0.336)2 area per element, or 6.4%Z less than the
corresponding case without additional grating 1lobe suppression.
Similar reductions obtain for triangular lattices, however

computation for these cases is far more difficult and provides no

additional insight.
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Triangular array element patterns, if properly optimized, should
provide element savings of 6.5% and 5.5% for 10° and 15° horesight

elevations respectively,

lattices.
elevation
reduction
elevation

for a 6m2

by approximately 6% 1{f additional grating lobe

SECTION 4

CONCLUSTONS

relative to the optimum rectangular array

Furthermore, it has been found that a 15° boresight
produces a transformed field of view which permits a
in element number of 3.6% compared to the 19° boresight
case. These results are translated 1into element counts
array in table 2, These values should be adjusted upwards

suppression, as

described in Section III, is used.
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TABLE 2

ELEMENT COUNT VERSUS LATTICE TYPE *

(ARRAY AREA ASSUMED TO BE 6m¢)

10° Boresight Elevation

Lattice Type Element Count
Optimum

Rectangular 992
Optimum

Triangular 927

15° Boresight Elevation

Optimum

Rectangular 944
Optimum
Triangular 393

* Grating lobe peaks are parallel to the array
at maximum scan angle. Placement of first
grating lobe null parallel to the array re-

o
quires ~ 6 more elements.

s
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APPENDIX

RECIPROCAL SPACE AND FOURIER SERIES

As is well known, a function which is piecewise continuous and
periodic with period "a" can be expanded in a Fourier Series. In

one dimension, the series has the exponential form,

£G0 = cn) | T exp(12%]; (h, integer) (35)

with coefficients,

a
c(h) = % I f(x)exp[-1 gih x])dx &Y
o

If the function is defined on ‘R and has periodicity given by the
translation vectors :, % and ‘¢ which lie along the /)E, /Y\, and Z
directions, respectively, the expansion is readily generalized to,

(38)
{ 2nh x 121rk 121!1 z
s 3 WX, T, e

(® = cthyk,vy E 0 EOE 0 e

(h,k,1 integers)

Which has the required translational invarience,
£(R) = £(R + na + pb + mc) (n,p,m integers) (39)
For convenience, equation (38) can be reexpressed,

— -—
eiKh.k,l « R

k,1

HOR NN RS (40)
L g ] h.
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where,
K s h TR ek 242 (41)
h,k,1 |al Ib| lel

is the set of reciprocal lattice vectors which correspond to the
orthogonal set :;,'K’ and 'c. If these translation vectors are now
allowed to represent a general (non-orthogonal) periodicity of £(R)
the Fourier expansion must still be invarient when R is replaced by,

R+R __ =R +na+ pb+mc (42)
npm

Therefore,

.y — ﬁ( R
fR) = E(R+R__ ) = ¢c(X) ze * °
npm <
. ix. *ﬁ+‘ﬁnm
= c(®) ze P (43)
K
Y
= C(K) e e P
-—
K
which is satisfied 1if,
¥.R = 2%xn  (n, integer) (43)

npm

which is identical to equation (5). As was demonstrated in Section
II,'E must be a reciprocal lattice vector for equation (44) to be
satisfied, and Fourier expansion of a function which is periodic in

three dimensions therefore requires only reciprocal lattice vectors:

£(R) = c(C ) = e
h,k,1 Gy k1
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In which,

-1G, . R
- _1 — h,k,1
C(Gh,k,l) § f(R)e dv

<

where 1integration is performed over the volume of the unit cell
formed by the chosen set of primative translation vectors used to
specify the periodicity of £(R). If £(R) is a space lattice defined
by a Dirac Delta Function at each site, all of the Fourier expansion
coefficients are unity and it is evident that the reciprocal lattice

is the Fourier transform of the space lattice.
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